-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathC_arraytest.py
318 lines (268 loc) · 10.4 KB
/
C_arraytest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#!/usr/local/bin/pythonw
import _C_arraytest
import numpy as NP
import sys
# #### Functions & Classes ###########################################
# ==== Vector functions =============================================
# ---- Test input of 2 vectors and modification of 2nd one ------------
# Multiply the input by 2 x dfac and put in output
def vecfcn1(vecin, vecout, strin, dfac):
# .... Check arguments, double NumPy matrices?
test=NP.zeros(2)
typetest= type(test)
datatest=test.dtype
if type(vecin) != typetest or type(vecout) != typetest:
raise 'In vecfcn1, arguments are not all *NumPy* arrays'
if len(NP.shape(vecin)) != 1 or len(NP.shape(vecout)) != 1:
raise 'In vecfcn1, arguments are not all NumPy *vectors*'
if vecin.dtype != datatest or vecout.dtype != datatest:
raise 'In vecfcn1, arguments are not all *Float* NumPy vectors'
# Make contiguous array if not one
if not vecin.flags.contiguous:
vecin=array(vecin)
if not vecout.flags.contiguous:
vecout=array(vecout)
if type(strin) != type("string"):
raise 'In vecfcn1, strin argument is not a string'
if type(dfac) != type(1.0):
raise 'In vecfcn1, dfac argument is not a float'
# .... Call C extension function
return _C_arraytest.vecfcn1(vecin, vecout, strin, dfac)
# ---- Test input 1 vector and creation of 2nd one ------------
# Each 2nd vector component should = square of 1st vector component x xfac
def vecsq(vecin, xfac):
# .... Check arguments, double NumPy vector?
test=NP.zeros(2)
typetest= type(test)
datatest=test.dtype
if type(vecin) != typetest:
raise 'In vecsq, vector argument is not *NumPy* array'
if len(NP.shape(vecin)) != 1:
raise 'In vecsq, vector argument is not NumPy *vector*'
if vecin.dtype != datatest:
raise 'In vecsq, vector argument is not *Float* NumPy vector'
# Make contiguous array if not one
if not vecin.flags.contiguous:
vecin=array(vecin)
if type(xfac) != type(1.0):
raise 'In vecsq, xfac argument is not a python float'
# .... Call C extension function
return _C_arraytest.vecsq(vecin, xfac)
#==== Vector Tests ==============================
# ---- Test rowx2 ------------------------------
# Manipulation in place
# Multiply the input by 2 x dfac and put in output
def vectest1():
print "\n--- Test vecfcn1 ------------------------------"
print " Multiply the input by 2 x dfac and put in output \n"
n=4 # Number of columns
# Make 2 vectors
x=NP.arange(float(n))
y=NP.array(x) # generate a copy of x (will be changed in vecfcn1 call)
st="I'm in a C extension."
df=2.0
vecfcn1(x,y,st,df)
print "x=",x
print "y=",y
# ---- Test vecsqr ------------------------------
# Create new array from input and return new NumPy array
# Each 2nd vector component should = square of 1st vector component x xfac
def vectest2():
print "\n--- Test vecsq ------------------------------"
print " Each 2nd vector component should = square of 1st vector component x xfac \n"
n=7 # Number of columns
x=NP.arange(float(n))
xfac= -2.5
y=vecsq(x, xfac)
print "x=",x
print "y=",y
# ==== Matrix functions =============================================
# ---- Test input of 2 matrices and modification of 2nd one ------------
# 2nd row of matrix y should be 2 x 2nd row of matrix x
# (PyArrayObject construction directly from PyArg_ParseTuple)
def rowx2(matin, matout):
# .... Check arguments, double NumPy matrices?
test=NP.zeros((2,2))
typetest= type(test)
datatest=test.dtype
if type(matin) != typetest or type(matout) != typetest:
raise 'In rowx2, arguments are not all *NumPy* arrays'
if len(NP.shape(matin)) != 2 or len(NP.shape(matout)) != 2:
raise 'In rowx2, arguments are not all NumPy *matrices*'
if matin.dtype != datatest or matout.dtype != datatest:
raise 'In rowx2, arguments are not all *Float* NumPy matrices'
# Make contiguous array if not one
if not matin.flags.contiguous:
matin=array(matin)
if not matout.flags.contiguous:
matout=array(matout)
# .... Call C extension function
return _C_arraytest.rowx2(matin, matout)
# ---- Test input of 2 matrices and modification of 2nd one ------------
# 2nd row of matrix y should be 2 x 2nd row of matrix x
# (PyArrayObject construction different from rowx2)
def rowx2_v2(matin, matout):
# .... Check arguments, double NumPy matrices?
test=NP.zeros((2,2))
typetest= type(test)
datatest=test.dtype
if type(matin) != typetest or type(matout) != typetest:
raise 'In rowx2, arguments are not all *NumPy* arrays'
if len(NP.shape(matin)) != 2 or len(NP.shape(matout)) != 2:
raise 'In rowx2, arguments are not all NumPy *matrices*'
if matin.dtype != datatest or matout.dtype != datatest:
raise 'In rowx2, arguments are not all *Float* NumPy matrices'
# Make contiguous array if not one
if not matin.flags.contiguous:
matin=array(matin)
if not matout.flags.contiguous:
matout=array(matout)
# .... Call C extension function
return _C_arraytest.rowx2_v2(matin, matout)
# ---- Test input 1 matrices and creation of 2nd one ------------
# Each 2nd matrix component should = square of 1st matrix component x ifac x dfac
def matsq(matin, ifac, dfac):
