-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcase_ashrae.py
380 lines (332 loc) · 17.2 KB
/
case_ashrae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#https://www.kaggle.com/rohanrao/ashrae-divide-and-conquer
#https://www.kaggle.com/isaienkov/lightgbm-fe-1-19
'''
[3,18,72]=0.937 [3,18]=0.939 [18]=0.946min_data_in_leaf [18,72] =0.933 [3,72] =0.938 [72] =0.933 [72,168]=0.939
min_data_in_leaf: 20=0.933 200=0.932 2000=0.930 10000=0.9289 20000=0.930
'''
import gc
import os
import sys
import lightgbm as lgb
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from tqdm import tqdm
from pandas.api.types import is_datetime64_any_dtype as is_datetime
from pandas.api.types import is_categorical_dtype
import pickle
import litemort
from litemort import *
print(litemort.__version__)
data_root = 'F:/Datasets/ashrae/'
isMORT = len(sys.argv)>1 and sys.argv[1] == "mort"
isMORT = True
isMerge = True#len(sys.argv)>1 and sys.argv[1] == "merge"
gbm='MORT' if isMORT else 'LGB'
use_building_id=False
#leak_some_rows=2000000
#some_rows = 500
some_rows = None
lag_hours=[72] #[3,18,72]内存溢出
use_building_id=True
def reduce_mem_usage(df, use_float16=False):
"""
Iterate through all the columns of a dataframe and modify the data type to reduce memory usage.
"""
start_mem = df.memory_usage().sum() / 1024 ** 2
print("Memory usage of dataframe is {:.2f} MB".format(start_mem))
for col in df.columns:
if is_datetime(df[col]) or is_categorical_dtype(df[col]):
continue
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == "int":
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if use_float16 and c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype("category")
end_mem = df.memory_usage().sum() / 1024 ** 2
print("Memory usage after optimization is: {:.2f} MB".format(end_mem))
print("Decreased by {:.1f}%".format(100 * (start_mem - end_mem) / start_mem))
return df
def create_lag_features(df, window):
"""
Creating lag-based features looking back in time.
"""
feature_cols = ["air_temperature", "cloud_coverage", "dew_temperature", "precip_depth_1_hr", 'sea_level_pressure','wind_direction', 'wind_speed']
df_site = df.groupby("site_id")
df_rolled = df_site[feature_cols].rolling(window=window, min_periods=0)
df_mean = df_rolled.mean().reset_index().astype(np.float16)
df_median = df_rolled.median().reset_index().astype(np.float16)
df_min = df_rolled.min().reset_index().astype(np.float16)
df_max = df_rolled.max().reset_index().astype(np.float16)
#https://stackoverflow.com/questions/50306914/pandas-groupby-agg-std-nan
#pd.DataFrame.std assumes 1 degree of freedom by default, also known as sample standard deviation. This results in NaN results for groups with one number.
df_std = df_rolled.std().reset_index().astype(np.float16).fillna(0)
df_skew = df_rolled.skew().reset_index().astype(np.float16).fillna(0)
for feature in feature_cols:
df[f"{feature}_mean_lag{window}"] = df_mean[feature]
df[f"{feature}_median_lag{window}"] = df_median[feature]
df[f"{feature}_min_lag{window}"] = df_min[feature]
df[f"{feature}_max_lag{window}"] = df_max[feature]
df[f"{feature}_std_lag{window}"] = df_std[feature]
df[f"{feature}_skew_lag{window}"] = df_skew[feature]
# df[f"{feature}_skew_lag{window}"] = df_skew[feature]
return df
def get_leak_():
pkl_path = f'{data_root}/leak_.pickle'
print("====== get_leak_@{} ......".format(pkl_path))
if os.path.isfile(pkl_path):
with open(pkl_path, "rb") as fp:
[leak,leak_building_ids] = pickle.load(fp)
else:
leak0 = pd.read_csv(f"{data_root}/site0.csv")
print(f"leak0={leak0.shape},mem={sys.getsizeof(leak0) / 1.0e6:.3f}")
leak1 = pd.read_csv(f"{data_root}/site1.csv")
leak2 = pd.read_csv(f"{data_root}/site2.csv")
leak4 = pd.read_csv(f"{data_root}/site4.csv")
leak15 = pd.read_csv(f"{data_root}/site15.csv")
