-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcase_houseprice.py
314 lines (240 loc) · 12.6 KB
/
case_houseprice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#https://www.kaggle.com/niteshx2/top-50-beginners-stacking-lgb-xgb
#https://www.kaggle.com/kernels/scriptcontent/11907006/download
import numpy as np # linear algebra
import pandas as pd #
from datetime import datetime
from scipy.stats import skew # for some statistics
from scipy.special import boxcox1p
from scipy.stats import boxcox_normmax
from sklearn.linear_model import ElasticNetCV, LassoCV, RidgeCV
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.svm import SVR
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import KFold, cross_val_score
from sklearn.metrics import mean_squared_error
from mlxtend.regressor import StackingCVRegressor
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
import litemort
import os
data_root = f"F:/Datasets/house"
print(os.listdir(data_root))
# Based on https://www.kaggle.com/hemingwei/top-2-from-laurenstc-on-house-price-prediction
train = pd.read_csv(f'{data_root}/train.csv')
test = pd.read_csv(f'{data_root}/test.csv')
print("Train set size:", train.shape)
print("Test set size:", test.shape)
print('START data processing', datetime.now(), )
train_ID = train['Id']
test_ID = test['Id']
# Now drop the 'Id' colum since it's unnecessary for the prediction process.
train.drop(['Id'], axis=1, inplace=True)
test.drop(['Id'], axis=1, inplace=True)
# Deleting outliers
train = train[train.GrLivArea < 4500]
train.reset_index(drop=True, inplace=True)
# We use the numpy fuction log1p which applies log(1+x) to all elements of the column
train["SalePrice"] = np.log1p(train["SalePrice"])
y = train.SalePrice.reset_index(drop=True)
train_features = train.drop(['SalePrice'], axis=1)
test_features = test
features = pd.concat([train_features, test_features]).reset_index(drop=True)
print(features.shape)
# Some of the non-numeric predictors are stored as numbers; we convert them into strings
features['MSSubClass'] = features['MSSubClass'].apply(str)
features['YrSold'] = features['YrSold'].astype(str)
features['MoSold'] = features['MoSold'].astype(str)
features['Functional'] = features['Functional'].fillna('Typ')
features['Electrical'] = features['Electrical'].fillna("SBrkr")
features['KitchenQual'] = features['KitchenQual'].fillna("TA")
features['Exterior1st'] = features['Exterior1st'].fillna(features['Exterior1st'].mode()[0])
features['Exterior2nd'] = features['Exterior2nd'].fillna(features['Exterior2nd'].mode()[0])
features['SaleType'] = features['SaleType'].fillna(features['SaleType'].mode()[0])
features["PoolQC"] = features["PoolQC"].fillna("None")
for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'):
features[col] = features[col].fillna(0)
for col in ['GarageType', 'GarageFinish', 'GarageQual', 'GarageCond']:
features[col] = features[col].fillna('None')
for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'):
features[col] = features[col].fillna('None')
features['MSZoning'] = features.groupby('MSSubClass')['MSZoning'].transform(lambda x: x.fillna(x.mode()[0]))
objects = []
for i in features.columns:
if features[i].dtype == object:
objects.append(i)
features.update(features[objects].fillna('None'))
features['LotFrontage'] = features.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median()))
# Filling in the rest of the NA's
numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
numerics = []
for i in features.columns:
if features[i].dtype in numeric_dtypes:
numerics.append(i)
features.update(features[numerics].fillna(0))
numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
numerics2 = []
for i in features.columns:
if features[i].dtype in numeric_dtypes:
numerics2.append(i)
