diff --git a/README.md b/README.md
index a94f7f0..8411961 100644
--- a/README.md
+++ b/README.md
@@ -1,10 +1,18 @@
-![NAG Logo](./nag_logo.png)
+![nAG Logo](./nag_logo.png)<a name=top></a>
 
-# Examples using the NAG Library for Python
+# Content<a name=content></a>
 
-This repository contains examples and demonstrations using the [NAG Library for Python](https://www.nag.com/nag-library-python).  The NAG Library for Python contains 1900+ functions spanning many areas of numerical computing and data science.
+* [Examples using the *n*AG Library for Python](#examples)
+* [How to install the *n*AG Library for Python](#install)
+* [How to run the Jupyter notebook examples](#jupyter)
+* [List of Chapters in the *n*AG Library for Python](#chapters)
+* [Useful links](#links)
 
-Designed to work alongside the open source Python packages, [Numpy](http://www.numpy.org/) and [Scipy](https://www.scipy.org/), The NAG Library for Python can augment your computational workflow in many areas.
+# Examples using the *n*AG Library for Python <a name=examples></a>
+
+This repository contains examples and demonstrations using the [*n*AG Library for Python](https://nag.com/nag-library/).  The *n*AG Library for Python contains 1900+ functions spanning many areas of numerical computing and data science.
+
+Designed to work alongside the open source Python packages, [Numpy](http://www.numpy.org/) and [Scipy](https://www.scipy.org/), The *n*AG Library for Python can augment your computational workflow in many areas.
 
 ## Directory of GitHub examples
 
@@ -23,40 +31,187 @@ Designed to work alongside the open source Python packages, [Numpy](http://www.n
 
 ## Examples that ship with the product
 
-In addition to those presented here, The NAG Library for Python ships with a set of usage examples.  To see them all, run the following command
+In addition to those presented here, The *n*AG Library for Python ships with a set of usage examples.  To see them all, run the following command
 
 ```
 python -m naginterfaces.library.examples --locate
 ```
 
-## NAG Library for Python installation
+# How to install the *n*AG Library for Python<a name=install></a>
 
-The NAG Library for Python comes in two versions. One is linked to the Intel MKL for improved linear algebra performance on x86 architectures and the other is linked to NAG's self contained linear algebra libraries.
+In this section we illustrate how to install the *n*AG Library for Python, request a Trial Licence and make sure the Library is working. Details and further information regarding the installation can be found [here](https://www.nag.com/numeric/py/nagdoc_latest/readme.html#installation).
 
-When using Intel or AMD CPUs we recommend the use of the Intel MKL version of the NAG Library for Python.
+**Note** Before starting make sure you have access to a host that has Python 3 (3.4 or more recent).
 
-Install using the following command
+### Step 1. Downloading and installing
+Installing the *n*AG Library is done using the `pip` package manager, fire-up a terminal and create a Python 3 virtual environment where to install and test the *n*AG Library
+```{bash}
+guest@nag-37:~$ python3 -m venv nag3
+guest@nag-37:~$ . nag3/bin/activate
+(nag3) guest@nag-37:~$
+```
+Now use `pip` to install the *n*AG Library for Python
+```{bash}
+(nag3) guest@nag-37:~$ python -m pip install --extra-index-url https://www.nag.com/downloads/py/naginterfaces_nag naginterfaces
+```
+or if you prefer the version of the package that relies on Intel MKL for optimized linear algebra routines, then use
+```{bash}
+(nag3) guest@nag-37:~$ python -m pip install --extra-index-url https://www.nag.com/downloads/py/naginterfaces_mkl naginterfaces
+```
 
+The output should be similar to
+```{bash}
+Collecting naginterfaces
+  Downloading https://www.nag.com/downloads/py/naginterfaces_nag/naginterfaces/naginterfaces-27.1.0.0-py2.py3-none-linux_x86_64.whl (55.8MB)
+    100% |████████████████████████████████| 55.8MB 21kB/s 
+Collecting numpy>=1.15 (from naginterfaces)
+  Downloading https://files.pythonhosted.org/packages/45/b2/6c7545bb7a38754d63048c7696804a0d947328125d81bf12beaa692c3ae3/numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl (13.4MB)
+    100% |████████████████████████████████| 13.4MB 70kB/s 
+Installing collected packages: numpy, naginterfaces
+Successfully installed naginterfaces-27.1.0.0 numpy-1.19.5
 ```
-python -m pip install --extra-index-url https://www.nag.com/downloads/py/naginterfaces_mkl naginterfaces
+The output indicates that the installation was successful.
+
+### Step 2. Getting a trial licence
+The next step is to get the licensing info (**product code** and **KUSARI ID**) and use it to request a licence. From the same virtual terminal, try
+```{bash}
+(nag3) guest@nag-37:~$ python -m naginterfaces.kusari
+```
+The output should be similar to
 ```
+The *n*AG Library for Python on this platform uses
+underlying Library NLL6I271VL.
+This Library has been installed as part of the package
+and it requires a valid licence key.
+No such key could be validated:
+the key may not have been installed correctly or
+it may have expired.
+The Kusari licence-check utility reports the following:
+User: guest
+Directory: /home/guest
+NAG_KUSARI_FILE=""
+File /home/guest/nag.key does not exist
+-------------------------------------------------------------------------------
+Error: Licence not found; this product requires a key for NLL6I271VL
+The above information has been generated on machine nag-37
+For information on how to obtain a licence, please see
+https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.kusari.html
+KUSARI ID = "ADLXt-adEclJLmvnxlrU2sseteZoo,RopA-Ld"
+```
+The **two** important bits are the 
 
-**Obtaining a license**
+ 1. **product code** shown as **`underlying Library NLL6I271VL.`** which identifies the licence to request, and
+ 
+ 2. **KUSARI ID** shown as **`KUSARI ID = "ADLXt-adEclJLmvnxlrU2sseteZoo,RopA-Ld"`** which identifies the host you are running the library on.
+ 
+ **Note** that the **product code** and **KUSARI ID** can be different from the previous example.
+ 
+ With these, you are set to [contact *n*AG and request a trial licence](https://nag.com/contact-us/).
+ 
+ The trial licence is a plain text chunk similar to
+ ```
+ NLL6I271V TRIAL 2021/01/27 "RverXn0Pc-Ib?ctdgF=Wpis2j7I"
+ ```
+ Save or copy the text into the file `/home/guest/nag.key`.
+ 
+ The final step is to make sure the licence is valid and the library is working as expected.
+ 
+### Step 3. Testing the *n*AG Library
+The last step is to make sure the licence was correctly stored and that the *n*AG Library is working correctly. From the same virtual terminal re-run the Kusari licence module
+```{bash}
+(nag3) guest@nag-37:~$ python -m naginterfaces.kusari
+``` 
+This time the output should be similar to
+```
+Licence available; the required NLL6I271VL licence key for this product is valid
+TRIAL licence, 27 days remaining (licence from file)
+```
+Now let's try a more interesting example ([list of optimization examples](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#examples))
 
-Before you can use the NAG Library for Python, you'll need a license.  Free trial licenses are available!
+This command runs the example for the [FOAS (First-Order Active set method) solver and minimizes the Rosenbrock 2D function](./FOAS).
+```
+(nag3) guest@nag-37:~$ python -m naginterfaces.library.examples.opt.handle_solve_bounds_foas_ex
+```
+Should generate an outputsimilar to
+```{bash}
+Trying:
+    main()
+Expecting:
+    naginterfaces.library.opt.handle_solve_bounds_foas Python Example Results.
+    Minimizing a bound-constrained Rosenbrock problem.
+     E04KF, First order method for bound-constrained problems
+...
+     Status: converged, an optimal solution was found
+     Value of the objective             4.00000E-02
+    ...
+ok
+```
+indicating that the example was successfully executed. The source code can be found [here](https://www.nag.com/numeric/py/nagdoc_latest/_modules/naginterfaces/library/examples/opt/handle_solve_bounds_foas_ex.html#main).
 
-Run the following command to begin the licensing process and email [support@nag.com](mailto:support@nag.com) if you have any problems.
+### Running more examples
 
+To display the full list of example source files on disk, but not run them, execute
 ```
-# This will launch a license request GUI on windows
-# On Mac and Linux, it gives the information you need to send to support@nag.com to request a trial license
-python -m naginterfaces.kusari
+python -m naginterfaces.library.examples --locate
 ```
+All examples may be executed sequentially by running
+```
+python -m naginterfaces.library.examples
+```
+Run `python -m naginterfaces.library.examples --help` to see any additional usage.
+
+
 
-* More detailed installation instructions are [available in the official documentation](https://www.nag.com/numeric/py/nagdoc_latest/readme.html#installation).
-* More detailed license management instructions are available at [https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.kusari.html#kusari](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.kusari.html#kusari)
+# How to run the Jupyter notebook examples<a name=jupyter></a>
 
-**Official documentation links**
+This section briefly illustrates how to setup a host in order to open and run the [Jupyter notebooks](https://jupyter.org/) provided in this repository.
+Before running the notebooks make sure the [*n*AG Library is installed and working](#install). Before starting, it is advised to read [Jupyter's installation page](https://jupyter.org/install.html).
+
+<!-- You can [view a static render of the notebooks using Jupyter's nbviewer here](https://nbviewer.jupyter.org/github/numericalalgorithmsgroup/NAGPythonExamples/tree/master/local_optimization/) 
+[![Jupyter](https://img.shields.io/badge/launch-nbviewer-blue?logo=jupyter&logoColor=white)](https://nbviewer.jupyter.org/github/numericalalgorithmsgroup/NAGPythonExamples/tree/master/local_optimization/)
+or alternatively use [Binder](https://mybinder.org/) to [view them here](https://mybinder.org/v2/gh/numericalalgorithmsgroup/NAGPythonExamples/HEAD) 
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/numericalalgorithmsgroup/NAGPythonExamples/HEAD). -->
+
+
+### Installing Jupyter notebook
+To install Jupyter, launch a terminal and activate the virtual environment used to install the *n*AG Library for Python
+```{bash}
+guest@nag-37:~$ . nag3/bin/activate
+(nag3) guest@nag-37:~$ pip install notebook matplotlib
+Collecting notebook
+  Downloading https://files.pythonhosted.org/packages/74/19/50cd38acf22e33370d01fef764355f1e3517f6e12b4fceb8d434ece4f8fd/notebook-6.2.0-py3-none-any.whl (9.5MB)
+    100% |████████████████████████████████| 9.5MB 115kB/s 
+Collecting argon2-cffi (from notebook)
+...
+Successfully installed jupyter-client-6.1.11 jupyterlab-pygments-0.1.2 ... wcwidth-0.2.5
+```
+This indicates that Jupyter and matplotlib were successfully installed. The next section shows how to start the notebok interface and open an example.
+
+### Running the notebook examples
+To run an example, grab a copy of the notebook of interest and start up the notebook interface.
+For example, download the [Rosenbrock 2D optimization example](./FOAS/rosenbrock2d.ipynb) notebook `rosenbrock2d.ipynb` into the current directory
+```{bash}
+(nag3) guest@nag-37:~$ curl -O https://raw.githubusercontent.com/numericalalgorithmsgroup/NAGPythonExamples/master/local_optimization/FOAS/rosenbrock2d.ipynb
+  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
+                                 Dload  Upload   Total   Spent    Left  Speed
+100 61961  100 61961    0     0   382k      0 --:--:-- --:--:-- --:--:--  382k
+```
+and now open it using `jupyter-notebook`
+```{bash}
+(nag3) guest@nag-37:~$ jupyter-notebook rosenbrock2d.ipynb
+[I 12:24:07.336 NotebookApp] Serving notebooks from local directory: /home/guest
+[I 12:24:07.336 NotebookApp] Jupyter Notebook 6.2.0 is running at:
+[I 12:24:07.336 NotebookApp] http://localhost:8888/?token=f1836a06799a92f25ef9966439bf3491b2f0960dcb51806d
+...
+```
+This command will fire-up your web browser and open the `rosenbrock2d.ipynb` notebook, the window should be similar to
+
+
+![Notebook screenshot](local_optimization/images/screenshot.png)
+
+
+
+# List of Chapters in the *n*AG Library for Python<a name=chapters></a>
 
 The following links take you to the relevant section in the official documentation
 
