-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcase_geotab.py
440 lines (389 loc) · 23.4 KB
/
case_geotab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
#https://www.kaggle.com/dcaichara/feature-engineering-and-lightgbm
import pandas as pd
pd.set_option('display.max_columns', 999)
import numpy as np
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
import math
import matplotlib.pyplot as plt
import lightgbm as lgb
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import mean_squared_error
import warnings
warnings.filterwarnings('ignore')
import os
import sys
import pickle
from litemort import *
from LiteMORT_hyppo import *
import time
import random
import gc
isMORT = len(sys.argv)>1 and sys.argv[1] == "mort"
isMORT = True
gbm='MORT' if isMORT else 'LGB'
#some_rows = 5000
some_rows = None
#data_root = '../input/'
data_root = "F:/Datasets/geotab"
pkl_path = f'{data_root}/_geotab___.pickle'
if os.path.isfile(pkl_path):
print("====== Load pickle @{} ......".format(pkl_path))
with open(pkl_path, "rb") as fp:
[train, test,final_features, all_target] = pickle.load(fp)
#final_features = ['CenterDistance_Intersection_mean', 'EntryType_2', 'EntryType_1_FE','ExitHeading_Intersection_std' ]+final_features
else:
print('Loading trian set...')
train = pd.read_csv(f'{data_root}/train.csv')
print('Loading test set...')
test = pd.read_csv(f'{data_root}/test.csv')
print('We have {} rows and {} columns in our train set'.format(train.shape[0], train.shape[1]))
print('We have {} rows and {} columns in our test set'.format(test.shape[0], test.shape[1]))
train = train[['TotalTimeStopped_p80', 'IntersectionId', 'Latitude', 'Longitude', 'EntryStreetName',
'ExitStreetName', 'EntryHeading', 'ExitHeading', 'Hour', 'Weekend',
'Month', 'City']]
# let's select the target variable we are going to use for feature selection
target = train['TotalTimeStopped_p80']
train.drop('TotalTimeStopped_p80', axis = 1, inplace = True)
def prepro(train, test):
# Road Mapping
road_encoding = {'Street': 'Street', 'St': 'Street', 'Avenue': 'Avenue', 'Ave': 'Avenue',
'Boulevard': 'Boulevard', 'Road': 'Road', 'Drive': 'Drive', 'Lane': 'Lane',
'Tunnel': 'Tunnel', 'Highway': 'Highway', 'Way': 'Way', 'Parkway': 'Parkway',
'Parking': 'Parking', 'Oval': 'Oval', 'Square': 'Square', 'Place': 'Place',
'Bridge': 'Bridge'}
def encode(x):
if pd.isna(x):
return 'Street'
for road in road_encoding.keys():
if road in x:
return road_encoding[road]
for par in [train, test]:
par['EntryType'] = par['EntryStreetName'].apply(encode)
par['ExitType'] = par['ExitStreetName'].apply(encode)
par['EntryType_1'] = par['EntryStreetName'].str.split().str.get(0)
par['ExitType_1'] = par['ExitStreetName'].str.split().str.get(0)
par['EntryType_2'] = par['EntryStreetName'].str.split().str.get(1)
par['ExitType_2'] = par['ExitStreetName'].str.split().str.get(1)
par.loc[par['EntryType_1'].isin(
par['EntryType_1'].value_counts()[par['EntryType_1'].value_counts() <= 500].index), 'EntryType_1'] = 'Other'
par.loc[par['ExitType_1'].isin(
par['ExitType_1'].value_counts()[par['ExitType_1'].value_counts() <= 500].index), 'ExitType_1'] = 'Other'
par.loc[par['EntryType_2'].isin(
par['EntryType_2'].value_counts()[par['EntryType_2'].value_counts() <= 500].index), 'EntryType_2'] = 'Other'
par.loc[par['ExitType_2'].isin(
par['ExitType_2'].value_counts()[par['ExitType_2'].value_counts() <= 500].index), 'ExitType_2'] = 'Other'
par['EntryType_1'].fillna('Other', inplace=True)
par['ExitType_1'].fillna('Other', inplace=True)
par['EntryType_2'].fillna('Other', inplace=True)
par['ExitType_2'].fillna('Other', inplace=True)
