-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcryptography.py
538 lines (460 loc) · 25.2 KB
/
cryptography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import os
import base64
import hashlib
import secrets
import string
import zlib
import binascii
from typing import Tuple, List, Optional
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives import hashes, padding
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives.asymmetric import rsa, padding as asymmetric_padding, ec, dsa, ed25519
from cryptography.hazmat.primitives.serialization import load_pem_private_key, load_pem_public_key, Encoding, PrivateFormat, PublicFormat, NoEncryption
from cryptography.hazmat.backends import default_backend
from cryptography.fernet import Fernet
from cryptography.hazmat.primitives.twofactor import totp
from cryptography.hazmat.primitives.ciphers.aead import AESGCM, ChaCha20Poly1305
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.primitives.asymmetric import dh
from cryptography.hazmat.primitives.constant_time import bytes_eq
class AdvancedCryptography:
def __init__(self):
self.backend = default_backend()
def generate_key(self, password: str, salt: bytes = None, iterations: int = 100000) -> bytes:
if salt is None:
salt = os.urandom(32)
kdf = PBKDF2HMAC(
algorithm=hashes.SHA3_256(),
length=32,
salt=salt,
iterations=iterations,
backend=self.backend
)
return kdf.derive(password.encode())
def encrypt_aes_gcm(self, plaintext: str, key: bytes) -> Tuple[bytes, bytes, bytes]:
nonce = os.urandom(12)
aad = os.urandom(16)
aesgcm = AESGCM(key)
ciphertext = aesgcm.encrypt(nonce, plaintext.encode(), aad)
return ciphertext, nonce, aad
def decrypt_aes_gcm(self, ciphertext: bytes, key: bytes, nonce: bytes, aad: bytes) -> str:
aesgcm = AESGCM(key)
plaintext = aesgcm.decrypt(nonce, ciphertext, aad)
return plaintext.decode()
def encrypt_chacha20_poly1305(self, plaintext: str, key: bytes) -> Tuple[bytes, bytes]:
nonce = os.urandom(12)
algorithm = ChaCha20Poly1305(key)
ciphertext = algorithm.encrypt(nonce, plaintext.encode(), None)
return ciphertext, nonce
def decrypt_chacha20_poly1305(self, ciphertext: bytes, key: bytes, nonce: bytes) -> str:
algorithm = ChaCha20Poly1305(key)
plaintext = algorithm.decrypt(nonce, ciphertext, None)
return plaintext.decode()
def generate_rsa_key_pair(self, key_size: int = 4096) -> Tuple[rsa.RSAPrivateKey, rsa.RSAPublicKey]:
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=key_size,
backend=self.backend
)
public_key = private_key.public_key()
return private_key, public_key
def rsa_encrypt(self, plaintext: str, public_key: rsa.RSAPublicKey) -> bytes:
ciphertext = public_key.encrypt(
plaintext.encode(),
asymmetric_padding.OAEP(
mgf=asymmetric_padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
return ciphertext
def rsa_decrypt(self, ciphertext: bytes, private_key: rsa.RSAPrivateKey) -> str:
plaintext = private_key.decrypt(
ciphertext,
asymmetric_padding.OAEP(
mgf=asymmetric_padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
return plaintext.decode()
def hash_password_argon2(self, password: str) -> str:
salt = os.urandom(16)
argon2_hasher = hashlib.argon2id
hash_result = argon2_hasher(password.encode(), salt=salt, time_cost=4, memory_cost=65536, parallelism=8)
return base64.b64encode(salt + hash_result).decode('utf-8')
def verify_password_argon2(self, password: str, hashed_password: str) -> bool:
decoded = base64.b64decode(hashed_password.encode('utf-8'))
salt = decoded[:16]
stored_hash = decoded[16:]
argon2_hasher = hashlib.argon2id
computed_hash = argon2_hasher(password.encode(), salt=salt, time_cost=4, memory_cost=65536, parallelism=8)
return bytes_eq(computed_hash, stored_hash)
def generate_totp_secret(self) -> bytes:
return os.urandom(20)
def generate_totp(self, secret: bytes, time_step: int = 30) -> str:
totp_instance = totp.TOTP(secret, 6, hashes.SHA1(), time_step)
return totp_instance.generate().decode()
def verify_totp(self, secret: bytes, token: str, time_step: int = 30) -> bool:
totp_instance = totp.TOTP(secret, 6, hashes.SHA1(), time_step)
try:
totp_instance.verify(token.encode())
return True
except InvalidSignature:
return False
def secure_random_bytes(self, n: int) -> bytes:
return secrets.token_bytes(n)
def secure_random_string(self, n: int, alphabet: str = string.ascii_letters + string.digits) -> str:
return ''.join(secrets.choice(alphabet) for _ in range(n))
def generate_dh_parameters(self, key_size: int = 2048) -> Tuple[int, int]:
parameters = dh.generate_parameters(generator=2, key_size=key_size, backend=self.backend)