@@ -108,3 +263,12 @@ The following links take you to the relevant section in the official documentati
 * [library.univar](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.univar.html) - Univariate Estimation
 * [library.wav](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.wav.html) - Wavelet Transforms
 * [library.zeros](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.zeros.html) - Zeros of Polynomials
+
+
+# Useful links<a name=links></a>
+
+* [*n*AG Library for Python Documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html)
+* [Kusari licence module Documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.kusari.html#kusari)
+
+
+**[Back to Top](#top)**
diff --git a/correlation_and_regression_analysis/quantile_linreg_easy.ipynb b/correlation_and_regression_analysis/quantile_linreg_easy.ipynb
index 04dfe8d..0671543 100644
--- a/correlation_and_regression_analysis/quantile_linreg_easy.ipynb
+++ b/correlation_and_regression_analysis/quantile_linreg_easy.ipynb
@@ -6,7 +6,7 @@
    "source": [
     "# Quantile Regression\n",
     "\n",
-    "The NAG function [`correg.quantile_linreg_easy`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.correg.html#naginterfaces.library.correg.quantile_linreg_easy) can be used to model the conditional $\\tau$-th quantile of a dependent variable against one or more independent or explanatory variables.\n",
+    "The NAG function [`correg.quantile_linreg_easy`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.correg.quantile_linreg_easy.html) can be used to model the conditional $\\tau$-th quantile of a dependent variable against one or more independent or explanatory variables.\n",
     "\n",
     "Whereas the method of least squares results in estimates of the conditional <em>mean</em> of the response (dependent) variable, quantile regression gives estimates of the conditional <em>median</em> (or any other quantile) of the response variable.\n",
     "\n",
@@ -188,36 +188,38 @@
      "data": {
       "application/javascript": [
        "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
        "window.mpl = {};\n",
        "\n",
-       "\n",
-       "mpl.get_websocket_type = function() {\n",
-       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
        "        return WebSocket;\n",
-       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
        "        return MozWebSocket;\n",
        "    } else {\n",
-       "        alert('Your browser does not have WebSocket support. ' +\n",
-       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
-       "              'Firefox 4 and 5 are also supported but you ' +\n",
-       "              'have to enable WebSockets in about:config.');\n",
-       "    };\n",
-       "}\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
        "    this.id = figure_id;\n",
        "\n",
        "    this.ws = websocket;\n",
        "\n",
-       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
        "\n",
        "    if (!this.supports_binary) {\n",
-       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
        "        if (warnings) {\n",
        "            warnings.style.display = 'block';\n",
-       "            warnings.textContent = (\n",
-       "                \"This browser does not support binary websocket messages. \" +\n",
-       "                    \"Performance may be slow.\");\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
        "        }\n",
        "    }\n",
        "\n",
@@ -232,11 +234,11 @@
        "\n",
        "    this.image_mode = 'full';\n",
        "\n",
-       "    this.root = $('<div/>');\n",
-       "    this._root_extra_style(this.root)\n",
-       "    this.root.attr('style', 'display: inline-block');\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
        "\n",
-       "    $(parent_element).append(this.root);\n",
+       "    parent_element.appendChild(this.root);\n",
        "\n",
        "    this._init_header(this);\n",
        "    this._init_canvas(this);\n",
@@ -246,285 +248,366 @@
        "\n",
        "    this.waiting = false;\n",
        "\n",
-       "    this.ws.onopen =  function () {\n",
-       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
-       "            fig.send_message(\"send_image_mode\", {});\n",
-       "            if (mpl.ratio != 1) {\n",
-       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
-       "            }\n",
-       "            fig.send_message(\"refresh\", {});\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_device_pixel_ratio', {\n",
+       "                device_pixel_ratio: fig.ratio,\n",
+       "            });\n",
        "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
        "\n",
-       "    this.imageObj.onload = function() {\n",
-       "            if (fig.image_mode == 'full') {\n",
-       "                // Full images could contain transparency (where diff images\n",
-       "                // almost always do), so we need to clear the canvas so that\n",
-       "                // there is no ghosting.\n",
-       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
-       "            }\n",
-       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
-       "        };\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
        "\n",
-       "    this.imageObj.onunload = function() {\n",
+       "    this.imageObj.onunload = function () {\n",
        "        fig.ws.close();\n",
-       "    }\n",
+       "    };\n",
        "\n",
        "    this.ws.onmessage = this._make_on_message_function(this);\n",
        "\n",
        "    this.ondownload = ondownload;\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._init_header = function() {\n",
-       "    var titlebar = $(\n",
-       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
-       "        'ui-helper-clearfix\"/>');\n",
-       "    var titletext = $(\n",
-       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
-       "        'text-align: center; padding: 3px;\"/>');\n",
-       "    titlebar.append(titletext)\n",
-       "    this.root.append(titlebar);\n",
-       "    this.header = titletext[0];\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
-       "\n",
-       "}\n",
+       "};\n",
        "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
        "\n",
-       "}\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
        "\n",
-       "mpl.figure.prototype._init_canvas = function() {\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var canvas_div = $('<div/>');\n",
-       "\n",
-       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
        "\n",
-       "    function canvas_keyboard_event(event) {\n",
-       "        return fig.key_event(event, event['data']);\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
-       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
-       "    this.canvas_div = canvas_div\n",
-       "    this._canvas_extra_style(canvas_div)\n",
-       "    this.root.append(canvas_div);\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
        "\n",
-       "    var canvas = $('<canvas/>');\n",
-       "    canvas.addClass('mpl-canvas');\n",
-       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
        "\n",
-       "    this.canvas = canvas[0];\n",
-       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "    this.context = canvas.getContext('2d');\n",
        "\n",
-       "    var backingStore = this.context.backingStorePixelRatio ||\n",
-       "\tthis.context.webkitBackingStorePixelRatio ||\n",
-       "\tthis.context.mozBackingStorePixelRatio ||\n",
-       "\tthis.context.msBackingStorePixelRatio ||\n",
-       "\tthis.context.oBackingStorePixelRatio ||\n",
-       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
        "\n",
-       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
        "\n",
-       "    var rubberband = $('<canvas/>');\n",
-       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
        "\n",
-       "    var pass_mouse_events = true;\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
        "\n",
-       "    canvas_div.resizable({\n",
-       "        start: function(event, ui) {\n",
-       "            pass_mouse_events = false;\n",
-       "        },\n",
-       "        resize: function(event, ui) {\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
-       "        stop: function(event, ui) {\n",
-       "            pass_mouse_events = true;\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
        "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
        "\n",
-       "    function mouse_event_fn(event) {\n",
-       "        if (pass_mouse_events)\n",
-       "            return fig.mouse_event(event, event['data']);\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
-       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'dblclick',\n",
+       "        on_mouse_event_closure('dblclick')\n",
+       "    );\n",
        "    // Throttle sequential mouse events to 1 every 20ms.\n",
-       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
        "\n",
-       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
-       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
        "\n",
-       "    canvas_div.on(\"wheel\", function (event) {\n",
-       "        event = event.originalEvent;\n",
-       "        event['data'] = 'scroll'\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
        "        if (event.deltaY < 0) {\n",
        "            event.step = 1;\n",
        "        } else {\n",
        "            event.step = -1;\n",
        "        }\n",
-       "        mouse_event_fn(event);\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
        "    });\n",
        "\n",
-       "    canvas_div.append(canvas);\n",
-       "    canvas_div.append(rubberband);\n",
-       "\n",
-       "    this.rubberband = rubberband;\n",
-       "    this.rubberband_canvas = rubberband[0];\n",
-       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
-       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
        "\n",
-       "    this._resize_canvas = function(width, height) {\n",
-       "        // Keep the size of the canvas, canvas container, and rubber band\n",
-       "        // canvas in synch.\n",
-       "        canvas_div.css('width', width)\n",
-       "        canvas_div.css('height', height)\n",
-       "\n",
-       "        canvas.attr('width', width * mpl.ratio);\n",
-       "        canvas.attr('height', height * mpl.ratio);\n",
-       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
-       "\n",
-       "        rubberband.attr('width', width);\n",
-       "        rubberband.attr('height', height);\n",
-       "    }\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
        "\n",
-       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
-       "    // upon first draw.\n",
-       "    this._resize_canvas(600, 600);\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
        "\n",
        "    // Disable right mouse context menu.\n",
-       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
        "        return false;\n",
        "    });\n",
        "\n",
-       "    function set_focus () {\n",
+       "    function set_focus() {\n",
        "        canvas.focus();\n",
        "        canvas_div.focus();\n",
        "    }\n",
        "\n",
        "    window.setTimeout(set_focus, 100);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
        "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
        "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
        "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
        "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
        "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
        "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
        "\n",
        "        if (!name) {\n",
-       "            // put a spacer in here.\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
        "            continue;\n",
        "        }\n",
-       "        var button = $('<button/>');\n",
-       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
-       "                        'ui-button-icon-only');\n",
-       "        button.attr('role', 'button');\n",
-       "        button.attr('aria-disabled', 'false');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
        "\n",
-       "        var icon_img = $('<span/>');\n",
-       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
-       "        icon_img.addClass(image);\n",
-       "        icon_img.addClass('ui-corner-all');\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
        "\n",
-       "        var tooltip_span = $('<span/>');\n",
-       "        tooltip_span.addClass('ui-button-text');\n",
-       "        tooltip_span.html(tooltip);\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
        "\n",
-       "        button.append(icon_img);\n",
-       "        button.append(tooltip_span);\n",
-       "\n",
-       "        nav_element.append(button);\n",
+       "        buttonGroup.appendChild(button);\n",
        "    }\n",
        "\n",
-       "    var fmt_picker_span = $('<span/>');\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
        "\n",
-       "    var fmt_picker = $('<select/>');\n",
-       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
-       "    fmt_picker_span.append(fmt_picker);\n",
-       "    nav_element.append(fmt_picker_span);\n",
-       "    this.format_dropdown = fmt_picker[0];\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
        "\n",
        "    for (var ind in mpl.extensions) {\n",
        "        var fmt = mpl.extensions[ind];\n",
-       "        var option = $(\n",
-       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
-       "        fmt_picker.append(option);\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
        "    }\n",
        "\n",
-       "    // Add hover states to the ui-buttons\n",
-       "    $( \".ui-button\" ).hover(\n",
-       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
-       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
-       "    );\n",
-       "\n",
-       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
-       "}\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
        "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
        "    // which will in turn request a refresh of the image.\n",
-       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
-       "}\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
        "    properties['type'] = type;\n",
        "    properties['figure_id'] = this.id;\n",
        "    this.ws.send(JSON.stringify(properties));\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
        "    if (!this.waiting) {\n",
        "        this.waiting = true;\n",
-       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
        "    }\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
        "    var format_dropdown = fig.format_dropdown;\n",
        "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
        "    fig.ondownload(fig, format);\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
        "    var size = msg['size'];\n",
-       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
-       "        fig._resize_canvas(size[0], size[1]);\n",
-       "        fig.send_message(\"refresh\", {});\n",
-       "    };\n",
-       "}\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
-       "    var x0 = msg['x0'] / mpl.ratio;\n",
-       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
-       "    var x1 = msg['x1'] / mpl.ratio;\n",
-       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
        "    x0 = Math.floor(x0) + 0.5;\n",
        "    y0 = Math.floor(y0) + 0.5;\n",
        "    x1 = Math.floor(x1) + 0.5;\n",
@@ -535,78 +618,96 @@
        "    var height = Math.abs(y1 - y0);\n",
        "\n",
        "    fig.rubberband_context.clearRect(\n",
-       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
        "\n",
        "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
        "    // Updates the figure title.\n",
        "    fig.header.textContent = msg['label'];\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
-       "    var cursor = msg['cursor'];\n",
-       "    switch(cursor)\n",
-       "    {\n",
-       "    case 0:\n",
-       "        cursor = 'pointer';\n",
-       "        break;\n",
-       "    case 1:\n",
-       "        cursor = 'default';\n",
-       "        break;\n",
-       "    case 2:\n",
-       "        cursor = 'crosshair';\n",
-       "        break;\n",
-       "    case 3:\n",
-       "        cursor = 'move';\n",
-       "        break;\n",
-       "    }\n",
-       "    fig.rubberband_canvas.style.cursor = cursor;\n",
-       "}\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
        "    fig.message.textContent = msg['message'];\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
        "    // Request the server to send over a new figure.\n",
        "    fig.send_draw_message();\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
        "    fig.image_mode = msg['mode'];\n",
-       "}\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
        "    // Called whenever the canvas gets updated.\n",
-       "    this.send_message(\"ack\", {});\n",
-       "}\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
        "\n",
        "// A function to construct a web socket function for onmessage handling.\n",
        "// Called in the figure constructor.\n",
-       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
        "    return function socket_on_message(evt) {\n",
        "        if (evt.data instanceof Blob) {\n",
-       "            /* FIXME: We get \"Resource interpreted as Image but\n",
-       "             * transferred with MIME type text/plain:\" errors on\n",
-       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
-       "             * to be part of the websocket stream */\n",
-       "            evt.data.type = \"image/png\";\n",
+       "            var img = evt.data;\n",
+       "            if (img.type !== 'image/png') {\n",
+       "                /* FIXME: We get \"Resource interpreted as Image but\n",
+       "                 * transferred with MIME type text/plain:\" errors on\n",
+       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "                 * to be part of the websocket stream */\n",
+       "                img.type = 'image/png';\n",
+       "            }\n",
        "\n",
        "            /* Free the memory for the previous frames */\n",
        "            if (fig.imageObj.src) {\n",
        "                (window.URL || window.webkitURL).revokeObjectURL(\n",
-       "                    fig.imageObj.src);\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
        "            }\n",
        "\n",
        "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
-       "                evt.data);\n",
+       "                img\n",
+       "            );\n",
        "            fig.updated_canvas_event();\n",
        "            fig.waiting = false;\n",
        "            return;\n",
-       "        }\n",
-       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
        "            fig.imageObj.src = evt.data;\n",
        "            fig.updated_canvas_event();\n",
        "            fig.waiting = false;\n",
@@ -619,9 +720,12 @@
        "        // Call the  \"handle_{type}\" callback, which takes\n",
        "        // the figure and JSON message as its only arguments.\n",
        "        try {\n",
-       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "            var callback = fig['handle_' + msg_type];\n",
        "        } catch (e) {\n",
-       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
        "            return;\n",
        "        }\n",
        "\n",
@@ -630,62 +734,74 @@
        "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
        "                callback(fig, msg);\n",
        "            } catch (e) {\n",
-       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
        "            }\n",
        "        }\n",
        "    };\n",
-       "}\n",
+       "};\n",
        "\n",
-       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
-       "mpl.findpos = function(e) {\n",
+       "// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
        "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
        "    var targ;\n",
-       "    if (!e)\n",
+       "    if (!e) {\n",
        "        e = window.event;\n",
-       "    if (e.target)\n",
+       "    }\n",
+       "    if (e.target) {\n",
        "        targ = e.target;\n",
-       "    else if (e.srcElement)\n",
+       "    } else if (e.srcElement) {\n",
        "        targ = e.srcElement;\n",
-       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
        "        targ = targ.parentNode;\n",
+       "    }\n",
        "\n",
-       "    // jQuery normalizes the pageX and pageY\n",
        "    // pageX,Y are the mouse positions relative to the document\n",
-       "    // offset() returns the position of the element relative to the document\n",
-       "    var x = e.pageX - $(targ).offset().left;\n",
-       "    var y = e.pageY - $(targ).offset().top;\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
        "\n",
-       "    return {\"x\": x, \"y\": y};\n",
+       "    return { x: x, y: y };\n",
        "};\n",
        "\n",
        "/*\n",
        " * return a copy of an object with only non-object keys\n",
        " * we need this to avoid circular references\n",
-       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " * https://stackoverflow.com/a/24161582/3208463\n",
        " */\n",
-       "function simpleKeys (original) {\n",
-       "  return Object.keys(original).reduce(function (obj, key) {\n",
-       "    if (typeof original[key] !== 'object')\n",
-       "        obj[key] = original[key]\n",
-       "    return obj;\n",
-       "  }, {});\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
        "}\n",
        "\n",
-       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
-       "    var canvas_pos = mpl.findpos(event)\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
        "\n",
-       "    if (name === 'button_press')\n",
-       "    {\n",
+       "    if (name === 'button_press') {\n",
        "        this.canvas.focus();\n",
        "        this.canvas_div.focus();\n",
        "    }\n",
        "\n",
-       "    var x = canvas_pos.x * mpl.ratio;\n",
-       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
        "\n",
-       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
-       "                             step: event.step,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
        "\n",
        "    /* This prevents the web browser from automatically changing to\n",
        "     * the text insertion cursor when the button is pressed.  We want\n",
@@ -693,265 +809,337 @@
        "     * 'cursor' event from matplotlib */\n",
        "    event.preventDefault();\n",
        "    return false;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
        "    // Handle any extra behaviour associated with a key event\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "};\n",
        "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
        "    // Prevent repeat events\n",
-       "    if (name == 'key_press')\n",
-       "    {\n",
-       "        if (event.which === this._key)\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.key === this._key) {\n",
        "            return;\n",
-       "        else\n",
-       "            this._key = event.which;\n",
+       "        } else {\n",
+       "            this._key = event.key;\n",
+       "        }\n",
        "    }\n",
-       "    if (name == 'key_release')\n",
+       "    if (name === 'key_release') {\n",
        "        this._key = null;\n",
+       "    }\n",
        "\n",
        "    var value = '';\n",
-       "    if (event.ctrlKey && event.which != 17)\n",
-       "        value += \"ctrl+\";\n",
-       "    if (event.altKey && event.which != 18)\n",
-       "        value += \"alt+\";\n",
-       "    if (event.shiftKey && event.which != 16)\n",
-       "        value += \"shift+\";\n",
+       "    if (event.ctrlKey && event.key !== 'Control') {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    else if (event.altKey && event.key !== 'Alt') {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
        "\n",
-       "    value += 'k';\n",
-       "    value += event.which.toString();\n",
+       "    value += 'k' + event.key;\n",
        "\n",
        "    this._key_event_extra(event, name);\n",
        "\n",
-       "    this.send_message(name, {key: value,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
        "    return false;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
-       "    if (name == 'download') {\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
        "        this.handle_save(this, null);\n",
        "    } else {\n",
-       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
        "    }\n",
        "};\n",
        "\n",
-       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
        "    this.message.textContent = tooltip;\n",
        "};\n",
-       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
        "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
        "    // object with the appropriate methods. Currently this is a non binary\n",
        "    // socket, so there is still some room for performance tuning.\n",
        "    var ws = {};\n",
        "\n",
-       "    ws.close = function() {\n",
-       "        comm.close()\n",
+       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
+       "    ws.readyState = comm.kernel.ws.readyState;\n",
+       "    function updateReadyState(_event) {\n",
+       "        if (comm.kernel.ws) {\n",
+       "            ws.readyState = comm.kernel.ws.readyState;\n",
+       "        } else {\n",
+       "            ws.readyState = 3; // Closed state.\n",
+       "        }\n",
+       "    }\n",
+       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
        "    };\n",
-       "    ws.send = function(m) {\n",
+       "    ws.send = function (m) {\n",
        "        //console.log('sending', m);\n",
        "        comm.send(m);\n",
        "    };\n",
        "    // Register the callback with on_msg.\n",
-       "    comm.on_msg(function(msg) {\n",
+       "    comm.on_msg(function (msg) {\n",
        "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        var data = msg['content']['data'];\n",
+       "        if (data['blob'] !== undefined) {\n",
+       "            data = {\n",
+       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
+       "            };\n",
+       "        }\n",
        "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
-       "        ws.onmessage(msg['content']['data'])\n",
+       "        ws.onmessage(data);\n",
        "    });\n",
        "    return ws;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
        "    // This is the function which gets called when the mpl process\n",
        "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
        "\n",
        "    var id = msg.content.data.id;\n",
        "    // Get hold of the div created by the display call when the Comm\n",
        "    // socket was opened in Python.\n",
-       "    var element = $(\"#\" + id);\n",
-       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
        "\n",
-       "    function ondownload(figure, format) {\n",
-       "        window.open(figure.imageObj.src);\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
        "    }\n",
        "\n",
-       "    var fig = new mpl.figure(id, ws_proxy,\n",
-       "                           ondownload,\n",
-       "                           element.get(0));\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
        "\n",
        "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
        "    // web socket which is closed, not our websocket->open comm proxy.\n",
        "    ws_proxy.onopen();\n",
        "\n",
-       "    fig.parent_element = element.get(0);\n",
+       "    fig.parent_element = element;\n",
        "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
        "    if (!fig.cell_info) {\n",
-       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
        "        return;\n",
        "    }\n",
-       "\n",
-       "    var output_index = fig.cell_info[2]\n",
-       "    var cell = fig.cell_info[0];\n",
-       "\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
        "};\n",
        "\n",
-       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
-       "    var width = fig.canvas.width/mpl.ratio\n",
-       "    fig.root.unbind('remove')\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
        "\n",
        "    // Update the output cell to use the data from the current canvas.\n",
        "    fig.push_to_output();\n",
        "    var dataURL = fig.canvas.toDataURL();\n",
        "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
        "    // the notebook keyboard shortcuts fail.\n",
-       "    IPython.keyboard_manager.enable()\n",
-       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
        "    fig.close_ws(fig, msg);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
        "    fig.send_message('closing', msg);\n",
        "    // fig.ws.close()\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
        "    // Turn the data on the canvas into data in the output cell.\n",
-       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var width = this.canvas.width / this.ratio;\n",
        "    var dataURL = this.canvas.toDataURL();\n",
-       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "}\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
        "    // Tell IPython that the notebook contents must change.\n",
        "    IPython.notebook.set_dirty(true);\n",
-       "    this.send_message(\"ack\", {});\n",
+       "    this.send_message('ack', {});\n",
        "    var fig = this;\n",
        "    // Wait a second, then push the new image to the DOM so\n",
        "    // that it is saved nicely (might be nice to debounce this).\n",
-       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
-       "}\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
        "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
        "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
        "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
        "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
        "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
        "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
        "\n",
-       "        if (!name) { continue; };\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
        "\n",
-       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
-       "        nav_element.append(button);\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
        "    }\n",
        "\n",
        "    // Add the status bar.\n",
-       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
        "\n",
        "    // Add the close button to the window.\n",
-       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
-       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
-       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
-       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
-       "    buttongrp.append(button);\n",
-       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
-       "    titlebar.prepend(buttongrp);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function(el){\n",
-       "    var fig = this\n",
-       "    el.on(\"remove\", function(){\n",
-       "\tfig.close_ws(fig, {});\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
        "    });\n",
-       "}\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
        "    // this is important to make the div 'focusable\n",
-       "    el.attr('tabindex', 0)\n",
+       "    el.setAttribute('tabindex', 0);\n",
        "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
        "    // off when our div gets focus\n",
        "\n",
        "    // location in version 3\n",
        "    if (IPython.notebook.keyboard_manager) {\n",
        "        IPython.notebook.keyboard_manager.register_events(el);\n",
-       "    }\n",
-       "    else {\n",
+       "    } else {\n",
        "        // location in version 2\n",
        "        IPython.keyboard_manager.register_events(el);\n",
        "    }\n",
+       "};\n",
        "\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
-       "    var manager = IPython.notebook.keyboard_manager;\n",
-       "    if (!manager)\n",
-       "        manager = IPython.keyboard_manager;\n",
-       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
        "    // Check for shift+enter\n",
-       "    if (event.shiftKey && event.which == 13) {\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
        "        this.canvas_div.blur();\n",
        "        // select the cell after this one\n",
        "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
        "        IPython.notebook.select(index + 1);\n",
        "    }\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
        "    fig.ondownload(fig, null);\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.find_output_cell = function(html_output) {\n",
+       "mpl.find_output_cell = function (html_output) {\n",
        "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
        "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
        "    // IPython event is triggered only after the cells have been serialised, which for\n",
        "    // our purposes (turning an active figure into a static one), is too late.\n",
        "    var cells = IPython.notebook.get_cells();\n",
        "    var ncells = cells.length;\n",
-       "    for (var i=0; i<ncells; i++) {\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
        "        var cell = cells[i];\n",
-       "        if (cell.cell_type === 'code'){\n",
-       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
        "                var data = cell.output_area.outputs[j];\n",
        "                if (data.data) {\n",
        "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
        "                    data = data.data;\n",
        "                }\n",
-       "                if (data['text/html'] == html_output) {\n",
+       "                if (data['text/html'] === html_output) {\n",
        "                    return [cell, data, j];\n",
        "                }\n",
        "            }\n",
        "        }\n",
        "    }\n",
-       "}\n",
+       "};\n",
        "\n",
        "// Register the function which deals with the matplotlib target/channel.\n",
        "// The kernel may be null if the page has been refreshed.\n",
-       "if (IPython.notebook.kernel != null) {\n",
-       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
        "}\n"
       ],
       "text/plain": [
@@ -964,7 +1152,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"640\">"
+       "<img src=\"\" width=\"640\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -992,13 +1180,13 @@
     "    'Quantile Regression\\n'\n",
     "    'Engels\\' 1857 Study of Household Expenditure on Food'\n",
     ")\n",
-    "plt.show();"
+    "plt.show()"
    ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -1012,7 +1200,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   }
  },
  "nbformat": 4,
diff --git a/curve_and_surface_fitting/dim2_spline_ts_sctr.ipynb b/curve_and_surface_fitting/dim2_spline_ts_sctr.ipynb
index 2f38f43..1defa4a 100644
--- a/curve_and_surface_fitting/dim2_spline_ts_sctr.ipynb
+++ b/curve_and_surface_fitting/dim2_spline_ts_sctr.ipynb
@@ -112,36 +112,38 @@
      "data": {
       "application/javascript": [
        "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
        "window.mpl = {};\n",
        "\n",
-       "\n",
-       "mpl.get_websocket_type = function() {\n",
-       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
        "        return WebSocket;\n",
-       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
        "        return MozWebSocket;\n",
        "    } else {\n",
-       "        alert('Your browser does not have WebSocket support. ' +\n",
-       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
-       "              'Firefox 4 and 5 are also supported but you ' +\n",
-       "              'have to enable WebSockets in about:config.');\n",
-       "    };\n",
-       "}\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
        "    this.id = figure_id;\n",
        "\n",
        "    this.ws = websocket;\n",
        "\n",
-       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
        "\n",
        "    if (!this.supports_binary) {\n",
-       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
        "        if (warnings) {\n",
        "            warnings.style.display = 'block';\n",
-       "            warnings.textContent = (\n",
-       "                \"This browser does not support binary websocket messages. \" +\n",
-       "                    \"Performance may be slow.\");\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
        "        }\n",
        "    }\n",
        "\n",
@@ -156,11 +158,11 @@
        "\n",
        "    this.image_mode = 'full';\n",
        "\n",
-       "    this.root = $('<div/>');\n",
-       "    this._root_extra_style(this.root)\n",
-       "    this.root.attr('style', 'display: inline-block');\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
        "\n",
-       "    $(parent_element).append(this.root);\n",
+       "    parent_element.appendChild(this.root);\n",
        "\n",
        "    this._init_header(this);\n",
        "    this._init_canvas(this);\n",
@@ -170,285 +172,366 @@
        "\n",
        "    this.waiting = false;\n",
        "\n",
-       "    this.ws.onopen =  function () {\n",
-       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
-       "            fig.send_message(\"send_image_mode\", {});\n",
-       "            if (mpl.ratio != 1) {\n",
-       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
-       "            }\n",
-       "            fig.send_message(\"refresh\", {});\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_device_pixel_ratio', {\n",
+       "                device_pixel_ratio: fig.ratio,\n",
+       "            });\n",
        "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
        "\n",
-       "    this.imageObj.onload = function() {\n",
-       "            if (fig.image_mode == 'full') {\n",
-       "                // Full images could contain transparency (where diff images\n",
-       "                // almost always do), so we need to clear the canvas so that\n",
-       "                // there is no ghosting.\n",
-       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
-       "            }\n",
-       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
-       "        };\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
        "\n",
-       "    this.imageObj.onunload = function() {\n",
+       "    this.imageObj.onunload = function () {\n",
        "        fig.ws.close();\n",
-       "    }\n",
+       "    };\n",
        "\n",
        "    this.ws.onmessage = this._make_on_message_function(this);\n",
        "\n",
        "    this.ondownload = ondownload;\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._init_header = function() {\n",
-       "    var titlebar = $(\n",
-       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
-       "        'ui-helper-clearfix\"/>');\n",
-       "    var titletext = $(\n",
-       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
-       "        'text-align: center; padding: 3px;\"/>');\n",
-       "    titlebar.append(titletext)\n",
-       "    this.root.append(titlebar);\n",
-       "    this.header = titletext[0];\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
-       "\n",
-       "}\n",
+       "};\n",
        "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
        "\n",
-       "}\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
        "\n",
-       "mpl.figure.prototype._init_canvas = function() {\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var canvas_div = $('<div/>');\n",
-       "\n",
-       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
        "\n",
-       "    function canvas_keyboard_event(event) {\n",
-       "        return fig.key_event(event, event['data']);\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
-       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
-       "    this.canvas_div = canvas_div\n",
-       "    this._canvas_extra_style(canvas_div)\n",
-       "    this.root.append(canvas_div);\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
        "\n",
-       "    var canvas = $('<canvas/>');\n",
-       "    canvas.addClass('mpl-canvas');\n",
-       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
        "\n",
-       "    this.canvas = canvas[0];\n",
-       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "    this.context = canvas.getContext('2d');\n",
        "\n",
-       "    var backingStore = this.context.backingStorePixelRatio ||\n",
-       "\tthis.context.webkitBackingStorePixelRatio ||\n",
-       "\tthis.context.mozBackingStorePixelRatio ||\n",
-       "\tthis.context.msBackingStorePixelRatio ||\n",
-       "\tthis.context.oBackingStorePixelRatio ||\n",
-       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
        "\n",
-       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
        "\n",
-       "    var rubberband = $('<canvas/>');\n",
-       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
        "\n",
-       "    var pass_mouse_events = true;\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
        "\n",
-       "    canvas_div.resizable({\n",
-       "        start: function(event, ui) {\n",
-       "            pass_mouse_events = false;\n",
-       "        },\n",
-       "        resize: function(event, ui) {\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
-       "        stop: function(event, ui) {\n",
-       "            pass_mouse_events = true;\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
        "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
        "\n",
-       "    function mouse_event_fn(event) {\n",
-       "        if (pass_mouse_events)\n",
-       "            return fig.mouse_event(event, event['data']);\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
-       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'dblclick',\n",
+       "        on_mouse_event_closure('dblclick')\n",
+       "    );\n",
        "    // Throttle sequential mouse events to 1 every 20ms.\n",
-       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
        "\n",
-       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
-       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
        "\n",
-       "    canvas_div.on(\"wheel\", function (event) {\n",
-       "        event = event.originalEvent;\n",
-       "        event['data'] = 'scroll'\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
        "        if (event.deltaY < 0) {\n",
        "            event.step = 1;\n",
        "        } else {\n",
        "            event.step = -1;\n",
        "        }\n",
-       "        mouse_event_fn(event);\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
        "    });\n",
        "\n",
-       "    canvas_div.append(canvas);\n",
-       "    canvas_div.append(rubberband);\n",
-       "\n",
-       "    this.rubberband = rubberband;\n",
-       "    this.rubberband_canvas = rubberband[0];\n",
-       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
-       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
        "\n",
-       "    this._resize_canvas = function(width, height) {\n",
-       "        // Keep the size of the canvas, canvas container, and rubber band\n",
-       "        // canvas in synch.\n",
-       "        canvas_div.css('width', width)\n",
