forked from scala/scala3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPartialFunction.scala
403 lines (364 loc) · 17 KB
/
PartialFunction.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
* Scala (https://www.scala-lang.org)
*
* Copyright EPFL and Lightbend, Inc.
*
* Licensed under Apache License 2.0
* (http://www.apache.org/licenses/LICENSE-2.0).
*
* See the NOTICE file distributed with this work for
* additional information regarding copyright ownership.
*/
package scala
import scala.annotation.nowarn
/** A partial function of type `PartialFunction[A, B]` is a unary function
* where the domain does not necessarily include all values of type `A`.
* The function [[isDefinedAt]] allows to test dynamically if a value is in
* the domain of the function.
*
* Even if `isDefinedAt` returns true for an `a: A`, calling `apply(a)` may
* still throw an exception, so the following code is legal:
*
* {{{
* val f: PartialFunction[Int, Any] = { case x => x / 0 } // ArithmeticException: / by zero
* }}}
*
* It is the responsibility of the caller to call `isDefinedAt` before
* calling `apply`, because if `isDefinedAt` is false, it is not guaranteed
* `apply` will throw an exception to indicate an error condition. If an
* exception is not thrown, evaluation may result in an arbitrary value.
*
* The usual way to respect this contract is to call [[applyOrElse]],
* which is expected to be more efficient than calling both `isDefinedAt`
* and `apply`.
*
* The main distinction between `PartialFunction` and [[scala.Function1]] is
* that the user of a `PartialFunction` may choose to do something different
* with input that is declared to be outside its domain. For example:
*
* {{{
* val sample = 1 to 10
* def isEven(n: Int) = n % 2 == 0
* val eveningNews: PartialFunction[Int, String] = {
* case x if isEven(x) => s"\$x is even"
* }
*
* // The method collect is described as "filter + map"
* // because it uses a PartialFunction to select elements
* // to which the function is applied.
* val evenNumbers = sample.collect(eveningNews)
*
* val oddlyEnough: PartialFunction[Int, String] = {
* case x if !isEven(x) => s"\$x is odd"
* }
*
* // The method orElse allows chaining another PartialFunction
* // to handle input outside the declared domain.
* val numbers = sample.map(eveningNews orElse oddlyEnough)
*
* // same as
* val numbers = sample.map(n => eveningNews.applyOrElse(n, oddlyEnough))
*
* val half: PartialFunction[Int, Int] = {
* case x if isEven(x) => x / 2
* }
*
* // Calculating the domain of a composition can be expensive.
* val oddByHalf = half.andThen(oddlyEnough)
*
* // Invokes `half.apply` on even elements!
* val oddBalls = sample.filter(oddByHalf.isDefinedAt)
*
* // Better than filter(oddByHalf.isDefinedAt).map(oddByHalf)
* val oddBalls = sample.collect(oddByHalf)
*
* // Providing "default" values.
* val oddsAndEnds = sample.map(n => oddByHalf.applyOrElse(n, (i: Int) => s"[\$i]"))
* }}}
*
* @note Optional [[Function]]s, [[PartialFunction]]s and extractor objects
* can be converted to each other as shown in the following table.
*
* | How to convert ... | to a [[PartialFunction]] | to an optional [[Function]] | to an extractor |
* | :---: | --- | --- | --- |
* | from a [[PartialFunction]] | [[Predef.identity]] | [[lift]] | [[Predef.identity]] |
* | from optional [[Function]] | [[Function1.UnliftOps#unlift]] or [[Function.unlift]] | [[Predef.identity]] | [[Function1.UnliftOps#unlift]] |
* | from an extractor | `{ case extractor(x) => x }` | `extractor.unapply _` | [[Predef.identity]] |
*
*
* @define applyOrElseOrElse Note that calling [[isDefinedAt]] on the resulting partial function
* may apply the first partial function and execute its side effect.
* For efficiency, it is recommended to call [[applyOrElse]] instead of [[isDefinedAt]] or [[apply]].
