-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural-net-4-min.py
50 lines (35 loc) · 1.01 KB
/
neural-net-4-min.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
def nonlin( x, deriv=False ):
if( deriv==True ):
return (x*(1-x))
return 1 / (1+np.exp(-x))
#input data
X = np.array( [ [0,0,1],
[0,1,1],
[1,0,1],
[1,1,1] ] )
#output data
y = np.array( [ [0],
[1],
[1],
[0] ] )
np.random.seed( 1 )
# synapses
syn0 = 2 * np.random.random((3,4)) - 1
syn1 = 2 * np.random.random((4,1)) - 1
# training step
for j in range(60000):
l0 = X
l1 = nonlin( np.dot(l0,syn0) )
l2 = nonlin( np.dot(l1,syn1) )
l2_error = y - l2
if(j % 10000) == 0:
print ("Error: " + str(np.mean(np.abs(l2_error))))
l2_delta = l2_error * nonlin( l2, deriv=True )
l1_error = l2_delta.dot( syn1.T )
l1_delta = l1_error * nonlin( l1, deriv=True )
# update weights
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
print("Output after training")
print( l2 )