# The cardinal directions can be expressed using the equation: θ/π
# Where θ is the angle between the direction we want to encode and the north compass direction, measured clockwise.
directions = {'N': 0, 'NE': 1 / 4, 'E': 1 / 2, 'SE': 3 / 4, 'S': 1, 'SW': 5 / 4, 'W': 3 / 2, 'NW': 7 / 4}
for par in [train, test]:
par['EntryHeading'] = par['EntryHeading'].map(directions)
par['ExitHeading'] = par['ExitHeading'].map(directions)
# EntryStreetName == ExitStreetName ?
# EntryHeading == ExitHeading ?
for par in [train, test]:
par["same_street_exact"] = (par["EntryStreetName"] == par["ExitStreetName"]).astype(int)
par["same_heading_exact"] = (par["EntryHeading"] == par["ExitHeading"]).astype(int)
# We have some intersection id that are in more than one city, it is a good idea to feature cross them
for par in [train, test]:
par['Intersection'] = par['IntersectionId'].astype(str) + '_' + par['City'].astype(str)
for par in [train, test]:
# Concatenating the city and month into one variable
par['city_month'] = par["City"].astype(str) + par["Month"].astype(str)
# Add climate data
monthly_av = {'Atlanta1': 43, 'Atlanta5': 69, 'Atlanta6': 76, 'Atlanta7': 79, 'Atlanta8': 78,
'Atlanta9': 73, 'Atlanta10': 62, 'Atlanta11': 53, 'Atlanta12': 45, 'Boston1': 30,
'Boston5': 59, 'Boston6': 68, 'Boston7': 74, 'Boston8': 73, 'Boston9': 66,
'Boston10': 55, 'Boston11': 45, 'Boston12': 35, 'Chicago1': 27, 'Chicago5': 60,
'Chicago6': 70, 'Chicago7': 76, 'Chicago8': 76, 'Chicago9': 68,
'Chicago10': 56, 'Chicago11': 45, 'Chicago12': 32, 'Philadelphia1': 35,
'Philadelphia5': 66, 'Philadelphia6': 76, 'Philadelphia7': 81,
'Philadelphia8': 79, 'Philadelphia9': 72, 'Philadelphia10': 60,
'Philadelphia11': 49, 'Philadelphia12': 40}
monthly_rainfall = {'Atlanta1': 5.02, 'Atlanta5': 3.95, 'Atlanta6': 3.63, 'Atlanta7': 5.12,
'Atlanta8': 3.67, 'Atlanta9': 4.09, 'Atlanta10': 3.11, 'Atlanta11': 4.10,
'Atlanta12': 3.82, 'Boston1': 3.92, 'Boston5': 3.24, 'Boston6': 3.22,
'Boston7': 3.06, 'Boston8': 3.37, 'Boston9': 3.47, 'Boston10': 3.79,
'Boston11': 3.98, 'Boston12': 3.73, 'Chicago1': 1.75, 'Chicago5': 3.38,
'Chicago6': 3.63, 'Chicago7': 3.51, 'Chicago8': 4.62, 'Chicago9': 3.27,
'Chicago10': 2.71, 'Chicago11': 3.01, 'Chicago12': 2.43,
'Philadelphia1': 3.52, 'Philadelphia5': 3.88, 'Philadelphia6': 3.29,
'Philadelphia7': 4.39, 'Philadelphia8': 3.82, 'Philadelphia9': 3.88,
'Philadelphia10': 2.75, 'Philadelphia11': 3.16, 'Philadelphia12': 3.31}
monthly_snowfall = {'Atlanta1': 0.6, 'Atlanta5': 0, 'Atlanta6': 0, 'Atlanta7': 0,
'Atlanta8': 0, 'Atlanta9': 0, 'Atlanta10': 0, 'Atlanta11': 0,
'Atlanta12': 0.2, 'Boston1': 12.9, 'Boston5': 0, 'Boston6': 0,
'Boston7': 0, 'Boston8': 0, 'Boston9': 0, 'Boston10': 0, 'Boston11': 1.3,
'Boston12': 9.0, 'Chicago1': 11.5, 'Chicago5': 0, 'Chicago6': 0,
'Chicago7': 0, 'Chicago8': 0, 'Chicago9': 0, 'Chicago10': 0,
'Chicago11': 1.3, 'Chicago12': 8.7, 'Philadelphia1': 6.5,