-       "        canvas_div.css('height', height)\n",
-       "\n",
-       "        canvas.attr('width', width * mpl.ratio);\n",
-       "        canvas.attr('height', height * mpl.ratio);\n",
-       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
-       "\n",
-       "        rubberband.attr('width', width);\n",
-       "        rubberband.attr('height', height);\n",
-       "    }\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
        "\n",
-       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
-       "    // upon first draw.\n",
-       "    this._resize_canvas(600, 600);\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
        "\n",
        "    // Disable right mouse context menu.\n",
-       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
        "        return false;\n",
        "    });\n",
        "\n",
-       "    function set_focus () {\n",
+       "    function set_focus() {\n",
        "        canvas.focus();\n",
        "        canvas_div.focus();\n",
        "    }\n",
        "\n",
        "    window.setTimeout(set_focus, 100);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
        "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
        "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
        "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
        "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
        "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
        "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
        "\n",
        "        if (!name) {\n",
-       "            // put a spacer in here.\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
        "            continue;\n",
        "        }\n",
-       "        var button = $('<button/>');\n",
-       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
-       "                        'ui-button-icon-only');\n",
-       "        button.attr('role', 'button');\n",
-       "        button.attr('aria-disabled', 'false');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
        "\n",
-       "        var icon_img = $('<span/>');\n",
-       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
-       "        icon_img.addClass(image);\n",
-       "        icon_img.addClass('ui-corner-all');\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
        "\n",
-       "        var tooltip_span = $('<span/>');\n",
-       "        tooltip_span.addClass('ui-button-text');\n",
-       "        tooltip_span.html(tooltip);\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
        "\n",
-       "        button.append(icon_img);\n",
-       "        button.append(tooltip_span);\n",
-       "\n",
-       "        nav_element.append(button);\n",
+       "        buttonGroup.appendChild(button);\n",
        "    }\n",
        "\n",
-       "    var fmt_picker_span = $('<span/>');\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
        "\n",
-       "    var fmt_picker = $('<select/>');\n",
-       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
-       "    fmt_picker_span.append(fmt_picker);\n",
-       "    nav_element.append(fmt_picker_span);\n",
-       "    this.format_dropdown = fmt_picker[0];\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
        "\n",
        "    for (var ind in mpl.extensions) {\n",
        "        var fmt = mpl.extensions[ind];\n",
-       "        var option = $(\n",
-       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
-       "        fmt_picker.append(option);\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
        "    }\n",
        "\n",
-       "    // Add hover states to the ui-buttons\n",
-       "    $( \".ui-button\" ).hover(\n",
-       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
-       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
-       "    );\n",
-       "\n",
-       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
-       "}\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
        "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
        "    // which will in turn request a refresh of the image.\n",
-       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
-       "}\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
        "    properties['type'] = type;\n",
        "    properties['figure_id'] = this.id;\n",
        "    this.ws.send(JSON.stringify(properties));\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
        "    if (!this.waiting) {\n",
        "        this.waiting = true;\n",
-       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
        "    }\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
        "    var format_dropdown = fig.format_dropdown;\n",
        "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
        "    fig.ondownload(fig, format);\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
        "    var size = msg['size'];\n",
-       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
-       "        fig._resize_canvas(size[0], size[1]);\n",
-       "        fig.send_message(\"refresh\", {});\n",
-       "    };\n",
-       "}\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
-       "    var x0 = msg['x0'] / mpl.ratio;\n",
-       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
-       "    var x1 = msg['x1'] / mpl.ratio;\n",
-       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
        "    x0 = Math.floor(x0) + 0.5;\n",
        "    y0 = Math.floor(y0) + 0.5;\n",
        "    x1 = Math.floor(x1) + 0.5;\n",
@@ -459,78 +542,96 @@
        "    var height = Math.abs(y1 - y0);\n",
        "\n",
        "    fig.rubberband_context.clearRect(\n",
-       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
        "\n",
        "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
        "    // Updates the figure title.\n",
        "    fig.header.textContent = msg['label'];\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
-       "    var cursor = msg['cursor'];\n",
-       "    switch(cursor)\n",
-       "    {\n",
-       "    case 0:\n",
-       "        cursor = 'pointer';\n",
-       "        break;\n",
-       "    case 1:\n",
-       "        cursor = 'default';\n",
-       "        break;\n",
-       "    case 2:\n",
-       "        cursor = 'crosshair';\n",
-       "        break;\n",
-       "    case 3:\n",
-       "        cursor = 'move';\n",
-       "        break;\n",
-       "    }\n",
-       "    fig.rubberband_canvas.style.cursor = cursor;\n",
-       "}\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
        "    fig.message.textContent = msg['message'];\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
        "    // Request the server to send over a new figure.\n",
        "    fig.send_draw_message();\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
        "    fig.image_mode = msg['mode'];\n",
-       "}\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
        "    // Called whenever the canvas gets updated.\n",
-       "    this.send_message(\"ack\", {});\n",
-       "}\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
        "\n",
        "// A function to construct a web socket function for onmessage handling.\n",
        "// Called in the figure constructor.\n",
-       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
        "    return function socket_on_message(evt) {\n",
        "        if (evt.data instanceof Blob) {\n",
-       "            /* FIXME: We get \"Resource interpreted as Image but\n",
-       "             * transferred with MIME type text/plain:\" errors on\n",
-       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
-       "             * to be part of the websocket stream */\n",
-       "            evt.data.type = \"image/png\";\n",
+       "            var img = evt.data;\n",
+       "            if (img.type !== 'image/png') {\n",
+       "                /* FIXME: We get \"Resource interpreted as Image but\n",
+       "                 * transferred with MIME type text/plain:\" errors on\n",
+       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "                 * to be part of the websocket stream */\n",
+       "                img.type = 'image/png';\n",
+       "            }\n",
        "\n",
        "            /* Free the memory for the previous frames */\n",
        "            if (fig.imageObj.src) {\n",
        "                (window.URL || window.webkitURL).revokeObjectURL(\n",
-       "                    fig.imageObj.src);\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
        "            }\n",
        "\n",
        "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
-       "                evt.data);\n",
+       "                img\n",
+       "            );\n",
        "            fig.updated_canvas_event();\n",
        "            fig.waiting = false;\n",
        "            return;\n",
-       "        }\n",
-       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
        "            fig.imageObj.src = evt.data;\n",
        "            fig.updated_canvas_event();\n",
        "            fig.waiting = false;\n",
@@ -543,9 +644,12 @@
        "        // Call the  \"handle_{type}\" callback, which takes\n",
        "        // the figure and JSON message as its only arguments.\n",
        "        try {\n",
-       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "            var callback = fig['handle_' + msg_type];\n",
        "        } catch (e) {\n",
-       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
        "            return;\n",
        "        }\n",
        "\n",
@@ -554,62 +658,74 @@
        "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
        "                callback(fig, msg);\n",
        "            } catch (e) {\n",
-       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
        "            }\n",
        "        }\n",
        "    };\n",
-       "}\n",
+       "};\n",
        "\n",
-       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
-       "mpl.findpos = function(e) {\n",
+       "// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
        "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
        "    var targ;\n",
-       "    if (!e)\n",
+       "    if (!e) {\n",
        "        e = window.event;\n",
-       "    if (e.target)\n",
+       "    }\n",
+       "    if (e.target) {\n",
        "        targ = e.target;\n",
-       "    else if (e.srcElement)\n",
+       "    } else if (e.srcElement) {\n",
        "        targ = e.srcElement;\n",
-       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
        "        targ = targ.parentNode;\n",
+       "    }\n",
        "\n",
-       "    // jQuery normalizes the pageX and pageY\n",
        "    // pageX,Y are the mouse positions relative to the document\n",
-       "    // offset() returns the position of the element relative to the document\n",
-       "    var x = e.pageX - $(targ).offset().left;\n",
-       "    var y = e.pageY - $(targ).offset().top;\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
        "\n",
-       "    return {\"x\": x, \"y\": y};\n",
+       "    return { x: x, y: y };\n",
        "};\n",
        "\n",
        "/*\n",
        " * return a copy of an object with only non-object keys\n",
        " * we need this to avoid circular references\n",
-       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " * https://stackoverflow.com/a/24161582/3208463\n",
        " */\n",
-       "function simpleKeys (original) {\n",
-       "  return Object.keys(original).reduce(function (obj, key) {\n",
-       "    if (typeof original[key] !== 'object')\n",
-       "        obj[key] = original[key]\n",
-       "    return obj;\n",
-       "  }, {});\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
        "}\n",
        "\n",
-       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
-       "    var canvas_pos = mpl.findpos(event)\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
        "\n",
-       "    if (name === 'button_press')\n",
-       "    {\n",
+       "    if (name === 'button_press') {\n",
        "        this.canvas.focus();\n",
        "        this.canvas_div.focus();\n",
        "    }\n",
        "\n",
-       "    var x = canvas_pos.x * mpl.ratio;\n",
-       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
        "\n",
-       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
-       "                             step: event.step,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
        "\n",
        "    /* This prevents the web browser from automatically changing to\n",
        "     * the text insertion cursor when the button is pressed.  We want\n",
@@ -617,265 +733,337 @@
        "     * 'cursor' event from matplotlib */\n",
        "    event.preventDefault();\n",
        "    return false;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
        "    // Handle any extra behaviour associated with a key event\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "};\n",
        "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
        "    // Prevent repeat events\n",
-       "    if (name == 'key_press')\n",
-       "    {\n",
-       "        if (event.which === this._key)\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.key === this._key) {\n",
        "            return;\n",
-       "        else\n",
-       "            this._key = event.which;\n",
+       "        } else {\n",
+       "            this._key = event.key;\n",
+       "        }\n",
        "    }\n",
-       "    if (name == 'key_release')\n",
+       "    if (name === 'key_release') {\n",
        "        this._key = null;\n",
+       "    }\n",
        "\n",
        "    var value = '';\n",
-       "    if (event.ctrlKey && event.which != 17)\n",
-       "        value += \"ctrl+\";\n",
-       "    if (event.altKey && event.which != 18)\n",
-       "        value += \"alt+\";\n",
-       "    if (event.shiftKey && event.which != 16)\n",
-       "        value += \"shift+\";\n",
+       "    if (event.ctrlKey && event.key !== 'Control') {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    else if (event.altKey && event.key !== 'Alt') {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
        "\n",
-       "    value += 'k';\n",
-       "    value += event.which.toString();\n",
+       "    value += 'k' + event.key;\n",
        "\n",
        "    this._key_event_extra(event, name);\n",
        "\n",
-       "    this.send_message(name, {key: value,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
        "    return false;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
-       "    if (name == 'download') {\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
        "        this.handle_save(this, null);\n",
        "    } else {\n",
-       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
        "    }\n",
        "};\n",
        "\n",
-       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
        "    this.message.textContent = tooltip;\n",
        "};\n",
-       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
        "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
        "    // object with the appropriate methods. Currently this is a non binary\n",
        "    // socket, so there is still some room for performance tuning.\n",
        "    var ws = {};\n",
        "\n",
-       "    ws.close = function() {\n",
-       "        comm.close()\n",
+       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
+       "    ws.readyState = comm.kernel.ws.readyState;\n",
+       "    function updateReadyState(_event) {\n",
+       "        if (comm.kernel.ws) {\n",
+       "            ws.readyState = comm.kernel.ws.readyState;\n",
+       "        } else {\n",
+       "            ws.readyState = 3; // Closed state.\n",
+       "        }\n",
+       "    }\n",
+       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
        "    };\n",
-       "    ws.send = function(m) {\n",
+       "    ws.send = function (m) {\n",
        "        //console.log('sending', m);\n",
        "        comm.send(m);\n",
        "    };\n",
        "    // Register the callback with on_msg.\n",
-       "    comm.on_msg(function(msg) {\n",
+       "    comm.on_msg(function (msg) {\n",
        "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        var data = msg['content']['data'];\n",
+       "        if (data['blob'] !== undefined) {\n",
+       "            data = {\n",
+       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
+       "            };\n",
+       "        }\n",
        "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
-       "        ws.onmessage(msg['content']['data'])\n",
+       "        ws.onmessage(data);\n",
        "    });\n",
        "    return ws;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
        "    // This is the function which gets called when the mpl process\n",
        "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
        "\n",
        "    var id = msg.content.data.id;\n",
        "    // Get hold of the div created by the display call when the Comm\n",
        "    // socket was opened in Python.\n",
-       "    var element = $(\"#\" + id);\n",
-       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
        "\n",
-       "    function ondownload(figure, format) {\n",
-       "        window.open(figure.imageObj.src);\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
        "    }\n",
        "\n",
-       "    var fig = new mpl.figure(id, ws_proxy,\n",
-       "                           ondownload,\n",
-       "                           element.get(0));\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
        "\n",
        "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
        "    // web socket which is closed, not our websocket->open comm proxy.\n",
        "    ws_proxy.onopen();\n",
        "\n",
-       "    fig.parent_element = element.get(0);\n",
+       "    fig.parent_element = element;\n",
        "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
        "    if (!fig.cell_info) {\n",
-       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
        "        return;\n",
        "    }\n",
-       "\n",
-       "    var output_index = fig.cell_info[2]\n",
-       "    var cell = fig.cell_info[0];\n",
-       "\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
        "};\n",
        "\n",
-       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
-       "    var width = fig.canvas.width/mpl.ratio\n",
-       "    fig.root.unbind('remove')\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
        "\n",
        "    // Update the output cell to use the data from the current canvas.\n",
        "    fig.push_to_output();\n",
        "    var dataURL = fig.canvas.toDataURL();\n",
        "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
        "    // the notebook keyboard shortcuts fail.\n",
-       "    IPython.keyboard_manager.enable()\n",
-       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
        "    fig.close_ws(fig, msg);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
        "    fig.send_message('closing', msg);\n",
        "    // fig.ws.close()\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
        "    // Turn the data on the canvas into data in the output cell.\n",
-       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var width = this.canvas.width / this.ratio;\n",
        "    var dataURL = this.canvas.toDataURL();\n",
-       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "}\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
        "    // Tell IPython that the notebook contents must change.\n",
        "    IPython.notebook.set_dirty(true);\n",
-       "    this.send_message(\"ack\", {});\n",
+       "    this.send_message('ack', {});\n",
        "    var fig = this;\n",
        "    // Wait a second, then push the new image to the DOM so\n",
        "    // that it is saved nicely (might be nice to debounce this).\n",
-       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
-       "}\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
        "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
        "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
        "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
        "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
        "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
        "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
        "\n",
-       "        if (!name) { continue; };\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
        "\n",
-       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
-       "        nav_element.append(button);\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
        "    }\n",
        "\n",
        "    // Add the status bar.\n",
-       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
        "\n",
        "    // Add the close button to the window.\n",
-       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
-       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
-       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
-       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
-       "    buttongrp.append(button);\n",
-       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
-       "    titlebar.prepend(buttongrp);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function(el){\n",
-       "    var fig = this\n",
-       "    el.on(\"remove\", function(){\n",
-       "\tfig.close_ws(fig, {});\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
        "    });\n",
-       "}\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
        "    // this is important to make the div 'focusable\n",
-       "    el.attr('tabindex', 0)\n",
+       "    el.setAttribute('tabindex', 0);\n",
        "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
        "    // off when our div gets focus\n",
        "\n",
        "    // location in version 3\n",
        "    if (IPython.notebook.keyboard_manager) {\n",
        "        IPython.notebook.keyboard_manager.register_events(el);\n",
-       "    }\n",
-       "    else {\n",
+       "    } else {\n",
        "        // location in version 2\n",
        "        IPython.keyboard_manager.register_events(el);\n",
        "    }\n",
+       "};\n",
        "\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
-       "    var manager = IPython.notebook.keyboard_manager;\n",
-       "    if (!manager)\n",
-       "        manager = IPython.keyboard_manager;\n",
-       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
        "    // Check for shift+enter\n",
-       "    if (event.shiftKey && event.which == 13) {\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
        "        this.canvas_div.blur();\n",
        "        // select the cell after this one\n",
        "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
        "        IPython.notebook.select(index + 1);\n",
        "    }\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
        "    fig.ondownload(fig, null);\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.find_output_cell = function(html_output) {\n",
+       "mpl.find_output_cell = function (html_output) {\n",
        "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
        "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
        "    // IPython event is triggered only after the cells have been serialised, which for\n",
        "    // our purposes (turning an active figure into a static one), is too late.\n",
        "    var cells = IPython.notebook.get_cells();\n",
        "    var ncells = cells.length;\n",
-       "    for (var i=0; i<ncells; i++) {\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
        "        var cell = cells[i];\n",
-       "        if (cell.cell_type === 'code'){\n",
-       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
        "                var data = cell.output_area.outputs[j];\n",
        "                if (data.data) {\n",
        "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
        "                    data = data.data;\n",
        "                }\n",
-       "                if (data['text/html'] == html_output) {\n",
+       "                if (data['text/html'] === html_output) {\n",
        "                    return [cell, data, j];\n",
        "                }\n",
        "            }\n",
        "        }\n",
        "    }\n",
-       "}\n",
+       "};\n",
        "\n",
        "// Register the function which deals with the matplotlib target/channel.\n",
        "// The kernel may be null if the page has been refreshed.\n",
-       "if (IPython.notebook.kernel != null) {\n",
-       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
        "}\n"
       ],
       "text/plain": [
@@ -888,7 +1076,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"640\">"
+       "<img src=\"\" width=\"640\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -905,7 +1093,7 @@
     "from mpl_toolkits.mplot3d import Axes3D\n",
     "from matplotlib import cm\n",
     "fig = plt.figure()\n",
-    "ax = Axes3D(fig)\n",
+    "ax = Axes3D(fig, auto_add_to_figure=False)\n",
     "ax.grid(False)\n",
     "ax.set_title('Scattered data points from the Franke Function')\n",
     "ax.set_xlabel(r'$\\mathit{x}$')\n",
@@ -914,7 +1102,8 @@
     "ax.azim = -20\n",
     "ax.elev = 20\n",
     "res = ax.scatter(x, y, f, marker='x')\n",
-    "plt.show();"
+    "fig.add_axes(ax)\n",
+    "plt.show()"
    ]
   },
   {
@@ -923,7 +1112,7 @@
    "source": [
     "Now, how do we go about fitting a nice, smooth surface through those scattered points?\n",
     "\n",
-    "The NAG Library supplies a very configurable function (based on the TSFIT package of Davydov and Zeilfelder) for fitting a continuously differentiable ($C^1$ or $C^2$) surface to scattered data: [`fit.dim2_spline_ts_sctr`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.fit.html#naginterfaces.library.fit.dim2_spline_ts_sctr).\n",
+    "The NAG Library supplies a very configurable function (based on the TSFIT package of Davydov and Zeilfelder) for fitting a continuously differentiable ($C^1$ or $C^2$) surface to scattered data: [`fit.dim2_spline_ts_sctr`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.fit.dim2_spline_ts_sctr.html).\n",
     "\n",
     "We need to choose a granularity for the triangulation that the function will use"
    ]
@@ -1077,36 +1266,38 @@
      "data": {
       "application/javascript": [
        "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
        "window.mpl = {};\n",
        "\n",
-       "\n",
-       "mpl.get_websocket_type = function() {\n",
-       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
        "        return WebSocket;\n",
-       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
        "        return MozWebSocket;\n",
        "    } else {\n",
-       "        alert('Your browser does not have WebSocket support. ' +\n",
-       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
-       "              'Firefox 4 and 5 are also supported but you ' +\n",
-       "              'have to enable WebSockets in about:config.');\n",
-       "    };\n",
-       "}\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
        "    this.id = figure_id;\n",
        "\n",
        "    this.ws = websocket;\n",
        "\n",
-       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
        "\n",
        "    if (!this.supports_binary) {\n",
-       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
        "        if (warnings) {\n",
        "            warnings.style.display = 'block';\n",
-       "            warnings.textContent = (\n",
-       "                \"This browser does not support binary websocket messages. \" +\n",
-       "                    \"Performance may be slow.\");\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
        "        }\n",
        "    }\n",
        "\n",
@@ -1121,11 +1312,11 @@
        "\n",
        "    this.image_mode = 'full';\n",
        "\n",
-       "    this.root = $('<div/>');\n",
-       "    this._root_extra_style(this.root)\n",
-       "    this.root.attr('style', 'display: inline-block');\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
        "\n",
-       "    $(parent_element).append(this.root);\n",
+       "    parent_element.appendChild(this.root);\n",
        "\n",
        "    this._init_header(this);\n",
        "    this._init_canvas(this);\n",
@@ -1135,285 +1326,366 @@
        "\n",
        "    this.waiting = false;\n",
        "\n",
-       "    this.ws.onopen =  function () {\n",
-       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
-       "            fig.send_message(\"send_image_mode\", {});\n",
-       "            if (mpl.ratio != 1) {\n",
-       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
-       "            }\n",
-       "            fig.send_message(\"refresh\", {});\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_device_pixel_ratio', {\n",
+       "                device_pixel_ratio: fig.ratio,\n",
+       "            });\n",
        "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
        "\n",
-       "    this.imageObj.onload = function() {\n",
-       "            if (fig.image_mode == 'full') {\n",
-       "                // Full images could contain transparency (where diff images\n",
-       "                // almost always do), so we need to clear the canvas so that\n",
-       "                // there is no ghosting.\n",
-       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
-       "            }\n",
-       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
-       "        };\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
        "\n",
-       "    this.imageObj.onunload = function() {\n",
+       "    this.imageObj.onunload = function () {\n",
        "        fig.ws.close();\n",
-       "    }\n",
+       "    };\n",
        "\n",
        "    this.ws.onmessage = this._make_on_message_function(this);\n",
        "\n",
        "    this.ondownload = ondownload;\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._init_header = function() {\n",
-       "    var titlebar = $(\n",
-       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
-       "        'ui-helper-clearfix\"/>');\n",
-       "    var titletext = $(\n",
-       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
-       "        'text-align: center; padding: 3px;\"/>');\n",
-       "    titlebar.append(titletext)\n",
-       "    this.root.append(titlebar);\n",
-       "    this.header = titletext[0];\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
-       "\n",
-       "}\n",
+       "};\n",
        "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
        "\n",
-       "}\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
        "\n",
-       "mpl.figure.prototype._init_canvas = function() {\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var canvas_div = $('<div/>');\n",
-       "\n",
-       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
        "\n",
-       "    function canvas_keyboard_event(event) {\n",
-       "        return fig.key_event(event, event['data']);\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
-       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
-       "    this.canvas_div = canvas_div\n",
-       "    this._canvas_extra_style(canvas_div)\n",
-       "    this.root.append(canvas_div);\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
        "\n",
-       "    var canvas = $('<canvas/>');\n",
-       "    canvas.addClass('mpl-canvas');\n",
-       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
        "\n",
-       "    this.canvas = canvas[0];\n",
-       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "    this.context = canvas.getContext('2d');\n",
        "\n",
-       "    var backingStore = this.context.backingStorePixelRatio ||\n",
-       "\tthis.context.webkitBackingStorePixelRatio ||\n",
-       "\tthis.context.mozBackingStorePixelRatio ||\n",
-       "\tthis.context.msBackingStorePixelRatio ||\n",
-       "\tthis.context.oBackingStorePixelRatio ||\n",
-       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
        "\n",
-       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
        "\n",
-       "    var rubberband = $('<canvas/>');\n",
-       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
        "\n",
-       "    var pass_mouse_events = true;\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
        "\n",
-       "    canvas_div.resizable({\n",
-       "        start: function(event, ui) {\n",
-       "            pass_mouse_events = false;\n",
-       "        },\n",
-       "        resize: function(event, ui) {\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
-       "        stop: function(event, ui) {\n",
-       "            pass_mouse_events = true;\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
        "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
        "\n",
-       "    function mouse_event_fn(event) {\n",
-       "        if (pass_mouse_events)\n",
-       "            return fig.mouse_event(event, event['data']);\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
-       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'dblclick',\n",
+       "        on_mouse_event_closure('dblclick')\n",
+       "    );\n",
        "    // Throttle sequential mouse events to 1 every 20ms.\n",
-       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
        "\n",
-       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
-       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
        "\n",
-       "    canvas_div.on(\"wheel\", function (event) {\n",
-       "        event = event.originalEvent;\n",
-       "        event['data'] = 'scroll'\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
        "        if (event.deltaY < 0) {\n",
        "            event.step = 1;\n",
        "        } else {\n",
        "            event.step = -1;\n",
        "        }\n",
-       "        mouse_event_fn(event);\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
        "    });\n",
        "\n",
-       "    canvas_div.append(canvas);\n",
-       "    canvas_div.append(rubberband);\n",
-       "\n",
-       "    this.rubberband = rubberband;\n",
-       "    this.rubberband_canvas = rubberband[0];\n",
-       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
-       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
        "\n",
-       "    this._resize_canvas = function(width, height) {\n",
-       "        // Keep the size of the canvas, canvas container, and rubber band\n",
-       "        // canvas in synch.\n",
-       "        canvas_div.css('width', width)\n",
-       "        canvas_div.css('height', height)\n",
-       "\n",
-       "        canvas.attr('width', width * mpl.ratio);\n",
-       "        canvas.attr('height', height * mpl.ratio);\n",
-       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
-       "\n",
-       "        rubberband.attr('width', width);\n",
-       "        rubberband.attr('height', height);\n",
-       "    }\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
        "\n",
-       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
-       "    // upon first draw.\n",
-       "    this._resize_canvas(600, 600);\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
        "\n",
        "    // Disable right mouse context menu.\n",
-       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
        "        return false;\n",
        "    });\n",
        "\n",
-       "    function set_focus () {\n",
+       "    function set_focus() {\n",
        "        canvas.focus();\n",
        "        canvas_div.focus();\n",
        "    }\n",
        "\n",
        "    window.setTimeout(set_focus, 100);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
        "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
        "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
        "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
        "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
        "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
        "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
        "\n",
        "        if (!name) {\n",
-       "            // put a spacer in here.\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
        "            continue;\n",
        "        }\n",
-       "        var button = $('<button/>');\n",
-       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
-       "                        'ui-button-icon-only');\n",
-       "        button.attr('role', 'button');\n",
-       "        button.attr('aria-disabled', 'false');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
        "\n",
-       "        var icon_img = $('<span/>');\n",
-       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
-       "        icon_img.addClass(image);\n",
-       "        icon_img.addClass('ui-corner-all');\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
        "\n",
-       "        var tooltip_span = $('<span/>');\n",
-       "        tooltip_span.addClass('ui-button-text');\n",
-       "        tooltip_span.html(tooltip);\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
        "\n",
-       "        button.append(icon_img);\n",
-       "        button.append(tooltip_span);\n",
-       "\n",
-       "        nav_element.append(button);\n",
+       "        buttonGroup.appendChild(button);\n",
        "    }\n",
        "\n",
-       "    var fmt_picker_span = $('<span/>');\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
        "\n",
-       "    var fmt_picker = $('<select/>');\n",
-       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
-       "    fmt_picker_span.append(fmt_picker);\n",
-       "    nav_element.append(fmt_picker_span);\n",
-       "    this.format_dropdown = fmt_picker[0];\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
        "\n",
        "    for (var ind in mpl.extensions) {\n",
        "        var fmt = mpl.extensions[ind];\n",
-       "        var option = $(\n",
-       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
-       "        fmt_picker.append(option);\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
        "    }\n",
        "\n",
-       "    // Add hover states to the ui-buttons\n",
-       "    $( \".ui-button\" ).hover(\n",
-       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
-       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
-       "    );\n",
-       "\n",
-       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
-       "}\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
        "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
        "    // which will in turn request a refresh of the image.\n",
-       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
-       "}\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
        "    properties['type'] = type;\n",
        "    properties['figure_id'] = this.id;\n",
        "    this.ws.send(JSON.stringify(properties));\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
        "    if (!this.waiting) {\n",
        "        this.waiting = true;\n",
-       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
        "    }\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
        "    var format_dropdown = fig.format_dropdown;\n",
        "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
        "    fig.ondownload(fig, format);\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
        "    var size = msg['size'];\n",
-       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
-       "        fig._resize_canvas(size[0], size[1]);\n",
-       "        fig.send_message(\"refresh\", {});\n",
-       "    };\n",
-       "}\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
-       "    var x0 = msg['x0'] / mpl.ratio;\n",
-       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
-       "    var x1 = msg['x1'] / mpl.ratio;\n",
-       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
        "    x0 = Math.floor(x0) + 0.5;\n",
        "    y0 = Math.floor(y0) + 0.5;\n",
        "    x1 = Math.floor(x1) + 0.5;\n",
@@ -1424,78 +1696,96 @@
        "    var height = Math.abs(y1 - y0);\n",
        "\n",
        "    fig.rubberband_context.clearRect(\n",
-       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
        "\n",
        "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
        "    // Updates the figure title.\n",
        "    fig.header.textContent = msg['label'];\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
-       "    var cursor = msg['cursor'];\n",
-       "    switch(cursor)\n",
-       "    {\n",
-       "    case 0:\n",
-       "        cursor = 'pointer';\n",
-       "        break;\n",
-       "    case 1:\n",
-       "        cursor = 'default';\n",
-       "        break;\n",
-       "    case 2:\n",
-       "        cursor = 'crosshair';\n",
-       "        break;\n",
-       "    case 3:\n",
-       "        cursor = 'move';\n",
-       "        break;\n",
-       "    }\n",
-       "    fig.rubberband_canvas.style.cursor = cursor;\n",
-       "}\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
        "    fig.message.textContent = msg['message'];\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
        "    // Request the server to send over a new figure.\n",
        "    fig.send_draw_message();\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
        "    fig.image_mode = msg['mode'];\n",
-       "}\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
        "    // Called whenever the canvas gets updated.\n",
-       "    this.send_message(\"ack\", {});\n",
-       "}\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
        "\n",
        "// A function to construct a web socket function for onmessage handling.\n",
        "// Called in the figure constructor.\n",
-       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
        "    return function socket_on_message(evt) {\n",
        "        if (evt.data instanceof Blob) {\n",
-       "            /* FIXME: We get \"Resource interpreted as Image but\n",
-       "             * transferred with MIME type text/plain:\" errors on\n",
-       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
-       "             * to be part of the websocket stream */\n",
-       "            evt.data.type = \"image/png\";\n",
+       "            var img = evt.data;\n",
+       "            if (img.type !== 'image/png') {\n",
+       "                /* FIXME: We get \"Resource interpreted as Image but\n",
+       "                 * transferred with MIME type text/plain:\" errors on\n",
+       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "                 * to be part of the websocket stream */\n",
+       "                img.type = 'image/png';\n",
+       "            }\n",
        "\n",
        "            /* Free the memory for the previous frames */\n",
        "            if (fig.imageObj.src) {\n",
        "                (window.URL || window.webkitURL).revokeObjectURL(\n",
-       "                    fig.imageObj.src);\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
        "            }\n",
        "\n",
        "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
-       "                evt.data);\n",
+       "                img\n",
+       "            );\n",
        "            fig.updated_canvas_event();\n",
        "            fig.waiting = false;\n",
        "            return;\n",
-       "        }\n",
-       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
        "            fig.imageObj.src = evt.data;\n",
        "            fig.updated_canvas_event();\n",
        "            fig.waiting = false;\n",
@@ -1508,9 +1798,12 @@
        "        // Call the  \"handle_{type}\" callback, which takes\n",
        "        // the figure and JSON message as its only arguments.\n",
        "        try {\n",
-       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "            var callback = fig['handle_' + msg_type];\n",
