-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathserver.py
282 lines (237 loc) · 11 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from __future__ import print_function
from copy import deepcopy
import torch
import torch.nn.functional as F
from utils import utils
from utils.backdoor_semantic_utils import SemanticBackdoor_Utils
from utils.backdoor_utils import Backdoor_Utils
import time
class Server():
def __init__(self, model, dataLoader, criterion=F.nll_loss, device='cpu'):
self.clients = []
self.model = model
self.dataLoader = dataLoader
self.device = device
self.emptyStates = None
self.init_stateChange()
self.Delta = None
self.iter = 0
self.AR = self.FedAvg
self.func = torch.mean
self.isSaveChanges = False
self.savePath = './AggData'
self.criterion = criterion
self.path_to_aggNet = ""
def init_stateChange(self):
states = deepcopy(self.model.state_dict())
for param, values in states.items():
values *= 0
self.emptyStates = states
def attach(self, c):
self.clients.append(c)
def distribute(self):
for c in self.clients:
c.setModelParameter(self.model.state_dict())
def test(self):
print("[Server] Start testing")
self.model.to(self.device)
self.model.eval()
test_loss = 0
correct = 0
count = 0
with torch.no_grad():
for data, target in self.dataLoader:
data, target = data.to(self.device), target.to(self.device)
output = self.model(data)
test_loss += self.criterion(output, target, reduction='sum').item() # sum up batch loss
if output.dim() == 1:
pred = torch.round(torch.sigmoid(output))
else:
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
count += pred.shape[0]
test_loss /= count
accuracy = 100. * correct / count
self.model.cpu() ## avoid occupying gpu when idle
print(
'[Server] Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, count, accuracy))
return test_loss, accuracy
def test_backdoor(self):
print("[Server] Start testing backdoor\n")
self.model.to(self.device)
self.model.eval()
test_loss = 0
correct = 0
utils = Backdoor_Utils()
with torch.no_grad():
for data, target in self.dataLoader:
data, target = utils.get_poison_batch(data, target, backdoor_fraction=1,
backdoor_label=utils.backdoor_label, evaluation=True)
data, target = data.to(self.device), target.to(self.device)
output = self.model(data)
test_loss += self.criterion(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(self.dataLoader.dataset)
accuracy = 100. * correct / len(self.dataLoader.dataset)
self.model.cpu() ## avoid occupying gpu when idle
print(
'[Server] Test set (Backdoored): Average loss: {:.4f}, Success rate: {}/{} ({:.0f}%)\n'.format(test_loss, correct,
len(
self.dataLoader.dataset),
accuracy))
return test_loss, accuracy
def test_semanticBackdoor(self):
print("[Server] Start testing semantic backdoor")
self.model.to(self.device)
self.model.eval()
test_loss = 0
correct = 0
utils = SemanticBackdoor_Utils()
with torch.no_grad():
for data, target in self.dataLoader:
data, target = utils.get_poison_batch(data, target, backdoor_fraction=1,
backdoor_label=utils.backdoor_label, evaluation=True)
data, target = data.to(self.device), target.to(self.device)
output = self.model(data)
test_loss += self.criterion(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(self.dataLoader.dataset)
accuracy = 100. * correct / len(self.dataLoader.dataset)
self.model.cpu() ## avoid occupying gpu when idle
print(
'[Server] Test set (Semantic Backdoored): Average loss: {:.4f}, Success rate: {}/{} ({:.0f}%)\n'.format(test_loss,
correct,
len(
self.dataLoader.dataset),
accuracy))
return test_loss, accuracy, data, pred
def train(self, group):
selectedClients = [self.clients[i] for i in group]
for c in selectedClients:
c.train()
c.update()
if self.isSaveChanges:
self.saveChanges(selectedClients)
tic = time.perf_counter()
Delta = self.AR(selectedClients)
toc = time.perf_counter()
print(f"[Server] The aggregation takes {toc - tic:0.6f} seconds.\n")
for param in self.model.state_dict():
self.model.state_dict()[param] += Delta[param]
self.iter += 1
def saveChanges(self, clients):