'Philadelphia5': 0, 'Philadelphia6': 0, 'Philadelphia7': 0,
'Philadelphia8': 0, 'Philadelphia9': 0, 'Philadelphia10': 0,
'Philadelphia11': 0.3, 'Philadelphia12': 3.4}
monthly_daylight = {'Atlanta1': 10, 'Atlanta5': 14, 'Atlanta6': 14, 'Atlanta7': 14,
'Atlanta8': 13, 'Atlanta9': 12, 'Atlanta10': 11, 'Atlanta11': 10,
'Atlanta12': 10, 'Boston1': 9, 'Boston5': 15, 'Boston6': 15,
'Boston7': 15, 'Boston8': 14, 'Boston9': 12, 'Boston10': 11,
'Boston11': 10, 'Boston12': 9, 'Chicago1': 10, 'Chicago5': 15,
'Chicago6': 15, 'Chicago7': 15, 'Chicago8': 14, 'Chicago9': 12,
'Chicago10': 11, 'Chicago11': 10, 'Chicago12': 9, 'Philadelphia1': 10,
'Philadelphia5': 14, 'Philadelphia6': 15, 'Philadelphia7': 15,
'Philadelphia8': 14, 'Philadelphia9': 12, 'Philadelphia10': 11,
'Philadelphia11': 10, 'Philadelphia12': 9}
monthly_sunshine = {'Atlanta1': 5.3, 'Atlanta5': 9.3, 'Atlanta6': 9.5, 'Atlanta7': 8.8, 'Atlanta8': 8.3,
'Atlanta9': 7.6,
'Atlanta10': 7.7, 'Atlanta11': 6.2, 'Atlanta12': 5.3, 'Boston1': 5.3, 'Boston5': 8.6,
'Boston6': 9.6,
'Boston7': 9.7, 'Boston8': 8.9, 'Boston9': 7.9, 'Boston10': 6.7, 'Boston11': 4.8,
'Boston12': 4.6,
'Chicago1': 4.4, 'Chicago5': 9.1, 'Chicago6': 10.4, 'Chicago7': 10.3, 'Chicago8': 9.1,
'Chicago9': 7.6,
'Chicago10': 6.2, 'Chicago11': 3.6, 'Chicago12': 3.4, 'Philadelphia1': 5.0,
'Philadelphia5': 7.9,
'Philadelphia6': 9.0, 'Philadelphia7': 8.9, 'Philadelphia8': 8.4, 'Philadelphia9': 7.9,
'Philadelphia10': 6.6, 'Philadelphia11': 5.2, 'Philadelphia12': 4.4}
for par in [train, test]:
# Creating a new column by mapping the city_month variable to it's corresponding average monthly temperature
par["average_temp"] = par['city_month'].map(monthly_av)
# Creating a new column by mapping the city_month variable to it's corresponding average monthly rainfall
par["average_rainfall"] = par['city_month'].map(monthly_rainfall)
# Creating a new column by mapping the city_month variable to it's corresponding average monthly snowfall
par['average_snowfall'] = par['city_month'].map(monthly_snowfall)
# Creating a new column by mapping the city_month variable to it's corresponding average monthly daylight
par["average_daylight"] = par['city_month'].map(monthly_daylight)
# Creating a new column by mapping the city_month variable to it's corresponding average monthly sunshine
par["average_sunshine"] = par['city_month'].map(monthly_sunshine)
for par in [train, test]:
# drop city month
par.drop('city_month', axis=1, inplace=True)
# Add feature is day
par['is_day'] = par['Hour'].apply(lambda x: 1 if 5 < x < 20 else 0)
# distance from the center of the city
def add_distance(df):
df_center = pd.DataFrame({"Atlanta": [33.753746, -84.386330],
"Boston": [42.361145, -71.057083],
"Chicago": [41.881832, -87.623177],
"Philadelphia": [39.952583, -75.165222]})
df["CenterDistance"] = df.apply(lambda row: math.sqrt((df_center[row.City][0] - row.Latitude) ** 2 +
(df_center[row.City][1] - row.Longitude) ** 2), axis=1)
add_distance(train)