*/
trait PartialFunction[-A, +B] extends (A => B) { // FIXME: self =>
import PartialFunction._
/** Tries to extract a `B` from an `A` in a pattern matching expression. */
def unapply(a: A): Option[B] = lift(a)
/** Returns an extractor object with a `unapplySeq` method, which extracts each element of a sequence data.
*
* @example {{{
* val firstChar: String => Option[Char] = _.headOption
*
* Seq("foo", "bar", "baz") match {
* case firstChar.unlift.elementWise(c0, c1, c2) =>
* println(s"\$c0, \$c1, \$c2") // Output: f, b, b
* }
* }}}
*/
def elementWise: ElementWiseExtractor[A, B] = new ElementWiseExtractor[A, B](this)
/** Checks if a value is contained in the function's domain.
*
* @param x the value to test
* @return `'''true'''`, iff `x` is in the domain of this function, `'''false'''` otherwise.
*/
def isDefinedAt(x: A): Boolean
/** Composes this partial function with a fallback partial function which
* gets applied where this partial function is not defined.
*
* @param that the fallback function
* @tparam A1 the argument type of the fallback function
* @tparam B1 the result type of the fallback function
* @return a partial function which has as domain the union of the domains
* of this partial function and `that`. The resulting partial function
* takes `x` to `this(x)` where `this` is defined, and to `that(x)` where it is not.
*/
def orElse[A1 <: A, B1 >: B](that: PartialFunction[A1, B1]): PartialFunction[A1, B1] =
new OrElse[A1, B1] (this, that)
//TODO: why not overload it with orElse(that: F1): F1?
/** Composes this partial function with a transformation function that
* gets applied to results of this partial function.
*
* If the runtime type of the function is a `PartialFunction` then the
* other `andThen` method is used (note its cautions).
*
* @param k the transformation function
* @tparam C the result type of the transformation function.
* @return a partial function with the domain of this partial function,
* possibly narrowed by the specified function, which maps
* arguments `x` to `k(this(x))`.
*/
override def andThen[C](k: B => C): PartialFunction[A, C] = k match {
case pf: PartialFunction[B, C] => andThen(pf)
case _ => new AndThen[A, B, C](this, k)
}
/**
* Composes this partial function with another partial function that
* gets applied to results of this partial function.
*
* $applyOrElseOrElse
*
* @param k the transformation function
* @tparam C the result type of the transformation function.
* @return a partial function with the domain of this partial function narrowed by
* other partial function, which maps arguments `x` to `k(this(x))`.
*/
def andThen[C](k: PartialFunction[B, C]): PartialFunction[A, C] =
new Combined[A, B, C](this, k)
/**
* Composes another partial function `k` with this partial function so that this
* partial function gets applied to results of `k`.
*
* $applyOrElseOrElse
*
* @param k the transformation function
* @tparam R the parameter type of the transformation function.
* @return a partial function with the domain of other partial function narrowed by
* this partial function, which maps arguments `x` to `this(k(x))`.
*/
def compose[R](k: PartialFunction[R, A]): PartialFunction[R, B] =
new Combined[R, A, B](k, this)
/** Turns this partial function into a plain function returning an `Option` result.
* @see Function.unlift
* @return a function that takes an argument `x` to `Some(this(x))` if `this`
* is defined for `x`, and to `None` otherwise.
*/
def lift: A => Option[B] = new Lifted(this)
/** Applies this partial function to the given argument when it is contained in the function domain.
* Applies fallback function where this partial function is not defined.
*
* Note that expression `pf.applyOrElse(x, default)` is equivalent to
* {{{ if(pf isDefinedAt x) pf(x) else default(x) }}}
* except that `applyOrElse` method can be implemented more efficiently.
* For all partial function literals the compiler generates an `applyOrElse` implementation which
* avoids double evaluation of pattern matchers and guards.
* This makes `applyOrElse` the basis for the efficient implementation for many operations and scenarios, such as:
*
* - combining partial functions into `orElse`/`andThen` chains does not lead to
* excessive `apply`/`isDefinedAt` evaluation
* - `lift` and `unlift` do not evaluate source functions twice on each invocation
* - `runWith` allows efficient imperative-style combining of partial functions
* with conditionally applied actions
*
* For non-literal partial function classes with nontrivial `isDefinedAt` method
* it is recommended to override `applyOrElse` with custom implementation that avoids
* double `isDefinedAt` evaluation. This may result in better performance
* and more predictable behavior w.r.t. side effects.
