-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMetaballs.pas
387 lines (335 loc) · 11.7 KB
/
Metaballs.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
unit Metaballs;
interface
Uses Globals;
procedure InitMetaballs;
procedure drawMetaballs;
implementation
Uses OpenGL, LookUpTable;
type
TGLCoord = Record
X, Y, Z : glFLoat;
end;
TMetaBall = Record
Radius : glFloat;
X, Y, Z : glFLoat;
end;
TGridPoint = record
Pos : TGLCoord;
Normal : TGLCoord;
Value : glFLoat; // Result of the metaball equations at this point
end;
PGridPoint = ^TGridPoint;
TGridCube = record
GridPoint : Array [0..7] of PGridPoint; // Points to 8 grid points (cube)
end;
const GridSize = 26;
var
MetaBall : Array[1..3] of TMetaBall;
Grid : Array[0..50, 0..50, 0..50] of TGridPoint; // for this demo set max gridsize = 50
Cubes : Array[0..49, 0..49, 0..49] of TGridCube;
TessTriangles : Integer; // Number of triangles by metaball tesselation.
MetaballsInit : Boolean;
procedure NormalizeVector(var V : TGLCoord);
var Length : glFloat;
begin
Length :=Sqrt(V.x*V.x + V.y*V.y + V.z*V.z);
if Length = 0 then exit;
V.x :=V.x / Length;
V.y :=V.y / Length;
V.z :=V.z / Length;
end;
procedure InitGrid;
var cx, cy, cz : Integer;
begin
// Create the grid positions
for cx := 0 to GridSize do
for cy := 0 to GridSize do
for cz := 0 to GridSize do
begin
Grid[cx, cy, cz].Pos.X := 2*cx/GridSize -1; // grid from -1 to 1
Grid[cx, cy, cz].Pos.Y := 2*cy/GridSize -1; // grid from -1 to 1
Grid[cx, cy, cz].Pos.Z := 1-2*cz/GridSize; // grid from -1 to 1
end;
// Create the cubes. Each cube points to 8 grid points
for cx := 0 to GridSize-1 do
for cy := 0 to GridSize-1 do
for cz := 0 to GridSize-1 do
begin
Cubes[cx,cy,cz].GridPoint[0] := @Grid[cx, cy, cz ];
Cubes[cx,cy,cz].GridPoint[1] := @Grid[cx+1, cy, cz ];
Cubes[cx,cy,cz].GridPoint[2] := @Grid[cx+1, cy, cz+1];
Cubes[cx,cy,cz].GridPoint[3] := @Grid[cx, cy, cz+1];
Cubes[cx,cy,cz].GridPoint[4] := @Grid[cx, cy+1, cz ];
Cubes[cx,cy,cz].GridPoint[5] := @Grid[cx+1, cy+1, cz ];
Cubes[cx,cy,cz].GridPoint[6] := @Grid[cx+1, cy+1, cz+1];
Cubes[cx,cy,cz].GridPoint[7] := @Grid[cx, cy+1, cz+1];
end;
end;
{----------------------------------------------------------}
{ Interpolate the position where an metaballs intersects }
{ the line betweenthe two coordicates, C1 and C2 }
{----------------------------------------------------------}
procedure Interpolate(const C1, C2 : TGridPoint; var CResult, Norm : TGLCoord);
var mu : glFLoat;
begin
if Abs(C1.Value) = 1 then
begin
CResult := C1.Pos;
Norm := C1.Normal;
end
else
if Abs(C2.Value) = 1 then
begin
CResult := C2.Pos;
Norm := C2.Normal;
end
else
if C1.Value = C2.Value then
begin
CResult := C1.Pos;
Norm := C1.Normal;
end
else
begin
mu := (1 - C1.Value) / (C2.Value - C1.Value);
CResult.x := C1.Pos.x + mu * (C2.Pos.x - C1.Pos.x);
CResult.y := C1.Pos.y + mu * (C2.Pos.y - C1.Pos.y);
CResult.z := C1.Pos.z + mu * (C2.Pos.z - C1.Pos.z);
Norm.X := C1.Normal.X + (C2.Normal.X - C1.Normal.X) * mu;
Norm.Y := C1.Normal.Y + (C2.Normal.Y - C1.Normal.Y) * mu;
Norm.Z := C1.Normal.Z + (C2.Normal.Z - C1.Normal.Z) * mu;
end;
end;
{------------------------------------------------------------}
{ Calculate the triangles required to draw a Cube. }
{ Draws the triangles that makes up a Cube }
{------------------------------------------------------------}
procedure CreateCubeTriangles(const GridCube : TGridCube);
var I : Integer;
CubeIndex: Integer;
VertList, Norm : Array[0..11] of TGLCoord;
begin
// Determine the index into the edge table which tells
// us which vertices are inside/outside the metaballs
CubeIndex := 0;
if GridCube.GridPoint[0]^.Value < 1 then CubeIndex := CubeIndex or 1;
if GridCube.GridPoint[1]^.Value < 1 then CubeIndex := CubeIndex or 2;
if GridCube.GridPoint[2]^.Value < 1 then CubeIndex := CubeIndex or 4;
if GridCube.GridPoint[3]^.Value < 1 then CubeIndex := CubeIndex or 8;
if GridCube.GridPoint[4]^.Value < 1 then CubeIndex := CubeIndex or 16;
if GridCube.GridPoint[5]^.Value < 1 then CubeIndex := CubeIndex or 32;
if GridCube.GridPoint[6]^.Value < 1 then CubeIndex := CubeIndex or 64;
if GridCube.GridPoint[7]^.Value < 1 then CubeIndex := CubeIndex or 128;
// Check if the cube is entirely in/out of the surface
if edgeTable[CubeIndex] = 0 then
Exit;
// Find the vertices where the surface intersects the cube.