skew_features = features[numerics2].apply(lambda x: skew(x)).sort_values(ascending=False)
high_skew = skew_features[skew_features > 0.5]
skew_index = high_skew.index
for i in skew_index:
features[i] = boxcox1p(features[i], boxcox_normmax(features[i] + 1))
features = features.drop(['Utilities', 'Street', 'PoolQC',], axis=1)
features['YrBltAndRemod']=features['YearBuilt']+features['YearRemodAdd']
features['TotalSF']=features['TotalBsmtSF'] + features['1stFlrSF'] + features['2ndFlrSF']
features['Total_sqr_footage'] = (features['BsmtFinSF1'] + features['BsmtFinSF2'] +
features['1stFlrSF'] + features['2ndFlrSF'])
features['Total_Bathrooms'] = (features['FullBath'] + (0.5 * features['HalfBath']) +
features['BsmtFullBath'] + (0.5 * features['BsmtHalfBath']))
features['Total_porch_sf'] = (features['OpenPorchSF'] + features['3SsnPorch'] +
features['EnclosedPorch'] + features['ScreenPorch'] +
features['WoodDeckSF'])
# simplified features
features['haspool'] = features['PoolArea'].apply(lambda x: 1 if x > 0 else 0)
features['has2ndfloor'] = features['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0)
features['hasgarage'] = features['GarageArea'].apply(lambda x: 1 if x > 0 else 0)
features['hasbsmt'] = features['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0)
features['hasfireplace'] = features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0)
print(features.shape)
final_features = pd.get_dummies(features).reset_index(drop=True)
print(final_features.shape)
X = final_features.iloc[:len(y), :]
X_sub = final_features.iloc[len(X):, :]
print('X', X.shape, 'y', y.shape, 'X_sub', X_sub.shape)
outliers = [30, 88, 462, 631, 1322]
X = X.drop(X.index[outliers])
y = y.drop(y.index[outliers])
overfit = []
for i in X.columns:
counts = X[i].value_counts()
zeros = counts.iloc[0]
if zeros / len(X) * 100 > 99.94:
overfit.append(i)
overfit = list(overfit)
#overfit.append('MSZoning_C (all)')
X = X.drop(overfit, axis=1).copy()
X_sub = X_sub.drop(overfit, axis=1).copy()
print('X', X.shape, 'y', y.shape, 'X_sub', X_sub.shape)
# ################## ML ########################################
print('START ML', datetime.now(), )
kfolds = KFold(n_splits=10, shuffle=True, random_state=42)
# rmsle
def rmsle(y, y_pred):
return np.sqrt(mean_squared_error(y, y_pred))
# build our model scoring function
def cv_rmse(model, X=X):
rmse = np.sqrt(-cross_val_score(model, X, y,
scoring="neg_mean_squared_error",
cv=kfolds))
return (rmse)
# setup models
alphas_alt = [14.5, 14.6, 14.7, 14.8, 14.9, 15, 15.1, 15.2, 15.3, 15.4, 15.5]
alphas2 = [5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008]
e_alphas = [0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007]
e_l1ratio = [0.8, 0.85, 0.9, 0.95, 0.99, 1]
ridge = make_pipeline(RobustScaler(),
RidgeCV(alphas=alphas_alt, cv=kfolds,))
lasso = make_pipeline(RobustScaler(),
LassoCV(max_iter=1e7, alphas=alphas2,
random_state=42, cv=kfolds))
elasticnet = make_pipeline(RobustScaler(),
ElasticNetCV(max_iter=1e7, alphas=e_alphas,
cv=kfolds, random_state=42, l1_ratio=e_l1ratio))
svr = make_pipeline(RobustScaler(),
SVR(C= 20, epsilon= 0.008, gamma=0.0003,))
gbr = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05,
max_depth=4, max_features='sqrt',
min_samples_leaf=15, min_samples_split=10,
loss='huber', random_state =42)
lgb_params = {'objective':'regression','num_leaves':4,'learning_rate':0.01,'n_estimators':5000,
'max_bin':200,'bagging_fraction':0.75, 'bagging_freq':5,'bagging_seed':7,'feature_fraction':0.2,
'feature_fraction_seed':7,'verbose':-1,#min_data_in_leaf=2,#min_sum_hessian_in_leaf=11
}
lightgbm = LGBMRegressor(**lgb_params)
xgboost = XGBRegressor(learning_rate=0.01, n_estimators=3460,
max_depth=3, min_child_weight=0,
gamma=0, subsample=0.7,