add_distance(test)
# frequency encode
def encode_FE(df1, df2, cols):
for col in cols:
df = pd.concat([df1[col], df2[col]])
vc = df.value_counts(dropna=True, normalize=True).to_dict()
nm = col + '_FE'
df1[nm] = df1[col].map(vc)
df1[nm] = df1[nm].astype('float32')
df2[nm] = df2[col].map(vc)
df2[nm] = df2[nm].astype('float32')
print(nm, ', ', end='')
# combine features
def encode_CB(col1, col2, df1=train, df2=test):
nm = col1 + '_' + col2
df1[nm] = df1[col1].astype(str) + '_' + df1[col2].astype(str)
df2[nm] = df2[col1].astype(str) + '_' + df2[col2].astype(str)
print(nm, ', ', end='')
# group aggregations nunique
def encode_AG2(main_columns, agg_col, train_df=train, test_df=test):
for main_column in main_columns:
for col in agg_col:
comb = pd.concat([train_df[[col] + [main_column]], test_df[[col] + [main_column]]], axis=0)
mp = comb.groupby(col)[main_column].agg(['nunique'])['nunique'].to_dict()
train_df[col + '_' + main_column + '_ct'] = train_df[col].map(mp).astype('float32')
test_df[col + '_' + main_column + '_ct'] = test_df[col].map(mp).astype('float32')
print(col + '_' + main_column + '_ct, ', end='')
def encode_AG(main_columns, agg_col, aggregations=['mean'], train_df=train, test_df=test, fillna=True, usena=False):
# aggregation of main agg_cols
for main_column in main_columns:
for col in agg_col:
for agg_type in aggregations:
new_col_name = main_column + '_' + col + '_' + agg_type
temp_df = pd.concat([train_df[[col, main_column]], test_df[[col, main_column]]])
if usena: temp_df.loc[temp_df[main_column] == -1, main_column] = np.nan
temp_df = temp_df.groupby([col])[main_column].agg([agg_type]).reset_index().rename(
columns={agg_type: new_col_name})
temp_df.index = list(temp_df[col])
temp_df = temp_df[new_col_name].to_dict()
train_df[new_col_name] = train_df[col].map(temp_df).astype('float32')
test_df[new_col_name] = test_df[col].map(temp_df).astype('float32')
if fillna:
train_df[new_col_name].fillna(-1, inplace=True)
test_df[new_col_name].fillna(-1, inplace=True)
print("'" + new_col_name + "'", ', ', end='')
# Frequency encode
encode_FE(train, test,
['Hour', 'Month', 'EntryType', 'ExitType', 'EntryType_1', 'EntryType_2', 'ExitType_1', 'ExitType_2',
'Intersection', 'City'])
# Agreggations of main columns
encode_AG(['Longitude', 'Latitude', 'CenterDistance', 'EntryHeading', 'ExitHeading'],
['Hour', 'Weekend', 'Month', 'Intersection'], ['mean', 'std'])
# bucketize lat and lon
temp_df = pd.concat([train[['Latitude', 'Longitude']], test[['Latitude', 'Longitude']]]).reset_index(drop=True)
temp_df['Latitude_B'] = pd.cut(temp_df['Latitude'], 30)
temp_df['Longitude_B'] = pd.cut(temp_df['Longitude'], 30)
# feature cross lat and lon
temp_df['Latitude_B_Longitude_B'] = temp_df['Latitude_B'].astype(str) + '_' + temp_df['Longitude_B'].astype(str)
train['Latitude_B'] = temp_df.loc[:(train.shape[0]), 'Latitude_B']
test['Latitude_B'] = temp_df.loc[(train.shape[0]):, 'Latitude_B']