        "        } catch (e) {\n",
-       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
        "            return;\n",
        "        }\n",
        "\n",
@@ -1519,62 +1812,74 @@
        "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
        "                callback(fig, msg);\n",
        "            } catch (e) {\n",
-       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
        "            }\n",
        "        }\n",
        "    };\n",
-       "}\n",
+       "};\n",
        "\n",
-       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
-       "mpl.findpos = function(e) {\n",
+       "// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
        "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
        "    var targ;\n",
-       "    if (!e)\n",
+       "    if (!e) {\n",
        "        e = window.event;\n",
-       "    if (e.target)\n",
+       "    }\n",
+       "    if (e.target) {\n",
        "        targ = e.target;\n",
-       "    else if (e.srcElement)\n",
+       "    } else if (e.srcElement) {\n",
        "        targ = e.srcElement;\n",
-       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
        "        targ = targ.parentNode;\n",
+       "    }\n",
        "\n",
-       "    // jQuery normalizes the pageX and pageY\n",
        "    // pageX,Y are the mouse positions relative to the document\n",
-       "    // offset() returns the position of the element relative to the document\n",
-       "    var x = e.pageX - $(targ).offset().left;\n",
-       "    var y = e.pageY - $(targ).offset().top;\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
        "\n",
-       "    return {\"x\": x, \"y\": y};\n",
+       "    return { x: x, y: y };\n",
        "};\n",
        "\n",
        "/*\n",
        " * return a copy of an object with only non-object keys\n",
        " * we need this to avoid circular references\n",
-       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " * https://stackoverflow.com/a/24161582/3208463\n",
        " */\n",
-       "function simpleKeys (original) {\n",
-       "  return Object.keys(original).reduce(function (obj, key) {\n",
-       "    if (typeof original[key] !== 'object')\n",
-       "        obj[key] = original[key]\n",
-       "    return obj;\n",
-       "  }, {});\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
        "}\n",
        "\n",
-       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
-       "    var canvas_pos = mpl.findpos(event)\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
        "\n",
-       "    if (name === 'button_press')\n",
-       "    {\n",
+       "    if (name === 'button_press') {\n",
        "        this.canvas.focus();\n",
        "        this.canvas_div.focus();\n",
        "    }\n",
        "\n",
-       "    var x = canvas_pos.x * mpl.ratio;\n",
-       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
        "\n",
-       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
-       "                             step: event.step,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
        "\n",
        "    /* This prevents the web browser from automatically changing to\n",
        "     * the text insertion cursor when the button is pressed.  We want\n",
@@ -1582,265 +1887,337 @@
        "     * 'cursor' event from matplotlib */\n",
        "    event.preventDefault();\n",
        "    return false;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
        "    // Handle any extra behaviour associated with a key event\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "};\n",
        "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
        "    // Prevent repeat events\n",
-       "    if (name == 'key_press')\n",
-       "    {\n",
-       "        if (event.which === this._key)\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.key === this._key) {\n",
        "            return;\n",
-       "        else\n",
-       "            this._key = event.which;\n",
+       "        } else {\n",
+       "            this._key = event.key;\n",
+       "        }\n",
        "    }\n",
-       "    if (name == 'key_release')\n",
+       "    if (name === 'key_release') {\n",
        "        this._key = null;\n",
+       "    }\n",
        "\n",
        "    var value = '';\n",
-       "    if (event.ctrlKey && event.which != 17)\n",
-       "        value += \"ctrl+\";\n",
-       "    if (event.altKey && event.which != 18)\n",
-       "        value += \"alt+\";\n",
-       "    if (event.shiftKey && event.which != 16)\n",
-       "        value += \"shift+\";\n",
+       "    if (event.ctrlKey && event.key !== 'Control') {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    else if (event.altKey && event.key !== 'Alt') {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
        "\n",
-       "    value += 'k';\n",
-       "    value += event.which.toString();\n",
+       "    value += 'k' + event.key;\n",
        "\n",
        "    this._key_event_extra(event, name);\n",
        "\n",
-       "    this.send_message(name, {key: value,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
        "    return false;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
-       "    if (name == 'download') {\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
        "        this.handle_save(this, null);\n",
        "    } else {\n",
-       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
        "    }\n",
        "};\n",
        "\n",
-       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
        "    this.message.textContent = tooltip;\n",
        "};\n",
-       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
        "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
        "    // object with the appropriate methods. Currently this is a non binary\n",
        "    // socket, so there is still some room for performance tuning.\n",
        "    var ws = {};\n",
        "\n",
-       "    ws.close = function() {\n",
-       "        comm.close()\n",
+       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
+       "    ws.readyState = comm.kernel.ws.readyState;\n",
+       "    function updateReadyState(_event) {\n",
+       "        if (comm.kernel.ws) {\n",
+       "            ws.readyState = comm.kernel.ws.readyState;\n",
+       "        } else {\n",
+       "            ws.readyState = 3; // Closed state.\n",
+       "        }\n",
+       "    }\n",
+       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
        "    };\n",
-       "    ws.send = function(m) {\n",
+       "    ws.send = function (m) {\n",
        "        //console.log('sending', m);\n",
        "        comm.send(m);\n",
        "    };\n",
        "    // Register the callback with on_msg.\n",
-       "    comm.on_msg(function(msg) {\n",
+       "    comm.on_msg(function (msg) {\n",
        "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        var data = msg['content']['data'];\n",
+       "        if (data['blob'] !== undefined) {\n",
+       "            data = {\n",
+       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
+       "            };\n",
+       "        }\n",
        "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
-       "        ws.onmessage(msg['content']['data'])\n",
+       "        ws.onmessage(data);\n",
        "    });\n",
        "    return ws;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
        "    // This is the function which gets called when the mpl process\n",
        "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
        "\n",
        "    var id = msg.content.data.id;\n",
        "    // Get hold of the div created by the display call when the Comm\n",
        "    // socket was opened in Python.\n",
-       "    var element = $(\"#\" + id);\n",
-       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
        "\n",
-       "    function ondownload(figure, format) {\n",
-       "        window.open(figure.imageObj.src);\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
        "    }\n",
        "\n",
-       "    var fig = new mpl.figure(id, ws_proxy,\n",
-       "                           ondownload,\n",
-       "                           element.get(0));\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
        "\n",
        "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
        "    // web socket which is closed, not our websocket->open comm proxy.\n",
        "    ws_proxy.onopen();\n",
        "\n",
-       "    fig.parent_element = element.get(0);\n",
+       "    fig.parent_element = element;\n",
        "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
        "    if (!fig.cell_info) {\n",
-       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
        "        return;\n",
        "    }\n",
-       "\n",
-       "    var output_index = fig.cell_info[2]\n",
-       "    var cell = fig.cell_info[0];\n",
-       "\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
        "};\n",
        "\n",
-       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
-       "    var width = fig.canvas.width/mpl.ratio\n",
-       "    fig.root.unbind('remove')\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
        "\n",
        "    // Update the output cell to use the data from the current canvas.\n",
        "    fig.push_to_output();\n",
        "    var dataURL = fig.canvas.toDataURL();\n",
        "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
        "    // the notebook keyboard shortcuts fail.\n",
-       "    IPython.keyboard_manager.enable()\n",
-       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
        "    fig.close_ws(fig, msg);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
        "    fig.send_message('closing', msg);\n",
        "    // fig.ws.close()\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
        "    // Turn the data on the canvas into data in the output cell.\n",
-       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var width = this.canvas.width / this.ratio;\n",
        "    var dataURL = this.canvas.toDataURL();\n",
-       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "}\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
        "    // Tell IPython that the notebook contents must change.\n",
        "    IPython.notebook.set_dirty(true);\n",
-       "    this.send_message(\"ack\", {});\n",
+       "    this.send_message('ack', {});\n",
        "    var fig = this;\n",
        "    // Wait a second, then push the new image to the DOM so\n",
        "    // that it is saved nicely (might be nice to debounce this).\n",
-       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
-       "}\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
        "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
        "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
        "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
        "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
        "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
        "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
        "\n",
-       "        if (!name) { continue; };\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
        "\n",
-       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
-       "        nav_element.append(button);\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
        "    }\n",
        "\n",
        "    // Add the status bar.\n",
-       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
        "\n",
        "    // Add the close button to the window.\n",
-       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
-       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
-       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
-       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
-       "    buttongrp.append(button);\n",
-       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
-       "    titlebar.prepend(buttongrp);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function(el){\n",
-       "    var fig = this\n",
-       "    el.on(\"remove\", function(){\n",
-       "\tfig.close_ws(fig, {});\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
        "    });\n",
-       "}\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
        "    // this is important to make the div 'focusable\n",
-       "    el.attr('tabindex', 0)\n",
+       "    el.setAttribute('tabindex', 0);\n",
        "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
        "    // off when our div gets focus\n",
        "\n",
        "    // location in version 3\n",
        "    if (IPython.notebook.keyboard_manager) {\n",
        "        IPython.notebook.keyboard_manager.register_events(el);\n",
-       "    }\n",
-       "    else {\n",
+       "    } else {\n",
        "        // location in version 2\n",
        "        IPython.keyboard_manager.register_events(el);\n",
        "    }\n",
+       "};\n",
        "\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
-       "    var manager = IPython.notebook.keyboard_manager;\n",
-       "    if (!manager)\n",
-       "        manager = IPython.keyboard_manager;\n",
-       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
        "    // Check for shift+enter\n",
-       "    if (event.shiftKey && event.which == 13) {\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
        "        this.canvas_div.blur();\n",
        "        // select the cell after this one\n",
        "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
        "        IPython.notebook.select(index + 1);\n",
        "    }\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
        "    fig.ondownload(fig, null);\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.find_output_cell = function(html_output) {\n",
+       "mpl.find_output_cell = function (html_output) {\n",
        "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
        "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
        "    // IPython event is triggered only after the cells have been serialised, which for\n",
        "    // our purposes (turning an active figure into a static one), is too late.\n",
        "    var cells = IPython.notebook.get_cells();\n",
        "    var ncells = cells.length;\n",
-       "    for (var i=0; i<ncells; i++) {\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
        "        var cell = cells[i];\n",
-       "        if (cell.cell_type === 'code'){\n",
-       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
        "                var data = cell.output_area.outputs[j];\n",
        "                if (data.data) {\n",
        "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
        "                    data = data.data;\n",
        "                }\n",
-       "                if (data['text/html'] == html_output) {\n",
+       "                if (data['text/html'] === html_output) {\n",
        "                    return [cell, data, j];\n",
        "                }\n",
        "            }\n",
        "        }\n",
        "    }\n",
-       "}\n",
+       "};\n",
        "\n",
        "// Register the function which deals with the matplotlib target/channel.\n",
        "// The kernel may be null if the page has been refreshed.\n",
-       "if (IPython.notebook.kernel != null) {\n",
-       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
        "}\n"
       ],
       "text/plain": [
@@ -1853,7 +2230,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"640\">"
+       "<img src=\"\" width=\"640\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -1865,7 +2242,7 @@
    ],
    "source": [
     "fig = plt.figure()\n",
-    "ax = Axes3D(fig)\n",
+    "ax = Axes3D(fig, auto_add_to_figure=False)\n",
     "ax.grid(False)\n",
     "ax.plot_wireframe(X, Y, z_m, color='red', linewidths=0.4)\n",
     "ax.contour(X, Y, z_m, 15, offset=-1.2, cmap=cm.jet)\n",
@@ -1876,13 +2253,14 @@
     "ax.azim = -20\n",
     "ax.elev = 20\n",
     "res = ax.scatter(x, y, f, marker='x')\n",
-    "plt.show();"
+    "fig.add_axes(ax)\n",
+    "plt.show()"
    ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -1896,7 +2274,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   }
  },
  "nbformat": 4,
diff --git a/dimension_reduction/web_site_classification_using_nnmf.ipynb b/dimension_reduction/web_site_classification_using_nnmf.ipynb
index 2eef4ec..34c584d 100644
--- a/dimension_reduction/web_site_classification_using_nnmf.ipynb
+++ b/dimension_reduction/web_site_classification_using_nnmf.ipynb
@@ -80,17 +80,17 @@
       "['Kirstjen Nielsen: Walking a tightrope working for Trump - BBC News']\n",
       "['Trump homes plan at Menie being recommended for approval - BBC News']\n",
       "['Theresa May at her worst during Brexit speech - Mark Drakeford - BBC News']\n",
-      "[\"President Trump shows map of 'IS defeat' - BBC News\"]\n",
+      "['President Trump shows map of &#x27;IS defeat&#x27; - BBC News']\n",
       "['Brexit: What happens now? - BBC News']\n",
       "['Trump spooks markets with China trade tariffs warning - BBC News']\n",
       "['A tale of two Trumps: Jair Bolsonaro goes to Washington - BBC News']\n",
       "['Brexit: Theresa May to formally ask for delay - BBC News']\n",
       "['Corbyn calls for compromise to avoid no-deal Brexit - BBC News']\n",
-      "[\"Trump: I didn't get a thank you for McCain funeral - BBC News\"]\n",
+      "['Trump: I didn&#x27;t get a thank you for McCain funeral - BBC News']\n",
       "['Brexit: EU leaders agree Article 50 delay plan - BBC News']\n",
       "['Trump: Time to recognise Golan Heights as Israeli territory - BBC News']\n",
       "['Brexit: MPs urged not to travel home alone as tensions rise - BBC News']\n",
-      "[\"'Cancel Brexit' petition passes 2m signatures on Parliament site - BBC News\"]\n"
+      "['&#x27;Cancel Brexit&#x27; petition passes 2m signatures on Parliament site - BBC News']\n"
      ]
     }
    ],
@@ -98,10 +98,8 @@
     "from naginterfaces.library.matop import real_nmf\n",
     "from collections import Counter\n",
     "import string\n",
-    "from string import punctuation\n",
     "import urllib.request\n",
     "import re\n",
-    "import scipy as sp\n",
     "from scipy.linalg import norm\n",
     "import numpy as np\n",
     "\n",
@@ -122,7 +120,7 @@
     "    pagewords = []\n",
     "    paras = re.findall(r'<p>(.*?)</p>', f1.read().decode().lower())\n",
     "    f2 = urllib.request.urlopen(link)\n",
-    "    title = re.findall(r'<title>(.*?)</title>', f2.read().decode())\n",
+    "    title = re.findall(r'<title data-rh=\"true\">(.*?)</title>', f2.read().decode())\n",
     "    print(title)\n",
     "    titles.append(title)\n",
     "    for para in paras:\n",
@@ -149,26 +147,26 @@
     {
      "data": {
       "text/plain": [
-       "[('a', 32),\n",
-       " ('the', 29),\n",
-       " ('to', 16),\n",
-       " ('uk', 15),\n",
-       " ('of', 13),\n",
+       "[('the', 37),\n",
+       " ('a', 37),\n",
+       " ('to', 21),\n",
+       " ('uk', 17),\n",
+       " ('of', 15),\n",
+       " ('that', 10),\n",
        " ('in', 10),\n",
-       " ('that', 9),\n",
+       " ('class', 9),\n",
+       " ('ssrcss', 9),\n",
+       " ('eu', 9),\n",
        " ('it', 9),\n",
        " ('on', 9),\n",
-       " ('eu', 8),\n",
+       " ('bbc', 9),\n",
+       " ('href', 8),\n",
        " ('would', 8),\n",
+       " ('an', 7),\n",
        " ('extension', 7),\n",
-       " ('href', 7),\n",
-       " ('class', 7),\n",
-       " ('story', 7),\n",
-       " ('body', 7),\n",
-       " ('link', 7),\n",
-       " ('an', 6),\n",
-       " ('article', 6),\n",
-       " ('50', 6)]"
+       " ('and', 7),\n",
+       " ('www', 7),\n",
+       " ('co', 7)]"
       ]
      },
      "execution_count": 3,
@@ -195,7 +193,7 @@
     {
      "data": {
       "text/plain": [
-       "2186"
+       "2268"
       ]
      },
      "execution_count": 4,
@@ -218,7 +216,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "This list of 2279 words contains many common words such as 'the', 'that' and 'with' which we want to ignore.  \n",
+    "This list of 2268 words contains many common words such as 'the', 'that' and 'with' which we want to ignore.  \n",
     "These unwanted words are commonly referred to as [stopwords](https://en.wikipedia.org/wiki/Stop_words). \n",
     "The explicit list of stopwords we are going to use in this analysis are defined in the next cell"
    ]
@@ -287,7 +285,7 @@
     {
      "data": {
       "text/plain": [
-       "1795"
+       "1873"
       ]
      },
      "execution_count": 8,
@@ -334,7 +332,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "1753 distinct words will be used to form the data matrix\n"
+      "1825 distinct words will be used to form the data matrix\n"
      ]
     }
    ],
@@ -366,7 +364,7 @@
      "output_type": "stream",
      "text": [
       "Creating data matrix\n",
-      "Final data matrix has size:(1753, 15)\n"
+      "Final data matrix has size:(1825, 15)\n"
      ]
     }
    ],
@@ -396,12 +394,12 @@
      "data": {
       "text/plain": [
        "array([[0., 0., 0., ..., 0., 0., 0.],\n",
-       "       [0., 0., 0., ..., 1., 0., 0.],\n",
        "       [0., 0., 0., ..., 0., 0., 0.],\n",
+       "       [0., 0., 0., ..., 0., 1., 0.],\n",
        "       ...,\n",
        "       [1., 0., 0., ..., 0., 0., 0.],\n",
-       "       [0., 1., 0., ..., 0., 0., 0.],\n",
-       "       [0., 0., 1., ..., 0., 0., 0.]])"
+       "       [1., 0., 0., ..., 0., 0., 0.],\n",
+       "       [0., 0., 0., ..., 0., 0., 0.]])"
       ]
      },
      "execution_count": 12,
@@ -464,8 +462,8 @@
     "\n",
     "print(st, file=f2)\n",
     "\n",
-    "for i in range(len(words)):\n",
-    "    st = words[i].ljust(14,' ')\n",
+    "for i, v in enumerate(words):\n",
+    "    st = v.ljust(14,' ')\n",
     "    for j in range(n_links):\n",
     "        st += str(int(a[i,j])).center(8, ' ')\n",
     "    print(st, file=f2)\n",
@@ -502,12 +500,12 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "<ipython-input-14-fb37620fc264>:8: NagAlgorithmicWarning: (NAG Python function naginterfaces.base.matop.real_nmf, code 7:7,99992)\n",
+      "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:8: NagAlgorithmicWarning: (NAG Python function naginterfaces.base.matop.real_nmf, code 7:7,99992)\n",
       "** The function has failed to converge after 500 iterations.\n",
       "** The factorization given by w and h may still be a good enough approximation\n",
       "** to be useful. Alternatively an improved factorization may be obtained by\n",
       "** increasing maxit or using different initial choices of w and h.\n",
-      "  w, h = real_nmf(a, k=2, seed=seed, errtol=errtol, maxit=maxit)\n"
+      "  \n"
      ]
     }
    ],
@@ -530,7 +528,7 @@
     {
      "data": {
       "text/plain": [
-       "(1753, 2)"
+       "(1825, 2)"
       ]
      },
      "execution_count": 15,
@@ -579,7 +577,7 @@
      "output_type": "stream",
      "text": [
       "norm of residual:\n",
-      "0.7313733530687229\n"
+      "0.4996361512168467\n"
      ]
     }
    ],
@@ -611,16 +609,16 @@
      "text": [
       "\n",
       "The most important words in column 1 of w are:\n",
-      "['deal', 'brexit', 'parliament', 'delay', 'body', 'story', 'class', 'minister', 'prime', 'vote']\n",
+      "['quot', 'deal', 'brexit', 'ssrcss', 'class', 'delay', 'parliament', 'minister', 'prime', 'e1no5rhv0']\n",
       "\n",
       "The most important words in column 2 of w are:\n",
-      "['trump', 'president', 'women', 'nielsen', 'border', 'mccain', 'security', 'senator', 'secretary', 'administration']\n"
+      "['quot', 'trump', 'president', 'women', 'mccain', 'class', 'ssrcss', 'nielsen', 'border', 'security']\n"
      ]
     }
    ],
    "source": [
     "for i in range(k):\n",
-    "    tmp = sorted(words, key=lambda x: w[words.index(x),i], reverse=True)\n",
+    "    tmp = sorted(words, key=lambda x, ind=i: w[words.index(x),ind], reverse=True)\n",
     "    st = \"\\nThe most important words in column \" + str(i+1) + \" of w are:\"\n",
     "    print(st)\n",
     "    print(tmp[:10])"
@@ -630,7 +628,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Looking at these lists, you'll hopefully agree that the first column corresponds to Brexit and the second column Trump. It seems that our non-negative matrix factorization has successfully detected the two categories of web page. Let's denote these using the numbers 0 and 1. Can we now use the NMF to accurately categorise the individual pages? To do this we need to look at the coefficients matrix H.\n",
+    "Looking at these lists, you'll hopefully agree that the first column corresponds to Trump and the second column Brexit. It seems that our non-negative matrix factorization has successfully detected the two categories of web page. Let's denote these using the numbers 0 and 1. Can we now use the NMF to accurately categorise the individual pages? To do this we need to look at the coefficients matrix H.\n",
     "\n",
     "We convert h to a pandas dataframe for display purposes"
    ]
@@ -681,52 +679,52 @@
        "  <tbody>\n",
        "    <tr>\n",
        "      <th>0</th>\n",
-       "      <td>12.072</td>\n",
-       "      <td>7.953e-16</td>\n",
-       "      <td>2.419</td>\n",
-       "      <td>19.137</td>\n",
-       "      <td>7.953e-16</td>\n",
-       "      <td>4.437</td>\n",
-       "      <td>1.823</td>\n",
-       "      <td>0.044</td>\n",
-       "      <td>3.159e+01</td>\n",
-       "      <td>7.113e+00</td>\n",
-       "      <td>7.953e-16</td>\n",
-       "      <td>15.560</td>\n",
-       "      <td>4.042</td>\n",
-       "      <td>1.429</td>\n",
-       "      <td>2.800e+01</td>\n",
+       "      <td>1.226e+01</td>\n",
+       "      <td>1.195e-15</td>\n",
+       "      <td>5.253</td>\n",
+       "      <td>50.795</td>\n",
+       "      <td>1.353</td>\n",
+       "      <td>6.003e+00</td>\n",
+       "      <td>5.638</td>\n",
+       "      <td>10.739</td>\n",
+       "      <td>76.032</td>\n",
+       "      <td>1.913e+01</td>\n",
+       "      <td>1.195e-15</td>\n",
+       "      <td>34.929</td>\n",
+       "      <td>1.195e-15</td>\n",
+       "      <td>4.433</td>\n",
+       "      <td>5.544e+01</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>1</th>\n",
-       "      <td>1.545</td>\n",
-       "      <td>3.538e+01</td>\n",
-       "      <td>2.133</td>\n",
-       "      <td>1.220</td>\n",
-       "      <td>1.578e+00</td>\n",
-       "      <td>0.140</td>\n",
-       "      <td>2.411</td>\n",
-       "      <td>11.886</td>\n",
-       "      <td>7.621e-16</td>\n",
-       "      <td>7.621e-16</td>\n",
-       "      <td>2.282e+01</td>\n",
-       "      <td>0.208</td>\n",
-       "      <td>17.007</td>\n",
-       "      <td>0.203</td>\n",
-       "      <td>7.621e-16</td>\n",
+       "      <td>9.842e-16</td>\n",
+       "      <td>5.373e+01</td>\n",
+       "      <td>5.094</td>\n",
+       "      <td>3.985</td>\n",
+       "      <td>3.680</td>\n",
+       "      <td>9.842e-16</td>\n",
+       "      <td>7.298</td>\n",
+       "      <td>24.121</td>\n",
+       "      <td>0.117</td>\n",
+       "      <td>9.842e-16</td>\n",
+       "      <td>4.388e+01</td>\n",
+       "      <td>0.353</td>\n",
+       "      <td>2.589e+01</td>\n",
+       "      <td>1.619</td>\n",
+       "      <td>9.842e-16</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
        "</div>"
       ],
       "text/plain": [
-       "    link1      link2  link3   link4      link5  link6  link7   link8  \\\n",
-       "0  12.072  7.953e-16  2.419  19.137  7.953e-16  4.437  1.823   0.044   \n",
-       "1   1.545  3.538e+01  2.133   1.220  1.578e+00  0.140  2.411  11.886   \n",
+       "       link1      link2  link3   link4  link5      link6  link7   link8  \\\n",
+       "0  1.226e+01  1.195e-15  5.253  50.795  1.353  6.003e+00  5.638  10.739   \n",
+       "1  9.842e-16  5.373e+01  5.094   3.985  3.680  9.842e-16  7.298  24.121   \n",
        "\n",
-       "       link9     link10     link11  link12  link13  link14     link15  \n",
-       "0  3.159e+01  7.113e+00  7.953e-16  15.560   4.042   1.429  2.800e+01  \n",
-       "1  7.621e-16  7.621e-16  2.282e+01   0.208  17.007   0.203  7.621e-16  "
+       "    link9     link10     link11  link12     link13  link14     link15  \n",
+       "0  76.032  1.913e+01  1.195e-15  34.929  1.195e-15   4.433  5.544e+01  \n",
+       "1   0.117  9.842e-16  4.388e+01   0.353  2.589e+01   1.619  9.842e-16  "
       ]
      },
      "execution_count": 19,
@@ -764,21 +762,21 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Article \"Brexit delay: How is Article 50 extended? - BBC News\"                         is in category 0 (Trump)\n",
-      "Article \"Kirstjen Nielsen: Walking a tightrope working for Trump - BBC News\"           is in category 1 (Brexit)\n",
-      "Article \"Trump homes plan at Menie being recommended for approval - BBC News\"          is in category 0 (Trump)\n",
-      "Article \"Theresa May at her worst during Brexit speech - Mark Drakeford - BBC News\"    is in category 0 (Trump)\n",
-      "Article \"President Trump shows map of 'IS defeat' - BBC News\"                          is in category 1 (Brexit)\n",
-      "Article \"Brexit: What happens now? - BBC News\"                                         is in category 0 (Trump)\n",
-      "Article \"Trump spooks markets with China trade tariffs warning - BBC News\"             is in category 1 (Brexit)\n",
-      "Article \"A tale of two Trumps: Jair Bolsonaro goes to Washington - BBC News\"           is in category 1 (Brexit)\n",
-      "Article \"Brexit: Theresa May to formally ask for delay - BBC News\"                     is in category 0 (Trump)\n",
-      "Article \"Corbyn calls for compromise to avoid no-deal Brexit - BBC News\"               is in category 0 (Trump)\n",
-      "Article \"Trump: I didn't get a thank you for McCain funeral - BBC News\"                is in category 1 (Brexit)\n",
-      "Article \"Brexit: EU leaders agree Article 50 delay plan - BBC News\"                    is in category 0 (Trump)\n",
-      "Article \"Trump: Time to recognise Golan Heights as Israeli territory - BBC News\"       is in category 1 (Brexit)\n",
-      "Article \"Brexit: MPs urged not to travel home alone as tensions rise - BBC News\"       is in category 0 (Trump)\n",
-      "Article \"'Cancel Brexit' petition passes 2m signatures on Parliament site - BBC News\"  is in category 0 (Trump)\n"
+      "Article \"Brexit delay: How is Article 50 extended? - BBC News\"                         is in category 0 (Brexit)\n",
+      "Article \"Kirstjen Nielsen: Walking a tightrope working for Trump - BBC News\"           is in category 1 (Trump)\n",
+      "Article \"Trump homes plan at Menie being recommended for approval - BBC News\"          is in category 0 (Brexit)\n",
+      "Article \"Theresa May at her worst during Brexit speech - Mark Drakeford - BBC News\"    is in category 0 (Brexit)\n",
+      "Article \"President Trump shows map of &#x27;IS defeat&#x27; - BBC News\"                is in category 1 (Trump)\n",
+      "Article \"Brexit: What happens now? - BBC News\"                                         is in category 0 (Brexit)\n",
+      "Article \"Trump spooks markets with China trade tariffs warning - BBC News\"             is in category 1 (Trump)\n",
+      "Article \"A tale of two Trumps: Jair Bolsonaro goes to Washington - BBC News\"           is in category 1 (Trump)\n",
+      "Article \"Brexit: Theresa May to formally ask for delay - BBC News\"                     is in category 0 (Brexit)\n",
+      "Article \"Corbyn calls for compromise to avoid no-deal Brexit - BBC News\"               is in category 0 (Brexit)\n",
+      "Article \"Trump: I didn&#x27;t get a thank you for McCain funeral - BBC News\"           is in category 1 (Trump)\n",
+      "Article \"Brexit: EU leaders agree Article 50 delay plan - BBC News\"                    is in category 0 (Brexit)\n",
+      "Article \"Trump: Time to recognise Golan Heights as Israeli territory - BBC News\"       is in category 1 (Trump)\n",
+      "Article \"Brexit: MPs urged not to travel home alone as tensions rise - BBC News\"       is in category 0 (Brexit)\n",
+      "Article \"&#x27;Cancel Brexit&#x27; petition passes 2m signatures on Parliament site - BBC News\" is in category 0 (Brexit)\n"
      ]
     }
    ],
@@ -786,7 +784,7 @@
     "for i, link in enumerate(links):\n",
     "    category = 0 if h[0,i] > h[1,i] else 1\n",
     "    title = '\"' + (titles[i][0]) + '\"'\n",
-    "    st = 'Article ' + title.ljust(78,' ') + ' is in category ' + str(category) + [\" (Trump)\",\" (Brexit)\"][category]\n",
+    "    st = 'Article ' + title.ljust(78,' ') + ' is in category ' + str(category) + [\" (Brexit)\",\" (Trump)\"][category]\n",
     "    print(st)"
    ]
   },
@@ -799,6 +797,13 @@
     "* [Presentation on Non-Negative Matrix Factorization](https://www.nag.com/market/non-negative-matrix-factorization.pdf) by the author of the NAG routines **real_nmf** and **real_nmf_rcomm**\n",
     "* [NAG Blog post on which this notebook is based](https://www.nag.com/content/classifying-web-pages-using-non-negative-matrix-factorization)"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {
@@ -817,7 +822,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.7.3"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/global_optimization/PSO_demo.ipynb b/global_optimization/PSO_demo.ipynb
index 4067e5c..baadbbf 100644
--- a/global_optimization/PSO_demo.ipynb
+++ b/global_optimization/PSO_demo.ipynb
@@ -60,7 +60,7 @@
     "Z = ackley(X, Y)\n",
     "\n",
     "fig = plt.figure(figsize=(20,10))\n",
-    "ax = Axes3D(fig)\n",
+    "ax = Axes3D(fig, auto_add_to_figure=False)\n",
     "ax.set_xlim3d(-5, 5)\n",
     "ax.set_ylim3d(-5, 5)\n",
     "ax.set_zlim3d(0, 15)\n",
@@ -69,6 +69,7 @@
     "ax.plot_wireframe(X, Y, Z, color='black', lw=0.5, rstride=10, cstride=20)\n",
     "lev = [0.1, 1, 2, 3, 4, 5, 6, 7, 8, 10]\n",
     "ax.contour(X, Y, Z, levels=lev, colors='black', linestyles=\"solid\", offset=-1)\n",
+    "fig.add_axes(ax)\n",
     "plt.show()"
    ]
   },
@@ -101,7 +102,7 @@
     "        \n",
     "        return objf, vecout\n",
     "\n",
-    "We will explore the meaning of all of these arguments later (or you can skip to the [full documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.glopt.html#naginterfaces.library.glopt.bnd_pso) for details) but for now, all we need to worry about is the input vector `in` and the input/output vectors `objf` and `vecout`\n",
+    "We will explore the meaning of all of these arguments later (or you can skip to the [full documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.glopt.bnd_pso.html) for details) but for now, all we need to worry about is the input vector `in` and the input/output vectors `objf` and `vecout`\n",
     "\n",
     "* `x` contains a vector of co-ordinates of the N-dimensional point where we wish to evaluate the objective function  \n",
     "* `objf` contains the value of the objective function at the point `x`\n",
@@ -118,7 +119,7 @@
    "source": [
     "# Objective function in the form that the PSO solver wants\n",
     "# We don't need to use all of the input arguments, they just need to be included in the function definition\n",
-    "def objfun(mode, x, objf, vecout, nstate):\n",
+    "def objfun(_mode, x, objf, vecout, _nstate):\n",
     "    # Evaluate the objective function using the ackley function defined earlier\n",
     "    objf = ackley(x[0], x[1])\n",
     "    return objf, vecout"
@@ -312,7 +313,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Switching the warning off doesn't mean we shouldn't worry about what's going on and you should refer to [The documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.glopt.html#naginterfaces.library.glopt.bnd_pso) for the meaning of the various `inform` values. \n",
+    "Switching the warning off doesn't mean we shouldn't worry about what's going on and you should refer to [The documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.glopt.bnd_pso.html) for the meaning of the various `inform` values. \n",
     "\n",
     "In the example above, `inform=2` which means that the standard deviation of the location of all the particles in the swarm is below the set threshold (‘Swarm Standard Deviation’).  We may or may not choose to worry about this. Since we know we have found the global minimum in this example, we will ignore it"
    ]
@@ -323,7 +324,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "def ackley_ndim(mode, x, objf, vecout, nstate):\n",
+    "def ackley_ndim(_mode, x, objf, vecout, _nstate):\n",
     "    n = len(x)\n",
     "    sum1 = np.sum(x**2)\n",
     "    sum2 = np.sum(np.cos(2.0*np.pi*x))\n",
@@ -393,7 +394,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   }
  },
  "nbformat": 4,
diff --git a/global_optimization/SQP_multistart.ipynb b/global_optimization/SQP_multistart.ipynb
index cec8b40..54ea6b9 100644
--- a/global_optimization/SQP_multistart.ipynb
+++ b/global_optimization/SQP_multistart.ipynb
@@ -23,7 +23,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gc1dWH3zsz24t6L7Zly713bKoB03vvBAgJBEICBALJRwl8IfTkI6H3BEILEAzYVIPBBty75S7b6l1aafvM/f4YWbaxjaWVbEn2vs+jZ9ermXvverVnzpx7zu8IKSVx4sSJE6f3onT3AuLEiRMnTueIG/I4ceLE6eXEDXmcOHHi9HLihjxOnDhxejlxQx4nTpw4vRytOyZNTUmUfdN0sKWDJak7lhAnTpxDDWlA8xrzubCA6jR/NAcodkDs3/mj9RAuA9UDlhRQXB0eYtGiRTVSyrQfv94thrxvapgFLx8Jw/+KcA/ujiUcMKSUoIcg3AIRP0SDyGgI9AgYUZBRMIwdJwgBQgGhgmoBRUOoVtDsoNnA4gSLA6F0y0cXJ06vRRoRaFoOvpXmY+NSCFWYv1RVSBgHSRMhaTK4ByFE1wYsZLgcWfU61LwF0QZw9kVkXgNJ09s9lxBiyx5f74488vEjcuWCxasQloQDPndXIqNBaCpF+sqQvkpoqUb6q8Ffiww2QLARQk2mwe5qVCtYXGBzI6xusHnB5kHYE8CeCPZE87kjGeFIAkcKwurs+nXEidOLkcFyaFwMDYugYT74N5u/sKRA8hRIORySD0dYErtuTiMIte8jK16E0BawFyCyroPkUxBC/clzhRCLpJTjd3u9Wwz5+PFy4cKFB3zeWJGGDo1bkTXrkLXrkQ3FyPpiaKna9UDVCs4UhCMZHMmmMbV5wOYGixthcezwrFUrKBZQVBAKQpi3dVIa5i2goYMRMT13PQzREERDyKgfIgEI+yHSjAw1Q7gZQj5kqMm8eERa9vxGNAc4kxHOVHCl7Xh0pZuP7gxwJHW5JxInTm9Bhiqh/nuomwd1cyFSb94dJ4yF1GMh7ViEPbtr5pI61H+CLH8KAutMg57zG0ic3mYPfkzckHcAGQ0hq1Yhy5ciK5cjq9eYxhNMA5zYB5HYF5GYj/DmgicL4ckyDfdePoADidQjpkEPNiADdRCoQ/rrIFCL9NeCvwbZUgP+GvMisTOKBdzpplF3ZyLcmeZ785jPcaXFDX2cQwIpdWhaBbWzoeZLaNlg/sI7CtJPgvQTEbbdwtUxzGNA/afIsv+D4EZwjULk3o7wjNvt2Lgh3weypRpjy7fIrfOQ5UvNuLZQILk/SsZwRNoQROogSMg7aOLTUkoINUJzFbLF/KG5Etlc2fpYAf7aXU9SLODOQHizEZ7s1otYNsKbA57sePgmzkGL9G+B6k+haiY0rwUUSJ4KWWdC6jSEYu3c+FKH2veQpX+DSJUZasm9DWHNbDsmbsj3gAw2Ymz6Arnhc2TVSvNFbw5K7mRE7gRE5kgz/nwII6MhaKlC+sqRvnLwlSF9FeZjU6kZ1tkZexLCmw3enB0G3ptjPvaQO5Y4cTqLbNkIlR9CxQfmhqklETLPhOzzEc4+nRtb9yMrnoOK50FoiOxfQ8ZlCKHFDfl2pJTIyuUYq99HFs8x49BJBSgF01D6HmmGTeLGpt3IkK/NqEtfGbKpzNwAbiqFlmpgp78vi7PNqO8w8tkIT44ZslF+eqMnTpyehhnn/h7K3oaa2WYWWvKRkHcZJB3WKVsiQ9uQW++Hxq/AOQzR988oriGHtiGXho4snoOx/HVkzVqwulEKT0AZeAoiZcABXcuhgtTD0FRmevNNJW0GXvrKwFe+azaPou0Upsk2wzSe7Nb4fDxkE6fnI0PVpkEvewPCteAeBPlXQ9oJMYdjpZRQP9M06AjUMfMOTUMupURu+RZ94XPQUAwJeSjDz0cpPAGh2Q/IGuLsjjR0M2TTVAa+7Qa+3PTkfeW7h2xs3lajnmVuurZuvrZtylo7XlwRJ87+QBphM+yy9SXwbwJHH+j7S8jYd3rhXseM1kNgI4p3wqFnyGXtBvTv/oasWAYJ+ahjf4bod3T8Fr4XIINNrZ57WWts3ozRy+YKaK7cPdvG6gZXOsKdjnClmc9d6eBMNf/tTAGrOx42i3PAkNKAmi+g+GloLgJnARTcBKnHxvx3eEjFyGU0hLH4RYwVb4HNjTLuGpRBp3RLtomMhJC+WozmemRLAzLgQwabkUE/RILIiFnlKQ3dzB8HQJgXG0UFzYqwWMFiR1gdCJsTYXch7G6E02v+uBIRWud2zHsTUhoQqDeNuq9il2wb2VJl5vcHG3c/UbXtyPN3Jrfm+yeZRVOthVSitZgKmyd+wY/TJUhpQPXnsPkJ00NPGAsDbkd4h3d4rEPGkMvajURn3wsNxYiBp6BOvA5h9+6XuXbG8NWhV27CqCrGqNmGUVuK0VCJbGnY8wlCAavDNNKqpdVwK4AAKU3DbkQhGkFGwxAOssvG4Y+xuVDcSQhPCoo3BeFJRUlIQ0lIRyRloiSkIVTL/njrPRIZDbXmy1fvkjcvA3Vm5W2gDgL1ZuXt3mitmBU2D1hbC7usbjOMY3GB1YmwtGp1WJ2g2k35BM0OmtW8cOxU/BW/Gzi0kUYUKt6FTX+HSB1knQ39b+5Q1eghYciNdTPR5z4KVjfqUXei5E7s8jnAjLsbNVvRi5cT3boKvaQI6duRby08ySjJOShJmSgJGQhvqmlk3UkIhwfhcINm69AXW0oJkRAy1GJ69IFm07tvaUT6GzCaG5DNdcjmOozGGmRz3U4ePmb1qDcVJSkLJSUbJTkHNTUXJSUXkXDoFvmYxVMNrcVTDRBqRAYb2+QVZKgJQj4IN5sZOuHmNs2cDrO9mlfVzM3dtsre1rsvRTM/hx//IFo1eASg7KTttP211ud7Yrffi9an2zV9xI45WquMEa3VxorWti5T98fS+rzV+dBsrRcru/ljcZjVyxbnjgvdQVJz0ZXIqA+Kn4KSf4HmhQG3Q8ap7bIHB7Uhl9LAmP8Mxop/I7LGoE67x9QX6UKkoaMXryCydh7R9QuQTTUACG8aat4Q1OyBqJn9UTP6Iuzdn3suDd0M6TRUYTRUYtSXY9RXYNSXYdSVQXCnMn6LDSU1DzU1HyW9D2p6H5T0vgh3ctyL3AvSiJrVvhE/RPzISACiAYgETSOvh8y7gmjIjOcbrVILrWJp0oiarxl6608UZGt4TRqtQmrbHyVI2fq408W57bu783dY7uGpbD1c7nhRbh+r9VHKHfMbuvl8+6O+fa0xaAZZHK13Mx6EzbuTBlBrSMuZbOoAudLMfx9C4SzZvA7W3gNNyyDlKBh0D8KW/pPnHLSGXBpR9Dl/QW74FGXImSiH/bpLvQC9toTIkk+IrPjKDJNYbGgFY9D6j0crGI2SmNFlcx0opJRIf6MZ/qnZhlGzDb16K0bNVqSvru044fSipPdDzeyHmtEfJas/SnL2IfVli7MDKaVpzPXwDv0fPdSq6BlsvbAFWi9sLabiZ7hlx11NsLFVD6hhzyEtoYIrtTUTyZS9EN5cSMhFJOSZIa6DDCl1KHkNNv0NFBsMvheRdvxejz8oDbk0dPSv7kNu+tLc0Bx9WZd4kFJK9OLlhL5/F33jYlBUtMIJWIYfjTZgHMJy8KYtGv4mjOotGFXF6JWb0Ss3Y1RtMT1JAIsdNaMfanYhStYA8zE5+5ANzcSJDWlEzT2KQB2ypQbpr2mTiqC53Kwe/nFBmSMZkdgHkVSASO4PKf3N55qt295HVyH9m2H17eBbBdkXmJuh6u7v66Az5FJKjLmPYBTNQJl4HerIi7pkbdFtqwl9+Sr6tlUIdxLWcadgGTMdxX3oNsCQetT02is2YlRsRC/fiF6xEaKtKYA2F2rWADO8lDMQNWfQIf3/FadraCsoaypBNm5DNmyB+mJk/WYzjAWmF59cgJI2GJE+DJE+3NRD6oUhQWmEYdP/wbaXwDPM7NfwI6XFg86Q68v/jTH/KZRRl6JOuLbTazJ8dQQ/e4Ho6jkIdzK2w8/HMvr4/ZrWJyNhDL8fGQogQyGkvlOTCaEgNA00C4rNhrA7zB+lZ3i+0tBN4166Dr18A3rZWtNzN3QAREI6as4g8yd3MGpmwSGVNRNn/yGlYdYV1K43paVripDVRTuKyOxJiKzRiKwxKDnjwJvbqwy7rP4S1twBitU05ok7VBD3uyEXZsnSQqBUSnnqTx3bWUNulC1Cn3kLou9R5sZmJz+kyMqvCcx6CiJhrFPOwXbYOQhr58MnUkr02mqipVuJVpYRra5Er61Gb6jDaGxAhkMdG1AIhMOF4vagehNQEpNQE5NRk1JRU9LQ0jJQU1IRavdkCshICL1io2ncS4vQS9e2bQqjWkyvPXcQas5g1NzBKJ6UbllnnIMPKQ1o2IqsXIFRsQxZvqQ1NAN4slHyJiPyp5gGXu35NRfSvxmW3wDBEhh8PyLzNODAGPKbgfGAd38achlsJPrulWBxoZ35rJnHGyMyGiY482kiyz5DzR2M/bTfoKbkxD6elETLthEqWkF4QxHhTRuQ/h2l5oo3ETU13TS+3gQUjxfhdKHY7AirDTSt1eMWSMMAPYqMRJDhIEYggAz4MVp8GL4m9KZGjKYG9IY6iO6sWaKipqajZeZgyc5Fy87DktsHNSWtW7x5o6m21agXoZesRS/f0BZvN732wWh5g1FzBqNk9Ou2i1CcgwspJTSVYJQuRG77AVm2yNyYtbgQ+VNQCo5B5E7s0UZdRhph5U3QsAD634LIv2qvhrxLvjVCiFzgFOB/gZu7Ysy9oX//BAQa0E54qFNG3GhpJPDWfeila7FOPR/bURfHlI0hpSRasoXAgrkEly5ArzfzydX0TOwjx2LpU4Altw9aZg6K3RHzevc6v2Fg+BrRa6qI1lQRrSw3fypKCK1Y1JaiJhxOLHl9sfTpj7XfAKz9ClHc+z8LQPGmoHinYhky1VxvNIJeuQm9ZA16SRH6tlVEV88xD9asqNmFZigmx/Tc47H2OLEghICEPNSEPBh6ltkspmwRRvEcU3tp42emcF7BNMTAk81+Az0s/CIsCchRz8KaO2Hjo8jI3ovXusQjF0K8AzwAeIBb9+SRCyGuBa4FyM/PH7dlyx57iP4kRtli9I9/gzLmCtRxV8e8XsNXi/9ff8BorMZx5i1YBk/p8BgyGiWw6Dtavv6U6LZi0DRsg4djHzkO29BRqAndb4BkOEykooToti1EthUT3rqJaOm2tji2lpmNtf9grIVDsA4cgurpnh6qRmOV6a2XFhEtWYNRsbktZ1kkZqBmDzJDMtkDzVj7ISRHEKfrkUYUWboQY8OnyOJvTE89uT/K4DNQCqd3ykHcH0ipw7r7oXYOytQv909oRQhxKnCylPJ6IcTR7MWQ70wsoRUpDaLv/xxCPrRz/xlzypHhb8T/yu8xfLU4L7wbLX9Yx9ZhGAR++Ibmme+h19eiZeXgPPxYHOOnoDh7vgKfDIeIbC0mvGkd4Y1rCW9aiwyaVYpabh9sg0dgGzoSa0Fh98faS8w4u166dkflrKKhZPQ1PfesQtSsAShp+fHc9jgxIcPNGBu/wCj6AGrXm176oFNRhp9riq71EMzK7joUW+p+M+QPAJcBUcAOeIF3pZSX7u2cWAy5sfkr9C/uQj3qjyiF02Naq4xG8P/rD+gVG3FedC9an46J1kS2bqbhjReJbivG0qcA90lnYxs6ssfdknUEqeumt752lRnb37QeDB3hcGIbOgr7iLHYho3aL2GhjmA01aKXrUUvW4deuh69YgOE/OYvNStqRj+UjILWx36o6X27ZMM6zqGBlBJZtQpj1TvIzV+biQWFJ6GOvtSUT+4hHJD0w/3lkUspTW88GkA759WYva/ArGeILPwQx9m3YRl6RPvnNwyaP5tB88fvori9eM++BPvYSb3agO8NIxAgtHYloVVLCa1cgtHsA82CbcgIHGMnYxsxBsXW/QZSSgOjrgyjbIPpvZdvQK/cDKHt0gPC1LpJ74OSmo+aloeS0qotcwgZeGnoEAq0Km42I0P+Vr0eP4T95r/DQWQ4AOGAqcYZCZmP0bCpRRONmBvvbVICcscP7NBrURRTL0azmFosFhtYbKZqp9WBsLvA7kZxehCOVtVOdyKKOwXsrh7zfZK+Mozlb2Cs/QiQpoc+5kpTTqCb2a+bnfsbWbkCatehTL0lZiMe2bCQyMIPsU46o0NG3AgFaXjlKUIrFmMfdxgJ51/RK0IosaI4HDhGT8AxegLSMIhsWk9g2QKCS+YTWrEYYbViGzke58TDsQ4a1m157UIoqCm5qCm5WEYcDbR6VQ2V6FWbMSqL0auKMaq3El03fxeNEuFJNsXDkrJREjMQiekoCekonhSEJ8U0RD0MGQ2bQmlBX+tjq2jadvG0gG/H79qkkpsh6OcnVTPBFMKy2hFWu1m1bLGZRtjqQNG8pmCWqpnSF+p2YS1BmxDXdq2WVt0Y0/iHkZEwhAOmhHPrBaTtLurHWOwo3lTzs0jKahV3y0FNzTvgom7Ck4069WaU0ZdiLPknRtEMjA2foIy6DGXE+T0y06VXFARFv/4zsngO2sXvmepqHURGgjQ/dT3Casd1zd/a/UU1An7qnnqYSPFGvOdchvPI43qM13CgkYZBeNM6ggvnEVj8AzLgR0lKwTn5SJyHHYWa1HNzwmU0YoqF1ZSY+jJ1pRh15RgNFcjm+t2OFw6PqVTpTES4vOa/7R5TB97mRFgdpuHTrKZevGrZycC1qhNKdghg6bpZkh6N7GTkQhBu1aMPB5DhQKuxCyBDzTt50abaZVsV7Z4QCsLhNtfocLeu1w12t7lmh9vUr7e7EDY3wu40W+e1Ph7IC5c09NaLTROyuQHZUo/hq0U21WA0VZsib/UVO91ZAVaHKeSW0c/cF8keiJKae8D2RWTjNvT5TyG3fAveHNSpt6Dk7OYUHxB6bWWnjIaIvnY6ot80tCNvj2m+0LdvEvrqXzgve6DdcXEZiVD35IOEN20g8We/wjF6QkxzH4zISITgisUEvv+aUNFKAGwjxuI6ajrWwp6XxvVTyEgIo7EK2ViN0WTK/xq+OmRLfatEcJNpdIItuyoPdjWadcdFwu5C2FytDURam4jY3bsaa7t7hySyzXlQad2Yom5NGLUlpqhb9RZT96diE4RbS/NtTtTcwWh9RqD1HYWSWbDfDbtRMh993l+hqcSMn0++4YALefXa0IosXQiRAErBMbGdH/IT+v49tMKJHdrcbHz7FcIb1pJ4xfUHxIhHW0JE6pqJ+oIYkShIUKwqqtOGluDEkuBEKD3DQAqLBcfYSTjGTiJaU4V/7mz8331FaPkitNw+uI89GfuYSQi152eSCIsNNTUPUvN+8jgppek5h/xmPHnnOLLRKvXaJj+7fXCxI26sqPDj2LFmM+P1Vns862YnhBAIVwKKKwF2yirbvi+il64z6xC2riL05SuEMO+i1IKxWAZOMoXtbF2fQqjkTkSc/RLGklcwlv+baNlCM/kie0yXz9VRerxHrn/7CMbGz9Au/TAmrY7Q/A8IffocrqseRc0e2K5zAkvm0/DiE7hPOB3Pqed1eM59EW0O0rBwE43LttC8tpzAlmqivp9uVCAsKvbMRBx9UnH1z8AzNAfv8Hw0T8/YuJPhMIGF82iZPZNoRRlqajru6afjmHh4rzDocXonRnM9evEyohuXEN24EOlvAlVD6z8Oy7Cj0AZONC+cXT1v9Rr0r+6HxhKUMVegjLnigFyMe21oJfL2JQhvHtoJf+nwPFJKWp69AWF14PrZI+06xwgGqL7vd6gJyaTccneXGSEpJQ0LNlH+34XUf7cOGTVQ7BbcA7Nw9kvDnp2ENcWD5rajWDUQYIR1dH+ISH0LoeomgmX1+DdXEyipBUOCIvAMySF5ykBSjxmGI7f7d9WlYRBasZjmTz4gsm0zalomntPOxT56Yq8KucTpfUhDRy8pIlo0j8iauWbtgc2JZfhRWMeehJrRr2vni/jR5z2OXP8JInci6jF37/dQS6805DLQQPS101Em/AJ11CUdnkevKqbl2Ruxn/hLrONPadc5vpnv0fzxu6Tccg/Wvv07POeeaFpVwqb/m0XzmlIsyS7SjhtByhGD8QzLRdFUpJQEK5tp3tJAqMZPtCWCNAwUq4bVa8Oe4cbdNxGLx/Qs9EAY35pSGpcWU//9BpqLygDwjswn66wJpB41FKF1b8xUSkloxWJ8H75NtLwUS8FAEs67HEtun25dV5xDAykNs6PXss+JFM2DaBg1byjWSWeiDZrUZXsKUkrk2hlm7NyThTb9QURCbpeMvSd6pSE3Suajz7oV9eS/omSP7fA8oblvE5r9Ku6bXkHx7NtblZEwVXf9Bkvf/iT/4pYOz7fbeIZk60tfse3VOVhTPeT/7GjSp49EsWro4SgVX2yi7LON1MwvIVwX2Od4zhwvyWOySJuaT+bR/bAmmGGVUGUj1Z+voOLDJQRL67DnJNHnmmmkThvW7V6wNAwC332N78O3MVqacR1zIp5TzkVYe14KV5yDExloJrzsc8ILZiAbq1BScrEefj6WYUd2WTjEqFiO/tkfQIB6wkMoaUO6ZNwf0ysN+XbNce3SGWafvw7S8tr/IFsacF/7RLuODyz5gYYX/07yr27DNnhEh+fbGWlI1j3wPtWfLCf9pNEU3HQimtOGETXY/O/lrH92IaFaP7ZUJ+lT80kckYGnXzL2dBea24pQBEZYJ9wQJFDuw7e5nsZVVdQuKiNU60exKGQd15/+V44laURG25x1c9ey9aWvaNlQScKYvhTecQb2zPZ36d5fGP4WfB+8iX/ubNSMbJKuvD7unfdSZDSK4WvE8DWZapwtLRhBPzIYRIZDZv64rpubwACI1s1eFWGxImx2FIcDxelGcXlQvF6UhKT9XmgmDZ3omnmE5r6FUVWMkpqHbdqVaIUTuqazWOM2orNuhWAD6vQHUbJGd8Gqd6VXGvLoNw8jt8zBcumMDs8hpYHvkYuwDDsKx8nXt+uc+pf+QXj9atLvf6LThS5bnv+Sba9+Q/7VR5N3+ZEIIQhWtzD/1x9Rv6yC1Em5FF4zjrTD8jF0Sek3lZR8W0ntmgb8VUGMsI7m0HBlOkgekkD25HRypqajaAoNKysp+Wgd2/67hkhTiKzp/Rlxx1E4Msymz9KQVMxYRPFTnyFUhcH3nU/i2K6ND8ZKqGglDf96FqOlmYSLrsI58fDuXlKcPaD7GolWlKFXle/Q0a+rQa+vxfDtXYUPMOWYVc3M2BGitVjIQEYjoOt7PU04XaaufmoGWkaWKcWck4+antmlhWdSGkSLviM0+58YdaWo/UZjP+FaM3ups2O31BCdeTP4ylFPeDCmSMJP0TsN+cybIdyMdsazHZ7DaKii+e9XYz/peqzjTtrn8VJKqv5wA7bBI0i8/Jcdnm9nmtdXsPTnz5J+4igKbz8dIQThhgBzLnqbYFULo+87lpyTCkHCihfWseDRlbSUB1A0gTPLiWJTQQikLtEDUQKVAaQhsSdZGXb5AMb+ZhiOZBuRljCbXl3K+ucWoto1JvztZFIn7IjPBUrrWHPnGwRK6xj20CU9xpjrviYaXvo74fVr8Jx6Hu4TTu/uJR2ybG9+Etmykci2YiLbthAt22pKM2xH01CT09BSUlGSUlATklATElHcXhS3B+F0ozhdCLvd9Lh/wuhKXUeGghjBALKlGaPZh+5rxGioR6+vNRuxVFeg11bvkGC22rDk98PSrxBb4WAsBQO7xHuXepTI4pkEv34NwiGsU8/Ddvh5ne5kJQP1RD+6CZorUU9+DCW9Y8J8P0WvNOSR/1yB8OaiHf+/HZ4junkZ/tf+iPOS+9H6jdrn8Xp9HVV33YT3vMtxHbn3Ltbtoejud6hfsJEJb97Ulh648JaZlH++kSkvnU3K2GyiIZ2ZV37D5o9LyJyYSkixUvR1DXp4989D1aD/YUkkJqqUzqnAlmjlhOen0udYs5+fb3M982/8EH9pE1NfPofkUZlt50Ya/ay48WXC9c2Mffl6rCnuTr23rkLqURpfe57Agrl4zrgQ93Ht24yO0zmklEQrSgmvW202P9m4doeHrWlYsvLQcvLQsnKxZOWgpmehJqUccCkGGQkTrSwnUmJKMEeKNxIpaW0lqKpYCwZiGz4G+8hxaKmdUyk0WhoIfvo80VVfo2T0w3HmLahpnQv7SX8t0Q9vMNVaT3sSkZjfqfG20zsLgoKNkN4xhcLtGK2yp8Kb2q7jozWVAGgZ2fs4ch/zhqLUzV1Lxqlj2oy4b3M9pTPXM/C6iaSMNcf//v5lbP64hAm/H8nsf2ympcaH7tGorg0SwazwFoAFSHbZKF7iIxrUOeV/x7Dl/U3MuOArzvnoeLImpeHpl8Thr57DnAveYvHtnzBtxqUoFnMTx5LgZPB957PkqqfZ+tJXDLj1J/XMDhhC1Ui49FqkHsX33zfQsvOwDx3Z3cs6KJHhMKGiFQRXLiG0ejlGoylLoCanYhs8Aku/AVj7DkDLzu0xHZqExYolt4+5jzL5SMDUPYpsWm+Kuq1eju+91/G99zqW/AIcE6aYUtIxNEtRXIk4z7qVyLAjCH74BC0v3Iz9hF9gHRObyiqAcKagnfgo0Q+uI/rJbWhnPI2w77+9qp7xqe2NcDPCGpsHKYNmizXhaN8HazQ1AGY7ts7g31KNEY6SMLpv22vVc7cC0Pdc8xYrGoiy/Lm1DL6wH1tW+wk2RWlOVPFHdLaoAXxECGJgQ8ElNTS7jarqMGNHp/Dx/6zi1wuPZ+ZFs5lz5yIu+OJEAGzJTobfcSTzb/iQyq+LyTpuR+qks08q6cePoPqzFRTcdFKbke9uhKKQeMm11JSX0vjv57H9z8Nmy7s4nUbqOqE1ywksmEdo5RJkOGRKEw8ejm3ICKyDhqMlt8/J6SkoNju2ISOwDRkBZ15EtKaK4NIFBBZ9R9N//kXTf9/APnqCKRXRd0CHx7cMnIR67UAC7z9K8KMn0MvWYT/xFzGHWoQ3G3X6n9E/ugn9i7tRT3rUFB7bD/RYgQYpDdDDEGMDCSJmY+P2VrKBkhMAACAASURBVHVtb4Ss2DpnSKJNZhqhJWmHQmKwqhmhKTiyzItKc5mfaEAn7+gstn1fS87EZGqrgih9NeqUMJsdzdzw98kYQxSqlCDrwo2gCjzDPehhg5JF9Qy+qIDKhTVEQzs2jzKO6AOKoGF11W7rShjbDz0QJlha16n319UIqxXv+VdgNNTj//6b7l5Or0dvqMP34TtU3XUT9c88RmjtShwTppD8q9vJeOAfJF11I87Dju51RnxPaKnpuI87hbTb7yf1jj/jnHoMoZVLqX30Xmr/ej+hNSvoaOhYcSfhvPherFPOJbLkE/yv39PmFMaCkj4MdeotyPIlGAufj3mcfdFzPfLtqUuxXsG2Cxy1O7Znph91ds9AcZj50XpLqO01S4IdGTUINwSwJjpwpNkRqqB2dQMphW7KlzVgs6to9WA1FDKDDh789TdoUsEjLQxITSBQH0Jt7bGckOtk07wyrF4LqmXH+9PDOhgSxbq7xy1U8zhpHPg9kX1hGzAYLSuX4LKFuI48rruX0yuJ1lTR/Ml/CSyYC4aBbegonFOOxjZsVI8Jl+xPLNl5JJx7OZ5TzyPw3dc0fzmTuicfwjpgEJ4zLupQcZ9QVOzTrkBJzTNDLa/egfPiP8XcP1YZeBKyaiXG8tcR2WNRcifGNM5PztHlI/YUtl8A9OhPH9eKaO2AI4P7Lsz5KZz5qSCgeV1522sp4824ePkXmwCwea0MOD2f5c+tZdyFufhrwhSkOoiUhig0PIywJTFCJjFSS2KolkhofYghgxMoemMrA47NQLaEKHpzM0Mv6b+LkFbJjLUApI7P2W1dvlUlpl5LTvf3Et0Tlvx+RKvKunsZvQ4j4Kfp3deovu82Aou+wzl1Gml3PULyL2/BPnLcIWHEd0axO3AdcyLpdz2C97zLiVZWUPvoPTT861n0faVN/gjryGk4L7wLo74c/z/vwPDFfjerTP41JPZFn/MAMtixdbRr/C4fsavYXnEl9553+lMIW6thDrXPMKtes+BIb2yIab7taB47nqG51Hy5qs27TxqZScKQNNb+4wciPtNTP/Iv43Ck2pl350KOu6U/QpckRwR9nFb62uwM8rjo73DQ12MjR1FpXtvM6Avy6T/SyczL55AxLpXD/mdHwYFvcz2rH59LyrhsksftumEbafBTOWspyVMHodp6XtMEoDXVLK7F0hFCa1dR/ec7aPnqExyTjiD97kdJOO/yTmdxHAwIiwXXkceTdtfDuI47lcDCedT8+fcEFv/QoXG0gjE4L7oXo6kW/2t/xPDHZoSFZkM7+o8QaED/vn0Fih2hxxpyIRRQLBAN7fvgPZ3v8AIgA+37j1fTzOpIvap8H0fum8zTx+Evrqb2myJzLUIw8q6jCVa3sOC3H6MHo7gynZw7azqpQxNZ8Y/VZKdKJp6dQeHkJFJSrHhtCkkeC1n9nIw5I5OJp6dS83kxK15Yx4ifFXL2B8dhcZneVv3yCuZe8R9Uq8qYB47fpUpNGpL1D32AEYyQ/7OjOv3e9gdSSsKb12PJ2n8aFQcbzV/OpO4fDyJsdlJuvpvEi69GTeiZd1vdiWJ34D3jAlJvvx81OY2Gl/5Owz+fwQj9tNrozmj5w3BecBdGfQWBN/+EjLT/3J0RqQNRRl2C3PAJRmnHehbvix5ryAGwOCCyl9ZQ+0C0aqsYTTXtOl7xJKC4PWauaidJP34kzn5pbPrbLCKtm5/Jo7IYde+xVH+3jblX/oeWbY14cl2cO2s6J718BN48F6VflNI4vxytogF3Swv2+ibCRdVUfL6N2lX1DLusP5f+cBrHPD4Ji0sj0hJm9ePz+ObSd1BtGlNeOhtX7g4pA6kbbHzsI+q+XUvf647H1a9nemqh1cvRqyuxj53U3UvpFTR/9iG+917HPmo8qb+7t8vE3Q5mLFm5pNx8F+4TzySwYC61j95LtLqy3edrfUfgOOt36KXrCHzw15j30pTRl4E3x1RN1CMxjbHH9XXZSPsDmwcZjm3HWElo1R9paN+HJYTA0ncA4U3rYppvl7E0hcI7zmT5r16k6K63GfbgxSg2jT5nD8XitbHkzs+YfcZrFFw6ioLLRlN4Vh8Kz+pDqClM9fJ6mrY0E/VHUTQFR7qdlMGJJBS42zztlpJGtr67muI3VhBuCJJ7+mBG3HFkm4gWQNQXZN2f36du7lpyL5lK9rk900gawQBN77yKmpaBY/yU7l5Ojye0Zjm+D97EPu4wEi//Zbf1TO2NCFXFc8o5WPsPpP6lJ6l59B6Sr/0t1oL29SmwDD4MY9oVhL58mfB3/8E25dyOr0GzoR72a/RPbsdY/R7qiPM7PMae6NGGXNgSIBBbzFp4ksHqQK8pafc5tkHDCK1cQrSmqtNxRs/gbApvP51197/H6jv+zeA/nYfmtpN9XH+ShqWz+rF5rH9hERteWkzq5DzSp+aTNCKT1MGJ5ExJb9vEjPojBCp8lH++kfrllVR/t5XG1dUgIPPofgz8xQSSRmbuMnfdd+vY+OhHhGubKbjpRLLP6ZlGXOo6Da88hV5XQ8qNdyK0Hv3n2O1IXafxrVfQMrNJvOSauBGPEdvgEaTeeg91Tz1C7d8fJPnnN2Eb0r5iNOthZ6NXbCA0+5+ouUPQ8jtefq/kHYaRMwFj6SsoA0/qEg3zHl2iH/3sTmRTKZZzXolpnpaXbgVVw3V5+5pSRGuqqL73FjxnXoj72K4pGa+ctYwND36ALTORgX88C++wHXHg5uIGtr67irLPN9JSvOsFS7GpSF0iozt1f9cUkkZmknl0X3JOGogzx7vLOb41pWx5YTYN8zfi7JtG4e/PwDN09wyWnoCMRml49WmCS37Ae94V8bTDdhBcuZT6Zx4l6ZqbsI/qnua/BxO6r4m6Jx8iWlFK8rW/bbcxlyE/zc//Bgwd97VPxNRWTtauJ/re1SijL0cdf027z+uVJfrCmYqsWBbz+UrWACLLv0Qaert0h7XUdCz5BQTmz8U17eQukbbMOHEU9uwk1v3pPyy//gXSTxpN/uVHYs9Owt03kaE3T2XozVMJVDXTtKaGlm2NhBsC6MEoQhFoHhuODDfufkl4C1NQ7bt+ZEbYlAQof38hjUuK0bwO+v1qOllnT+wxFZw/xvC3UP/iE4TXrsJz5oVxI95OwutXg8WCbVjXy6MeCKK+II3LW9sbbq0hVNVEtCmAETZjxYrVguZ1YEvzYM9JxlWQjntIDvbspP2iq696vKTc8Htq//4X6p77Gyk33oG1374rQoXNieOMm/G/cjvBz1/EccoNHZ5bpBQi+h6FseodlBEXdNor79GGHHcGhHzIcAvC6tr38T9CzRlEZOFHGFVbUDML2nWOY/IRNL31CpHije36UNtDwsh8xrxyPdte/pqyd+dTNWsZyVMGkj59JIkT+6M5bTjS3TjS2ydHEK5voXHxZuq/30Dt3CL05hC2jAT6XnccmaePR3P13DL3yLZi6l98Ar2+loRLfo6zVUcjzr7RmxpQE5J6VQjKiOjUzF5F5cylNC4tBl2CAHtWEraMBFz901GsZkqsHooQbfTTvL6C2jlFSN28G7WmeUmaPIDUo4aSOLZfl3a/Ulxukq//HbWP/Yn6Zx8j5dZ70VLS9nmeljsY66TTCX//PpaR09DyhnZ4bnXM5USLvzZj5WMuj2X5O9bTqbP3M8LTmg/tK4OUwg6fr+WbglvRLSvab8gnTMU3421aZs/E2u/GDs+517W4bPT71XSyz59M+bvzqZy5lLpv1yJUBdfALNwDM7HnJGNLT0Bz2xEWFQwD3R82e3ZWNuLfWkPLhgqCpabokeZ1kHL4YNKOG07iuIK26s2eiDQMWmbPwvfh2yhuDym/vrPdm0xxTITFhuxA2lx3IqWk9qvVbH7qM0IVjdhzksi9eCpJE/rjHpSN6vjpDlFGRMdfXI1v1TYaFm2m5vOVVM5YjDXNQ+bp48g6cwKWhI6HNPaE6kkg+bpbqXnkHuqf/xupv72rXR2sbEdeQmT1twRnPYPr6sc63G1IpBQicidhrH4XZeSFCDX2rlk925B7zfiubCxBxGDIlYQ0lORs9M1LYdIZ7TvH7sB5+DRaPv+ISEUplsyujTHb0rz0/cVx9Ll6Gk0rt1I/fyNNK7dR/cUq9Oaf+JKqAntmEq7+mWSeOhbv6L54BmV3e2/O9hCpKKXx3y8S2bQO28hxJF50dUwqdYc6WmY2ge++Qq+vQ03q/kbbe8OI6Gx4eAZVs5bhKsyk/29PIWnygA6FRxSLirswE3dhJllnTjBVRb9bR8WHi9n6wleUvj6P7Asmk3vR1H1eFNqDlp5F4hXXUf/0ozS99xoJF/xsn+cIqx37sVcReO8hIstnYx3d8RChMvw89Fm3IjfNRhSeEMvSgR5uyEkwO3bIxq0xD6H1H0t4yafISBBhaZ8YvXvayfi/+RzfjLdJ/vlvYp77pxCaQsLovm0qiVJKor4g4RofeksQI6IjFAXVYcWS6MSa4ukVRntnZDhE86czaP78Q4TNTsJlv8AxYWq39xHtrdiGjMT33usEly3AdXTsX/r9iTQka+95h9pvisi78kjyLz9qr3+3Ldsaqfp2Cw2rqvCXNBJuNIv/NKcFe7oLd0EyScPTSRmfg8VjI/XooaQePZSWzVVse/lrtr08h6qPl9L/1lNJntxxR+/H2IeNxnXsybR88TG24WOxD9t3HwNt6OEoP7xPaM5rWIYfhdA6VjktciZAQj7GmvdRDlZDLiwOcGci64tjHkMrnEh4wYdENy3BMuiwdp2juD24jjuV5g/fIbR2FbZBXdfhY28IIbB4HVi8jv0+1/5GSklwyXx87/8bvb4Wx4SpeM68qE0GIU5sWLJysPTtT8vXn+I84jiE2vM2s8ve+YHab4rod8N0cs7f8/etdlEZRU98R838UgCsyQ7cfRJxZntACKItYRqLaij7bCMYEqEppE3OJf+soWQd1x9Xv3QG33seTeduZcMjH7L6ttfJOmci/a6f3ukNfs8p5xJatYzGN1/C+oe/7LMTkRAC+9GX4n/9LiLLPsM67uQOzSeEQBl0Ksb8J5H1mxFJsXXx6tGGHEAkFSDrN8V8vtpnBNjdRNfMa7chB3BPO4nA93NofOtl0n7/vwhLvOt7ewhvWkfT+28Q2bweLSef5Mt/iW3A4O5e1kGD+/jTqH/ur/i/+wrX4cd293J2QQ+E2fry1yRNGkD2eZN3+72UkjWPz2P984uwp7sY8tspZE8fgCs/YY93aXowSv2KCiq/2ULpx+tYeMssHJluBl0/kfyzhuIdkc/o566l+OnPKXvnB1o2VjL0fy9sa+gSC8JiIeGiq6h9/D6aZ/0X7xkX7PMctd9o1JxBhL57F8uYEzocK1cKT8BY8AzGulmok66Lad09/l5dJPeHhq3IWDVXVA3L4ClE1n7fIY0EYbGScMHP0Ksq8M14J6a5DyUiZduoe/Zxah+/D722ioSLrib1tvviRryLsY0Yi3XAIHwz3kFvauzu5exC/ffr0ZuD5F6y5/BZ0RPfs/75RfQ5bxjHfnw5A38+HnefxL2G2lS7RuqEXIbdPJXjP72SSU+dhj3dxdK7vmTOxW/TtKEWxapR8OsTGfjHs/Ct3MaK37zSJosRK9aCgTgmHk7LV7OI1lbv83ghBNbDzkE2VBJd+32H5xOOJHPTc+PnZh+GGOj5hjy1EKTeKa/cMuJoiASJFnXsP9k2eDjOw4+lZfZMQmuWxzz/wUy0ooz6l5+k5i9/ILx+De5TziHtrkdwTjk6Xnm4HxBC4L3gZ8hwkMY3Xuy0fn5X4isqQ1hVvMN370/ZtL6Wdc8sIP+soYy6Zxqac9dYcuXiWmb/9gdeO+xDnunzFs/0eYt/TviAmT/7hlWvbiDUGCbzqH4c8e/zGffQCfhLGplz/puUfGRKN6dPH8nQBy7Cv6Wa1be9hh7snI6J59TzAEHzrPfbdbw2cCIiIZ3wgg9jmk8ZcBz4q5GVK2I7P6azDiAidRAAsnptzGOo+cMQiRmEl37a4XO9Z12MlpVL/StPtevqfKgQKS+h/uUnqf7z7wmtWIzr2FNIv+cxPCee2SUdzuPsHUtmDp7Tzie0YjH+OZ9193LaiDT4sSS49ri5WfzmClSbxrDfHb6LB27oBl/ftoA3j5lJ0Zub8eQ6GXReXwad34/kgQmUfV/NFzd+z4tD3uXr2xYQqA2Re+ogjnn/EhKHpbPod5+w8ZUlACRNGsCgu87Bt6aUDQ990KmLnJqUjPPwaQTmf9s+r1xRsY49EX3rSvTa9suCtJ2fNwVUK3LzVzGsthcYctyZYE9A1hTFPIQQCtbR09G3rOjwf7KwWkm65iYwDOqfeQwjEJsa48FCuHgjdc/9lZo/39FqwE8m7Z7H8J5xAYortv6qcTqO6+gTsA0fQ9N7rxPeGLuT05UoVrWtSvPH1C0tJ3lsFtbEXS/y8x9awbJn1jL6usFcVXQ2/S4oZMv6EAtnVFO0uAX6JjPwmiH0OyWPFS+s41/jP2DjjK3Y01wc9sKZZE8fwMoHv6H4rZUApB45hD7XTKP685VUfrSkU+/HPe1kQNDy1SftOt4y8lgQCpFlX3Z4LmF1InLGY2z5NqYLUI835EIIRNoQZNXqTo1jGX08KBqRhR93+FwtPZOkq24kWllO/XN/RYbDnVpLb0MaBsFVS6n9vz9T++g9ZgjlxDNJ/9PjeM+4ENXj3fcgcboUoSgkXvYL1OQ06l/4vx5xt2jPTiLaGCDSsLuzE2kMYUvdtTo77Iuw+G+rGXhOH454YBwzbl7Ka+fPo3x5Awl9nFiSLFSt8fHV4xuY+3o5eecV4unj5qNL57Dw8VWoVo1xD59AxpF9WX7fbGoXmlkwuZccTsLYfmz++yeEqmPvxqMmJWMfO5HA93PapV+ueJJRC0YTWflVbMY4/3BoroQYwsg93pADiPRh0LAFGfLFPIbiTsIy9HDCyz5HBls6fL5t8HASL/054Q1F1D//N2Tk4DfmMhzGP3c2NQ/cQf3TjxKtrsRz5kWk/+mveE45B8UVL+rpThSni+Rrf4uMRql/5lEMf8f/rrsSz1BTEK5xafFuv9PcViKNuxrDqqW1RAM6Qy7pz7pZFSx8cTNTfzsQZYiLrz8rY/731aza6qPGInHkOfju2c1UN6sUnJbHvHuWsPTpIhSLyrhHTsCZ42XR7Z8SaQkjFMGA352KEdXZ8mzHveOdcR1xHDIYINjOzkKWYUchm6rRSzt+lyTyTJVSY1vHuhhBFxhyIUSeEGK2EGK1EGKVEOKmzo652xzpwwHZaa/cOukMCAcIL54V0/mOCVNJuPAqQkUrqHv6UYxA53bHeyrRuhqa/vsmlf9zE41vvAiahYTLf0n63Y/iPvZkFHvvz3U/WNAys0m6+tdEqyrMu8VudDC8w/LQEhzUzN79e+odkELD6updPNVowGzjaPVaWDurHKtLI+hQWPFJBVOu6UdkoEKVN0w0XWFtsY9gskbVGh8blvvpe0IO39y5iPIF1VjcNsY+MJ1AuY91Ty8AwJGTTPY5k6j6dBn+Le1rLrMnLP0KUdOzCMz/pn3HD5wIihpb9oorDZIKkKULOnxuV3jkUeAWKeVQYDLwKyFExxVkfgKRPgSEiqzsXOaImjUAtd9owvP/i4zG9gfvnHI0CZdeS3hDEbV/vQ+9LvY/kp6ENAyCq5dT9+zjVN9zMy1ffIStcDDJv76T1Nvuwzlhaq8SazqUsA0aRuIl5t1iw6tPI43YUtg6i9AU0o4bQe03awjX7Hr3nDY1n1B1C/XLdzR68eSZoZb6dU0YEQPVqrDhhxr6jEnizf+sZkNJA5sCjSytrGGj9OHTdXxOQeXqJoJ2O+5sJ1/e9AOGbpA8Jovc0wez6V9LCdaYoZ3ci6agWDVK35wX+3sSAseEKYQ3rEVv2HfzZWF3o/YZQXT9/JjmU3LGIytXdDjdutOGXEpZLqVc3PrcB6wBulSgRFiciJRCZEVsqTk7Y5t6HrK5nsjS2Hf7nRMPJ/mXt6LX1VDz8F2EilZ2el3dhV5fh2/W+1Tfewv1Tz1MpHgDruNOJf2ex0i65iZshUPiJfW9AMeEqXjOupjg0gU0vvlSt6UlZp8zCWlISt/8bpfXs44tQHVoFL+54zucPCgBV5aDDf/dSuaIRAL1YWyaQkNFkJamCFURP9fcPY4JF+dSK4IUtTTQ4AuTOMzL4n9tZdg1g6hd1cDGD7YBMOiXEzDCetsclkQXacePoPrzlURbYqtDAbCPngBAcPmidh2vDRiPUbMNo53dyXZGZI0BPYysXtOh87o0Ri6E6AuMAXYL8gghrhVCLBRCLKyu7vjGjMgciaxejdQ7d+uo9hmBmjeU0Ny3Y/bKAWxDRpB6yz0obi91Tz5E0/v/7jVxcxkOEVj4HXVPPkzV3b+h+aP/oKamk3jlr0j/09/wnn4+anJqdy8zTgdxTzsJ1/TTCcz7Ct9/3+gWY+7ITSbt+BGUv7eAYOWOgiWLx0afc4ZR8uFaWraaTVSEIhh6aX+KPy0lZ4QHzaZgCxg0lAXIS3GTKG1sXF/PMy+eRv+jUgkKA2+hk7XrmlBtChWbAnjyXax+baP5/vsmkTY5j20frGl77xknjcEIRqibG3tmjyUzBzUtk9DK9mXBaAVjAIhuWtrhuUTmSEB0uA9DlxlyIYQb+A/wGynlblvFUspnpZTjpZTj09L2rfe72/hZo2K6Uu1hndiOugTpqyW8aGanxtIys0m59R6cU46m5YuPqf7LHwmtXdWpMfcXUo8SXL2chn8+Q+WdN9DwypNEK0pxn3AGaXc/SsqNd+AYNzkePunleE49F+cRx9HyxcftLmbpavpcfQwAm/+xa91G4c/Ho1gUVj78bdtro68fgs1rZcGDK5h0XX9Kvqkhr8BNSsiGS2p8+1ox44Y9w+LF5QgL6C4Ih3QyRyVSPLeG/qflUTKngmjQjLdnn1iIf1sTvg1mGMQzLBdrirtThhzANmwUoQ1F7XLWlNQ8hDuZaHHHQ8HC5oGkvh0uDOoSQy6EsGAa8deklO92xZi7zZExChDI8o5f5X6M1nekGSuf+xYy1Lm8cMVmJ+HCq0j+1W1g6NT9/S/UPfMokZItnV5nZ5GRMMGVS2l47Tkq77yR+qceJrhiMfYxE0m+8Q7S7nkMzynndLo/aZyegxAC77mX4Zh4OM0fv0vzFx1Pt+0s9sxEci87gtqvVlM3b0czc3uai4G/nEjFF5so+9z0oh3JNqbeO4aSORVk5lpJKfRgb9TRdMnIxGRShB11E+T4XRCGQaPMO0VvroOm0gCZ41LRQwYNG0zfMW2SmTlTt7gMML3+xIkDaFi0uVN3KLZBwyASIbx5wz6PFUKg5g9H37YytjTEjOHIqtUdKtfviqwVAbwArJFSPtbZ8fY6j90Lyf2R5Z1L8t+O/ZjLkf4mQnO7RkfFNngEaXc+gOe08wlvXEfNg3+k7qlHCK1ZcUA3n6I1VbR8+yV1zz5O5e+vo/6ZRwkuXYBt6EiSfv4bMv737yRe8nNsA4fGS+gPUoSikHDxNdjHTML3/r9p+ebzA76G3Iun4ixIZ8PDM4g07nCWBlw5hoQhaSy7+wsCVc0ADLtyAAWn5vH9/cs4/vcDERJynFbsQqE/bo4bl8/Uiblcc8MYSr+tJynbgQLYPBac6WaBUaDWjIE78xLQPFYa1+1IQvCOyCPaFCBYsu/Nyr1h7T8IhCC8oX2FiVr+UKSvDtlY1eG5RPowCDdD47Z2n9MV99FTgcuAFUKI7e7ynVLKLncFlKzRGEUfIPVwp7ppAKjZhWjDjiI8/79Yx56Ikth5r1RYrLinn2Y2ppjzGf6vP6XuyYdQk1Oxj52MfeQ4LH0KusyASsNAr6ogXLyB8Ma1hNevQW8tDFGTU3FMOgLb8LHmhqWlYzrJvQmpRzAaqpANlRgNlRi+WmRzPdLfiAz4kCE/MhwEPQy6DkgQCigawmIDmwNhdyOcXhR3MsKbipKUiZKUhZKchVB73/+dUFUSr/gl9ZEwTW+9grBYD2hbPcWiMvAPZ7HsF8+x/qEZDLn/fFOy1aIy7qET+Pr8N1h0yyymvHgWikXl+KcO4z8nfcq8Oxdy5uMTmHH7ShKaJX0mpLJ6aR0hv8633zThSrJy7XOT+OCqBQw/O4doyHSSVJv5nRJC4MrxEijbkTXjLswEoGVjJY68lNjej8OJlpVLpHjfHjmYbSYB9NK1KIkZHZprZ1kSkdinXed02pBLKb8FDkhag8geA6veQVatRmR1vgGtfdoVNK/9juCXL+E8+/YuWKGJ4nThOfFM3MeeQnD5QgI/fEPLlx/T8vmHCKcLa8FALH0KsPw/e+cdH1WV/v/3uXf6ZNJ7AgGS0HsRURBEQEUU7GJXLD933XVd9euq6659176ua2ddK3bFCiqiIKDSew09IQnpZfrce35/DEVQyWQykwLzfr14gZNzz3Mmzjz33Oc8z+fJ7oSanomalPKb+iRSSqTHg15XQ6C6Eq2inEB5CYE9xfhLdiE9wVx2YYvDlN8d+5hTMfXsiyEj+6jLNpFSImvL0cq2opVvR9+7I5gdUFMGhzyGCoQ9AWFPRFgdKIkZCJMVDEZQDMFPq5SgBZB+L3hdSE8jWk0pgcYa+PkhuKKipOSiZnZDze6OmtsTJaNrs6VK2wKhGki6+kaqX/wXdTOmIwxGrENDl3JuKXGFmXS5fhzbn/mKPe//RM4+aVtHfjID7z2FZf/3JWsemk//v43BHG9i8oen8OEZX7PgtsWc9cgwfnxtN1vn7qVnYRydRqWR0NlGUpaV+X9fi+bTOemWnpR8E6zmTOh6sDjNmGDBX38wS8XaKRiOcbdgRw5gzMvHs2oJUsomv1tKehcwmND2bMHYp5k30MQ8UM3Iqk1QOCGkSzrUyZbIHEgwTr4CIuDIlYQ0zCech3f+DAKDTsPQtemOOmMUTQAAIABJREFUIM1BGI1Yh4zAOmQEurMR74Y1eDetxbdtyy9OwIXJhLBYESYzCAGahvT7gtougcChYy1WDFk5WIedgLFzN4x5+Rgyso66UIn0e9FKNqPtXo9WvAFtz2ake99OSygoydko6V0w9B4V3D0nZaIkpCEcKWE7Wikl0lUfvGFUl6BX7Ebfu53A9pX413wbHGSyYsjri6HbIAwFw1CSMiP0jiOPMJpIvvYmqp97lNrXn0cYjVgGDG01+9kXHE/dyp3sePZr4npkk9A/qIyYO6kHdZsrKZq+DFuOg8JrhmLPsHLurAl8esG3fPvHHxl6Sx+GTevGwqc2s/Ll7QfmTOxs44pPRpLeK55vrl9Aar8k7BkHi9SEIg6JTas2E2qcBV9l+OX6AMbOXfa12qvC0ERWl1ANqBld0UpD28Efcq1iQCTnI6tCv7ZjOXKzA1IKkXtWwOCme+qFgmnEOfhWf4Nn9vPYr/t31B6jFXsc1qEjDuyIdI+bQFkJWkU5Wk01emMDutcd1HGREqEoCJMZYbWi2B2oCYmoyamoqRko8b8uxN/RkboWdNzbVxLYsSpY5qwFAIGSmouh+/Go2YWoWfko6V0Qhsg3+xAiuJvHnoCac7A5tJQyWHq9ewOBXWsJbF9FYMsS+PJFlLQ8jL1OxNBnFGpKbsTX1FKEyUzS9bdQ/czD1PzvPyRf/2fMvfq3jm0h6H7nFFZe/xIb//YuA1+4FnNGsFNU7z+dgHtPA+ufWIQx3kKXC/piS7Nw7hfj+e7WJSx9bB0pvRM544HBJPdJpHaXG4NFIbNvAoqqsOTRNVSuqWH88yccYtPf6MMYbz7kNWOClUALdcqN2cHWk4GSXU06cgAloxv+dfND2sEfjkjJR9/+XcjXdihHDqBkD0Jf9yEy4EUYzE1f0ATCaMZy2v/D/fa9+BZ9iHlU0x1BIoFisWLqUgBdClrFXntFd9URKFpGoGgJgW0rwOMEBEpWPqZhZ6Lm9cWQ2xthbVtlRSEEIiEdJSEdY9/RwbVX78G/ZTGBjT/inf8W3vkzULILMQ0Yh7HPaITF3sSsrYdisZJ8w21UPf0Pql96iuTf3dZqTT8MDgu9H7qIVTf8l/V3vk3/p69CtZkQimDwQ+MJNPpYdc9chAJ55/XFYDUw7pkRdDsjl/m3L+WTc+eS0M1B93PySOqRQPWKSrZ9vpsdX+2h+7l59Lzo0PZorpJ6Mrsf+ppiNqJ5D32ybfb7yNrnyEuLod/gJserGV3xL5+FrK9AJDTzDC45HzZ+Cq4KsDd9bYdz5CJrMKx5B7l3LSJ7SETmNBYMxd/rRLwL3sHQ+8R2uas6mtBr9+LftIjAxh/QijeC1BFxyRh7jMCQPxi1ywAUW/tXVFSSszEPn4J5+BT0hir8677Hv/obPLOewzPnZYx9xwRvRumhHVhFG8VmJ/l3/0fVUw9S88LjpPzhToydw+sR2VxsXdLoec95rLt9BhvvfZ/eD16EMCgoJpVhT01k8R8/Z+Xf5uJv8FFwVdBJdpvYic6nZLP5vR1sfHsbS59Yh9SDIRNbuoUT7hnE4D8eWnnsLmvAV+0mvvuhO2ahCNBbViClWK0oCUkEyktDG58WDCNpFbtQmunIRVI3AGT1dsRR6cgz+4FQgvnkEXLkAJZTr6dx+0o8nz2N7fJ/IMTRFW9ua/S6vfjXL8C/YQH6ni1A8EDINPICjN2Ho2R269C/c8WRgvn4KZiGT0YvLcK3fBb+Nd/iX/Elav5gzCech9q5b5uHxFRHPCm/v52qf91P9XOPknLTXzFkZreK7aThBeTfPJGtj3/O1ic/J//WScGca7OB454+g+W3f8W6RxfgLmuk7/+NRKgKBrNK70vz6X1pPn5XgMYSJ6pJxdHJHnTOh7F34S4AUoYc+p50v4ZoYWNmCEpaByrKQhqr7nPkesUuKGjeucT+JsyyZjvsU0U84rqaNXs7QJjiECndI5ZPvh8lLgnL+GvxfPovfEs+w3zcWRGd/1hEuhvxr/8e/9p5aLuDFa9KVgHmsVdg7HkiSnJWG68w8gghULMLsWYXYh57Jf7ls/At+QzX63eiduqDefQlGLr0a9M1qknJJN/4F6qevJ+qZx4m9ea7W02SIWvyULzldRS/sQBjShx5VwerQFWTgaGPncbajAVse20lDduqGfLIqZiTDh5iGm0GkgoTjjj/ro82YO+cQEKvQ6vHNZcXg63lZypqanrIpfrC6kDYE9Erw+gYZEkASxKydkdI4zvkFkhkDUDu3RB2Q+bfwth/LIaCoXjnvhpWu6YYwQNL/5YluD74Jw3/ugzPrGeR7nrMoy8l7ncvEjftScwnnHdUOvHDUWzxmEdeSNyN07Gceh16bSmuN+7EOeNvaGXh96CNBIa0DJJ/dxvS46bq2UfRneFr/TeXvGvHkj5xILtfmU/JewflXoWq0O8vJzHw/lOoWlzMd+fMoOLH0Iti9i7aRfXyPXS9uP8hTz5Sl8E2dIktP7MwpKSjN9QjfaH5HiUlBz1MXyISO0PtrtDshGWhjRGZA0D3t1h35RfzCoHljD8gjGbcMx9Hai07HDmW0Kv34Jn7Ko3/vgr3O/eh7VyLachE7NOexH79M5hHXXhMOO9fQxjNmIadSdzvXsQ8bhp6aRHO6X/C/em/0Rtr2mxdxtw8kq7/M1pVBdXPPxGyc2opQggKbz2TlFE92f70l5Qd1pIt79w+jHrrAlSrkUVXf8SKu+fgrT6ylIa3ysXKu7/B3imBLhce+sTjq25E+jVM6S0/d1GTgwVFWnVVSOOV5Bz0mtBi6ocjEjsjQ6zu7JiOPCOYOiXLIt/ZXnEkY5n4e/TSIrzz34r4/EcTUvPjX78A5xt30fjs9fh++BA1qwDreXcSd9P/sEy4FjWroM3jwu0FYTRjPn4Kcb9/EdPxk/Gv+ZbG527At/RzpK61yZrMBT1JvOIG/Du3UvPKs60mJyEMCj3+fi6Jx+VT9Mgn7P3q0O9yYu90xnwwlYKrBrN75ga+nvAq655YiLO47hdz1a7fy4LLP8BX42bI46ehmg+NGLt3Bcv1w63q/DlK0j5HXhOiI0/KRDprw9N0SugM3jqk55fv+XA6XIwc9umuJHVttkJYqBh7nUhgwDh8C9/D0HVgm8c02xt6fSW+5bPxr/wK2ViDSEjHPPpSjAPHoTha/mU52hGWOCzjpmEcdCqe2S/gmf08/jXfYpn0xwMHZK2JdeAw9HMvo/7916h//3Xiz7+8VW6+islArwcuZP3tM9j80EyEIkgbd/C7ZrAa6XPbSDqf25tNz/xE0cvLKZq+DEdhCo6uSRjsJuqLqqhdU445xcaIFyeT1PeX5fDOoqAuuL1b80rlfw01MRkArS60JyklOXjoqteUombmN8uWSAimO8q63cGY+RHokI4cggph+rZvkVKPSraD5dTr0HZvwD3zMezXPoViT4y4jY6ElBJt93p8Sz4lsPEHkBJDwRCMQ8/A0G1QhyhZb2+oKbnYLr4P/9rv8H71Es7pN2EefSmm46e0+u/TPno8Wk0lzm++wJCWgf3k01rFrmox0vufU1l3+ww2PfARUpekTzi0WMnRLZmhj59O71saKJm1maplJdSu34vu17DlxNPr5hPoemG/XxQB7adxYwmmVAemlJbXIqjxQT+g19WGNH6/zopeU9Z8Rx6/Lw26vhgy+h5xbId15CK9bzBhvnYnJEU+F1aYrFjPvR3ny7fgnvk4tqn3HJPOSgb8+Nd/j2/xx+hl28ASh2n4ZExDJrbr0vSOghACU7+TMXQbhGfWs3jnvkKgaAnWybegJDRft78lOM66kEDFXuo/moGalomlb8tlMEJBtZro8/DFrP/LW2x+8CN0X4DMSb8suLFlOyicNoTCaaGnHUspqV2+g4RBXSKyVmEyIay20Hfk+74j4XQLwpEZTLWuL2naTvNnbx+I9GBb0JY2ZD4SakZXLKddj7Z95TEXL9dd9XgXvEvjf6bh+eRJCPixnP47HDf9D8u4q2NOPMIo9kSs596B5cw/oZVtwzn9Jvxh9n0MF6EoJF5+PYbcPGpffQZ/adMOJFKoVhO9H76YxGH5FD3yKSXvNr958a/h3FyGv7qRpOOatxs+Ekp8InpD03FrCIbRsNjDa/ummsCefnQ7chI6gdGOrAhNHzhcjAMnYOx/Cr4F7+Df3LpfrLZArynD8+ULND59Nd7vXkdJ74pt6r3Yr38G05DTEcZfV2mM0XKEEJgGnIL9mn8hEtJwv3M/nm9fb9WDUMVsIfnamxFGMzUvPYnucraabdVipPdDF5Eyuhfb//MlO176psXt6iq/WweqIHlEYYRWGSyq0upDc+QASkJGWLrkACI+B45mRy6EgkjtHpR6jKodgeX0G1Ay83F//DhaZeh5rR0JrWwbro8eDWafLJuNsdeJ2K97GvvF92LIHxzLPGlF1ORs7Fc+inHgeHwL38X97gMt7mTVLPtJySRd80e06kpqX32uVRujKCYDPe85j4wzB1P8+gK2/ONjdH94NzIZ0Nn71WqShhVEJIf8wBodCegNoSspKglp6GE78mxk/Z6mbYQ1eztBpBQiq7ch9ejmewujGdv5dyEMJtzv3H9QSrWDI6UksHMtzrf+jnP6TQS2LME0fDJxN07HetbNqOld2nqJxyzCYMJyxh+wnH4DgW0rcL5yG3pteM4gHEzduhN/zqV416+i8atPWs0uBAuDCm6dROerRrN39irW3frGIV2GQqVy3np8FQ1kntm0wFVzUOLj0Rub48jT0esqwnu6cGQHUxB9R34y6uCOvCDY9aUu+lWYSkIa1vPuRK+vwPX+P5CaP+o2o4WUEn/RUlyv3o7r9TvQS7diHnMZjj++HIx/x8dSCNsDQghMQyZim3oven0VzlduQyvf3vSFEcI26hQsQ0+g8YsPW72puBCCzleNoftfz6Z+7W5WXvcSjVtC0ziB4G581yvzsHZOJfnEHhFdmxIXj3S7kP7QfIBITAefO6wNoIjPCf6j4ci78o7tyJODBxiypnXKnQ2demGddBPazjV4Pnu6xfG71kZKHf/GH3D+92bcb9+LXl+B5dTriPvDdMwjLwgezMRodxi6DsB+5cMgFJyv3UFgd/QO+H+OEIKEi65CTc+i9rXn0ZoRTogU6RP60//pK5F+jVU3TKf0oyUhfe9K3lmEe2clXa4/5VfFtVqCEhesENUbQ3PMSnww+0jWVzTblnBk7bv2KHbkJHQGBLK29TrWG/uNwTz6UvxrvsX77WutZrclSF3Dv24+zhf/gPv9h8DrwjLpj8EKw2Fnxg4wOwBqWh72Kx9GsSfimvE3AttXtYpdxWwh6crfobuc1M2Y3iabF0fvXAb+93oSB3Vl65NfsO6WN3Dv/u3Kytql29g5/VtSRvcieWRkd+MQPOwEQg6v7JewDStO7ggWFMmjekduMENcRsh6BJHCNPICjINPx7fofbw/ftSqtpuD1DV8q+fifOH3uD96FKTEOuUW7Dc8h2ng+A7ZVPhYRklIx3b5P1ASM3C9cx+BHdGpbD4cY24e8WddgHftCtw/zGsVm4djSrLT+5GLyf/zRBrWF7P8imcpeuwzGovKDtxcdF+APR/8xLq/zMDaOZXC28+KyiG9ss+Rh/qEIg448jB25GYHmB3QcGS9lg5bELQfEZ8brHxqTZtCYDnteqS7Hu+clxFGC6Yhp7fqGo6E1AL4136Hb8G76DWlKOldsJ5zO4ZeJ3Roze8YQbll26UP4nr9Tlzv3Iftkvsx5Ea/049t9AQ8a1dQ/+GbweberSR7+3OEEGRNGUbKyJ7senUe5V+spOyTZRiT7Kg2E/5qJ5rbR+KwfHr87RwMcdF50lQcwXL5kHPJbfFgMIWdgkhcVpM78g7vyHFkIXfOb3WzQlGxTrkFt9+LZ9azIBRMg09t9XX8HKn58a+ei3fh+8jaMpTMbljPuxNDj+ExB34UodgTsV3yAM7X/oL7nfuwXfEwamqnqNoUikLCJddS+dAd1L/9Mkk33NZmKammVAcFt0wib9pYqr7fQMOGEjSnD2OijeSRPUgc2i2qa1Pi9znyEHPJhRAoiRlhZx2J+Gxk9dYjjunwjlzEpSM9dRHr4dks26oR63l34H7vITxf/Ac0P6Zhk1p1DbCvjH7VHLwL30PWV6BkFWCZcDeGwmGx/O+jFMWRjP3i+3C+chuut+7BftVjKHFJUbVpSE7FceYF1L//Gp6li7AOOzGq9prCmGgj88whZJ4ZuU5hoaCYLQizBa0+NL0VANGSXHJHFnLnwiMWhnX4bZqw79OjcIcmKxlx+wYT1vPvwtB9OJ4vX8Az781WOxCSfg/enz6m8Zlr8cx6FsWRjPWiv2O/+gmM3Y+LOfGjHCUpE9tFf0e66nC/9yAy4Iu6TduoUzDmdaP+o7fQ3a1XpNTeUOITQxbOgghUd+p+cFX+9vxhzdyesAR3IdId+i810ghDcGduHDAO3/dv4/nkyah+qaS7Ee+Cd2h8ehrer6cHv9AX34/tykcxFgyNOfBjCDWrAOvkP6OVbMIz67mobyKEopBwwZXojfU0zmq/B/3RRk1IDFk4C0BJTEe6G8Kr0N2fuXKEFMQOH1rBsq/rhzd07YNoIBQVy6Q/oiRm4J33Jlrlbmzn3B5RcSm9di++JZ/gW/EV+NwY8odgOvF8DJ37RMxGjI6HsecJaCMvxLfgHdTcXpgGTYiuvc5dsR4/Guf8r7GNPAVD+rEnoKYkJuHfXtSM8QdVENWM5qm1in2O/EhFQR1+Ry6M+zQUfG3/mCeEwDzqIqzn34leXUrj9JvwrfiqRbskKSWBHatxvf8PGp+5Ft/iTzF2H4792n9jm3pPzInHAMB80lTUrgPxfPkCWkVofR5bgmPSuQjVQMNn70fdVntETUxBq60OWYfmgJxtOG3f4tJBqEdUQezwjhzjvi7bAXfbruNnGHuMIO6af6FmdMXz+dO4Xr2dwK7mlTjrteV4F76H87kbcL1xF9rONZiOPzuogzLllmbf1WMc3QhFxTr5zwiTdV+/2ehKSKjxidhPPg3Pip/wF7deQV57QU1KAU0LOQXxwI68JnSZgf0IxQCOzCM68o4fWlGCb6G9NUpWkjKxXfYQ/pVz8M57A9drf0HJKsDY72QMXQeipOQcaFQhpUS66tDLthHYtY7AtuXopcHHNrVTHywnno+x90iEsXWzcmJ0LJS4JCxn3Ij7vQfxLngXy+hLomrPPvZ0nPO/pnH2TJKuuSmqttobakowj16rqkBNaDpbSFjjwBIXliOHfQeeRwitdHxHfiA/uvWkNkNFCAXToAkY+56Ef9U3+JbPxvvVS3gBFAPCHh/sAOJxgm/fE4VQUHN6YB57BcZeI2MNHGI0C2OP4wn0HYNv4fsYe49ETcuLmi3FZsc+egKNs2fiLyvBmJkTNVvtDTUlmC2nVVVAt+4hXaMkZ4UXWiEYJ9eP0ESn4zvyA/Hn9pupIYwWTEPPwDT0DPTqUgK716FXFSOd9SB1hMWOSEhDTe+Kml2IMNvaeskxOjDm8dcQ2LoMz6znsF32j6hmMdlOGk/jN5/j/HY2iVOnRc1Oe8OQkgZCEKgMPaVQScpGC1fwLD4XfI2/vZ7wZm1H6MFYYEfRDVGSszAlZ7X1MmIcxSj2BMxjLsMz61kCGxZg7D0qarZURzzWoSfiXrKI+MkXodgi18ChPSOMJpTEZLSK0Fu4qSk5BNbNR/q9zQ6TioTcI/684x92+veFJAzWtl1HjBjtCOOgCSjpXfDMfTXqB5/2k8aB34d78YKo2mlvGNIyCZSHHipRUnIAiV7ddMefwxEJR5Zg6PCOXO5/3DAdGzuBGDFCQSgqllOuRNaW41/5dVRtGXPzMHbqiuvH1tc8aksMGVkE9u4JOb1YSQnuqvWqMJpaO7JQhvx26KrDO3I8+9J/LAltu44YMdoZarfBqLm9gho8Ud6VW4ePJFCyC39p6yqRtiWGrBykx4NeWx3SeCUlGxDoYfT9FYoBddAVvz13s2f8NSNCnCaE2CSEKBJC/CUSc4aK3Kc/IKzJrWk2Rox2jxAC08gLkPWV+NdGd7dsGTQchMCzYnFU7bQnDFnBHbZ/T2g3L2G0IBLT0SojX7DVYkcuhFCBZ4DTgd7AVCFE75bOGzKNe0GoYIv1mYwR43AM+UNQ0vLwLf44qjosanwCxq6FeFYvi5qN9oYxOxi3DpSE7pjVtM7oFZFvhBOJHflxQJGUcpuU0ge8DUyOwLwhIeuLwZEZrH6KESPGIQghMA2bhF6+Ha14Y1RtWfoNIlCyCy3EUENHR7HZUZNT8ZeEXtmqpHVGryqJeAFjJBx5DvDzW0zxvtcOQQhxnRBiqRBiaUVF81se/RaybnewS1CMGDF+FWPf0WCy4l/5VVTtmHv2A8C7qXWaQ7cHDLld8O8O3ZGraV1AD4R34HkEWu2wU0r5opRyqJRyaFpaWmTm1ANQuxOR1C0i88WIcTQiTFaMvU7Ev2Eh0u+Nmh1DdieELQ5f0Yao2WhvGDt3QasoQ3c5QxqvZHQBQN+7PaLriIQjLwF+nuSYu++16FOzA3Q/IqWgVczFiNFRMfYZDT43ga3Ri2ELRcHUtQD/jtDlXTs6przgJtK/a1tI45WUHFAMaHt3RHQdkXDkS4BCIURXIYQJuAj4JALzNomsCD7CibRerWEuRowOi9qlH8LqILDxh6jaMeZ1I1Beiu71RNVOe8HYuRsIgW/HkXtq7keoRpS0Tmhl7WxHLqUMADcCXwIbgHellM3TbA0TvXwNWBIh/tgR64kRIxyEomIoGEpg67Ij9n5sKcbcPJCSwJ7IZ2a0RxSbHUNGNv7tW0K+Rs3oil4e2g4+5HVEYhIp5RdSyu5Synwp5YORmDMEm8jSlYjMAbHWZjFihIAhfzDS3YBeFlkncoiNfQqIgbLWia62B4zdCvFtLwq9yURmPtJZi94QuT7DHbeys74YGssR2YPbeiUxYnQI1Lz+AAR2romejZQ0UFUCzRCT6uiYuvVAul0EQqxqVTPzAdDKQgvHhEKHdeT67h8BUHKPa+OVxIjRMVAcyShJWWjF0csqEYqCmpSCVvXbHd+PNkwFPQDwFW0Kabya2Q0Q6KUxR47ctRAS84KdM2LEiBESak4PtD2bo2sjMemYKQoCUJNTUZNSQk67FCYrSmouWmnocfWm6JCOXHrqkKWrUPKip7McI8bRiJKZj2yoRnfWRs9GfCJ6Q33U5m9vCCEwFfbCV7Qx5Di5mlWAVloUMdmEjunId8wDqaF0Hd3WSzkiUtfQKnbh37wY35pv8a/7nsDONUh3Q1svLcYxipoebP2mV0ReuGk/ij0O3fXb3WyORkzde6M3NoScraNmFyIba5AROvDskAIletEcSOgEKaH1ymtNpNeFf8NCAhsXEdi5Fvy/nk+rZHTF2GskxoHjUeKabt4aI0YkOKiJXQxd+kfFhrDYkG43UspjJqPM3L0PAN7N64MpmE2gZAd9l7ZnM0p8aovtdzhHLhtKkWUrUYZMa1cfEr16D94fZ+JfMxf8XkRiBsb+Y1FzeqCk5CAscaAHkPVVaGVbCWxZgve71/F+/xbGgRMwj7oo5tBjRB0RnwIGU9hNgEOyYTaDrkEgAMa2a8EopcRbWkvA5cWSkYjBYYmaLTUpGTU9E9+mtTD29KbHZ3QNVnju2Yyx5wkttt/hHLm+eRYgUApPa+ulAKDX7sU7/038a74DRcXYdzTGQaei5vT49RtNWh6G/MGYTzwfrXoPvh8+xL/iS/xrvsVy8uUYh05EiA4Z8YrRARBCQUlIQ6+LnHDdL2wYgs5bBgKINnDkUpeUfbqM4jcX4C3b13hGQMLALuReMpKk4/KjYtfcoy/un+Yj/f4m37cwmFAyuqCVRObAs0M5cqkH0Dd/jsgdhojLaNu1+Dx4F7yL76eZAJiOOwvTiHOatatWk7OxnnEjpuPPxvPlC3i+fAH/hgVYJ/8ZJSE9WkuPcYwjHCkRi83+6vyqGvxHFCtIfwvN5WPjve9T88MW4vt3JveSkRgTbDi3lbN31irW3foGqWP7UHDrJAxxkd2hm3v2xfX9HHw7ijAXNi0bomZ3x7/mW6SuIRS1RbY7liPftQicFSgj/tSm6/BvXoxn9nPI+kqMfcdgPvlylITwFR3VlBxsU+/Fv+obPF+9SONLN2GdfDPGwliOfIzII+xJaCWh5Ty3jOg1svg1dL/G+rvepm7FDrr96XSyzh524Kk4dUxvOl12EsUzFrLrle9wFpXT55GLsWRHLpxpKuwNioJ3w5rQHHlOD/zLvkCvLD5wCB0uHeoZXl//IdjTEZ1HtI19Vx2uDx/B/e79CLMd2xUPY51yS4uc+H6EEJgGjiPumqdQEtNxv3M/3vlvIWVo6UwxYoSKYk9AuupawVLrnmFtf3o2dcu2U/iXyWSfc9wvQpuKUaXzFSfR78nL8dc0svoP/8NdHLl8d8VqxdilAN/GtSGNV3P2HXhG4KbaYRy5rCpC7lmO0vvsNukG5N+8GOcLNxLY+APm0Zdiv+ZJDJ0i39FOSc7CfsUjGPuNxTt/Bu6PHo2qhnSMYw9hiQOfO2riWVLbN28LwwXNoWrhJkpnLiXnohFknDbgiGMTBnah37+vRPcFWHvza3grI5cObO7VD3/xDrQQ8uiV5Gyw2CNSoNVhHLm29h0wWFF6nNmqdqXfi3vWs8FdeFwS9mlPYB51IUKN3iGOMJqxnPUnzKdcRWD9Qlxv/hXddewUWMSIMmZr8G+fOzrzB4JtzIShdTZcmsvH1ic+x9YtnbxrTwnpGnt+Bn0fu4xAvZv1t89Ac/sishZzz34gJb5NTQvACqGgZvc4dnbksrEcWTQHpcdEhCW+1exqlbtxvnwL/mWzMB0/BftVjwfThloBIQTmEedgPfd2tNKtuF79P/S6va1iO8bRjTAGD/mkLzqa4TIqhA74AAAgAElEQVTgD/6jlRx58ZsL8FU0UHDrJBRj6E8BcT2y6HHPeTiLyih69NOIVFkaO3dF2Ox4N4YmTKZmF6JX7EK28KbaIRy5vuYdAJS+F7aaTf/a73D+92aksxbb1HuxjJt2IK2qNTH2OhHbxfehN9bifOV2tMpjQ+c5RhQxmIJ/ByKzCz0c6fMiTKZWqfPwVTdS8u4PpI3rS3zfTk1fcBjJIwrJu2YsFXPWUvZJy7snCUXB3KMP3o1rQ7oxqLk9QepopS3rqtTuHbl016Bv/BRRMAHhyIy+PS2A58sXcM98HDUzH/s1T2HIb1upXENeX+yX/wP0AK7X7kArj2x3kRjHFgfyvDV/VOaXXi/CHL3im59T8tYidL9G56vGhD1H7iUjSRyWz/b/fIlrV8tVG809+6HX1RAo29PkWDWrEABtT8vyydu9I9dXvw26H3XgpdG35azF9cZf8S35DNPwydgufRAlPiXqdkNBzeiK7fJ/gmrE9cZdLb6DxziG2X8IGaLAU3PRve5WceSBBg9lnywjbWxfrJ3C/54KRdD9jskoJgNb/vExUmvZ78XUI1iu79vUdPaKYk9AJGa0+MCzXTty6a5B3/ARotspiITmPzY1B618O87//hmtdAvWKbdgGX8NQm1fafZqSk5wZ26y4nzzrzFnHiM8lOgW7EiPG2GxRmXun1M+awWa20fORb+djiw1naqlJex4Zw073llD5dISdP8v37cp1UG3m06nYV0xpR8vbdG6DClpqGkZeENNQ8wubPGOvH15qsPQV88AzYc66Iqo2vFv/gn3R48hLHbsVzyMmlUQVXstQUnKxH7ZQzhfvxPnm3djv/TBfUL1MWKEyr7YdYQkVA9HejwoUd6RSykp+2QZjr6diOue9as/L5m1hfVPLMS959D0QnOqjYKrB9Pt4gEopoOHo2nj+7F39ip2Tp9L6sl9MCXZw16fuUcf3EsXITXtYKXrb6BmFRJYvwDdWYdiTwjLXrvdkUtnJfr6jxAF4xGJnaNjQ0q8P32M+90HUdI6Yb/6iXbtxPejJGZgv+whhMmC682/olXsbOslxehIHDiDjI4j1z1uhDW6O/KGdcW4d1WRccagX/xM6pLV93/HsltnY0qyMvTx05gw9yomzL2KYf+aSHz3FNY9soD5l7yHq+RgWq8Qgm43nY7u9rPrv9+2aH2mwt5Ijwf/rqbPs/bHyfWy8J+w260j11e+BrqGOuiqqMwvdQ3vVy/i/Xo6hp7HY7/sIRRHclRsRQMlMQP7pQ8GY+Zv3o1e3fTBSowYQaKbTdIaoZWKOWtQTAZST/5lUd6ah+ax4+01FFw9mNFvX0DO6d2xZjqwZjrInlDACdPPZthTE3HtrmP+Re9Sv/ngAactL5XMKUMp+3x5iw4+TYU9AfBtabpr0P4n6paEStulI5f1JegbP0XpeSYiPjvy8wd8uD98ZN+h5hSs5/7lQG5tR0JJzsZ2yf2gBXC+eXdEu3LHiBEu0uNGMUfPkUtdUjV/I0nDCzDYzIf8bPenG9k+YzX5Vwyiz60jEeqvu7js8QWMevN8hEGwaNpHOHcflCzodPlJKCYDu1+ZF/YaVUcChswcfEUbmxwrLPZgL9UWNGNul45cW/ZfUI0ogy6P+NzS48Q14+8ENi7CPP4aLOOndWjZWDWtM7ap9yLdDbhm/B3pPrY6s8Rof+heL8ISvY2Rc0sZvsoGkkf1POR1b42bNQ/OI3lQFn1uPbHJeRz5yZzw8jnofp2ffvcpAVcwHdOUZCdryjAq5q7DvTv8zZEpvwe+7ZtDav+mZHZDKws/rbjdeTBZuRm5dQ5Kn/MRtpZ3zvg5urMW5+t3ohVvwDrlVszDJ0d0/rZCzS7Edv5d6NUluN59ABmlQo8YRxlRCJFLXQe/D2EyNz04TGqWBHeuh+uKb35+CQGnjwH3jv3NnfjhOLomMezJiTRsq2btP+cfeD3nwhEIVaHkvR/DXqcxvzvS4wmp/Zua0RVZW4b0usKy1e4cubb4eTAnoAyYGtF59boKXK/+Bb2qGNuFd2Ps2777fTYXQ9cBWM/6M9rudbg/fiKmmhjjt9lXcRmNz4j0BzcRwmSK+Nz7qVu5A1vXNEzJcQde89a42fneWnLP7El8waE55Q27nfz40Co+nfodn182n+X/Xo+r8qA8QdqIThRMG8LO99dR8UPQ6ZqS4w5ksQQaw5MyMHUNHmL6djQd+1bSg9If2t7wEhfalSPXixcj9yxFGXQZwhTX9AWhzltThvO1v6A7a7BdfB+G/CERm7s9YewzCvO4qwlsWIh37mttvZwY7ZQDocRopB8eEMyKjpyFlJKG9SU4DivH3/3xBjRPgIKrDq3CXvvKFl4b8jFLHl1L/Y5GKtfWsODu5bw6YCZr/7flQBl9z98Px9YpntUPfoceCN7gss8ehu7xU/F1aLoph6OmpKHEOfDvaDr2fbApdgd35FLX0BY/B44slF5TIjavVr0H52t3gM+N/dIHMXTuE7G52yOm4VMwDjkd3w8f4Fv5dVsvJ0Z7JIoFQdGWsPWW1aE1en6RO17yxWYS+6YTX3hwN77+ja3MveknckZmcOXqKVzywySuWDGZSxefSebQVOb+6ScW3bsSANVsoM+tI2ncVkPxZ0E1wrge2dgLMiifvSqstQohMHbuin/3jqbHJqSB0YIeppZS+3HkRV9B9VbUodch1Mg8lmnVe3C9fgdoPmyXPtghcsRbihACy6nXo3YdiOeLZwnsalpOM8Yxxv6KZS0Q+bn3h2uU6LgW145gr1Fb14OtED2VLmrX7iVr3MGYed2ORr67dTGdxmRyxltj2DSnnJdPn8d/hn/Nd49v5vj7h9Dv6kKWPbmO1dOD5fFZ4/JJ6JnKlulLkXpwp542rh+NG0rw7KkJa73GTl0IlJUcCDn9FkIoKKm5YYvitQtHLgMetKXTEWm9EN3GRmRO/YATD2C79KFWk59tDwhFxXbO7cFOQx/8E72+5UJAMY4eDopmReNQfH+OenSKjTylQYdq/VmLtuoVwRqK1OG5B15b8mgwHDL238fz1tQfeH/aEmp2OLEkGFn59i6eHvI1xi6J5I3P5vs7l1JTVI8QgvwrB9G4rYbKxcUApIwOtmyrWhCeZrghpzPoekgCWkpyDnpVSVh22oUj19e8C64KlOG/i4j0pV5bjvONuyDgD+7EW9gPryMirHFYz78r2Bjjg39GTekuRgdkf81ENPTI9+/EWyg89Vv4qxtBERh/dtBZt7ESFEFCz2DLRV+Dn03vbafX1G4seWUH62eWMOLP3dG6WVm3tY64EUl0OiGFz25eSfroHBSTysK/rwAge0IhhjgTuz8J5n9bc5Kxdk6hdkl4Od6GrODNxV9a3ORYJTkbWVdxUM+9GbS5I5euavTVbyLyRqFkHrlFUyjoDVU43/gr0ufGdskDqOldWr7IDoqa1hnrmTehlWzCO+fltl5OjHaCMNsAwk51O+Lc+7JVopUCG2j0YLCbEcrBDZ9rdx22LAeqORgyKl5QjubVyTs1h3mPbiR/QgYfP7eZHctqSC2IY8eqGn5ctJe0PvHMunMtvS8vYNtnu6kpqke1GMgc242yudsOqCAmDu5K/epdYakiGtIyQFEJlJc2OVZJygRkWA1k2tyR6ytegYAPddj1LZ/LVY9rxt+QrjpsU++NiUkRbExhOu4sfEs+w7/xh7ZeTox2gLAGd7PSHblelQfmNppACKQnSt2H/BrisC5A3ho3puSDlaQVq6tBQF1lAL9Lo7zai8luYLfFxUffbmF5TSWOXAubdtQT8GrUVGsIVbBhxjYAMkbl4a/3UrcpGJJ09MlFc/tw7Wx+iFKoBtSUVLSK8ibHKgnBuL+sbXrsL65t9hURRNbuDJbi9zqrxcJY0ufB/c596NWl2C74K4acHhFaZcfHfMqVKFkFuD/7N3p9rIz/WEcYLWC0IJ21kZ9bURBWG7ozShXGqoLUDo2/S7+G+jMVQ1eZG2uKmb0b6hGqYNOyapQMldKyRkqFk1rpY1nxXtwenfh8O+s+KSXruFR2zQ3GsZMHBjNialaXAWAvCDa0cW1rvoOFYBqiVl3R5DglPlgAGY7URps6cm3x82Awo7RQGEtqAdwf/BNtzxas59yGoUv/CK3wl+jORnw7inCvWIxzwVwav/mCxjmf4/zuS1w/fY93wxoCFeUhleW2FkI1Yj37NtD8uD/9V0R6E8bo2CiOlKhp8yiOBPSGuqYHhoHBZkZzeg75DCsmA5r3YAaO1CUIgbchgNGmIqVkV3E99dLHvU+fTP8zMvEIHUu6kdpGPw1lHhIKEqhcV4uu6VizHRjsRhq2Bg9WLblBMT13SXiZK2piMlpNdZPjxD7RPtnQ9NjDaZEeuRDiUeBMwAdsBa6SUoZ0m9dLVyJ3LUQZei3Cmhj2GqSUeL54hsDWZVgm3oixx2+LzIczt1ZeinfjGrxbNuLftRW9NrT/mcJkwtipK6aCnph798fYpQARpZSsUFCTs7GMm4Zn1rP4V3yJafBpbbaWGG2PSExHD+MRPhTUpGS06ujcJIwpcciATqDOhTExqBduSbMfCIMA2NKteKq8WJOM+BoDCMBsVFGlQFEEJ43JY/3n5fhVSUOtHwegWA3oPh13pRd7hhVLRhyeiuBThWo2Ykiw4qus/5UVNY0Sn4jeWI/U9SP6AGEwgcWOHsaTUksbS3wN3CGlDAghHgbuAG4P5UJ98XNgS0Ppe36LFuD7/m38q+ZgGnURpsGntmiu/QQq9+JevAD3sh/Q9gYfr9SUNEwFPTHm5GHIyEJNSkFxxCNMFlAEBPzoLhdaXQ1aRTn+Pbvxb99C49ef0vjlxyjxiViHnYDtxLHBA5A2wDj4NPwbFuD55n8YCoa1mzZ2MVofJTkb/5pvkVJGvEmyITUd9/KfojK3NTf4mXXtqCRhYNCRx3VLYtdH6/HWuDEnWUntm4TUJfGpRpCQ09lOrT+AXRq59/ff4RMaOSIOm8mA1QE0+lBNQQe7P3/cYDOiuQ/u8g1xFjRneAe4ij0OdD0o72s7crMKxRqPdDX/htEiRy6l/Opn//kjcF5IF3obkBUbUEfdjjCEr5LmXzsP7/wZGPuNxXzSxWHPA/uaTKxfjfO7L/FtXANCYCroiX30BMx9BmJISTvyBGYLit0RdNIFB1XZdJcT7/rVuJf/iPPbL3HOnYW57yAcp5+NsVOXFq25uQghsE68kcYXb8QzZzq2c0K658Y4ClHTOuP3upB1FYjE9KYvaAaGzFykay56XQ1qYmQ1/uN6BOPXDRuKSRgYTCtOHhR8rWpxMdmnFtJpdCaKScG1vY74bCuqSaF4l5O+uSmsK61CCshOsdO400P+4BQqy/0oUiJUgTUlKPal+3WUnx2qCkUJO1yqWINZQrrHjdKEI8cah/Q0/3whkq3ergbe+a0fCiGuA64DGJAXD0nHIwrDf7wPFG/E/elTqJ37YJl0Y9h3fikl3tXLaJg9k0DxTpSEJOImnoPt+NGoSS3/ECo2O9ahI7AOHYFWV4trwTc4531F5SN3Yxl8PPFTLkJNar2dsZKchfmE8/DOn0Fg8EQMXfq1mu0Y7QclM1gFqZVuQYmwIzd2CjpY/67tEXfkpuQ4rHmp1C7ZRu7UoFRtUv9MTMlWir/YTPaphZgTTfQ4vwvr39zGmL8M4pNbVtF/QDKrV1XT25RIUicrVdudpOZaadjcSM9JWZQtriCtfxKqKRhT95Q3ktQ/84BdzeNDMYenHyOM+yrVfU3v6IXJCj53s200GbQVQswRQqz9lT+TfzbmLiAAvPlb80gpX5RSDpVSDlXRUYddjwhTj0Gvr8T93oMIRwrW8+5EqOH9gn07iqh68j5qpj+F9HpJuORa0u95AsfpZ0fEiR+OmpCI44xzSb/3SeJOnYxnzTIqHrgd57yvWvVw1DTiHER8Gp45/42pJB6jqBndQDWi7V4f8bmNuV3AYMC3rWWd4X+LlFE9qV2xHV9VcOeqGBQ6T+lF2dxtNO4MxpePv3MAilFh92fbGfnHQqpX1dG/MIGBw1NJTbIwfGwWSW5AwNCLcilbUkn387oA4N7TgK/WQ3z34AZLajr+Giem5DB7eO6Li4fyXRMGU1g5+E06cinlOCll31/58zGAEOJKYBJwiQwxHUJYkxGdwjuUlAEfrvcfQvq92C78K4otvtlz6M5Gat98iarH70WrqiBh6jTS7vontuNPQhii349asdpwTDqPtLsexpTfg/r3X6f6uUfR6qNz0n84wmjGPOZS9LKtBDYsahWbMdoXwmBE7dSLwI7VkZ/bZMLUtRDvhvBUA5si/bQBoEnKPl124LX8KwahmFTWPfI9UkocuXYmPDeCvcurca3dy5SnBqKqgvLvq2hcWkvxnL2k5MdxyevH8eM9y4nvEke/q7sDUDo3mE+eNiKosOguqUYGdKydwnxy3r9JCyVqoBrCEjNrURqFEOI04P+As6SUoZeJ2dPCDoV4Zr+AvmcL1sk3o6Y1v/Tes2opFQ/ejnvxQuynTCTtb49hO2FMk52uo4EhJY2kG24l4aKr8G3dROWjd4fUrDUSGPuORknJxbvgnVg64jGKIX8I+t4d6LXNryRsCnOfAQT27CZQGfm5bZ1TST6hOyXv/oi/PhiGsKTZ6fn74yn7djs73gneQPLP7Mzpr46iakMtyx5YzsDxyZz/nwFcOH0Il70xjH4nJ/H1tO/R/TqTZozGaDOg+zW2v7mKxL7pOLoFn8rrV+8CwNE799cX1AQHNdqj12yjpflw/wEcwNdCiJVCiOcjsKbfxLdyDv6VX2E64fxmpxnqXg+1b75EzfSnUBKSSL3tXuKnTEUxt22vTiEEthPHkvrnvyMUlaqnHsCzLjzZzGbZVVRMJ56PvncH2rblUbcXo/2x/zvk37Ag4nNbBh4HgHtZdKqJ864di+bysuOFOQdey79yEOmj8ljz4DxKZgXDOgVndebSH8+kx3ld2PzeDhbesZTvb/6Rb25YxKrnN5I/qRMXzZ9Iap+gCNeWl5bi3FVHj98NPzBv1bwNmDMSsOaF17FMdwf3uEooDal1LSzlyJZmrbSaLqy2dyee2c+hdumPecwlzbrWX1pC7cv/JlBein3CWTgmno1Qox9CaQ7G3DxSbrmH6ucepealJ0m6+g9Y+ke3AYaxzyi8c1/Bt+Szo7bZRozfRknOQs3pgX/1N5iOPzuiqYKGlDRMhb1wL/qOuPFnRryGwp6fQc6FIyh5axFJxxWQOroXQhEMfeJ0frz+Y5beOpvG7TUUXjcMRyc7454ZwZgnjqNiVTWuCg8mh5H0/smYEw9KZu/8cD0bn/mJ3Ek9yBwTVEt1F1dTs7iITpeOCvv3o9fXgsGI2Je9ciRkwI8wNH/n3uZaK6Eg/R7cHz6MMNuwTrm1WYekntXLqHr8HnRnI8m/v534M89vd058P2p8Ail/vBNjpy7UvPw03k3R1RIXqhHjgHEEti6Ple4foxgHTkCv2IW2a23E57aNGodWXYln9bKmB4dB3rSTcfTOYfODH1G/LqguaLSbOGH62eRO6sHG//zEvPPeYs+cregBHYNZJeu4NPLP6ESnkzIPOHFPhZMVd89h5V/nkDaiEwPvO+WAjR0vzEExGcg657iw16lVV6ImpYR0I5BeJ5hD2LkfRodw5J6v/4teWYx18i0ocUlNX0AwrbBxzufUvPQvDBnZpP7f/Zh7tP/uQIrVRvINt2FIz6Jm+lP4y8LTJw4VY/+xIPWoPF7HaP8Y+56EsMXj++HDiM9t6T8ENS2Dxtkzo5KVpZgM9HrwIkwpcay79Q1qlwfPl1SLgcH/nMCwpyaiuQMs+ePnfHXyyyy/4yuKXllO8eebKP5sE5tfWsqPN3zCV6f8j90zN1AwbQjHP3sWqiW40SufvYqqeRvodPlJmFLCbz0ZKCvBkJHZ9EBAuuoRFkezbbR7R+7fshj/8tmYRpyNodvAkK6Ruk79B2/Q8PHbWAYNJ+WmuyKezxpNFJud5P93C8JgoGb6v9G90VGSA1BTclHS8ghs/ilqNmK0X4TRgum4yQSKlhIo3hjZuVUVx8RzCJTswr1kYUTn3o8pJY5+T12JOS2edbe8QfHbi5B6sKI0e3wBYz+/jGFPTSRlWA7l3+9k3WMLWXbblyz7vy/Z8OQiGrfX0O2SAZzy+WX0ueVElH3iW9U/bKbo0U9JGNTlQL56OEifl0B5KcacpkUBpZTIxhoUR2ib1Z/TPmMM+9BddXg+exolvQvm0ZeGdI3UNOpmTMe9eAH2k0/DMWVqm2qchIuanErilb+n+pmHaZj5FgkXtkxY7EgYCobg++kTpN8TVMaLcUxhOu5MfEs+xTvnZdQrHo5orNwy+HiM876mYeZbWPoORLE3f7fZFOb0ePo/ezWb//ExO579mqp5G+h646nE98lFMShkjy8ge3wBUkp8tR581W4QwUwXo+PQeLQM6BS/vYid/51LXEEmvR64AGEI33/4theBrmPsUtjkWOmshYDvgJxtc2jXHs4z+0WkuxHr5D+H1JVb6jq1r7+Ae/EC4s44F8fZF3dIJ74fc48+2MechmvB3KgVVwConfqAHkArDa8LSoyOjTBZMZ98BVrxBvwRbtgtFIWEi65Cd7moe+fVqKW6GuIs9HrgAgrvnIKntIbVN/yXNX96jYq569A8wY47QgjMSVYc+ck4uiUf4sR1X4CKb9ayYtoL7HzxG1JP6kXfp67A4Gh+vPrneDesBlXFVNC0rPb+Nm9Kcnaz7bTbHbl/82IC6+djPunikPptSl2nbsZ0PMt+wHHWhcSNn9QKq4w+cWecg3vFT9R/8AYpt94bcREiADUrWK6tl2+Hzu3/HCFG5DEOGIt/9Rw8c17G0G0QSkIT2kLNmTunM44zzqHh0/dwde+NfWRk+vIejhCCjNMGkHpSL0o/XkLpB4vZdM/7KCYDjr6diCvMxNo5BUO8DaEINJcXT1kdjZtLqVu+Hc3pxdo5hZ73nU/K6F4t/q5JKfGsWoqpsHdIqYd6xU4AlDDqY9qlI5c+N55Zz6Gk5WE6MTQdroaP38b90/fEnX72UePEARSzBccZ51L35kt4163E0ndQxG2IuGQwWtBrmm5HFePoRAgF66SbaJx+E+6Zj2G77KGwJTR+Dfu4SfiKNlH//msYMrIwF/aK2NyHo9pM5E49kZwLRlC3cifVCzdRt2onez5ajPT9smrSkpNM6sm9SR3Th8Sh3Q5pI9cSfEUb0Sr3Enfa2SGN10o2I+yJCEfzK0jbpSP3zn8L2VCJ9dzbQ9JRcc77CufcWdhOGk/c6aH90joS1mEn0PjFhzi/nR0dRy4ESlwSemPkO8bE6DgoyVlYJ/4O98zH8c55GcuEayM2t1AUEq/8XVDb6KV/BdNsc6PbFF2oColDupI4JPhELwM63qoGAg1u0HRUmxlTqgPVampipvBwfvclwmbHOmhYSOMDu9eh5vYM60mg3QWQtcrd+BZ/gnHgeAy5PZsc792whvoP3sDcbzDx514aldBDWyNUA9YTxuDbvJ5AdfP7BoaE2Qr+5quuxTi6MPYdE+zxuvgTfEs/j+jcis1O8g23ISxWqv7zT/y7d0R0/qYQBgVLRgJxBZnE9cjG2iklak7cv3sH3tXLsJ80PqTSfL16D7K2HEOX8BrQtztH7vl6OhgtmE++osmxgcq91LzyDIasXBKvuCHiB5tSSgINHtwl1bh2VuItr0MPNF/QJhJYhwTLqb1rYuX0MaKLedzVGAqPwzP7Bfzr5kd0bjU5lZQ/3IFiMlP174eiXvTWFkhdp/7DNxD2OOxjTw/pGv++9F9DwdCwbLar0Epg2wq0rcsxj7saxZ5wxLEyEKD2f8+AlCRdc1NENFOklDRu2EP1D5upX70LZ1EZgYbDcrhVga1TKvED80gd3ZuEQV0iFlM7Eoa0DNTUdLybN2AfPSHi80uvG1JadkIf4+hAKCrWc27D9dY9uGc+DgiMfUZFbH5DWgYpN99N9XOPUv3so8Sfeym2UaccNU/TrgVz8RVtImHqtANNJZrCv3YeSlYBSlJohUOH024cuZQ6nm9fQySkYxra9GFlw+cf4N+1jcRpf2xx67SA00v5Z8spnbkUT0k1KIK47lmkntwHS24yxgQbilFFc/nwltfRuKWMvV+uomzmUqx5qXS57hRSRjUdBmopxs7d8O8oivi8UkpkQxVK3PCmB8c4JhBGC7YL/4br7ftwz3wM6XVGtM+rmpRCys1/o/bV56h/71V82zaTcOGVITu+9op/13bqP5qBuVd/rCNGh3SNVrYVvWwr5hacSbQbRx7Y9BN6aRGWM//UZM64b/sWnN98jvWEMVgHhnaQ8GvoAY3SD5ew+7X5BOrdxPfvTKfLRpI8sifG+CPvTjWvn6p5Gyh+YwEb7nqHtHH9KPi/M1Et4TW5CAVDWgaeFT8hNS2isruytjxYiBBG/mqMoxdhtmG7+B7cHzyM54tn0GvLMZ98GUJEJoSpWG0kXXdzsK/tFx/i27aZxKnTMPfqmF2rAlUVVL/wBKojnoTLrg/5CcP30ydgtGDqH35aZrtw5FJKvN+/jZKcjbHfmCOPDQSom/Ff1MRk4s8Ov09nY1EZmx+ciWtrOYnD8sm75mQcvXIACLj8VC0toXFnLf46LyhgTrGR0CMVR0EKQhGoZiPpE/qTNrYvu9/8nl0vf4e3op4+j12CGmZLqKZQ4hwgZbCJqz187YfD0fZsAUDNajUxyxgdBGG0YD3/Ljyzn8e36H30ip3BAj1LZD5/QlFwnDoZc48+1L7xEtXPPrKvBeLUqHTpihaBinKq//NPpN9H8u//iuoIreGNXl2Kf+3/b++8w+s4y7x9vzOnq/dmFUuyLfcSx3FPc+J00khIWCCwENgAC0mouwu7XGz5WHrYZQOBLCxJSCHdKXacuCXuvcqOJKtLlmR1nWb/NjgAACAASURBVDoz7/fHK1tOcCxLPtaR7Lmva64j6cw582h09Jtnnvcpa3FdetM5ndNRIeRm1U6sY1V4bvraoLmrfWvfxGhuIOWLD59df9/T0PzaLip/9hqOBC+T/+1uUhdPQkYs6l4tp+6Vctq21CON0zf58WTHU3TXdEo+PQuHz4lwaBR85nK8eakc/uELVP3iDSZ8+5Zh2TUo/Vf4aDcgMqp2gTsOLbs4qu9rc2EgdAeeG76MnjWe4KrH6P3dg/hu+yZ63sSoHcNVVErGt39I71sr6H1rBcF9O4m7Yjnxy24cfGBxjAlXHKbj979ESknqV76NMzf/rF8bXPsn0B24FtxxTjaMCiEPbX4JkZCKc/qZY0pmTxe9K1/GPW02nmln10DrVKSU1P5uDXV/2kDy3GImff92HEk+6l4pp/yXmwg09+Ibl0jJp2eRNjePhJJUXCkekBA41kvnvmM0vHGE8kc2UfviAS771U0kTlTN5jOWTaev4hj1T71H1o2zSZx29n/Ms8UKqvTA4V7AToc0IxhHNuMonRvVApCxgLQM6GlG9jSBvw0Z7IRwr0rDtAy1k9DB4QJnHLgTEd4UNeEqPgu8qRfMAt1gCCFwzb0RLbuEwAv/Sd8fv4V7ySdwLbwzam2hhdNFwg23471sCT2vPkffW6/i37Aa35Kribt8OXpSclSOEy2kadC76lV633wJPT2TtPsfwpGVc9avN47uwTi4AdeSe9ASzu3uI+ZCbrbVYR7djfvKTw9a/NO78hVkOEzirfcM61g1j71D/RPvknXzHEofvJFQR4Btn3+J1k11JE/PYua/XEXm4kKCnWFa97RTv7kd3aWTWpZEysRUEkvTKLhtCm3bG9jxjTd5774XuPy5T+DLU7dR+Z9ZSvOKnTQ+v/W8CLl5vBUtPgHhjF7oxji8BRnoGTSkNdaRZgR5/Ajy2AFkWznyeAV01YH8UDqp0MDhAc0JAjWxxQyr7cM4PJCUj0guQqQWI9ImINInITxnzrgayzjGlRF//yME3vgfQuueJHJ4M94bvxLVsJwjLYOU+x4gcu3N9L75En2rX6PvnTfwzJ6Hb+GVuEqHVzQTLaSUhMv30/3iUxhN9XjmLiDprs+iec/ewZLBPgIrHkFLzcW98Ny8cRgFQh7Z+SZoDpyzzpxSZ3Z14n9vDd55i4d01TtB8ys7qH/iXbJvnkPJN26ip6KdTV98mUhnkBnfv5LCO6dS8UodG25YRePmVvhQb5+UiYks/tc5jF8+jvS5eSz6wx2su+tp9v5wLfMfVaEU3esibUkZbesOIaWM+octUleNI3fwdphni5SS8JaXEMlZOIqjXzEaa2RXHVbtJmTDVmTzXjD6U0njMhFppYjCxYikfEjIQfjSwZsCTt9p/27SDEOoG/ztSH+b8uK7G5Bdtcjm3cjKU5pNJeYhMqchsqah5cyCpIILynMXnnh8t32TSNlCgm8+St/jD+OaeyPuy++NWuwcwJmbT8rnvorReoy+dasIbH2X4PZN6GkZeOcuwDNrHo68kTu30rIIHdhN39uvE648jJ6aTsr9D+KZPmdo7yMlgRWPILvb8H7mRwjnuc/yjKmQSzNCZN8aHJMuGzRvvG/9W2AaxF879Phzb0Uzlb98g+R5JZQ8dCN9NV2899kXELrGkic/Dh4Pf7l+Fc1b2/Ble4kvS6W3yyRiQEq+j7yp8bRubeHVu9Zyzf8sYPK9JcQXJVP62TmU/2oz/sYefLmqPWdcaRbHXttFpNOPKyV6sT2zpxujoTaqLQiMyh2YDYfxXP/ABRNWke1VWFXvYFWvg07VhIikArSJNyByZiGypinRHiJCd4EvHXzpCP46NiyD3cjj7ytvv+Ugsn4rsmIlFqgQTO4ctNxLEHlzVVjmAsA5eRGOopkE1/4f4W0riBxYh3vpvThnL4/qFC5HRhZJd36KxFvuIrB7G4Ft76mQxspX0FPScE+ZgWvSVFwlZeiJ0b0bkpZFpPYowT3bCezYhNVxHC0ljcQ7P4Vv4ZXDujsOb3gao3wj7qs/e1bV62dDTIXcqNqlbusHSbuRkQiBjWtwT5s95JxxaVpU/OgVHAkeJv3T7Zhhky1feRWkZPEfb8ffJXnphjcxIxYiJ5GKI340twUeDc2l0bOvmyNr21j45RK8GR7WfWc7JbcU4Ip3krmkkPJfbabzwLGTQi4c+snjRpPgnm0g5ZCv/h+FNA1Cqx9HJGfjnLUsKu8ZK6T/OFbFKqz3V0JHFQgNkT0TMflWtIIFiITzn1YpPImIvEsgT80+lVJCdz2yaQ9W005k407Myv5BwcmFaOMuQ+QvQGTPOKt+QqMV4Y3He/0DuGYvJ7jqdyq7ZcvLuC//JI4pi6PqIAiXG9+8xfjmLcbs6Sa0fyfB/bsJ7NiE/701AOhpGTgLxuPIzceRnYcjMxs9Jf2swh7SNDA72jGONWI01BGuqSRceRjZ1wuahrtsGt7b7sUzY86wL1ThbSsIrX8K54yrcc2PnlMWWyE/+B544ga9rQ8e2I3V24Nv8dVn3O90tL5zgN7DTUz83u04k30c/Nl79FZ1sOB3t6LFeXnl2hVoLo1j3RqB4yHakfRFIoSlhU86MbtNZs5KY+N/V3LvH+bSsOEYx7a3kX9FzsmRUNYpHdWCjR0Ih4YzOXqFDVJK/BveVh/Os5g0cjaEN72A1VaH965/GpNCIi0T2bAVq/xVZO0mkCYiYwpiwdfQxl+J8MU2dU0IoeLnSfloZTcpYe84itWwDVm/Bevgi7D/WXB6EXnz0AoWIgoWIDyja0HvbNGzS/B96t8xKrYRWvMnAi/9BO3dZ3AtvBPn1KVRn5OrJyTiW3AFvgVXIE2TSN1RwpWHiVRXKg9619YP7C9cbrW+5ItDOF2qDkNKpGkggwGsvj6s3m44pV+6np6JZ9ps3JOm4p4yE+0cU35Dm18ktPpxHBMvw3PjV6I77Dpq7zREpGViVGzDWXrpoEIS3LkZLSEJd9m0IR+n4ZlN+IoyyLh6GuHOAFVP7GHczZPIXFjAO1/fQrA9jJmZRCgcoCEU4ZgI0ST8BKVJfJ+TuYVZ1Df04gW6G/zK9v6/dXe5amAVVzjwz9e5vYr4sjw0R/Q8kdCB3RiNdSR98gtR+eObzVWE1v8Zx+RFOCeOrWpOGezCOrwC69DL0NsMnhS06Xep0Eny+e2mdy4IISC1GD21GKbfjYwEkI07kHWbsGo3YVavU3cSWdMQBYvRipYgEvNibfaQEELgnDAPR+lcjEPvEdrwDMFXfk5o7RO4LrsF18xrEJ7opxIKXcdVVIqraGDB1QoFMY81YbS1YLa3YXV3YvX2YAX8yHBYZSVpGsLpQ09ORfji0BOT0VPTcGTk4MgdF7W0R2kaBFc9RmTH6zgmL8J768NRv7DFTMit5kpkoGfQJjHSMAgd3It37oIhN8UK1B2n70gT47+6HKEJGldVYgYNSj87BzNsUv5MFfnLctn07DF6PYJgAjQE/FiFAo/hQtRLwh0RMuLcmMKg61AHukcna04aUkpqnj+AJyuO5MmqCX/3vlr63m+m+Gtn1yjnbJCmQc/LT6NnZOG9dOG5v1+wj8ALP0LEJeK5/u+iYOHIIDuOYu5/DlmxCswwImc22rwvIQqXjMk7CuH0IgoXQ+FiNCnh+BGsmnexat5Fbv011tZfQ8p4tKKlaEVLIbV0zCyYCqHhnLIEx+RFGO9vJ7zpBUJv/Z7Q2idxzrgS15zrz2pYzLmguT1oBeNxFpzf4wyG1dFM4KWfYDYcxjX/NtxXfea8rEfFTMiNmv0A6EUzzrhfpO4oMhTEVTb0st2uPWqxK3W+mpfXsacZd5qXxEnpdFX1YvhNfHnqqhtBEudz4vM7MKpNEqSDLOHB3WNh9ISYuiydypdrmfPVybiTXNS/foS2LfVM++5ShK4hDYuq/1qFMzWOrBuGnuP+UfS+tQKjuZGULz50zldxaZkEXvoJVucxfH/zb2i+0Z0mJ6VENmzD2vcMsmEb6G60CcvRptyBSL1wipeEEJA+CT19Evolf4vsacSqfhdZswFr95+wdv0R4rPRipYiii5HZE4ZE4vTQmg4J87DOXEeZlMF4W2vEtm9msiON9BySnHNXIZjyhI039lVQY4lpGUS3v4aoTV/Ak3De/u3cE6JXuOxDxMzITcbyhEpOWjxZ54YHalWcyRdxYMPL/0wwfp21YM4T8VLw91BXKkqvcyTovoQO50C3aVRmO2horqHiSSgAS4EyS4d3bQYPzOOzm3N5FyWwfx/mkX7niZ2f+9tUmZmM/4edSGqeXwNvYcamPTPd0Stx3H4aAW9b7yEZ878cx4oIaUk+OZvMCq247n+ARyjeKSbtAxk5TuY+/4M7ZXgTUWb+wW0slsu6BztE4iEXPTpd8H0u5CBTmTNu1g16wfi6t5UtMIliKKliNzZCC3mWcSDoueU4r3lQTzXfJ7wvjVEdr9F8M1HYdVjOIpn45iyBOfEeVFNX4wFUkqMyh2E3vkjVks1evEcvDd8GS156AOVP/C+lgl9rR/5fOyEvLkKPXdwcY40NaDFJ6AnDn0RyDJMhFM/2WbWkxlH2+Y6rLCJJ9VN8Y3jOPD4ES5/YALvPlZDJgNejkCSmqKRnOggUNVJ8U35XPvoQlo31rDjWyvxpPuY98iNaA6Nphe3qUKjm2aTcfXQ4/inw+zqpOPxR9CTU0i6+75zei8pJaE1/0dk5xu4Ft6B65LohX6iiYwEsA6/hrX/Geg9BslF6Eu/gyhZptL/LkKENxlRdpNaMA33qZh69XqsilVQ/jK4ExD5C5W3Pm4ewnHuOcnnE+FNwD3vFtzzbsFsriKyfy2RAxswKrYT1BzoRdNPxtmH29I1FkjLxDi8mfDmFzEbDiOSs/He8R0cZQujEhKzdj6OdeD5j3w+NkIuJbKzBX3G4FkoZnsrevrwrmautHisQIRIpx9nso/speOp/vM+al44wPhPzOCqR+bz6t1rKf/9YfJSXfimxmFEJGZfhEBLAOk38OQlcvl/LKHwygwO/XQD1c/uJ2lqJpf99024033U/nEdtb9fS+rCiZQ8dOOw7PwwViBA+29+ivT7SX3we+e06HJCxMMb/4JzznVnNbBjpJHBbqyDL6gPaqgLkTUDbeGDiPz5Ueu0dyEgXHGIkmVoJcuQRkhl7VSvR9ZuxKxYCQ4PYtw8tMKlKgPGnRBrk8+Inl2Mnl2M++r7MBuOYJRvxDiyheDK38DK36Cl5qKPn4WjaAZ6wbRBa01igdlWR2T/OiJ73kb2tCGSs/Fc/wDOWcuitnZjVazC2v0nxMQbgZWn3Sc2Qm4agEQkD54TLv1+tLPsJPZhkmaqLIbjGw6RffMlZC4tJGNBPvv/Yz0On5NxN5fx8ZXXcnRlAxUv19JZ0Y3DkPjGx5ExfTxF1+aRVOCh5tn9rF7+BmYgQsl9s5n8tQWY/hAHv/s0HRuPkLF8BhO+dUtUMlWsYID2R3+C0VBHyv1fP6e5htIyCa78LZEdr+Occx2e6/9uVC2Yyb42rP3PqgwUI6A8y5mfRMsem21MRxLhcCMKl6AVLlGhqKbdyOr1WDUbMKvXg9ARObMRRUvQChch4s7t1v58IoSGY1yZKo5Z9jnM4w2qWK1qF5G97xDZ8ToAWmoe+rhJ6LkT0XMmoGUWIJznPlBmKMhICLO+HOPoboz3t2K11oLQ0MfPwrX8fhwT50V1/cKq3YS57j8QObPRFz0EfOe0+wkp5WmfOJ9cMmOqXHNXMb57foCj5MwFLq3/7x/RU9NJvf/BIR9HSsnuLzxGpKOP2f/7JZyJXsJdQbZ+ZQXHdzSSNDWTvOsmkDo7B29WPEIXRLpD9NV10XmwldaNtXTsaQYBOdeUUPbl+SSMT6F5xQ5qfrcGMxCm6EvLyL3zsujcPvX20P7oT4jUVZN83wN4Zw8/NVCGgwRe/inG4c24FtyhVstHiYjL7kasvU9hHXlD5X8XX4U+85OI1JJYmzbmkdJCth5CVm/Aqtmg+smA6gFTuBitYBGkloyaz8JgSNPAbKrArD2AWXcQs+Ew0t+lnhQaWmoOWkYBWto4tNRctJQctKQMRELaOQmqlBLZ14nV3ojVVofZUo3VVIHZVNmfuqij50/BMWk+zsmL0BLSovQbD2DVbsR8+/uQXITjxl8gXPEIIXZIKf8q1S82Qj59ilxzdwm++348aIlq289+gHC6SPvqd4d1rJ5DDez98uPET8xh8r9/AldqPJZhUfvCQY4+tYfu94//VV8VADRB8tRMsq8cT/7NZbjTvbSu2kv9UxsJNrSTOKuQ0oduxFeUMSy7PozR0kz7b36K2X6clM9+Gc+MS4b9XlZnC/6//BtW81E8y7+A69Kbo2LjuSLbqzD3PImsehuEjjbxerQZ9yIS7YEW5wvZWYNVswFZ8x6y5SAgIT5LFSDlL1RtC0Z5XP1UpJTIrlbM5ko1Wae1Bqu1DqujCeQp1dRCQ/gSEXHJCG8iwhuHcHnB4VaDa06kMlsW0ohAOIAM+ZGBHqy+TmTPcTBOaZTm8qpQUF4ZesEUHAXTEO7zN83IOvI65oYfI9ImoF/3E4RHRSVGl5BPmyzXfKKUuM/9bNAFz47fP0KkoY7M7/942Mc7vqGcwz94Hs3rouCzl5N13Sx0n1o8Cxzrpbu8jeBxP9K0cMa78OYmkliainAIuvfU0LbuEG1rDmD2hoibmEPBZ5aSunhS1Lya4P5ddP7fo6BppN7/IK7i4fd5Nip3qtFclon3tm/iHOYw12hitRzE2vMEsuZdcHjRJt+CNu1uRNzQe57YDB/pb0fWbcSq3Yhs2K6aiDk8iLy5aPnz1ZrEKA7BnAlpGlhdLciOZqyuFqzuNmRvB9LfhfR3I4O9yHAQjBDSNFRXSwBNV7FspxvhiUN4EhBxyWiJqWhJmYiUHPS0cYjkzBFZr5GWgbXtt1j7nkbkzUW/+ocI18Aa2egS8hMe+Wd+hCN/yhn37Xn9BXrffImsH/1mSG0iP0xf5TEqf/463Xtr0dwOkuaMJ6EsF3d2Mo4EL0ITmIEw4eO9BOuP01d5jJ7DjciwieZ1kra4jOyb55A4szBqAi4jEXpWPEffO2/gGFdIyt/+PY5hLuxK0yC07knCG59HyyjAe+d30dNiVxkopUQ27sDa/Sdk0y5wJ6BNuQNt6h0XRQrhaEcaIWTTTmTtJqy6TSpLCCClGC3/MpUBkzX9os0WigWypxlz7b8ij+1Fm3wr2oK//6vU0o8S8pgsdp6o0JSBnkH3dZWWgZSEjxzAM3P43mVcSRbTf3UfPfvraH1rH507q+nY/P5pwyp6nBvf+Exybr2U5EuKSZpTFPXxbZG6ajqf+C1GYx2+xVeTeNu9CNfw/mnMtjoCL/8Mq6kC56xr8Sz/wogvAp1AWqYqZNnzFLKtHHxpaPMeUDngrrE9WPdCQjjciPwFkL9AVZZ2VmPVbUbWbcba/xzs/TM4vGrBdNylaLmXQHL0nBibAaS0kIdfw9zya8BCv+J7aKXXDOk9YpO10p+WY3UeG3RXV8lEtPgE/FvfPSchB1VBlzi9gMTpqvGUGYoQbu3B6A2ClGgeJ66UeBxJ3vP2gbUCAXrfeIG+tSvREpJI+eLDw5p2BP3VY5tfIrTuSYTLg/eO7+CcvCjKFp+lLWYY+f4qVcTTVQeJeeiLv4mYsNz26kY5QghIGY+eMh5m3IMM+5W3Xr9VNfmq26ja8foyEHlz0HLmIHLnXDDteGOJ1VqOtekRZMt+lZmy9NvD6tYZGyHXdIQ3AaulZtBdhe7Au/BK+t56lUhj3ZDm4Q2G7nbiHTcyXfKkZRHYsoGeFc9h9XTjW3gFCbfcPewccbPxCIHXf43VXIlj0nw81z8waJXs+UCGe7EOvYJ14DnwH4e0iehX/Qui6PIxUUZu89cIl+9kHxgdlWUkG7djNexA1m7GfL8/lzkxD5E9Cy1nlmobnDB2Cnhijeyswdz5B7Xw70lRhW8Trh+2AxmVGLkQ4mHgJ0CGlLJtsP3nzp0r1z98E1ZnM/F/9+ig72/19dDyg2/gzMsn9av/MOTmWbFEWhbBvTvofe15jOYGnONLSbz9b3AVDS/VzvJ3EVr7BJGdKxHxKXiW3x+16rGhIPtasPb/Bav8VYj0IXLnos24