-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenums.py
866 lines (673 loc) · 27.7 KB
/
enums.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
from enum import Enum
from typing import Any
class DataTypes(Enum):
INTEGER = "INTEGER"
FLOAT = "FLOAT"
BOOLEAN = "BOOLEAN"
CATEGORY = "CATEGORY"
TEXT = "TEXT"
LLM_RESPONSE = "LLM_RESPONSE"
EMBEDDING_LIST = "EMBEDDING_LIST" # only for embeddings & default hidden
UNKNOWN = "UNKNOWN"
class ProjectStatus(Enum):
INIT_UPLOAD = "INIT_UPLOAD"
INIT_COMPLETE = "INIT_COMPLETE"
IN_DELETION = "IN_DELETION"
INIT_SAMPLE_PROJECT = "INIT_SAMPLE_PROJECT"
HIDDEN = "HIDDEN"
class RecordCategory(Enum):
SCALE = "SCALE"
TEST = "TEST"
class LabelSource(Enum):
MANUAL = "MANUAL"
# WEAK_SUPERVISION = Output of the Weak Supervision Model - ehemeals "programmatic"
WEAK_SUPERVISION = "WEAK_SUPERVISION"
INFORMATION_SOURCE = "INFORMATION_SOURCE"
class InformationSourceType(Enum):
LABELING_FUNCTION = "LABELING_FUNCTION"
ACTIVE_LEARNING = "ACTIVE_LEARNING"
PRE_COMPUTED = "PRE_COMPUTED"
class InformationSourceReturnType(Enum):
RETURN = "RETURN"
YIELD = "YIELD"
class Notification(Enum):
SUCCESS = "SUCCESS"
ERROR = "ERROR"
WARNING = "WARNING"
INFO = "INFO"
class PayloadState(Enum):
CREATED = "CREATED"
FINISHED = "FINISHED"
FAILED = "FAILED"
class UserRoles(Enum):
ENGINEER = "ENGINEER"
EXPERT = "EXPERT"
ANNOTATOR = "ANNOTATOR"
class MessageRoles(Enum):
SYSTEM = "SYSTEM"
USER = "USER"
ASSISTANT = "ASSISTANT"
class LinkTypes(Enum):
DATA_SLICE = "DATA_SLICE"
HEURISTIC = "HEURISTIC"
SESSION = "SESSION"
class Tablenames(Enum):
APP_VERSION = "app_version"
AGREEMENT = "agreement"
USER = "user"
ORGANIZATION = "organization"
TEAM = "team"
TEAM_MEMBER = "team_member"
TEAM_RESOURCE = "team_resource"
PROJECT = "project"
NOTIFICATION = "notification"
ATTRIBUTE = "attribute"
LABELING_TASK = "labeling_task"
LABELING_TASK_LABEL = "labeling_task_label"
EMBEDDING = "embedding"
EMBEDDING_TENSOR = "embedding_tensor"
RECORD = "record"
RECORD_TOKENIZED = "record_tokenized"
RECORD_TOKENIZATION_TASK = "record_tokenization_task"
RECORD_LABEL_ASSOCIATION = "record_label_association"
RECORD_LABEL_ASSOCIATION_TOKEN = "record_label_association_token"
RECORD_ATTRIBUTE_TOKEN_STATISTICS = "record_attribute_token_statistics"
WEAK_SUPERVISION_TASK = "weak_supervision_task"
WEAK_SUPERVISION_HELPER = "weak_supervision_helper"
INFORMATION_SOURCE = "information_source"
INFORMATION_SOURCE_STATISTICS = "information_source_statistics"
INFORMATION_SOURCE_PAYLOAD = "information_source_payload"
KNOWLEDGE_BASE = "knowledge_base"
KNOWLEDGE_TERM = "knowledge_term"
USER_SESSIONS = "user_sessions"
UPLOAD_TASK = "upload_task"
DATA_SLICE = "data_slice"
DATA_SLICE_RECORD_ASSOCIATION = "data_slice_record_association"
INFORMATION_SOURCE_STATISTICS_EXCLUSION = "information_source_statistics_exclusion"
COMMENT_DATA = "comment_data"
LABELING_ACCESS_LINK = "labeling_access_link"
PERSONAL_ACCESS_TOKEN = "personal_access_token"
PERSONAL_ACCESS_TOKEN_ETL = "personal_access_token_etl"
PERSONAL_ACCESS_TOKEN_SCOPE_ETL = "personal_access_token_scope_etl"
PERSONAL_ACCESS_TOKEN_ACTIVITY_LOG_ETL = "personal_access_token_activity_log_etl"
ADMIN_MESSAGE = "admin_message"
TASK_QUEUE = "task_queue"
CONVERSATION = "conversation"
MESSAGE = "message"
STRATEGY = "strategy"
STRATEGY_STEP = "strategy_step"