p = parameters.parameter_numbers().p
g = parameters.parameter_numbers().g
return p, g
def generate_dh_private_key(self, p: int, g: int) -> int:
return secrets.randbelow(p - 2) + 2
def generate_dh_public_key(self, p: int, g: int, private_key: int) -> int:
return pow(g, private_key, p)
def generate_dh_shared_secret(self, p: int, public_key: int, private_key: int) -> int:
return pow(public_key, private_key, p)
def xor_encrypt(self, plaintext: bytes, key: bytes) -> bytes:
return bytes([p ^ k for p, k in zip(plaintext, key * (len(plaintext) // len(key) + 1))])
def xor_decrypt(self, ciphertext: bytes, key: bytes) -> bytes:
return self.xor_encrypt(ciphertext, key) # XOR encryption is symmetric
def generate_hmac(self, key: bytes, message: bytes, algorithm: hashes.HashAlgorithm = hashes.SHA256()) -> bytes:
h = hashes.Hash(algorithm, backend=self.backend)
h.update(key + message + key) # Simple HMAC construction
return h.finalize()
def verify_hmac(self, key: bytes, message: bytes, hmac: bytes, algorithm: hashes.HashAlgorithm = hashes.SHA256()) -> bool:
computed_hmac = self.generate_hmac(key, message, algorithm)
return secrets.compare_digest(computed_hmac, hmac)
def generate_key_pair_ecdsa(self):
private_key = ec.generate_private_key(ec.SECP384R1(), self.backend)
public_key = private_key.public_key()
return private_key, public_key
def sign_ecdsa(self, private_key, message: bytes):
signature = private_key.sign(
message,
ec.ECDSA(hashes.SHA256())
)
return signature
def verify_ecdsa(self, public_key, message: bytes, signature: bytes) -> bool:
try:
public_key.verify(
signature,
message,
ec.ECDSA(hashes.SHA256())
)
return True
except InvalidSignature:
return False
def encrypt_file(self, file_path: str, key: bytes) -> None:
fernet = Fernet(base64.urlsafe_b64encode(key))
with open(file_path, 'rb') as file:
data = file.read()
encrypted_data = fernet.encrypt(data)
with open(file_path + '.encrypted', 'wb') as file:
file.write(encrypted_data)
def decrypt_file(self, file_path: str, key: bytes) -> None:
fernet = Fernet(base64.urlsafe_b64encode(key))
with open(file_path, 'rb') as file:
encrypted_data = file.read()
decrypted_data = fernet.decrypt(encrypted_data)
with open(file_path[:-10], 'wb') as file:
file.write(decrypted_data)
def generate_key_pair_ecdh(self):
private_key = ec.generate_private_key(ec.SECP384R1(), self.backend)
public_key = private_key.public_key()
return private_key, public_key
def perform_ecdh(self, private_key, peer_public_key):
shared_key = private_key.exchange(ec.ECDH(), peer_public_key)
return shared_key
def derive_key_from_password(self, password: str, salt: bytes, length: int, iterations: int = 100000) -> bytes:
kdf = PBKDF2HMAC(
algorithm=hashes.SHA3_256(),
length=length,
salt=salt,
iterations=iterations,
backend=self.backend
)
return kdf.derive(password.encode())
def encrypt_aes_ctr(self, plaintext: str, key: bytes) -> Tuple[bytes, bytes]:
nonce = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.CTR(nonce), backend=self.backend)
encryptor = cipher.encryptor()
ciphertext = encryptor.update(plaintext.encode()) + encryptor.finalize()
return ciphertext, nonce
def decrypt_aes_ctr(self, ciphertext: bytes, key: bytes, nonce: bytes) -> str:
cipher = Cipher(algorithms.AES(key), modes.CTR(nonce), backend=self.backend)
decryptor = cipher.decryptor()
plaintext = decryptor.update(ciphertext) + decryptor.finalize()
return plaintext.decode()
def generate_dsa_key_pair(self, key_size: int = 3072):
private_key = dsa.generate_private_key(key_size=key_size, backend=self.backend)
public_key = private_key.public_key()
return private_key, public_key
def sign_dsa(self, private_key, message: bytes):
signature = private_key.sign(
message,
hashes.SHA256()
)
return signature
def verify_dsa(self, public_key, message: bytes, signature: bytes) -> bool:
try:
public_key.verify(
signature,
message,
hashes.SHA256()
)
return True
except InvalidSignature:
return False
def generate_elgamal_key_pair(self, key_size: int = 3072):
params = dh.generate_parameters(generator=2, key_size=key_size, backend=self.backend)
private_key = params.generate_private_key()
public_key = private_key.public_key()
return private_key, public_key
def elgamal_encrypt(self, public_key, plaintext: bytes):
shared_key = self.perform_ecdh(self.generate_key_pair_ecdh()[0], public_key)
key = self.derive_key_from_password(shared_key.hex(), b'elgamal', 32)
return self.encrypt_aes_gcm(plaintext.decode(), key)
