-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix_mul.c
483 lines (391 loc) · 12.4 KB
/
matrix_mul.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#include "matrix_mul.h"
double modulo_naive(double a, double p){
return (double) ((long) a % (long) p);
}
double modulo_SIMD1(double a, double p, double u){
/* Function 3.1 from SIMD article for floats.
Hypothesis: Rounding mode = nearest and p < 2^26.
*/
double b = a * u;
double c = (double)(int)b;
double d = a - c * p;
if (d >= p) return d-p;
if (d < 0) return d+p;
return d;
}
double modulo_SIMD2(double a, double p, double u){
/* Function 3.1 from SIMD article for floats.
Hypothesis: Rounding mode = up and p < 2^26.
*/
double b = a * u;
double c = (double)(int)b;
double d = a - c * p;
if (d < 0) return d+p;
return d;
}
double modulo_SIMD3(double a, double p, double u){
/* Function 3.1 from SIMD article for floats.
Hypothesis: Rounding mode = up and p < 2^26.
*/
double b = a * u;
double c = (double)(int)b;
double d = a - c * p;
// return d + (-(d<0) & (int64_t) p);
return d + p * (d<0);
}
u_int32_t modulo_Barrett(u_int64_t a, u_int32_t p, u_int32_t u, u_int32_t s, u_int32_t t){
/* Barrett's modular function for integers.
Hypothesis: 0 <= a < 2^{32+bitsize_p}, and no assumption on p.
Returns a % p
*/
u_int64_t b = a >> s;
u_int64_t c = (b * u) >> t; // u = 2^(s+t) / p
u_int32_t res = a - c * p;
if (res >= p) return res - p;
return res;
}
int get_bitsize(double p){
/* Get the bitsize of p.
Bitsize < 26 because we work with doubles and product.
*/
double MAX = pow(2, 26);
for (int i = 26; i > 0; i--){
if (p > MAX){
return i+1; // res = 2^i forall i
}
MAX /= 2;
}
return 0;
}
int get_blocksize(int b, int n){
// b: bitsize of p
// n: size of matrix
int max_bitsize_double = 53;
int res = (int) pow(2, max_bitsize_double - 2*b);
if (res > n){
return n;
}
return res;
}
void mp_naive(double* A, double* B, double* C, int n, double p){
// Assert C is a zero matrix.
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
for (int k=0; k<n; k++){
double temp = modulo_naive(A[i*n + k] * B[k*n + j], p);
C[i*n + j] += temp;
}
}
}
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
C[i*n + j] = modulo_naive(C[i*n + j], p);
}
}
}
void mp_naive_KIJ(double* A, double* B, double* C, int n, double p){
// Assert C is a zero matrix.
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
double temp = modulo_naive(A[i*n + k] * B[k*n + j], p);
C[i*n + j] += temp;
}
}
}
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
C[i*n + j] = modulo_naive(C[i*n + j], p);
}
}
}
void mp_SIMD1(double* A, double* B, double* C, int n, double p, double u){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
double temp = modulo_SIMD1(A[i*n + k] * B[k*n + j], p, u);
C[i*n + j] += temp;
}
}
}
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
C[i*n + j] = modulo_SIMD1(C[i*n + j], p, u);
}
}
}
void mp_SIMD2(double* A, double* B, double* C, int n, double p, double u){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
double temp = modulo_SIMD2(A[i*n + k] * B[k*n + j], p, u);
C[i*n + j] += temp;
}
}
}
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
C[i*n + j] = modulo_SIMD2(C[i*n + j], p, u);
}
}
}
void mp_SIMD3(double* A, double* B, double* C, int n, double p, double u){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
double temp = modulo_SIMD3(A[i*n + k] * B[k*n + j], p, u);
C[i*n + j] += temp;
}
}
}
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
C[i*n + j] = modulo_SIMD3(C[i*n + j], p, u);
}
}
}
void mp_Barrett(double* A, double* B, double* C, int n, double p, u_int32_t u, u_int32_t s, u_int32_t t){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
double temp = modulo_Barrett(A[i*n + k] * B[k*n + j], p, u, s, t);
C[i*n + j] += temp;
}
}
}
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
C[i*n + j] = modulo_Barrett(C[i*n + j], p, u, s, t);
}
}
}
// OpenMP
void mp_naive_MP(double* A, double* B, double* C, int n, double p){
// Assert C is a zero matrix.
