-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimplicit_heap_min.go
202 lines (166 loc) · 4.42 KB
/
implicit_heap_min.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
package heap
import "sync"
//ImplicitHeapMin A dynamic tree (list) of numbers, stored as a Binary tree in a dynamic slice.
//Used to quickly get the smallest number from a list/queue/priority queue.
//
//It is a base struct for ImplicitHeapMax.
type ImplicitHeapMin struct {
a []implicitHeapNode
n int //numbers in the heap
compare ihCompare //different compare func for Min/Max
autoLockMutex bool //auto locks the mutex for each func call
sync.Mutex
}
//shouldGoUp We keep the min comparison formula in 1 place
//it is overwritten for Max
func minShouldGoUp(p, c implicitHeapNode) bool {
return c.priority < p.priority
}
//NewImplicitHeapMin Builds an empty ImplicitHeapMin
func NewImplicitHeapMin(autoLockMutex bool) *ImplicitHeapMin {
h := &ImplicitHeapMin{
compare: minShouldGoUp,
autoLockMutex: autoLockMutex}
h.Reset()
return h
}
//Push Insert a new key/value pair in the list.
func (h *ImplicitHeapMin) Push(priority int, value interface{}) {
if h.autoLockMutex {
h.Lock()
defer h.Unlock()
}
//if it is full, enlarge it
if cap(h.a) == h.n {
newSlice := make([]implicitHeapNode, cap(h.a)*2)
copy(newSlice, h.a)
h.a = newSlice
}
h.a[h.n] = implicitHeapNode{priority, value}
h.n++
if h.n <= 1 {
return //nothing to sort
}
//rebalance the tree, check the new value parents
/*
parentIndex = (childIndex - 1 ) / 2
[0,1,2,3,4,5,6,7]
0 = root node
1 = left child; 0 = (1-1) / 2
2 = right child; 0 = (2-1) / 2
3 = left child of 1 ; 1 = (3-1) / 2
4 = right child of 1 ; 1 = (4-1) / 2
5 = left child of 2 ; 2 = (5 - 1) / 2
6 = right child of 2 ; 2 = (6 - 1) / 2
*/
cI := h.n - 1 //childIndex, newest number
pI := (cI - 1) / 2 //parentIndex
for cI > 0 && h.compare(h.a[pI], h.a[cI]) {
h.a[pI], h.a[cI] = h.a[cI], h.a[pI]
cI = pI
pI = (cI - 1) / 2
}
}
//Peek Find-* returns the first value (root element) O(1).
//For ImplicitHeapMin returns the value for the smallest key(priority).
//For ImplicitHeapMax returns the value for the largest key(priority).
//Does not mutate the list
func (h *ImplicitHeapMin) Peek() (v interface{}, ok bool) {
if h.autoLockMutex {
h.Lock()
defer h.Unlock()
}
if h.n <= 0 {
return 0, false
}
return h.a[0].value, true
}
//Pop Delete-*, return the first value (root element) O(log(n))
//For ImplicitHeapMin returns the value for the smallest key(priority).
//For ImplicitHeapMax returns the value for the largest key(priority).
//Removes the element from the list
func (h *ImplicitHeapMin) Pop() (v interface{}, ok bool) {
if h.autoLockMutex {
h.Lock()
defer h.Unlock()
}
if h.n <= 0 {
return
}
//pop the root, exchange it with the last leaf
v = h.a[0].value
ok = true
h.n--
h.a[0] = h.a[h.n]
//mark it as delete, for testing purposes
h.a[h.n].priority = 0
h.a[h.n].value = nil
if h.n <= 1 {
return //no use to sort
}
pI, isLc, isRc, leftChildIndex, rightChildIndex := 0, false, false, 0, 0
for {
leftChildIndex = 2*pI + 1
rightChildIndex = leftChildIndex + 1
//should the parent switch to left chid?
isLc = leftChildIndex < h.n && h.compare(h.a[pI], h.a[leftChildIndex])
isRc = rightChildIndex < h.n && h.compare(h.a[pI], h.a[rightChildIndex])
if isLc == false && isRc == false {
break
}
if isLc && isRc {
if h.compare(h.a[leftChildIndex], h.a[rightChildIndex]) {
isLc = false
}
isRc = false
}
if isLc {
h.a[pI], h.a[leftChildIndex] = h.a[leftChildIndex], h.a[pI]
pI = leftChildIndex
continue
}
//isRC
h.a[pI], h.a[rightChildIndex] = h.a[rightChildIndex], h.a[pI]
pI = rightChildIndex
}
//if it is mostly empty (less than 1/4), shrink it
if cap(h.a) > 8 && h.n <= cap(h.a)/4 {
newSlice := make([]implicitHeapNode, cap(h.a)/2)
copy(newSlice, h.a)
h.a = newSlice
}
return
}
//Reset Feed all your data to the Garbage Collector.
func (h *ImplicitHeapMin) Reset() {
if h.autoLockMutex {
h.Lock()
defer h.Unlock()
}
h.a = make([]implicitHeapNode, 8)
h.n = 0
}
//IsDepleted Check if the list is empty
func (h *ImplicitHeapMin) IsDepleted() bool {
if h.autoLockMutex {
h.Lock()
defer h.Unlock()
}
return h.n == 0
}
//HasElement Check if the list has at least 1 elment left
func (h *ImplicitHeapMin) HasElement() bool {
if h.autoLockMutex {
h.Lock()
defer h.Unlock()
}
return h.n > 0
}
//Len How many elements are in the heap
func (h *ImplicitHeapMin) Len() int {
if h.autoLockMutex {
h.Lock()
defer h.Unlock()
}
return h.n
}