RETRIEVER = "retriever"
RETRIEVER_PART = "retriever_part"
ENVIRONMENT_VARIABLE = "environment_variable"
PIPELINE_LOGS = "pipeline_logs"
MARKDOWN_FILE = "markdown_file"
PYTHON_STEP = "python_step"
LLM_STEP = "llm_step"
MARKDOWN_DATASET = "markdown_dataset"
WEBSOCKET_ACCESS = "websocket_access"
CONSUMPTION_LOG = "consumption_log"
CONSUMPTION_SUMMARY = "consumption_summary"
MACRO = "macro" # general definition
MACRO_NODE = "macro_node" # step/action of a macro
MACRO_EDGE = "macro_edge" # connection between steps of a macro
MACRO_EXECUTION = "macro_execution" # links macro id to an execution id
MACRO_EXECUTION_LINK = "macro_execution_link" # execution to a conversation id
STRATEGY_REQUIREMENT = "strategy_requirement"
STRATEGY_REQUIREMENT_MAPPING_OPTION = "strategy_requirement_mapping_option"
MACRO_EXECUTION_SUMMARY = (
"macro_execution_summary" # summary of macro folder executions
)
CUSTOMER_BUTTON = "customer_button"
FILE_REFERENCE = "file_reference"
FILE_EXTRACTION = "file_extraction"
FILE_TRANSFORMATION = "file_transformation"
FILE_TRANSFORMATION_LLM_LOGS = "file_transformation_llm_logs"
PIPELINE_VERSION = (
"pipeline_version" # dump of previous versions to easily jump between
)
GRAPHRAG_INDEX = "graphrag_index"
EVALUATION_SET = "evaluation_set"
EVALUATION_GROUP = "evaluation_group"
EVALUATION_RUN = "evaluation_run"
PLAYGROUND_QUESTION = "playground_question"
def snake_case_to_pascal_case(self):
# the type name (written in PascalCase) of a table is needed to create backrefs
return "".join([word.title() for word in self.value.split("_")])
def snake_case_to_camel_case(self):
return "".join(
[
word.title() if idx > 0 else word.lower()
for idx, word in enumerate(self.value.split("_"))
]
)
class TeamResourceType(Enum):
COGNITION_PROJECT = "COGNITION_PROJECT"
class CommentCategory(Enum):
UNKNOWN = "unknown"
LABELING_TASK = "LABELING_TASK"
RECORD = "RECORD"
ORGANIZATION = "ORGANIZATION"
ATTRIBUTE = "ATTRIBUTE"
USER = "USER"
EMBEDDING = "EMBEDDING"
HEURISTIC = "HEURISTIC"
DATA_SLICE = "DATA_SLICE"
KNOWLEDGE_BASE = "KNOWLEDGE_BASE"
LABEL = "LABEL"
def get_name_col(self):
if self == CommentCategory.USER:
return ""
return "name"
def get_table_name(self):
if self == CommentCategory.USER:
return "public.user"
if self == CommentCategory.HEURISTIC:
return "information_source"
if self == CommentCategory.LABEL:
return "labeling_task_label"
return self.value.lower()
class CascadeBehaviour(Enum):
KEEP_PARENT_ON_CHILD_DELETION = "KEEP_PARENT_ON_CHILD_DELETION"
DELETE_BOTH_IF_EITHER_IS_DELETED = "DELETE_BOTH_IF_EITHER_IS_DELETED"
class LabelingTaskType(Enum):
CLASSIFICATION = "MULTICLASS_CLASSIFICATION"
INFORMATION_EXTRACTION = "INFORMATION_EXTRACTION"
class LabelingTaskTarget(Enum):
ON_ATTRIBUTE = "ON_ATTRIBUTE"
ON_WHOLE_RECORD = "ON_WHOLE_RECORD"
class EmbeddingType(Enum):
ON_ATTRIBUTE = "ON_ATTRIBUTE"
ON_TOKEN = "ON_TOKEN"
class UploadStates(Enum):
"""
Explanation of the differences between PENDING and WAITING:
WAITING is used if there is some time to wait when one service is done and another is to be started.
PENDING is used if there is some time to wait in one service.
An transfer consits of multiple sub processesses
Example:
Get-Credentials-Subprocess:
Frontend requests credentials. The gateway creates a new UploadTask with state CREATED.