leak = pd.concat([leak0, leak1, leak2, leak4, leak15])
leak["log_meter_reading"] = np.log1p(leak.meter_reading_scraped)
leak = leak[leak.log_meter_reading.notnull()]
if leak_some_rows is not None:
leak, _ = Mort_PickSamples(leak_some_rows, leak, None)
na_count = leak.isna().sum()
del leak0, leak1, leak2, leak4, leak15
gc.collect()
leak_building_ids = leak.building_id.unique()
print(f"leak={leak.shape} nNA={na_count} leak_buildings={len(leak_building_ids)}:\t{leak_building_ids}")
test = pd.read_csv(path_test)
shape_0=test.shape
test = test[test.building_id.isin(leak_building_ids)]
leak = leak.merge(test, on=["building_id", "meter", "timestamp"],how = "left")
leak = reduce_mem_usage(leak, use_float16=True)
print(f"test0={shape_0} test@leak={test.shape} leak={leak.shape},mem={sys.getsizeof(leak)/1.0e6:.3f} ")
leak.drop(["row_id"],axis=1, inplace=True)
del test
gc.collect()
with open(pkl_path, "wb") as fp:
pickle.dump([leak,leak_building_ids], fp, protocol=4)
return leak,leak_building_ids
path_data = data_root #"/kaggle/input/ashrae-energy-prediction/"
path_train = path_data + "train.csv"
path_test = path_data + "test.csv"
path_building = path_data + "building_metadata.csv"
path_weather_train = path_data + "weather_train.csv"
path_weather_test = path_data + "weather_test.csv"
myfavouritenumber = 13
seed = myfavouritenumber
pkl_path = f'{data_root}/cys_{"merge"if isMerge else ""}_{lag_hours}_.pickle'
df_building_meter=None
df_building_meter_hour=None
def EDA_(df_,weather_,building,isTrain=False,isLogMeter=False):
global df_building_meter,df_building_meter_hour
df_ = df_.merge(building, on="building_id",how = "left")
#print(f"{df_.shape}")
# df_train = df_train.merge(weather_train, on=["site_id", "timestamp"], how="left")
if isTrain:
df_ = df_[~((df_.site_id == 0) & (df_.meter == 0) & (df_.building_id <= 104) & (
df_.timestamp < "2016-05-21"))]
df_.reset_index(drop=True, inplace=True)
#print(f"{df_.shape}")
df_.timestamp = pd.to_datetime(df_.timestamp, format='%Y-%m-%d %H:%M:%S')
if isLogMeter:
df_["log_meter_reading"] = np.log1p(df_.meter_reading)
# Feature Engineering: Time
df_["hour"] = df_.timestamp.dt.hour
df_["weekday"] = df_.timestamp.dt.weekday
print(f"{df_.shape}")
print("EDA_ Aggregation@building_meter@building_meter_hour...")
if isTrain:
df_building_meter = df_.groupby(["building_id", "meter"]). \
agg(mean_building_meter=("log_meter_reading", "mean"),
median_building_meter=("log_meter_reading", "median")).reset_index()
df_building_meter_hour = df_.groupby(["building_id", "meter", "hour"]). \
agg(mean_building_meter=("log_meter_reading", "mean"),
median_building_meter=("log_meter_reading", "median")).reset_index()
df_ = df_.merge(df_building_meter, on=["building_id", "meter"], how="left")
df_ = df_.merge(df_building_meter_hour, on=["building_id", "meter", "hour"], how="left")
print(f"{df_.shape}")
if weather_ is not None:
if isMerge:
pass
else:
df_ = df_.merge(weather_, on=["site_id", "timestamp"], how="left")
gc.collect()
df_ = reduce_mem_usage(df_)
print(f"{df_.shape}")
# df_train = df_train.reindex(sorted(df_train.columns), axis=1)
# df_test = df_test.reindex(sorted(df_test.columns), axis=1)
return df_
if os.path.isfile(pkl_path):
print("====== Load pickle @{} ......".format(pkl_path))
with open(pkl_path, "rb") as fp:
if isMerge:
[df_train, df_leak_test,weather_test,weather_train] = pickle.load(fp)
merge_infos = [{'on': ['site_id', 'timestamp'], 'dataset': weather_train, "desc": "weather"}]
else:
merge_infos = None
[df_train, df_leak_test,df_test_,weather_test] = pickle.load(fp)
else:
df_leak_test,leak_building_ids = get_leak_()
df_leak_test.rename(columns={'meter_reading_scraped': 'meter_reading'}, inplace=True)
df_train = pd.read_csv(path_train)
#df_train = df_train[df_train.building_id.isin(leak_building_ids)]