with GridCube do
begin
if (edgeTable[CubeIndex] and 1) <> 0 then
Interpolate(GridPoint[0]^, GridPoint[1]^, VertList[0], Norm[0]);
if (edgeTable[CubeIndex] and 2) <> 0 then
Interpolate(GridPoint[1]^, GridPoint[2]^, VertList[1], Norm[1]);
if (edgeTable[CubeIndex] and 4) <> 0 then
Interpolate(GridPoint[2]^, GridPoint[3]^, VertList[2], Norm[2]);
if (edgeTable[CubeIndex] and 8) <> 0 then
Interpolate(GridPoint[3]^, GridPoint[0]^, VertList[3], Norm[3]);
if (edgeTable[CubeIndex] and 16) <> 0 then
Interpolate(GridPoint[4]^, GridPoint[5]^, VertList[4], Norm[4]);
if (edgeTable[CubeIndex] and 32) <> 0 then
Interpolate(GridPoint[5]^, GridPoint[6]^, VertList[5], Norm[5]);
if (edgeTable[CubeIndex] and 64) <> 0 then
Interpolate(GridPoint[6]^, GridPoint[7]^, VertList[6], Norm[6]);
if (edgeTable[CubeIndex] and 128) <> 0 then
Interpolate(GridPoint[7]^, GridPoint[4]^, VertList[7], Norm[7]);
if (edgeTable[CubeIndex] and 256) <> 0 then
Interpolate(GridPoint[0]^, GridPoint[4]^, VertList[8], Norm[8]);
if (edgeTable[CubeIndex] and 512) <> 0 then
Interpolate(GridPoint[1]^, GridPoint[5]^, VertList[9], Norm[9]);
if (edgeTable[CubeIndex] and 1024) <> 0 then
Interpolate(GridPoint[2]^, GridPoint[6]^, VertList[10], Norm[10]);
if (edgeTable[CubeIndex] and 2048) <> 0 then
Interpolate(GridPoint[3]^, GridPoint[7]^, VertList[11], Norm[11]);
end;
// Draw the triangles for this cube
I := 0;
glColor3f(1, 1, 1);
while TriangleTable[CubeIndex, i] <> -1 do
begin
glNormal3fv(@Norm[TriangleTable[CubeIndex, i]]);
glVertex3fv(@VertList[TriangleTable[CubeIndex][i]]);
glNormal3fv(@Norm[TriangleTable[CubeIndex, i+1]]);
glVertex3fv(@VertList[TriangleTable[CubeIndex][i+1]]);
glNormal3fv(@Norm[TriangleTable[CubeIndex, i+2]]);
glVertex3fv(@VertList[TriangleTable[CubeIndex][i+2]]);
Inc(TessTriangles);
Inc(i, 3);
end;
end;
{------------------------------------------------------------------}
{ Function to draw the actual scene }
{------------------------------------------------------------------}
procedure drawMetaballs;
var cx, cy, cz : Integer;
I : Integer;
C : glFloat;
DemoTime : Integer;
begin
DemoTime :=ElapsedTime - METABALL_START;
if MetaballsInit = FALSE then
begin
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glDepthFunc(GL_LEQUAL); // The Type Of Depth Test To Do
glEnable(GL_DEPTH_TEST);
glEnable(GL_NORMALIZE);
// Set up environment mapping
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_S, GL_SPHERE_MAP, 0);
glTexGeni(GL_T, GL_SPHERE_MAP, 0);
MetaballsInit :=TRUE;
end;
glTranslatef(0.0,0.0,-2.4);
// Create the background image
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glEnable(GL_BLEND);
I :=DemoTime MOD 2000;
C :=I/2000;
glColor3f(C, C, C);
glBindTexture(GL_TEXTURE_2D, MBallsBGTex[((DemoTime+2000) DIV 2000) MOD 4]);
glBegin(GL_QUADS);
glTexCoord(0.0, 0.0); glVertex(-1.5, -1.1, 0);
glTexCoord(1.0, 0.0); glVertex( 1.5, -1.1, 0);
glTexCoord(1.0, 1.0); glVertex( 1.5, 1.1, 0);
glTexCoord(0.0, 1.0); glVertex(-1.5, 1.1, 0);
glend;
glColor3f(1-C, 1-C, 1-C);
glBindTexture(GL_TEXTURE_2D, MBallsBGTex[(DemoTime DIV 2000) MOD 4]);
glBegin(GL_QUADS);
glTexCoord(0.0, 0.0); glVertex(-1.5, -1.1, 0);
glTexCoord(1.0, 0.0); glVertex( 1.5, -1.1, 0);
glTexCoord(1.0, 1.0); glVertex( 1.5, 1.1, 0);