After generating the credentials the state is set to WAITING and the credentials are returned.
MinIO-Upload-Subprocess
The Frontend uploads the data to MinIO and MinIO notifies the gateway about the successfull transfer.
File-Import-Subprocess
The gateway check if there is a UploadTask with state WAITING.
if yes, the transfer gets continued
if no, the transfer fails with state ERROR, because there is no according UploadTask for the MinIO Upload
The gateway has now requests the data from MinIO with state PENDING.
The Records are created with state IN_PROGRESS
The Upload is DONE
So we have two major time slots where the Upload Flow is waiting:
Between Subprocesses
In one Subprocess
I wanted to express that these waiting times are different from each other.
"""
CREATED = "CREATED"
WAITING = "WAITING"
PENDING = "PENDING"
PREPARED = "PREPARED"
IN_PROGRESS = "IN_PROGRESS"
DONE = "DONE"
ERROR = "ERROR"
class UploadTypes(Enum):
DEFAULT = "DEFAULT"
WORKFLOW_STORE = "WORKFLOW_STORE"
COGNITION = "COGNITION"
class TokenizerTask(Enum):
TYPE_DOC_BIN = "DOC_BIN"
TYPE_TEXT = "TEXT"
TYPE_TOKEN_STATISTICS = "TOKEN_STATISTICS"
STATE_CREATED = "CREATED"
STATE_IN_PROGRESS = "IN_PROGRESS"
STATE_FINISHED = "FINISHED"
STATE_FAILED = "FAILED"
class NotificationType(Enum):
# TASK STATES
IMPORT_STARTED = "IMPORT_STARTED"
IMPORT_DONE = "IMPORT_DONE"
IMPORT_FAILED = "IMPORT_FAILED"
TOKEN_CREATION_STARTED = "TOKEN_CREATION_STARTED"
TOKEN_CREATION_DONE = "TOKEN_CREATION_DONE"
TOKEN_CREATION_FAILED = "TOKEN_CREATION_FAILED"
EMBEDDING_CREATION_STARTED = "EMBEDDING_CREATION_STARTED"
EMBEDDING_CREATION_DONE = "EMBEDDING_CREATION_DONE"
EMBEDDING_CREATION_FAILED = "EMBEDDING_CREATION_FAILED"
WEAK_SUPERVISION_TASK_STARTED = "WEAK_SUPERVISION_TASK_STARTED"
WEAK_SUPERVISION_TASK_DONE = "WEAK_SUPERVISION_TASK_DONE"
WEAK_SUPERVISION_TASK_FAILED = "WEAK_SUPERVISION_TASK_FAILED"
WEAK_SUPERVISION_TASK_NO_VALID_LABELS = "WEAK_SUPERVISION_TASK_NO_VALID_LABELS"
INFORMATION_SOURCE_STARTED = "INFORMATION_SOURCE_STARTED"
INFORMATION_SOURCE_PREPARATION_STARTED = "INFORMATION_SOURCE_PREPARATION_STARTED"
INFORMATION_SOURCE_COMPLETED = "INFORMATION_SOURCE_COMPLETED"
PROJECT_DELETED = "PROJECT_DELETED"
# INFOS
IMPORT_SAMPLE_PROJECT = "IMPORT_SAMPLE_PROJECT"
CONVERTING_DATA = "CONVERTING_DATA"
COLLECTING_SESSION_DATA = "COLLECTING_SESSION_DATA"
SESSION_INFO = "SESSION_INFO"
UNKNOWN_DATATYPE = "UNKNOWN_DATATYPE"
# WARNINGS
SESSION_RECORD_AMOUNT_CHANGED = "SESSION_RECORD_AMOUNT_CHANGED"
WRONG_USER_FOR_SESSION = "WRONG_USER_FOR_SESSION"
DATA_SLICE_ALREADY_EXISTS = "DATA_SLICE_ALREADY_EXISTS"
MISSING_REFERENCE_DATA = "MISSING_REFERENCE_DATA"
EMBEDDING_CREATION_WARNING = "EMBEDDING_CREATION_WARNING"
IMPORT_ISSUES_WARNING = "IMPORT_ISSUES_WARNING"
# ERRORS
INVALID_FILE_TYPE = "INVALID_FILE_TYPE"
INVALID_PRIMARY_KEY = "INVALID_PRIMARY_KEY"
KNOWLEDGE_BASE_ALREADY_EXISTS = "KNOWLEDGE_BASE_ALREADY_EXISTS"
TERM_ALREADY_EXISTS = "TERM_ALREADY_EXISTS"
FILE_TYPE_NOT_GIVEN = "FILE_TYPE_NOT_GIVEN"
IMPORT_CONVERSION_ERROR = "IMPORT_CONVERSION_ERROR"