*
* @param x the function argument
* @param default the fallback function
* @return the result of this function or fallback function application.
*/
def applyOrElse[A1 <: A, B1 >: B](x: A1, default: A1 => B1): B1 =
if (isDefinedAt(x)) apply(x) else default(x)
/** Composes this partial function with an action function which
* gets applied to results of this partial function.
* The action function is invoked only for its side effects; its result is ignored.
*
* Note that expression `pf.runWith(action)(x)` is equivalent to
* {{{ if(pf isDefinedAt x) { action(pf(x)); true } else false }}}
* except that `runWith` is implemented via `applyOrElse` and thus potentially more efficient.
* Using `runWith` avoids double evaluation of pattern matchers and guards for partial function literals.
* @see `applyOrElse`.
*
* @param action the action function
* @return a function which maps arguments `x` to `isDefinedAt(x)`. The resulting function
* runs `action(this(x))` where `this` is defined.
*/
def runWith[U](action: B => U): A => Boolean = { x =>
val z = applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) { action(z); true } else false
}
}
/** A few handy operations which leverage the extra bit of information
* available in partial functions. Examples:
* {{{
* import PartialFunction._
*
* def strangeConditional(other: Any): Boolean = cond(other) {
* case x: String if x == "abc" || x == "def" => true
* case x: Int => true
* }
* def onlyInt(v: Any): Option[Int] = condOpt(v) { case x: Int => x }
* }}}
*/
object PartialFunction {
final class ElementWiseExtractor[-A, +B] private[PartialFunction] (private val pf: PartialFunction[A, B]) extends AnyVal {
@nowarn("cat=lint-nonlocal-return")
def unapplySeq(seq: Seq[A]): Option[Seq[B]] = {
Some(seq.map {
case pf(b) => b
case _ => return None
})
}
}
/** Composite function produced by `PartialFunction#orElse` method
*/
private class OrElse[-A, +B] (f1: PartialFunction[A, B], f2: PartialFunction[A, B])
extends scala.runtime.AbstractPartialFunction[A, B] with Serializable {
def isDefinedAt(x: A) = f1.isDefinedAt(x) || f2.isDefinedAt(x)
override def apply(x: A): B = f1.applyOrElse(x, f2)
override def applyOrElse[A1 <: A, B1 >: B](x: A1, default: A1 => B1): B1 = {
val z = f1.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) z else f2.applyOrElse(x, default)
}
override def orElse[A1 <: A, B1 >: B](that: PartialFunction[A1, B1]): OrElse[A1, B1] =
new OrElse[A1, B1] (f1, f2 orElse that)
override def andThen[C](k: B => C): OrElse[A, C] =
new OrElse[A, C] (f1 andThen k, f2 andThen k)
}
/** Composite function produced by `PartialFunction#andThen` method
*/
private class AndThen[-A, B, +C] (pf: PartialFunction[A, B], k: B => C) extends PartialFunction[A, C] with Serializable {
def isDefinedAt(x: A) = pf.isDefinedAt(x)
def apply(x: A): C = k(pf(x))
override def applyOrElse[A1 <: A, C1 >: C](x: A1, default: A1 => C1): C1 = {
val z = pf.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) k(z) else default(x)
}
}
/** Composite function produced by `PartialFunction#andThen` method
*/
private class Combined[-A, B, +C] (pf: PartialFunction[A, B], k: PartialFunction[B, C]) extends PartialFunction[A, C] with Serializable {
def isDefinedAt(x: A): Boolean = {
val b: B = pf.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(b)) k.isDefinedAt(b) else false
}
def apply(x: A): C = k(pf(x))
override def applyOrElse[A1 <: A, C1 >: C](x: A1, default: A1 => C1): C1 = {
val pfv = pf.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(pfv)) k.applyOrElse(pfv, (_: B) => default(x)) else default(x)
}
}
/** To implement patterns like {{{ if(pf isDefinedAt x) f1(pf(x)) else f2(x) }}} efficiently
* the following trick is used:
*
* To avoid double evaluation of pattern matchers & guards `applyOrElse` method is used here
* instead of `isDefinedAt`/`apply` pair.