glTexCoord(0.0, 1.0); glVertex(-1.5, 1.1, 0);
glend;
glDisable(GL_BLEND);
// alternate transparent metaballs every 8 seconds
if DemoTime MOD 15000 > 10000 then
glEnable(GL_BLEND)
else
glDisable(GL_BLEND);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
// calculate metaball positions
MetaBall[1].X :=-0.4*cos(DemoTime/600) - 0.15*cos(DemoTime/600);
MetaBall[1].Y :=0.5*sin(DemoTime/500) + 0.1*cos(DemoTime/600);
MetaBall[2].X :=0.3*sin(DemoTime/400) - 0.35*cos(DemoTime/600);
MetaBall[2].Y :=-0.4*cos(DemoTime/400) + 0.3*cos(DemoTime/600);
MetaBall[3].X :=0.4*cos(DemoTime/400) - 0.3*sin(DemoTime/600);
MetaBall[3].y :=0.4*cos(DemoTime/500) - 0.3*sin(DemoTime/400);
TessTriangles := 0;
For cx := 0 to GridSize do
For cy := 0 to GridSize do
For cz := 0 to GridSize do
with Grid[cx, cy, cz] do
begin
Value :=0;
for I :=1 to 3 do // go through all meta balls
begin
with Metaball[I] do
Value := Value + Radius*Radius /((Pos.x-x)*(Pos.x-x) + (Pos.y-y)*(Pos.y-y) + (Pos.z-z)*(Pos.z-z));
end;
end;
// Calculate normals at the grid vertices
For cx := 1 to GridSize-1 do
begin
For cy := 1 to GridSize-1 do
begin
For cz := 1 to GridSize-1 do
begin
Grid[cx,cy,cz].Normal.X := Grid[cx-1, cy, cz].Value - Grid[cx+1, cy, cz].Value;
Grid[cx,cy,cz].Normal.Y := Grid[cx, cy-1, cz].Value - Grid[cx, cy+1, cz].Value;
Grid[cx,cy,cz].Normal.Z := Grid[cx, cy, cz-1].Value - Grid[cx, cy, cz+1].Value;
end;
end;
end;
// Draw the metaballs by drawing the triangle in each cube in the grid
glPushMatrix();
glRotate(DemoTime/100, 0, 0, 1);
glBindTexture(GL_TEXTURE_2D, EnviroTex);
glBegin(GL_TRIANGLES);
For cx := 0 to GridSize-1 do
for cy := 0 to GridSize-1 do
for cz := 0 to GridSize-1 do
CreateCubeTriangles(Cubes[cx, cy, cz]);
glEnd;
glPopMatrix();
// Fade the sequence in
if DemoTime < 400 then
C := DemoTime / 800
else if DemoTime > 5200 then
C := (DemoTime - 2000) / 6400
else
C :=0.5;
// Draw the black borders
if DemoTime < 8000 then
begin
glTranslatef(0.0,0.0,0.5);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glColor3f(0, 0, 0);
glBegin(GL_QUADS);
glVertex3f(-1.2, C , 0);
glVertex3f( 1.2, C , 0);
glVertex3f( 1.2, C+1, 0);
glVertex3f(-1.2, C+1, 0);
glVertex3f(-1.2, -1-C, 0);
glVertex3f( 1.2, -1-C, 0);
glVertex3f( 1.2, -C , 0);
glVertex3f(-1.2, -C , 0);
glEnd();
glColor3f(1, 1, 1);
glEnable(GL_TEXTURE_2D);
end;
// fade to white
if ElapsedTime > TENTACLE_START - 250 then
begin
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glEnable(GL_BLEND);
glTranslatef(0, 0.0, 0.6);
glBindTexture(GL_TEXTURE_2D, WhiteTex);
C :=(250 - (TENTACLE_START - ElapsedTime))/250;
glColor3f(C, C, C);
glBegin(GL_QUADS);
glTexCoord(0, 0); glVertex3f(-1, -1, 0);
glTexCoord(1, 0); glVertex3f( 1, -1, 0);
glTexCoord(1, 1); glVertex3f( 1, 1, 0);
glTexCoord(0, 1); glVertex3f(-1, 1, 0);
glEnd;
end;
if ElapsedTime > TENTACLE_START then
Inc(Stage);
end;
procedure InitMetaballs;
begin
// initialise the metaball size and positions
MetaBall[1].Radius :=0.3;
MetaBall[1].X :=0;
MetaBall[1].Y :=0;
MetaBall[1].Z :=0;
MetaBall[2].Radius :=0.22;
MetaBall[2].X :=0;
MetaBall[2].Y :=0;
MetaBall[2].Z :=0;
MetaBall[3].Radius :=0.25;
MetaBall[3].X :=0;
MetaBall[3].Y :=0;
MetaBall[3].Z :=0;
InitGrid;
MetaballsInit :=FALSE;
end;
end.