def elgamal_decrypt(self, private_key, ciphertext: bytes, nonce: bytes, aad: bytes):
shared_key = self.perform_ecdh(private_key, self.generate_key_pair_ecdh()[1])
key = self.derive_key_from_password(shared_key.hex(), b'elgamal', 32)
return self.decrypt_aes_gcm(ciphertext, key, nonce, aad)
def generate_key_pair_eddsa(self):
private_key = ed25519.Ed25519PrivateKey.generate()
public_key = private_key.public_key()
return private_key, public_key
def sign_eddsa(self, private_key, message: bytes):
return private_key.sign(message)
def verify_eddsa(self, public_key, message: bytes, signature: bytes) -> bool:
try:
public_key.verify(signature, message)
return True
except InvalidSignature:
return False
def encrypt_aes_ecb(self, plaintext: str, key: bytes) -> bytes:
cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(128).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
return encryptor.update(padded_data) + encryptor.finalize()
def decrypt_aes_ecb(self, ciphertext: bytes, key: bytes) -> str:
cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(128).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_aes_cbc(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(128).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
return ciphertext, iv
def decrypt_aes_cbc(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(128).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_aes_cfb(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.CFB(iv), backend=self.backend)
encryptor = cipher.encryptor()
ciphertext = encryptor.update(plaintext.encode()) + encryptor.finalize()
return ciphertext, iv
def decrypt_aes_cfb(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.AES(key), modes.CFB(iv), backend=self.backend)
decryptor = cipher.decryptor()
plaintext = decryptor.update(ciphertext) + decryptor.finalize()
return plaintext.decode()
def encrypt_aes_ofb(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.OFB(iv), backend=self.backend)
encryptor = cipher.encryptor()
ciphertext = encryptor.update(plaintext.encode()) + encryptor.finalize()
return ciphertext, iv
def decrypt_aes_ofb(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.AES(key), modes.OFB(iv), backend=self.backend)
decryptor = cipher.decryptor()
plaintext = decryptor.update(ciphertext) + decryptor.finalize()
return plaintext.decode()
def encrypt_3des_ecb(self, plaintext: str, key: bytes) -> bytes:
cipher = Cipher(algorithms.TripleDES(key), modes.ECB(), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(64).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
return encryptor.update(padded_data) + encryptor.finalize()
def decrypt_3des_ecb(self, ciphertext: bytes, key: bytes) -> str:
cipher = Cipher(algorithms.TripleDES(key), modes.ECB(), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(64).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_3des_cbc(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(8)
cipher = Cipher(algorithms.TripleDES(key), modes.CBC(iv), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(64).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
return ciphertext, iv
def decrypt_3des_cbc(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.TripleDES(key), modes.CBC(iv), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(64).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_blowfish_ecb(self, plaintext: str, key: bytes) -> bytes:
cipher = Cipher(algorithms.Blowfish(key), modes.ECB(), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(64).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
return encryptor.update(padded_data) + encryptor.finalize()
def decrypt_blowfish_ecb(self, ciphertext: bytes, key: bytes) -> str:
cipher = Cipher(algorithms.Blowfish(key), modes.ECB(), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(64).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_blowfish_cbc(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(8)
cipher = Cipher(algorithms.Blowfish(key), modes.CBC(iv), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(64).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
return ciphertext, iv
def decrypt_blowfish_cbc(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.Blowfish(key), modes.CBC(iv), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(64).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_camellia_ecb(self, plaintext: str, key: bytes) -> bytes:
cipher = Cipher(algorithms.Camellia(key), modes.ECB(), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(128).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
