forked from andrewkirillov/AForge.NET
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathFourierTransform.cs
390 lines (329 loc) · 12.6 KB
/
FourierTransform.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// AForge Math Library
// AForge.NET framework
// http://www.aforgenet.com/framework/
//
// Copyright © Andrew Kirillov, 2005-2009
// andrew.kirillov@aforgenet.com
//
// FFT idea from Exocortex.DSP library
// http://www.exocortex.org/dsp/
//
namespace AForge.Math
{
using System;
using System.Numerics;
/// <summary>
/// Fourier transformation.
/// </summary>
///
/// <remarks>The class implements one dimensional and two dimensional
/// Discrete and Fast Fourier Transformation.</remarks>
///
public static class FourierTransform
{
/// <summary>
/// Fourier transformation direction.
/// </summary>
public enum Direction
{
/// <summary>
/// Forward direction of Fourier transformation.
/// </summary>
///
Forward = 1,
/// <summary>
/// Backward direction of Fourier transformation.
/// </summary>
///
Backward = -1
};
/// <summary>
/// One dimensional Discrete Fourier Transform.
/// </summary>
///
/// <param name="data">Data to transform.</param>
/// <param name="direction">Transformation direction.</param>
///
public static void DFT(Complex[] data, Direction direction)
{
int n = data.Length;
double arg, cos, sin;
var dst = new Complex[n];
// for each destination element
for (int i = 0; i < dst.Length; i++)
{
dst[i] = Complex.Zero;
arg = -(int)direction * 2.0 * System.Math.PI * (double)i / (double)n;
// sum source elements
for (int j = 0; j < data.Length; j++)
{
cos = System.Math.Cos(j * arg);
sin = System.Math.Sin(j * arg);
double re = data[j].Real * cos - data[j].Imaginary * sin;
double im = data[j].Real * sin + data[j].Imaginary * cos;
dst[i] += new Complex(re, im);
}
}
// copy elements
if (direction == Direction.Forward)
{
// devide also for forward transform
for (int i = 0; i < data.Length; i++)
data[i] /= n;
}
else
{
for (int i = 0; i < data.Length; i++)
data[i] = dst[i];
}
}
/// <summary>
/// Two dimensional Discrete Fourier Transform.
/// </summary>
///
/// <param name="data">Data to transform.</param>
/// <param name="direction">Transformation direction.</param>
///
public static void DFT2(Complex[,] data, Direction direction)
{
int n = data.GetLength(0); // rows
int m = data.GetLength(1); // columns
double arg, cos, sin;
var dst = new Complex[System.Math.Max(n, m)];
// process rows
for (int i = 0; i < n; i++)
{
for (int j = 0; j < dst.Length; j++)
{
dst[j] = Complex.Zero;
arg = -(int)direction * 2.0 * System.Math.PI * (double)j / (double)m;
// sum source elements
for (int k = 0; k < m; k++)
{
cos = System.Math.Cos(k * arg);
sin = System.Math.Sin(k * arg);
double re = data[i, k].Real * cos - data[i, k].Imaginary * sin;
double im = data[i, k].Real * sin + data[i, k].Imaginary * cos;
dst[j] += new Complex(re, im);
}
}
// copy elements
if (direction == Direction.Forward)
{
// devide also for forward transform
for (int j = 0; j < dst.Length; j++)
data[i, j] = dst[j] / m;
}
else
{
for (int j = 0; j < dst.Length; j++)
data[i, j] = dst[j];
}
}
// process columns
for (int j = 0; j < m; j++)
{
for (int i = 0; i < n; i++)
{
dst[i] = Complex.Zero;
arg = -(int)direction * 2.0 * System.Math.PI * (double)i / (double)n;
// sum source elements
for (int k = 0; k < n; k++)
{
cos = System.Math.Cos(k * arg);
sin = System.Math.Sin(k * arg);
double re = data[k, j].Real * cos - data[k, j].Imaginary * sin;
double im = data[k, j].Real * sin + data[k, j].Imaginary * cos;
dst[i] += new Complex(re, im);
}
}
// copy elements
if (direction == Direction.Forward)
{
// devide also for forward transform
for (int i = 0; i < dst.Length; i++)
data[i, j] = dst[i] / n;
}
else
{
for (int i = 0; i < dst.Length; i++)
data[i, j] = dst[i];
}
}
}
/// <summary>
/// One dimensional Fast Fourier Transform.