UNKNOWN_PARAMETER = "UNKNOWN_PARAMETER"
DUPLICATED_COLUMNS = "DUPLICATED_COLUMNS"
DUPLICATED_TASK_NAMES = "DUPLICATED_TASK_NAMES"
DUPLICATED_COMPOSITE_KEY = "DUPLICATED_COMPOSITE_KEY"
DIFFERENTIAL_ATTRIBUTES = "DIFFERENTIAL_ATTRIBUTES"
NON_EXISTENT_TARGET_ATTRIBUTE = "NON_EXISTENT_TARGET_ATTRIBUTE"
UPLOAD_CONVERSION_FAILED = "UPLOAD_CONVERSION_FAILED"
INFORMATION_SOURCE_FAILED = "INFORMATION_SOURCE_FAILED"
INFORMATION_SOURCE_CANT_FIND_EMBEDDING = "INFORMATION_SOURCE_CANT_FIND_EMBEDDING"
INFORMATION_SOURCE_S3_EMBEDDING_MISSING = "INFORMATION_SOURCE_S3_EMBEDDING_MISSING"
INFORMATION_SOURCE_S3_DOCBIN_MISSING = "INFORMATION_SOURCE_S3_DOCBIN_MISSING"
NEW_ROWS_EXCEED_MAXIMUM_LIMIT = "NEW_ROWS_EXCEED_MAXIMUM_LIMIT"
TOTAL_ROWS_EXCEED_MAXIMUM_LIMIT = "TOTAL_ROWS_EXCEED_MAXIMUM_LIMIT"
COLS_EXCEED_MAXIMUM_LIMIT = "COLS_EXCEED_MAXIMUM_LIMIT"
COL_EXCEED_MAXIMUM_LIMIT = "COL_EXCEED_MAXIMUM_LIMIT"
DATA_SLICE_CREATION_FAILED = "DATA_SLICE_CREATION_FAILED"
DATA_SLICE_UPDATE_FAILED = "DATA_SLICE_UPDATE_FAILED"
BAD_PASSWORD_DURING_IMPORT = "BAD_PASSWORD_DURING_IMPORT"
RECREATION_OF_EMBEDDINGS_ERROR = "RECREATION_OF_EMBEDDINGS_ERROR"
# CUSTOM
CUSTOM = "CUSTOM"
class NotificationState(Enum):
INITIAL = "INITIAL"
NOT_INITIAL = "NOT_INITIAL"
class Pages(Enum):
OVERVIEW = "overview"
DATA = "data"
LABELING = "labeling"
INFORMATION_SOURCES = "heuristics"
KNOWLEDGE_BASE = "lookup-lists"
SETTINGS = "settings"
class DOCS(Enum):
UPLOADING_DATA = "https://docs.kern.ai/refinery/project-creation-and-data-upload"
KNOWLEDGE_BASE = "https://docs.kern.ai/refinery/heuristics#labeling-functions"
WORKFLOW = "https://docs.kern.ai/refinery/manual-labeling#labeling-workflow"
CREATING_PROJECTS = "https://docs.kern.ai/refinery/project-creation-and-data-upload#project-creation-workflow"
WEAK_SUPERVISION = "https://docs.kern.ai/refinery/weak-supervision"
CREATE_EMBEDDINGS = "https://docs.kern.ai/refinery/embedding-integration"
INFORMATION_SOURCES = "https://docs.kern.ai/refinery/heuristics#labeling-functions"
DATA_BROWSER = "https://docs.kern.ai/refinery/data-management"
class SliceTypes(Enum):
STATIC_DEFAULT = "STATIC_DEFAULT"
STATIC_OUTLIER = "STATIC_OUTLIER"
DYNAMIC_DEFAULT = "DYNAMIC_DEFAULT"
class EmbeddingState(Enum):
INITIALIZING = "INITIALIZING"
WAITING = "WAITING"
ENCODING = "ENCODING"
FINISHED = "FINISHED"
FAILED = "FAILED"
class AttributeState(Enum):
UPLOADED = "UPLOADED"
AUTOMATICALLY_CREATED = "AUTOMATICALLY_CREATED"
INITIAL = "INITIAL"
RUNNING = "RUNNING"
USABLE = "USABLE"
FAILED = "FAILED"
class AttributeVisibility(Enum):
HIDE = "HIDE" # hide attributes on all pages
HIDE_ON_LABELING_PAGE = "HIDE_ON_LABELING_PAGE" # hide attributes on labeling page and data browser page
HIDE_ON_DATA_BROWSER = "HIDE_ON_DATA_BROWSER" # hide attributes on data browser page but not on labeling page
DO_NOT_HIDE = "DO_NOT_HIDE" # do not hide attributes on any page
class RecordExportFormats(Enum):
DEFAULT = "DEFAULT"
class RecordImportFileTypes(Enum):
JSON = "JSON"
CSV = "CSV"
XLSX = "XLSX"
