-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhandler.py
242 lines (194 loc) · 7.42 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import logging
import os, io
import torch
from PIL import Image
import torchvision.models as models
from torchvision import transforms
from torch.nn import (
AdaptiveAvgPool2d,
AdaptiveMaxPool2d,
Flatten,
BatchNorm1d,
Dropout,
Linear,
ReLU,
Module,
Sequential,
)
logger = logging.getLogger(__name__)
class HookCAM:
def __init__(self, module):
self.hook = module.register_forward_hook(self.hook_func)
self.stored = []
def hook_func(self, module, inputs, outputs):
self.stored.append(outputs.detach().clone())
def __enter__(self, *args):
return self
def __exit__(self, *args):
self.hook.remove()
class HookCAMBwd:
def __init__(self, module):
self.hook = module.register_full_backward_hook(self.hook_func)
self.stored = []
def hook_func(self, module, grad_inputs, grad_outputs):
self.stored.append(grad_outputs[0].detach().clone())
def __enter__(self, *args):
return self
def __exit__(self, *args):
self.hook.remove()
class AdaptiveConcatPool2d(Module):
"FastAI: Layer that concats `AdaptiveAvgPool2d` and `AdaptiveMaxPool2d`"
def __init__(self, size=None):
super().__init__()
self.size = size or 1
self.ap = AdaptiveAvgPool2d(self.size)
self.mp = AdaptiveMaxPool2d(self.size)
def forward(self, x):
return torch.cat([self.mp(x), self.ap(x)], 1)
class TwinHandler:
"""
Handler Class.
"""
def __init__(self):
self.model = None
self.mapping = None
self.device = None
self.initialized = False
self.encoder_reload, self.head_input_dim = self.get_encoder()
self.head_reload = Sequential(
AdaptiveConcatPool2d(1),
Flatten(),
BatchNorm1d(self.head_input_dim),
Dropout(0.05),
Linear(self.head_input_dim, 512, False),
ReLU(True),
BatchNorm1d(512),
Dropout(0.1),
Linear(512, 2, False),
)
self.image_tfm = transforms.Compose(
[
# must be consistent with model training
transforms.Resize((224, 224)),
transforms.ToTensor(),
# default statistics from imagenet
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
self.cam: bool = False
@staticmethod
def get_encoder(pre_train: bool = False):
resnet_backbone = models.resnet50(pretrained=pre_train)
return Sequential(*list(resnet_backbone.children())[:-2]), 8192
def initialize(self, ctx):
"""
load eager mode state_dict based model
"""
properties = ctx.system_properties
self.device = torch.device(
"cuda:" + str(properties.get("gpu_id"))
if torch.cuda.is_available()
else "cpu"
)
logger.info(f"Device on initialization is: {self.device}")
model_dir = properties.get("model_dir")
manifest = ctx.manifest
logger.error(manifest)
serialized_file = manifest["model"]["serializedFile"]
model_pt_path = os.path.join(model_dir, serialized_file)
if not os.path.isfile(model_pt_path):
raise RuntimeError("Missing the model definition file")
logger.info(model_pt_path)
encoder_reload_weights = torch.load(
os.path.join(model_dir, "encoder_weight.pth"), map_location=self.device
)
self.encoder_reload.load_state_dict(encoder_reload_weights)
self.encoder_reload.to(self.device)
self.encoder_reload.eval()
head_reload_weights = torch.load(
os.path.join(model_dir, "head_weight.pth"), map_location=self.device
)
self.head_reload.load_state_dict(head_reload_weights)
self.head_reload.to(self.device)
self.head_reload.eval()
self.initialized = True
def preprocess(self, data):
"""
Scales and normalizes a PIL image for an U-net model
"""
self.cam_map_left, self.cam_map_right = None, None
left_image = data[0]["left"]
right_image = data[0]["right"]
self.cam = eval(data[0]["cam"])
logger.info(f"input cam: {str(self.cam)}")
left_image = Image.open(io.BytesIO(left_image)).convert("RGB")
right_image = Image.open(io.BytesIO(right_image)).convert("RGB")
left_image = self.image_tfm(left_image)[None, ...] # batch size of 1
right_image = self.image_tfm(right_image)[None, ...] # batch size of 1
return left_image, right_image
def inference(self, left_image, right_image):
"""
Predict the chip stack mask of an image using a trained deep learning model.
"""
if not self.cam:
logger.info("no cam")
with torch.no_grad():
left_image, right_image = left_image.to(self.device), right_image.to(
self.device
)
left_embedding = self.encoder_reload(left_image)
right_embedding = self.encoder_reload(right_image)
res = self.head_reload(
torch.cat([left_embedding, right_embedding], dim=1)
)[0]
else:
logger.info("cam")
with HookCAMBwd(self.encoder_reload) as hookg:
with HookCAM(self.encoder_reload) as hook:
left_image, right_image = left_image.to(
self.device
), right_image.to(self.device)
left_embedding = self.encoder_reload(left_image)
right_embedding = self.encoder_reload(right_image)
res = self.head_reload(
torch.cat([left_embedding, right_embedding], dim=1)
)[0]
act = hook.stored
pred_cls = res.argmax().item()
res[pred_cls].backward()
grad = hookg.stored
weight_left = grad[0][0].mean(dim=[1, 2], keepdim=True)
self.cam_map_left = (weight_left * act[0][0]).sum(0)
weight_right = grad[1][0].mean(dim=[1, 2], keepdim=True)
self.cam_map_right = (weight_right * act[1][0]).sum(0)
self.encoder_reload.zero_grad(), self.head_reload.zero_grad()
return res
def postprocess(self, inference_output):
logger.info("start postprocessing")
if torch.cuda.is_available():
inference_output = inference_output.cpu()
if self.cam:
self.cam_map_left = self.cam_map_left.cpu()
self.cam_map_right = self.cam_map_right.cpu()
else:
inference_output = inference_output
if not self.cam:
return [inference_output.numpy().tolist()]
else:
return [
inference_output.detach().numpy().tolist()
+ self.cam_map_left.detach().numpy().tolist()
+ self.cam_map_right.detach().numpy().tolist()
]
_service = TwinHandler()
def handle(data, context):
if not _service.initialized:
_service.initialize(context)
if data is None:
return None
left_image, right_image = _service.preprocess(data)
data = _service.inference(left_image, right_image)
data = _service.postprocess(data)
return data