-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path06-Symmetric-Tree-LC-101.js
76 lines (64 loc) · 1.4 KB
/
06-Symmetric-Tree-LC-101.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
101. Symmetric Tree
Easy
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3] is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following [1,2,2,null,3,null,3] is not:
1
/ \
2 2
\ \
3 3
Follow up: Solve it both recursively and iteratively.
*/
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isSymmetric = function (root) {
var queue = [];
queue.push(root);
while (queue.length !== 0) {
var len = queue.length;
if (!isLevelSymmetric(queue)) {
return false;
}
for (var i = 0; i < len; i++) {
var node = queue.shift();
if (node !== null) {
queue.push(node.left);
queue.push(node.right);
}
}
}
return true;
};
function isLevelSymmetric(nodes) {
var len = nodes.length;
var beg = 0;
var end = len - 1;
while (beg < end) {
if (
(nodes[beg] === null && nodes[end] === null) ||
(nodes[beg] && nodes[end] && nodes[beg].val === nodes[end].val)
) {
beg++;
end--;
} else {
return false;
}
}
return true;
}