class RecordExportFileTypes(Enum):
JSON = "JSON"
CSV = "CSV"
XLSX = "XLSX"
class RecordExportAmountTypes(Enum):
ALL = "ALL"
SESSION = "SESSION"
SLICE = "SLICE"
class RecordImportMappingValues(Enum):
ATTRIBUTE_SPECIFIC = "ATTRIBUTE_SPECIFIC"
IGNORE = "IGNORE"
UNKNOWN = "UNKNOWN"
class TokenExpireAtValues(Enum):
ONE_MONTH = "ONE_MONTH"
THREE_MONTHS = "THREE_MONTHS"
NEVER = "NEVER"
class TokenAction(Enum):
FILE_UPLOAD = "FILE_UPLOAD"
class TokenLimit(Enum):
FILE_UPLOAD_LIMIT = "FILE_UPLOAD_LIMIT"
FILE_UPLOAD_INTERVAL = "FILE_UPLOAD_INTERVAL"
def lowercase(self):
return self.value.lower()
class TokenScope(Enum):
READ = "READ"
READ_WRITE = "READ_WRITE"
def all():
return [
TokenScope.READ.value,
TokenScope.READ_WRITE.value,
]
class TokenSubject(Enum):
PROJECT = Tablenames.PROJECT.value.upper()
MARKDOWN_DATASET = Tablenames.MARKDOWN_DATASET.value.upper()
def all():
return [
TokenSubject.PROJECT.value,
TokenSubject.MARKDOWN_DATASET.value,
]
class TokenizationTaskTypes(Enum):
ATTRIBUTE = "ATTRIBUTE"
PROJECT = "PROJECT"
class RecordTokenizationScope(Enum):
PROJECT = "PROJECT"
ATTRIBUTE = "ATTRIBUTE"
class AdminMessageLevel(Enum):
WARNING = "WARNING"
INFO = "INFO"
class TaskType(Enum):
TOKENIZATION = "tokenization"
ATTRIBUTE_CALCULATION = "attribute_calculation"
EMBEDDING = "embedding"
INFORMATION_SOURCE = "information_source"
UPLOAD_TASK = "upload"
WEAK_SUPERVISION = "weak_supervision"
PARSE_MARKDOWN_FILE = "PARSE_MARKDOWN_FILE"
PARSE_COGNITION_TMP_FILE = "PARSE_COGNITION_TMP_FILE"
TASK_QUEUE = "task_queue"
TASK_QUEUE_ACTION = "task_queue_action"
RUN_COGNITION_MACRO = "RUN_COGNITION_MACRO"
PARSE_COGNITION_FILE = "PARSE_COGNITION_FILE"
class TaskQueueAction(Enum):
CREATE_OUTLIER_SLICE = "CREATE_OUTLIER_SLICE"
SEND_WEBSOCKET = "SEND_WEBSOCKET"
FINISH_COGNITION_SETUP = "FINISH_COGNITION_SETUP"
RUN_WEAK_SUPERVISION = "RUN_WEAK_SUPERVISION"
class AgreementType(Enum):
EMBEDDING = "EMBEDDING"
class EmbeddingPlatform(Enum):
PYTHON = "python"
HUGGINGFACE = "huggingface"
COHERE = "cohere"
OPENAI = "openai"
AZURE = "azure"
class SampleProjectType(Enum):
CLICKBAIT_INITIAL = "Clickbait - initial"
CLICKBAIT = "Clickbait"
AG_NEWS_INITIAL = "AG News - initial"
AG_NEWS = "AG News"
CONVERSATIONAL_AI_INITIAL = "Conversational AI - initial"
CONVERSATIONAL_AI = "Conversational AI"
DEV_GLOBAL_GUARD_REFERENCES = "Global Guard [References]"
DEV_GLOBAL_GUARD_QUESTIONS = "Global Guard [Questions]"
class StrategyStepType(Enum):
NONE = "NONE"
PYTHON = "PYTHON"
LLM = "LLM"
SELECTION = "SELECTION"
# now more like a common llm node but changing the enum value would break the existing data
QUERY_REPHRASING = "QUERY_REPHRASING"
# INFO: Websearch strategy deactivated until compliance investigation is finished
# WEBSEARCH = "WEBSEARCH" # done in exec env to ensure security
TRUNCATE_CONTEXT = "TRUNCATE_CONTEXT"
HEADER = "HEADER"
# INFO: done in exec env to prevent installing sklearn in gateway
TMP_DOC_RETRIEVAL = "TMP_DOC_RETRIEVAL"
CALL_OTHER_AGENT = "CALL_OTHER_AGENT"