# .... Check arguments, double NumPy matrices?
test=NP.zeros((2,2))
typetest= type(test)
datatest=test.dtype
if type(matin) != typetest:
raise 'In matsq, matrix argument is not *NumPy* array'
if len(NP.shape(matin)) != 2:
raise 'In matsq, matrix argument is not NumPy *matrix*'
if matin.dtype != datatest:
raise 'In matsq, matrix argument is not *Float* NumPy matrix'
# Make contiguous array if not one
if not matin.flags.contiguous:
matin=array(matin)
if type(ifac) != type(1):
raise 'In matsq, ifac argument is not an int'
if type(dfac) != type(1.0):
raise 'In matsq, dfac argument is not a python float'
# .... Call C extension function
return _C_arraytest.matsq(matin, ifac, dfac)
# ---- Test contiguous memory treatment of matrices ---------------
# Each 2nd matrix component should = 1st matrix component - x1
# In the extension function _C_arraytest.contigmat the matrix data
# is handled as contiguous memory *not* as arrays of pointers to data rows
# like in typical C matrices.
def contigmat(matin, x1):
# .... Check arguments, double NumPy matrices?
test=NP.zeros((2,2))
typetest= type(test)
datatest=test.dtype
if type(matin) != typetest:
raise 'In contigmat, matrix argument is not *NumPy* array'
if len(NP.shape(matin)) != 2:
raise 'In contigmat, matrix argument is not NumPy *matrix*'
# Make contiguous array if not one
if not matin.flags.contiguous:
matin=array(matin)
if matin.dtype != datatest:
raise 'In contigmat, matrix argument is not *Float* NumPy matrix'
if type(x1) != type(1.0):
raise 'In contigmat, x1 argument is not a python float'
# .... Call C extension function
return _C_arraytest.contigmat(matin, x1)
#==== Matrix Tests ==============================
# ---- Test rowx2 & rowx2_v2 ------------------------------
# Manipulation in place
# 2nd row of matrix y should be 2 x 2nd row of matrix x
# rowx2_v2 converts PyObjects to PyArrayObjects differently than rowx2.
#
def mattest1():
print "\n--- Test rowx2 ------------------------------"
print " (PyArrayObject construction directly from PyArg_ParseTuple)"
print " 2nd row of matrix y should be 2 x 2nd row of matrix x \n"
n=4 # Number of columns
# Make 2 x n matrices
z=NP.arange(float(n))
x=NP.array([z,z])
y=NP.array(x) # generate a copy of x (will be changed in rowx2 call)
rowx2(x,y)
print "x=",x
print "y=",y
print "\n--- Test rowx2_v2 ------------------------------"
print " (PyArrayObject construction different from rowx2)"
print " 2nd row of matrix y should be 2 x 2nd row of matrix x \n"
w=NP.array(x) # generate a copy of x (will be changed in rowx2 call)
rowx2_v2(x,w)
print "x=",x
print "w=",w
# ---- Test matsqr ------------------------------
# Create new array from input and return new NumPy array
# Each 2nd matrix component should = square of 1st matrix component x ifac x dfac
def mattest2():
print "\n--- Test matsq ------------------------------"
print " Each 2nd matrix component should = square of 1st matrix component x ifac x dfac \n"
n=4 # Number of columns
# Make 2 x n matrices
z=NP.arange(float(n))
x=NP.array([z,3.0*z])
jfac=2
xfac=1.5
y=matsq(x, jfac, xfac)
print "x=",x
print "y=",y
# ---- Test contigmat ------------------------------
# Create new array from input and return new NumPy array
# Each 2nd matrix component should = square of 1st matrix component x ifac x dfac
def mattest3():
print "\n--- Test contigmat ------------------------------"
print " Each 2nd matrix component should = square of 1st matrix component x ifac x dfac \n"
n=4 # Number of columns
# Make 2 x n matrices
z=NP.arange(float(n))
x=NP.array([z,3.0*z])
x1=1.5
y=contigmat(x, x1)
print "x=",x
print "y=",y
# ==== Integer 2D array functions =============================================
# ---- Test input 1 integer 2D array and creation of 2nd one ------------
# Each 2nd matrix component should = 1 if intin >= 0 or 0 otherwise
def intfcn1(intin, afloat):
# .... Check arguments, integer NumPy 2D array?
test=NP.zeros((2,2),dtype='i')
typetest= type(test)
datatest=test.dtype
if type(intin) != typetest:
raise 'In intfcn1, argument is not *NumPy* array'
if len(NP.shape(intin)) != 2:
raise 'In intfcn1, argument is not NumPy *integer 2D array*'
# Make contiguous array if not one
if not intin.flags.contiguous:
intin=array(intin)
if intin.dtype != datatest:
raise 'In intfcn1, input argument is not *integer* NumPy 2D array'
if type(afloat) != type(1.0):
raise 'In intfcn1, afloat argument is not a python float'
# .... Call C extension function
return _C_arraytest.intfcn1(intin, afloat)
#==== Integer 2D array Tests ==============================
# ---- Test matsqr ------------------------------
# Create new array from input and return new NumPy array
# Each 2nd matrix component should = square of 1st matrix component x ifac x dfac
def intarrtest1():
print "\n--- Test intarrtest1 ------------------------------"
print " Each 2nd matrix component should = 1 if intin >= 0 or 0 otherwise \n"
n=5 # Number of columns
# Make 2 x n 2D integer arrays
z=NP.arange(int(n))
x=NP.array([z,3*z])
x=x-3
afloat= -22.78
y=intfcn1(x, afloat)
print "x=",x
print "y=",y
# #### Run code ##################################################
if __name__ == '__main__':
vectest1()
vectest2()
# mattest1()
# mattest2()
# mattest3()
# intarrtest1()
# ###### STOP HERE ################################################
sys.exit()
# EOF