colsample_bytree=0.7,
objective='reg:linear', nthread=-1,
scale_pos_weight=1, seed=27,
reg_alpha=0.00006, random_state=42)
# stack
stack_gen = StackingCVRegressor(regressors=(ridge, lasso, elasticnet,
gbr, xgboost, lightgbm),
meta_regressor=xgboost,
use_features_in_secondary=True)
print('TEST score on CV')
score = cv_rmse(lightgbm)
print("Lightgbm score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), )
if False:
score = cv_rmse(ridge)
print("Kernel Ridge score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), )
score = cv_rmse(lasso)
print("Lasso score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), )
score = cv_rmse(elasticnet)
print("ElasticNet score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), )
score = cv_rmse(svr)
print("SVR score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), )
score = cv_rmse(gbr)
print("GradientBoosting score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), )
score = cv_rmse(xgboost)
print("Xgboost score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), )
print('START Fit')
print(datetime.now(), 'StackingCVRegressor')
stack_gen_model = stack_gen.fit(np.array(X), np.array(y))
print(datetime.now(), 'elasticnet')
elastic_model_full_data = elasticnet.fit(X, y)
print(datetime.now(), 'lasso')
lasso_model_full_data = lasso.fit(X, y)
print(datetime.now(), 'ridge')
ridge_model_full_data = ridge.fit(X, y)
print(datetime.now(), 'svr')
svr_model_full_data = svr.fit(X, y)
print(datetime.now(), 'GradientBoosting')
gbr_model_full_data = gbr.fit(X, y)
print(datetime.now(), 'xgboost')
xgb_model_full_data = xgboost.fit(X, y)
print(datetime.now(), 'lightgbm')
lgb_model_full_data = lightgbm.fit(X, y)
input("Before blend_models_predict: ")
def blend_models_predict(X):
return ((0.1 * elastic_model_full_data.predict(X)) + \
(0.05 * lasso_model_full_data.predict(X)) + \
(0.1 * ridge_model_full_data.predict(X)) + \
(0.1 * svr_model_full_data.predict(X)) + \
(0.1 * gbr_model_full_data.predict(X)) + \
(0.15 * xgb_model_full_data.predict(X)) + \
(0.1 * lgb_model_full_data.predict(X)) + \
(0.3 * stack_gen_model.predict(np.array(X))))
print('RMSLE score on train data:')
print(rmsle(y, blend_models_predict(X)))
print('Predict submission', datetime.now(),)
submission = pd.read_csv(f"{data_root}/sample_submission.csv")
submission.iloc[:,1] = np.floor(np.expm1(blend_models_predict(X_sub)))
# this kernel gave a score 0.114
# let's up it by mixing with the top kernels
print('Blend with Top Kernals submissions', datetime.now(),)
sub_1 = pd.read_csv(f'{data_root}/top-10-0-10943-stacking-mice-and-brutal-force/House_Prices_submit.csv')
sub_2 = pd.read_csv(f'{data_root}/hybrid-svm-benchmark-approach-0-11180-lb-top-2/hybrid_solution.csv')
sub_3 = pd.read_csv(f'{data_root}/lasso-model-for-regression-problem/lasso_sol22_Median.csv')
#sub_4 = pd.read_csv('../input/all-you-need-is-pca-lb-0-11421-top-4/submission.csv')
# sub_5 = pd.read_csv('../input/house-prices-solution-0-107-lb/submission.csv') # fork my kernel again)
submission.iloc[:,1] = np.floor((0.25 * np.floor(np.expm1(blend_models_predict(X_sub)))) +
(0.25 * sub_1.iloc[:,1]) +
(0.25 * sub_2.iloc[:,1]) +
(0.25 * sub_3.iloc[:,1])
#(0.15 * sub_4.iloc[:,1])
#(0.1 * sub_5.iloc[:,1])
)
# From https://www.kaggle.com/agehsbarg/top-10-0-10943-stacking-mice-and-brutal-force
# Brutal approach to deal with predictions close to outer range
q1 = submission['SalePrice'].quantile(0.0042)
q2 = submission['SalePrice'].quantile(0.99)
submission['SalePrice'] = submission['SalePrice'].apply(lambda x: x if x > q1 else x*0.77)
submission['SalePrice'] = submission['SalePrice'].apply(lambda x: x if x < q2 else x*1.1)
#
submission.to_csv("House_price_submission_v57.csv", index=False)
print('Save submission', datetime.now(),)