The key idea is constructing a map of buses by bus stop, and then running BFS using it.
Consider buses as vertices.
Adjacent vertices are obtained by listing all buses that share stops of the current vertex,
like routes[currentBus].map { stop -> busesByStop[stop] }
.
You are given an array routes
representing bus routes where routes[i]
is a bus route that the ith
bus repeats forever.
- For example, if
routes[0] = [1, 5, 7]
, this means that the0th
bus travels in the sequence1 -> 5 -> 7 -> 1 -> 5 -> 7 -> 1 -> ...
forever.
You will start at the bus stop source
(You are not on any bus initially), and you want to go to the bus stop target
. You can travel between bus stops by buses only.
Return the least number of buses you must take to travel from source
to target
. Return -1
if it is not possible.
Example 1:
Input: routes = [[1,2,7],[3,6,7]], source = 1, target = 6 Output: 2 Explanation: The best strategy is take the first bus to the bus stop 7, then take the second bus to the bus stop 6.
Example 2:
Input: routes = [[7,12],[4,5,15],[6],[15,19],[9,12,13]], source = 15, target = 12 Output: -1
Constraints:
1 <= routes.length <= 500
.1 <= routes[i].length <= 105
- All the values of
routes[i]
are unique. sum(routes[i].length) <= 105
0 <= routes[i][j] < 106
0 <= source, target < 106