train['Longitude_B'] = temp_df.loc[:(train.shape[0]), 'Longitude_B']
test['Longitude_B'] = temp_df.loc[(train.shape[0]):, 'Longitude_B']
train['Latitude_B_Longitude_B'] = temp_df.loc[:(train.shape[0]), 'Latitude_B_Longitude_B']
test['Latitude_B_Longitude_B'] = temp_df.loc[(train.shape[0]):, 'Latitude_B_Longitude_B']
# feature crosses
encode_CB('Hour', 'Month')
# group aggregations nunique
encode_AG2(['Intersection', 'Latitude_B_Longitude_B'], ['Hour', 'Month'])
# label encode
for i, f in enumerate(train.columns):
if (np.str(train[f].dtype) == 'category') | (train[f].dtype == 'object'):
df_comb = pd.concat([train[f], test[f]], axis=0)
df_comb, _ = df_comb.factorize(sort=True)
if df_comb.max() > 32000: print(f, 'needs int32')
train[f] = df_comb[:len(train)].astype('int16')
test[f] = df_comb[len(train):].astype('int16')
print('After preprocessing we have {} columns'.format(train.shape[1]))
prepro(train, test)
usefull_columns = ['same_heading_exact', 'Intersection', 'is_day', 'CenterDistance', 'Intersection_FE', 'Longitude_Weekend_mean', 'CenterDistance_Month_std'] # this columns were picked with forward feature selection (run previous cell)
final_features = usefull_columns + ['IntersectionId', 'Latitude', 'Longitude', 'EntryStreetName','ExitStreetName',
'EntryHeading', 'ExitHeading', 'Hour', 'Weekend', 'Month', 'City', 'EntryType', 'ExitType']
print('Our usefull features found with forward feature selection are {}'.format(final_features))
print('-'*50)
print('We have selected {} features'.format(len(final_features)))
train_target = pd.read_csv(f'{data_root}/train.csv')
target1 = train_target['TotalTimeStopped_p20']
target2 = train_target['TotalTimeStopped_p50']
target3 = train_target['TotalTimeStopped_p80']
target4 = train_target['DistanceToFirstStop_p20']
target5 = train_target['DistanceToFirstStop_p50']
target6 = train_target['DistanceToFirstStop_p80']
all_target = [target1, target2, target3, target4, target5, target6]
with open(pkl_path, "wb") as fp: # Pickling
pickle.dump([train, test,final_features, all_target], fp)
print("====== Dump pickle @{} ......OK".format(pkl_path))
input("......")
if some_rows is not None:
nMost=train.shape[0]
random.seed(42)
subset = random.sample(range(nMost), some_rows)
train = train.iloc[subset, :].reset_index(drop=True)
all_=[]
for target in all_target:
target = target.iloc[subset].reset_index(drop=True)
all_.append(target)
all_target=all_
gc.collect()
print('====== Some Samples ... data={}'.format(train.shape))
print(f"train={train.shape} test={test.shape}\n final_features={final_features}")
if False:
feat_fix = ['IntersectionId', 'Latitude', 'Longitude', 'EntryStreetName','ExitStreetName', 'EntryHeading',
'ExitHeading', 'Hour', 'Weekend', 'Month', 'City', 'EntryType', 'ExitType']
feat_select = train.columns
feat_select = list(set(feat_select)-set(feat_fix))
MORT_feat_select_(train,all_target[2],feat_fix,feat_select)
input("......MORT_feat_search......")