# INFO: will replace retrieval in the future, direct access to neural search without gates
NEURAL_SEARCH = "NEURAL_SEARCH"
WEBHOOK = "WEBHOOK"
GRAPHRAG_SEARCH = "GRAPHRAG_SEARCH"
def get_description(self):
return STEP_DESCRIPTIONS.get(self, "No description available")
def get_when_to_use(self):
return STEP_WHEN_TO_USE.get(self, "No description available")
def get_progress_text(self):
return STEP_PROGRESS_TEXTS.get(self, "No progress text available")
STEP_DESCRIPTIONS = {
StrategyStepType.NEURAL_SEARCH: "Fetch facts from an embedding",
# StrategyStepType.RELEVANCE: "Classify retrieved facts",
StrategyStepType.NONE: "Dummy step",
StrategyStepType.PYTHON: "Custom python function",
StrategyStepType.LLM: "Answer with LLM",
StrategyStepType.SELECTION: "Select data",
StrategyStepType.QUERY_REPHRASING: "Transform with LLM",
# INFO: Websearch strategy deactivated until compliance investigation is finished
# StrategyStepType.WEBSEARCH: "Search the web",
StrategyStepType.TRUNCATE_CONTEXT: "Truncate context",
StrategyStepType.HEADER: "Writing header",
StrategyStepType.TMP_DOC_RETRIEVAL: "Temporary document retrieval",
StrategyStepType.CALL_OTHER_AGENT: "Retrieve results from other agents",
StrategyStepType.WEBHOOK: "Webhook",
StrategyStepType.GRAPHRAG_SEARCH: "Query GraphRAG index",
}
STEP_WHEN_TO_USE = {
StrategyStepType.NEURAL_SEARCH: "When you want to fetch facts based on an embedding",
StrategyStepType.PYTHON: "When you want to run a custom python function",
StrategyStepType.LLM: "When you want to give an actual answer to the question",
StrategyStepType.NONE: "Dummy step",
StrategyStepType.SELECTION: "When you want to select data",
StrategyStepType.QUERY_REPHRASING: "When you want to manipulate or extend your attributes with a LLM",
# INFO: Websearch strategy deactivated until compliance investigation is finished
# StrategyStepType.WEBSEARCH: "When you want to search the web",
StrategyStepType.TRUNCATE_CONTEXT: "When you want to truncate context",
StrategyStepType.HEADER: "When you want to set a header based on the conversation",
StrategyStepType.TMP_DOC_RETRIEVAL: "When you want to retrieve results from conversation specific documents",
StrategyStepType.CALL_OTHER_AGENT: "When you want to call another agent",
StrategyStepType.WEBHOOK: "When you want to run a webhook",
StrategyStepType.GRAPHRAG_SEARCH: "When you want to query a knowledge graph",
}
STEP_PROGRESS_TEXTS = {
StrategyStepType.NEURAL_SEARCH: "Retrieving facts",
# StrategyStepType.RELEVANCE: "Classifying facts",
StrategyStepType.NONE: "Dummy step",
StrategyStepType.PYTHON: "Running custom python function",
StrategyStepType.LLM: "Running LLM",
StrategyStepType.SELECTION: "Selecting data",
StrategyStepType.QUERY_REPHRASING: "Rephrasing query",
# INFO: Websearch strategy deactivated until compliance investigation is finished
# StrategyStepType.WEBSEARCH: "Searching the web",
StrategyStepType.TRUNCATE_CONTEXT: "Truncating context",
StrategyStepType.HEADER: "Headline generation",
StrategyStepType.TMP_DOC_RETRIEVAL: "Retrieving facts from conversation specific documents",