Rw1OsG+/L1iktKC9CqtxJ7JpF7J5j5pzChCfpeLqWdPRsqZBSrF9MT8FKSWy5QDW/meRR9eBw4M29U60mfcgXGfXmuC8xciFEPnAtUDtUF6nl8zBWPUYZnsjeuqZbyW0uAQSb/8kXU8+Ru/rz5Nw08fPweKRQZoGwZ1b6F39GkZjHXpmDsmf+yqeWZcOS+ikESG84zVCG56GUADXvJtxL733vLQFPaMdxysw9z2DrFwNSMT4K9FnfAKRPmlE7bCJDUJokFaKnlaqesFYJnRUYTXvRTbvVeJeuVqFYhxeREYZInMqImOy+jouOum6YwkZ7Maqehvr8Ao4/j644lXh27S7EN7o9J+PRmjl58C3gJeH8iJn2UJCq35HZM/b6Fd+atD9vZctIVx1hN6VryC8PuKvjk45fLQxe7oJbF5P3/q3sDrbcWTnkvzpL+G5ZOhteKG/h8OBDQTXPYHsPIZePBvPNZ9Hz4je7M5BbZCWGoaw71lk4w6VQjjlVvVBTBj6/FSbCweh6ZA2AT1tAky9Qw3Q6G1CHtuPbDmAbDmItffPA0OuvamqOCl9ohpWnVoKCdkXXCsGGehUfXGOrkM2bFVFRKklaAsfQptwLcIZ3YX/cxJyIcTHgAYp5Z7BvEwhxP3A/QAFBQVoiek4JlxKZNebuBfdqZL1z/x6ku6+DxkM0vPS05itLSTe/slhZ3pEE2mahMr3E9iygeDe7WCauCZOIe7u+3BPmTk8AZcWxqGNhDb8Gau1Fi2rGO9ZVMJGExkJqD4P+5+DrlrwZaBdej9a2cdGfR8Pm9gghICEXLVgV6oGqksjpOaZtpYj2w4jjx9B1m8ZKOBxehEpxSoUk1KESC5UQ0LiMsaMwMtwn7pwNe1GNm5Hth7mZPHV1DvQSq6BtAnnLew4aIxcCLEaON0qxj8C/wBcK6XsEkJUA3PPNka+fft2jPpy/H/4Ju6l9+Jees9ZGSwti55Xn6Nv9Qr0zGyS7vwUrrLpIx8jNg3C75cT3LON4O5tWL09iLh4vJcuwrfwSpw5w8vhlqZB5OAGwu89h9VWh5Y2DvfSe3FMWTRiH2rZ04x16EV1KxjqQaRPQpv2ccT4K8fkEAeb0Yc0gsj2KmivRLZXINurkB3VEOoa2MnhUQuqieNU9W9CLiI+W2XLxGdG3as9K7ulBX2tyM5aZEeVsr3tCHRUA1L1uMmYrJqXFSyAtIlR1aaoFwQJIaYDbwP+/h+NAxqBeVLK5jO99oSQA/hf+E+Mw5uJ+/wvhhQuCJXvp+uZ/8Vsa8FZPJG4K5bjmT4H4Tg/iThSSsy2FsJHDhIq30eofD8yGEC4XLinzsZ7yXzcU2cN+/gy5Ce8ZzXhLS8ju1rQMgpwL7or6gNsP/L4UiKbdmEdeB5Z+x4gVG+OaR9XC1j2AqbNeUZKCYEOZGcNsqsWumqRXfXI7gboaQIr8sEXuOLBl47wpYE3Rc079SSDO1HdMbriwOlDODzgcKu0Z80JQocTn2dpqipPM6KqPg0/RAIQ6kEGO5U9gXYl3j1NarygeUrpvjdVhYkyJiMypyGypp7XC8x5r+wcjkcOYPV20PfbryDikom778dD6l8gIxH8G9fS987rmO1tCF88nmmzcE+eofLPk1OHt7AoJVZXB0ZTPZG6GiK1VYSPVmB1dwKgJafgnjxDDWYtm4ZwDb9XhXm8gciO1wnvWQ0hP3r+FFwLbscx4dKRKQkO92FVrFRDCzprwJ2EVnYT2uRb7Txhm1GDlBb425A9zdDbjOxrgb42ZF8rBNqRgQ4IdigRjioCvCnqghGfpdaE+odqi5TiqC1WnrU1o1XIAYyq3fj//M/oRTPw3f09hGNocW9pWYQO7SW4YzPBA7uR/j4AtPgEHNm56GmZaEkpaD4fwu0d8JpNAysUQgb8WL3dmF2dmO1tmMdbkMHgyffX0zNxFpXgKp6Ia8JkHFm55+ShSiOimtDvWolZvQc0B47Ji3Bfdgt67vD7rAzJhrYjWOUvY1WsVi1k08vQptyGKL5qTDVRsrE5FWmGIdQNoV5kpA/CftVTxgwpT9oyVKbNiZJuoSOErrx1hxscXnD5EK4E8CQp734UpVCOql4rHxZygPCe1QRf/SV60Ux8d3532Gl10rKI1FcTOVpBpL4Go6UZs70Vq7sLLOv0LxLilCna6ejpGTgyc3DkjMOZVxCVadpSSqzG9wnvewfjwHpkoAeRlIlr9rU4Z107IsU8MuJHVr2DVf4qsvUQ6C5E8dVokz+Glnnmnjc2NjaxZ1T1WjkdrpnLQGgEVzxC3/8+jPf2bw9r0rbQNFwFxbgKPjicV1oWMhREhkNIw1D76jrC5UZ4vOelyEhKidVaQ+TguxgH1qtWm7oTx6T5uGYuQy+edd7DJ1JKZOshrMOvIatWq1vP5CK0+X+PNmG5nX1iY3MBMGqEHMA14yq0pAwCL/6Yvscfwr3oLlwL7xhyqOV0CE1DeH3gPb8r3dIyMRsOYxzZinF4E1Z7o5ogUjgdz8I7cU5eNCJFPNLfrlIH338DOo6qdqXjr0CbdDMia5q9eGljcwExakIrp2L1dRFc+RuMgxsQiRm4F9+Nc8ZVqiH8KMTqbsOo2o1RtQvz6C7V1VHT0Qun4yxbiGPS/JEJnRghZO1GrPdX9ufpmoiMKWiTblCx77MsA7axsRmdjPoY+ekwqvcSfOcPWI3vI+KScc66BueMq9DTxo2AladHSonV3ohZf0iNnqrZr0ImgIhLxlE8B0fpXBwlc0bG85YWsmkPVuVbyKNrVd8LXzpa6bVoE65DpBSddxtsJzdJJQAACU9JREFUbGxGhjEp5NCfv310N+Gtr2BU7gRpoWUU4pgwF0fRTPS8Sedt5JI0IljtDVgtNZgtRzGbKjGbKiDY3yTIE48jfwp60XQcRTPRMotGJGQhpVQVclVvY1W9A32tqq9F0VK00mtVi9FRtNJuY2MTHcaskJ+K1XNcLRwe3oxZf0gl8gsNLS0PLbNIDWBNzkRLSEfEpyC88ar03+k+KWxSWmCaEAmenNEn/d0n5/RZXa1YncewOpqQnccGyog1B1pmAXp2KXreRPS8MrSM/JGrtpQSjh/BqlqDdXQt9DSC5lAVZCXLEAWLEM7hT1CysbEZ/VwQQn4qMuTHrC/HqC/Haq7EbK1BdrZw+knKJxCDPA/Cm4BIzkJLyUZLzUNPz1dTutPHjXh5urRMZMtBZM16rOr1qrpN6IjcOWjFVyGKltpZJzY2FxGjPv1wqAi3D0fJnA80kZJGBNnditV9HOnvRAZ6keEAREL9RQCo6dq6A1wehMurvHZvIlp8CiIhNWYj0gZ+hyCyYQdW7XvImvdUtZrmQORegjbrU4jCJfbMSxsbmw8wZoX8dAiHE5GaizZIf/PRhuxpxKrbgqzbhGzcqSrQnHGI/MvQCher6eZ2xomNjc1HcEEJ+VhBzUTchWzYhlW/Fbrr1ROJeWhlNyPyFyJyZtmdBkcJ0jLACoIZACvUv4VBRlQjJ2kObH8VuhMgtP7NMbBprg9tXtA9qlzcxuYUpJTQsx/Cxz9yn5gIueyqwzq6FlG0dMz0Gz4XZCTQ36t4F7JxJ7K1XP3T624l2FNuQ8ufD4nj7EKd84g0/RBug3C72iLHIdIJkS4wuvofu8HoVZvZC6ZfCfdI2XhS1H3giAO9f3PEgyPhg5szCRxJpzwmgyPhovifuhiQfZXQshJaXgf/UfAWfeS+sfHILQPz7e+ryd3T7kKULLugGjVJf7sS7mP7kcf2Dgi30FVv7xn3IvLmqPaw9oT5qCCNHgg2QLAJQs39j8f6t1YItyhRPh2ap18ME9XmzoS4kn4R9Z2yeUBz928uEE7QTvGyhYZaUD8hpBKwVOaTtPq99siAJ29FTvHwg2AGwQooO80AmH1g+MHoUb+T0aMuMNYZOvwJHXlC1J2p4Erpf0ztf0wbeHSlgSPRdh5GCdIKQ9duOL4ejq9V4o2A5LmQ/xnIvA5IPO1rY5a1svXpf8fc8xR0VKkZdiXLlKBnTRtTHoUM96npJ22H1QSU1oMquwRAc6o5hdkz1JTxrOkI18jO2LxQkNJSohyogUAt+GshWA+BeiXgRvcHXyAc4M5SouzKBHcGuDLAld4vYv3C5kxG6GMrbVNaYSXqJ+4gIl1gdPbfXZzY2iHc/xhpV/ucLmNLOAdE3ZV+yvlJHzhfbvVzoY/8IIcLGWlFoPcQdO6Ajq3QtU1dwIUDki+F9KsgYxnCnXnyNaMy/fDkMIPDK5DV69UinzcVkT8fLe9SFXbwpY24fadDWgZ0NyA7jqqtXU0HobthYKf4LER6GSJzimoynz7xgrrTGAmkGVSeiL8S+o72f31Uibc10FoY4QTvOPCMA09u/9d54M4BTw640saUQ3C+kZYBkY5+gW9X8dZwmwovnfj65GM7cJpOobrvgwJ/YnN/6ALgTEVo9vrOqUjLUE5I7yHoOQjd+9Tjic+0twhSLoPURZByGcJx+uSGUSnkpyLDfmTte1g17yIbtqlSc4CEHCWOaRMQKeMRSfnqZ1FeCJRSqjFTfa3I3mOqgX1PI7K7AdldD92NAwNkEZCYi0gtRaSV9g+SnYTwpUbVpgsZaUXAXw19R6D3ffBXQF+F8rBPeo4aePPAVwzeQvAV9T8WgDvLXhg8T0hpKtEPt0GoDcKt/QLfL/ahVnUBCLWqdYTT4Ug6xdNP+1BYpz/c40zp3xIviL+llFKttQTq1OavHnBK/EfVAjmo0Fx8GSTOgKTZkDQH4c44q2OMeiE/FWkZyLYjyOa9KtbcdliNWDqB7sZx38qoelzGm99UjaZOxeFVgp2Yh0gqUANhkwvVgFhHbPPNxzpy9xegY6P6RjiUQMeVqth0XAn4SsBXiNDsNYTRjDSDHxT5k179qd5+f3jH6PmIdxGwYBXCM7bShj+MrP4tHP3lKT8R6u7QVwxxEyB+ghJwX/Gw71hGlZALIVqBmhE/8AdJBwadZnQRYZ+PAexzMYB9LgYYDeeiUEr5V+57TIR8NCCE2H66K9vFin0+BrDPxQD2uRhgNJ8LezXIxsbGZoxjC7mNjY3NGOdiFvLfxtqAUYZ9Pgawz8UA9rkYYNSei4s2Rm5jY2NzoXAxe+Q2NjY2FwS2kNvY2NiMcWwhB4QQDwshpBAiPda2xAohxI+FEOVCiL1CiBeFEMmxtmmkEUJcJ4Q4LISoEEJ8J9b2xAohRL4QYo0Q4qAQ4oAQ4muxtinWCCF0IcQuIcSKWNtyOi56IRdC5APXArWxtiXGvAVMk1LOAI4A342xPSOKUDXi/w1cD0wB7hFCTImtVTHDAB6WUk4B5gNfvojPxQm+BhyKtREfxUUv5MDPgW8x2DDPCxwp5SoppdH/7WZgXCztiQHzgAopZZWUMgw8DXwsxjbFBCllk5RyZ//XPSgBy4utVbFDCDEOuBH4Xaxt+SguaiEXQnwMaJBS7om1LaOMzwFvxNqIESYPqDvl+3ouYvE6gRCiCJgNbDnznhc0v0A5e6dpCTk6uOBHvQkhVgPZp3nqH4F/QIVVLgrOdC6klC/37/OPqFvrJ0fSNpvRhxAiHnge+LqUsnuw/S9EhBA3AS1Syh1CiCtibc9HccELuZRy2el+LoSYDowH9vRPSBkH7BRCzJNSNp/uNWOdjzoXJxBC3AfcBFwtL74CgwYg/5Tvx/X/7KJECOFEifiTUsoXYm1PDFkE3CKEuAHwAIlCiCeklH8TY7s+gF0Q1I8QohqYK6WMdXezmCCEuA74GXC5lLI11vaMNEIIB2qR92qUgG8D7pVSHoipYTFAKM/mj0C7lPLrsbZntNDvkX9DSnlTrG35MBd1jNzmA/wXkAC8JYTYLYR4NNYGjST9C71fAVaiFveevRhFvJ9FwKeAq/o/C7v7PVKbUYrtkdvY2NiMcWyP3MbGxmaMYwu5jY2NzRjHFnIbGxubMY4t5DY2NjZjHFvIbWxsbMY4tpDb2NjYjHFsIbexsbEZ4/x/xsH9dEK2FYsAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACpFklEQVR4nOydd3gc1dWH3zuzvaj34qLi3isuYGOM6b33Dh+EhARICCQhEEoCBAgh9N57LzZgDBjbgHvvRbYlq3dp+8z9/hi5AbZWq5Ul2fs+j56VVjP33pV2z5w595zfEVJKYsSIESNG90Xp7AXEiBEjRoz2ETPkMWLEiNHNiRnyGDFixOjmxAx5jBgxYnRzYoY8RowYMbo5ps6YNCU5QfZK1cCaBubEzlhCjBgxDjWkDk1rjO+FGVSH8WWyg2IDRMfOH6qFwA5Q3WBOBsXZ5iEWLVpUJaVM/fnznWLIe6UEWPDiETDoPwhXv85YwgFDSgmaHwLNEPRAyIcM+UELgh4CGQJd332CECAUECqoZlBMCNUCJhuYrGB2gNmOUDrlXxcjRrdF6kFoWA6NK43H+qXgLzN+qaoQPxISx0DiYeDqixDRDVjIQCmy4nWoehtCdeDohci4EhKnhT2XEGLrrz7fGXnkowbnyAWLVyHM8Qd87mgiQz5oKEE27kA2lkNzJdJTCZ5qpK8OfPXgbzAMdrRRLWB2gtWFsLjAGgdWN8IWD7YEsCUY39uTEPZEsCcjLI7oryNGjG6M9JVC/WKoWwR188GzxfiFORmSxkPyREiaiDAnRG9O3QfVHyLLngf/VrDlITKvhaQTEELd77lCiEVSylG/eL5TDPmoUXLhwoUHfN5IkboG9duQVeuR1RuQdUXI2iJortj7QNUCjmSEPQnsSYYxtbrB6gKzC2G27/asVQsoZlBUEApCGLd1UurGLaCugR40PHctACE/hPzIkAeCXgh4INiE9DdBoAn8jUh/g3HxCDb/+gsx2cGRhHCkgDN196MzzXh0pYM9MeqeSIwY3QXpL4faH6FmHtTMhWCtcXccPwJSjoLUoxC2rOjMJTWo/QJZ+gR41xsGPfv3kDBtlz34OTFD3gZkyI+sWIUsXYosX46sXGMYTzAMcEJPREIvREIPRFwOuDMR7kzDcO/jH3AgkVrQMOi+OqS3Brw1SE8NeKuRnmrwVCGbq8BTZVwk9kQxgyvNMOquDIQrw3htbuN7nKkxQx/jkEBKDRpWQfU3UDULmjcav4gbCmnHQdqxCOsvwtURzKND7ZfIHf8F3yZwDkXk3IJwj/zFsTFD3gqyuRJ96xzktnnI0qVGXFsokJSPkj4IkdofkdIX4nMPmvi0lBL89dBUgWw2vmgqRzaVtzyWgad675MUM7jSEXFZCHdWy0UsCxGXDe6sWPgmxkGL9GyFyi+hYjo0rQMUSJoAmadCyhSEYmnf+FKD6g+QJY9AsMIIteT8CWHJ2HVMzJD/CtJXj775a+TGmciKlcaTcdkoOYchckYjMoYY8edDGBnyQ3MFsrEU2VgKjTuQjWXGY0OJEdbZE1siIi4L4rJ3G/i4bOOxi9yxxIjRXmTzJij/FMo+NjZMzQmQcSpknY1w9Gzf2JoHWfYMlD0LwoTI+h2kX4QQppgh34mUElm+HH31h8ii2UYcOjEPJW8KSq8jjLBJzNiEjfQ37jLqsnEHsmGHsQHcUALNlcAe7y+zY5dR323ksxDubCNko+x/oydGjK6GEef+EXa8A1XfGFloSUdA7kWQOK5dtkT6tyO33Q3134JjIKLXvSjO/oe2IZe6hiyajb78dWTVOrC4UAqPQelzAiK54ICu5VBBagFo2GF48w3Fuwy8bNwBjaV7Z/Mopj3CNFlGmMad1RKfj4VsYnR9pL/SMOg73oRANbj6Qo8rIPWYiMOxUkqonW4YdATq8HmHpiGXUiK3zkFb+AzUFUF8Lsqgs1EKj0GYbAdkDTF+idQ1I2TTsAMadxr4UsOTbyz9ZcjGGtdi1DONTdeWzdddm7KWthdXxIjREUg9YIRdtr0Ans1g7wm9/g/SW08v3OeYoVrwbkKJG33oGXJZvRHth0eQZcsgvgfqiMsQvSfHbuG7AdLX0OK572iJzRsxetlUBk3lv8y2sbjAmYZwpSGcqcb3zjRwpBg/O5LB4oqFzWIcMKTUoeprKHoSmtaCIw/yboCUoyJ+Hx5SMXIZ8qMvfh59xdtgdaGMvBKl7wmdkm0ig35kYzV6Uy2yuQ7pbUT6mpA+DwR9yKBR5Sl1zcgfB0AYFxtFBZMFYbaA2Yaw2BFWB8LmRNhcCEec8eVMQJjat2PenZBSB2+tYdQby/bKtpHNFUZ+v6/+lyeq1t15/o6klnz/RKNoqqWQSrQUU2F1xy74MaKClDpUzoQtjxoeevwIKLgFETeozWMdMoZcVm8i9M2dUFeE6HMC6phrEba4DplrT/TGGrTyzegVRehV29GrS9DrypHNdb9+glDAYjeMtGpuMdwKIEBKw7DrIQgFkaEABHzstXH4c6xOFFciwp2MEpeMcKegxKeixKchEjNQ4lMRqrkDXnnXRIb8LfnylXvlzUtvjVF5660Bb61RebsvWipmhdUNlpbCLovLCOOYnWBxIMwtWh0WB6g2Qz7BZAOTxbhw7FH8FbsbOLSRegjK3ofN/4NgDWSeDvk3tqlq9JAw5Pr66WhzHwSLC3XSbSg5Y6I+Bxhxd71qG1rRckLbVqEVr0U27s63Fu4klKRslMQMlPh0RFyKYWRdiQi7G2F3gcnapg+2lBKCfqS/2fDovU2Gd99cj/TUoTfVIZtqkE016PVVyKaaPTx8jOrRuBSUxEyU5CyUpGzUlByU5BxE/KFb5GMUT9W1FE/Vgb8e6avfJa8g/Q3gb4RAk5GhE2japZnTZnZW86omY3N3V2Vvy92XYjL+Dz//QrRo8AhA2UPbaedzLd//Gr/4vWj5dqemj9g9R0uVMaKl2lgx7VqXoftjbvm+xfkwWVsuVjbjy2w3qpfNjt0XuoOk5iKayFAjFD0Bxa+CKQ4KboH0E8OyBwe1IZdSR5//FPqKNxCZw1Gn3GHoi0QRqWtoRSsIrptHaMMCZEMVACIuFTW3P2pWH9SMfNT0Xghb5+eeS10zQjp1Feh15ei1pei1Zei1O9BrdoBvjzJ+sxUlJRc1pQdKWk/UtJ4oab0QrqSYF7kPpB4yqn2DHgh6kEEvhLwQ9BlGXvMbdwUhvxHP11ukFlrE0qQeMp7TtZavEMiW8JrUW4TUdj5KkLLlcY+L867P7p6fYfkr38qWw+XuJ+XOsVoepdw9v64Z3+981HauNQLNILO95W7GjbDG7aEB1BLSciQZOkDOVOPnQyicJZvWw7o7oGEZJE+CvncgrGn7PeegNeRSD6HN/hdy45co/U9FGfe7qHoBWnUxwSVfEFzxrREmMVsx5Q3HlD8KU94wlIT0qM11oJBSIj31Rvinajt61Xa0ym3oVduQjTW7jhOOOJS03qgZvVHT81Ey81GSsg6pD1uM3UgpDWOuBXbr/2j+FkVPX8uFzdtyYWs2FD8Dzbvvanz1LXpAdb8e0hIqOFNaMpEM2QsRlwPxOYj4XCPEdZAhpQbFr8HmR0CxQr87EalH7/P4g9KQS11D+/Yu5OZZxobmsIui4kFKKdGKluP/8X20TYtBUTEVjsY8aDKmgpEI88Gbtqh7GtArt6JXFKGVb0Er34JesdXwJAHMNtT03qhZhSiZBcZjUtYhG5qJERlSDxl7FN4aZHMV0lO1SyqCplKjevjnBWX2JERCT0RiHiIpH5Lzje9N1k57HdFCerbA6lugcRVknWNshqq/fF0HnSGXUqLP/Tf62k9QxlyLOuS8qKwttH01/lkvo21fhXAlYhl5Aubh01Bch24DDKmFDK+9bBN62Sa00k1oZZsg1JICaHWiZhYY4aXsPqjZfQ/pv1eM6LCroKyhGFm/HVm3FWqLkLVbjDAWGF58Uh5Kaj9E2kBE2iBDD6kbhgSlHoDN/4XtL4B7oNGv4WdKiwedIdeWv4E+/wmUoReijr663WvSG2vwffUcodWzEa4krBPPxjzs6A5N65PBALrHg/R7kX4/UtujyYRQECYTmMwoVivCZje+lK7h+UpdM4x7yXq00o1oO9YZnruuASDi01Cz+xpfOf1QM/IOqayZGB2HlLpRV1C9wZCWrlqLrFy7u4jMlojIHIbIHI6SPRLicrqVYZeVs2DNraBYDGOesFsFscMNuTBKlhYCJVLKE/d3bHsNub5jEdr0mxC9Jhkbm+38JwVXfod3xhMQDGAZfwbWcWcgLO0Pn0gp0aorCZVsI1S+g1BlOVp1JVpdDXp9HTLgb9uAQiDsThSXGzUuHiUhETUhCTUxBTU5FVNqOmpyCkLtnEwBGfSjlW0yjHvJWrSSdbs2hVHNhtee0xc1ux9qTj8Ud3KnrDPGwYeUOtRtQ5avQC9bhixd0hKaAdxZKLmHIXqMNwy82vVrLqRnCyy/HnzF0O9uRMZJwIEx5DcCo4C4jjTk0ldP6P1LwezEdOrTRh5vhMhQAN/0Jwku+wo1px+2k36Pmpwd+XhSEtqxHf/aFQQ2riWweSPSs7vUXIlLQE1JM4xvXDyKOw7hcKJYbQiLFUymFo9bIHUdtBAyGEQGfOheL9LrQW9uRG9sQGuoR2+oQ6urgdCemiUqakoapoxszFk5mLJyMef0RE1O7RRvXm+objHqa9GK16GVbtwVbze89n6YcvuhZvdDSe/daRehGAcXUkpoKEYvWYjc/hNyxyJjY9bsRPQYj5J3JCJnTJc26jJYDytvgLoFkH8Tosfl+zTkUfnUCCFygBOAe4AbozHmvtB+fBS8dZiOub9dRlxvrsf79l1oJeuwTDgb66TzI8rGkFISKt6Kd8FcfEsXoNUa+eRqWga2ISMw98zDnNMTU0Y2is0e8Xr3Ob+uozfWo1VVEKqqIFReanyVFeNfsWhXipqwOzDn9sLcMx9L7wIsvQtRXB2fBaDEJaPETcDcf4Kx3lAQrXwzWvEatOK1aNtXEVo92zjYZEHNKjRCMdmG5x6LtceIBCEExOeixufCgNOMZjE7FqEXzTa0lzZ9ZQjn5U1B9Dne6DfQxcIvwhyPHPo0rLkNNj2IDO67eC0qHrkQ4l3gn4AbuPnXPHIhxNXA1QA9evQYuXXrr/YQ3S/6jsVon/8eZfglqCOviHi9emM1nlf/gl5fif3UmzD3G9/mMWQohHfRDzR/9yWh7UVgMmHtNwjbkJFYBwxFje98AyQDAYJlxYS2byW4vYjAts2ESrbvimObMrKw5PfDUtgfS5/+qO7O6aGq11cY3nrJWkLFa9DLtuzKWRYJ6ahZfY2QTFYfI9Z+CMkRxIg+Ug8hSxaib/wSWfS94akn5aP0OwWlcFq7HMSOQEoN1t8N1bNRJszqmNCKEOJE4Hgp5XVCiMnsw5DvSSShFSl1Qh9eBf5GTGe+EnHKke6px/PSn9Ebq3Gc+3dMPQa2bR26jven72ma/gFabTWmzGwcE4/CPmo8iqPrK/DJgJ/gtiICm9cT2LSOwOZ1SJ9RpWjK6Ym132CsA4ZgySvs/Fh7sRFn10rW7a6cVUwo6b0Mzz2zEDWzACW1Ryy3PUZEyEAT+qav0dd+DNUbDC+974kog840RNe6CEZldw2KNaXDDPk/gYuAEGAD4oD3pZQX7uucSAy5vuVbtK9vR530V5TCaRGtVYaCeF79C1rZJhzn3YmpZ9tEa4LbtlD35vOEthdh7pmH67jTsQ4Y0uVuydqC1DTDW1+3yojtb94AuoawO7AOGIpt8AisA4d2SFioLegN1Wg71qHtWI9WsgGtbCP4PcYvTRbU9N4o6Xktj71R03pFZcM6xqGBlBJZsQp91bvILd8ZiQWFx6EOu9CQT+4iHJD0w47yyKWUhjce8mI64+WIvS/vjKcILvwU++l/wjzg8PDn13WavvqEps/fR3HFEXf6BdhGjO3WBnxf6F4v/nUr8a9ain/lEvSmRjCZsfYfjH3EYVgHD0exdr6BlFJHr9mBvmOj4b2XbkQr3wL+ndIDwtC6SeuJktIDNTUXJblFW+YQMvBS18DvbVHcbEL6PS16PR4IeIyfAz5kwAsBr6HGGfQbj6GAoUUTChob77ukBOTuL9it16Iohl6MyWxosZitYLYaqp0WO8LmBJsLxeFG2FtUO10JKK5ksDm7zOdJNu5AX/4m+rrPAGl46MMvNeQEOpkO3ezsaGT5CqhejzLhpoiNeHDjQoILP8Uy9pQ2GXHd76PupSfwr1iMbeQ44s++pFuEUCJFsduxDxuNfdhopK4T3LwB77IF+JbMx79iMcJiwTpkFI4xE7H0Hdhpee1CKKjJOajJOZgHTwZavKq6crSKLejlRWgVReiV2witn7+XRolwJxniYYlZKAnpiIQ0lPg0FHcywp1sGKIuhgwFDKE0X2PLY4to2k7xNG/j7t/tkkpuAp+H/apmgiGEZbEhLDajatlsNYywxY5iijMEs1STIX2h7hTWEuwS4tqp1dKiG2MY/wAyGICA15BwbrmA7LqL+jlmG0pcivG/SMxsEXfLRk3JPeCibsKdhTrhRpRhF6IveQV97SfoG79AGXoRyuCzu2SmS7coCAp9dy+yaDam8z8w1NXaiAz6aHriOoTFhvPKR8L+oOpeDzVPPECwaBNxZ1yE44ipXcZrONBIXSeweT2+hfPwLv4J6fWgJCbjOOwIHOMmoSZ23ZxwGQoaYmFVxYa+TE0Jek0pel0Zsqn2F8cLu9tQqnQkIJxxxs82t6EDb3UgLHbD8Jkshl68at7DwLWoE0p2C2BpmlGSHgruYeT8EGjRow94kQFvi7HzIv1Ne3jRhtrlriraX0MoCLvLWKPd1bJeF9hcxprtLkO/3uZEWF0Im8NondfyeCAvXFLXWi42DcimOmRzLXpjNbKhCr2h0hB5qy3b484KsNgNIbf03sa+SFYflJScA7YvIuu3o81/Arl1DsRlo064CSX7F07xAaHbVnbKkJ/Qaycjek/BdMQtEc3nn/MW/m9fxXHRP8OOi8tgkJrH7yOweSMJl/0G+7DREc19MCKDQXwrFuP98Tv8a1cCYB08AuekaVgKu14a1/6QQT96fQWyvhK9wZD/1RtrkM21LRLBDYbR8TXvrTwYbUyW3RcJmxNhdbY0EGlpImJz7W2sba7dkshWx0GldWOIujWgVxcbom6VWw3dn7LNEGgpzbc6UHP6Yeo5GFOvoSgZeR1u2PXi+Wjz/gMNxUb8/LDrD7iQV7cNrciShRD0ouQdGdn5fg/+Hz/AVDimTZub9e+8RGDjOhIuue6AGPFQs59gTROhRh96MAQSFIuK6rBiindgjncglK5hIIXZjH3EWOwjxhKqqsAz9xs8P3yLf/kiTDk9cR11PLbhYxFq188kEWYrakoupOTu9zgppeE5+z1GPHnPOLLeIvW6S3525+Bid9xYUeHnsWOT1YjXW2yxrJs9EEIgnPEoznjYI6ts576IVrLeqEPYtgr/rJfwY9xFqXkjMPcZawjbWaOfQqjkjEGc/gL6kpfQl79BaMdCI/kia3jU52orXd4j1+b8G33TV5gu/DQirQ7//I/xf/kMzssfRM3qE9Y53iXzqXv+UVzHnIz7xLPaPGdrhJp81C3cTP2yrTStK8W7tZJQ4/4bFQizii0jAXvPFJz56bgHZBM3qAcmd9fYuJOBAN6F82j+Zjqhsh2oKWm4pp2MfczEbmHQY3RP9KZatKJlhDYtIbRpIdLTAKoJU/5IzAMnYeozxrhwRnveyjVo394N9cUowy9BGX7JAbkYd9vQSvCdCxBxuZiO+Veb55FS0vz09QiLHedl/w7rHN3npfKuP6LGJ5F809+jZoSklNQt2EzpRwup/WE9MqSj2My4+mTi6J2KLSsRS7Ibk8uGYjGBAD2goXn8BGub8Vc24NtRi2dLJd7iatAlKAJ3/2ySxvch5ciB2HM6f1dd6jr+FYtp+uJjgtu3oKZm4D7pTGzDxnSrkEuM7ofUNbTitYTWziO4Zq5Re2B1YB40CcuI41DTe0d3vqAHbd7DyA1fIHLGoB759w4PtXRLQy69dYReOxll9DWoQy9o8zxaRRHNT/8W27H/h2XUCWGd0zj9A5o+f5/km+7A0iu/zXP+Gg2ritn83xk0rSnBnOQkdepgkg/vh3tgDopJRUqJr7yJpq11+Ks8hJqDSF1HsZiwxFmxpbtw9UrA7DY8C80boHFNCfVLi6j9cSNNa3cAEDekB5mnjSZl0gCEqXNjplJK/CsW0/jpO4RKSzDn9SH+rIsx5/Ts1HXFODSQUjc6ei2bSXDtPAgFUHMHYBl7Kqa+Y6O2pyClRK77xIiduzMxTbsPEZ8TlbF/jW5pyPXi+WgzbkY9/j8oWSPaPI9/7jv4v3kZ1w0vobhb91ZlMEDF7b/H3CufpGtuavN8vxhPl2x74Vu2vzwbS4qbHpdNJm3aEBSLCS0Qouzrzez4ahNV84sJ1HhbHc+RHUfS8ExSJ/QgY3JvLPFGWMVfXk/lzBWUfboEX0kNtuxEel45hZQpAzvdC5a6jveH72j89B305iacRx6L+4QzEZaul8IV4+BEepsILJtJYMEnyPoKlOQcLBPPxjzwiKiFQ/Sy5Whf/QUEqMfcj5LaPyrj/pxuach3ao6bLvzE6PPXRppf+xuyuQ7X1Y+Gdbx3yU/UPf8/kn7zJ6z9Brd5vj2RumT9Pz+k8ovlpB03jLwbjsXksKKHdLa8sZwNTy/EX+3BmuIgbUIPEgan4+6dhC3NicllQSgCPaARqPPhLW2kcUst9asqqF60A3+1B8WskDk1n/xLR5A4OH3XnDVz17HthW9p3lhO/PBeFN56CraMhHa9lmige5pp/PgtPHO/QU3PIvHS62LeeTdFhkLojfXojQ2GGmdzM7rPg/T5kAG/kT+uacYmMACiZbNXRZgtCKsNxW5HcbhQnG6UuDiU+MQOLzSTukZozTz8c99GryhCScnFOuVSTIWjo9NZrH47oRk3g68Oddp9KJnD2r/on9EtDXno+weQW2djvvCTNs8hpU7jv8/DPHAS9uOvC+uc2hceI7BhNWl3P9ruQpetz85i+8vf0+OKyeRefARCCHyVzcz/3WfULisjZWwOhVeOJHVcD3RNUvJ9OcVzyqleU4enwoce0DDZTTgz7CT1jyfrsDSyJ6ShmBTqVpZT/Nl6tn+0hmCDn8xp+Qy+dRL2dKPps9QlZZ8souiJrxCqQr+7ziZhRHTjg5HiX7uSulefRm9uIv68y3GMmdjZS4rxK2iN9YTKdqBVlO7W0a+pQqutRm/ctwofYMgxqyYjY0eIlmIhHRkKgqbt8zThcBq6+inpmNIzDSnm7B6oaRlRLTyTUie09gf837yCXlOC2nsYtmOuNrKX2jt2cxWh6TdCYynqMfdFFEnYH93TkE+/EQJNmE55us1z6HUVNP3vCmzHXYdl5HGtHi+lpOIv12PtN5iEi/+vzfPtSdOGMpZe9TRpxw6l8JaTEUIQqPMy+7x38FU0M+yuo8g+rhAkrHhuPQseXElzqRfFJHBkOlCsKgiB1CSaN4S33IvUJbZECwMvLmDE7wdiT7ISbA6w+eWlbHhmIarNxOhHjidl9O74nLekhjW3vYm3pIaB91/QZYy51thA3Qv/I7BhDe4Tz8J1zMmdvaRDlp3NT4JbNxHcXkRw+1ZCO7YZ0gw7MZlQk1IxJaegJCajxieixieguOJQXG6Ew4XicCJsNsPj3o/RlZqG9PvQfV5kcxN6UyNaYz16XS1abbXRiKWyDK26crcEs8WKuUdvzL0LsRb2w5zXJyreu9RCBBdPx/fdaxDwY5lwFtaJZ7W7k5X01hL67AZoKkc9/iGUtLYJ8+2PbmnIg+9dgojLwXT0PW2eI7RlGZ7X/orjgrsx9R7a6vFabQ0Vt99A3FkX4zxi312sw2Ht39+ldsEmRr91w670wIU3Tad05ibGv3A6ySOyCPk1pl/6PVs+LyZjTAp+xcLa76rQAr/8f6gmyB+XSEKCSsnsMqwJFo55dgI9jzL6+TVuqWX+bz/FU9LAhBfPIGloxq5zg/UeVvz2RQK1TYx48Tosya52vbZoIbUQ9a89i3fBXNynnItranib0THah5SSUFkJgfWrjeYnm9bt9rBNJsyZuZiyczFl5mDOzEZNy0RNTD7gUgwyGCBUXkqw2JBgDhZtIljc0kpQVbHk9cE6aDi2ISMxpbRPpVBvrsP35bOEVn2Hkt4b+6k3oaa2L+wnPdWEPr3eUGs96XFEQo92jbeT7lkQ5KuHtLYpFO5Eb5E9FXEpYR0fqioHwJSe1cqRrczrD1Ezdx3pJw7fZcQbt9RSMn0Dfa4dQ/IIY/wf717Gls+LGf3nIXzz2BaaqxrR3CYqq30EMSq8BWAGkpxWipY0EvJpnHDPcLZ+uJlPzvmWMz47msyxqbh7JzLx5TOYfc7bLL7lC6Z8ciGK2djEMcc76HfX2Sy5/Em2vfAtBTfvV8/sgCFUE/EXXo3UQjR+9CamrFxsA4Z09rIOSmQggH/tCnwrl+BfvRy93pAlUJNSsPYbjLl3AZZeBZiycrpMhyZhtmDO6Wnsoxx2BGDoHgU3bzBE3VYvp/GD12n84HXMPfKwjx5vSElH0CxFcSbgOO1mggMPx/fpozQ/dyO2Y67BMjwylVUA4UjGdOyDhD6+ltAXf8J0ypMIW0LE47VG1/iv7YtAE8ISmQcpfUaLNWEP7x+rN9QBRju29uDZWokeCBE/rNeu5yrnbgOg15nGLVbIG2L5M+vod25vtq724GsI0ZSg4glqbFW9NBLEh44VBac0YbJZqagMMGJYMp//bRW/W3g008/7htm3LeKcr48FwJrkYNCtRzD/+k8p/66IzKm7UycdPVNIO3owlV+tIO+G43YZ+c5GKAoJF1xNVWkJ9W88i/VvDxgt72K0G6lp+Ncsx7tgHv6VS5ABvyFN3G8Q1v6DsfQdhCkpPCenq6BYbVj7D8bafzCceh6hqgp8SxfgXfQDDe+9SsNHb2IbNtqQiuhV0ObxzX3Gol7dB++HD+L77FG0HeuxHXtNxKEWEZeFOu1etM9uQPv676jHPWgIj3UAXVagQUodtABE2ECCoNHYONyqrp2NkBVr+wxJqMFIIzQn7lZI9FU0IUwK9kzjotK0w0PIq5E7OZPtP1aTPSaJ6gofSi8TNUqA0kQv1//vMPT+ChWKj/WBelAF7kFutIBO8aJa+p2XR/nCKkL+3ZtH6Yf3BEVQt7riF+uKH9EbzRvAV1LTrtcXbYTFQtzZl6DX1eL58fvOXk63R6urofHTd6m4/QZqn3oI/7qV2EePJ+k3t5D+z8dIvPy3OMZN7nZG/NcwpaThmnoCqbfcTcqt9+KYcCT+lUupfvBOqv9zN/41K2hr6FhxJeI4/04s488kuOQLPK/fscspjAQlbSDqhJuQpUvQFz4b8Tit0XU98p2pS5FewXYKHIUd2zPSj9q7Z6DYjfxordm/6zlzvA0Z0gnUebEk2LGn2hCqoHp1HcmFLkqX1WG1qZhqwaIrxNWZue9332OSCm5ppiAlHm+tH7Wlx3J8joPN83ZgiTOjmne/Pi2ggS5RLL/0uIVqHCf1A78n0hrWgn6YMnPwLVuI84ipnb2cbkmoqoKmLz7Cu2Au6DrWAUNxjJ+MdeDQLhMu6UjMWbnEn3kx7hPPwvvDdzTNmk7N4/djKeiL+5Tz2lTcJxQV25RLUFJyjVDLy7fiOP8fEfePVfoch6xYib78dUTWCJScMRGNs985oj5iV2HnBUAL7f+4FkRLBxzpa70wZ384eqSAgKb1pbueSx5lxMVLv94MgDXOQsHJPVj+zDpGnpuDpypAXoqdYImfQt3NYHMSg2UiQ0yJDDAl4N/gp3+/eNa+uY2Co9KRzX7WvrWFARfk7yWkVfzJOgBSRmX/Yl2Nq4oNvZbszu8l+muYe/QmVLGjs5fR7dC9Hhref43Ku/6Ed9EPOCZMIfX2f5P0fzdhGzLykDDie6LY7DiPPJa02/9N3FkXEyovo/rBO6h79Wm01tImf4ZlyBQc596OXluK55Vb0Rsjv5tVDvsdJPRCm/1PpK9t6whr/KiPGC12VlzJfeed7g9hbTHM/vAMsxpnFBxp9XURzbcTk9uGe0AOVbNW7fLuE4dkEN8/lXWP/USw0fDUj/jXSOwpNubdtpCpN+UjNElSUNDLbSXPbqOv20m+3U4vt5VsRaVpXRPDzulB/hAH0y+eTfrIFMb9bdiueRu31LL64bkkj8wiaeTeG7bBOg/lM5aSNKEvqrXrNU0AWlLNYlosbcG/bhWV995K87dfYB97OGl/f5D4sy5udxbHwYAwm3EecTSptz+Ac+qJeBfOo+reP+Nd/FObxjHlDcdx3p3oDdV4XvsruicyIyxMVkyT/wreOrQfwytQbAtd1pALoYBihpC/9YN/7Xx7HADSG94fXk01qiO1itJWjmydjJNH4imqpPr7tcZahGDI7ZPxVTaz4A+fo/lCODMcnDljGikDEljx2GqyUiRjTk8nb3gcyckW4qwKiW4zmb0dDD8lgzEnp1A1s4gVz61n8GWFnP7xVMxOw9uqXV7G3EveQ7WoDP/n0XtVqUldsuH+j9F9QXpcNqndr60jkFIS2LIBc2bHaVQcbDTNmk7NY/chrDaSb/w7CedfgRrfNe+2OhPFZifulHNIueVu1KRU6l74H3WvPIXu37/a6J6YegzEcc7t6LVleN/6BzIY/rl7IlL6oAy9ALnxC/SStvUsbo0ua8gBMNshuI/WUK0gWrRV9IaqsI5X3PEoLreRq9pO0o4egqN3KpsfmUGwZfMzaWgmQ+88isoftjP30vdo3l6PO8fJmTOmcdyLhxOX66Tk6xIaF5djKqvD1dyMrbaBwNpKymZup3pVLQMvyufCn07iyIfHYnaaCDYHWP3wPL6/8F1Uq4nxL5yOM2e3lIHUdDY99Bk1c9bR69qjcfbump6af/VytMpybCPGdvZSugVNX31K4wevYxs6ipQ/3hk1cbeDGXNmDsk33o7r2FPxLphL9YN3EqosD/t8U6/B2E/7I1rJerwf/yfivTRl2EUQl22oJmrBiMb41fVFbaSOwOpGBiLbMVbiW/RH6sL7ZwkhMPcqILB5fUTz7TWWSaHw1lNZ/pvnWXv7Owy873wUq4mepw/AHGdlyW1f8c0pr5F34VDyLhpG4Wk9KTytJ/6GAJXLa2nY2kSwKYhqUbGn2Ujul0B8nmuXp91cXM+291dT9OYKAnU+ck7ux+Bbj9glogUQavSx/t4PqZm7jpwLJpB1Ztc0krrPS8O7L6OmpmMfNb6zl9Pl8a9ZTuPHb2EbOY6Ei/+v03qmdkeEquI+4Qws+X2ofeFxqh68g6Sr/4AlL7w+BeZ+49CnXIJ/1osEfngP6/gz274GkxV13O/QvrgFffUHqIPPbvMYv0aXNuTCGg/eusjOdSeBxY5WVRz2Oda+A/GvXEKoqqLdcUZ3vywKbzmZ9Xd/wOpb36DfP87C5LKRNTWfxIFprH5oHhueW8TGFxaTclguaRN6kDg4g5R+CWSPT9u1iRnyBPGWNVI6cxO1y8up/GEb9asrQUDG5N70uWY0iUMy9pq75of1bHrwMwLVTeTdcCxZZ3RNIy41jbqXnkCrqSL5t7chTF367djpSE2j/u2XMGVkkXDBlTEjHiHWfoNJufkOap74N9X/u4+kq27A2j+8YjTLuNPRyjbi/+YV1Jz+mHq0vfxeyR2Hnj0afelLKH2Oi4qGeZcu0Q99dRuyoQTzGS9FNE/zCzeDasJ5cXhNKUJVFVTeeRPuU8/FdVR0SsbLZyxj430fY81IoM9fTyNu4O44cFNRHdveX8WOmZtoLqrbfZIw2rxJTSJDe3R/NykkDskgY3Ivso/rgyM7bq+5GteUsPW5b6ibvwlHr1QK/3wK7gG/zGDpCshQiLqXn8S35CfizroklnYYBr6VS6l96kESr7wB29DOaf57MKE1NlDz+P2EykpIuvoPYRtz6ffQ9OzvQddwXf1oRG3lZPUGQh9cgTLsYtRRV4Z9Xrcs0ReOFGTZsojPVzILCC6fhdS1sHSHTSlpmHvk4Z0/F+eU46MibZl+7FBsWYms/8d7LL/uOdKOG0aPi4/AlpWIq1cCA26cwIAbJ+CtaKJhTRXN2+vx13rR/SGEIjC5rdjTXbh6JxJXmIxq2/tfpgcMSYDSDxdSv6QIU5yd3r+ZRubpY7pMBefP0T3N1D7/KIF1q3Cfem7MiIdJYMNqMJuxDhzW2UuJiFCjj/rlLe0Nt1Xhr2gg1OBFDxixYsVixhRnx5rqxpadhDMvDVf/bGxZiR2iq6+640i+/s9U/+9f1DzzCMm/vRVL79YrQoXVgf2UG/G8dAu+mc9jP+H6Ns8tkgsRvSahr3oXZfA57fbKu7Qhx5UO/kZkoBlhcbZ+/M9Qs/sSXPgZesVW1Iy8sM6xH3Y4DW+/RLBoU1j/1HCIH9KD4S9dx/YXv2PH+/OpmLGMpPF9SJs2hIQx+ZgcVuxpLuxp4ckRBGqbqV+8hdofN1I9dy1akx9rejy9rp1KxsmjMDm7bpl7cHsRtc8/ilZbTfwFV+Fo0dGI0TpaQx1qfGK3CkHpQY2qb1ZRPn0p9UuLQJMgwJaZiDU9Hmd+GorFSInV/EFC9R6aNpRRPXstUjPuRi2pcSQeVkDKpAEkjOgd1e5XitNF0nV/pPqhf1D79EMk33wnpuTUVs8z5fTDMvZkAj9+iHnIFEy5A9o8tzr8YkJF3xmx8uEXR7L83etp19kdjHC35EM37oDkwjafb+phCG6Ftq4I35CPnkDjJ+/Q/M10LL1/2+Y597kWp5Xev5lG1tmHUfr+fMqnL6VmzjqEquDsk4mrTwb23GQsKXGYXDaEWQVdR/MEjJ6d5fV4tlXRvLEMX4khemSKs5M8sR+pUweRMDJvV/VmV0TqOs3fzKDx03dQXG6Sf3db2JtMMQyE2YpsQ9pcZyKlpPrb1Wx54iv8ZfXYshPJOX8CiaPzcfXNQrXvv0OUHtTwFFXSuGo7dYu2UDVzJeWfLMaS6ibj5JFknjoac3zbQxq/huqOJ+nam6n69x3UPvsIKX+4PawOVtYjLiC4eg6+GU/hvOKhNncbEsmFiJyx6KvfRxlyLkKNvGtW1zbkcUZ8V9YXIyIw5Ep8KkpSFtqWpTD2lPDOsdlxTJxC88zPCJaVYM6IbozZmhpHr2um0vOKKTSs3Ebt/E00rNxO5der0Jr28yFVBbaMRJz5GWScOIK4Yb1w983q9N6c4RAsK6H+jecJbl6PdchIEs67IiKVukMdU0YW3h++RautQU3s/Ebb+0IPamx84BMqZizDWZhB/h9OIPGwgjaFRxSziqswA1dhBpmnjjZURX9YT9mni9n23LeUvD6PrHMOI+e8Ca1eFMLBlJZJwiXXUvvkgzR88Brx51zW6jnCYsN21OV4P7if4PJvsAxre4hQGXQW2oybkZu/QRQeE8nSgS5uyIk3OnbI+m0RD2HKH0FgyZfIoA9hDk+M3jXleDzfz6Txk3dIuur3Ec+9P4RJIX5Yr10qiVJKQg1eAtVNaM0+9KCGUBRUuwVzggNLsrtbGO09kQE/TV9+QtPMTxFWG/EXXYN99IRO7yPaXbH2H0LjB6/jW7YA5+TIP/QdidQl6+54l+rv15J76RH0uHjSPt+3zdvrqZizlbpVFXiK6wnUG8V/JocZW5oTV14SiYPSSB6VjdltJWXyAFImD6B5SwXbX/yO7S/OpuLzpeTffCJJh7Xd0fs5toHDcB51PM1ff4510AhsA1vvY2AaMBHlpw/xz34N86BJCFPbKqdF9miI74G+5kOUg9WQC7MdXBnI2qKIxzAVjiGw4FNCm5dg7jsurHMUlxvn1BNp+vRd/OtWYe0bvQ4f+0IIgTneEbXbxc5ESolvyXwaP3wDrbYa++gJuE89b5cMQozIMGdmY+6VT/N3X+I4fCpC7Xqb2Tve/Ynq79fS+/ppZJ/965+36kU7WPvoD1TNLwHAkmTH1TMBR5YbhCDUHKB+bRU7vtoEukSYFFIPy6HHaQPInJqPs3ca/e48i4Yzt7Hx35+y+k+vk3nGGHpfN63dG/zuE87Ev2oZ9W+9gOUv/2q1E5EQAtvkC/G8fjvBZV9hGXl8m+YTQqD0PRF9/uPI2i2IxMi6eHVpQw4gEvOQtZsjPl/tORhsLkJr5oVtyAFcU47D++Ns6t9+kdQ/34Mwx7q+h0Ng83oaPnyT4JYNmLJ7kHTx/2Et6NfZyzpocB19ErXP/AfPD9/inHhUZy9nLzRvgG0vfkfi2AKyzjrsF7+XUrLm4XlseHYRtjQn/f8wnqxpBTh7xP/qXZrmC1G7oozy77dS8vl6Ft40A3uGi77XjaHHaQOIG9yDYc9cTdGTM9nx7k80bypnwD3n7mroEgnCbCb+vMupfvgummZ8RNwp57R6jtp7GGp2X/w/vI95+DFtjpUrhcegL3gKff0M1LHXRrTuLn+vLpLyoW4bMlLNFdWEud94gut+bJNGgjBbiD/nMrSKMho/eTeiuQ8lgju2U/P0w1Q/fBdadQXx511Byp/uihnxKGMdPAJLQV8aP3kXraG+s5ezF7U/bkBr8pFzwa+Hz9Y++iMbnl1Ez7MGctTnF9PnqlG4eibsM9Sm2kykjM5h4I0TOPrLSxn7xEnY0pwsvX0Ws89/h4aN1SgWE3m/O5Y+fz2NxpXbWfH7l3bJYkSKJa8P9jETaf52BqHqylaPF0JgGXcGsq6c0Lof2zyfsCcam56bZhp9GCKg6xvylEKQWru8cvPgyRD0EVrbtj+ytd8gHBOPovmb6fjXLI94/oOZUNkOal98nKp//YXAhjW4TjiD1Nv/jWP85FjlYQcghCDunMuQAR/1bz7fbv38aNK4dgfCohI36Jf9KRs2VLP+qQX0OG0AQ++Ygsmxdyy5fHE13/zhJ14b9ylP9Xybp3q+zSujP2b6Zd+z6uWN+OsDZEzqzeFvnM3I+4/BU1zP7LPfovgzQ7o5bdoQBvzzPDxbK1n9p9fQfO3TMXGfeBYgaJrxYVjHm/qMQcSnEVjwaUTzKQVTwVOJLF8R2fkRnXUAESl9AZCV6yIeQ+0xEJGQTmDpl20+N+608zFl5lD70hNhXZ0PFYKlxdS++DiV9/4Z/4rFOI86gbQ7HsJ97KlR6XAeY9+YM7Jxn3Q2/hWL8cz+qrOXs4tgnQdzvPNXNzeL3lqBajUx8I8T9/LAdU3nuz8t4K0jp7P2rS24cxz0PasXfc/uTVKfeHb8WMnXv/2R5/u/z3d/WoC32k/OiX058sMLSBiYxqI/fsGml5YAkDi2gL63n0HjmhI23v9xuy5yamISjolT8M6fE55XrqhYRhyLtm0lWnX4siC7zs8dD6oFueXbCFbbDQw5rgywxSOr1kY8hBAKlmHT0LauaPMfWVgsJF55A+g6tU89hO6NTI3xYCFQtImaZ/5D1b23thjw40m94yHiTjkHxRlZf9UYbcc5+Risg4bT8MHrBDZF7uREE8Wi7qrS/Dk1S0tJGpGJJWHvi/z8+1ew7Kl1DLu2H5evPZ3e5xSydYOfhZ9UsnZxM/RKos+V/el9Qi4rnlvPq6M+ZtMn27ClOhn33KlkTStg5X3fU/T2SgBSjuhPzyunUDlzJeWfLWnX63FNOR4QNH/7RVjHm4ccBUIhuGxWm+cSFgciexT61jkRXYC6vCEXQiBS+yMrVrdrHPOwo0ExEVz4eZvPNaVlkHj5bwmVl1L7zH+QgUC71tLdkLqOb9VSqv97L9UP3mGEUI49lbR/PEzcKeeiuuNaHyRGVBGKQsJF16AmpVL73H+7xN2iLSuRUL2XYN0vnZ1gvR9ryt7V2YHGIIsfWU2fM3py+D9H8smNS3nt7HmULq8jvqcDc6KZijWNfPvwRua+XkruWYW4e7r47MLZLHx4FarFxMgHjiH9iF4sv+sbqhcaWTA5F0wkfkRvtvzvC/yVkXfjUROTsI0Yg/fH2WHplyvuJNS8YQRXfhuZMe4xEZrKIYIwcpc35AAibSDUbUX6GyMeQ3ElYh4wkcCymUhfc5vPt/YbRMKFVxHYuJbaZx9BBg9+Yy4DATxzv6Hqn7dS++SDhCrLcZ96Hmn/+A/uE85AccaKejoTxeEk6eo/IEMhap96EN3T9vd1NHEPMATh6pcW/eJ3JpeFYP3exrBiaTUhr0b/C/JZP6OMhc9vYcIf+qD0d/LdVzuY/2Mlq7Y1UmWW2HPt/PD0FiqbVPJOymXeHUtY+uRaFLPKyH8fgyM7jkW3fEmwOYBQBAV/PBE9pLH16bZ7x3viPHwq0ufFF2ZnIfPASciGSrSStt8liVxDpVTf3rYuRhAFQy6EyBVCfCOEWC2EWCWEuKG9Y/5ijrRBgGy3V24ZewoEvAQWz4jofPvoCcSfezn+tSuoefJBdG/7dse7KqGaKho+eovyv91A/ZvPg8lM/MX/R9rfH8R11PEoLf1NY3Q+powsEq/4HaGKMuNusRMdjLiBuZji7VR988vPaVxBMnWrK/fyVENeo42jJc7MuhmlWJwmfHaFFV+UMf7K3gT7KFTEBQilKawrasSXZKJiTSMbl3vodUw239+2iNIFlZhdVkb8cxre0kbWP7kAAHt2EllnjKXiy2V4tobXXObXMPcuRE3LxDv/+/CO7zMGFDWy7BVnKiTmIUsWtPncaHjkIeAmKeUA4DDgN0KItivI7AeR1h+EiixvX+aImlmA2nsYgfkfIUORveEd4ycTf+HVBDaupfo/d6HVRP4m6UpIXce3ejk1Tz9M5R030vz1Z1gL+5H0u9tI+dNdOEZP6FZiTYcS1r4DSbjAuFuse/lJpB5ZClt7ESaF1KmDqf5+DYGqve+eUyf0wF/ZTO3y3Y1e3LlGqKV2fQN6UEe1KGz8qYqewxN5673VbCyuY7O3nqXlVWySjTRqGo0OQfnqBnw2G64sB7Nu+Ald00kanknOyf3Y/OpSfFVGaCfnvPEoFhMlb82L/DUJgX30eAIb16HVtd58WdhcqD0HE9owP6L5lOxRyPIVbU63brchl1KWSikXt3zfCKwBoipQIswORHIhsiyy1Jw9sU44C9lUS3Bp5Lv9jjETSfq/m9Fqqqh64Hb8a1e2e12dhVZbQ+OMD6m88yZqn3iAYNFGnFNPJO2Oh0i88gashf1jJfXdAPvoCbhPOx/f0gXUv/VCp6UlZp0xFqlLSt76Ya/nM4/KQ7WbKHpr92c4qW88zkw7Gz/aRsbgBLy1AawmhboyH80NQSqCHq78+0hGn59DtfCxtrmOusYACQPjWPzqNgZe2ZfqVXVs+ng7AH3/bzR6QNs1hznBSerRg6mcuZJQc2R1KAC2YaMB8C1fFNbxpoJR6FXb0cPsTrYnInM4aAFk5Zo2nRfVGLkQohcwHPhFkEcIcbUQYqEQYmFlZds3ZkTGEGTlaqTWvltHtedg1NwB+Oe+E7FXDmDtP5iUm+5AccVR8/j9NHz4RreJm8uAH+/CH6h5/AEq/v57mj57DzUljYRLf0PaPx4h7uSzUZNSOnuZMdqIa8pxOKedjHfetzR+9GanGHN7ThKpRw+m9IMF+Mp3FyyZ3VZ6njGQ4k/X0bytDgChCAZcmE/RlyVkD3ZjsipYvTp1O7zkJrtIkFY2bajlqedPIn9SCj6hE1foYN36BlSrQtlmL+4eTla/tsl4/b0SST0sl+0fr9n12tOPG47uC1IzN/LMHnNGNmpqBv6V4WXBmPKGAxDavLTNc4mMIYBocx+GqBlyIYQLeA/4vZTyF1vFUsqnpZSjpJSjUlNb1/v9xfiZQyO6Uv3KOrFOugDZWE1g0fR2jWXKyCL55jtwjJ9M89efU/mvv+Jft6pdY3YUUgvhW72culeeovy266l76XFCZSW4jjmF1L8/SPJvb8U+8rBY+KSb4z7xTByHT6X568/DLmaJNj2vOBKALY/tXbdReNUoFLPCygfm7Hpu2HX9scZZWHDfCsZem0/x91Xk5rlI9ltxShNzXiti5MCnWLy4FGEGzQkBv0bG0ASK5laRf1IuxbPLCPmMeHvWsYV4tjfQuNEIg7gH5mBJdrXLkANYBw7Fv3FtWM6akpKLcCURKmp7KFhY3ZDYq82FQVEx5EIIM4YRf01K+X40xvzFHOlDAYEsXdrusUy9hhix8rlvI/3tywtXrDbiz72cpN/8CXSNmv/9i5qnHiRYvLXd62wvMhjAt3Ipda89Q/ltv6X2iQfwrViMbfgYkn57K6l3PIT7hDPa3Z80RtdBCEHcmRdhHzORps/fp+nrtqfbthdbRgI5Fx1O9berqZm3u5m5LdVJn/8bQ9nXm9kx0/Ci7UlWJtw5nOLZZWTkWEgudGOr1zBpkiEJSSQLG+pmyA24IAB9hxp3inE5dhpKvGSMTEHz69RtNHzH1LFG5kzN4h2A4fUnjCmgbtGWdt2hWPsOhGCQwJaNrR4rhEDtMQht+8rI0hDTByErVrepXD8aWSsCeA5YI6V8qL3j7XMeWxwk5SNL25fkvxPbkRcjPQ3450ZHR8XabzCpt/0T90lnE9i0nqr7/krNE//Gv2bFAd18ClVV0DxnFjVPP0z5n6+l9qkH8S1dgHXAEBKv+j3p9/yPhAuuwtpnQKyE/iBFKArx51+JbfhYGj98g+bvZx7wNeScPwFHXhobH/iEYP1uZ6ng0uHE909l2d+/xlvRBMDASwvIOzGXH+9extF/7oOQkO2wYBMK+bg4YlA240dnc+X1wymZU0tilh0FsLrNONKMAiNvtREDd+TGY3JbqF+/OwkhbnAuoQYvvuLWNyv3hSW/LwhBYGN4hYmmHgOQjTXI+oo2zyXSBkKgCeq3h31ONO6jJwAXASuEEEtbnrtNShl1V0DJHIa+9mOkFmhXNw0ANasQ08BJBOZ/hGXEsSgJ7fdKhdmCa9pJRmOK2V/h+e5Lah6/HzUpBduIw7ANGYm5Z17UDKjUdbSKMgJFGwlsWkdgwxq0lsIQNSkF+9jDsQ4aYWxYmtumk9ydkFoQva4CWVeOXleO3liNbKpFeuqR3kak34MM+EALgKYBEoQCiglhtoLVjrC5EI44FFcSIi4FJTEDJTETJSkToXa/v51QVRIu+T9qgwEa3n4JYbYc0LZ6ilmlz19OY9k1z7Dh/k/of/fZhmSrWWXk/cfw3dlvsuimGYx//jQUs8rRT4zjveO+ZN5tCzn14dF8cstK4pskPUensHx+NVpIZ863DTgTLVz9zFg+vnwBg07PJuQ3nCTVanymhBA4s+Pw7tidNeMqzACgeVM59tzkyF6P3YEpM4dgUeseORhtJgG0knUoCeltmmtPWRKR0DOsc9ptyKWUc4ADktYgsobDqneRFasRmcPaPZ5tyiU0rfsB36wXcJx+S/sX2ILicOI+9lRcR52Ab/lCvD99T/Osz2me+SnC4cSS1wdzzzzMWbmoaRmoicn71CeRUiJ9PvT6WkI1VWiV5YTKSwjtKCZYsg3pM3LZhcOFJb8PzsnHYOk3CFN61kGXbSKlRNaVo5VtQivfgl5RZGQH1JbBXrehAuGMRzgTEHY3SkI6wmIHkxkUk/FulRK0EDLoB78H6WtCqy0l1FQLe26CKypKcg5qRh5qVh/UnH4o6b3bLFXaGQjVROLl11Pz9H+of/1ZhMmMfVT4Us7txVWYQa9rprLlsS/Z8e5PZLdI27rzkxh251Es+tMXrLh3NkNun4w1zsIp7x/F+yd8xZw/zufk+0fz48vb2TSrgkEFbnKPSCUxz0l8qo3Zf1+JFtA54qZ+lHxtVHPG995dnGaOtxFs2J2lYs81wjHednjkAOae+fiWLUBK2epnS0nrBSYL2o4NmAe28QKa0BNUK7J6HRROC+uUbrWzJTKGYcTJl0AUDLkSn4p1/Jn4Z79OaPixmHq33hGkLQizGfvIcdhHjkNvbsK/ZgX+dSsJbN7wix1wYbEgbA6jV6AQoGnIYMDQdgmF9j7WZseUmY199HjMPfIw98zHlJ550IVKZNCPVrIebftqtOI1aDvWI70tnpZQUJKyUNJ6YRpwuOE9J2agxKci3MkRG1opJdLTYFwwakrQK7ejV2whtGUpwRXfGAdZ7Jh6DsKUNxxTwWiUxIwoveLoI8wWkq66gZonHqDulScRZjO2oaMO2PxZZx9G/dKtFD3+Fa6+WcQPMZQRc07sS/36KjY+uwhHtpvCK0fhTLdzxvRpfHL2N3zzux8ZddNARl+Rx9xH1rP0+S27xkzo4eCSjyeS1j+Or6+ZQ8rgRJzpu4vUhCL2ik2rDguqy0agKvJyfQBzj14trfaqMbWS1SVUE2p6b7TS8Dz4vc5VTIikfGR1+Od2L0NudUNyIXLHEhjRek+9cLCMO53A8q/xzXgS59X/7bDbaMXpwj5q3C6PSPd5CZWVoFWWo9XWoDc1ovu8xq64lAhFQVisCLsdxelGjU9ATUpBTUlHift1If7ujtQ1w3BvWUqoaJlR5qyFAIGSkoOpz2GoWYWomfkoab0Qpug3+xDC8OZxxqNm724OLaU0Sq+3ryG0bSWhLcsIbVgAXzyNktoTc/8JmAYejpqcE/U1tRdhsZJ4zU3UPHYftS/8j6RrbsTaf8iBmVsI+tx2KkuveYa1t7/NsKeuwppudIoa8PvxeHc0svqheZjjbPQ6exCOVBtnfH403968gIX/XkXygAROuHsESQMTqNnUjMVtImNQPIqqsOCBFVStqOXoJ8fvNWewKYA5zrrXc+Z4O6F26pSbs4zWk6GSba0acgAlPY/gqtlhefA/RyTno2/5Nuxzu5UhB1CyhqOveh8Z8iNM1tZPaAVhtmI79v/wvnkngXnvYz289Y4g0UCx2bH0KoBeBQdkvq6K7qkntHERoY0LCG1eAr5mQKBk5mMZfRJqz0GYcgYg7J2rrCiEQMSnocSnYR40yVh7zQ6CG+YTWvsj/tlv4J/9OkpWIZahUzEPnISwOVsZ9cCh2OwkXftHqh/9JzXPPELSdX88YE0/TG4bA+49l2XXPsfq295kyKOXoTosCEUw4t6jCTUFWHbHLIQCPc8chMluYupj48g7IYfZtyzk4zNmkdQvnrwTcknqF0/Nkio2f7adoi930OeMnvQ7d+/2aJ6SBjL67P2cYjWj+fe+s23z68hsMeSlxTB4RKvHq+m9CS6ejmyoRMS3cQ8uKR/WfgKeSnC2fm63M+QicwSseAtZsRKRNTIqY5oLRhHsPwH/nLcwDZjQJb2qgwm9roLgunmE1v6AVrwWpI5wJWHuOw5T/gjUXkNRHF1fUVFJysI69lSsY09Fb6wmuOp7gsu/xjf9CXwzn8c8aLJxMUoLb8Oqo1EcTpKu+xPVj9xD7VMPkvzb2zD3iKxHZFtx9Eql3x1nsuqW11l757sMuOdchElBsaiMfuR45v/uM5bePotgY4CCywwjmXd8Lj2OymL9O0WsfnUjix5ehdSNkIkjzcb4O4Yz4nd7Vx57yxoJ1HiJ67O3xywUAXr7CqQUux0lPpFQeWl4x6caYSStchtKGw25SMwDQNZsQRyUhjxjMAjFyCePkiEHsB1zDU1bluL79FEcF/8TIQ6ueHNno9dXEFw9h+CaOeg7NgDGhpBl4tmY+4xFycjr1n9zxZ2M9bBTsYw9Bb10I4HF0wmu+Ibgki9Q80dgHX8mao9BnR4SU91xJP/mFqr/cxc1TzxA8g1/xZSRdUDmThxbQP4fjmfTg5+x6eHPyL/5RCPn2mpizKMnsPiWL1n1wBy8ZU0M+tNEhKpgsqoMuDCfARfmE/SEaCppRrWouHOdhnH+GRVztwGQPHLv16QHNUQ7GzODIWkdqiwL61i1xZDrldugoG37EjubMMvaLdCiirjfdbVp9C6AsLgQyX2ilk++E8WViO3oq/B98h8CCz7FOubkqI5/KCK9TQRXf09w5Xdo242KVyWzAOuUSzD3m4CSlNnJK4w+QgjUrELsWYVYp1xKcPF0Ags+xfPKbai5A7FOugBTr8GdukY1MYmk6/9M9cN3Uf3YfaT84W8HTJIh85RR+MvrKX51DuZkFz0vN6pAVYuJUf8+lpXpc9j88lIaN9cw8v5jsCbu3sQ0O0wkFsbvd/xtH6zB2SOe+P57V49rHj8mR/v3VNSUtLBL9YXdjXAmoFdF0DHIFg+2RGRdUVjHd0sXSGQORVasibgh874wD5mCqWAU/lkvRdSuKYaxYRncsADPe/+i8T8X4Zv+ONLbgHXShbiuexrXFQ9jHX/mQWnEf47iiMM68Rxc1z+L7Zir0etK8bx6G82v345WFnkP2mhgSk0n6bo/In1eqh9/AL05cq3/ttLzqimkHT+M7S/OpuSd3XKvQlUY/OcjGHbXUVTPL+bb01+n8sfwi2Iq5m2jZvEOep8/ZK87H6lLow1dQvv3LEzJaeiNDchAeLZHSc5Gj9CWiIQeULctvHkimqGTERlDQQ+2W3flF+MKge2E3yLMVrwfPojU2rc5ciih1+zAN+slmv57Gd63/oG2dSWWkcfjvOJhnNc8hvXwcw4J4/1rCLMVy+iTcF33NNapV6CXbqT52d/j/eS/6E21nbYuc05PEq+5Ea26kponHwrbOLUXIQSFN59E8uH92PLoF5T9rCVbzzMGcvgbZ6Pazcy7/AOW/G0m/pr9S2n4qz0s/dvXOHPj6XXO3nc8gZomZFDDktb+fRc1ySgo0mqqwzpeScpGrw0vpv5zREIPZJjVnd3TkKcbqVOyLPqd7RV3Erbjf4NeuhH/7DeiPv7BhNSCBFfPofnVv9D0+DUEfngfNbMA+5m34brhBWzTrkLNLOj0uHBXQZitWA87FddvnsZy2CkEV3xD0xPXElj4GVLXOmVN1oJ+JFxyLcGtm6h98fEDJichTAp9/34GCWPy2Xj/x1R8ufdnOWFAGpPfO4+Cy0aw/cM1fDXtJVY9NJfm4vpfjFW3uoI5F79HoNbLyAePRbXuHTH2bjPK9SOt6twTJbHFkNeGacgTM5DNdZFpOsX3AH890vfL1/xzul2MHFp0VxJ7t1khLFzM/ScQGjqVwNx3MPUe1ukxza6G3lBFYPEMgku/RDbVIuLTsE66EPOwqSju9n9YDnaEzYVt6hWYhx+Db8ZT+GY8SXDFN9hO/N2uDbIDiX3YaPQzLqLh3ZdpePcV4s66+IBcfBWLif53n8PqW15n/b0fIhRB6tTdnzWT3czAP06kxxkDWPfYT2x8fjEbn12EuzCZ+D4pKBaVho3V1K0ox5rsYNzTp5A46Jfl8M0bDV1wZ17bSuV/DTUhCQCtPrw7KSXJ2HTVa0tRM/LbNJeIN9IdZf12I2a+H7qlIQdDIUzf/A1S6h2S7WA75mq07WvwfvhvnFc9guJMiPoc3QkpJdr21QQWfEJo7Q8gJaaCkZhHnYApb3i3KFnvaqjJOTjO/wfBld/i//IZmp+9AeukC7EcduoB/3s6Jx2NVltF89efY0pNx3nksQdkXtVmZsC/zmPVLa+z7u4PkLokbdrexUruvCRGPXgcA25qpGT6eip/3E7NslL0oIYjO47+fxhP73MG/6IIaCdNa0uwpLixJLe/FkGNSwBAr68L6/idOit6bVnbDXlcSxp0QzGkD9rvsd3WkIu0QUbCfN1WSIx+Lqyw2LGfcQvNz9+E98MHcZx3xyFprGQoSHD19wTmf4RethlsLixjT8Ey8vguXZreXRBCYBl8JKa84fimP45/1ouENi7AfspNKPFt1+1vD+6TzyFUWUHDB6+jpmZgGzTsgMyr2i0MvO98Vv/5Ddbf8wF6IETGib8suHFkuSm8YiSFV4SfdiylpG5xEfHDe0VlrcJiQdgd4XvkLZ+RSLoF4c4wUq0bSlqfp+2jdw1EmtEWtL0NmfeHmt4b27HXoG1ZesjFy3VPA/45b9P0vyvwffwwhILYjrsO9w0vYJt6ecyIRxnFmYD9jFuxnfR7tLLNND97A8EI+z5GilAUEi6+BlNOT+peeoxgaesGJFqodgsD7jufhNH5bLz/E0rebnvz4l+jeX0ZwZomEse0zRveH0pcAnpj63FrMMJo2JyRtX1TLeBMO7gNOfG5YHYiK8PTB44U87BpmIccRWDOWwTXH9gPVmeg15bh++Ipmh69HP+3r6Ck9cZx3p04r3kMy8jjEOZfV2mM0X6EEFiGHoXzyv8g4lPxvnUXvm9eOaAboYrVRtJVf0CYrdQ+8zC6p/mAza3azAy491ySJ/Vny/++oOiZr9vdrq7q21WgCpLGFUZplUZRldYQniEHUOLTI9IlBxBx2XAwG3IhFERKH0PqsUPnEdiOuxYlIx/vRw+iVYWf19qd0Mo24/ngASP7ZNEMzP0n4Lz6UZzn34kpf0Qs8+QAoiZl4bz0AczDjiYw9228b9/d7k5WbZo/MYnEK3+HVlNF3UtPHNDGKIrFRL87ziT9pBEUvzKHDf/8CD0Y2YVMhnQqvlxO4uiCqOSQ71qjOx69MXwlRSU+FT1iQ56FbNjR+hwRjd5FEMmFyJrNSL1j872F2YrjrL8gTBa8b921W0q1myOlJLR1Jc1v/J3mZ28gtGEBlrGn4Lr+Wewn/wE1rVdnL/GQRZgs2E74LbbjriW0eQnNL/4RvS4yYxAJlrw+xJ1+If7Vy2j68uMDNi8YhUEFN59Ij8smUTFjGatufnWvLkPhUvXdagKVjWSc1LrAVVtQ4uLQm9piyNPQ6ysju7twZxkpiIH93xl1c0NeYHR9qe/4KkwlPhX7mbehN1TiefefSC3Y4XN2FFJKghsX4nnpFjyv3Ipeugnr5Itw/+55I/4dF0sh7AoIIbCMPB7HeXeiN1TT/OIf0cq3tH5ilHAcfhS2UeNp+vz9A95UXAhBj8sm0+evp9GwcjtLr36Gpg3haZyA4Y1ve/E77D1SSJrQN6prU1xxSK8HGQzPBoiENAh4I3IARVy28U3j/r3y7m3Ik4wNDFl7YMqdTbn9sZ94A9rWFfg+fbTd8bsDjZQ6wbU/0PzcH/C+eSd6QyW2Y67G9dtnsU4829iYidHlMPUeivPS+0AoNL98K6HtHbfBvydCCOLPvQw1LZO6l59Ea0M4IVqkTRvCkEcvRQY1ll37LKUfLAjrc1fy1jy8W6vodc1Rvyqu1R4Ul1EhqjeFZ5iVOCP7SDZUtnku4c5sOfcgNuTE9wAEsu7Adaw3D56MddKFBFd8g/+blw/YvO1B6hrBVbNpfvq3eN+9F/webCf+zqgwHH1SbAOzG6Cm9sR56X0ozgQ8r99OaMuyAzKvYrWReOl16J5m6l9/tlOcF/eAHIY9dw0Jw3uz6eHPWXXTq3i377uysm7hZrY++w3Jk/qTNDG63jgYm51A2OGVnRK2EcXJ3UZBkTyoPXKTFVzpYesRRAvLxLMxjziOwLx38f/4wQGduy1IXSOwfBbNT/0G7wcPgJTYT70J57VPYBl2dLdsKnwoo8Sn4bj4nygJ6Xje+gehoo6pbP455pyexJ18Nv6VS/D+8N0BmfPnWBKdDLj/fPJvPJ7G1cUsvuRxNv77U5o2lu26uOiBEDve+4lVf34de48UCm85uUM26ZUWQx7uHYrYZcgj8MitbrC6oXH/ei3dtiBoJyIux6h8OpBzCoHt2GuQ3gb8M59HmG1YRh53QNewP6QWIrjyWwJz3kavLUVJ64X99Fsw9R/frTW/Yxhyy44L78Hzym143voHjgvuwpTT8Z1+HJOm4Vu5hIb3XzOaex8g2ds9EUKQeepokif2Y9tL31H++VLKPl6EOdGJOcGJv6wOzRsgYXQ+fW8/HZOrY+40FbdRLh92LrkjDkyWiFMQcWW26pF3e0OOOxO5dfYBn1YoKvZTb8Ib9OOb/jgIBcuIYw74OvZEakGCy2fhn/susq4MJSMP+5m3Yeo7NmbADyIUZwKOC+6m+eU/433rHzguuQ81JbdD5xSKQvwFV1F17600vPk8idf+sdNSUi0pbgpuOpGeV0yh+vs1NKwqJtToI35YT5Im9iVhVF6Hrk2JazHkYeaSCyFQEtIjzjoScVnImk37PabbG3LhSkP66qPWw7NNc6tm7Gfeivede/F9/j/QglhGn3hA1wAtZfTLZuKf+w6yoRIlswDbtL9hKhwdy/8+SFHcSTjP/wfNL/4Rzxt34Lzs3yiuxA6d05SUgvuks2l492V8C+dhHz2hQ+drDXOCg4yTRpJxUvQ6hYWDYrUhrDa0hrqwzxHtySV3ZyK3zt1vYVi3d9OEs0WPwhuerGTU5zdZsJ/1F0x9xuL74il83712wDaEZNCH/6ePaHrsKnzTH0dxJ2E/9+84L38Ic58xMSN+kKMkZuA49+9ITz3ed+5BhgIdPqfj8KMw98yj4YM30L0Hrkipq6HEJYQtnAVRqO7Ug+Cp2vf4EY3clbAZXoj01nXaEoTJ8MzNQ6cS+P5NfB8/3KEfKultwj/nLZoevQL/V88aH+jz78Jx6QOYC0bFDPghhJpZgP2UG9FK1uGb/kSHOxFCUYg/+1L0pgaapnfdjf6ORo1PCFs4C0BJSEN6GyOr0N2ZubKfFMRuH1rB1tL1wx++9kFHIBQV24m/Q0lIx//da2hV23GcfktUxaX0ugoCCz4msORLCHgx5Y/EMuEsTD0GRm2OGN0Pc7/xaBPPITDnLdSc/liGT+vY+Xr0xn7YJJpnf4Vj4lGY0g49ATUlIZHglo1tOH63CqKa3ja1VtFiyPdXFNTtPXJhbtFQCHT+bZ4QAuvh52I/6zb0mlKanr2BwJIv2+UlSSkJFS3H8+4/aXrsKgLzP8HcZyzOq/6L47w7YkY8BgDWI85D7T0M3xdPoVWG1+exPbhPPAOhmmj89N0On6sroiYko9XVhK1Ds0vONpK2b640EOp+VRC7vSHH3NJlO+Tt3HXsgbnvOFxX/gc1vTe+zx7F89IthLa1rcRZryvHP/cdmp+4Fs+rf0HbugLLYacZOiin3tTmq3qMgxuhqNhPuRFhsbf0m+1YCQk1LgHnkcfiW/ITweIDV5DXVVATk0HTwk5B3OWR14YvM7AToZjAnbFfQ979QyuK8RK6WqNkJTEDx0X3Elw6E/93r+J5+c8omQWYBx+JqfcwlOTsXY0qpJRITz162WZC21YR2rwYvdS4bVNzB2KbcBbmARMR5gOblROje6G4ErGdcD3ed+7BP+dtbJMu6ND5nFOOo3n2VzTN+JDEK2/o0Lm6GmqykUevVVeixreeLSTsLrC5IjLk0LLhuZ/QSvc35Lvyow+c1Ga4CKFgGT4N86AjCC77msDiGfi/fAY/gGJCOOOMDiC+Zgi03FEIBTW7L9Ypl2DuPzHWwCFGmzD3PYzQoMkE5r6LecBE1NSeHTaX4nDinDSNphkfEiwrwZyR3WFzdTXUZCNbTquuhLw+YZ2jJGVGFlrBiJPr+2mi0/0N+a74c9fN1BBmG5ZRJ2AZdQJ6TSmh7avQq4uRzQ0gdYTNiYhPRU3rjZpViLA6OnvJMbox1qOvJLRpEb7pT+C46J8dmsXkOOJomr7+jOZvZpBw3hUdNk9Xw5ScCkIQqgo/pVBJzEKLVPAsLgcCTfteT2SjdiF0IxbYXXRDlKRMLEmZnb2MGAcxijMe6+SL8E1/nNCaOZgHHN5hc6nuOOyjJuBdMI+4U85FcUSvgUNXRpgtKAlJaJXht3BTk7MJrZqNDPrbHCYV8Tn7/X333+wMtoQkTPbOXUeMGF0I8/BpKGm98M16qcM3Pp1HTIVgAO/8OR06T1fDlJpBqDz8UImSnA1I9JrWO/78HBG/fwmGbm/I5c7bDcuh4QnEiBEOQlGxHXUpsq6c4NKvOnQuc05PzLm98fx44DWPOhNTeiahih1hpxcryYZXrVdH0NTanYkyct+hq25vyPG1pP/Y4jt3HTFidDHUvBGoOf0NDZ4O9srtYycSKtlGsPTAKpF2JqbMbKTPh15XE9bxSnIWINAj6PsrFBPq8Ev2PXabR/y1SYQ4VgixTgixUQjx52iMGS6yRX9A2JMO5LQxYnR5hBBYJp6NbKgiuLJjvWXb8LEgBL4l8zt0nq6EKdPwsIM7wrt4CbMNkZCGVhX9gq12G3IhhAo8BhwHDADOE0IMaO+4YdNUAUIFR6zPZIwYP8eUPxIltSeB+R91qA6LGhePuXchvuWLOmyOroY5y4hbh0rCN8xqag/0yug3womGRz4G2Cil3CylDABvAqdEYdywkA3F4M4wqp9ixIixF0IILKNPRC/fgla8tkPnsg0eTqhkG1qYoYbujuJwoialECwJv7JVSe2BXl0S9QLGaBjybGDPS0xxy3N7IYS4WgixUAixsLKy7S2P9oWs3250CYoRI8avYh40CSx2gku/7NB5rP0GA+Bfd2CaQ3cFTDm9CG4P35Crqb1AD0W24bkfDthmp5TyaSnlKCnlqNTU1OiMqYegbisiMS8q48WIcTAiLHbM/ScQXDMXGfR32DymrFyEw0Vg45oOm6OrYe7RC62yDN3THNbxSnovAPSKLVFdRzQMeQmwZ5JjTstzHU9tEehBRHLBAZkuRozuinngJAh4CW3quBi2UBQsvQsIFoUv79rdsfQ0nMjgts1hHa8kZ4NiQqsoiuo6omHIFwCFQojeQggLcC7wcRTGbRVZadzCidT+B2K6GDG6LWqvwQi7m9DaHzp0HnPPPELlpeh+X4fO01Uw98gDIQgU7b+n5k6EakZJzUUr62IeuZQyBFwPfAGsAd6WUrZNszVC9PIVYEuAuENHrCdGjEgQioqpYBShTYv22/uxvZhzeoKUhHZEPzOjK6I4nJjSswhu2RD2OWp6b/Ty8Dz4sNcRjUGklJ9LKftIKfOllPdEY8ww5kSWLkVkDI21NosRIwxM+SOQ3kb0sugakb3maFFADJUdmOhqV8CcV0hgy8bwm0xk5COb69Abo9dnuPtWdjYUQ1M5ImtEZ68kRoxugdpzCAChrSs6bo7kVFBVQm0Qk+ruWPL6Ir0eQmFWtaoZ+QBoZeGFY8Kh2xpyffuPACg5Yzp5JTFidA8UdxJKYiZaccdllQhFQU1MRqved8f3gw1LQV8AAhvXhXW8mpEHCPTSmCFHbpsLCT2NzhkxYsQICzW7L9qO9R07R0LiIVMUBKAmpaAmJoeddiksdpSUHLTS8OPqrdEtDbn01SNLl6H07Did5RgxDkaUjHxkYw16c13HzRGXgN7Y0GHjdzWEEFgK+xPYuDbsOLmaWYBWujFqsgnd05AXfQdSQ+k9qbOXsl+krqFVbiO4fj6BFd8QXPU9oa0rkN7Gzl5ajEMUNc1o/aZXRl+4aSeK04Xu2Xc3m4MRS58B6E2NYWfrqFmFyKZaZJQ2PLulQIm+cSbE50JyeL3yDiTS7yG4Zi6htfMIbV0JwV/Pp1XSe2PuPxHzsKNRXK03b40RIxrs1sQuhl5DOmQOYXMgvV6klIdMRpm1z0AA/OtXGymYraBkGbZL27EeJS6l3fN3O0MuG0uRZUtRRl7Rpd4kes0O/D9+SHDFLAj6EQnpmIdMQc3ui5KcjbC5QA8hG6rRyjYR2rAA/7ev4P/+DczDpmE9/NyYQY/R4Yi4ZDBZIm4CHNYcVivoGoRCYO68FoxSSvyldYQ8fmzpCZjctg6bS01MQk3LILBuJUw5rvXj03sbFZ471mPuN77d83c7Q66vnw4IlMJjO3spAOh1Ffhnv0ZwxbegqJgHTcI8/BjU7L6/fqFJ7YkpfwTWCWeh1ewg8MP7BJd8QXDFN9iOvBjzqOMRoltGvGJ0A4RQUOJT0eujJ1z3izlMhvGWoRCiEwy51CVlnyyi+LU5+MtaGs8IiB/Wi5wLJpI4Jr9D5rX2HYT3p9nIYLDV1y1MFpT0Xmgl0dnw7FaGXOoh9PWfIXJGI1zpnbuWgA//nLcJ/PQhAJYxJ2MZd3qbvGo1KQv7CddjOew0fF88he+LpwiumYP9lBtR4tM6aOUxDnWEOzlqsdlfHV9VjW86sIJ0X2ieAGvvfJfaHzYQN6QHORdMxBzvoHlzORXTl7Hq5ldJmTKQgptPxOSKrodu7TcIz/czCRRtxFrYumyImtWH4IpvkLqGUNR2zd29DPm2edBciTLu9526juD6+fhmPIFsqMI8aDLWIy9GiY9c0VFNzsZx3p0El32N78unaXrmBuyn/AFzYSxHPkb0Ec5EtJLwcp7bR8c1svg19KDG6r+8Sf2SIvJ+fxyZp43edVecMnkAuRcdQfHrc9n24rc0byxn4P3nY8uKXjjTUjgAFAX/mhXhGfLsvgQXfY5eVbxrEzpSutU9vL76fXCmIXqM65z5PfV43r8f79t3IaxOHJfch/3Um9plxHcihMAybCquKx9BSUjD+9Zd+Ge/gZThpTPFiBEuijMe6ak/ADMd2D2sLY/OoH7RFgr/fApZp4/5RWhTMav0uOQIBj98McHaJpb/9gW8xdHLd1fsdsy9CgisXRnW8Wp2y4ZnFC6q3caQy+qNyB2LUQac1indgILr59P81PWE1v6AddKFOK98GFNu9DvaKUmZOC+5H/PgKfhnv473gwc6VEM6xqGHsLkg4O0w8SyptYzbznBBW6ieu47SDxeSfe440o8dut9j44f1YvB/L0UPhFj5h5fxV0UvHdjafzDB4iK0MPLolaQssDmjUqDVbQy5tvItMNlR+p50QOeVQT/e6Y8bXrgrEecVD2E9/ByE2nGbOMJsxXby77EedRmh1XPxvPZXdM+hU2ARo4Ox2o3HgLdjxg8ZbcyE6cA4XJonwKaHPsORl0bPq44K6xxnfjqD/n0RoQYvq295Hc0biMparP0Gg5QE1rUuACuEgprV99DxyGVTOXLjTJS+xyNscQdsXq1qO83P30Rw0XQsh52K87IHjbShA4AQAuu407GfcQta6SY8L/0Jvb7igMwd4+BGmI1NPhnoGM1wGQoa3xwgQ1782hwClY0U3Hwiijn8uwBX30z63nEmzRvL2PjAJ1GpsjT36I1wOPGvDU+YTM0qRK/chmznRbVbGHJ9xVsAKIPOOWBzBld+S/Nzf0A21+E4705sU6/YlVZ1IDH3n4Dj/H+gN9XR/OItaFWHhs5zjA7EZDEeQ9HxQn+ODPgRFssBqfMI1DRR8vYPpE4dRNyg3NZP+BlJ4wrpeeUUKmeupOzj9ndPEoqCte9A/GtXhnVhUHP6gdTRStvXVanLG3LprUVf+wmiYBrCndHx82khfF88hffDB1Ez8nFe+Qim/M6VyjX1HITz4n+CHsLz8q1o5dHtLhLj0GJXnrcW7JDxpd+PsHZc8c2elLwxDz2o0eOyyRGPkXPBRBJG57Plf1/g2dZ+1UZrv8Ho9bWEyna0eqyaWQiAtqN9+eRd3pDry98EPYg67MKOn6u5Ds+rfyWw4FMsY0/BceE9KHHJHT5vOKjpvXFc/C9QzXhe/Uu7r+AxDmF2bkKGKfDUVnS/94AY8lCjj7KPF5E6ZRD23Mg/p0IR9Ln1FBSLiQ3//Aipte/vYulrlOsH1rWevaI44xEJ6e3e8OzShlx6a9HXfIDIOwoR3/bbpraglW+h+bkb0Uo3YD/1JmxHX4lQu1aavZqcbXjmFjvNr/01ZsxjRIbSsQU70udF2OwdMvaelE9fguYNkH3uvtORpaZTvbCEordWUPTWCqoWlqAHf/m6LSlu8m44jsZVxZR+tLBd6zIlp6KmpuMPNw0xq7DdHnnXslQ/Q1/+OmgB1OGXdOg8wfU/4f3g3wibE+cl96FmFnTofO1BSczAedG9NL9yG82v/Q3nhfe0CNXHiBEuLbHrKEmo/hzp86F0sEcupaTs40W4B+Xi6pP5q78vmb6B1Q/Nxbtj7/RCa4qDgstHkHf+UBTL7s3R1KMHUzFjGVufnUXKkQOxJDojXp+170C8C+chNW13pes+UDMLCa2eg95cj+KMj2i+LuuRy+Yq9NUfIAqORiT06Jg5pMT/00d4374HJTUX5+UPdWkjvhMlIR3nRfciLDY8r/0VrXJrZy8pRndi1x5kxxhy3edF2DvWI29cVYx3WzXpJwz/xe+kLll+17csunkGlkQ7ox48lmmzLmParMsY/Z/jieuTzKr75zD7gnfwlOxO6xVCkHfDcejeINue+6Zd67MUDkD6fAS3tb6ftTNOrpdFfofdZQ25vvRl0DXU4Zd1yPhS1/B/+TT+r57F1O8wnBfdi+JO6pC5OgIlIR3nhfcYMfPX/oZe0/rGSowYBh2bTXIgQiuVM1egWEykHPnLorwV935H0ZsrKLh8BJPePJvs4/pgz3Bjz3CTNa2A8c+exuhHjsezvZ7Z575Nw/rdG5yOnilknDqKss8Wt2vj01LYD4DAhta7Bu28o25PqLRLGnLZUIK+9hOUfich4rKiP34ogPf9+1s2NU/Ffsafd+XWdieUpCwcF9wFWojm1/4W1a7cMWJEivR5UawdZ8ilLqmevZbEsQWYHNa9frf9k7VseX05+ZcMZ+DNExHqr5u4rKMLOPy1sxAmwbwrPqB5+27JgtyLj0CxmNj+4ncRr1F1x2PKyCawcW2rxwqb0+il2o5mzF3SkGuLngPVjDL84qiPLX3NeF7/O6G187AefSW2o6/o1rKxamoPHOfdifQ24nn970jvodWZJUbXQ/f7EbaOc4yaN5QRqGok6fB+ez3vr/Wy4p7vSBqeycCbJ7Q6jjs/ifHPn44e1Pnpuk8IeYx0TEuik8xTR1M5axXe7ZE7R5b8vgS2rA+r/ZuSkYdWFnlacZezYLJqPXLTTJSBZyEc7e+csSd6cx3Nr9yGVrwG+6k3Yx17SlTH7yzUrEIcZ/0FvaYEz9t3Izuo0CPGQUYHhMilrkMwgLBYWz84QmoXGJ7rz3XF1z+5gFBzgKF3TtmnJ/5z3L0TGf3w8TRurmHlv2bvej77nHEIVaHknR8jXqc5vw/S5wur/Zua3htZV4b0eyKaq8sZcm3+k2CNRxl6XlTH1esr8bz0Z/TqYhzn/A3zoK7d77OtmHoPxX7yjWjbV+H96KGYamKMfdNScdkR7xEZNJwIYbFEfeyd1C8twtE7FUuSa9dz/lovW99ZSc5J/Ygr2DunvHF7Mz/eu4xPzvuWzy6azeL/rsZTtVueIHVcLgVXjGTru6uo/MEwupYk164sllBTZFIGlt7GJmagqPXYt5JmSH9oFZElLnQpQ64Xz0fuWIgy/CKExdX6CeGOW1tG88t/Rm+uxXH+PzDlj4za2F0J88DDsU69nNCaufhnvdzZy4nRRdkVSuyI9MNdglkdI2chpaRxdQnun5Xjb/9oDZovRMFle1dhr3xxAy+P/IgFD6ykoaiJqpW1zPnbYl4a+iErX9iwq4y+32/G4siNY/k936KHjAtc1mmj0X1BKr8KTzfl56jJqSguN8Gi1mPfu5tid3NDLnUNbf4T4M5E6X9q1MbVanbQ/PKtEPDivPAeTD0GRm3srohl7KmYRx5H4If3CCz9qrOXE6Mr0oEFQR0tYesvq0dr8v0id7zk8/UkDEojrnC3N7761U3MuuEnsiemc+nyU7nghxO5ZMkpXDj/JDJGpTDr9z8x786lAKhWEwNvnkjT5lqKPzXUCF19s3AWpFM+Y1lEaxVCYO7Rm+D2otaPjU8Fsw09Qi2lrmPIN34JNZtQR12NUKNzW6bV7MDzyq2gBXBceE+3yBFvL0IIbMdcg9p7GL7PHye0rXU5zRiHGDsrlrVQ9MfeGa5ROsa0eIqMXqOO3rtbIfqqPNStrCBz6u6YeX1RE9/ePJ/cyRmc8MZk1s0s5/njvuN/Y7/i2wfXc9hdIxl8eSGLHl7F8meN8vjMqfnE90thw7MLkbrhqadOHUzTmhJ8O2ojWq85txehspJdIad9IYSCkpITsShelzDkMuRDW/gsIrU/Im9KVMbUdxnxEI4L7z1g8rNdAaGoOE6/xeg09N6/0BvaLwQU4+Bht2hWR2yK78xR75hiI1+pYVDte7Roq1li1FCkjM3Z9dyCB4xwyJT/HsYb5/3Au1csoLaoGVu8maVvbuPRkV9h7pVAz6Oz+P62hdRubEAIQf6lw2naXEvV/GIAkicZLduq50SmGW7K7gG6HpaAlpKUjV5dEtE8XcKQ6yveBk8lytjroiJ9qdeV0/zqXyAUNDzxdvbD644Iuwv7WX8xGmO8968OU7qL0Q3ZWTPREXrkOz3xdgpP7YtgTRMoAvMeG531a6tAEcT3M1ouBhqDrHtnC/3Py2PBi0Ws/rCEcTf2Qcuzs2pTPa5xieSOT+bTPywlbVI2ikVl7t+XAJA1rRCTy8L2j438b3t2EvYeydQtiCzH25RpXFyCpcWtHqskZSHrK3frubeBTjfk0lODvvw1RM/DUTL236IpHPTGappf/Ssy4MVxwd2oab3av8huipraA/tJN6CVrMM/8/nOXk6MLoKwOgAiTnXb79gt2SodlQIbavJhcloRym6Hz7O9HkemG9VqhIyK55Sj+XV6HpPNdw+sJX9aOh89sZ6iRbWkFLgoWlbLj/MqSB0Yx/TbVjLg4gI2f7qd2o0NqDYTGVPyKJu1eZcKYsKI3jQs3xaRKqIpNR0UlVB5aavHKokZgIyogUynG3J9yYsQCqCOvqb9Y3ka8Lx+O9JTj+O8O2NiUhiNKSxjTiaw4FOCa3/o7OXE6AIIu+HNSm/0elXuGttsASGQvg7qPhTUED/rAuSv9WJJ2l1JWrm8BgTUV4UIejTKa/xYnCa22zx88M0GFtdW4c6xsa6ogZBfo7ZGQ6iCNa9vBiD98J4EG/zUrzNCku6BOWjeAJ6tbQ9RCtWEmpyCVlne6rFKvBH3l3WtH/uLc9t8RhSRdVuNUvz+J7dbGEsGfHjf+gd6TSmOs/+KKbtvlFbZ/bEedSlKZgHeT/+L3hAr4z/UEWYbmG3I5rroj60oCLsDvbmDKoxVBantHX+XQQ11DxVDT5kXe7KVijUNCFWwblENSrpKaVkTpaKZOhlgUXEFXp9OXL6TVR+XkjkmhW2zjDh20jAjI6Z2eRkAzgKjoY1nc9sNLBhpiFpNZavHKXFGAWQkUhudasi1+U+CyYrSTmEsqYXwvvcvtB0bsJ/+R0y9hkRphb9Eb24iULQR75L5NM+ZRdPXn9M08zOav/0Cz0/f41+zglBleVhluQcKoZqxn/ZH0IJ4P/lPVHoTxujeKO7kDtPmUdzx6I31rR8YASaHFa3Zt9d7WLGY0Py7M3CkLkEI/I0hzA4VKSXbihtokAHufPRIhpyQgU/o2NLM1DUFaSzzEV8QT9WqOnRNx57lxuQ007jJ2Fi15Rhiet6SyDJX1IQktNqaVo8TLaJ9srH1Y39Ou/TIhRAPACcBAWATcJmUsi6cc/XSpchtc1FGXYWwJ0S8Biklvs8fI7RpEbbjr8fcd98i85GMrZWX4l+7Av+GtQS3bUKvC++fKSwWzLm9sRT0wzpgCOZeBYgOSskKBzUpC9vUK/BNf5zgki+wjDi209YSo/MRCWnoEdzCh4OamIRW0zEXCXOyCxnSCdV7MCcYeuG2VOeuMAiAI82Or9qPPdFMoCmEAKxmFVUKFEVwxOSerP6snKAqaawL4gYUuwk9oOOt8uNMt2NLd+GrNO4qVKsZU7ydQFXDr6yodZS4BPSmBqSu79cGCJMFbE70CO6U2ttY4ivgVillSAhxH3ArcEs4J+rznwBHKsqgs9q1gMD3bxJcNhPL4ediGXFMu8baSaiqAu/8OXgX/YBWYdxeqcmpWAr6Yc7uiSk9EzUxGcUdh7DYQBEQCqJ7PGj1tWiV5QR3bCe4ZQNNX31C0xcfocQlYB89HseEKcYGSCdgHnEswTVz8H39AqaC0V2mjV2MA4+SlEVwxTdIKaPeJNmUkoZ38U8dMrY9x3jPeoqqiB9mGHJXXiLbPliNv9aLNdFOyqBEpC6JSzGDhOweTuqCIZzSzB2/+QZNlWQKJw6LCbsbaAqgWgwDuzN/3OQwo3l3e/kmlw2tObINXMXpAl035H0d+29WodjjkJ62XzDaZcillF/u8eOPwJlhnehvRFauQT38FoQpcpW04Mrv8M9+HfPgKViPOD/icaClycTq5TR/+wWBtStACCwF/XBOmoZ14DBMyan7H8BqQ3G6DSNdsFuVTfc041+9HO/iH2n+5guaZ03HOmg47uNOw5zbq11rbitCCOzHX0/T09fjm/ksjtPDuubGOAhRU3sQ9HuQ9ZWIhLTWT2gDpowcpGcWen0takJ0Nf5dfY34deOaYuKHGWnFScON56rnF5N1TCG5kzJQLAqeLfXEZdlRLQrF25oZlJPMqlJDmSAr2UnTVh/5I5KpKg+iSIlQBfZkQ+xLD+ooe2yqCkWJOFyq2I0sId3nRWnFkGN3IX1t31+IZqu3y4G39vVLIcTVwNUAQ3vGQeJhiMLIb+9DxWvxfvIIao+B2E68PuIrv5QS//JFNM74kFDxVpT4RFzHn47jsEmoie1/EyoOJ/ZR47CPGodWX4dnztc0f/clVff/DduIw4g79VzUxAPnGStJmVjHn4l/9uuERhyPqdfgAzZ3jK6DkmFUQWqlG1CibMjNuYaBDW7bEnVDbklyYe+ZQt2CzeScZ0jVJg7JwJJkp/jz9WQdU4g1wULfs3qx+rXNTP7zcD6+aRlDhiaxfFkNwxOTcSRZqN7STEqOncb1TfQ7MZOy+ZWkDklEtRgxdV95E4lDMnbNq/kCKNbI9GOEuaVSPdC6Ry8sdgh42zxHq0FbIcRMIcTKX/k6ZY9j/gKEgNf2NY6U8mkp5Sgp5SgVHXX0NYgI9Rj0hiq879yDcCdjP/M2hBrZHzhQtJHqh/9B7bOPIP1+4i+4irQ7HsJ93GlRMeI/R41PwH3CGaTd+TCuY07Bt2IRlXffQvN3Xx7QzVHLuNMRcan4Zj4XU0k8RFHT80