/// </summary>
///
/// <param name="data">Data to transform.</param>
/// <param name="direction">Transformation direction.</param>
///
/// <remarks><para><note>The method accepts <paramref name="data"/> array of 2<sup>n</sup> size
/// only, where <b>n</b> may vary in the [1, 14] range.</note></para></remarks>
///
/// <exception cref="ArgumentException">Incorrect data length.</exception>
///
public static void FFT(Complex[] data, Direction direction)
{
int n = data.Length;
int m = Tools.Log2(n);
// reorder data first
ReorderData(data);
// compute FFT
int tn = 1, tm;
for (int k = 1; k <= m; k++)
{
Complex[] rotation = FourierTransform.GetComplexRotation(k, direction);
tm = tn;
tn <<= 1;
for (int i = 0; i < tm; i++)
{
Complex t = rotation[i];
for (int even = i; even < n; even += tn)
{
int odd = even + tm;
Complex ce = data[even];
Complex co = data[odd];
double tr = co.Real * t.Real - co.Imaginary * t.Imaginary;
double ti = co.Real * t.Imaginary + co.Imaginary * t.Real;
data[even] += new Complex(tr, ti);
data[odd] = new Complex(ce.Real - tr, ce.Imaginary - ti);
}
}
}
if (direction == Direction.Forward)
{
for (int i = 0; i < data.Length; i++)
data[i] /= (double)n;
}
}
/// <summary>
/// Two dimensional Fast Fourier Transform.
/// </summary>
///
/// <param name="data">Data to transform.</param>
/// <param name="direction">Transformation direction.</param>
///
/// <remarks><para><note>The method accepts <paramref name="data"/> array of 2<sup>n</sup> size
/// only in each dimension, where <b>n</b> may vary in the [1, 14] range. For example, 16x16 array
/// is valid, but 15x15 is not.</note></para></remarks>
///
/// <exception cref="ArgumentException">Incorrect data length.</exception>
///
public static void FFT2(Complex[,] data, Direction direction)
{
int k = data.GetLength(0);
int n = data.GetLength(1);
// check data size
if (!Tools.IsPowerOf2(k) || !Tools.IsPowerOf2(n))
throw new ArgumentException("The matrix rows and columns must be a power of 2.");
if (k < minLength || k > maxLength || n < minLength || n > maxLength)
throw new ArgumentException("Incorrect data length.");
// process rows
var row = new Complex[n];
for (int i = 0; i < k; i++)
{
// copy row
for (int j = 0; j < row.Length; j++)
row[j] = data[i, j];
// transform it
FourierTransform.FFT(row, direction);
// copy back
for (int j = 0; j < row.Length; j++)
data[i, j] = row[j];
}
// process columns
var col = new Complex[k];
for (int j = 0; j < n; j++)
{
// copy column
for (int i = 0; i < k; i++)
col[i] = data[i, j];
// transform it
FourierTransform.FFT(col, direction);
// copy back
for (int i = 0; i < k; i++)
data[i, j] = col[i];
}
}
#region Private Region
private const int minLength = 2;
private const int maxLength = 16384;
private const int minBits = 1;
private const int maxBits = 14;
private static int[][] reversedBits = new int[maxBits][];
private static Complex[,][] complexRotation = new Complex[maxBits, 2][];
// Get array, indicating which data members should be swapped before FFT
private static int[] GetReversedBits(int numberOfBits)
{
if ((numberOfBits < minBits) || (numberOfBits > maxBits))
throw new ArgumentOutOfRangeException();
// check if the array is already calculated
if (reversedBits[numberOfBits - 1] == null)
{
int n = Tools.Pow2(numberOfBits);
int[] rBits = new int[n];
// calculate the array
for (int i = 0; i < n; i++)
{
int oldBits = i;
int newBits = 0;
for (int j = 0; j < numberOfBits; j++)
{
newBits = (newBits << 1) | (oldBits & 1);
oldBits = (oldBits >> 1);
}
rBits[i] = newBits;
}
reversedBits[numberOfBits - 1] = rBits;
}
return reversedBits[numberOfBits - 1];
}
// Get rotation of complex number
private static Complex[] GetComplexRotation(int numberOfBits, Direction direction)
{
int directionIndex = (direction == Direction.Forward) ? 0 : 1;
// check if the array is already calculated
if (complexRotation[numberOfBits - 1, directionIndex] == null)
{
int n = 1 << (numberOfBits - 1);
double uR = 1.0;
double uI = 0.0;
double angle = System.Math.PI / n * (int)direction;
double wR = System.Math.Cos(angle);
double wI = System.Math.Sin(angle);
double t;
Complex[] rotation = new Complex[n];
for (int i = 0; i < n; i++)
{
rotation[i] = new Complex(uR, uI);
t = uR * wI + uI * wR;
uR = uR * wR - uI * wI;
uI = t;
}
complexRotation[numberOfBits - 1, directionIndex] = rotation;
}
return complexRotation[numberOfBits - 1, directionIndex];
}
// Reorder data for FFT using
private static void ReorderData(Complex[] data)
{
int len = data.Length;
// check data length
if ((len < minLength) || (len > maxLength) || (!Tools.IsPowerOf2(len)))
throw new ArgumentException("Incorrect data length.");
int[] rBits = GetReversedBits(Tools.Log2(len));
for (int i = 0; i < len; i++)
{
int s = rBits[i];
if (s > i)
{
Complex t = data[i];
data[i] = data[s];
data[s] = t;
}
}
}
#endregion
}
}