StrategyStepType.CALL_OTHER_AGENT: "Calling another agent",
StrategyStepType.WEBHOOK: "Running webhook",
StrategyStepType.GRAPHRAG_SEARCH: "Querying knowledge graph",
}
STEP_ERRORS = {
StrategyStepType.HEADER.value: "Header must come after field answer is set in the record_dict.",
}
class PipelineStep(Enum):
INCOMING_QUESTION = "INCOMING_QUESTION"
INCOMING_QUESTION_TRY = "INCOMING_QUESTION_TRY"
ROUTE_STRATEGY = "ROUTE_STRATEGY"
STRATEGY_STEP = "STRATEGY_STEP"
MAPPING_BEFORE_STRATEGY = "MAPPING_BEFORE_STRATEGY"
MAPPING_AFTER_STRATEGY = "MAPPING_AFTER_STRATEGY"
ASSISTANT_RESPONSE = "ASSISTANT_RESPONSE"
class PipelineStepState(Enum):
STARTED = "STARTED"
RUNNING = "RUNNING"
FINISHED = "FINISHED"
FAILED = "FAILED"
class MarkdownFileCategoryOrigin(Enum):
PDF = "PDF"
WEB = "WEB"
SPREADSHEET = "SPREADSHEET"
class RefinerySynchronizationTaskState(Enum):
CREATED = "CREATED"
FINISHED = "FINISHED"
FAILED = "FAILED"
class RefinerySynchronizationIntervalOption(Enum):
NEVER = "NEVER"
DAILY = "DAILY"
WEEKLY = "WEEKLY"
MONTHLY = "MONTHLY"
class LLMProvider(Enum):
OPENAI = "Open AI"
AZURE = "Azure"
AZURE_FOUNDRY = "Azure Foundry"
@staticmethod
def from_string(value: str):
changed_value = value.upper().replace(" ", "_").replace("-", "_")
if changed_value == "OPEN_AI":
return LLMProvider.OPENAI
elif changed_value == "AZURE":
return LLMProvider.AZURE
elif changed_value == "AZURE_FOUNDRY":
return LLMProvider.AZURE_FOUNDRY
raise ValueError("Could not parse LLMProvider from string")
def as_key(self):
return self.value.replace(" ", "_").upper()
class CognitionMarkdownFileState(Enum):
QUEUE = "QUEUE"
EXTRACTING = "EXTRACTING"
TOKENIZING = "TOKENIZING"
SPLITTING = "SPLITTING"
TRANSFORMING = "TRANSFORMING"
FINISHED = "FINISHED"
FAILED = "FAILED"
class CognitionInterfaceType(Enum):
CHAT = "CHAT"
COMPARE = "COMPARE"
ENRICH = "ENRICH"
class EmitType(Enum):
ANSWER = "ANSWER"
RETRIEVAL_RESULTS = "RETRIEVAL_RESULTS"
FOLLOW_UPS = "FOLLOW_UPS"
SELECTION = "SELECTION"
QUERY_REPHRASING = "QUERY_REPHRASING"
class CognitionProjectState(Enum):
CREATED = "CREATED"
WIZARD_RUNNING = "WIZARD_RUNNING"
DEVELOPMENT = "DEVELOPMENT"
PRODUCTION = "PRODUCTION"
class StrategyComplexity(Enum):
SIMPLE = "SIMPLE"
REGULAR = "REGULAR"
COMPLEX = "COMPLEX"
class ConsumptionLogState(Enum):
SUCCESS = "SUCCESS"
ERROR = "ERROR"
class CognitionConfigKey(Enum):
STRATEGY_COMPLEXITY_THRESHOLD = "STRATEGY_COMPLEXITY_THRESHOLD"
STRATEGY_STEP_WEIGHTS = "STRATEGY_STEP_WEIGHTS"
# note this is only for websocket interaction between exec env and gateway
# none of these can/is allowed to interact with the database or anything other than the websocket!
# means if you want a live update and set it as answer this needs to be done in the exec env code record_dict change
class AllowedExecEnvMessageTypes(Enum):
CHUNK = "CHUNK" # sends a chunk to the ui - same as llm step type
SET_UI_MESSAGE = "SET_UI_MESSAGE" # replaces answer in the ui
CLOSE = "CLOSE" # closes the websocket - shouldn't be sent by hand!
