-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvectors_and_matrices.R
137 lines (97 loc) Β· 3.76 KB
/
vectors_and_matrices.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
################################################################################
# # VECTORS
################################################################################
# c() is a function that creates a vector
ages = c(25, 32, 54)
# in vectors, the order is always maintained, so order matters
# any operation done on the vector will be applied to each element
ages/2
# vectors are always flat, so you can't next vectors within vectors
new_ages = c(25, 32, 54, c(1, 2))
new_ages
new_ages2 = c(25, 32, 54, 1, 2)
new_ages2
# the above gives you the same thing
integer_vector = c(1L, 2L, 3L)
# capital L indicates that R makes sure it is an integer, but isn't necessary
one_through_one_hundred = c(1:100)
# use the sequence function to create a sequence
one_through_thousand = seq(1,1000, 1)
# help documentation for seq()
?seq
# double (numeric) type
numeric_vector = c(3.3, 2.2, 9.7)
numeric_vector * integer_vector
# string vectors are their own type, and need to be worked with differently
string_vector = c('hello', 'class')
# boolean (logical) vectors - true or false
boolean_vector = c(TRUE, FALSE)
# find the type of vector
typeof(boolean_vector)
typeof(numeric_vector)
typeof(string_vector)
# check if the vector is a certain type
is.integer(integer_vector)
is.integer(string_vector)
is.numeric(numeric_vector)
is.character(string_vector)
is.logical(boolean_vector)
# vectors can only contain one type, no mixing and matching!
# we can convert types with "as"
as.integer(c(1.2, 2.3, 4.5))
test = as.numeric(c(3, 4, 5, 6))
typeof(test)
# Missing values - NA
missing_vector = c(1, 2, NA)
################################################################################
# # FACTORS - variables with no inherent numerical values
################################################################################
# create a factor using strings
sex = c('Male', 'Female', 'Female', 'Female', 'Male')
sex = factor(sex, levels = c('Female', 'Male'), labels = c('Female', 'Male'))
typeof(sex)
# create a factor using integers
sex = c(2, 1, 1, 1, 2)
sex = factor(sex, levels = c(1, 2), labels = c('Female', 'Male'))
# use class() instead of typeof() to see if something is a factor
typeof(sex)
class(sex)
# you can basically just use class() for everything
################################################################################
# # INDEXING AND SUBSETTING
################################################################################
students = c('victor', 'robert', 'jessica', 'cindy', 'michael', 'elizabeth')
# get only a certain element of a vector
students[1]
# you can always check out the length
length(students)
last_index = length(students)
students[last_index]
# get multiple elements out of a vector
students[c(1,3)]
students[1:3]
# change the value of an element in a vector
students[1] = 'john' #replace victor with john
students
# change the value of multiple elements in a vector
students[2:4] = c('tim', 'jim', 'sarah')
students
# using negative indexing
students[-c(1,3)]
# using logical subsetting
logical_vector = c(TRUE, FALSE, FALSE, TRUE, TRUE, TRUE)
students[logical_vector]
# another example
values = c(1, 10, 20)
items_i_want = values < 15
################################################################################
# # MATRICES
################################################################################
# creating matrices - can't mix and match data types!
my_matrix = matrix(c(1, 2, 3, 4, 5, 6), nrow = 3)
# indexing matrices single brackets - first number is row, second number is column
my_matrix[3, 2]
my_matrix[6]
# you can also specific multiple rows and columns
my_matrix[c(1,3), 2]
my_matrix[c(1,3), c(1,2)]