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = C[i*n + j] + modulo_naive(A[i*n + k] * B[k*n + j], p);
}
}
}
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = modulo_naive(C[i*n + j], p);
}
}
}
void mp_SIMD1_MP(double* A, double* B, double* C, int n, double p, double u){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = C[i*n + j] + modulo_SIMD1(A[i*n + k] * B[k*n + j], p, u);
}
}
}
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = modulo_SIMD1(C[i*n + j], p, u);
}
}
}
void mp_SIMD2_MP(double* A, double* B, double* C, int n, double p, double u){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = C[i*n + j] + modulo_SIMD2(A[i*n + k] * B[k*n + j], p, u);
}
}
}
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = modulo_SIMD2(C[i*n + j], p, u);
}
}
}
void mp_SIMD3_MP(double* A, double* B, double* C, int n, double p, double u){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = C[i*n + j] + modulo_SIMD3(A[i*n + k] * B[k*n + j], p, u);
}
}
}
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = modulo_SIMD3(C[i*n + j], p, u);
}
}
}
void mp_Barrett_MP(double* A, double* B, double* C, int n, double p, u_int32_t u, u_int32_t s, u_int32_t t){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = C[i*n + j] + modulo_Barrett(A[i*n + k] * B[k*n + j], p, u, s, t);
}
}
}
for (int i=0; i<n; i++){
#pragma omp parallel for
for (int j=0; j<n; j++){
C[i*n + j] = modulo_Barrett(C[i*n + j], p, u, s, t);
}
}
}
void mp_block(double* A, double* B, double* C, int n, double p, double u, int b){
/* Compute the product of two matrices using basic block product.
It allows us to reduce the amount of modulo needed.
*/
for (int k=0; k<n; k+=b){
for (int kk=k; kk<k+b; kk++){
for(int ii=0; ii<n; ii++){
for (int jj=0; jj<n; jj++){
C[ii*n + jj] += A[ii*n + kk] * B[kk*n + jj];
}
}
}
for (int i=0; i<n*n; i++){
C[i] = modulo_SIMD3(C[i], p, u);
}
}
}
void mp_block_BLAS(double* A, double* B, double* C, int n, double p, double u, int b){
/* Compute the product of two matrices using OpenBLAS's block product.
It allows us to reduce the amount of modulo needed.
*/
for (int k=0; k<n; k+=b){
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
n, n, b, 1, A + k, n, B + n*k, n,
1, C, n);
for (int i=0; i<n*n; i++){
C[i] = modulo_SIMD3(C[i], p, u);
}
}
}
void mp_block_BLAS_MP(double* A, double* B, double* C, int n, double p, double u, int b){
/* Compute the product of two matrices using OpenBLAS's block product.
It allows us to reduce the amount of modulo needed.
*/
for (int k=0; k<n; k+=b){
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
n, n, b, 1, A + k, n, B + n*k, n,
1, C, n);
#pragma omp parallel for
for (int i=0; i<n*n; i++){
C[i] = modulo_SIMD3(C[i], p, u);
}
}
}
// Comparing loop order. IKJ wins.
// Loop 1
void mp_ijk(double* A, double* B, double* C, int n){
// Assert C is a zero matrix
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
for (int k=0; k<n; k++){
C[i*n + j] += A[i*n + k] * B[k*n + j];
}
}
}
}
// Loop 2
void mp_kij(double* A, double* B, double* C, int n){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){
C[i*n + j] += A[i*n + k] * B[k*n + j];
}
}
}
}
// Loop 3
void mp_jki(double* A, double* B, double* C, int n){
// Assert C is a zero matrix
for (int j=0; j<n; j++){
for (int k=0; k<n; k++){
for (int i=0; i<n; i++){
C[i*n + j] += A[i*n + k] * B[k*n + j];
}
}
}
}
// Loop 4
void mp_ikj(double* A, double* B, double* C, int n){
// Assert C is a zero matrix
for (int i=0; i<n; i++){
for (int k=0; k<n; k++){
for (int j=0; j<n; j++){
C[i*n + j] += A[i*n + k] * B[k*n + j];
}
}
}
}
// Loop 5
void mp_jik(double* A, double* B, double* C, int n){
// Assert C is a zero matrix
for (int j=0; j<n; j++){
for (int i=0; i<n; i++){
for (int k=0; k<n; k++){
C[i*n + j] += A[i*n + k] * B[k*n + j];
}
}
}
}
// Loop 6
void mp_kji(double* A, double* B, double* C, int n){
// Assert C is a zero matrix
for (int k=0; k<n; k++){
for (int j=0; j<n; j++){
for (int i=0; i<n; i++){
C[i*n + j] += A[i*n + k] * B[k*n + j];
}
}
}
}
void mp_integer(u_int64_t* A, u_int64_t* B, u_int64_t* C, int n, u_int32_t p, u_int32_t u, u_int32_t s, u_int32_t t){
/* Matrix product for Integers. */
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
u_int64_t h = 0;
u_int64_t l = 0;
for (int k = 0; k < n; k++){
u_int64_t temp = A[i*n + k] * B[j*n + k];
h += temp >> 32;
l += temp - (((temp) >> 32) << 32);
}
u_int64_t o = 1;
u_int64_t h_rem = modulo_Barrett(h, p, u, s, t);
u_int64_t l_rem = modulo_Barrett(l, p, u, s, t);
C[i*n + j] = modulo_Barrett(h_rem * (o << 32) + l_rem, p, u, s, t);
}
}
}
void mp_float(double* A, double* B, double* C, int n, double p, double u, int b){
/* Matrix product for Floats using: 1 thread only. */
for (int k=0; k<n; k+=b){
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
n, n, b, 1, A + k, n, B + n*k, n,
1, C, n);
for (int i=0; i<n*n; i++){
C[i] = modulo_SIMD3(C[i], p, u);
}
}
}