*
* After call to `applyOrElse` we need both the function result it returned and
* the fact if the function's argument was contained in its domain. The only degree of freedom we have here
* to achieve this goal is tweaking with the continuation argument (`default`) of `applyOrElse` method.
* The obvious way is to throw an exception from `default` function and to catch it after
* calling `applyOrElse` but I consider this somewhat inefficient.
*
* I know only one way how you can do this task efficiently: `default` function should return unique marker object
* which never may be returned by any other (regular/partial) function. This way after calling `applyOrElse` you need
* just one reference comparison to distinguish if `pf isDefined x` or not.
*
* This correctly interacts with specialization as return type of `applyOrElse`
* (which is parameterized upper bound) can never be specialized.
*
* Here `fallback_fn` is used as both unique marker object and special fallback function that returns it.
*/
private[this] val fallback_fn: Any => Any = _ => fallback_fn
private def checkFallback[B] = fallback_fn.asInstanceOf[Any => B]
private def fallbackOccurred[B](x: B) = fallback_fn eq x.asInstanceOf[AnyRef]
private class Lifted[-A, +B] (val pf: PartialFunction[A, B])
extends scala.runtime.AbstractFunction1[A, Option[B]] with Serializable {
def apply(x: A): Option[B] = {
val z = pf.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) Some(z) else None
}
}
private class Unlifted[A, B] (f: A => Option[B]) extends scala.runtime.AbstractPartialFunction[A, B] with Serializable {
def isDefinedAt(x: A): Boolean = f(x).isDefined
override def applyOrElse[A1 <: A, B1 >: B](x: A1, default: A1 => B1): B1 = {
f(x).getOrElse(default(x))
}
override def lift = f
}
private[scala] def unlifted[A, B](f: A => Option[B]): PartialFunction[A, B] = f match {
case lf: Lifted[A, B] => lf.pf
case ff => new Unlifted(ff)
}
/** Converts an ordinary function to a partial function. Note that calling `isDefinedAt(x)` on
* this partial function will return `true` for every `x`.
* @param f an ordinary function
* @return a partial function which delegates to the ordinary function `f`
*/
def fromFunction[A, B](f: A => B): PartialFunction[A, B] = { case x => f(x) }
private[this] val constFalse: Any => Boolean = { _ => false}
private[this] val empty_pf: PartialFunction[Any, Nothing] = new PartialFunction[Any, Nothing] with Serializable {
def isDefinedAt(x: Any) = false
def apply(x: Any) = throw new MatchError(x)
override def orElse[A1, B1](that: PartialFunction[A1, B1]) = that
override def andThen[C](k: Nothing => C): PartialFunction[Any, Nothing] = this
override val lift: Any => None.type = (x: Any) => None
override def runWith[U](action: Nothing => U) = constFalse
}
/** The partial function with empty domain.
* Any attempt to invoke empty partial function leads to throwing [[scala.MatchError]] exception.
*/
def empty[A, B] : PartialFunction[A, B] = empty_pf
/** A Boolean test that is the result of the given function where defined,
* and false otherwise.
*
* It behaves like a `case _ => false` were added to the partial function.
*
* @param x the value to test
* @param pf the partial function
* @return true, iff `x` is in the domain of `pf` and `pf(x) == true`.
*/
def cond[A](x: A)(pf: PartialFunction[A, Boolean]): Boolean = pf.applyOrElse(x, constFalse)
/** Apply the function to the given value if defined, and return the result
* in a `Some`; otherwise, return `None`.
*
* @param x the value to test
* @param pf the PartialFunction[T, U]
* @return `Some(pf(x))` if `pf isDefinedAt x`, `None` otherwise.
*/
def condOpt[A, B](x: A)(pf: PartialFunction[A, B]): Option[B] = {
val z = pf.applyOrElse(x, checkFallback[B])
if (!fallbackOccurred(z)) Some(z) else None
}
}