Delta = deepcopy(self.emptyStates)
deltas = [c.getDelta() for c in clients]
param_trainable = utils.getTrainableParameters(self.model)
param_nontrainable = [param for param in Delta.keys() if param not in param_trainable]
for param in param_nontrainable:
del Delta[param]
print(f"[Server] Saving the model weight of the trainable paramters:\n {Delta.keys()}")
for param in param_trainable:
##stacking the weight in the innerest dimension
param_stack = torch.stack([delta[param] for delta in deltas], -1)
shaped = param_stack.view(-1, len(clients))
Delta[param] = shaped
saveAsPCA = True
saveOriginal = False
if saveAsPCA:
from utils import convert_pca
proj_vec = convert_pca._convertWithPCA(Delta)
savepath = f'{self.savePath}/pca_{self.iter}.pt'
torch.save(proj_vec, savepath)
print(f'[Server] The PCA projections of the update vectors have been saved to {savepath} (with shape {proj_vec.shape})')
# return
if saveOriginal:
savepath = f'{self.savePath}/{self.iter}.pt'
torch.save(Delta, savepath)
print(f'[Server] Update vectors have been saved to {savepath}')
## Aggregation functions ##
def set_AR(self, ar):
if ar == 'fedavg':
self.AR = self.FedAvg
elif ar == 'median':
self.AR = self.FedMedian
elif ar == 'gm':
self.AR = self.geometricMedian
elif ar == 'krum':
self.AR = self.krum
elif ar == 'mkrum':
self.AR = self.mkrum
elif ar == 'foolsgold':
self.AR = self.foolsGold
elif ar == 'residualbase':
self.AR = self.residualBase
elif ar == 'attention':
self.AR = self.net_attention
elif ar == 'mlp':
self.AR = self.net_mlp
else:
raise ValueError("Not a valid aggregation rule or aggregation rule not implemented")
def FedAvg(self, clients):
out = self.FedFuncWholeNet(clients, lambda arr: torch.mean(arr, dim=-1, keepdim=True))
return out
def FedMedian(self, clients):
out = self.FedFuncWholeNet(clients, lambda arr: torch.median(arr, dim=-1, keepdim=True)[0])
return out
def geometricMedian(self, clients):
from rules.geometricMedian import Net
self.Net = Net
out = self.FedFuncWholeNet(clients, lambda arr: Net().cpu()(arr.cpu()))
return out
def krum(self, clients):
from rules.multiKrum import Net
self.Net = Net
out = self.FedFuncWholeNet(clients, lambda arr: Net('krum').cpu()(arr.cpu()))
return out
def mkrum(self, clients):
from rules.multiKrum import Net
self.Net = Net
out = self.FedFuncWholeNet(clients, lambda arr: Net('mkrum').cpu()(arr.cpu()))
return out
def foolsGold(self, clients):
from rules.foolsGold import Net
self.Net = Net
out = self.FedFuncWholeNet(clients, lambda arr: Net().cpu()(arr.cpu()))
return out
def residualBase(self, clients):
from rules.residualBase import Net
out = self.FedFuncWholeStateDict(clients, Net().main)
return out
def net_attention(self, clients):
from aaa.attention import Net
net = Net()
net.path_to_net = self.path_to_aggNet
out = self.FedFuncWholeStateDict(clients, lambda arr: net.main(arr, self.model))
return out
def net_mlp(self, clients):
from aaa.mlp import Net
net = Net()
net.path_to_net = self.path_to_aggNet
out = self.FedFuncWholeStateDict(clients, lambda arr: net.main(arr, self.model))
return out
## Helper functions, act as adaptor from aggregation function to the federated learning system##
def FedFuncWholeNet(self, clients, func):
'''
The aggregation rule views the update vectors as stacked vectors (1 by d by n).
'''
Delta = deepcopy(self.emptyStates)
deltas = [c.getDelta() for c in clients]
vecs = [utils.net2vec(delta) for delta in deltas]
vecs = [vec for vec in vecs if torch.isfinite(vec).all().item()]
result = func(torch.stack(vecs, 1).unsqueeze(0)) # input as 1 by d by n
result = result.view(-1)
utils.vec2net(result, Delta)
return Delta
def FedFuncWholeStateDict(self, clients, func):
'''
The aggregation rule views the update vectors as a set of state dict.
'''
Delta = deepcopy(self.emptyStates)
deltas = [c.getDelta() for c in clients]
# sanity check, remove update vectors with nan/inf values
deltas = [delta for delta in deltas if torch.isfinite(utils.net2vec(delta)).all().item()]
resultDelta = func(deltas)
Delta.update(resultDelta)
return Delta