-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcase_poct.py
136 lines (125 loc) · 5.46 KB
/
case_poct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import lightgbm as lgb
from sklearn.model_selection import StratifiedKFold, KFold, RepeatedKFold
from sklearn.metrics import mean_absolute_error,mean_squared_error
from sklearn.metrics import roc_auc_score, roc_curve,auc
import time
import numpy as np
from litemort import *
import sys
isMORT = len(sys.argv)>1 and sys.argv[1] == "mort"
#isMORT = True
import matplotlib.pyplot as plt
import pandas as pd
import gc
import seaborn as sns
import pickle
'''
histo->RandomCompress() 似乎可以通过遍历更多的空间来提高准确率
'''
def ROC_plot(features,X_,y_, pred_,title):
fpr_, tpr_, thresholds = roc_curve(y_, pred_)
optimal_idx = np.argmax(tpr_ - fpr_)
#https://stackoverflow.com/questions/28719067/roc-curve-and-cut-off-point-python
optimal_threshold = thresholds[optimal_idx]
auc_ = auc(fpr_, tpr_)
title = "{} auc=".format(title)
print("{} auc={} OT={:.4g}".format(title, auc_,optimal_threshold))
plt.plot(fpr_, tpr_, label="{}:{:.4g}".format(title, auc_))
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('SMPLEs={} Features={} OT={:.4g}'.format(X_.shape[0],len(features),optimal_threshold))
plt.legend(loc='best')
plt.savefig("./_auc_[{}].jpg".format(features))
plt.show()
return auc_,optimal_threshold
def runLgb(X, y, test=None, num_rounds=10000, max_depth=-1, eta=0.01, subsample=0.8,
colsample=0.8, min_child_weight=1, early_stopping_rounds=500, seeds_val=2017):
plot_feature_importance = True
features = list(X.columns)
print("X={} y={}".format(X.shape,y.shape))
params = {'task': 'train',
'max_bin': 256,
'salp_bins':32,
#'elitism': 2, #不适用于本算例
'min_data_in_leaf': 32,
'boosting_type': 'gbdt',
'objective': 'binary',
'learning_rate': eta,
# 'metric': {'multi_logloss'},
'metric': 'auc',
'early_stop':early_stopping_rounds,
'max_depth': max_depth,
# 'min_child_weight':min_child_weight,
'bagging_fraction': subsample,
'feature_fraction': colsample,
'bagging_seed': seeds_val,
'num_iterations': num_rounds,
'num_leaves': 32,
'lambda_l1': 1.0,
'verbose': 0,
'nthread': -1}
n_fold = 5
folds = KFold(n_splits=n_fold, shuffle=True, random_state=11)
y_pred=np.zeros(y.shape[0])
feature_importance = None
if not isMORT:
feature_importance = pd.DataFrame()
for fold_n, (train_index, valid_index) in enumerate(folds.split(X)):
t0 = time.time()
if type(X) == np.ndarray:
X_train, X_valid = X[train_index], X[valid_index]
y_train, y_valid = y[train_index], y[valid_index]
else:
X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
if isMORT:
model = LiteMORT(params).fit(X_train, y_train, eval_set=[(X_valid, y_valid)])
pred_val = model.predict(X_valid)
pred_raw = model.predict_raw(X_valid)
y_pred[valid_index] = pred_raw
fold_score = roc_auc_score(y_valid, pred_raw)
else:
lgtrain = lgb.Dataset(X_train, y_train)
lgval = lgb.Dataset(X_valid, y_valid)
model = lgb.train(params, lgtrain, num_rounds, valid_sets=lgval,
early_stopping_rounds=early_stopping_rounds, verbose_eval=100)
plt.figure(figsize=(12, 6))
lgb.plot_importance(model, max_num_features=30)
plt.title("Featurertances")
plt.show()
fold_importance = pd.DataFrame()
fold_importance["feature"] = X.columns
fold_importance["importance"] = model.feature_importance()
fold_importance["fold"] = fold_n + 1
feature_importance = pd.concat([feature_importance, fold_importance], axis=0)
model.save_model(f'model_lgb_poct_{fold_n}_.txt')
pred_val = model.predict(X_valid)
y_pred[valid_index] = pred_val
fold_score = roc_auc_score(y_valid, pred_val)
print("fold n°{} time={:.3g} score={:.4g}".format(fold_n, time.time() - t0, fold_score))
if test is not None:
pred_test = model.predict(test, num_iteration=model.best_iteration)
else:
pred_test = None
#break
auc = roc_auc_score(y, y_pred)
if feature_importance is not None:
feature_importance["importance"] /= n_fold
if plot_feature_importance:
cols = feature_importance[["feature", "importance"]].groupby("feature").mean().sort_values(
by="importance", ascending=False)[:].index
best_features = feature_importance.loc[feature_importance.feature.isin(cols)]
plt.figure(figsize=(5, 3));
sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False))
plt.xlabel("importance of each feature")
plt.title('AUC={:.3f} ({}-folds)'.format(auc,n_fold))
plt.savefig("./_importance_[{}].jpg".format(features))
plt.show()
ROC_plot(features,X, y, y_pred, "")
print("CV score: {:<8.5f}".format(auc))
return auc
pkl_path=f"E:/POCTx/poct_InHospital.pkl"
with open(pkl_path, "rb") as fp: # Pickling
X = pickle.load(fp)
y = pickle.load(fp)
score = runLgb(X, y)