def try_parse_enum_value(string: str, enumType: Enum, raise_me: bool = True) -> Any:
try:
parsed = enumType[string.upper()]
except KeyError:
if raise_me:
raise ValueError(f"Invalid value {string} for enum {enumType}")
return
return parsed
# this is only a method check.
# Some endpoints were implemented as POST requests to allow a body even though they are not creating anything
# Example comment/all-comments. For these i added a dependency extend_state_get_like with sets a state variable to use as indicator
class AdminLogLevel(Enum):
DONT_LOG = "DONT_LOG" # nothing is logged
NO_GET = "NO_GET" # everything but method GET is logged
ALL = "ALL" # everything is logged
def log_me(self, method: str) -> bool:
if self == AdminLogLevel.DONT_LOG:
return False
if self == AdminLogLevel.NO_GET and method == "GET":
return False
return True
# currently only one option, but could be extended in the future
class MacroType(Enum):
# macro is meant to be run on a (or n) documents
DOCUMENT_MESSAGE_QUEUE = "DOCUMENT_MESSAGE_QUEUE"
FOLDER_MESSAGE_QUEUE = "FOLDER_MESSAGE_QUEUE"
# currently only one option, but could be extended in the future
class MacroNodeContentType(Enum):
# add a new question to the conversation
CONVERSATION_QUESTION = "CONVERSATION_QUESTION"
# currently only one option, but could be extended in the future
class MacroEdgeConditionType(Enum):
# all edges from a given node are collected and an llm decides which to chose based on the name of the edge
LLM_SELECTION = "LLM_SELECTION"
class MacroScope(Enum):
ADMIN = "ADMIN"
ORGANIZATION = "ORGANIZATION"
PROJECT = "PROJECT"
class MacroState(Enum):
DEVELOPMENT = "DEVELOPMENT"
PRODUCTION = "PRODUCTION"
class MacroExecutionState(Enum):
CREATED = "CREATED"
RUNNING = "RUNNING"
COMPLETED = "COMPLETED"
FAILED = "FAILED"
class MacroExecutionLinkAction(Enum):
CREATE = "CREATE"
DELETE = "DELETE"
UPDATE = "UPDATE"
class AdminMacrosDisplay(Enum):
DONT_SHOW = "DONT_SHOW"
FOR_ADMINS = "FOR_ADMINS"
FOR_ENGINEERS = "FOR_ENGINEERS"
FOR_ALL = "FOR_ALL"
class CustomerButtonType(Enum):
DATA_MAPPER = "DATA_MAPPER"
# sends data to the data mapper, needs to ensure the request has the key included!
# ______________________________
# extended on demand over time
class CustomerButtonLocation(Enum):
COGNITION_MACRO_RESULTS_TABLE = "COGNITION_MACRO_RESULTS_TABLE" # url /macros/<macro_id> # only visible if meta data display is active
# extended on demand over time
class FileCachingInitiator(Enum):
TMP_DOC_RETRIEVAL = "TMP_DOC_RETRIEVAL"
DATASET_MARKDOWN_FILE = "DATASET_MARKDOWN_FILE"
class FileCachingState(Enum):
CREATED = "CREATED"
RUNNING = "RUNNING"
COMPLETED = "COMPLETED"
CANCELED = "CANCELED"
FAILED = "FAILED"
# UPLOAD_EXTRACT_TRANSFORM --> File was never uploaded, will be newly uploaded, extracted and transformed (Nothing exists)
# EXTRACT_TRANSFORM --> File was uploaded before, will be newly extracted and transformed (FileReference exists)
# TRANSFORM --> File was uploaded and extracted before with given config and will be newly transformed (FileReference + FileExtraction exists)
# CACHE --> File was uploaded, extracted and transformed before with given config and nothing will be recalculated(FileReference + FileExtraction + FileTransformation exists)
class FileCachingProcessingScope(Enum):
UPLOAD_EXTRACT_TRANSFORM = "UPLOAD_EXTRACT_TRANSFORM"
EXTRACT_TRANSFORM = "EXTRACT_TRANSFORM"
TRANSFORM = "TRANSFORM"
CACHE = "CACHE"
class ChangeAction(Enum):
KEY_REMOVED = "KEY_REMOVED"
KEY_ADDED = "KEY_ADDED"
VALUE_CHANGED = "VALUE_CHANGED"
LIST_VALUE_CHANGED = "LIST_VALUE_CHANGED"
ITEM_REMOVED = "ITEM_REMOVED"
ITEM_ADDED = "ITEM_ADDED"
class PipelineVersionType(Enum):
AUTO_SAVE = "AUTO_SAVE" # any save operation in relevant but only 10 per project
NAMED_VERSION = "NAMED_VERSION" # any AUTO_SAVE that is considered worth keeping
class GraphRAGIndexState(Enum):
CREATED = "CREATED"
RUNNING = "RUNNING"
COMPLETED = "COMPLETED"
FAILED = "FAILED"
class EvaluationRunState(Enum):
INITIATED = "INITIATED"
RUNNING = "RUNNING"
SUCCESS = "SUCCESS"
FAILED = "FAILED"