return encryptor.update(padded_data) + encryptor.finalize()
def decrypt_camellia_ecb(self, ciphertext: bytes, key: bytes) -> str:
cipher = Cipher(algorithms.Camellia(key), modes.ECB(), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(128).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_camellia_cbc(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(16)
cipher = Cipher(algorithms.Camellia(key), modes.CBC(iv), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(128).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
return ciphertext, iv
def decrypt_camellia_cbc(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.Camellia(key), modes.CBC(iv), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(128).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_cast5_ecb(self, plaintext: str, key: bytes) -> bytes:
cipher = Cipher(algorithms.CAST5(key), modes.ECB(), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(64).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
return encryptor.update(padded_data) + encryptor.finalize()
def decrypt_cast5_ecb(self, ciphertext: bytes, key: bytes) -> str:
cipher = Cipher(algorithms.CAST5(key), modes.ECB(), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(64).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_cast5_cbc(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(8)
cipher = Cipher(algorithms.CAST5(key), modes.CBC(iv), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(64).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
return ciphertext, iv
def decrypt_cast5_cbc(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.CAST5(key), modes.CBC(iv), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(64).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_idea_ecb(self, plaintext: str, key: bytes) -> bytes:
cipher = Cipher(algorithms.IDEA(key), modes.ECB(), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(64).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
return encryptor.update(padded_data) + encryptor.finalize()
def decrypt_idea_ecb(self, ciphertext: bytes, key: bytes) -> str:
cipher = Cipher(algorithms.IDEA(key), modes.ECB(), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(64).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_idea_cbc(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(8)
cipher = Cipher(algorithms.IDEA(key), modes.CBC(iv), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(64).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
return ciphertext, iv
def decrypt_idea_cbc(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.IDEA(key), modes.CBC(iv), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(64).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_seed_ecb(self, plaintext: str, key: bytes) -> bytes:
cipher = Cipher(algorithms.SEED(key), modes.ECB(), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(128).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
return encryptor.update(padded_data) + encryptor.finalize()
def decrypt_seed_ecb(self, ciphertext: bytes, key: bytes) -> str:
cipher = Cipher(algorithms.SEED(key), modes.ECB(), backend=self.backend)
decryptor = cipher.decryptor()
unpadder = padding.PKCS7(128).unpadder()
padded_data = decryptor.update(ciphertext) + decryptor.finalize()
return (unpadder.update(padded_data) + unpadder.finalize()).decode()
def encrypt_seed_cbc(self, plaintext: str, key: bytes, iv: bytes = None) -> Tuple[bytes, bytes]:
if iv is None:
iv = os.urandom(16)
cipher = Cipher(algorithms.SEED(key), modes.CBC(iv), backend=self.backend)
encryptor = cipher.encryptor()
padder = padding.PKCS7(128).padder()
padded_data = padder.update(plaintext.encode()) + padder.finalize()
ciphertext = encryptor.update(padded_data) + encryptor.finalize()
return ciphertext, iv
def decrypt_seed_cbc(self, ciphertext: bytes, key: bytes, iv: bytes) -> str:
cipher = Cipher(algorithms.SEED(key), modes.CBC(iv), backend=self.backend)
def hash_password(self, password: str) -> str:
salt = os.urandom(16)
key = self.generate_key(password, salt)
return base64.b64encode(salt + key).decode('utf-8')
def verify_password(self, password: str, hashed_password: str) -> bool:
decoded = base64.b64decode(hashed_password.encode('utf-8'))
salt = decoded[:16]
stored_key = decoded[16:]
key = self.generate_key(password, salt)
return key == stored_key
def secure_random_bytes(self, n: int) -> bytes:
return os.urandom(n)
def secure_random_string(self, n: int) -> str:
return base64.b64encode(self.secure_random_bytes(n)).decode('utf-8')