param = {'application': 'regression','n_estimators':100000,'early_stopping_rounds':100,
'learning_rate': 0.05,
'metric': 'rmse',
'seed': 42,
'bagging_fraction': 0.7,
'feature_fraction': 0.9,
'lambda_l1': 0.0,
'lambda_l2': 5.0,
'max_depth': 30,
'min_child_weight': 50.0,
'min_split_gain': 0.1,
'num_leaves': 230}
param_mort = {'objective': 'regression','num_leaves': 512, 'n_estimators':100000,'early_stopping_rounds':100,
'feature_fraction': 0.9, 'bagging_fraction': 1,
"adaptive":'weight1', #无效,晕
'max_bin': 512,
#'cascade':'lasso', 64.409->64.392 作用不大
#"learning_schedule":"adaptive",
'max_depth': 30,
'min_split_gain': 0.1,
'min_child_weight': 20.0,
#'min_data_in_leaf': 10,
'learning_rate': 0.05,
'boosting_type': 'gbdt', 'verbose': 666, 'metric': {'rmse'}}
def run_lgb_f(train, test,all_target):
# get prediction dictonary were we are going to store predictions
all_preds = {0 : [], 1 : [], 2 : [], 3 : [], 4 : [], 5 : []}
# get a list with all the target variables
#all_target = [target1, target2, target3, target4, target5, target6]
nfold = 5
kf = KFold(n_splits=nfold, random_state=228, shuffle=True)
scores = []
for i in range(len(all_preds)):
#if i<len(all_preds)-1: continue
print('Training and predicting for target {}'.format(i+1))
t0 = time.time()
oof = np.zeros(len(train))
all_preds[i] = np.zeros(len(test))
n = 1
for train_index, valid_index in kf.split(all_target[i]):
print("fold {}".format(n))
y_train, y_valid = all_target[i][train_index], all_target[i][valid_index]
if isMORT:
mort = LiteMORT(param_mort).fit(train.iloc[train_index], y_train,
eval_set=[(train.iloc[valid_index], y_valid)] )
oof[valid_index] = mort.predict(train.iloc[valid_index])
all_preds[i] += mort.predict(test) / nfold
else:
xg_train = lgb.Dataset(train.iloc[train_index],
label=all_target[i][train_index]
)
xg_valid = lgb.Dataset(train.iloc[valid_index],
label=all_target[i][valid_index]
)
clf = lgb.train(param, xg_train, 100000, valid_sets=[xg_train, xg_valid],
verbose_eval=500, early_stopping_rounds=100)
oof[valid_index] = clf.predict(train.iloc[valid_index], num_iteration=clf.best_iteration)
all_preds[i] += clf.predict(test, num_iteration=clf.best_iteration) / nfold
score = np.sqrt(mean_squared_error(oof[valid_index], y_valid))
print(f"------{n}:\tRMSE: {score:0.4f} time={time.time() - t0:.4g}")
n = n + 1
fold_score = np.sqrt(mean_squared_error(all_target[i], oof))
scores.append(fold_score)
print("\n\nTARGET_{} CV RMSE: {:0.4f} time={:.4g}".format(i, fold_score,time.time() - t0))
#print("\n\nCV RMSE: {:<0.4f}".format(np.sqrt(mean_squared_error(all_target[i], oof))))
return all_preds,scores
if False: #hyparam_search
def MortOnParam(num_leaves, feature_fraction, bagging_fraction, max_depth, learning_rate, min_data_in_leaf,max_bin):
param_mort['verbose']=0
param_mort['early_stopping_rounds']=1 #Oscillate
param_mort["num_leaves"] = int(round(num_leaves))
param_mort['feature_fraction'] = max(min(feature_fraction, 1), 0)
param_mort['bagging_fraction'] = max(min(bagging_fraction, 1), 0)
param_mort['max_depth'] = int(round(max_depth))
param_mort['learning_rate'] = learning_rate
param_mort['min_data_in_leaf'] = int(round(min_data_in_leaf))
param_mort['max_bin'] = int(round(max_bin))
_,fold_score = run_lgb_f(train[final_features], test[final_features],all_target)
return -fold_score
pds = {'num_leaves': (230, 230),
'feature_fraction': (1, 1),
'bagging_fraction': (1, 1),
'max_depth': (10,50),
'learning_rate': (0.05, 0.05),
'min_data_in_leaf': (20, 20),
'max_bin': (512, 512),
}
hyparam_search(MortOnParam,pds,n_init=5, n_iter=12)
input("......")
nfold=5
all_preds,fold_score = run_lgb_f(train[final_features], test[final_features],all_target)
#input("......")
submission = pd.read_csv(f'{data_root}/sample_submission.csv')
data2 = pd.DataFrame(all_preds).stack()
data2 = pd.DataFrame(data2)
submission['Target'] = data2[0].values
submission.to_csv('lgbm_baseline_fs_bopt.csv', index=False)
path = f'{data_root}/[{gbm}]_{some_rows}_{fold_score:.5f}_F{nfold}_.csv.gz'
submission.to_csv(path, index=False,float_format='%.4f',compression='gzip' )
input("......")