print(f"df_train={df_train.shape} cols={df_train.columns}")
print(f"df_leak_test={df_leak_test.shape} cols={df_leak_test.columns}")
building = pd.read_csv(path_building)
le = LabelEncoder()
building.primary_use = le.fit_transform(building.primary_use)
weather_train = pd.read_csv(path_weather_train)
weather_test = pd.read_csv(path_weather_test)
#weather_train.drop(["sea_level_pressure", "wind_direction", "wind_speed"], axis=1, inplace=True)
#weather_test.drop(["sea_level_pressure", "wind_direction", "wind_speed"], axis=1, inplace=True)
weather_train = weather_train.groupby("site_id").apply(lambda group: group.interpolate(limit_direction="both"))
weather_test = weather_test.groupby("site_id").apply(lambda group: group.interpolate(limit_direction="both"))
print(f"df_train={df_train.shape} df_leak_test={df_leak_test.shape} weather_train={weather_train.shape} weather_test={weather_test.shape}")
#df_train = reduce_mem_usage(df_train, use_float16=True)
#df_test = reduce_mem_usage(df_test, use_float16=True)
weather_train.timestamp = pd.to_datetime(weather_train.timestamp, format='%Y-%m-%d %H:%M:%S')
weather_test.timestamp = pd.to_datetime(weather_test.timestamp, format='%Y-%m-%d %H:%M:%S')
weather_train = reduce_mem_usage(weather_train, use_float16=True)
weather_test = reduce_mem_usage(weather_test, use_float16=True)
for h in lag_hours:
weather_train = create_lag_features(weather_train, h)
#weather_train.drop(["air_temperature", "cloud_coverage", "dew_temperature", "precip_depth_1_hr"], axis=1, inplace=True)
weather_test = create_lag_features(weather_test, h)
#weather_test.drop(["air_temperature", "cloud_coverage", "dew_temperature", "precip_depth_1_hr"], axis=1,inplace=True)
df_train = EDA_(df_train, weather_train, building, isTrain=True, isLogMeter=True)
df_test_ = pd.read_csv(path_test)
print(df_test_.shape)
df_test_ = EDA_(df_test_, None, building, isTrain=False, isLogMeter=False)
print(df_test_.head(100)); print(df_test_.tail(100))
df_leak_test = EDA_(df_leak_test, weather_test, building, isTrain=False,isLogMeter=True)
del building, le;
gc.collect()
print(f"df_train={df_train.shape} cols={df_train.columns}")
print(f"df_leak_test={df_leak_test.shape} cols={df_leak_test.columns} NAN={df_leak_test.isna().sum()}")
print(f"df_test_={df_test_.shape} cols={df_test_.columns} NAN={df_test_.isna().sum()}")
with open(pkl_path, "wb") as fp:
if isMerge: #df_train=1172.185 df_test=2960.530 weather_test=18.021 weather_train=9.085 leak=253.434
print(f"df_train={sys.getsizeof(df_train) / 1.0e6:.3f} df_leak_test={sys.getsizeof(df_leak_test) / 1.0e6:.3f} weather_test={sys.getsizeof(weather_test) / 1.0e6:.3f}"
f"\tweather_train={sys.getsizeof(weather_train) / 1.0e6:.3f}")
pickle.dump([df_train, df_leak_test, weather_test, weather_train], fp)
else:
pickle.dump([df_train, df_leak_test,df_test_,weather_test], fp, protocol=4)
del weather_train
sys.exit(-1)
categorical_features = ["primary_use","meter", "weekday","hour"]
if isMerge:
all_features = [col for col in df_train.columns if col not in ["building_id","meter_reading", "log_meter_reading"]]
else:
all_features = [col for col in df_train.columns if col not in ["building_id","timestamp", "site_id", "meter_reading", "log_meter_reading"]]
cv = 5
models = []
cv_scores = {"site_id": [], "cv_score": []}
early_stop = 21
verbose_eval = 20
metric = 'l2'
num_rounds=999; lr=0.049; bf=0.51;ff=0.81;nLeaf=41
#num_rounds = 30; lr = 0.05; verbose_eval=1; bf=1; ff=1;nLeaf=41
params = {"objective": "regression", "metric": "rmse",
"num_leaves": nLeaf, "learning_rate": 0.049,'n_estimators': num_rounds,
"bagging_freq": 1, "bagging_fraction": bf, "feature_fraction": ff,'min_data_in_leaf': 10000,
'verbose_eval': verbose_eval,"early_stopping_rounds": early_stop,'n_jobs': 8, "elitism": 0
}
kf = KFold(n_splits=cv, random_state=seed)
#X_train = df_train;
if some_rows is not None:
df_train, _ = Mort_PickSamples(some_rows, df_train, None)
df_leak_test, _ = Mort_PickSamples(some_rows, df_leak_test, None)
X_leak = df_leak_test; y_leak = X_leak.log_meter_reading
Y_train = df_train.log_meter_reading
#X_train = X_train[all_features]
X_leak = X_leak[all_features]
y_pred_train_site = np.zeros(df_train.shape[0])
score = 0
for fold, (train_index, valid_index) in enumerate(kf.split(df_train, Y_train)):
X_train, X_valid = df_train[all_features].loc[train_index], df_train[all_features].loc[valid_index]
y_train, y_valid = Y_train.iloc[train_index], Y_train.iloc[valid_index]
if fold==0:
print(f"X_train={X_train.shape} cols={X_train.columns}")
print(f"X_valid={X_valid.shape} cols={X_valid.columns}")
if isMORT:
params['verbose'] = 667 if fold == 0 else 1
merge_datas = []
model = LiteMORT(params,merge_infos=merge_infos)
model.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], categorical_feature=categorical_features)
else:
dtrain = lgb.Dataset(X_train, label=y_train, categorical_feature=categorical_features)
dvalid = lgb.Dataset(X_valid, label=y_valid, categorical_feature=categorical_features)
watchlist = [dtrain, dvalid]
model = lgb.train(params, train_set=dtrain, num_boost_round=num_rounds, valid_sets=watchlist, verbose_eval=verbose_eval,
early_stopping_rounds=early_stop)
models.append(model)
y_pred_valid = model.predict(X_valid, num_iteration=model.best_iteration)
#y_pred_train_site[valid_index] = y_pred_valid
rmse = np.sqrt(mean_squared_error(y_valid, y_pred_valid))
print(", Fold:", fold + 1, ", RMSE:", rmse)
score += rmse / cv
del X_train, y_train
gc.collect()
#input("......")
del X_leak, y_leak
gc.collect()
cv_scores["cv_score"].append(score)
del df_train,df_leak_test
gc.collect()
merge_test_info = [{'on': ['site_id', 'timestamp'], 'dataset': weather_test, "desc": "weather"}]
submit = pd.read_csv(os.path.join(data_root, 'sample_submission.csv'))
def pred(X_test, models, batch_size=1000000):
iterations = (X_test.shape[0] + batch_size -1) // batch_size
print('iterations', iterations)
y_test_pred_total = np.zeros(X_test.shape[0])
for i, model in enumerate(models):
print(f'predicting {i}-th model')
if isMORT and isMerge:
y_pred_test = model.predict(X_test, num_iteration=model.best_iteration)
y_test_pred_total += y_pred_test
else:
for k in tqdm(range(iterations)):
#for k in range(1):
y_pred_test = model.predict(X_test[k*batch_size:(k+1)*batch_size], num_iteration=model.best_iteration)
#print(y_pred_test[:100]); input("pred ......")
y_test_pred_total[k*batch_size:(k+1)*batch_size] += y_pred_test
y_test_pred_total /= len(models)
return y_test_pred_total
if isMerge:
pass
else:
print("Before Merge::df_test_={df_test_.shape}")
df_test_ = df_test_.merge(weather_test, on=["site_id", "timestamp"], how="left")
submit.row_id = df_test_.row_id
df_test_ = df_test_[all_features]
print(f"df_test_={df_test_.shape} cols={df_test_.columns} NAN={df_test_.isna().sum()} submit={submit.shape}")
print(f"df_test_={df_test_.head()} {df_test_.tail()}")
assert(submit.shape[0]==df_test_.shape[0])
y_pred_ = pred(df_test_,models)
submit.meter_reading = np.clip(np.expm1(y_pred_), 0, a_max=None)
print(submit.head(100),submit.tail(100))
submit.to_csv("submission_cys_noleak.csv.gz", index=False, float_format='%.4f',compression='gzip')
if False:
submit = submit.merge(leak[["row_id", "meter_reading_scraped"]], on=["row_id"], how="left")
submit.loc[submit.meter_reading_scraped.notnull(), "meter_reading"] = submit.loc[submit.meter_reading_scraped.notnull(), "meter_reading_scraped"]
submit.drop(["meter_reading_scraped"], axis=1, inplace=True)
submit.to_csv("submission.csv.gz", index=False, float_format='%.4f',compression='gzip')