A1o21fHfWxzTm9wGQisLl9neH3RfLh/ahbsoVAteG5KiaFHqf2p2zWZpq21gFw2G1DUcwK2z/dwsTfFVKzrJ4hhfHk58eRkmhj7JRMEr2AgFHn5lC2oIo+Z/YCwLujkUCdj7g+hoMlNZ1gbTOWpAh7eLbExcP5rAmTJaIc/FYNuZRyqpRy0K98fQQghLgUOBG4QIaZDiHsSYjcyDYlZSiA5917kUE/jnP+iuKIa/MYenMTda89Q/WDd6JVVxJ/3hWk/uVfOA47AmHq+H7Uit2B+8QzSf3LfVjy+9Lw7ivUPPEAWkPH7PT/HGG2Yp18IXrZJkJr5h2QOWN0LYTJjJrbn1DR8uiPbbFg6V2If01kqoGtkXbsUNAkZZ8s2vVc/iXDUSwqq+7/Hikl7hwn054YR8XiGjwrKzj1kWGoqqB2YR1NC+sonllBcr6LC14Zw493LCaul4vBl/cBoHSWkU+eOs5QWPSW1CBDOvbcCO+cdzpp4UQNVFNEYmbtSqMQQhwL/Ak4WUoZfpmYMzXiUIhvxlPoOzZgP+UPqKltL733LVtI5T234J0/F+dRx5N6+79xjJ/caqfrjsCUnEritTcTf+5lBDato+qBv4XVrDUamAdNQknOwT/nrVg64iGKKX8kekURel3bKwlbwzpwKKEd2wlVRX9sR48Uksb3oeTtHwk2GGEIW6qTfr85jLJvtlD0lnEByT+pB8e9dDjVa+pYdPdihh2dxFn/G8o5z47koldHM/jIRL664nv0oM6Jr0/C7DChBzW2vLaMhEFpuPOMu/KG5dsAcA/I+fUFtcJujfaOa7bR3ny4/wFu4CshxFIhxJNRWNM+CSydSXDpl1jGn9XmNEPd76PutWeoffYRlPhEUv54J3Gnnodi7dxenUIIHBOmkHLj3xGKSvUjd+NbFZlsZpvmVVQsE85CryhC27y4w+eL0fXY+RkKrpkT9bFtw8YA4F3UMdXEPa+agubxU/TUzF3P5V86nLTDe7Linu8omW6EdQpO7sGFP55E3zN7sf6dIubeupDv//AjX187j2VPriX/xFzOnX08KQMNEa4NzyykeVs9fa8bu2vc6u/WYE2Px94zso5lutfwcZVwGlLrWkTKke3NWjlgurBaxVZ8M55A7TUE6+QL2nRusLSEuuf/S6i8FOe0k3EffxpC7fgQSlsw5/Qk+aY7qHniAWqfeZjEy3+LbUjHNsAwDzwc/6wXCSz49KBtthFj3yhJmajZfQku/xrLYadFNVXQlJyKpbA/3nnf4jr6pKjXUDjz08k+Zxwlb8wjcUwBKZP6IxTBqIeO48drPmLhzTNo2lJL4dWjcec6mfrYOCY/NIbKZTV4Kn1Y3GbShiRhTdgtmb31/dWsfewnck7sS8ZkQy3VW1xD7fyN5F54eMR/H72hDkxmREv2yv6QoSDC1HbPvdO1VsJBBn14378PYXVgP/XmNm2S+pYvovrBO9Cbm0j6zS3EnXRWlzPiO1Hj4kn+3W2Yc3tR+/yj+Nd1rJa4UM2Yh04ltGlxrHT/EMU8bBp65Ta0bSujPrbj8KloNVX4li9q/eAI6HnFkbgHZLP+ng9oWGWoC5qdFsY/exo5J/Zl7f9+4rsz32DHzE3oIR2TVSVzTCr5J+SSe0TGLiPuq2xmyd9msvSvM0kdl8uwfxy1a46ip2aiWExknj4m4nVqNVWoiclhXQikvxmsYXjuP6NbGHLfV8+hVxVjP+UmFFdi6ydgpBU2zfyM2mf+gyk9i5Q/3YW1b9fvDqTYHSRd+0dMaZnUPvsIwbLI9InDxTxkCki9Q26vY3R9zIOOQDjiCPzwftTHtg0ZiZqaTtOMDzskK0uxmOh/z7lYkl2suvlV6hYb+0uqzcSIf01j9CPHo3lDLPjdZ3x55PMsvvVLNr2ylOLP1lH86TrWP7OQH6/9mC+PeoHtH66h4IqRHPb4yag2w9Ern7GM6u/WkHvxEViSI289GSorwZSe0fqBgPQ0IGzuNs/R5Q15cMN8gotnYBl3Gqa8YWGdI3WdhvdepfGjN7ENH0vyDX+Jej5rR6I4nCT9300Ik4naZ/+L7u8YJTkANTkHJbUnofU/ddgcMbouwmzDMuYUQhsXEipeG92xVRX38acTKtmGd8HcqI69E0uyi8GPXIo1NY5VN71K8ZvzkLpRUZp1dAFTPruI0Y8cT/LobMq/38rKf85m0R+/YNGfvmDNw/No2lJL3gVDOeqzixh40wSUFvGtmh/Ws/GBT4gf3mtXvnokyICfUHkp5uzWRQGllMimWhR3eM7qnnTNGEMLuqce36ePoqT1wjrpwrDOkZpG/evP4p0/B+eRx+I+9bxO1TiJFDUphYRLf0PNY/fR+OEbxJ/TPmGx/WEqGEngp4+RQZ+hjBfjkMIy5iQCCz7BP/N51Evui2qs3DbiMMzffUXjh29gGzQMxdl2b7M1rGlxDHn8ctb/8yOKHv+K6u/W0Pv6Y4gbmINiUsg6uoCsowuQUhKo9RKo9YEwMl3M7r3j0TKkU/zmPLY+NwtXQQb97z4bYYrcfgS2bARdx9yrsNVjZXMdhAK75GzbQpe2cL4ZTyO9TdhPuTGsrtxS16l75Sm88+fgOuEM3Ked3y2N+E6sfQfinHwsnjmzOqy4AkDNHQh6CK00si4oMbo3wmLHeuQlaMVrCEa5YbdQFOLPvQzd46H+rZc6LNXV5LLR/+6zKbztVHyltSy/9jlW/P5lKmetQvMZHXeEEFiTHLjzk3DnJe1lxPVAiMqvV7LkiqfY+vTXpBzRn0GPXILJ3fZ49Z741ywHVcVS0Lqs9s42b0pSVpvn6bIeeXD9fEKrZ2M94vyw+m1KXaf+9WfxLfoB98nn4Dr6xAOwyo7HdcLpeJf8RMN7r5J8851RFyECUDONcm29fAv06Pr7CDGij3noFILLZ+Kb+TymvOEo8a1oC7Vl7OweuE84ncZP3sHTZwDOidHpy/tzhBCkHzuUlCP6U/rRAkrfm8+6O95FsZhwD8rF1TcTe04SpjgHQhFoHj++snqa1pdSv3gLWrMfe49k+v3jLJIn9W/3Z01KiW/ZQiyFA8JKPdQrtwKgRFAf0yUNuQx48U1/AiW1J5YJ4elwNX70Jt6fvsd13GkHjREHUKw23CecQf1rz+BftRTboOFRn0O4ksBsQ69tvR1VjIMTIRTsJ95A07M34P3w3zguujdiCY1fwzn1RAIb19Hw7suY0jOxFvaP2tg/R3VYyDlvAtlnj6N+6VZq5q6jftlWdrzzIzL0y01XW3YSKUcOIGXyQBJG5e3VRq49BDauRauqwHXsaWEdr5WsRzgTEO62V5B2SUPun/0GsrEK+xm3hKWj0vzdlzTPmo7jiKNxHRfeH607YR89nqbP36f5mxkdY8iFQHElojfVRX3sGN0HJSkT+/HX4f3wQfwzn8c27aqojS0UhYRLrzO0jZ75j5Fmm9OxTdGFqpAwsjcJI407ehnS8Vc3Emr0gqajOqxYUtyodksrI0VG87dfIBxO7MNHh3V8aPsq1Jx+Ed0JdLkAsla1ncD8jzEPOxpTTr9Wj/evWUHDe69iHTyCuDMu7JDQQ2cjVBP28ZMJrF9NqKbtfQPDwmqHYNtV12IcXJgHTTZ6vM7/mMDCz6I6tuJwknTtHxE2O9X/+xfB7UVRHb81hEnBlh6PqyADV98s7LnJHWbEg9uL8C9fhPOIo8MqzddrdiDryjH1iqwBfZcz5L6vngWzDeuRl7R6bKiqgtoXH8OUmUPCJddGfWNTSkmo0Ye3pAbP1ir85fXoobYL2kQD+0ijnNq/IlZOH6NjsU69HFPhGHwzniK4anZUx1aTUkj+7a0oFivV/723w4veOgOp6zS8/yrC6cI55biwzgm2pP+aCkZFNGeXCq2ENi9B27QY69TLUZzx+z1WhkLUvfAYSEnilTdERTNFSknTmh3U/LCehuXbaN5YRqjxZzncqsCRm0LcsJ6kTBpA/PBeUYup7Q9TajpqShr+9WtwTpoW9fGl3wvJ7duhj3FwIBQV++l/xPPGHXg/fBAQmAceHrXxTanpJP/hb9Q88QA1jz9A3BkX4jj8qIPmbtozZxaBjeuIP++KXU0lWiO48juUzAKUxPAKh35OlzHkUur4vnkZEZ+GZVTrm5WNn71HcNtmEq74Xbtbp4Wa/ZR/upjSDxfiK6kBReDqk0nKkQOx5SRhjnegmFU0TwB/eT1NG8qo+GIZZR8uxN4zhV5XH0Xy4a2HgdqLuUcewaKNUR9XSolsrEZxjW394BiHBMJsw3HO7Xje/AfeD/+N9DdHtc+rmphM8h9up+6lJ2h45yUCm9cTf86lYRu+rkpw2xYaPngda/8h2MdNCuscrWwTetkmrO3Yk+gyhjy07if00o3YTvp9qznjgS0baP76M+zjJ2MfFt5Gwq+hhzRK31/A9pdnE2rwEjekB7kXTSRpYj/Mcfv3TjV/kOrv1lD86hzW/OUtUqcOpuBPJ6HaImtyEQ6m1HR8S35CalpUZXdlXblRiBBB/mqMgxdhdeA4/w68792H7/PH0OvKsR55EUJEJ4Sp2B0kXv0Ho6/t5+8T2LyehPOuwNq/e3atClVXUvPUQ6juOOIvuibsO4zATx+D2YZlSORpmV3CkEsp8X//JkpSFubBk/d/bChE/evPoSYkEXda5H06mzaWsf6eD/FsKidhdD49rzwSd/9sAEKeINULS2jaWkew3g8KWJMdxPdNwV2QjFAEqtVM2rQhpE4ZxPbXvmfb89/ir2xg4L8vQI2wJVRrKC43SGk0cXVGrv3wc7QdGwBQMw+YmGWMboIw27Cf9Rd8M54kMO9d9MqtRoGeLTrvP6EouI85BWvfgdS9+gw1j9/f0gLxvA7p0tVRhCrLqfnfv5DBAEm/+SuqO7yGN/r/t3fe4XWUZ96+35nT1XuziiXZlnvBGHeawRRDaIFANgnJJiRLkk0Iqbub7ObKli+bTnazJCRssgFCCd0UG4MbuPcq2ZKs3ns5feb9/nhly4CxLPlYR7Lnvq65jqQz58yj0dFvnnnep3Q0Ejq0Acflq87rnI4JITcq92A2V+Ja9bUhc1f7N7xJuKmepC8+fG79fc9A02t7qfj5a9ji3Ez9t3tIXjoFGTKpfbWU2ldKadted8Z8UwBXZiwFd8+k6NNzsHnsCJtG3meuxJ2TTNmPXqDyl28w6Tu3jsiuIRm4wke6AVG4ci84Y9AyCyP6vhYXB0K34brpy+gZE/GvfYy+3z+E5/ZvoedMjtgxHAXFpH3nR/S9tZq+t1bjP7iHmKtWErvi5qEHFkeZYHkZnX/4FVJKkr/yHezZuef8Wv+GP4Nuw7HozvOyYUwIeWDbS4i4ZOwzzx5TMnq76VvzMs4Zc3HNmDPs40gpqfn9emr/vJnE+YVM+cEd2BI81L5SSumvtuJr6sMzIZ6iT88hZX4OcUXJOJJcIMHX3EfXwWbq3zhG6SNbqXnxMFf8ehXxk1Wz+bQVM+kvb6buqffIuHku8TPO/Y95rph+lR440gvYmZBGiPCxbdiK50e0AGQ8IM0w9DYhexvB24b0d0GwT6VhmmG1k9DB5gB7DDjjEe4kNeEqNgPcyRfNAt1QCCFwzL8ZLbMI3wv/Sf+fvo1z2SdwLL4rYm2hhd1B3E134L5iGb2vPkf/W6/i3bwOz7JriblyJXpCYkSOEymkEaZv7av0vfkSemo6KQ98A1tG1jm/PnxiP+Ejm3Esuxct7vzuPqIu5EZbLcaJfTiv/vSQxT99a15BBoPE33bviI5V/dg71D3xLhm3zKP4oZsJdPrY+fmXaN1aS+LMDGb/yzWkL83H3xWkdX8Hdds60B06ySUJJE1OJr44hbzbp9G2q57d33yT9+5/gSuf+wSeHHUblfuZ5TSt3kPD8zsuiJAb7a1osXEIe+RCN+Gy7Uhf75AhrfGONELI9mPI5sPItlJkezl014L8QDqp0MDmAs0OAjWxxQiq7YPYXJCQi0gsQCQXIlImIVKnIFxnz7gaz9gmlBD7wCP43vgfAhufJFS2DffNX4loWM6WkkbS/Q8Suv4W+t58if51r9H/zhu45i7As/hqHMUjK5qJFFJKgqWH6HnxKcKNdbjmLyLh7s+iuc/dwZL+fnyrH0FLzsa5+Py8cRgDQh7a8yZoNuxzzp5SZ3R34X1vPe4FS4d11TtJ0yu7qXviXTJvmUfRN1fRW97B1i++TKjLz6wfXE3+XdMpf6WWzTetpWFbK3ygt0/S5HiW/us8Jq6cQOr8HJb88U423v00B360gYWPqlCK7naQsqyEto1HkVJG/MMWqq3Clj10O8xzRUpJcPtLiMQMbIWRrxiNNrK7FrNmK7J+B7LpAIQHUklj0hEpxYj8pYiEXIjLQnhSwZ0Eds8Z/27SCEKgB7wdSG+b8uJ76pHdNcimfciK05pNxecg0mcgMmagZc2BhLyLynMXrlg8t3+LUMli/G8+Sv/jD+OYfzPOK++LWOwcwJ6dS9Lnvkq4tZn+jWvx7XgX/66t6ClpuOcvwjVnAbac0Tu30jQJHN5H/9uvE6woQ09OJemBh3DNnDe895ES3+pHkD1tuD/zY4T9/Gd5RlXIpREidHA9tilXDJk33r/pLTDCxF4//PhzX3kTFb96g8QFRRR942b6q7t577MvIHSNZU9+HFwu/nrjWpp2tOHJdBNbkkxft0EoDEm5HnKmx9K6o4VX797Adf+ziKn3FRFbkEjxZ+dR+utteBt68WSr9pwxxRk0v7aXUJcXR1LkYntGbw/h+pqItiAIV+zGqC/DdeODF01YRXZUYla+g1m1EbpUEyIS8tAm34TImoPImKFEe5gI3QGeVPCkIvhwbFj6e5Dtx5W333IEWbcDWb4GE1QIJnseWvZliJz5KixzEWCfugRbwWz8G/6P4M7VhA5vxLn8PuxzV0Z0CpctLYOEuz5F/K1349u3E9/O91RIY80r6EkpOKfNwjFlOo6iEvT4yN4NSdMkVHMC//5d+HZvxexsR0tKIf6uT+FZfPWI7o6Dm58mXLoF57WfPafq9XMhqkIertyrbuuHSLuRoRC+Letxzpg77JxxaZiU//gVbHEupvzTHRhBg+1feRWkZOmf7sDbLXnppjcxQiYiK57yY140pwkuDc2h0Xuwh2Mb2lj85SLcaS42fncXRbfm4Yi1k74sn9Jfb6PrcPMpIRc2/dRxI4l//06QcthX/49CGmEC6x5HJGZin7MiIu8ZLaS3HbN8LebxNdBZCUJDZM5GTL0NLW8RIu7Cp1UKVzwi5zLIUbNPpZTQU4ds3I/ZuAfZsAejYmBQcGI+2oQrELmLEJmzzqmf0FhFuGNx3/ggjrkr8a/9vcpu2f4yzis/iW3a0og6CMLhxLNgKZ4FSzF6ewgc2oP/0D58u7fifW89AHpKGva8idiyc7Fl5mBLz0RPSj2nsIc0whidHYSbGwjX1xKsriBYUYbs7wNNw1kyA/ft9+GaNW/EF6rgztUENj2Ffda1OBZGzimLrpAfeQ9cMUPe1vsP78Ps68Wz9Nqz7ncmWt85TF9ZI5O/fwf2RA9Hfv4efZWdLPr9bWgxbl65fjWaQ6O5R8PXHqADSX8oRFCaeKQdo8dg9pwUtvx3Bff9cT71m5tp3tVG7lVZp0ZCmcHBOKu/oRNh07AnRq6wQUqJd/Pb6sN5DpNGzoXg1hcw22px3/1P41JIpGkg63dglr6KrNkK0kCkTUMs+hraxKsRnuimrgkhVPw8IRetZJUS9s4TmPU7kXXbMY+8CIeeBbsbkbMALW8xIm8RwpUYVbtHip5ZhOdT/064fCeB9X/G99JP0d59Bsfiu7BPXx7xObl6XDyeRVfhWXQV0jAI1Z4gWFFGqKpCedB7d7xvf+FwqvUlTwzC7lB1GFIijTDS78Ps78fs64HT+qXrqem4ZszFOWU6zmmz0c4z5Tew7UUC6x7HNvkKXDd/JbLDriP2TsNEmgbh8p3Yiy8fUkj8e7ahxSXgLJkx7OPUP7MVT0EaadfOINjlo/KJ/Uy4ZQrpi/N45+vb8XcEMdITCAR91AdCNIsAjcKLXxrE9tuZn59BXX0fbqCn3qtsH/hb95SqBlYx+Ymnjte1q5LYkhw0W+Q8kcDhfYQbakn45Bci8sc3mioJbPoLtqlLsE8eX9Wc0t+NWbYa8+jL0NcEriS0mXer0Enihe2mdz4IISC5ED25EGbegwz5kA27kbVbMWu2YlRtVHcSGTMQeUvRCpYh4nOibfawEEJgn7QAW/F8wkffI7D5Gfyv/ILAhidwXHErjtnXIVyRTyUUuo6joBhHweCCqxnwYzQ3Em5txuhsx+zpwuzrxfR5kcGgykrSNITdg56YjPDEoMcnoienYEvLwpY9IWJpj9II41/7GKHdr2ObugT3bQ9H/MIWNSE3myqQvt4hm8TIcJjAkQO45y8adlMsX207/ccamfjVlQhN0LC2AsMfpviz8zCCBqXPVJK7IputzzbT5xL446De5yVxnhuag4g6SbAzRFqME0OE6T7aie7SyZiXgpSS6ucP48qIIXGqasLfc7CG/uNNFH7t3BrlnAvSCNP78tPoaRm4L198/u/n78f3wo8RMfG4bvy7CFg4OsjOExiHnkOWrwUjiMiai7bgS4j8ZePyjkLY3Yj8pZC/FE1KaD+GWf0uZvW7yB2/wdzxG0iaiFawHK1gOSQXj5sFUyE07NOWYZu6hPDxXQS3vkDgrT8Q2PAk9llX45h34zkNizkfNKcLLW8i9rwLe5yhMDub8L30U4z6MhwLb8d5zWcuyHpU1IQ8XH0IAL1g1ln3C9WeQAb8OEqGX7bbvV8tdiUvVPPyOvc34UxxEz8lle7KPsJeA0+OuuqGkMR47Hi8Nvp3+0mSDjKEC2evSbg3wPQVqVS8XMO8r07FmeCg7vVjtG2vY8b3liN0DRk2qfyvtdiTY8i4ac6wbf0o+t5aTbipgaQvfuO8r+LSNPC99FPMrmY8f/NvaJ6xnSYnpUTW78Q8+AyyfifoTrRJK9Gm3YlIvniKl4QQkDoFPXUK+mV/i+xtwKx6F1m9GXPfnzH3/gliM9EKliMKrkSkTxsXi9NCaNgnL8A+eQFGYznBna8S2reO0O430LKKccxegW3aMjTPuVVBjiekaRDc9RqB9X8GTcN9x7exT4tc47EPEjUhN+pLEUlZaLFnnxgdqlJzJB2FQw8v/SD+ug7VgzhHxUuDPX4cySq9zJWk+hDb7QLdoZGf6eJ4VS+TiUMDHAgSHTq6YTJxdgxdO5vIuiKNhf80h479jez7/tskzc5k4r3qQlT9+Hr6jtYz5Z/vjFiP4+CJcvreeAnXvIXnPVBCSon/zd8SLt+F68YHsY3hkW7SDCMr3sE4+BfoqAB3Mtr8L6CV3HpR52ifRMRlo8+8G2bejfR1IavfxazeNBhXdyej5S9DFCxHZM9FaFHPIh4SPasY960P4bru8wQPrie07y38bz4Kax/DVjgX27Rl2CcviGj6YjSQUhKu2E3gnT9htlShF87DfdOX0RKHP1D5fe9rGtDf+pHPR0/ImyrRs4cW51BjPVpsHHp84rCPYYYNhF0/1WbWlR5D27ZazKCBK9lJ4c0TOPz4Ma58cBLvPlZNBoNejkCSnKSRGG/DV9lF4apcrn90Ma1bqtn97TW4Uj0seORmNJtG44s7VaHRqrmkXTv8OP6ZMLq76Hz8EfTEJBLuuf+83ktKSWD9/xHa8waOxXfiuCxyoZ9IIkM+zLLXMA89A33NkFiAvvy7iKIVKv3vEkS4ExElq9SCabBfxdSrNmGWr4XSl8EZh8hdrLz1CQsQtvPPSb6QCHcczgW34lxwK0ZTJaFDGwgd3ky4fBd+zYZeMPNUnH2kLV2jgTQNwmXbCG57EaO+DJGYifvO72IrWRyRkJi553HMw89/5PPREXIpkV0t6LOGzkIxOlrRU0d2NXOkxGL6QoS6vNgTPWQun0jVXw5S/cJhJn5iFtc8spBX79lA6R/KyEl24J4WgxGWGP0hfC0+pDeMKyeeK/9jGflXp3H0Z5upevYQCdPTueK/V+FM9VDzp43U/GEDyYsnU/SNm0dk5wcxfT46fvszpNdL8kPfP69Fl5MiHtzyV+zzbjingR2jjfT3YB55QX1QA92IjFloix9C5C6MWKe9iwHhiEEUrUArWoEMB1TWTtUmZM0WjPI1YHMhJixAy1+uMmCccdE2+azomYXomYU4r70fo/4Y4dIthI9tx7/mt7Dmt2jJ2egT52ArmIWeN2PIWpNoYLTVEjq0kdD+t5G9bYjETFw3Poh9zoqIrd2Y5Wsx9/0ZMflmYM0Z94mOkBthQCISh84Jl14v2jl2EvsgCbNVFkP75qNk3nIZ6cvzSVuUy6H/2ITNY2fCLSV8fM31nFhTT/nLNXSV92CGJZ6JMaTNnEjB9Tkk5LmofvYQ61a+geELUXT/XKZ+bRGGN8CR7z1N55ZjpK2cxaRv3xqRTBXT76Pj0Z8Srq8l6YGvn9dcQ2ka+Nf8jtDu17HPuwHXjX83phbMZH8b5qFnVQZK2Kc8y9mfRMscn21MRxNhcyLyl6HlL1OhqMZ9yKpNmNWbMao2gdARWXMRBcvQ8pcgYs7v1v5CIoSGbUKJKo5Z8TmM9npVrFa5l9CBdwjtfh0ALTkHfcIU9OzJ6FmT0NLzEPbzHygzHGQogFFXSvjEPsLHd2C21oDQ0CfOwbHyAWyTF0R0/cKs2Yqx8T8QWXPRl3wD+O4Z9xNSyjM+cSG5bNZ0uf7uQjz3/hBb0dkLXFr/3z+iJ6eS/MBDwz6OlJJ9X3iMUGc/c//3S9jj3QS7/ez4ymradzeQMD2d3FVTSJyZgTsjFqELQj0B+mu76TrSSuuWGjr3N4GArOuKKPnyQuImJtG0ejfVv1+P4QtS8KUVZN91RWRun/p66Xj0p4Rqq0i8/0Hcc0eeGiiDfnwv/4xw2TYci+5Uq+VjRMRlTwPmgacwj72h8r8Lr0Gf/UlEclG0TRv3SGkiW48iqzZjVm9W/WRA9YDJX4qWtwSSi8bMZ2EopBHGaCzHqDmMUXsEo74M6e1WTwoNLTkLLS0PLWUCWnI2WlIWWkIaIi7lvARVSons78LsaMBsq8VoqcJsLMdorBhIXdTRc6dhm7IQ+9QlaHEpEfqNBzFrtmC8/QNILMB28y8RjliEELullB9K9YuOkM+cJtffU4Tn/p8MWaLa9vMfIuwOUr76vREdq/doPQe+/Dixk7OY+u+fwJEcixk2qXnhCCee2k/PsfYzv1ATJE5PJ/PqieTeUoIz1U3r2gPUPbUFf30H8XPyKf7GzXgK0kZk1wcJtzTR8dufYXS0k/TZL+OaddmI38vsasH713/DbDqBa+UXcFx+S0RsPF9kRyXG/ieRlW+D0NEm34g26z5EvDXQ4kIhu6oxqzcjq99DthwBJMRmqAKk3MWqbcEYj6ufjpQS2d2K0VShJuu0VmO21mJ2NoI8rZpaaAhPPCImEeGOR7hjEA432J0q5HEyldk0keEQBH3IgBfp68Xs70L2tkP4tEZpDrcKBeWUoOdNw5Y3A+G8cNOMzGOvY2z+CSJlEvoNP0W4VFRibAn5jKly/SeKifncz4dc8Oz8wyOE6mtJ/8FPRny89s2llP3weTS3g7zPXknGDXPQPWrxzNfUS09ZO/52L9Iwscc6cGfHE1+cjLAJevZX07bxKG3rD2P0BYiZnEXeZ5aTvHRKxLwa/6G9dP3fo6BpJD/wEI7Ckfd5DlfsUaO5TAP37d/CPsJhrpHEbDmCuf8JZPW7YHOjTb0VbcY9iJjh9zyxGDnS24Gs3YJZswVZv0s1EbO5EDnz0XIXqjWJMRyCORvSCGN2tyA7mzC7WzB72pB9nUhvN9Lbg/T3IYN+CAeQRlh1tQTQdCXsdifCFYNwxSFiEtHik9ES0hFJWegpExCJ6aOyXiPNMObO32EefBqRMx/92h8hHINrZGNLyE965J/5MbbcaWfdt/f1F+h78yUyfvzbYbWJ/CD9Fc1U/OJ1eg7UoDltJMybSFxJNs7MRGxxboQmMHxBgu19+Ova6a9opresARk00Nx2UpaWkHnLPOJn50dMwGUoRO/q5+h/5w1sE/JJ+tu/xzbChV1phAlsfJLglufR0vJw3/U99JToVQZKKZENuzH3/RnZuBeccWjT7kSbfuclkUI41pHhALJxD7JmK2btVpUlBJBUiJZ7hcqAyZh5yWYLRQPZ24Sx4V+RzQfQpt6GtujvP5Ra+lFCHpXFzpMVmtLXO+S+juISkJLgscO4Zo/cu4wpymDmr++n91AtrW8dpGtPFZ3bjn+oXS2AHuPEMzGdrNsuJ/GyQhLmFUR8fFuotoquJ35HuKEWz9Jrib/9PoRjZP80Rlstvpd/jtlYjn3O9bhWfmHUF4FOIk1DFbLsfwrZVgqeFLQFD6occMf4Hqx7MSFsTkTuIshdpCpLu6owa7cha7dhHnoODvwFbG61YDrhcrTsyyAxck6MxSBSmsiy1zC2/wYw0a/6PlrxdcN6j+hkrQyk5ZhdzUPu6iiajBYbh3fHu+cl5KAq6OJn5hE/UzWeMgIhgq29hPv8ICWay44jKRZbgvuCfWBNn4++N16gf8MatLgEkr748IimHcFA9di2lwhsfBLhcOG+87vYpy6JrMHnaosRRB5fq4p4umshPgd96bcQk1ZaXt0YRwgBSRPRkybCrHuRQa/y1ut2qCZftVtUO15PGiJnHlrWPET2vIumHW80MVtLMbc+gmw5pDJTln9nRN06oyPkmo5wx2G2VA+5q9BtuBdfTf9brxJqqB3WPLyh0J123BNGp0ueNE182zfTu/o5zN4ePIuvIu7We0acI240HMP3+m8wmyqwTVmI68YHh6ySvRDIYB/m0VcwDz8H3nZImYx+zb+oUvJxUEZu8WGEw3OqD4yOyjKSDbsw63cja7ZhHB/IZY7PQWTOQcuao9oGx42fAp5oI7uqMfb8US38u5JU4dukG0fsQEYkRi6EeBj4KZAmpWwbav/58+fLTQ+vwuxqIvbvHh3y/c3+Xlp++E3sObkkf/Ufht08K5pI08R/YDd9rz1PuKke+8Ri4u/4GxwFI0u1M73dBDY8QWjPGkRsEq6VD0Ssemw4yP4WzEN/xSx9FUL9iOz5aLPuVYMTrNvvixYpTeioxGzYg2zci2zar+acAsRmqLh6xky0jBmQVGhdzE9DSolsOYx56FnkiY1gc6FNvwtt9r0Ix7m1JrhgMXIhRC5wPVAznNfpRfMIr30Mo6MBPfnstxJaTBzxd3yS7icfo+/154lb9fHzsHh0kEYY/57t9K17jXBDLXp6Fomf+yquOZePSOhkOERw92sENj8NAR+OBbfgXH7fBWkLelY72ssxDj6DrFgHSMTEq9FnfQKROmVU7bCIDkJokFKMnlKsesGYBnRWYjYdQDYdUOJesU6FYmxuRFoJIn06Im2q+jomMum64wnp78GsfBuzbDW0HwdHrCp8m3E3wp0YkWNEIrTyC+DbwMvDeZG9ZDGBtb8ntP9t9Ks/NeT+7iuWEaw8Rt+aVxBuD7HXRqYcPtIYvT34tm2if9NbmF0d2DKzSfz0l3BdNvw2vDDQw+HwZvwbn0B2NaMXzsV13efR0yI3u3NIG6SphiEcfBbZsFulEE67TX0Q44Y/P9Xi4kFoOqRMQk+ZBNPvVAM0+hqRzYeQLYeRLUcwD/xlcMi1O1kVJ6VOVsOqk4shLvOia8UgfV2qL86Jjcj6HaqIKLkIbfE30CZdj7BHduH/vIRcCPExoF5KuX8oL1MI8QDwAEBeXh5afCq2SZcT2vsmziV3qWT9s7+ehHvuR/r99L70NEZrC/F3fHLEmR6RRBoGgdJD+LZvxn9gFxgGjsnTiLnnfpzTZo9MwKVJ+OgWApv/gtlag5ZRiPscKmEjiQz5VJ+HQ89Bdw140tAufwCt5GNjvo+HRXQQQkBctlqwK1YD1WU4oOaZtpYi28qQ7ceQddsHC3jsbkRSoQrFJBUgEvPVkJCYtHEj8DLYry5cjfuQDbuQrWWcKr6afida0XWQMumChR2HjJELIdYBZ1rF+EfgH4DrpZTdQogqYP65xsh37dpFuK4U7x+/hXP5fTiX33tOBkvTpPfV5+hftxo9PZOEuz6Fo2Tm6MeIjTDB46X49+/Ev28nZl8vIiYW9+VL8Cy+GnvWyHK4pREmdGQzwfeew2yrRUuZgHP5fdimLRm1D7XsbcI8+qK6FQz0IlKnoM34OGLi1eNyiIPF2EOG/ciOSuioQHaUIzsqkZ1VEOge3MnmUguq8RNU9W9cNiI2U2XLxKZH3Ks9J7ulCf2tyK4aZGelsr3tGHRWAVL1uEmbqpqX5S2ClMkR1aaIFwQJIWYCbwPegR9NABqABVLKprO99qSQA3hf+E/CZduI+fwvhxUuCJQeovuZ/8Voa8FeOJmYq1bimjkPYbswiThSSoy2FoLHjhAoPUig9BDS70M4HDinz8V92UKc0+eM+Pgy4CW4fx3B7S8ju1vQ0vJwLrk74gNsP/L4UiIb92Iefh5Z8x4gVG+OGR9XC1jWAqbFBUZKCb5OZFc1srsGumuQ3XXInnrobQQz9P4XOGLBk4rwpIA7Sc07dSWCM17dMTpiwO5B2Fxgc6q0Z80OQoeTn2dpqCpPI6SqPsNeCPkg0Iv0dyl7fB1KvHsb1XhB47TSfXeyChOlTUWkz0BkTL+gF5gLXtk5Eo8cwOzrpP93X0HEJBJz/0+G1b9AhkJ4t2yg/53XMTraEJ5YXDPm4Jw6S+WfJyaPbGFRSszuTsKNdYRqqwnVVBI8UY7Z0wWAlpiEc+osNZi1ZAbCMfJeFUZ7PaHdrxPcvw4CXvTcaTgW3YFt0uWjUxIc7McsX6OGFnRVgzMBrWQV2tTbrDxhizGDlCZ425C9TdDXhOxvgf42ZH8r+DqQvk7wdyoRjigC3EnqghGbodaEBoZqi6TCiC1WnrM1Y1XIAcKV+/D+5Z/RC2bhuef7CNvw4t7SNAkcPYB/9zb8h/chvf0AaLFx2DKz0VPS0RKS0DwxCKdr0Gs2wpiBANLnxezrwejuwuhow2hvQfr9p95fT03HXlCEo3AyjklTsWVkn5eHKsMh1YR+7xqMqv2g2bBNXYLzilvRs0feZ2VYNrQdwyx9GbN8nWohm1qCNu12ROE146qJkoXF6UgjCIEeCPQhQ/0Q9KqeMkZAedJmWGXanCzpFjpC6MpbtznB5gaHB+GIA1eC8u7HUArlmOq18kEhBwjuX4f/1V+hF8zGc9f3RpxWJ02TUF0VoRPlhOqqCbc0YXS0YvZ0g2me+UVCnDZFOxU9NQ1beha2rAnYc/IiMk1bSonZcJzgwXcIH96E9PUiEtJxzL0e+5zrR6WYR4a8yMp3MEtfRbYeBd2BKLwWberH0NLP3vPGwsIi+oypXitnwjF7BQgN/+pH6P/fh3Hf8Z0RTdoWmoYjrxBH3vuH80rTRAb8yGAAGQ6rfXUd4XAiXO4LUmQkpcRsrSZ05F3ChzepVpu6HduUhThmr0AvnHPBwydSSmTrUcyy15CV69StZ2IB2sK/R5u00so+sbC4CBgzQg7gmHUNWkIavhd/Qv/j38C55G4ci+8cdqjlTAhNQ7g94L6wK93SNDDqywgf20G4bCtmR4OaIJI/E9fiu7BPXTIqRTzS26FSB4+/AZ0nVLvSiVehTbkFkTHDWry0sLiIGDOhldMx+7vxr/kt4SObEfFpOJfeg33WNQjb2Ex9M3vaCFfuI1y5F+PEXtXVUdPR82diL1mMbcrC0QmdhAPImi2Yx9cM5OkaiLRpaFNuUrHvcywDtrCwGJuM+Rj5mQhXHcD/zh8xG44jYhKxz7kO+6xr0FMmjIKVZ0ZKidnRgFF3VI2eqj6kQiaAiEnEVjgPW/F8bEXzRsfzliaycT9mxVvIExtU3wtPKlrx9WiTbkAkFVxwGywsLEaHcSnkMJC/fWIfwR2vEK7YA9JES8vHNmk+toLZ6DlTLtjIJRkOYXbUY7ZUY7ScwGiswGgsB/9AkyBXLLbcaegFM7EVzEZLLxiVkIWUUlXIVb6NWfkO9LeqvhYFy9GKr1ctRsfQSruFhUVkGLdCfjpmb7taOCzbhlF3VCXyCw0tJQctvUANYE1MR4tLRcQmIdyxg3P6BoRNShMMA0L+UzP6pLfn1Jw+s7sVs6sZs7MR2dU8WEas2dDS89Azi9FzJqPnlKCl5Y5etaWU0H4Ms3I95okN0NsAmk1VkBWtQOQtQdhHPkHJwsJi7HNRCPnpyIAXo66UcF0pZlMFRms1squFM478OYUY4nkQ7jhEYgZaUiZacg56aq6a0p06YdTL06VpIFuOIKs3YVZtUtVtQkdkz0MrvAZRsNzKOrGwuIQY8+mHw0U4PdiK5r2viZQMh5A9rZg97UhvF9LXhwz6IBQYKAJATdfWbeBwIRxu5bW749FikxBxyVEbkTb4O/iR9bsxa95DVr+nqtU0GyL7MrQ5n0LkL7NmXlpYWLyPcSvkZ0LY7IjkbLQh+puPNWRvA2btdmTtVmTDHlWBZo9B5F6Blr9UTTe3Mk4sLCw+gotKyMcLaibiXmT9Tsy6HdBTp56Iz0EruQWRuxiRNcfqNDhGkGYYTD8YPjADA1sQZEg1cpLG4Pah0J0AoQ1stsFNc3xgc4PuUuXiFhanIaWE3kMQbP/IfaIi5LK7FvPEBhXjHSf9hs8HGfIN9Crei2zYg2wtVf/0ulMJ9rTb0XIXQvwEq1DnAiINLwTbINihtlA7hLog1A3h7oHHHgj3qc3oA8OrhHu0bDwl6h6wxYA+sNliwRb3/s2eALaE0x4TwRZ3SfxPXQrI/gpoWQMtr4P3BLgLPnLf6HjkZhjj7R+oyd0z7kYUrbioGjVJb4cS7uZDyOYDg8ItdNXbe9Z9iJx5qj2sNWE+IshwL/jrwd8IgaaBx+aBrRWCLUqUz4TmGhDDeLU50yGmaEBEPadtLtCcA5sDhB2007xsoaEW1E8KqQRMlfkkzQGvPTToyZuh0zx8Pxh+MH3KTsMHRj+EvRDuVb9TuFddYMyzdPgTOvKkqNuTwZE08Jg88Jgy+OhIAVu85TyMEaQZhO590L4J2jco8UZA4nzI/Qyk3wDEn/G1Ucta2fH0v2Psfwo6K9UMu6IVStAzZowrj0IG+9X0k7YyNQGl9YjKLgHQ7GpOYeYsNWU8YybCMbozNi8WpDSVKPuqwVcD3hrw14GvTgl4uOf9LxA2cGYoUXakgzMNHGngSB0QsQFhsyci9PGVtinNoBL1k3cQoW4Idw3cXZzcOiA48BjqUPucKWNL2AdF3ZF62vlJHTxfTvVzoY/+IIeLGWmGoO8odO2Gzh3QvVNdwIUNEi+H1GsgbQXCmX7qNWMy/fDUMIOy1ciqTWqRz52MyF2IlnO5Cjt4UkbdvjMhzTD01CM7T6itQ00Hoad+cKfYDERqCSJ9mmoynzr5orrTGA2k4VeeiLcC+k8MfH1Cibc52FoYYQf3BHBNAFf2wNc54MwCVxY4UsaVQ3ChkWYYQp0DAt+h4q3BNhVeOvn1qccO4AydQnXP+wX+5Ob8wAXAnozQrPWd05FmWDkhfUeh9wj0HFSPJz/T7gJIugKSl0DSFQjbmZMbxqSQn44MepE172FWv4us36lKzQHispQ4pkxCJE1EJOSqn0V4IVBKqcZM9bci+5pVA/veBmRPPbKnDnoaBgfIIiA+G5FcjEgpHhgkOwXhSY6oTRcz0gyBtwr6j0HfcfCWQ3+58rBPeY4auHPAUwjufPAUDDzmgTPDWhi8QEhpKNEPtkGgDYKtAwI/IPaBVnUBCLSqdYQzYUs4zdNP+UBYZyDcY08a2OIvir+llFKttfhq1eatGnRKvCfUAjmo0FxsCcTPgoS5kDAP4Uw7p2OMeSE/HWmGkW3HkE0HVKy5rUyNWDqJ7sR2/5qIelzhN7+lGk2djs2tBDs+B5GQpwbCJuarAbG26Oabj3fkvi9A5xb1jbApgY4pVrHpmCLwFIEnH6FZawhjGWn43y/yp7z60739gfBOuPcj3kXAorUI1/hKG/4gsup3cOJXp/1EqLtDTyHETILYSUrAPYUjvmMZU0IuhGgFqkf9wO8nFRhymtElhHU+BrHOxSDWuRhkLJyLfCnlh9z3qAj5WEAIsetMV7ZLFet8DGKdi0GsczHIWD4X1mqQhYWFxTjHEnILCwuLcc6lLOS/i7YBYwzrfAxinYtBrHMxyJg9F5dsjNzCwsLiYuFS9sgtLCwsLgosIbewsLAY51hCDgghHhZCSCFEarRtiRZCiJ8IIUqFEAeEEC8KIRKjbdNoI4S4QQhRJoQoF0J8N9r2RAshRK4QYr0Q4ogQ4rAQ4mvRtinaCCF0IcReIcTqaNtyJi55IRdC5ALXAzXRtiXKvAXMkFLOAo4B34uyPaOKUDXi/w3cCEwD7hVCTIuuVVEjDDwspZwGLAS+fAmfi5N8DTgabSM+ikteyIFfAN9mqGGeFzlSyrVSyvDAt9uACdG0JwosAMqllJVSyiDwNPCxKNsUFaSUjVLKPQNf96IELCe6VkUPIcQE4Gbg99G25aO4pIVcCPExoF5KuT/atowxPge8EW0jRpkcoPa07+u4hMXrJEKIAmAusH2IXS9mfoly9s7QEnJscNGPehNCrAMyz/DUPwL/gAqrXBKc7VxIKV8e2OcfUbfWT46mbRZjDyFELPA88HUpZc9Q+1+MCCFWAS1Syt1CiKuibM5HctELuZRyxZl+LoSYCUwE9g9MSJkA7BFCLJBSNp3pNeOdjzoXJxFC3A+sAq6Vl16BQT2Qe9r3EwZ+dkkihLCjRPxJKeUL0bYniiwBbhVC3AS4gHghxBNSyr+Jsl3vwyoIGkAIUQXMl1JGu7tZVBBC3AD8HLhSStkabXtGGyGEDbXIey1KwHcC90kpD0fVsCgglGfzJ6BDSvn1KJszZhjwyL8ppVwVZVM+xCUdI7d4H/8FxAFvCSH2CSEejbZBo8nAQu9XgDWoxb1nL0URH2AJ8CngmoHPwr4Bj9RijGJ55BYWFhbjHMsjt7CwsBjnWEJuYWFhMc6xhNzCwsJinGMJuYWFhcU4xxJyCwsLi3GOJeQWFhYW4xxLyC0sLCzGOf8fsQr9bNNW3AsAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 1 Axes>"
       ]
@@ -93,7 +93,7 @@
     "        self.npts = 0\n",
     "        self.pts = []\n",
     "        \n",
-    "def objfun(mode, x, objgrd, nstate, data=None):\n",
+    "def objfun(mode, x, objgrd, _nstate, data=None):\n",
     "    # Himmelblau's function\n",
     "    objf = (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 - 7)**2\n",
     "    if mode > 0:\n",
@@ -116,13 +116,12 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "4 solutions were found\n",
+      "3 solutions were found\n",
       "\n",
-      "The 4 computed solutions are:\n",
-      "points coordinate: -2.805,  3.131, objective value:  0.000\n",
+      "The 3 computed solutions are:\n",
+      "points coordinate:  3.000,  2.000, objective value:  0.000\n",
       "points coordinate: -3.779, -3.283, objective value:  0.000\n",
-      "points coordinate:  3.584, -1.848, objective value:  0.000\n",
-      "points coordinate:  3.000,  2.000, objective value:  0.000\n"
+      "points coordinate:  3.584, -1.848, objective value:  0.000\n"
      ]
     }
    ],
@@ -173,7 +172,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydZ3gc1dmG7zOzfVe9y5Isy71344JtijG9EwOmxZAQQiD0BPLRkwAhMZ2EBGxqKCH0jgO2sY1t3HAvclPvZSVt35nz/Ri5gcHalWxJZu/r2muk3TlltdpnzrznPc8RUkpixIgRI0b3RensDsSIESNGjPYRE/IYMWLE6ObEhDxGjBgxujkxIY8RI0aMbk5MyGPEiBGjm2PqjEZTU1Nlfn5+ZzQdI0aMGN2WVatW1Uop0777fKcIeX5+PitXruyMpmPEiBGj2yKEKDrY87HQSowYMWJ0c2JCHiNGjBjdnJiQx4gRI0Y3JybkMWLEiNHNiQl5jBgxYnRzYkIeI0aMGN2cmJDHiBEjRjen84T85pth7tyOqWvuXKM+KTu23u7elxgxYvwk6BwhX7UK+fkzyA3rO6a+DRvg0UdBUYzjhg3G87NmwejRoOvGcdasjmkvmr7EiBGjQ5DBWuTufyDrFiFDjUeuXakja95EhpuPWJttRXTGxhJj0sxyxX/6Qb/7EbOXwJAhcOWV0VcopSGce9B1EMIQ79Wr9z0/ahSsWhV9O+3pS4wYMToEWb8E1v4KaNUuRwEkjISEUZA4FmHvcXjabVmN3HIxKA5IPR+RcQXCmntY2vohhBCrpJRjvvd8pwh5f7tccUYSPFmJCEm46SZ45JHoK7z5ZmP0u4c99ek6qOq+5zXtQJHtIKTUwe8GXwPykQfgk3fBYULaVDh+Mkw7DrQAaCGkHgapGYK/ByFAqAjFDKoJVAuoVjDZwGxDmOxgcYLZibC6wBIH1jiwOBEiNs0R46eHDLdA8wZwr4Omb8G9BsJNxou2bEga3/qYiLAkdVy7nvXI6peh/mPje5x8KiLzaoRjQIe18WN0LSEfOUiu/HbzvifaO2qdO9cIYcyeDbfcsm+E34EjchnyIRuLoLEY2VSKbCqDlkpkSxV464wP9YdQzGCyGkfFBIra+n4FIA1R1zXQQ6CHQQsaj0MhVEPQbYkIWwLYkxH2JOPoSAZHCsKRCo5UsCXERD/GUYuUOni2Q+MKaPgGGr9pFXYB8UMhZSqkHgfO/ogOuEOWwSpk1YtQ8zroHkichsj+LcLRv911/xhdS8gzMuTK6up9T7R3RP5DzJoF69bBihUwdiwMGwbPP3/IYjIcQNZuQVZvQtZsQdZtg6Zy9t7KCQWcaQhXFrgyEE5DLIU9yRBMawJYXK2jaDtCidybTEodwgEI+SDsg6AHGfRAsAWCLchAE/ibIOBG+hvB34j0NYKv3jjnuyhmQ9hd6eBMRzjTjb67MhGuDHBlIiyOiPsZI0ZXREoNmjZC/WKo+8oYvSPBlgNp0yD9ZIgb2m5Rl2G3IejVL4LmgeTTET1uPGwhl64l5Pn5cuV5531/BN1JGJMYW5Cl3yDLVyGrNxmjYzAELrUfIrkPIqkXIrEnxGcjVEun9fdQyHAAfPVIbx14a5Ge2tZjNXhqWu8iao3R//5Y4433G5eFiMuCuCxEXDYiPtsQ/S78nmPE+DFksBZq50PNF9CwFGQYbLmQcTpknoVw9Gxf/eFGZOUcqH7JuDvPuAKR9WuE6uqgd2DQtYR8zBjZ2Ta2UteQFWuQu+ajFy0xRrIIQ7SzRiIyhyHShyDsiZ3az8OFlDp465GeKmiuRLZU7j3K5gpoqfxOeEcYdyHxPaBV3EV8j32/W+M67b10e6K8c4wRHTLkhtovoeojaFgO6MZEadb5kH4KQrVFX3ewCln2KNS9A+Y0RM7vIPnMDgnnQEzI9yLdpehbP0Df/rkR2zbbETnjUXpOQuSMQ9iOTuGOlL1C31wOzeXIpnLj5z1HX/2BBazxhqi3iruIy977M/bkDvtHPirpjOyqGADIQDVUvg8V74BvN5jiIes86HExwp4Tfb2edcii+8G7HuImIvLv75Bwy09ayKWUyIrV6OteR5YuNzJEco9B6XsKIncCwmQ9Yn05WpAhLzRVGBO/zeXQVGaIfVMpeKpB6vtONtlaR/E9jJBNq9AbIZtMhGruvDfSFThC2VUxfhgppTFRWv4G1MwzEhDSpkHelYj4oVHWqUHN68jS2YCOKHgckTi1Xf38ISHvlB2CjhRSSmTZSvTVc5HVG8GWhDJqFkr/M40JyhhRI8wOSOmNSOn9vdekFjIyeprKjOyepjJkcznSXWJcSA8WsonLbo3JZyJcma0/ZxkTtFFMFncrxo79/u+xEfkRRQgBSeMgaRzSXwllr7WK+ufIpAmQ/2tE4ugI61Qh/RJIPAFZ+jdwDj5MvT+KhVw27EJb9iSybCW4MlAm3WKMwGOj78OOUM2QkItI+P6tpBGyqdsvTFNhxOSby5FlK4wJWvbPsVdbM4TSwZmx7+hMQzjTwJkOtvjunVo5bJhx3D9GHqPTELZM6H0TsufVhpgXvwBrLkcmTYTeNyLiIhNkYclCFMw+PJ3d08bRFlqR4QD66ufR178BFgfKyCtQBp5zxDMupNSRvhakpxHpa0YGPOD3IkMBI6tECxu543sQCqiqIYImK8JiBYsdYbEjbC6E3YWwxyNMR3cYQmpBaKlqnXCtQu6ZiPVUG9k2nprv5+wrJiP905HSmjuf0ppTnwz2JLAnGXMftkQwO2Lx+hgRITUflL0Bxc9CqNHIdCm4EWHLPuJ9+UnEyGXtNsLz7wd3MaLfaajjrjmsk5dSSmRTLVr1bvSaYvT6MvSGSnR3NbKp7vvpfR2BxY5wJqK4khCuJJT4VERcKkp8KkpCOiIxHeFIOGrFSuqasYJ2Tyqlp8ZIrfTWGiN9b60xERv4AT8MxQy2eGNy1ppgLKiyxiEsrtbcfxfC4gSzw3hYHMbKWrMNTHZjYZfJ1r3vAGJEhQy3QPEcKHnReCLvF5B3FUI9cnf5R72Q61veR/v6cbAloE65AyVn7KELRYjUNbTyQrSi9Wglm9DKtyG9TXtfF85ElKQsREI6SkIqwpWM4khAOOIRNidYHQizDUwWhLpnhacCSGPCSw8jwyEIB5EhPzLoB78HGfAYo3tfE9LbhN7SYIz0m+vRm+sg5D+wo2YbSlImSlIWSko2SlI2SmoOSkoOiiO+w/8uXRGpBQ3B9zWAr8FYMLVn4ZS/CQKti6kCzRBogWAzhP2HrngPirnVSsECqnnfUTEZMf09D6Hu+5y/9xCtnz+A2Lfad+81WHznyMFXQAsFEK0viQPrFq1t7+nD/n1TzKCajbvVPY89FyqTDcz21ocDTPajdnAQKdJfDtv/BjWfgb0n9L8XkTTuiLR91Aq51DX0ZU+ib3obkTMO9bg7O3QULgNewoUrCG1bRnjHGgh4AFBSc1F79EfN6oOS0Qs1NQ9h79jk/zb1T0rwe9CbatDd1eiNVcjGKvSGCvT6CvSGygPuDIQjASUtDyUtDzWtJ0p6T9T0fIQ1tqpT6mEIeoxHyGtk5oS8ratr/cbvWtAQ/HBgn3+OFgQtZCwi08LGUWrG313XQGpIXTcyefb47Egdw56hNbtHSvbaNRzYq/1+lN9/XgLsV8d365aaMUiQWuvv+2UTRYJQjJXKljjjrsUWD9YE47tmT9xrDYEj1UgksCUhFPXQ9XZjZP3XsO1+8JVA9oXQ+xaEyXlY2zwqhVxqIbT59yN3L0QZeiHK2Gs65J9HSolWtIHgms8Ib10K4SDClYSpzxhMBaNQ84eiOBLa3c6RQOoasrEarb4MvbbEeNQUo9UUQ9C39zyRmIGaUYCaWYCSWYCa2RvhiuV/H21Iqbf6+bRecLQQ6EEIB0ELIMN7LlR+CPn2u5h5Wq0hWoy7mWBL6x2O++CWEHsnqTMhLrM13bRH6yR43lFjByE1H+x6EkpeAnsODHwYkXD4JquPOiGXehjtf3chi5egjL8OdciMdvdLamFCG78iuPRt9JoisDkxD5qCechU1NyBR1VcVEqJdNcY8f3qXWhVu9CrdqHXV7BntCdcSaiZvVGy+qJm90HN6ovi6jgnuRhHB1ILGZYQvvp9lhCeamRL9b6Ja2/NgYUcaYikfERyASK5NyKlHyTmddtUU9m4Cjb9HoI1UHAD5M46LIOgo0rIpZRoCx9Abv8MZeKNqIPOa1d/pJSENy3Gv+BlZEMFSno+lnFnYx48GWH+aaUryoAXrWoXWuUO9IodaBWF6HVle2/JRUI6anZf1Ox+raGl3kbcP0aMH0GGA0aKqbsE2ViMbCxCNuyExqJ96wpUq2GRkT7IsMfIGGq4eHYTZKgJtt5tLChKPREGPoAwdTOvFSGECqwEyqSUZ/zYue0Vcm3NS+irnkMZfRXqyCuirgdAqynG//Hf0Uo2oqTnYz3uUkx9x3Xo1VRKifS0oDW70T0tSJ8XGfAjQ0Gk1hozFQKhqgiTGWGxImx2hN2O4nChxMWjWDtPLGXQh1a5E618m/Eo24Z0t7pXCsWYI+jRHzVnAKYeAxBJmbGQTIw2IfUwuEuQtYWG42jNZmRd4T5xT8hDyR6F6DEGkT3KyC7qwkgpofQl2DEb7Pkw7GmEveOcEI+EkN8MjAHiD6eQ62Ur0T65BdF7mjGxGaVgSKkTXP4egfkvISx2rMdfgXnEtHbF2KWUaNWVhEp2ESorJlxZRri6Cq2+FsKhqOsFEFYbSkIiamIKanIKamo6ptQMTOmZmDKyjLzzI4juaUQr24ZWtgWtbCtaeeHemLtwJKDmDGgV94Go2X1io/YYbUZqIWTtVmTlOsPYrmqdMeEsVGOUnjcRJX+yEXPvosiGZbDhJmOuYOjfOyxufliFXAiRA7wI/Bm4+XAJufQ3EX77CrDEYTrnX0aKVBTIgBffu7MJF36Dqf94bKf9BsUZXaaL1tRIYMO3BDavI7h9C3pLa/6yyYQpLRNTeiZqajpqYrIxsnbGoTicCKsNYW7dEUgIY1SuGemHMhBAD/iRPi96SzN6SzNaUyN6Yz1aYz1afS16k3tfJ4RATUnDlJWDuUce5tx8zHm9UBOP3G2p1DVjErV0iyHupVvR68uMFxUVJaMXppwBhrD3GIBISIuN2mO0CamHkVUbkKXL0YuXQsNO44WUvigFJ6D0nmZ46ncxpHc3rL3GiJsPeQyRMrnddR5uIf8v8CAQB9x6MCEXQlwNXA2Ql5c3uqioKOJ2wgsfRG7/HNPZ/0Sk9ouqr3pzHd7X7kWvKcZ60lVYxkZuMSmDAXyrl+Nbvojgjq0gJUpiMtZ+g7D06Y85rwBTZraRK36Y0AN+tNpqwtUVhCvLCVeUESovQauu2JumpiQkYe7ZG0tBHyy9+2POzT+sffpeH71uY7Re0iru5dsgFABAuJJRc/qj9hgQi7XHiAjZXI6+6yvkrgXImk0AiKyRKP1PR+RP7VI2HDJYa4i5pxAGP4pIO6Fd9R02IRdCnAGcJqW8VghxHD8g5PsTzYhcr96I9v6vUYbNRB13TVR91Zvq8Lx8B9LTiOOCP2AqGBFZ+ZZmPAs+xbPoC6TXg5qeiX30BGwjxmLKyukSI0wZDBAqKyZUtJNg0U5Cu7ej1RrxbGGxYundD0u/wVgHDMGUnYs4gi57UtfQq3YZ4l66hXDpFmRjpfGioqKk56P26GdMpGb3Q0npcdTnIsdoH7KpHH375+iFn0JzOVgTUPqfhjLovC4zSpfhZth8B/T6LcIV3QB0D4dTyB8ELgPCgA2IB96WUl76Q2UiFXIpJdpH1yPdpZhmvGo470WI9LXgefF36E21OGbejymn7ZulylAIz5ef0DLvA2QwgG3YaBzHnYyld8fs/3e40ZoaCe7YRrBwM8HCzYQrjZCHEpeAddAwrINHYB04FMVmP+J9M2LtW1sf29AqCiHgNV602FEze6Nm9UHN6o2S2RslOTsm7jG+h5Q6snw1+ub3kEWLAIEoOB51+CWI5O87dHZXjkj64eEakevlq9A+vinqVEOpa3hfvw9t93pDxPPb7i8c3L2Dxlf+hVZVjnXoKOLOnIE5q+tOsrQFzd1AYMsGApvWEdiyHun1gMmEtd9gbCPGYBs2BsXZOdkBUurotaVGdkzFdvSK7WiVO42FKwBmG2p6TyNTJj0fJa0nanpPhD22Q9EepK5B0LB4kCE/hIwMKUIBYxVq2FiBKnXNWBgk91thCq3L+4VhN6CqhvWAyYIwW43wl9WOsDoM2wmTtcsNZmRzJfrG/6Jv/QBCPkT+FNTRVyGSenV219pNtxby8Ke3IesKMV34RlTxr8CSNwnMfwnbaddhGXVym8pIKfEu/Jymd15DSUgk4aIrsQ06+uxFpaYR3FVIYN1q/GtXGBk2iop1wBDsYyZgHTa6U1MfjT6G0WtLjNz2yp1oVTvRqneD37P3HOFMNLxkUnNQknugJGcZfjOJGd0u9i6lNMTX19zqsdOM9O939LcYz+/x4Al4IeBBBnzGz9/13jmcqGbDS8iZYHwGcSn7TNwSM1CSMhHxqZ1yFyX9TYagb/iPIej9TkUd/YtuvRdBt10QJJsrCL9xEcrIK1BHR75Bs1ZTjOfZGzANGI/93N+1afQgdZ2mt17B+9U8rENHkXjp1SiOw+uh0BWQUhIu2Y1v9TJ8q5ejN9QhrDZsI8fhmDAVc6++XWb0JaVENtftc56sLUGvK0WrLQX/gUvGhSMBkZDW6hSZYjhHOhONhz3esAi2uQy/GZOl/TurS90Y/Qb9yKAPAt5WkfUgW03Q8Hv2CbL/O2Lta/lx50zFZPTZ6jT8fVpHx8LiMN6DxY6w2hFmG8JiB4vVGACZLAiTBUxGtpRQTMbORPubeEGrN4sOumbkeYdDxtL9UBAZ8kHrBWPvRcXjRnrdhplbSz2ypZEDPGJUE0pytuFPlNZ6N5VZgIg/MplL0u9G//Zl9E3vgGIyrK2HzuiWq0i7rZBra15EXzUX00X/iXjyQkqJ9993oVXuwPXrZ1Cch/ZHkVLS9OaLeBd9gfP4U4k756IjOiHYVZC6TnDHVnzfLMa/ejkyGMCUlYPj2BOxj5vUKfH0tqJ7m9AbKpANFeiN1YaZmLsG2VSD3lJ/wEj+eygqmG3Gil6T2fCHV00HCh3S0CndMMaSWtgI/YRDyFDA8C1pC/t7zdviWj3n477/+wE/u8Dc9cIZ+yO1ELKpzvi711cYBm61JWi1JciGSvZaQDgT9601yBuMmtXnsGZVyaYytGVPIYuXQFIv1Mm/R0kfdNjaOxx0WyEPvXUFwhqH6YynIm4nvGst3n/fiXX6L7GOO6tNZVq++Jjmd1/DeeJpxJ19UZf+whwp9IAf/6pleBd/SahkF8JmxzHpeJxTT0ZN6j5LqPcgw0FkSyPS6zasgX3NrSNl797QhCHIIcNHRNf2jVJhn92sohqbgSgmY5S7Z8RrthobgphbNwexOvZ7OMHmNEbQP8FJWxn0G3dRlTv2LijT68uNFy12TD2HYuozGlOfsSgJaYelD3rRYrQlj4KvDmXYJSijZ3Wb0Xm3FHLZXEn4jRkox/wGdeiFEbfjefVu9OoiXNc9a3zBDkFw13bqHvsjtmGjSbzy+g5fpu8rqqVpQwmewkp8JXUEa5sJub1o/iBS0xGqgmq3YI53YE5xYctKxJ6XirN3BnEDemCK6+RYtZSEdu/As+Az/N9+Awjs4ybhmn4WprSukeoVo/uhexrRijYQ3r2W8M41yMYqAJSsPpgHTsI8aApKYnqHtimDLcbofNvHiLSBqCfcY+wb28XplkKub/0QbdHDmM5/CZGUH1Eben0FLX+/GuvUS7BOvuiQ50stTO1DdyIDflLveBDF3jGhA19JHZUfrKJ2/iYCVcZqTNVhwZ6XijU9AXOiA8VmRqgKUtPRfEHCbh/Bumb85Q2EGlrDAAKcvTNIHNublGMHEDc4B6F03t1CuK4Gz5ef4F26ADQN+/gpxJ167hFdTRrj6ENKiV5XSnjbckJblqKXbwNAzRuCecRJmAcd26ZBWVvRdy1AW/Sw0cbxd6Pkju+wug8H3VLIwwsfRJZ8jemS9yMeHQcWvUFg4Su4rp/bpls075Ivcb/+PEm/vBHbsMh2yz4Y/vIGdv/zf9TO34RQFRKP6UPKpH4kjMjH1iMZoQhCTQG8Fc2E3H70oIYwKZhcFmxpTmxpTuOcRi+e7ZU0bSzBvXo3TeuLkWEda0YCGaeNIPOsMVhSOs9ISHM30jLvfbyLv0SoKs4TT8c17QyE5cjukRrj6ERvqCS0YSGhdV+gN1Qg7HGYR56MZcwZKPEpHdKGbCon/L87oX4HyjHXogyZ0WVDqt1SyENvXYFwZWA6+eGI22iZcxNCUXHO+tshz5W6Ts0fb0NxxZFy8z3t/hArP1zNzsc/AUXQ44LxZJ0/Dkuyi7AnSMUXO6lauIu6NRX4Kw9iyN+KajMR1zeF5JFZpE/II3VCDqrFRNgToH7JVqo/W0fjih0Ii0rmGaPI+/lUzImdl1kTrq2m+f038K/5BjU1nYSLrsTaP7LdxmPE+CGk1NF2rye46iPCW5eDUDAPOwHrpJ+hJGW2v/6Qz7DG3r0QZdD5KBOu75L7D3Q7IZdaiPAL01GGXYw69uqI6pf+Fpr/NhPrlIuxTrn4kOcHtm6k/qmHSPz5tdhHT4iore9SNGc+JS9+ReKYAvrefjbW9HjC3hCFc1ax8+VvCbcEsaY5SR3Xg4QBaTh6xGNJtKHagzhybqXhiRPxb6yhZfSJuD9cRkOzDT0M5ngrOWf0p/flI3DmGQZfvpI6Sl9bQtUn36LarRRcfzLppwzv1NFEYOtG3G+8gFZTiWPqdOLPvhBhjo3OuzJS19E9zejNTYZJm9eD9PuMRzBoGLlp2j5PesXYA1SYLYblst2OYneguOJQ4hJQ4xMP6x2Z3lBJYNk7hL6dB1LHPPJkrFMujtr4bg9S6ujL/46+4T+Gu+rUP3S5SdAfEvKu1cv9aa4AqSES8yIuqpUXAhI1Z2CbzvevXYGwWLENbV9IpfLD1ZS8+BUZp4+kz61nIFSFpsI6vrn+QzzFbrKn96HgshEkj8yipczLrs/K2P1+DU3FHpL7fcPxj7zLrtJctA9ryXzvE/qFN2D67a+pPe96Sj/aStGbG9j9xnp6XTyMgTdMwJ6bQt/fnUWPGRPYPvsjCh98D/faIvrcegaKqXMyIqz9B5N2+59pev8NvAs/J7SrkKRf3hiLnXcyesBvmKtVV6BVVxKurUKrr0NrqEN3NxqZOT+G8t088x8fACquONSUNNTUDEwZWXudOdXU9HYPNJSkTOyn/hrrpBkElrxBaPWnhNbPxzplJpaxZ0SdwiiEgjr+OrAloq/8F5quoR5/V5cT84PRZXsoW1rNlOKyIi6rVRvOikpm25bkBrZuwtJ3YLtGEcG6FnY++SkJo3vtFfGW3Y0sueIthFll0ovnkTo2h6biFj6+YhE7PigGCdZEC6Z4C31OX4qU4DimlCVvnskacRqqDNIvMIBxPVMZ/XA+g287lq1//4ad/15L9ZJixv/jTJx5iTjy0xj62OUUv7CQkhe/QvcF6X/PBZ02GSosFhIuuAxr34E0vvxPamffR8p1t2PKiPyzjBE5utdDqGiHYZpWUkS4rAitbr+t1oRATUpBTUnD2ncgSkISakJSq82yC8XpQtgdKFab4XNvMn1vLYXUdWNjlGAA6fejez3oLU3ozU1o7ga0+lq0uhpCuwrxr162V/iF3YElvzfmgn5Y+w7EnN87auFV4lOwn3otlnFnEZg3h8D/5hBa/yX2M36LmtUn6r+fOuJSUFT0b/6BZrKiTrm9S4ZZ9qfLCjneWgCEI/JcUr2hAmzONm2QrAf8aNUV2MdOjLid/Sl/azl6IEyfm083MlCkZPXtnwEw+eXzceYlUr2mjnfO+QI9pJN1XDaF8yspL9GBAKcfuw4hIHPCSkpaZpCu1JBlLqPwPyYK3y3ihCfGM2BGL4bfczw9Tu3Lihs/Zsmsd5j6nwuxpjgQqkLPq45HdVjZ/Y95uAYuJeei9r2n9mIbPoaUlDTq//4wdU8+SOot96AmdcwEVYx96J4WAts2Edy2ieCOrYQrSve+pqZlYs4rwD5+CuasHNSMLEwp6YYXfjsQioKw2sBqg7gf/57JYIBQRRnh0iKCxTsJ7dpO4OO3aZESYbNh7T8E69BR2IaOimoFtZqSg/3CuwlvXYb/02fwPH8r1skXYZn0s6hz9dVhF0M4gL56Lro9CXXcr6Oq50jRZYVc+ls3TrBFvlu9bKlHiWubYOwZqZjS2jdhUvfVFhJHF2DPNdqtW1lGw7oqRtx/As68RMIBjY8v/wpLvJlTXnmUrOGLDigf8hsfRUrfCh7SD4zrly8YyX/PuRlHqo28E7JIHZfDhOfOYdHMN9n4t8WMenD63nN7XDSBprVFlLywkMwzRmFydW7uuTmnJ8nX3U7do3+k4bknSLn5riPqiX60Eq6uwP/tSvwb1hDavR2k3GtTbBt1DJZefTHn9UKxd/5u9cJixdKzAEvPAhyTjgdaLz6FmwluWY9/47f4167ErapYBw3HccxkrENGRPR/IoTAPGACpp5D8X36DIGF/ya8ex32c2+LesNwZeQV4K1DX/caIj4XZcCPWkh1Kl33GxXyAgKitKwVtra54enNTQAo8ZFfMPbWEQzjK64l9YTWLI25c6l9twSUZHp89Tw0DaYkezpNxR6mPTOR1y87m6s+24otsQGL3XD1M9vCBxwBQl4TLdWJhN87hsSCOJY9sJa8E4zwROKgdPJnDGHX6+sZdudxmJxGWEgIQc5lk6n/ehsNywpJm9Z2p8fDhTk7l4SZV9E49ynD+uC4thmXxTgQrcmNb8USfCu/JlxqhA/Nub1wnXw21oFDMfcs6DYXScXpwj5iLPYRY4mXklDRTvyrl+Nb9TUN61ejxCfimHwizmNPRHG13dlS2F04zr2VYMFI/J/8Hc+cm3DMuDOqUIsQAmXiDciWCrSvH4GkfJSMIRHXcyTouoGfcADUKA2MtBC0MVNChgwhbU9mhR4w6jC5Wp0ZN2wg9M1aTLOnnU8AACAASURBVCEfpicfgQ0b8FQa+1kqTjNVG3J4/ufPse6jEfg8B2830GJh+3t9eWTI3yjOv5GeJ2VTt6nxgHOSR2YhwzresqYDno/rb6xQ8xbXRf2eOhrbiHFY+gzAM/9TOiNTqjsT3L2dhuefovquG2h+9zWEqhJ/3iWk3/8Yqb+7n7jTz8dS0K/biPh3EUJgye9N/HkzSb//cZKuvglzj1xaPnqL6ntupOmdV9Gamw5d0X5Yhp9opB4rKp4Xf09o2zfR9U0xoR5/DzjT0b64B+lvPHShTqDrCrnUDC+Lw4xQW9s41Kz9j6A6rAiTQrCuNS989mzsoUbCqg2fKR5mzyZlkJEa5S1pwRpvJlCs8viMG3n7/nPwew8U84DXzH/vuYAvZl5AyGujx5J/U7qoisTeB45MvOXG/qCWpANXoWp+w7RJtXadL7YQxnJ+rb4Wraqis7vTLQju3k7dkw9RN/s+ApvX45wyjdT/e4jUW+/DefwpR+V8g1BVbENHkXzt70j9w4PYho/FM/9Tau67hebP3jN81duImtEL56y/oaTl4XvzzwTXz4+uT9Y4TCfeB/5GtEUPd8mBSNcVcgQHWGFGgmpuswOdaJ1c0T0/vDjnkHWoCs4+mTStKzaeuOUWMlqMvQSLE8fDLbeQOTaV7InpLH9gLSfc1IeGbc30TraT26sBVdHRdQh4LOg6KIqkX98KSsVgJgyrYPMKC3UbGxl7674wScgTZNer60ganokt7cAJovqlhQC4BuVE/Z4OB2qq4ceiuRs6uSddG72lmcaXnqFu9n2EK0qIO+di0u9/jPjzL8Wc2b03NYkEc1YOiZdfQ9ofHsLSfzAtH/6XmgfuILBlQ5vrUFxJOC97ADVvCP73Ho1ezFP7o4y9Glm0GFn4SVR1HE66rpArJmP3kigQNifyx6xK92NPfrNW374wRMqUgTRvLMWzsxqGDCHuNzPJmlZAYcapNGUMRAjBKXOPxZlhZ93j65lwYSY5wzxMuvJLhAB3cSpvXHo97pJUhIBRV37FtB4fUbdDsL0uj2PHldLnbCOnXguEWXXLp/iqWhh827EH9EPzhyh+fgH2nqkkDO/ZrvfU0eydj/gJeLtHS2DbJmoeuAPf6mU4p59F2j2zcZ14Wpe2DT7cmDKzSf7ljSRfdzsIhfqn/4L7jeeRwUCbyguLHcdFd6HmD8X//mOEti6Lqh/KkJ8hMocbZlutWXVdha4r5CYb6CHD2D5ChCMB6WlbLEuJT0DY7Hv3sYyWzDNHoTos7P7HPOSsWfDIIwy763jMqXF8/ZGgcVM1riwHF355KoMv603Rp6WMm/k8qkWjdPFEPv31cyj10/jsV89SsvAYVItG2t3lxOl1/Mz7J0Z9/nsAWnY3sPjyt6j6ajfD7z6elFH7HNukplP44Hv4y+rpfeNpnWqqdTD861Yh7A5M2V3rTqGr4Fu1lPqnH0Y4nKTedj/xZ/6s03dn6krsWWzmPPE0vEvmU/vXewhXlreprDDbcMy4EyWrD753/kq4bGvE7QuhoE7+HWhBtGVPR1z+cNJ1hdzSOmoLeiMuqiSkIT2Nhqf0IRBCYM7NJ1S0M+J29sec4KDnL0+gYfl2yt9cDoAtzcnEOeciTAqLZr7Jtn+twGRTOOHx8fx8/TlkT4xjzT9uY+EtN+He6Mezuwl/Oaz9x33seOgC+pmX8TPvH8nSCvH95nds+Msi5p/9bzxFjYx74nTyZ+ybQdcCIbbe/za18zeSf81JJI7uWvsThkqL8K9ehmPC1G47KXc4CWzdSONLz2Ap6EvqLfdi7hH5iuafAsJiIf6ci0m+9jb0liZqZ9+Lf9O6Npa147jwboQrGd+bf0ZvjvwuXCTkogybidz5BXrFtxGXP1x02W+UsMYbPwTcYIuPqKySZKTo6Q2VqOmHDi9Y+gyg5dN30T0t7dp0OOvccbhX72bX059hirORceoI4nonc9ybF7H2vvlsfmwpO19eS955g8ie3oeUge+QOkgw8mBrDeYW4VueT/Fbs6h4/H2qFjqQ4ltyzxrAoJsmHhAX9+yoYuuf3sG7s4r8X59EzsWduxDou+g+Lw0v/B0lLh7X9LZt8PFTQg/4aXz5n5jSs0j61c0/6TBKW7EOGErqbfdT/+xjNPxzNgkzf4HjmMmHLKc4E3DMuBPP87fie/thHJc9EPGiIWX4TPRtH6Evfxpx9r+6hFNilxVy7EYSv/Q1IBJyIyqqpBrn6zVFbRJy68BhtHzyDv5Na3GMnRR5X1sRiqDf3eex+Y7XKXzwPXyldfScdTzWFAfjnjid2hWlbH9+NYVzVlH47EpMLgtxfZKxZ7gwx1sBQdgbxF/toWWnTqAuFxb+D5vNQu+fjyJ/x/s4+zihVcRDbi8lLy+i4q1vMMXZGPSXmSSP7xt1/w8HesBPw78eQaupIvm637frQnm04lu6EN3dQNJV18dEPALU5FRSbvg/Gp57HPcr/0KGQjiPPeHQ5dJ7Yj/9N/jenU1g0evYpl4SUbvCZEMd/Qu0rx5E7l6I6HVclO+g4+iyQi4cralVnpofP/EgKGm5oJrQKndgHjzlkOebexagJCbjX7m0XUIOoFrNDHroYnY8+jGlLy+mYdl2Cn57CgnDe5I6NofUsTkE6r1ULy6ifm0lLTvqadpWR6g5ABJMDjPWNAfpk3uSMDCN1IWvEz/nYcSa1gwex034yxuoeHcFle+tQvMHyThtJPm/moY5sfNX8e2P1uym4V+PEiraSeIVv8bat20mZj81/OtWYeqRh6VX17oIHwqpS/xl9Xh2VROobCTk9qL7jTUVitWMKc6ONS0OW04Kjl5pqNb22QIcDMVmJ/lXt9Aw5wma3ngeYbW26TtsHnIc4R2rCS7+D+Z+x0S8YEj0mQ7rXkVb/Twif0qne7F0WSGndaNl6amOuKhQzaiZvdFK2zahIRQF+9hJeP73IVpDfbv3oVQsJvr+/iySxvdl5xOfsP76F4gf0ZOss8eQPKk/1mQHuWcNJPesNgjbpcNhzl8IWOKpT+5HrTYc98VPgCJIO34wOZdNxtmrY7fB6giCxTtpnPMkWrObpKt+i23495w3Y7QSrqnE2r9rrhj8LnpYo37JNmrnb6Rx5U7CTb59L6oC1WIGAXogjNT0A15z9s4kcVQ+yZP6Ez80r8Mm44XZTNJV11P/zGzcrzyLGp/YJi9828lXE969Ft+HT+C86tGIQixCUVFHXI624I/IosWI/EMPGA8nXVbIhcUFFpdhZxsFau5Agis+RIYCxia4h8Ax6Xg8//sQz1fziD878v1BD0bq1IEkHdOHyvdWUv7Wcrbe9xaK1UTCiHziBufg6JWOLSsRc6IT1W6MVjRfiFCTl2B1E76SOjyvf0jT6Ovxt96h2DftIG/WiWScOgJrRvS2AocLqet45n9K8wf/QYlPJOXGO7HkFXR2t7o4nR9jPRRSl1R9vIbi5xcSrGnCnOxsFeRcnL0zsGUnYYq3740XSynRPAEC1U34imvxFFbiXl9M+X+XU/b6Uixp8WScNoKss8dgSW37EvwfQpgtJP3iBuoeuZ+GuU+Rett9mFJ/fIAjbC5s06/G99ZDBFd+1OYN2veWLzgeVs1BX/caSkzIfxgRn4NsKj30iQdBzR8Oy95FK9mEqWDkIc83paRhGzEW7+L/4Zp2eofFclWbmR4XTiD7gmNwf1tE3eItuFftouGb7W1a72S224jLFmTOPImkhW/jGDMQ8fOpHdK3jiZcXYn71ecI7tiKddhoEmdeheJs/5f0aMeUmk64on3pr4eTUKOHLff8F/ea3cQNzqHPLaeTdEwfhPrD4QQhBCaXDZPLhrMgndTjBgEQ9gZoWFpI9adrKXnpK0pfXULmGaPI/flULEntW1+g2B0kXX0TtX+9m8bnn26TQZtpwETUXiMIfPUalqEnIOxt/94LxYQy+AL0ZU+g12xGSeu80GGXFnIScpGVa6MqasobAqqZ8PaVbRJyANcp5+D/dgUt//uQ+LMPvWFzJAhVIXF0r71pgWFvAH9JHf5KN2G3Fy0QAmkIvynejiU1DntO8oHbt3WyLe0PIUNBWv73ES2ff4Awm0m45JfYj5ncJWbzuwOWfoNo+eSdDgnrdTQht5d1179AoKKRPr8/i4zTRhz0c9X8YWq/KaVxQxWeEjehpgBSSkxOC/YMF3F9UkganokrP5G0E4eQduIQfKX1lL62hIr3V1L9+Tryr5lG5lmj2/V/Y0rLIGHmL2ic8wQtn7xL3BkX/Oj5Qghs067E8+wNBJa+he2EKyJqT+l3KvqqZ9E3vYsyNSbkB0Uk5SN3zEMGvQhLZBN5wmLDlD+M0LZvsJ70izb9c5izc7GPmYhnwec4Jh6PKS0j2q4fEpPDiqt/Nq7+2Yc+uYsipSSwbhVN776GVluNbeQxxJ9/KWpC+7bc+qlhHzuJlk/ewbNoHvFndUxYr6MofOh9/OUNDJl9KQkj8r/3ur/Wy7ZnvqH43c1o3hAIsGW4sCbaQAhCLfVUVLagh4x4uT07jh6n9qPnBYNx9Uym721n0mPGBHY8+jE7Zn9E/eKt9LvzXMwJ0U/c20eMJTDuWFrmfYBtxFjMOT+euaZm9MI0eDLBFR9iGX9Om/Yx2IOwOFF6T0Mv/Bw54XojJNwJdHEhN0avsmEnIgr7SNOAiYQ/ehK9ckebZ6Xjzr4Q/7pVuP/zIsnX3hYbVf4AweKdNL/7OsHCzZgye5D8m99jHdA9Juy6GqbUdGwjx+FdOA/n1OmoCdH5Z3c07nXF1C/ZSv410w4q4tVfF7Pylk8Je4LknN6PnDP6kzwyG5PjwOwUqem07G6kbmUZlQt2sePFNWyfu4rs6X0YeMNEXPmpDHn0MireWcGupz9n7a+eY/BfL9nr7R8N8eddQmDTWtxvvkTKjXce8ntsnXwR4Y1fEVzxYeTpiP1Ohy0fIHcuQHSSZ3nXXdkJiOTeAMi67VGVN/UfD4qJ0MaFbS6jJiQRd9YMglvW4/t6QVTtHs2EK8tpmPskdX+9h3BFKfE/u5zU2/8cE/F2EnfGz5C6TtNbr3R2V/ZS8/k6VLuFrPPGfe+1hvVVLL/2A+wZTo5/dyajHpxO+qSe3xNxXdNBCOJ6J5N/4VDG/+Mspn8xi76/HEPVoiLmn/0KW59ZAbok+7xxDH3i52jeAOuuex7Prsgz1vagOF3EnTmD0M5t+L9dccjz1dRcTP2OIbTyozatCN8fkTYQEvLQt38ebXfbTZcWclyZYI1D1hVGVVxxxGPqM5rQhoXICGxqHceeiKXfYJrefoVQF56EOpKEa6pofPmf1DxwO4GNa3Gdcg5pd8/GOeWkfVbAMaLGlJZB3Cnn4F/zDb5VSzu7OwC0bKsgbnAOqu07I2wpWXvvl1iT7Ux8/jziCpIPeG3XZ6V8OHMBz/Z+k6eSX+XJ5H8zZ+DbfDhzARteKERYzAy6cSLTPrmcrGm92fLEUr7+5XsE3X7iB+cw9KlZCEWw8ZZX8Fe5o+6/ffwUTJk9aP7oLaSuH/J8y9gzkb5mQpsWR9SOEAKl4ARk5Vqkp3PMtLq0kAshECn9kLWRG9zswTz8RGRLA+Htq9rerqKQePmvEFYbDc89ju6L3O/laCFcWU7jS89Q88fb8K1ZjvO4U0i7dzZxp5+PYo+tQuxInNNOx9yrD+7X5xKuruzs7hBu8mE+SCaJe1MN7s019L92HNb9vPC1kM7nv1zCBzMWULWmnl6n5HDMyWFGD60g59h0ar/awZc3LGfuoLdZ9ue1qE4rY2afyog/TaN+VRmLL3+LQJ0XR14qg2dfhuYLsvn/3kAPROmCqii4TjsXraoc/9o2jMrzh6Gk9CC05rOI21IKTgAketGiQ557OOjSQg6tty31O5DhyG539mDqMxbhSia06uOIyqkJSSTOug6ttpqGuU8io7TU7a4Ei3fSMOcJah64Hf/aFTiPO4X0ex8h/ryZqIfYbDdGdAhVJennvwHFRMNzj6H7fYcudBhR7BY0z/e/d40bjZBH2oQDjb1W/G09W9/czfg7h3PxotPwma3M+1jlgyV5LHiuBHdDNef8+zFyjkvgm4fX8+qkj6hZ30DP8wYx/p9n4y1xs/RX7xH2hnAWpNPvznPxbKtg97/+F/V7sA0fi5qWieeLQ3//hRCYh5+EVroZrb5trop7SexpZNnFhPzgiPSBIDVk7bboyqsmzCOnE96xOuIPx9p3IAkXX0lwywYaX/5Xm27PujNS1/Fv/Ja6Jx6g7q/3ENi6Edf0M0m791FDwON/IBtl1iwYPRp03TjOmnVkO34UoSankjTrN4SrKmh88e+d+j9nz00x/PW/Q9hrbNpijtu30E4P66z9x1Z6n5XHyOsH8exJC1n69Hayj+tJrlxLErtIn1BM3hmrqK79mtxzCgj7wvz3lM8oW1JF2vhcxj56Gu4ttay990sAUib1J+ucMZT/dznNm6MLcQpFwTl1OqGinQSLD+1wah5yHCAIb2j7vBq0hlfyJiIr1iJDR/4OvusLeZqx1FZWt31XkO9iGXUqKCrBb96PuKxj/BTizpyBf9VSw5hHi35LuK6KHvDjWfwFNQ/cQcMzswnXVBq70tz3GHFn/Aw17hDuk+vWwerVoKrGcV3bbEVjHBzrgCHEn38pgQ3f0vT2K522tVjCsDwClY34Sg60e7UmG6mBvup9u2o1l3oJuIPkT89mzSu7qVjbyIkPDuXreUUsYxDbScU1rQQpod9Zm1j+cgl6dhLOLAcfXLSA+q1uMqbmM+DacZR+uJXyeUaCQ89fTcOc5GLX059H/Xewj5sEZgu+rw8tzkp8CmreIEKbI4uTA4jc8cYeCuVroulmu2i3kAshcoUQ84UQm4QQG4UQN3REx/bW70iGuGxkVfRCrsQlYx4yldC389C9kU+euKafiev08/GtWGKEWdq4M0lXJ1xTRdPbr1J91w00vfECisVK4uXXkH7vI8auNG2Nga9Y8eO/x4gY55STcB5/Kt6F8/B88VGn9CFl8gAQUD3vwAtz4hBj6Xv9qn13uIraujQ/LClf04gt0cyahZXYnAqu3FpWm3UGnr4GISB/6gqCSSZ2LKxByU1CtSh8etVitJBO36vHEt8/lQ1/WYQWDGNyWsn7+RSa1hXjXr0rqveh2B3Yho/Bt2Y5MnzoEKlpwET0mmL0CO/gRcZQMNmQZUf+/78j8sjDwC1SytVCiDhglRBinpRyUwfUDYDIHIosWY6UMuq8bsvE8wmt+4LgNx9gO+7SiMvHnXIOit1B01uvUPf4n0n6xY1dbhVeW5BaGP/6NXiXzCe4ZT0oKrbhY3BOPQlzQb/o/r5jx37/91Vtn1yOcXDizrkIzd1A83tvoLjicYw/sn4e1owEksb1ofL9VeReMhmldTNvV68knHkJlH68jfwLjX1kXT0cWBLMVKyowRrvZMaLDzLozJUH1BcIGNlNGX0reKTuwBWXOz4axaaX+zL0yn4MvmUSS69+j9IPttLz/MFknDaS4hcWUvbmchJHR+fbYx89Af/Krwls3YBt8IgfPdfcdxyBz58lVLgC6zFnt7kNoVoQGUPRy1dzpPO42j0il1JWSClXt/7cDGwGOnSHWCVjOPgbwV0cdR1qai6mARMJrvgA6Ytuo2Xn1Okk/fJGwlUV1D58J/6NXWeHkEMRqiij6d3XqL7rRhrnPEG4sgzXaeeRfv9jJF15HZbe/aNf/DRsGIwaBZpmHIcN69jO/0QRikLiZb/CMmAo7lefw9eGfOiOpsfMSYTqPVS8t0+UhRD0vGAwdSvK9k58CkXQ+/Rctr9fQu64ZD6940LclekEfftSF61WIyxpse4bFYd8FprK09n21i9Z89RmpJSkTcojvn8qu15fDxhuohmnjaRhWSHBuui+u9b+gxE2G/51hx5gKEmZKCk9CO9cHXE7InskNO5G+tq21WRH0aExciFEPjASWH6Q164WQqwUQqysqamJaFJMZA0HiNp3ZQ/WyRdBwEtg2TtR12EbOorUW+9DiU+k4ZnZNL42B93bto2ejzRakxvPgs+o/es91D5wO575n2HO703Sr24m/b5HiTv13I5ZTv/888YIXFGM4/PPt7/OGAAIk4mkX/wWc35vGl94msDmIzv/kDgyn8QxBZS89BWh/Sxr8y8cijneyqbHvt4bux5+zQBCzSHc62vRw4N49vinWP3+KPzeg7uPBjxWChdN4K/9HiZlyGQadzRTu74BIQS5Zw/AvbEaT7EhiGknDQVdUrdoc1TvQ5jNWAcMJbBpXZti7WqvkWjFG5FaKLJ2Mlq1qmp9VP2Mlg4TciGEC3gLuFFK2fTd16WU/5JSjpFSjkkrLo5sUiw+B+zJ7d4jT83ohWnQZILfvI/e0hB1PabMbFJvvRfniafhW7qQmj/9Du+S+V1iIlRrduNdMp+6px6i+s7raXrrFaQWJu7cmaT/8XGSr74J25CRCKXLz3PHaEWx2ki+5lZMWTnUP/sYgcLoxCxaev1mOmGPn93/mLf3OXOclf7XjqNmSTEV83YAkD48mQEX9WLNk5uZekMfarfqfHnvXbx11/n4vQcuKvJ5zcybfS5v330HIa8NU7KxyXT5cmMjmczjjBBKzdISABz5adiyk2hYviPq92EdMAS9sR6t6tDW2Kb8oRAKoJVHthhRpPYDxdyuOb1o6JBvsxDCjCHi/5ZSvt3mgm2cFBNCILJGICu+bfcMvnXqJRAOElj0ervqEWZjE9jU2+5HTcvE/fpcav78e7xfL0CGgu2qOxKklIQqy2j54iPqHvsT1f93Pe7X56LV1+I86UxS//Agabf/GdcJp6LGx/K/uyuKw0nytb/DlJJGwz8fIbg7OtuKaHD2zqDHjAlUfbSGhhX7hLTXzOEkDEpj3R/n4681Uu4mPzgGe6qVTf/cxKTr+tC0tYV+IxtQFYmug99jRtfBrGg40mpIzTMWHJnjLKhWheZi4+7W2TMBS6JtX+hGCBJG9KRpfXHUGmDpZ2TABbYf+kKo5hrnaiWRTfUJkxWR0hdZszHyDraDdk92CiOwOgfYLKV8JKLCEUyKiayRyJ1fQlMpRLiH5/6oKT0wjzqF0OpPsYw9AzU1+roAzLn5pNx4J4H1q2n+5B3cr82h6f03cIydhG30BMw9CzrUeEtKidZQR3DHVoLbNhHYuhG9wUgPM2Xn4jr5bGzDx2DqkXdUGn7JoB+9qQbZ0oD0NCJ9zUhfCzLkh3DQWLglJQhheFGbrQirA2GLQzgTUOKSEfFpCGdit/v7qHHxJF93O3WP/Yn6v/+VlOvvwJybf0TazrvyOOqXbKPwofcYOfcazAkOFJPCqAens3DG66y+/TMm/PNs7MlWTntxCm+dMQ/7phomXudk1IzPkQjqilN55abLuOLRF4jLamLKVQsQnhC7/wsZgxJQzIrhzYIh3K6CZFqK9sWaXQN7UPXxtwSq3NgyIw8JqqnpKPEJhHYWwrEn/ui5ijMBJTkbrXRLxO2ItIHo2z5G6lrEGztHS0dkrUwCLgPWCyH2xD7+IKX84aVUo0cbX7YIJsWUrJHogKxYE/FmzN/FOmUmoQ0L8M97DufF97WrLmj1NB42GuvQUQS3bcK7+As8i7/As+AzlIQkrAOGYOndD3NuL0wZ2Qhz2/YulKEQ4bpqtKoKQmXFhEqLCBXtRG8y/rmFw4m170As08/CNng4alL0bnFdCSklsrkOrWoXek0Rem0Jen05en0F8ofSR5VW0VZVQIDUDVEPBUAeZFGN2YaS0gM1NRclswA1qw9qVl+ExXZY31t7UROSSL7+Duof+xN1T/+FlBv+D3NWzuFv12qm/13nsfbXz7HtwfcY9MBFCEUQ3zeFYf83lW/v/pJNjy1l8C2TyDomjVPmHMsnP1/Eqb99DdWisfaNCXxy3ZUk127h9c8v4bS575N/YTHOxIfJm3ALcRkWQi1hnOn7Ul6tqXaat9fv/d3RMw0AX3FtVEIuhMCc34fg7raFZ9Qe/QnvinxeTqT1h01vgbsEkvIjLh8N7RZyKeViotmrKtL0tIRccKSil69GGRDZlkzfRXEmYJ1yMYF5cwhtW4653zHtqm8PQgis/Qdj7T8Y3evBv341gQ1r8G9Yg2/5oj0noSYmoyQmoThcCKsNYTKBlMhQEN3vR/c0o7sb0ZvdxgVvT7m0DCz9BmHp1QdLQT9M2blHRaxbBrxoZVvRSreglW9DKy88QLCFKxklJQdTv2NQkjIR8akormSEKxHhSEBYnQjTwS+OUkoIBZC+JqTHjd5ch+6uRjZUotWVEi5ah9ywoLUhBSWzAFP+cEy9RqDmDf7BejsTU3IqydffYYzMn3yIlBvvxJSeedjbdfXPotdvprPz8U8pfXUxuZdOBqDnBUNo3FjD9jmrcOYlkP+zIfQ5K49TX5hMyPtPFt/9GxL630xSyjJ21o0FHzxz8bGM/mw+A8/YzkX/z955h0dVpX/8c+6dPumNVCAkBKT3oohIEwTBtfeCvXfXXXX3p7uuuiu2dV11FftasGGniIL0XkKVXkIgvU2/9/z+mISikMwkMynsfJ7HJ87k3Pcc8sy899z3vO/3fW8IO7/zV26mn3qkPZtqNCC9R27C5jS/83Y3QUjL2D4b97qV6E5ng3USSloucv2P6FUlKNGBb5JEYh4Asngroq048ubicJy8YFWT8snrMA2YiHf1LFwzX8OQ3RthDO1OTLHZsQ0+Hdvg05G6jlZ0EO/eXfgOFqCVFKFVlKNVlCHdLn/anhAIoxFhtqBGx2DMaI8an4ia3A5DShqG1HQUc+veLQaK9LrR9mzA99V7+Mr3oBu9h3fNSnJ7DLkDUNNyUNp1Qk3pgLA0XqxfCAEmi3+nHZuCym871es15WgHtqHt3YS2ZwOepTPwLP4UTFYMOf0wdj0VQ+dBrWq3bkhuR8IdD1H6whOUvPQUiXc9jCExOezzpp03i0DQFwAAIABJREFUiMr8fez+z1zsOakkDPX/PXv+cTiOgkrWPvYjplgL6WNzyZ3UngPLP2XRYz/jPLSYfnd1Z+LZWRxYX0FlgYukvFPpcnY63movS59cR2L3OFIHJh2ey+f0olqPuChTbbcsb0XjS+CNGf4mE76CPZhyutQ7Vk31y2hrhTuCcuTEtQfVhCzdBoxt7FKDos04cgAlrR/a9jlQvrvJjyxCNWAZfwuOd/+I++ePgm7xFNRcioKhXRqGdmlhm6O1o5cewLttOb5tK9B254NW29puXwmmXaUYdpeiTroU8cgLzb42xR6HkjsAY+4AwB+H9+1ah++XZf7/Ni0Eoxljl6EY+4xB7dADIVr+SchY29Cj5MW/UfrSUyTe/WjYuzMJIej84Dk49xSz5fFP6fXyFOzZKShGlYHPnc3iG75gxf3fM+DZ8aSPziFtYDKXLZzAz39cyYqp+ax7fQu5k9rTcUwGlkQTm97bzsoXNuAocjH+7WPbAzoLq7CkHFFfFCYVFIHmbHwygSHdH4byHtjfsCNP6QiAfmgXdB5Y79ijEYoB4jogSxufYRMsbcqRi3R/7039wGrUEDyyGDr0xNhrFJ4ln2PsPhy1XXaTbUbwI6VEL9yOd/MifFuWoBf708iUxExM/cdjyOmHmtkNYTmqpdczz7fQao9FmCwY8wZhzBuE1DW0vRvx5s/Du3EB3vyfUBLSMfY/G1Pv0QhL0xoGNxVjZgcSbnmA0peeovRf/p15uBteq1YT3f52CWtuep2Nv/8vvf99PabEKAw2I0NemcTiG2ew4p5v6fvEGLImdcWaYGbsK6fS56YurHppE9tm7GHju0ecXFLPeMZNG0Zq/yO7cd2jUbWtlKRLj5yjCSEQigC98ZlralwCwmTCd7Dh8nthsSNiktAO7Q56HhHfCVnQfNXNbcqRE50O9mTkgTXQ7XchMWkePQXf9pU4v34R+7XPNNsp88nIYee98We8GxcgKw6BUFDb98DcbxzGzoNQ4o+K5d5777EG7rsPng0u8SncCEXF0KEnhg49sYy9Ae/mRXhXfot79uu4572Pqd84TIPPRYluObkGU3Yu8TfdS+m/n6H05WdIuOMhFEt4teLN7WLp9tSlrL/zLTb8/r/0fPFqDDYzxmgzQ18/l2W3f82qh2bhPFBF5xsHIIQgpW8i494Yhs+lUbqpHFe5h+gsO3E50b8JlZasKkD3aCT2P9LTVkqJ9OkIQ+O/o0JRUJNT0QLUe1eS2x/ehAQ1T3w2cttMpLsKYQ7vjRXagPrh0fjj5H1Dkk9eh2KLwTLuZvQD2/As+jQkNv/X0MsKcf/8ITX/voWaN+7Bs3QGalIWlol3EnXPu9ivfALzoEnHOnGAHj3gnnv88rf33ON/3YoRRjOmnmdiv+Yf2Kc8iyF3IJ6lM6h+6XpcM19tUpFZUzHndSN+yu149+2i7D8vIL3BVSQ2huiu6XR97AJqthey+ZGP0T3+0nuj3cSQVyeROaELm15YzMoHZuKrORIOMVhUUvom0v7MNOJzY4573rXn842oNiPJpx7RPK8Lqag2U5PWbUhuh684sDZyalIWesk+5PEyn+qh7pBTlu8KcnWNo23tyAEltQ/atll+3ZW4+rtjB4rxlNPwdhuGe/4HGDoPjIRYAkC6Hf5Qw7q5aHs3AAK1Qw8sQ36HoetQFFsD0rcAU6Yc+f9WthNvCDW9M7bzHkAvvQL3oul4VnyLZ/UsTIMnYz71AoS58V3gG4ulZz9iL7uBivdepfzdV4i75rawZzUlDM2j84OT+OXJGWz56+d0/dP5CIOCajLQ7+9jie6cwKYXl1C+8RD9nz6L+J7tGrRZua2E/d9uJfvSXsf0APWW+ouFjHFNC2epicm48tcgdb3Bv4+SmOmvT6goRsSl1Dv2aERs7Q2ofA+069mU5QZEm3Pkdbor+oE1qCFy5ACWcTdTs2cDzi+mYr/uWYShaXf9kxEpJdr+LXhXz/T3NfS6UBIzMJ95FcYeI1Biw5810dpQEtKwTrwT86kX4PrpfTwLp+NdMxvzmVdj7D2y2Q9FbYOHoVdXUvXFB1TGxBJz/pVhL3xqN74PvionO1+axS9WE51/PwmhCIQQ5N04kIQ+aax8aBbzL/2YTpf1osutgzHFHT8DyFvlZuUDMzFEmcm7+dgDRvdBf/2EuV3TKpTV+CTwedGrK0/cLKUWJcEf2tFLC1CCcOREp/pL9Zsg9BcMbc6R1+muyIPr4ZTAJSYbQrHFYpl4J84PH8M9920sY28Ime22jnTV4M3/Cc/K79CLdoPJirH76Rj7jEXNaIJq4kmEkpCO7bwH0IZMxjXrP7i+fgHvmplYzr7tcPZDcxE16mz0inJqfvwONS6RqNETwj5nxkVD0Wrc7HlzHopRJefeCYi33oT8fJKmTmVk9w1sbJfDjvfXsufzjXS4sAdZk7oS0yUJIQRSSkpW7GfdX36ielc5Q14+53ADizocu/yNja3tk463hIBRE/yphFpZacOOPN6faaaXHQDql789GqEYICYDWRF8fL0xtDlHLoRAtOuJLAy9CpwxdwDawIl4ln2Jmt0HYxApRycj2qFdeFZ8g3f9T/7dd1oulrNvx9j99BYJHbQF1PQ8bFf/He+6ubh/mEbN63djOvUCzMMubtbiIr+WeSlVMz5ETUjC2i80RW/1kXXNGehejX3vLQBFkLM3H/H8c/DccxiB3vfcQ/bjD7P1lWXseG8t299ajarqWDsk4tlbjMerYk62M+SVSaSc2v439mu2FWKItWJKbHxdAfirYwH08lLoUL++uYhJBNVY68iDQ8RmIiv2NWqNwdLmHDmAaNcDuWse0lGMsDXt7vxrzKOuxbdnA64vn0O9/oX/uXCB1DV8W5fhWf4V2u71YDBh7D4cU//xqOl5Lb28NoEQAlPvURg6D8Q9+3U8Cz7Ct3Up1nPva7bduVAU4q64kZLyMsrffRU1PhFTdm545xSCDjeMRGo6+z9YBOecSQ7PI6hNTJg6lRghGDB1PO4SB4W3PEXl/HxcZbEYNQcJw/NIH2nH8MnzMHSqP4upR4/DZylVG/YR3TWjyU+ASm2uvVbZsGa4EApKXDv08sCyXI65NiYTuW8ZUuphD7G1qayVOkQ7f3aDPBSyJkRHbBtMWM/7PVLz4fz870HrEbdVpNuBe+kMql++Cecnf0MvK8Q88hqi7nwT6zl3RZx4I1BsMVgn34v1okeRNeXUvHEvnuVfN1sPTmE0kXDD3ahx8ZT95zm00uLwzykEHW8eTeaVwyj8ahVb885F1rmZ++47PM6caKPDR4/R8+DnDNz/Fn0KP6b9h49j2LIBnnvOr23/3HOQ75eDdRdX4dhVRGzfjk1eoxIVA0KgVwZW6u935AeDnygmAzQP1BQFf22QtE1HnpALiiEsjhz8ConWiXeg7duMe8604A1Mm+bPkZbS/3NaI2w0E3plMa4506h68Vrcs19HiU7Eev5DRN3+H8ynnh9Y9kmEejHmDcJ+4z8xZPfGNfNVnJ8+hXQ3T6d1JSqa+JvuRXq9lP7n+WbpNyuEoMP1I+nQN5aidr3Z9If30e86TnrpUY798OupU499r/Z12aKtAMQPbvpThVBVlKhov5ZRIOPjUtDLA0tXPOa6GH8VqawMf3ilbTpygxniOyGLt4RtDmO30zENnoxn+dd41s0N7uL8/OPuKloT2qHdOGc8S/VL1+NZOgNDTn/sU6Ziv/ppjKecFimMCjGKPQ7rxX/yh+62LKFm2r1ojSg0aQzG1AzirrkV3/49lP/3jWZ5IhBCkPXC3XS6azylC7aQr/XCd+Glxw46Xh3B8Zw7cGj2eqxZidg6BZE5Ug9KdCxaoDvy2Hbgqg765itiaouZKoNr4twY2qQjB1CSuyBLtob1Q2keeQ1qh164vnkJ3/4gbhon2FW0Bnx7N+L48DFqXrsd7+bFmPqfTdRtr2E778FI+CTMCCEwDz0P2xV/RTqrqXnzfnzbg+8L2Rgs3fsQPeECXCsX45g3q1nmBEg/fxBd/nw+VRv2svbWabgKjiqamjLFXz8ghP/nlCnHde6OXUVUrt1NyrjeIcuQUqJi0Kt+08js+GNr0w71iiB35fYUECqyKuLIT0xCZ3BXQU3wjzyBIlQD1vMfREQn4Jz+BHpFgLGuE+wqWgopJd5tK6h5+yEcb/8erWAr5jMuJ/rOaVjOuhElruEijQihw9ChJ/Ypz6LEpuD48DE8q5vHsdrHTMTcsx+Vn3+AZ2fzdRhKHtWD7lOvxFtazZqbXqd89a4TDz6Oc9/3/kIUs4HUc/qFbE1KTAx6dWCOXMTWOvIgwytCUSE6FVlZEPZwa5t15CLBLzEZboUxxRaL7eJHkV43jo8eD+zxqpWUnkup4928iJo37sH54WPo5Qcxj72BqDvewHz6JQhr+DUgIhwfJS4F+9VPo2b3wfXNP3Ev+CjsIY+6TBY1PoHyN19q1qbhcX070vuV6zHG2si/9x32vb8AGYD4VdXmAg7NWkvauQObXNF5NGowO/JaRy4rgz+0FNHpUHUg7OHWtuvI67QMynaFfS41uQO28x9CL96LY/rfkL4GMlmO98gYCCG6a0tdw5s/j5rX7sD5yZPgcfp1T25/DfOgSSHXXo/QOITZhu3iRzH2GIH7p/dwz3077M5csdmJu+Y2tIpyKj5onnh5HdasRHq/ej2Jp5/Crld/IP/ed48NtfwKX7WLrX/9HFNiNFlXDQ/pWpSoGKTbhfQ0LIkr7LH+XPJgQyv4Hbms2h/2cGvbdeTmaH+FZ3OVwHbqi2XCHWi71uL88jmkroV+kibetaWu4Vk3l5pXbsP5xTMgJdZz78N+88uY+oxBqK2v283/OkI1YJl8D8b+4/Es/hT3nGlhd66mjjlET7wA15rlOJctCOtcv8ZgN9P1sQvIffAcqjftZ9VVL7PrlTl4SquPGec+WEH+fe/h2l9K3qPnYYgOceOXaH82lhZAeEUIBSUmqVGOnJh0cFchH7jr2PdDHG5tkwVBdYjYTH8z5mbC1HsU0lGB+4c3cZmsWCbcHtry9KlT/Q786NcBIDUf3vU/4V74MbLsAEq7bKznP4Sh69BW0QAhQv0IoWAZdwsIFc/SL8BgwnLmlWGd0z7qbNwb1lD5ybuY87o1a79XIQSpE/sRPyiXXa/OYd8HC9n/0WJierXHnBKLz+GmfOk2UARdH7+QuBDkjv+aOkeuV1ZAQsNFhSI2BRnoGdnR10XXNpM5JcsfZp16VKFTCGnTjpzoNGRB85z612Eeeh7SVYNn4cegGrCMuzl0zvx4h6T1qAJKzYt37Vy/A684hJKag+XChzHkDY7on7QxhBBYzroRNC+ehR8jrNGYh5wbvvkUhdgrbqT4yT9Q8eE04m++v9k/M+aUGLo8eh5ZVw/n4DerKV+5E9fqnQijgZSz+5B5yalY0uPDMrcS7RfeCjSXXIlLwffL8qDnqXPkcuRAxHUj/G+GQemzTTtyEZWKdJQgdZ9fpKaZMI+4AnQfnsWfga5hGX9LaPKu6w5JG7hrS58H75rZuBd9gqwsRknPwzLuJgy5AyMOvA0jhMAy/hakqxr3nDdQYhIxdjs9bPMZklKIPuciKj99D9fKJVgHDA3bXPVha59E9i1jmnXOupZ4egBl+uA/8JQ15UifJzhl1Gh/LrmsCl6rJRjatCPHluRv2uss9edsNhNCCMwjrwFFxbNwOtJVjXXyvU2Xvm1An1t6XHhWz8Sz5DNkVSlq5imYJ9yO2qlfxIGfJAhFxTr5XhzVZThnPIeITcGQUX9vyaZgGz4G5/KFVH72PubuvVGs/xtiaHU7cq0iMEd+OAWx4hBqYmbA8whzNJhjwl4U1KYDqMJa217L2fydWYQQWM68yt8qbtNCHO8/il4T2GNasEhnNe6fP6L6pev8ZfQJGdgu/yu2q5/GkNM/4sRPMoTBhPXCP/rrFz75W1g7DwlFIebia9CrK6n+/ouwzdPaEAYDSnQMWkVgf9u6WgvZCM2Vw5krYaRNO3Is/gML6a5qsSWYh/wO6+8eRDuwjZo37sa3b3PIbOvlB3HN+g9V/5yCe957tRKpT2O/8m8YskNX5Rah9aHYYrFd+DDSWY3z83+EJ0uqFlP7TliHDKdm3ix8RY0Qh2qjKLHx6OWBOnJ/m8JGiWdFp4U9tNKmHbkw1uoSe6rrHxhmjN1Px3710yAUHG//HtdP7yF9DeenHg8pdXw71+KY/jeq/3UjnhXfYMwbjP2GF7Fd8mcMWd1CvPoIrRW1XTaW8bei7V6PZ8HHYZ0resIFCFWl6uvpYZ2nNaHGJaCVlwY0VkTH1+qSN0bONgOqCpG6L+hrA6Vtx8gNZv9PX/gV3RpCTcsl6oYXcc18Fc+Cj/Dm/4R5+GUYuw9HqA3/mbWSffg2/Ixn3VxkeSHCGo1p6HmYBkxAiQmt5nqEtoOp9yi0nWtw//whak6/sMXL1dg47GeOo3rml3jHTsKY8dvGDicbanwinu2BaSgJoaDEpzbSkaeD1KD6kD+vPAy0bUdeV+Citw7NcGGxY518L8aeI3H9MA3Xl8/hnvsWxlNOQ+3QEyUpC2GJAl1DVpehFe9FK9iKtnMNesl+/A2Me2I84zK/AmGkb2gE/P1kfXvycX35PPYbXgjb58I+8mxq5s2m+vsviL/uzrDM0ZpQE5OQTge6owbF1nD5v9+RNyJEcpScrYg48uNQFyNuxjLjQDB06oM9+3l821biXTPLL4q0/OvjDzZaUNt3wzJgAoYuQyO77wi/QVjsWCfcgeODP+Ne+AmWMy4LyzyKzY7t9NHUzPka36FCDCmpYZmntaAm+jNRtJKiAB15Gr5d65BSBnU+JWIyAPziWWGibTtyXff/bIXVi0IoGDsPxNh5INLnQTu4E1l2wC+6JRSELRYlMR0lMTOi/R2hQQw5/TB0H45n0XRMPc9ESUgLyzz2EWdR8+N31Pz0PbEXXROWOVoLhiS/I/cVHcSY1bHB8UpCOnjdyKpSfy/PQLElgmoOaxV66/OAwaDVHiiqrTsEIQwmDBldMPYYgan/2Zj6jcPYdShqcoeIE48QMJbRU0Ax4Jr7ZtjmUGNisfYbgnPZQnSXM2zztAbUZH9KoRZgpo5Smz+ulwaXSiiEAjEZYW3E3LYdua/2g2a0tuw6IkRoBpToRMynno9v8+KQprn+GtuwUUi3C9fKJWGbozWgmC0ocQn4DgYW8lAS/PFtvSR4hyxiM8Pa8q1NO3LpqlUuM0d0tSP8b2AaPBlhi8U97/2wzWHsmIMhNQNHMysjtgSG1HR8hYE5chGTBEYLenHwDlkddj+G88LXuzckjlwIMU4IsUUIsU0I8VAobAZEbUWnsIRHWCdChNaGMFkxDT0PbecatP1bwzOHEFgHnIp3x1a00uKwzNFaMKRm4Du4H1l33lYPQgiUpMxG9VoVljhEGEPATXbkQggV+BcwHugGXCqEaJaqFemo1Qe2RzI9IvzvYOo3Dix23Es+C9scln6DAXCtWxm2OVoDxvRMpMeDVhKYRK2a1B69uHl6IARDKHbkg4BtUsodUkoP8CEwOQR2G6bqAJhjEcb/DaGfCBHA31nI1PcsfJsXo1eGZ8dsSG6HITUD1/rVYbHfWjDUFj559+0OaLyS3B5ZVYp0tWw1+a8JhSPPAI5+1thX+94xCCFuFEKsEEKsKCoKXqD9eMiKff7mEhEi/I9h6jcepI53zeywzWHu1gvPji1IT8tXTocLY1omKErgjjylAwDaocDGNxfNdtgppXxNSjlASjkgOTk5FPaQZTshrkMIVhchQgCEuRN6MCjxqagde/klHcJUEGfK6w4+H56d28JivzUgjCYMaZl49+wMaLya7Pc3+qFdYVxV8ITCke8Hso56nVn7XnhxlICrHJGQG/apIkQAwt4JPViMPc5ElheiF/wSFvumTp1BCDw7wnOo2lowtu+Ed8+OgG6IIiYJLFFoBwNz/M1FKBz5cqCzECJbCGECLgG+DIHdepFFmwAQyeET3Y8Q4RjC3Ak9WIxdhoCi4t2yKCz2FasNQ7s0vHt2hMV+a8HUMQfpqEEralgQSwiBmtLx5NuRSyl9wO3ATGAT8LGUckNT7TY478F8UAyIxLxwTxUhgp/j9VRtQYQ1CrV9D3xbl4VtDkNmR7z7Wl+WRigxdswBCDiEpKZ28ktuhFEjPlhCEiOXUn4rpcyTUuZIKZ8Ihc0G5yxcjUg+BVEnZRshQrip66mq6/6fIe6E3hgMuf3Ri/eGLXvFmJaJXl6K7jx5y/UNqRkIqy3gEJKSmgM+T61iaeugTVZ2SncVsngrIr1/aAxeey307+//gvbv738dIcKvmTLF30tVCP/Po3usthCGjr0A8O1eHxb7aq0ColZ88nYOEoqCKbsznu2BOXI11b+D1wq3h3NZQdE2Hfm+ZSB1RObA0Bhctw5WrQJV9f9cty40diNECDNKSkcw29D2bQqLfUOiP8PMF2DBTFvFlNMF7WABWlXDfXeVpEwwmNAPtJ5snjbpyPU9C8ESi0gOUQHp8uX1v27rtKK0uQihRSgqalpntDBlrihx/gbneoAt0doqps6nAODZ1rAYmVBUf5w84sgbj9Q8yD2LEe1PC50E7MCB9b9u67SytLkIoUVN7YR+aFdYDt8UexQoClpVZchttyaM7TsiTGY8vwT2ZKOm5aIVbm81B55trrGE3LcMvDUo2SNCZ7SXP87I8uV+J173Oti1SYksK0Q78At6WaG/iYRqQIlOREnthJqW2zL641On+h340a8jnDQoKR1B86GXFqAmZTU4PhiEoqDY7EhH6ypJDzVCNWDK7YJ7y8aAxitpnWH51+jF+1BTWr4osc05cn3bbH9YJWNA6Iy+eZRQ/8rgRYK04r14187Bu+x7pOY46jcKCED6ldWENRpDt2GYBp4T8i9cvRwvbe7ZZ5tv/ghhRa1reFCyPyyfK2GxnvRNJsBfyere+AFaeSlqbUjpRKgZ/rRnrWBrxJEHi3RXIfcsROlyDkJp+aX7dq/HvXA62o7VoKgYXGYMM9ej7ilDKa5G3HEXcuozyMpitP1b8G5ZinftD3hXfo+xxxmYz7wKJbbpcgUNUpc2N3Wq34m3grS5CKFDxPszS/Ty4Du8B2TfZEa6W05vpWb7QSrW7EZ3ebC2TyJuYA6qxRjyecxdulMFuLdswDb49HrHKgnpYLajFWyFPmNCvpZgaXlvGAT6tlmgeVDyxrfoOrTC7bh+eAtt5xqEPQ7ziCsw9j0LxRYLfznq2GHqVIQQiNgUlNgUjN1OR6+pwLP0czzLvsK7ZQnmM6/ENHCivx1UuDg6TS6yEz/pENZoMFqQFeHJLBEGA2i+sNiuD3dxFdue+ZqyRcemBapRFjIvO5WMi09FMYYuVGlIz0KJjsG9Ob9BRy6Egpre2e/IWwFtxpFLKdE3f4lI6oJIaplqTt1RifvHd/CunoWwRmEecx2mfuMRxtqipHvvPfaC44QwFHsslpHXYOo3Htd3/8Y96z/4ti7DOvlelOj6H+ciRDgeQgiU6AT06jBllihqQI0XQoljTzH597yDr8pFhxtHkTK2F4YoC1Wb9lMwfQm7X5tLyfzNdP3LRVjaxYZkTqEomLp0x7MlH6nrCKX+zZWanodn0SdIrwthtIRkDY2lzWStyMK1ULYT5ZTmkTo/Zm4p8eb/RM0rt+BdMxvT4ElE3fYa5sHnHnHiEFTlnxLXDuslf8Yy4Xa0fZuoef0ufLsj2SQRGoewxyFrGs6Bbgt4SqvZcN97SJ9O739fR9YVwzCnxKDaTMT1z6bbU5fS9a8X4dxbwtqbXqdme+iKlcxde6JXVeIraLgLkJqRB1JHO9DyhUEt58iDzGfW86eDOQaR07zxKL26DOf0J3B+MRUlPg37DS9gGXM9whL128FBVv4JITD1PQv7dc8izHYc7z+CZ+V3YfqXRDiZEdZopLMqPMZ1Pbyhv6OQumTrXz/HW15D979fjj2n3XHHJQ0/hV4vT0GogvV3v03NzkMhmd/c1b/5cm9uuFJWTT9y4NnStIwjX7kyqHxmWVngP+Tsek6zaqt4tyyh5rXb8W1fhXn0FGxXP42a0jHk86jJHbBPmYrBmITru5dxzX4dee89kcKdCAEjzHakqyYstqXm81c9NwOFX66gfMUOOt0xjqguafWOtWen0POFaxCqyob738dd3PQbmRobjyEtE/emhh25EhWPiE1B27+lyfM2lZYNrQSYz6znfwRCQel2fpgX5Ef6PDi/fwXn9CcQMUnYr38e85DfhTUHXFjsWA9EY1yyE8/SGTj3z0fmR6QCIgSI2Yr0hCdFUPp8CGPos0R+jbfcwa7X5hLbP5t25/QL6BprZgLd/3E5WrWLTX/8EN3d9ENZ8yk98ezYGlBnJDWjS9iaYAdDyzryAGRApbMMfcs3iNyxiGZosqyXFlDz5gN4V3yDafC52K95BjW5/YkvCGH5u5j6LJZvNmD+fiO+nuk4+keF7csZ4eRCGM3g84THuMeNMIavA3wde9+Zj+Z0k3PXeIQQAV8X1TmVvEd+R/XmAnb88/smr8PctSf4fLh/abhcX03PQ1YWoVeXNXneptAyjrx//4BlQPX8j0Hzova6LOzL8m5dRvUb96JXHMJ68aNYxlyHMDSwEwll+ft99yEA88IdWD5dg7ZjLY73H0U6T+6qugghQDWCzxuWtm/S60GYwhvSdBdVcmDGCtqN64OtY/C1FYmndyXj0lMp/HIlxfObJiBmyukCRiOeLQ1/lw8XBrVweKXlduQBHAZKVyX6xs8R2SMQcfXsipuIlDquee/j/PgvKAlpRF3/PMbOgwK7OJRdY47KejGdeSHWhMFoB7ZT8/4j6I6TW+siQtMQqgGQh6uIQ4nuciEs4U2vK/h4CVLXybqy/vzt+uhw/UjseWlsf+ZrvOWNPy8QJhOmTnm4NwfgyFNeMwM/AAAgAElEQVQ7gVDCJloWKK06/VDP/xi8DtS+V4VtDulx4vzkSTw/f4ix10jsVz+NEnf8k/LjEsquMb/KejHe9gjWix5GL9qD4/1H0B0nR3pZhDBQl1US4nxv6fOBz4swh8+Raw4PhV+vImlEdyzp8Scc5yp2ULKqgLL8g/ic3t/8XjGq5P3xXHzVLnb8c2aT1mTu0gPfgX1oFeX1jhNGC0pKxxbPXGm1jly6ytE3TEdkn4lIyAnLHHrFIWreehDf1mWYx96A5Zy7EYYgY4Fh7hpjzB2A7aJH0Ev214ZZwpRiFqFtUxdTDvGOXLr9ZzSKxRpSu0dTNGc9Wo2b9POP/xRcuvoAC67+lJnDX2fBFZ8w/6KP+G7oa6x8cCbVu46NTds7pZB5+TCKZq+nfPWuRq/J3KU7AJ5fGhbRUtM7ox3YFpawVqC0Wkeur/sAvC7UfteExb5W8As1b96PXnEI2yV/xjxoUlAHLIdphq4xhpx+2C58GL14HzX//VPY0switGEOf3ZD60zqWryJMDryg9+twZadTHT3zN/8btu0Vfx8xXRq9pTT9c6hDHl1EgNfnECHC7pzYO4Ofpz8PtvfXXOME828Yhjm1Dh2vPg9Umvcjc2Q2QFhteHe0nD7YTUtF1zVyPKW66LUKh25dBSjb/gMkTMaEZ8dcvvercuoefcPoBqxX/MPDDmBpTq1JIacflgveAj94E4cHz6G9LhaekkRWhWN2IQEgHSF15G7Csqo2rCPlHG9f7OR2vbWKjY8s4D0szoz6usr6XLzQNqd3pH00Tn0emQEo7+7ipRhHch/cj7r/voTUvc7c9VspONNo3BsP8ihWY1L4RWKgim3a0CNJtS0XIAWbTTRKh25vvod0H2o/UO/u/Wsmolz+hMoSVnYr20gtbCVYew8COu596Pt34LjkyeR2m/jhBEihBLp8m8YlDAddhbP84cukkZ0P/b95fvY8I8FpI/NZcA/zsJg/23I05JsZ9A/J5I7pR+7PljPhn/8fPh3SWd2x56Xxp635qH7Gtf8wZTbFa34EFpZ/Ro2SnIHUAwt2sOz1TlyWbEPffNX/irOmIzQ2ZUS988f4fr2JQyd+mK/8kmUqBMfrLRWjN2GYTn7NrQdq3B++TwyDFkKESLUobv9jlyYw7MjL130C/bOqVjS4g6/p3l8rHnkB+yZsfR9YjRCrXVTx6nZEIqg232nkX15b7a/vYbdn/pDIUIRtL/2DNwHyima07iUYHNuVwA82+tPLRQGI0pyFlrhjkbNEwpanSPXVr4OqhGl79Uhsymljnv267jnvYex55lYL3oEYWpZtbKmYOo7FvPIq/FtmI97TqSMP8JRhPi8rS6EJ8yhzyP3OdxU5e8lftCxyQy7PsqnZm8Fvf404tid+AlqNoQQ9HzodJKGZLH+iXmHD0ATTs3Dlp3C/g8XNeog0pDR3t/+bUfDGSlqSjb6oZ1BzxEqWpUj14s2IXfMRelxEcKWGBKbUtdwff1PPMu+xDRoEpZJd9fm3LZtTEPPxzRwIp6lM3Av+7KllxOhpQlX1orHH74LR2VnVf4+pKYT2/fIOZju09n+5ioSB2aQctqRzjtSSraPuJsvrffyjv3vfGT/PxbHX4XjUG0MX1Xo//RYFJPKmj/9gJQSIQTpFw3BseMQlWt3B70+oaoYO3TCu6vhkInSriOyuqzFUoRbjSOXUqIvewUscSi9Lg2NTc2H84tn8a6dg+n0SzGPub7ZVNzCjRAC85jrMXQZinvW63i3Lm3pJUVoSeo+16FOgfPVOvKGKpwbQdWm/QBEdzsSQj20YDfOwmpyruxz+D3NozHz+oV8c+V8StRMkvXdGKSHFVPX886AL9n25R7AHzPvdu9plKwo4MAs/8Fj8qgeqFFmCr9a1ag1Gjvm4N2/B+mtX/5ATfbfdPRDexo1T1NpNV5N7l2MPLAapd81CJO96fY0H87P/45v43zMo67FcsZljUsvbMUIRcV67r0o6bk4P38G7WDLPdpFaGFqmyCEuqu71GrthUH9sGb7QSwZ8RiijoQ593//C8ZYC+3O6Hj4vXkPLGfrJ7sYeraPq6/by8jCZ5lwjYcrHvIS3zmWb6+az+aP/PHpDud3IzongU3/XILUJarFSPKoHpT8vBnNEbwWjbF9J9A1vPvr1ydXapMm9OL/YUcudR/asn9DTCZK10lNt6f5cH72d3ybF2MeewPmoeeFYJWtE2G0YLvwEYTFjuOjv6CfJM0FIgSHUGt3zCHPZKrd4YdhD+TcU4ytwxFdFSklRQt30+70DodbuO2dX0j+W9vof3d3Mh6azGurJvDnuM/5v38P4L1PMul1dw8yT09lzm1LOLiqBKEq5N08kOodZRycvwvw78p1l5fSJcGX0Rsz/Ttt7776QzMiOhFMVvSSfUHPEQpahSPXt3wD5btRB93c5KbKUtdwfvEMvi21TnxQ028MrR0lOgHbhQ8jHRU4P/t7yHdlEdoAdZ2qGggBBM3h2HvoqxbdByswH5Wt4thfibvESWL/9MPvrXgmH3u6jfYTsnh1+FxK1h9icO8DDLw1lVG//zP/vWQuiaelY0uxMOf2xeiaTvrYXMzJdnZP9x+GxvRsjyHWSuni4Mvo1cRkhMXSYMcgIQRKQjpaSUHQc4SCFnfk0utAX/Umol0vRIfGC+ZArROf8Ry+TQsxj7nuf8KJ16Gmd/anJe5eh/vHd1p6ORGambosrFDLHh9ODPCFtvmy7vGh1bgxxh0Jo1Zt8+drx3Txy1XXFDrYO6+QHlfnMuP2VZjsBkyx5Xy6NoWtW2bS7cIl9B6/ju8fXk/upTmUbChn6ye7UIwqWRO7cPDn3XgqXAhVIW5ADuXLdwSdvSKEwJCaga9wf4NjlYQ09LIDQdkPFS3uyPV1H4CzFGXwrU2KYUspcX33b3wb5mE+8yrMg88N4SrbBqZeIzH2G49n8Wd4ty5r6eVEaEaE2e8QQy3fUCdfKz2h3elrLn8ISLUdyYZxFvp1hKzp0QAULC4CwJJmZ9+KMuxdoli3N5Zs1tB/9I9ICeb+W7GnWlj+/j7i82JY+5p/1502Ogfp0yla7N9Jx/bpgLe0GveB+kWwjochJQ1fUWGD45S4VGRFUYs8EbeoI5c1RejrPkR0GomS0q1Jttw/vo139UxMp12I+bQLQ7TCtodl7PUoqZ1wffU8emVJSy8nQjMhbDEASGdo5Y6F1V8IpDsdIbVLbTm9UI5s3nzV/puFMcp/8yjf5v+3FO/2P2WsW1xEXEIV3xk6kT1hN0JA33NWUlxeQ9HWapIHpHBwRTFV+2uI69kO1WqkZKU/1BHd1R+uqd4a/I5ZTUpBLy9rMHNFiU0G3YesDv5m0VRaNKFaW/kGSB11wI1NsuNe8gWeRZ9i7Dce84grQ7S64yOlBK/HL+8pFITZjFBa/MHmMMJgwvq7B6h5/W6cXz2P7bLHTpqUywgnRtRWKcvq+svJg0Wx+3fHenVobxCKye96jmnN9qt4vKfah2JSOGXybYz60/xjrve4/Z/plM6HeL7m8sPvj/s3VBeMRjHMJvaUJCo3+3f11tpDVcfu4qDXqib4Qz1aWSmGlNQTjhPR/toXWVUCMaGpgwmUFnPksnQ78pfvUbpfgIhJb/iCE+DN/wn3nDcwnHIalnE3hSzFUEqJVnQQz/YtePfsxFe4D19xEXplBfzq0UmJikZNSMKQmoGxfTamnC4Y0rNazMGriZlYRl+H67uX8a78DtOACS2yjgjNh7DFgmpErwhNN/k61Fj/DUKrCG0rM8VqRDEZ8JYdCQWZYv07cU+5C4PdhDHKgO7R2fTVrVjjN2JPrsBk9YdkTGa99ueRG4HPZcJxKIbdc26l5xSwZ8VSvNSfRaJajBjj7bgPBZ/VdfhvUFleryNXohIA0GvKaJ5W1UdokiMXQvwDOAfwANuBa6WUAT1XaMteAaMNpU/jm0b4dq/H+eULqO27Y518b5ObI0sp8e78BeeqpbjXr0Ir9d+9hcWKIS0Tc143lJg4FJsdYTAgdR3pcqJXVeIrOYR783qcyxYAoMTGY+k9AOugYRjbZzd7Drux3zi8Wxbj+uEtDJ0HosSmNOv8EZoXIQRKfCp6aWgP25TYODAY0IpDe4MQQmBOi8O5/8gThC0rFoDqXWXYMmKIy/GHi3B14dluzzBx2iv0nrAai/23TZE9DjO7Fw3lhylX0nNKRwCMsRa8VUfGGuNs+CqCPwxWouqeSurvBSBs/vXLFkgBbuqOfDbwBymlTwjxNPAH4PcNXuV1IPctRRl0C8IS06iJtZJ9OKb/DSUhzZ9HHWxDiKPQHTU4Fs/DsXAuWtFBMBoxd+mBffQETJ1PwZCSFvDuWistxr11I+781TgW/4Rj/myMWdnYR52Npe+gZtulCyGwnn0b1a/ehuv7V7Fd/GizzBuh5VCSstBDXBQmFAVDciq+wtCn1dlz2lGVfyStL+6UFFAEpasOkHJaBzJOSwEBqteHz2Vl9qMPs2Plh/zuzx9jsR3Jl3c7TPz05MWUbLsJT8UOzDG1OfW/SlARRgO6N/jsG8VWe5DsrP8gWVij/ONczd9jt0mOXEo566iXS4ALArqupgjs3VC6Na5QR3dU4vzwcYSiYrv4T4f/gMGiVVVSM/dbHD//gHS7MHbKI+qsyVh6D2h0RxQ1IQnbkOHYhgxHdzpwLl9EzbxZlL/1LwwzvyB68qVYuvdulO1gUeLaYR5+Ge4f3sS7bQXG3AHNMm+ElkFt1wnf5kVIVw3C0vTq6DoMGe3xbG24U06wxPRsT/HcDTj3lWLNTMAYYyahdyoFc7bT5fbB2NtZ6Tgmna3Td9L/ivasfH8PWV2LURWJroPPacRg9aIqGjGpBzCrdoq/haQe/lCIp8yJMfZI1aj0+lAMwT+11wmGSfdvnwSOwWQFBNId4oPhAAjl9nAK8N2JfimEuFEIsUIIsQKfC7X/dQhD8IpqUtdwfvY0emUR1gsfRok/cczqhDY8bqq+/4Kix+6j5odvMffoS9KDfyHpnkexDT49ZG2tFKsN+/DRJD/8FHHX3o70aZS98gyl/3mhwV6AocI06ByUhAzcs9+IFAqd5ISro7upYy56ZTm+kqKQ2k041b/e4p+OdOHJmnwKVb+UULLcn7c95I+9cZd5sPjcdBrhY+jlcxACyvcl8tYt91BVkABCMOjGuXgObMcUayRjmL/nbsWWYqI7JRy27S2rwRBnC36htSFb2UA/VCEEGE3ga8Dhh4EGHbkQYo4QIv84/00+aszDgA94/0R2pJSvSSkHSCkHYIpC5I5t1ILdc6ah7VqH5ezbMGSdEvT1rvWrKHriIaq/+RRz1x4k//Ep4q+5FWNWx0atJxCEomDtN5jkPz5J9KSLcW9aS9Hf/oBrfeOEfIKaWzViHnk1esk+vOvmhn2+CC2HmtkVFAO+XWtDateU5/+eeQLoKh8MlrQ4Ynq1p/CrVUif30lmntMFc7KdDVMXIjWdlL6JDH20Nzu+2svYhz5GNWlsmDGI57pNZcd7/Xim67PsWTIM1ajRbsDL9L+rO0abAUdBFVW/lJA40C/I5aty4i13YM1IqG9Jx6c2iyagcy7VAFpoi6cCocHQipRydH2/F0JcA0wERskAy6ZETEajDia9+T/55WgHnoOpd73L+g16dRUVH7+Na/VSDGmZJNz18GHh+OZCGAxEjZmIpVd/yt5+mbLXnsM+dhLRE84Pa+zc0GUISlou7gUfY+w1ssmHwhFaJ8JkRc3qhu+X5TDq2pDZNaRmoMYn4spfhe20MxtnZNo0v3741Klw333+JuVTppB+0RA2P/Ixh2avo934PhisRno8MIyVD85ky7+X0fX2IfS/pzu6T6em8DXm//FWFNP1jHnIgDAo2GJUNr7age0f5dL14r1knOavR9n537UgIGN8ZwAqa2PxUV2Cz5CT3tp4vDEQBUgRDjWDBmlq1so44EHgDCllWANDWtFunN+8hJrVHfPo4FrAuTetp/zdV9Ed1URNvICo0RNaVJPc0C6NpHv+RMX0d6iZ9SVa8UHirrwZYQjPmoQQmIddhHP63/BtXoSxW9OkECK0Xoxdh+Ka+Spa0Z6QtTEUQmDpM4ia+bPQa6oO55YHRV1TiOee87++5x4AEod1JaprOrtenUPCaV0wxljJmJDHoYW72fLyMsxJdrIv6cmgB3tRsOQTNn2wloKFGw/35wQwx5rod+ddZJzWDcWgULGlmB3vriHznK7YM/2ZJCXzNqFaTcT0yAp66XrtIadiCSAso2stknbc1BlfAqKB2UKINUKIV0Kwpt8gPU6cnzyFMFmxnvdgwE5Y6jpVX39C6ct/R4mKIumBx4k+a3KraCwhjEZiL51C9OSLca1aStkbL/iLjMKEIW8wIj4Nz/JvwjZHhJbHcMppIBS8634IqV3r4GGgaTiW/Nzw4OMxdepxXwtFkHv/RHwVTn55agZS9zeE6P3YSNqd0ZF1j//I+qfmo7l8pA9J4fyvx3DdlvM45+MRjJs2jAu+H8t1W89n4P09UAwK1bvKWHrLlxjjrPR4YBgA3nIHRXM3kHRmNxRz8N99vdKfTqhE159hJ6UEnwcacfbXVJrkyKWUuVLKLClln9r/bg7Vwo7GNfM19JL9WM+9HyU6sBiX7nRQ9upUqmfOwDpkOEn3P4Yxo3U1WhZCEDV6IjEXXY07fw3l777S4IFK4+dSMPU9C23vBrTSllFoixB+lKh4DF0G410zG+l1hcyuMaM9ppwuOObNQjYmBnzffSd8HZWXRsdbxlC6YAs7X56FlBLVZGDQixPIvrw3O95Zw9xJ77H70w34HF5sKVayz8ok7/yOpA9NwWBR8Tm8bH9nNfMu/BDNozH01UmYE/076D3TfkT3+Mi45NRG/du12kPeugrPE+Jz+3fkYepvWh8tvzVtAO/Gn/0dfk67CEN2YGl7vtJiyv79DL5DhcRcfC32YSPDvMqmYT99NNLtomrGR1QntyN6Yni0Yow9RuCe+za+DfNRT78kLHNEaHlMgybj2LwY75rZmAaeEzK79jETKXtlKs4l87GdFuR3qkcPfzjl6Bj5UaRfOBjXgTIKPl6C9PjodOd4FKNKr4fPIG1UJzY8s4A1j/7A+ifmkdA3jajseEzxVjSnl6odpRQv24/m8JJ8ahZ9Hh+NrVZ4q2TBFg58sYL0CwZj65h8vJU1iK9wPxiMDTpy6fDLGNTp3jQnrdqR65UlOL99GSU9D/PwwNq/eQv2UvqvvyO9HhJufQBzl+5hXmVosI+agO9QIdUzv8TYsTOWHn0avihIlJhE1Iw8vL8swxxx5CctalY31KzuuBdOx9h7TMgajZu79caY3Zmqbz7D0m8oijWIneeUo861nn32N78WQtDpznEoJgP7P1hEzY5D5P3xXCzp8SQPyeKM6ZdQurKA/TO3UbpyP3vzD+Kr8qCYVGyZMWRO6ELWpK4k9Es7nF1StnQbWx77hKiu6XS4aVSj/93evbswpmciGuiSpFf5q1RFVCMyY5pIq3XkUkqc37wImhfrufcFFNf27tlJyb/+jjAaSbz7EYzpwR9stBRCCGIvvArv7h1U/Pd1TA8/2bhDpQZQO/XD8/OHIS8aidB6EEJgHnk1jrcfxL3oEywjrgiZ3ZgLrqDkmf+j6suPiL34mpDYPdp+9i1jsOe0Y/uz37Dq6pfJuGgo6RcPxRhjJXFABokDjvT3lLo8Rj2xDs3tZd+7P7P3vQXYO6XQ7enLUM2N6zkqvR48u7YF9AQiy/1St0pc88thtFpZPO/aH9C2r8Iy8hrUhIZThrx7d1Hy0lMoFkubc+J1CKOJuCtvQq+pouqr6WGZw5DZFZBoB7aFxX6E1oEh6xSMPUbgWfwpWlHo+kia2nfCPuIsHAt+wLUhtPnqdaSM7UW/d24j4bQu7H33Z5af/yxbn/iCkoVb8NUcKbY52olLKXHsKWbP2/NYecmL7H3nZ1LG9KLXS1MwxTd+w+Leugm8XsxdezQ4ViveB0JBiU9r9HyNpVXuyPXqMlxzXkdt3x3jgLMbHO8t3E/Jv55GsVhJuOthDA0dSrRijJkdsA0fg2PeLGwjzsKYmtHwRUGgtMsG/OmcgZ45RGibmMdch2/HKpwznsV+7T+O9PVsItETL8S9ZQPl775C0v2PYUgK/Q7UnBJD1/+7gJqrhlPw6VKK527g0Ex/brglPR5LWjxqlAV0ibe8BufeksNKinEDOtHlzxcQ26dDk9fhWrUEYbFizmu4X4J+cCdKYkaTdJ8aS6vckbtmvw5eN5YJtzeopa2Vl1L68j8QikrCHX9o0068jqixkxBGIzWzvw65bWGPA6MZGWK50witD8Ueh2XC7eiF23HPmRYyu8JkIv66O0HXKXv1WfSa8IlE2Tul0PmBcxg84356PHcl7a85g6i8NHw1bhw7D+HcWwxCED+0Mzn3TWDA9Lvp8eyVIXHiek01ztXLsPYfgjDW75yllGj7t6CmdW7yvI2h1e3IfbvW4dswH9Ppl6ImZtY7Vne7KH3tOaSjhsS7HsaQ3K6ZVhle1OgYrINPx7F4PjHnXY5ib5wo2PEQQiCsMUhH/ZKcERrgBJWKrQ1jl6FogyfjWToDJSUbU9/GSWP8GkNKKvHX30Xpv/9B6SvPkHDr74M7/AwSxWQgrn8n4vp3Ctscv6Zm/mzwerANH9PgWL14D9JRgdq+ZZIrWtWOXOoarpmvIeLaYT71/PrHSknFf1/Ht283cdfcFlatlJbANuQM8HlxrVsRctvCYGxcLnCEI9RVKiqK/2d+aHVIQol51LWonfr6G41sC93nyZzXjfhrbsO7ZxelLz2JVhXaLkItiVZVQc3c7zD37BfQeZtv20oADJ1Cn20WCK3KkXtXz0Iv2o1l9BSEsf7qKMe8WbhWLSV64oUhS9VzF1VS9EM+u177gS2Pf8aGB95nwwPvs/mxT9n12g8Uz9uEryq0XcpPhCGrI0pcAu6N60JuW/q8YZMD+J/hBJWKrRGhqNjOfwglpSPOT57EtzN0h5SW3gOIv+EuvAf2UfLsY2HRLW8JKj/7L9LrIWbSxQGN925agJKa02INXFrNt1l6XLjn/xc1qxuGLkPrHevdu4vKLz7A3LMf9jETmzSv9+X/cHDBdoos2dRs86cPCVXB3C4WQ7QFhMC5t4SSnzYiNR2hKiQM60Lm5cMON3QNB0IITDld8OzYGlK7UkqkowJhbf6ihZOK41UqHic/urUgzDZslz6G472HcXz0ONbzH8LYeWBIbFt69CXxjj9Q9p/nKZ76Z2Ivux5r38Ehsd0SOFcswrViEVHjf4chteHvuFa0B73gl6A1oEJJq3HknuVfIWvKMV/wx3rlIqXXQ/k7r6BExRB3+fWNbqHmrXCw992fKfxkP7puJbpyOR2LNxE3YSi2fz39GwF63eOjeksBxfM2cei7NZTM20Tq5P5k335Wo3NUG8KYlolr5WKkx40whUa/QVaXgs+DEndynCe0GA1UKrZGFHsstiufwPHB/+H8+K/Is2/F1PeskNg2ZXcm6YHHKZv2T8qnvYR7yDr/+Y61EfrfwXLttbBuHSxfDgMHQq9e8OabjTLl2b2D8v++cbjJTEDXrPgGVAPGni1XQd4qHLn0OPEs+RxDTv8GNcarZ87AV7if+FseaFTBjJSSQ9+tYee/ZuGrcZMytg8ZT9yE3eHP4tBenIdjfxXeKjeKQcGaGoUpzopiMhDTsz0xPdvT/toR7Ln/JQpmrKTml0K6mzZi6BP6wy4lNs6/psqKkKV4aQe2+22ndAyJvf9ZGqhUbK0otljsVzyB49OncX3zEnrRHsyjrg2JkJwan0ji3Y9Q9e3n1Mz+Cvem9cScd7m/xWE4e9auWwerVkEDlZcN4d27i9KX/4EaE0v8dXc2WMkJ/lRp79o5GHuMQLHHNmn+ptAqHLln1fdIZxWmBsrGfYUFVM/+BuugYVi69Qp6Hl+Nm1+emkHJvE3E9GpPzr0TsL/0FDVejc1J4zgY1Y2Kfv9CymM/dPasWNLG5tLp8l5YU6Mx2M10su4nZuP3bNEvYEv5Ibqp+YT6o3o4jq2FrrOPtnsdqEbU9JZJk4rQ8gizDdslf8I9+w08y75EO7Ad6+/uR4lpeuquUA3EnHMhll79qfhwGuVvvoTp5y5ET7oEU3ZuCFZ/HJYvP9aJL18etAn3pvWUTfsnwmoj4bbfo8YE5pTdCz4CzYfptPDoIwVKiztyqfnwLP0StX2P2qrDE1P5+fsIs5noc4PXCXEXV7Hh/vdw7C6i4y2jybj4VGr2VrB8Zy4FuY+CECTEusjNMxH1uxGYYszoHo2afZWULN/P9rdWsfP9tXR/8HSyL+kJU6eS9NxzeHd8z/bcCRwaO5mggxUNpLDV9QgUptAUGEip4928GEPHXg0eJp8sSM0D1YeQjmJwV4KnBulzgfSrTArVBAYLmKPBEouwJYE14aRvviEUFctZN6Jm5OH85l9Uv3YH1rNvw9htWEjsmzp0IumBx3Es+onqbz+l5NnHMHfrRdTYSRg75YV2hz5w4G9fr1wZ0KVS81H9/QyqZ87wN5y5+T7U+MSArtUO7sS78juM/cYFVH0eTlrckfu2LEFWFWMaX78CrvuXTbg3riP63EtQo4N7hPGUVLP+jrfwllbT/e+XE9e/E9vfWs2mFxcjDAqdbxhI9qU9McZLfM7rKM4/C2GNIalLLOlRRjpf1x/H/krWPvYj6x7/Ed3tI2ftuwCkHlhBYWo/9j/3GSnjegf3AT2B2H4dWlkJCIES5L/3RGi7NyArDmE44/KQ2GttSEcJ8mA+sngLsuQXZPluqD7Ib9qpN4RigKhURGwWIq4jIiEHkdQZYtufdA7e2GMESlpnnDOm4vzsabybFmA56yaUqPgm2xaKgn3YSKwDT8UxbxbVc7+j5Pm/YmzfCdvw0Vj7DgrN2U+v2qfzo2PkAQDAkAUAACAASURBVODeupHKT9/DV7AX66BhxFx0NYo5MIExqXlxfvU8whYTMi2bpiAC7M4WUgYMGCBXDB8OPXpQY9qOXlZI1G2v1fslKXnhCXxFB0n50zNB7VA1l5d1t7+Jc28xPaZeiT0vjVUPzabg+19IG51Dr0dHULylmrWvbEZzz2TS9Cf5bNJD7JvXHcWokDspi9Me70d0ph2p6Sy/9zsKf9zJmVdZiC7YCFOnUnDlH9ixx8qAD+/Ekh7EF0BKfx5yHboOR90ISl+diq/oECmPPB24zXpwfPxXtL0bibrzzZNiRy59LuT+lch9S9ELVv5/e+cdX1d15fvvPudW9WpLsizJltwl925MMxgDDr2XFyAhPSEDM5kE3rzMY5KXTIYJw4SUSQgwCYwJLZQQigGDbWyMe++2LMnqVi+3nbPeH1tuxJYtWdKVrPP9fPbnSveee+4+t6yzztpr/RY06nZeKBOS81DJI1AJ2aj4TIhJQ/kSwROnhf8NU9t3KwjhdiTUAoF6pPUItFQizeVIQ4nep93R6svlQ6WNQQ0tRA2diMooQnl6rlgrmogVIbT6VYIrloDLi++Su3FPXdSjJy47GKB9zUpaly/FqipH+Xz4Js/EP3UWnlHj+yQlVkQI7d5Gy9K3CO3ZjpmcSsJNd+ObOK1L+wm89ztCn72B/+ZHcI+Z3Uuz/VuUUutFZPrn74+OR75+Paxfj/3Qt7CSivFedFenX5hQ8X5C+3YRf/0dXQ4zHPzFO7TurWD8T24nftwwPnvgr1R+eIDxD80j+7oJfPDdz9j/RgmeBDdzHt2DCAxfvJfm9gWkZno58HYZZSuruOX9RSTkxDHp/1xC1UcHOWSNofDnXwYg7vvfhG88Tduh2q4Z8k5S2MSKENq3G18PpXFZFfuI7FmD98I7BrQRl1AbUrIS++BHSNlabYhdflTmJNSYxaihRajUUagudmk53XWU2BFoLEVq9yA1u5Ca7dhbXgB5HpSBSh2NypqCGjZDv3YUusP0BMp04b3gFlzj5hJ4+9cE3vkNoQ3v4FtwL678qT3yGobXR+yFlxEzfwGhfbtoX7OCwKa1tH+6XOuZjC3EO7YQz6hxmOkZPRZ+EREih0sIbF5H+7pVWLXVGPGJxF93O7HzL+uyTQltWnqsd3BfGvHOiGpoJXzdfPioGHdR5w1d25YvRfl8xMy9uEv7b9hwkMo3NzDs9rmkzB3NzidWU/nhAYoevoghC0bx0sJ3aSpuwYhTFB8WrpvxGUrB8HlreOPvb2dXa4SrfjKRbU9sZfWjm7jiqQvwpsaQPDGD+q1Vx17HcOuTkES6uCjZSQpbcOdWJNCOr2hK1/Z5CkSEwHtPoWIS8My85pz319eIbSHl67H3voMUr9DGOyYdY8zVqNwLUBkTday7F1CGC5JHoJJHwCidqieRAFK9HanYjFRswN72EmxZAqYXlTkZNXw2Rs4cVHx046bdwUzNJubOHxHZtYrAB8/QtuSHmHmT8F581xnXsM4WpRTeUePwjhqH3HoPwV3bCGzdSHDnZgKb9EKlio3DkzMC17AcXEOzcA3JwExOw0hI7DSbRMIhrPo6IjWVRCrKCJccJLR/t27XphSegrHEXXUD/skzUWfVTPlkwrtWEXjrScyRU6KaN/55omvI338RM3dMp/q9dqCd9k1riZl1AYbv7LUcRITi37yPNyORnPsupmlPLXt+t46c68eTd1sRFWvm8r/Wrzl5PgH9dqTmV/IvTTcdu3/+96B46XRAf8kMr0m4OXTs8UB5PaAV27pEJylsbSs+wIhPxNuN7JzPE960FKt0O76rvjWgNMiltRp791vYu9+C1mrwxmOMWoQquFyHN84gqNZbKJcPlTUNsqYB9yHhNm3Uyz7DLvsUWf0E9uonICkXI2cuKucC1JDxAya+rpTCPW4erlEzCa3/K6FPXqLt2X/QxmvezZg5hT3mLSu3B1/RVHxFU7XwVHUloX27CBXvI1xaTHDPOydnbSmF8sdoW+D2oAylGzGHgtjtbUjg5MprMyUNz+jxeMcU4h0/6ayzUU5FaOsyAm/8B+aw0cTc9IN+0fv3KNGZybRp2BfNwXYV4z1DFWdw20YIh/DPmNell2jeVkbLrnIK/n4xptfNnv9aiyvGzYR/uIAdz+9n06+u49rXDuBLasDt1zFQty9y0i1AqM1NpC2F9U/cSd7lYEdsGnfWMPTCvGPb1H26DzPWS0x+zxTZhEsOEtyxmbirbzznL4tdV0Fg6VOYuUW4p5xZ/CfaiAhSsQl7xyvIoU9AbNSw6RizvonKnddrnve5oNwxqJw5kDMHkweQxjLs0lVIyWrsrS9qb92XhMqZi5F7gQ7DDIAQjHK58c66Fs+UhYTW/ZXQmtdo++PDGFmj8M66DtfYuT1qzJRSuIZm4hqaScw8fZUuVgTrSA2Rmmqs+lrspkbs1hakvQ2JhPW6kmGg3B5t4OPiMZNTcaUNwZUxrEcE50RsgsuXEFrxAmbuRGJueQTl6fu+nJ0RtVNK5O5r4S9P4CrofJEhsH0TRnwC7ryu5aDWLtuO4XGRdlkhVjBCxYcHyB1v4Hn0YXbvvhKpSOVno37GjX/8LWMXrscXG/qbfYRavRxcPpPl376PvIWjATj89h5C9QEyL9fzCdY2U/vBNoZcMfFvqkG7g9g2ja88hxEXT+xF56ZUJ+Egba/+FAwD/xe+GzUP9myQSBDZ/z7Wtpeg/gB4EzGKbsEYey0qYWCFKFRiNmbiLVB4CxJqQUrXYJd8ghz8GGvPX/WiafYsjLz5qOFzUN6e7wTVkyiPH+/cG/HMWEx4yweE1rxO+5//DRWXgnvy5XgmL+y1rjjKdOEakolrSN83awCwm2ppf+M/sIo34564AN9V30S5eqeS+1yImiG3Srah/PEY6afXDRYRQnt34Rk9AWV0zQg1bS8jfkI2rhgvjTtrsIMWqVIBjz9OS9wwUqwywoHZvHz/tyi673Wu/efX8MUcN+ahNg/v//BGaj++jXBLCzMeKiRQ08r2n60kcXw6GRePQEQ4+It3EBGy7+yZ/Nu2Tz4kfGAPiXd86ZzKm0Vs2t98ArvyIP5b/3dU2k+dDRJoxN75Gvb2VyFQDyn5mPO/h8q/fEB4rWdCeeJQ+Qsw8hcgVhip2IgUr8AuWYlV/DEYLlTWVIy8C3UIJqbv+z2eLcrtxTPtKtxTFxHZv4HwurcIrXyR0MoXMfMm4p54Ke4xs1HePijL72XEtghveIfAsj+AbeG7+lu4Jy/s3QrVcyB6hrx8D2b22E7fGLupEbuxHk9efpf3H6ppInmmfp4V0jE28/77YMmPSbSrqDVzyZ2bQtmaWobnVWMaNrYNkXYPLn8Iw7DILaziwDNNXPnsfPzJLlZ96TUibSGm/uR6lKEof3kNtct2kPuVS7uWrXIawodLaPrzEjxji/DPvqjb+xERgu8/Q2THCryX3oN71MxznltPI80V2Fv/hL3nrxAJaA+16DZU1tR++2M5V5TpRmXPhOyZGPJ3SPUObdQPLcda+Rion+vYf96FGHkXoeL6px6OUgbugum4C6ZjN1RrL33LBwTeeJyAy4OrYBrusfNwFUwfUGsyoB2gyO5PCX70HHZtKeaIyfiv/AZGyrldEdj73uvVq6/oGHIR7COHcY2d2+lmkSotienqTrsz1bEIAsTlJoGC+n9/jgxgevBN/hzzA5JLiym8KpZZX16BiKKxJI1l/3QPl//0WfxpDYy98yNSxj+OL8bL8tteJFDTyqxfLCZhVCqVf9nAgV+8o5UQ7zh3b9xqaqT+t49j+GNIuvur3TZmIkLw4+cJrXkNz4zFeObccM5z60mkbj/W5v9BDnwIgCpYiDnxNp0VMohQykANLYShhRgzvwZ1+7GLl2MXf4x8+iT2p0/qnPW8CzFy56OS86I95VNiJA3Be+HteObfhlW2k/D2FUR2fUJk12owXJg5E3AVTMeVPwUjLaffnqQl2EZ428eEPnsD+0gZRuow/Dc9jGvM7HOes31gGdZHP8KYfDfm9Pt7aMYnEx1DboVBbIzUzg201aizQc62ZPZE/Nkpx2RpPUk+Mi4ewf6VBxl2//fI/q+fcvVNj7Ji00gmfuH3mB6L3S/P4oNvf5lIm4839z/JomefIWX0u7iNf2LF7Qvwpscy79kbSS4cQvHvPqDsjytJmpnPmB/eeLwJbDe7xtjtbdT95jGs5iZSH3ik2yvrIkJw2X8TWvUK7kmX4114f7/54dhVW7E3PYeUrgaXH2PCjRhFt6Bi+2fIpy9RSkFqAWZqAea0+5DGUuzi5dpbX/c77HW/g8QcHVPPnY9KH9vv1juUUriGj8c1fDxyxf1YZbuI7FlDZO9agu//nuD7oOKSMXOKcOVOwMweh5Ee3UpZCQeIHNhEZOcnhHevhnAQIyMf/3UP4Ro/v0fmZlduxfr4x6ghEzCmfLEHZn1qomLIj3anMRLSO98uGABA+c6ubPZEUuaN4eCT79K0vYyECdkUPXwRy2+rYuWWkYz701Zy/vgwd3tMAlv+i7LHryfg/39cNutFUmcMIzx/HsXPJHPInUbq1L3k3lTI+L+bS7iuiS3ffpbmbaUMXTyF/L+7+lgOOXDGkvtTYbe1UvernxEpLyX5/u/iye1eKyuxIroDzKaluKcuwnfl16P+YxcR5PBa7E1/RCo36wXMaV/CGHc9yufooZ8OlTgcc9KdMOlOpLUG+9AKbdS3vACbn4eYNIyceTqHPmtKv8vkUco4ZtRZcC92QzWRgxuJFG/BOrSNyI7lekO3DzMzHzMjH2PoCMz0XN28uJdi7BJoxarcr08yh7ZilWzXTqUvDnfhxbgnXYY5bEyPOT92zS6s9/4R4oZiXv6TXv2colKiP23CWFl2+yhiv/pLzPSc027X9skyGl94miGPPoGZ3LVFoEhbkA13/RLT72HiL+/FnRRLa1kjG3+wlCPry1GmInlSBjFZCRhuk3BLkLayJpr3HcEO27jiPGRfPYb8L07GHWtS9txKKt9YjxnjYeQDVzJk4Snyu89Qcv95rPoj1P3634jUVJF837fxFXWvgk7aW2h79V+xDm7Cc8GteC+6M6qeuNgWcmgF1qbn4MgeiE3HKLoVY8wXUO7+lbY1kJBAE1K6Whv2srUQaQe3X68v5MxDDZ+tZQj6MSKC1FcSObwL6/Ae7Iq9WFUHIXI80UDFp2AkZWIkpqMS0jHiU1CxSSh/vI65e2NQphtMFygDELAsJBKEYBsSaEVaG7Bb6pDGauy6Cqza0pMajhvpubhGTMJVMAMzt7DHc8Ltik1Y7/0AfAm4rv7PHlvvOF2JfpQM+WhZdvsY4r75O4zkjNNu175pLQ2//0/S/vFHuLO73hW7cUsJ2x/8I560eEZ9/xoSJ+chItStL6dy2UHqNlcSqG7Bjti4YtzEZCWQMCaNtBnDSJ2eRcvjT1G19jC1TT4kYpExOo7cx76OO+k0CzgPPnjcGwftkZ9Gqzp0YA/1v/9PJBQi+csP4B3TvaatVvUh2l/6MXZjDb6rvoFncvRyxcWOIPuWYm1+HhpLICEbc9IdqIIr9A/PoceQSBAp34B9aCVS8gm012nJgCGFqJzZGMPn6orUfhJa6wyxLez6CuyaEuzaUuy6Cuz6SuzGaqT5yDGlym7h8WMkZ2KkDsMckouRkY9r2BiUv/dSPu2972Gt+FeIz8R15b/36KJ1/9JaOapscYYP6GgzhUhlebcMeeLEHAqf+CK7/+/LbP3Of5MwMYe0SyaQMDGHsd+Zdayzj4gQaQ4QKDtCy95KGj7eQPFjLxFuaMOM2GRUrWbY4dX4pt8LpzPicFZdY8S2af3oXZpf/xNmSiop3/o+7szsLh+biBDe/AGBd36N8sUSc/eP9aVsFJBIQFdgblmiKzBTCjAv/WdU3kUDpppxoKFcXlTOHIycOYg8pBUfS1Zhl6xC1v4We+1vIW4oRvYs1PBZqMxpKE//TAtUhomZmo2Z+re/A7EtpK0JaWtE2pqRYCuEAtr7tiL6KlgpLYLm8qC8MShfLCo2SSs4emP77GQmVgh7za+xd7yCypyCueBf+iyEGB2PvHCcLLutgNgvPY6ZefpCH7EiVH3va/hnXkDirfd0+/WsQJjK19dR+eYG2ktqj91v+Nwo08AOhpHI8ZOKOzmWpGkjSb1gDMmXT8a0Oyo9zxAqOeM86uto+J+nCO3airdoKkl3fQUjpuvpWdLeQvvbvyKyYwVm7kTdFKAHZEe7PI9gM/aOP2NvfxkCDaihRRiT70Jln/tKv0P3kdYaXYRUuhopXwfhdp2vPrQIlT0DY9gMSB0V9TWU8wmp3UNk+U+gbj9G4c0YM7+udXp6mP7lkXeI3tjNdZidpGcq04VnbBGBLetIuOmubsexTJ+bYbfOIeuW2QTK62nZVU6gooFwQyvYguF14U6OxZeZTGz+ULyZSdoQPfgg2MfL9bvbYFdsm7aVH9L85p/Atkm45YvEXLCgW8YuvHctgb8+ibQ24r34bjxzb+xzr1daa7G3vYS963UIt+kY7eS7MDIm9ek8HE6Nik1HjV2MMXaxLkKq2qqlfss+O+6t+xJRWdMwsqahsqZCfJZz8u0GEmrF3vgs9raXwZeIufBfMXI6lx3pDaJiyI+u3tq1JTC682KVmDkXUb9lHe3rPiVm1rnlayul8A9LwT/sLBdOe6DBbmjfbhpffY5IaTGeMRNIvO2+bvXftFvqCSx9isj25RjpucTc8k+dXs30BtJQgrVlCbLvPRALNeISHQNPddrG9VeU6daGOmsq5syv6+Ybh9dhH16HlK/D6sjnJy4DlTkZI3MKKnMSxGU6hr0TxAph73oTe+MfIFCPGrMYc8bXopaN1SOhFaXUQ8BjQLqI1J5p++nTp8uye6ZgDs0j5uZHOt1WbJvax36I3dxE+sM/xfAPjKyHcHkpzX95meDWDRhJySRcdzu+qV0POYhtEV7/NoGPnoNIEO+8W/DMu6lPFw/tqq3YW5ZoESvTjTH6Kl2FOcA0UBxORkSg4RB2xQakfANSsRmCjfrB2HRUxiQdLhtapBdOnfUO7YHvfgt765+grQaVMRlj1tcx0jtvGt9T9FpoRSk1HFgIlHTlea4RkwhvX45EQijX6fMrlWGQeMsXOfLzR2lc8hRJ93yzy7orfUmo5ACtS/9CYNNalM9P3OKbiLtkUbdaWkUObCSw9PfYNYcwR0zGt+irp1wQ6g10CuFK7K0vINXbwZuAMflujAk3ovx9H4936HmUUpCch5mcB+NvQMSG+oPYFZuQyi1aF2b/+9gA7hhU+njUkHH6Nn0sKqbrhXoDERGBI3u0Ad/3ng4nZkzCuPD7qGHT+8WVS0+EVh4Hvge83pUnucfOJbzxXSJ71uAeP7/TbT15BcRfcyvNr79AU1wCCTfd3a+MuVgRAls30vbxu4T27Ub5Y4i74lpiL1nULRlNq2IfgWV/wDqwEZU0FP9NP8A1Zk6ffGEk3Ia9523dLKG5HOKzMOY8gDH6KicH/DxHKUOLlqXkw4QbtQFrrtAx9urt2NXbkc3/A9KhDx6bjkobi0obrbsypRZATHq/MGzniogcl0048KFOpzU9qBGXYEy4oc888LPlnAy5Uupa4LCIbD7Th6eU+grwFYCcnBzMEZNQSUMJrXkd17gLzvjhxy64Cru5kdYP38ZqbCDpzi93K+OjJ4lUltP22Ura16zAbmrATE4l/rrbiZl7SbdCQFZ1McHlS4jsWoXyx+O97Et4pl/dJ7KZ0lKFvf1V7N1vQqhFlxTP/JouCXcuqQclSilIyNIhtFFXYAISbkeO7EFqdiO1u3Ta46GVHGtw7U1AJY/U2jDJI1BJuaikXPCn9GsDLyK6V2vlVh1qOrwWWmsApUNMhTdjjLy030oOnzFGrpR6HzhV1c4jwMPAQhFpVEoVA9PPNka+bt06QuvfJvD2r/Df/DDuMzSYAP1mt330Lk2vLcGITyTh+tvxTZnVZ965iGBVVRDYsp72jWuIlB0CpfBOmETM3EvwTpjcrblYh/cQXPUSkd2fgjcGz8xr8M66rteV40QEqdqCvf0V3UINUHkXah3wId0rUOqX3HsvbNlycpf1Z56J9qzOGyTUhtTt0+PIfqg/gNQXQ7j1+EbuWFRiNiQMQ8UP0w2x44ai4jO0Z+/qugxHt+cbCUJTGVJfjNQfRI7sQ2p36aIqAG+8zujJnqUVC/uRtHCPV3YqpYqAD4C2jruygXJgpohUdvbco4ZcrAitTz2ABNqI+8ovUP6zC0OESg7QuORpImWHcGVmE3vRQnxTZ/fKQqjd2kxo326Cu7cT3LkFq1aX+bpzR+KbOhv/tDmYiUld3q+ITWTvOkJrXsM6tBV8sXhmfAHvzGt6teoMOnpO7n8fa8ef4che3UJt9GKMCTf0W+nUc2LaNNiw4fj/U6fqBuAOvYaIQGs10nAIaSyFxhKksQxpOgwtVcfDM0fxxEFMKsqfAv5kLTXgTQRvHMoTB+4YcHnB9OnCH+Noeb4CsXV83w7rUv9IO4TbkFALBJog0IC0HYG2WqSlEtqOHH9dZULicK00OWScXthNye+3Ofa9XqLfHY8ctC5567Pfw5U/Ff/Nj5z1ZbzYNoH1q2l5/y0i5aXgduMdPQHv2ELcI0bhzspGuc9epEZsG7uxgUhVOeHyUiJlhwgdOoBVXaGPz+PBUzAO74TJ+IqmdEuREXQxT2jLB4TWvYXUV6AS0vDMvAbPlCt6XZBfGst0E4e9b0OwGZJHYk64AVWwsE89oj7Hto/VLgC6B2Q/WmMZbIgdgdYOo9pShbTWQFtNh7GtQwINOnsm2MKxkM254InToZ3Y9I6rgExUQjYqKQcScwZUA5N+a8gBQuveIvDOb3BPuQLfVd/o0tlQRAgX76N9/acEt2865jGjFGZyKmZKKkZcAsofi/K49VnctpFQEAm0Y7c0YTU2YjUcgXD42H6NhCTcOSPwjCjAkz8Gd24+ytW9JQURwSrdQXjje4R3roRICDN7LJ4Z1+AaO6dXm7iKHUEOfYK963Xk8DpQJirvQozx1+vYXz+OW/YYjkc+IBHbglCrDtGE25BIACJBsEJgWyd49Ur/rk03mB7dSs8dow24L6FXKiyjRa9XdopIXnef65l+NXZzHaFPXkSC7fi/8B2U++zOkkopPCNG4RkxCm66G6v+CKHi/UTKS4nUVmHX1xGuOIy0tyLh8DGFQuXxYPj8GLHxuLNz8U2cipmarvsDZmVjxp+7ipxdV05428eEty7Drq8Ajx/3xEvxTF2EmdH1rkddQZrKdbrUnrd07C82XUvIjrkaFZPWq6/d75jYoVR5Yozcod+jDBN8CXpwTKHJ4RRERWvl8x45dPTnXPUywWV/wBg6Ev91D3UqcdtfsesrCe9aRXjHCuyKfQC6g/3EBbjHzUN5ei+EIZEgcmgF9u63kPL1Wg0vezbG2C9oiVMn+8TBYUDTv7RWToFSCu+8mzGG5BF443Fan3oAz+wb8M69sV83cxXbwirfS2TvWiJ7P8OuLgbAyCzAu+Be3OPnYyR23kDjnF5fBKnZiex5G/vABxBqgbgM7X2PvtLpwOPgMAjoNx75iWhdkd8T2f4xyh+PZ+Y1uKcuwojtenZITyMi2EfKdKeT4s1EDm6GQAsoA3P4OFyjZ+MeM7tTnfUemUdzJfb+pdh73+0oVvCi8uZjjL5ad43pp6vuDg4O3adfNZY4kyE/inV4D8EVS4jsWweGC9eoGbjHX4ArfyrK1/WKye4ggRasiv1YFXuxDu/GKt2JtGk9ChWfpruM5E/DNXJy76cNBhqwD36M7F+KVG7Rc8iYiFGwCDXyYp2m5eDgcN4yIA35UazaUsIb39XaLC312vvNGoU5fBxm5iiMIbkYKVndFpIS20Ja6rEbqnR3kroy7JpSrOrik9tDJWdiZo/DzBmPmVuEkdz7CnESbNaaJwc+1FknYkFSLkb+5RgFl6HiHeEqB4fBwoA25EcR28I6vJvIvvVYh7ZiVezTzVNBL+zFpWAkpKJiEnVVpMevy9uP9fWLIJEwEmxHAi1IexPSUo+0Nuh0pqMYLozULIz0XMyhI3Rz2MwCjJi+kaiUQCNS8on2vg+v1ZrocRkYIy/ByL8MUgoGR9qgg4PDSfT7xc6zQRnm8e7cgFhh7TnXHMKuK0caqrFb6rCbapDqYgi1I1ZEG2mldJcUtwfl8YMvFiMmEZWeq5u9JqRjJA3RXnbS0L5v1tBcqfsvHlqhwyZiaeM94UbUiEtQ6eMc4+3g4HBKBpQh/zzKdGNmjMTMGBntqXQZsS2kZgdS8il26Sqo268fSMrFmHgHKm++Lht2jLeDg8MZGNCGfKAhrTW6O0vZZzpkEmzSlZZDi1Azv4GROw+VODza03T4HDr8aJ+iWbjSn59zsnU4A9JeCr7sXvuuRMeQtx1BWqvP+xxnCTQilZuR8g3Y5euh4ZB+wJ+Cypmr1dWyZ/ZbacyBitgRCNd3jDoIN0KkEcJNEGnWw2qBSCtYbXrYQbACICH9tx0CiXT0bP28Af/c62Fo8SXDBcoDhhsM7/Fh+sDwgxnTMfzgigUzXt+64sEVB64EPdyJ4EpEmeex/s0gQEK1UP0eVL0FTZtg2guQUNQrrxUVQy5tR4i8eIduGVZ4c896oU8/Ddu2ndxn8777em7/nSAtVUjVNi0NW7nleLjE5UNlTESNvkp3ME/Jd7y4biAi2iAHyiFQCcFKCFZBqBqCNRCqgVAthBtOvxPl0obTjANXh2F1J3YYWl+H8XV3GGSX3l65OKbncaxQXPSQDs2Po0Zfwh0ngTBYQbAD+gRhter5HT1xRFr0Np0dr+EFdxK4EsGdDJ5kfXt0eFLBnQKeFP23K8GpH4gGHTZHHnsMfvh1mGTCyFZo3ADYEFsAIx8E37Bem0J0mi+njEAVXKG1QHa+hsqajjF6ESrnoeyqogAABitJREFUApTnHKs4t22Dxx/XA3Tz5F5AQi1I7V4trl+zU7dDa63RD7r8qCETUNO+hMqcohcq+7DH5kBG7BC0l0J7ScdtGQTK9G2wHKz2k5+gXOBJB286+HMhcZo2ap4UbeTcSceHKwEMX785iYod0gb96FVCpOOK4dgVRKM+KUUaIFQPzbv0FUak6dQ7VC7Ekwru1I73IK1jnPC3N02/X2Zsv3kfBjISrIL690AthxfehEs7FFcjoyDvq5C+EBU3utfnEdX0Q2k7gr37L9i734KWSt1KKWsaavgsjKzpWie4q1+2DlGsY9i2zljpJmJHdLur+oNI3QGkbj9Stw+aDh/fKD6zo5/hBNTQQlRqwXmluNbTiAiEj0DrAWg7AG0HO8Yh7W2fGMowY8GfDb5s8GVqr8aXCd5M8A4FT+qg80KPh47qIFSn38tQHYSOdIza47fhOn218HkM3wmG/qiBTzul8VfG2ctBn89IuBFadkPzDmjeBk2bO76vQIsFm1phXSss2YKK6Z3euv0vj/zCC4+FPURs3Rfw4EfYJaugWWuA40vS3mzaaN0+KilHdxjpTDv7wQePe+OgPfKf//y0m4uI1idprUFaq5DmSmguR5oOI41l2mDbRy+BO1pfpRToHoVpY/Twd0E6IIqhn2gg4QZo2Qute6F13/ERaTy+kekHfx7EdAx/LvhzwD8c3MmO53gOiNjasw/VnmLUQPCE/0/8TE7EldARxkk9HsZxH71NPiHsk6LDOwPYiRE7okN2gTJoK+lwMA7o72zwhH453gxImASJk+Hpj+HRp1FH/Y9T2Zwe+t33rzzy9ev16Ah7KGWgMiZBxiSM2d+BpsNIxUbsqq1IzS6kbM1JGQOuW17QfQRPRWGh3u+Jb1gn2Gue1I2GT8T0QHwWKjEblTMHlZQHSbmo5BHn3oC4j0I//QFpL4VPFx2/w5UAsfkwZCHE5EPsSIgZCd4Mx1j3EkoZ2sh6koFRnW4rdugEj772BM/+hNG6F+o/PX14B4XMeAUVN6bHj6VP+GyxDukdxfBp5yJpGsSOgrixED8e5TmhsczwCDyQ2LnN6eXffVQ88jSlJA9YD9FS908DztgAo7eYBtOO/h2l9yCqxx9lBvOxg3P8UTv+Hvrd54rI38ipRsWQRxul1LpTXZ4MFgbz8Q/mYwfn+M/X4x9cq0QODg4O5yGOIXdwcHAY4AxWQ/7baE8gygzm4x/Mxw7O8Z+Xxz8oY+QODg4O5xOD1SN3cHBwOG9wDLmDg4PDAGfQG3Kl1ENKKVFKpUV7Ln2FUurflFK7lFJblFJ/VkpFv6t1H6CUWqSU2q2U2qeU+n6059OXKKWGK6WWKaV2KKW2K6UeiPac+hqllKmU2qiU+ku059LTDGpDrpQaDiwESqI9lz5mKVAoIhOBPcAPojyfXkcpZQK/BK4ExgO3K6XGR3dWfUoEeEhExgOzgW8OsuMHeADYGe1J9AaD2pADjwPfQ2uSDhpE5D2RY0pKnwK9o/DTv5gJ7BORAyISAl4Aro3ynPoMEakQkQ0dfzejDVrv6ar2M5RS2cDVwFPRnktvMGgNuVLqWuCwiGyO9lyizH3A29GeRB8wDDhBRIMyBpEhOxGlVB4wBVgT3Zn0Kf+Bdto67xIyQBm4MmVngVLqfSDjFA89AjyMDqucl3R27CLyesc2j6AvuZ/vy7k5RA+lVBzwCvBdETmd8tV5hVJqMVAtIuuVUhdHez69wXltyEXkslPdr5QqAkYAmztU97KBDUqpmSJSearnDDROd+xHUUrdAywGFsjgKCY4DJzYiiq7475Bg1LKjTbiz4vIq9GeTx8yD7hGKXUV4AMSlFLPichdUZ5Xj+EUBAFKqWJguogMClU4pdQi4OfARSJSE+359AVKKRd6YXcB2oCvBe4Qke1RnVgfobTH8t9AnYh8N9rziRYdHvnfi8jiaM+lJxm0MfJBzpNAPLBUKbVJKfWbaE+ot+lY3P0W8C56oe/FwWLEO5gH3A1c2vGZb+rwUB3OAxyP3MHBwWGA43jkDg4ODgMcx5A7ODg4DHAcQ+7g4OAwwHEMuYODg8MAxzHkDg4ODgMcx5A7ODg4DHAcQ+7g4OAwwPn/+MrbZoDjOkEAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACnLklEQVR4nOyddXhcZfbHP++94xN3b9rU3QUoRUqhtMji7i6Ls7AL7MIP2WXxZVm0uLtTCrSFlrq7t2kb92R87n1/f9xUKU0mmYmU+TxPnkkm977vO5PMueee95zvEVJKokSJEiVK50Vp7wVEiRIlSpTWETXkUaJEidLJiRryKFGiROnkRA15lChRonRyooY8SpQoUTo5pvaYNCUlRebn57fH1FGiRInSaVm0aFGFlDJ1/+fbxZDn5+ezcOHC9pg6SpQoUTotQohtB3o+GlqJEiVKlE5O1JBHiRIlSicnasijRIkSpZMTNeRRokSJ0smJGvIoUaJE6eREDXmUKFGidHKihjxKlChROjlRQ95RmTIFbr0VpDQep0xp7xVFAbj0Uhg2DHTdeLz00vZeUeuI/p+1DRF+n9vNkMvaJUipt9f0HZ+VK+HJJ0FRjMeVK9t7RVEAli+HxYtBVY3H5cvbe0WtoxP+n0l/BXLr/5CVvyADNW03r9SR5R8ig/Whnxzh91m0R2OJ4QNy5YJn4qD3/yEyT2vz+TsFUhp/9F3oOgjRfuuJYqDrhhHfhabt+3fqbHTC/zNZNRuWXQ002i5HN4gfAvFDIWEEwp4dmXkbFiPXnguKA1JOR6RfjLDmNvPk8LzPQohFUsrh+z/fLiX6+Csg8zJIm9Qu04cbKXXw1oKnGumtBV8t+BuQfjcE3BD0guYDLYDUgyA14w+7CyFAqAjFDKoJVAv8OAOOzwGfhvBp8I/L4KobENYYsMSCNRYsToToxEakMzJixG9/XrSofdYSDm677bc/P/FE+6ylmYikw5Fj50L9SqhdDnVLoXwaFH8MgLRlQeLoxq/DEJbE8MwbMxT6fIQsexPK30OWvY1MmojIuArh6H3wkyP8PrePRz6kr1y4ZHWbz9saZMCDrNkGNYXIuh3Iup3QUIJsKAV3pWGcfw/FDCar8aiYQFEbr8YCkIZR1zXQA6AHQfMbX00hVMOg2xIQtniwJyHsicajIwkcyQhHCjhSwBYfNfrh4NJLjXDKggWGER84EF59tb1X1XKmTDFu8x9/3DAu/fvDZZe196pCRkodXBuhZgFUz4ea+RCsAwTEDYDkcZByFDh7IcJwxyH9pcjS16H8PdBdkDAekfVnhKPXgU8I0/v8ex55+xjy4cNlRxbNkkEfsmItsmw1snwtsnI91BWx+1ZOKOBMRcRkQkw6wmkYS2FPNAymNR4sMWBxgtmOUEK/8ZFSh6APAh4IesDvQvpd4G8wvH1fHXjrwFeL9NaAtwbpqQFPlXHM/ihmw7DHpIEzDeFMM9Yek4GISYeYDITF0Zq3LUqUDoOUGtStgqpZUPmz4b0jwZYDqeMh7XiIHdBqoy6DtYZBL3sdNBckTUJk39z8kEuIRA35QTA2MdYid8xHFi1Clq02vGMwDFxKT0RSd0RiV0RCF4jLQqiW9l30QZBBH3iqkO5KcFcgXRXgLke6ysFV3ngXUWF4/3tjjTNeb2wmIjYTYjMRsVmIuCzD6Hfg1xwlysGQ/gqomA7lP0L1HJBBsOVC+iTIOBnh6NK68YM1yJJXoOwN4+48/WJE5rUINSZMr8Agasj3Q+oasngJcst09G2zDU8WYRjtzCGIjIGItP4Ie0K7rjNSSKmDuwrpKoX6EmRDye5HWV8MDSX7hXeEcRcSlw2Nxl3EZe/52Rrbbq8lSpRQkIFaqPgJSr+G6nmAbmyUZp4OaScgVFvLx/aXInc+CZWfgjkVkXMnJJ0UlnAORA35bmTtDvR1X6Jv/N6IbZvtiJzRKF0OR+SMRNgS2mVdHY3dhr6+COqLkHVFxve7Hj1V+55gjTOMeqNxF7FZu7/HnhS2f+QoUcKJ9JVByRdQ/Cl4toIpDjJPg+xzEfaclo/rWo7c9gC4V0DsYYj8B8ISbvlDG3IpJbJ4Mfry95A75hkZIrmjUHqcgMgdgzBZ22wthwoy4Ia6YmPjt74I6nYaxr5uB7jKYO8aAZOt0YvPNkI2jYbeCNlkIFRz+72QKFEwbAQ1C6DofSMDRkojlp53GSJuQAvH1Izslh2PAzqi29OIhHGtWucf0pBLKZE7F6IvnoIsWwW2RJS+p6L0OsnYoIwSEaQWMDJ66nYa2T11O5GNXj31RQcO2cRmNcbkMxAxGY3fZxobtC3YLI4SpaVIbwnsfNcw6sF6SBwD+dciEoa1bDx/MXLHY4jcuxHm1tmdP5whl9Vb0Ob+B7lzIcSkowy6wPDAo953u2KEbCr3CtMUGzH5euN73JXszg4CI8XSmdqYbZO+59GZinCmgjMNbHHR1MqOSCdP1ZRBl2HMC1+DQCUkHgYFNyNi+7XbmjpWQVAEkUEf+uJX0Ve8DxYHyugbUPqc2uYZF1LqSE8D0lWD9NQjfS7wupEBn5FVogWN3PFdCAVU1QgzmKwIixUsdoTFjrDFIOwxCHscwtS5wxBiV+qmMxUyBv3m91LzQ0Np44ZrKXLXRqyrDFm6Arm5/Lc5+4rJSP90JDfmzic35tQngT0R7InG3octAcyOaLy+rdhbzqATIkxOyLsMmX0u7HwfCl+ChWch0ydBt5sRtqz2XuJuDimPXFasJzj9AagtRPQ8EXXkNRHdvJRSIusq0Mq2opcXolftRK8uQa8tQ9ZV/ja9LxxY7AhnAkpMIiImESUuBRGbghKXghKfhkhIQzjiD1ljJXXNqKB1lRmplK5yI8XSXWF4+u4KYyPW9zt6GIoZbHHG5qw13iiossYiLDGNuf8xCIsTzA7jy+JAmOxgtoHJbhR2mWzRO4DmcIjJGchgAxS+AttfN57IuwLyLkeobXeXf8iHVvS1X6D9+jTY4lGPvBslZ0TTJ4WI1DW0og1o21agbV+NVrQe6a7b/XvhTEBJzETEp6HEpyBiklAc8QhHHMLmBKsDYbaByYJQd1V4KoA0/un1IDIYgKAfGfAi/V7wupA+l+Hde+qQ7jr0hmrD06+vQq+vhIB334WabSiJGSiJmSjJWSiJWSgpOSjJOSiOuLC/Lx0RqfkNg++pBk+1UTC1q3DKWwe+xmIqXz34GsBfb0gpNBfFbEgpqBZQzXseFZMR09/1JdQ9f+fffInGvz+A2FPtu/saLPZ75MD6HEIBROOvxL5ji8a5d61h77UpZlDNxt3qrq9dFyqTDcz2xi8HmOyhOwfDhhke+S6GDu3ccgaNSG8RbHwMyqeCvQv0+gcicWSbzH3IhlakrqHP/Q/66k8QOSNRj7onrF649LkJblhAYP1cgpuWgM8FgJKSi6nHSNTM7ijpXVFT8hD21if/h+pHSynB60KvK0evLUOvKUXWlKJXF6NXbCe4YcE+dwbCEY+SmoeSmoea2gUlrQtqWj7CemhVdQrV0li5mt7sc6QeBL/L+Aq4jcycgLuxutZr/Kz5DYMf9O3Rz9H8oAWMIjItaDxKbY/cgtSQum5k8uzS2ZE6hjxDY3aPlOyWa9h3VXt9K3/7vATQG38tfzu21AwnQWqNP7dQcVQoRqWyJda4a7HFgTXe+KzZE3ZLQ+BIMRIJbImIgQONc/eOkR8CCFsW9H8CWfUrrH8All6KzDobCm4zwjHtsabO7JFLLYA2/QHk1pkoA85GGXENQml9PE5KibZtJf4lUwmumwNBPyImEVP34Zi6DUXNH4DiiG/1PG2B1DVkTRla1U70iu3GV3khWnkh+D27jxMJ6ajp3VAzuqFkdEPNKEDERPO/DzWk1BsvMI0XHC0Auh+CftB8yOCuC5UXAp69LmauRmmIBuNuxt/QeIdTe2BJiN2b1BkQm9GYbpoN8bmI+LxDRg5Cah7Y8h/Y/gbYc6DPo4j4yF2wDrnQitSDaD/ciyycjTL6BtT+Z7V6XVILElj1M/45n6CXbwObE3PfIzH3H4ea2+eQiotKKZG15UZ8v2wLWukW9NIt6FXF7PL2REwiakYBSmYP1KzuqJk9UGLCoyQX5dBBvvISrFuGvP06ePbfyC6pMLAA2VC2Z+PaXb7vSY5URGI+IqkbIqkAkdwTEvI6baqprFkEq/8C/nLodhPkXhoRJ+iQMuRSSrSZDyM3TkU57GbUvq3TNJdSElw9C++MN5HVxShp+VhGnoK531iE+Y+Vrih9brTSLWglm9CLN6EVb0Cv3Ln7llzEp6Fm9UDN6oma3Qs1s8CI+0f543LrrUazhF3ccstvJFpl0GekmNZuR9YUImu2Ias3Q822PXUFqtWQyEjra8hjpA8wVDw7CTJQB+vuMwqKUo6FPg8jTJ1Ma0UIoQILgZ1SyskHO7a1hlxb8gb6opdRhl2OOuTiFo8DoJUX4v3mObTtq1DS8rEedQGmHiPDejWVUiJdDWj1teiuBqTHjfR5kQE/UmuMmQqBUFWEyYywWBE2O8JuR3HEoMTGoVjbz1hKvwetZDNa0Xrja+d6ZG2Z8UuhGHsE2b1Qc3pjyu6NSMyIhmT+SLSiaYLUg1C7HVmxwVAcLV+DrNywx7jH56FkDUVkD0dkDTWyizowUkrY8QZsehzs+TDwvwh7+JQQ28KQ3woMB+Iiacj1nQvRvr0NUTDe2NhsocGQUsc/73N8099AWOxYj74Y8+DxrYqxSynRykoIbN9CYGchwZKdBMtK0aoqIBho8bgAwmpDiU9ATUhGTUpGTUnDlJKOKS0DU3qmkXfehuiuGrSd69F2rkXbuQ6taMPumLtwxKPm9G407n1Qs7pHvfZDmWZ45KEgtQCyYh2yZLkhbFe63NhwFqrhpecdhpI/1oi5R5oW6ojL6rmw8hZjr2DAc2GLm0fUkAshcoDXgYeAWyNlyKW3juAnF4MlFtOpLxopUi1A+tx4Pnuc4Ib5mHqNxnbi9SjOhBaNpdXV4Fu5FN+a5fg3rkVvaMxfNpkwpWZgSstATUlDTUgyPGtnLIrDibDaEObGjkBCGF6NZqQfSp8P3edFetzoDfXoDfVodTXoNVVoNVVoVRXodbV7FiEEanIqpswczNl5mHPzMed1RU1ou9tSqWvGJuqOtYZx37EOvWqn8UtFRUnviimnt2HYs3sj4lOjXvuhQoSbU0g9iCxdidwxD71wDlRvNn6R3AOl2zEoBeNDyk4KiVZcpKR7Kyy7xoib938KkTy21cuJtCH/CHgEiAVuP5AhF0JcBVwFkJeXN2zbtm0hzxOc+Qhy4/eYTnkBkdKzRWvV6ytxv/sP9PJCrMddjmVE6BKT0u/Ds3gennm/4N+0DqRESUjC2rMvloJemLt0w5SRZeSKRwjd50WrKCNYVkywpIhg8U4CRdvRyop3p6kp8YmYuxRg6dbdWFdufkTX9Js1umsNb317o3EvWg8BHwAiJgk1pxdqdu9orD1KSMj6IvQtPyO3zECWG53GROYQlF6TEPnjwivD0cpem9JfYRhz1wbo9yQi9ZhWLSdihlwIMRk4UUp5nRDiKH7HkO9NSzxyvWwV2hfXogw8D3XkNS1aq15XievNu5GuGhxn/BVTt8Ghnd9Qj2vGd7h++RHpdqGmZWAfNgbb4BGYMnM6hIcp/T4COwsJbNuMf9tmAls3olUY8WxhsWIp6ImlZz+svftjyspFtGGlndQ19NIthnHfsZbgjrXImhLjl4qKkpaPmt3T2EjN6omSnB2WdNIohy6yrgh94/foG74zBNms8Si9TkTpe1p4vPQwhI1ksB7W3A1d/4yIaZkDuotIGvJHgAuBIGAD4oBPpJQX/N45oRpyKSXa1zcia3dgOusdhDn0HFTpacD1+p3odRU4znsAU04TzVL3PjcQwPXTtzRM+xLp92EbOAzHUcdjKQhP/79Io9XV4N+0Hv+GNfg3rCFYYoQ8lNh4rH0HYu03GGufASg2e5uvzYi1r2v8Wo9WvAF8buOXFjtqRgFqZnfUzAKUjAKUpKyocY/yG6TUkUWL0dd8jtz2CyAQ3Y5GHXQ+Iqmg5QN3sJ6mbZJ+GCmPXC9ahPbNLS1ONZS6hvu9+9G2rjCMeH7z9YX9WzdR89aLaKVFWAcMJfakszBntsEmSwTRaqvxrV2Jb/VyfGtXIN0uMJmw9uyHbfBwbAOHozjbJztASh29YoeRHVO8Eb14I1rJZqNwBcBsQ03rYmTKpOWjpHZBTeuCsEc7FO1C6hr4DYkHGfBCwMiQIuAzqlCDRgWq1DWjMGh3NWgjolEuQDEhVNWQHjBZEGarEf6y2hFWhyE7YbJ2OGdG1pegr/oIfd2XEPAg8o9EHXY5IrFrey+t1XRqQx787g5k5QZMZ7/foviXb/aH+Ka/ge3EG7AMPb5Z50gpcc/8nrpP30WJTyD+nMuw9T00Soz3Rmoa/i0b8C1fjHfZAiPDRlGx9u6PffgYrAOHtWvqo7HGIHrFdiO3vWQzWulmtLKt4HXtPkY4EwwtmZQclKRslKRMQ28mIb3Txd6llIbx9dQ3auzUI717PXobjOd3afD43OBzIX0e4/v9tXciiWo2tISc8cbfIDZ5j4hbQjpKYgYiLqVd7qKkt84w6Cs/MAx6z4mow67o1L0IOm1BkKwvJvj+OShDLkYdFvotjVZeiOulmzD1Ho39T3c2y3uQuk7dx2/h/nka1gFDSbjgKhRH+2gotCVSSoLbt+JZPBfP4nno1ZUIqw3bkJE4xozD3LVHh/G+pJTI+so9ypMV29Erd6BV7ADvviXjwhGPiE9tVIpMNpQjnQnGlz3OkAi2xRh6MyZL6zurS93wfv1epN8DPnejkXUhG0XQ8Lr2GGTvfsba03Bw5UzFZKzZ6jT0fRq9Y2FxGK/BYkdY7QizDWGxg8VqOEAmC8JkAZORLSUUk6FOuLeIFzRqs+iga0aedzBglO4H/MiABxovGLsvKq5apLvWEHNrqEI21LCPRoxqQknKQknJNfR90ruiZnRDxLVN5pL01qIvfRN99aegmFCGXIwy4KxOWUXaaQ25tuR19EVTMJ3zQcibF1JK3G/fi1ayiZhrn0dxNq2PIqWk7sPXcf/yI86jJxJ76jltuiHYUZC6jn/TOjzzZ+FdPA/p92HKzMFxxLHYRx7eLvH05qK769Cri5HVxeg1ZYaYWG05sq4cvaFqH0/+NygqmG1GRa/JbOjDq6Z9DR3SsFO6IYwltaAR+gkGkAGfoVvSHPbWmrfFNmrOx/72532+jwFzxwtn7I3UAsi6SuN9ryreLeCmVWxHVpewWwLCmbCn1iCvH2pm94hmVcm6nWhzn0UWzobErqhj/4KS1jdi80WCTmvIAx9fjLDGYpr8bMjzBLcsw/32PVgnXIl15MnNOqfhx2+o/+xdnMeeSOwp53ToD0xbofu8eBfNxT3rJwLbtyBsdhyHH41z3PGoiZ2nhHoXMuhHNtQg3bWGNLCnvtFTdu8OTRgGOWC0rdO1PV4q7JGbVVSjGYhiMrzcXR6v2Wo0BDE3NgexOvb6coLNaXjQf8BNW+n3GndRJZt2F5TpVUXGLy12TF0GYOo+DFP3ESjxqRFZg75tFtrsJ8FTiTLwfJRhl3Ya77xTGnJZX0Lw/bNQRl2POuDskOdxvXMfetk2Ym54yfiANYF/y0Yqn/o/bAOHkXDZjWEv0/dsq6Bu5XZcG0rwbK/EX1FPoNaN5vUjNR2hKqh2C+Y4B+bkGGyZCdjzUnAWpBPbOxtTbDvHqqUksHUTrhlT8S6dDwjsIw8nZsLJmFIjVJAR5ZBHd9WgbVtJcOsygpuXIGtKAVAyu2PuczjmvkeiJKSFdU7pbzC88/XfIFL7oB7zd6NvbAenUxpyfd1XaL88iun0NxCJ+SHNoVcV0/DcVVjHnY917DlNHi+1IBX/vAfp85Jy9yMo9vCEDjzbKyn5chEV01fjKzWqMVWHBXteCta0eMwJDhSbGaEqSE1H8/gJ1nrwV9bjLaomUN0YBhDgLEgnYUQByUf0JrZfDkJpv7uFYGU5rp++xT1nBmga9tFHEjvxT21aTRrl0ENKiV65g+D6eQTWzkEvWg+Amtcf8+DjMPc9ollOWXPRt8xA++VRY46j70PJHR22sSNBpzTkwZmPILf/iun8L0L2jn2/vI9v5lvE3DilWbdo7tk/UfveqyReeTO2gS3rlr033qJqtr7wAxXTVyNUhYRR3Uk+vCfxg/OxZSchFEGgzoe7uJ5ArRfdryFMCqYYC7ZUJ7ZUp3FMjRvXxhLqVm2ndvFW6lYUIoM61vR40k8cTMbJw7Ekt5+QkFZbQ8O0L3DP+gmhqjiPnUTM+MkIS9v2SI1yaKJXlxBYOZPA8h/Rq4sR9ljMQ47HMnwySlxyWOaQdUUEf7gHqjahjLoOpf9ZHTak2ikNeeDjixEx6ZiOfzTkORpeuQWhqDgvfazJY6WuU/5/d6DExJJ8699b/Ucs+Woxm5/+FhRB9hmjyTx9JJakGIIuP8U/bqZ05hYqlxTjLTmAIH8jqs1EbI9kkoZkkjYmj5QxOagWE0GXj6rZ6yibupyaBZsQFpWMyUPJu2Qc5oT2y6wJVpRR/8X7eJfMR01JI/6cy7D2ar9u47vpYAUdUVqGlDra1hX4F31NcN08EArmgcdgPfxMlMSM1o8f8BjS2FtnovQ9HWXMjR2y/0Cna/UmtQDUFCLyDg/9XG8DevEmrEee26zj/RvWoFWUETv5jFYb8W2vTGf76z+TMLwbPe46BWtaHEF3gDX/mcvmN5cSbPBjTXWSMjKb+N6pOLLjsCTYUK0m9KBGoN6Pt6yBhq011K4pZ+v7K9j8xlLMcVZyJvei4KLBpE0YSNqEgXi2V7Lj3dkUf76Qsu9X0O3G40k7YVC7eBOmlDQSL7sR37pV1L7/GlXP/hPHuAnEnXI2wtyO3vnKlUaJ9a4y61tuab+1dFCkrqO76tHr6wyRNrcL6fUYX36/IeSmaXs06RWjB6gwWwzJZbsdxe5AiYlFiY1HjUsI+x2ZEAqmroMwdR2EXl2Cb+6nBJZOI7D8R8xDjsd65LktFr4DEGY76rH3o897Dn3lB0hfLeq4v3aeTdCO6pHLmkKCH12AOu6vKD1OCGn84OYluN+5D8d5/9csPZXaD17DM28W6Y8816p/wJKvFrPx0S9JnzSE7rdPRqgKdRsqmX/jV7gKa8ma0J1uFw4maUgmDTvdbJm6k9LFFdQVugjUBxAmBXuKlcTucWSMSCHv6ExMNoWKuTvY8fU6iqZuQOqSrucOpM9NYzA5jbW6t5az8fGvqVu2jbQTB9P99skopvbLiJB+P3VfvI975veY87qSeOXN7Rc7b6Xo0aGC7vMa4mplxWhlJQQrStGqKtGqK9Fra4zMnIOh7J9nfnC7ocTEoianoqakY0rP3K3Mqaakhc3R0Osq8c1+n8DiqWC2Yj3yPCwjJrc6hVFb+hb6whcRXY9GPfre8BjzMN0Zdj6PvKFRTCk2M+RztTJDWVHJaF5Jrm/daiw9+rTKiPsrG9j8n++IH9Z1txFv2FrD7Is/RphVDn/9NFJG5FBX2MA3F//Cpi8LQYI1wYIpzgKKAAn1RW62/1TMkmfXoFoVep6ez8i/DGTYo/n0u+MI1j03n81vL6NsdiGj/3cSzrwEHPmpDHjqIgpfm8n2139G9/jp9fcz2m0zVFgsxJ9xIdYefah58wUqHr+f5BvuwpQe+t+y1dx2229/boVWdmdAd7sIbNtkiKZt30Zw5za0yr1arQmBmpiMmpyKtUcflPhE1PjERpnlGBRnDMLuQLHaDJ17k+k3tRRS143GKH4f0utFd7vQG+rQ6+vQaqvRqirQKssJbNmAd/Hc3YZf2B1Y8gswd+uJtUcfzPkFLTa8Slwy9onXYRl5Mr5pr+D74RUCK37CPvnPqJndW/z+qYMvAEVFn/8/NJMV9ci7Wh9mifCdYYf1yPX136D9/E9MZ72HiAstLcjz7f8IrJpJ3O3vNXms7vNSevuVxEw6ndgTTg1pnr3Z+uKP7HhnNsPevB57bjJSSn459wNchbUc+d5ZOPMSKFtSyaen/oge0EkZmcaGObXUlfuA/Q2uJK2rndy+MZQvMJQLj3lmNL3PMi5MFfN3sODmb1DtZsZ9cDbW5D0iYjve/ZWt/5tG/nXHkXPOYS1+PeEisGMbVc89CopKym1/R00MzwZVs/kDxMh1VwO+9avxr1+Nf9M6gsU7dv9OTc3AnNMFU1YO5swc1PRMTMlphhZ+GyH9PgLFOwnu2Ia/cDOBLRsN4TYpETYb1l79sQ4Yim3A0BZXUEspCa6bi/e755HuWqxjz8Fy+JmtytXXFr+GvngKysBzUUde2+JxGhcYljvDzueRexsbJ9hC71YvG6pQYptnMHZ5KqbU1m2YVP68loRh3bDnGvNWLtxJ9fJSBj9wDM68BII+jW8u+hlLnJnksTn8+vxmrOlWKtDxA1rj39ikg00IbA2SRV9XMPLSbsiSWr6/ajaOFBt5x2SSMjKHMS+fyi/nfciqx2Yx9JEJu9eRfc4Y6pZtY/trM8mYPBRTTPvmnptzupB0w11UPvl/VL/8DMm33tummuj7GO1DyBMPlhXjXboQ78olBLZuNIxio0yxbegoLF17YM7rimJv/271wmLF0qUbli7dcBx+NNB48dmwBv/aFXhXLcW7bCG1qoq17yAco8Zi7T84pP8TIQTm3mMwdRmA57vn8c18m+DW5dj/dEeLG4YrQy4GdyX68ncRcbkovQ8qIXVwInxn2GENOQE3IKCFkrXC1jw1PL2+DgAlLvQLxu4x/EE8hRWkHLMnS6Ni/k4ja2WioT+8fXoxdYUuxj9/GG9euJC0YYksXlRBvVOj2OvCJYIICTGqmS6xsbjK3Yw8Ip35r27lyh/G4Sqex9yHl5F3jBGeSOibRv5Z/dny3goG3nPU7ni5EIKcC8dS9et6quduIHV885UeI4U5K5f48y6nZsqzhvTBUc0TLouyL1pdLZ4Fs/Es/JXgDiN8aM7tSszxp2DtMwBzl25te5FsBYozBvvgEdgHjyBOSgLbNuNdPA/Pol+pXrEYJS4Bx9hjcR5xLEpM85UthT0Gx59ux99tCN5vn8P1yi04zrqnRaEWIQTKYTchG4rRfn0CEvNR0vuHPA5g3Anecsu+d4ZhpOP+1YM+UFsoYKQFwNq8C4AMGPKorcms0H3GGKaYPcqMgTofJrtpt4F1lRj9LBWnGalLdIeCM9nC2poKKhQP488roLSkgdU/lROsl4zOTsfb6EwXr6ijy3FZrH5z0z7zJg3JZPNby3DvrCOu5x5Ft9heRijKXVjZ4tcUbmyDR2Lp3hvX9O9wjJvQYfN0OyL+rRtxTf8O79KFoGuYu3Qj7rTzsQ0e0fahqggghMCSX4Alv4DYU87Gt3oZ7l9+oOHrj3FN+xLHEcfiHD8ZNTau2WNaBh2LmtEN9wcP4nr9L9hP+wvmniNDX5tiQj367wQ/uxLtx78jTnsFYUsIeZxI3xl2XEMuNUPLIsIItXGOpnbtD4LqsCJMCv7KPXnh9owYgq4AnrIG7GkxJPdNAMC9vQFrnBm9zI+70k+vhHhs9SqL3zLimpk46JoYR81OD727x1MFZA9J4Nf315NQsK9n4i4y+oNaEvetQtW8hmiTau04f14hjHL+2ndeQSstxpTR8cuh2xv/1o3Uf/kR/vWrEHYHziPHYz/8aMwZnVsP/2AIVcXWGC8PFO/ANe0rXNO/wz17Os7jJhNzzMRmO11qeleclz6G+/0H8Hz4EPLkm7EMODr0NVljMR17P8EvrkP75VHU8Q91OEek42W870awjxRmKKjmZivQicbNFd31+8U5TY6hKji7Z1C3vHD3c+lH5gNQ+LHRUzBjRApZh6Ux7+FlHHNLd6rX11OQZCfBpdBdc9JXS6CvlkCB5iSmRtIz08mOmeWMubaANa+spXJVDSNu3xMmCbj8bHlnOYmDMrCl7rtBVDVnAwAxfXNa/JoigZpi6LFotdXtvJKOjd5QT80bz1P5+P0Ei7cTe+q5pD3wFHGnX3BIG/H9MWfmkHDRNaT+9Z9YevWj4auPKH/4bnxrVzZ7DCUmEeeFD6Pm9cf7+ZP4V0xv0VpESi+UEVcht81Cbvi2RWNEko5ryBWT0b2kBQibE3kwqdK92JXfrFW1LgyRfGQf6lftwLXZyDKJLUgic3wBG15aSN36CoQQnDDlCJzpdpY/vYIxZ2eQlGUlNgAZqOQ0fmWiEh8UOBwKYy/PpXJ6IRs/L+SIB4fS/ZQ8Y62+IItu+w5PaQP97jhin3Vo3gCFr87A3iWF+EFdWvWaws3u/Yg/gLZ7S/GtX035w3fjWTwX54STSf3748Qce2KHlg2ONKaMLJKuvJmkG+4CoVD1339R+/6rSL+vWecLix3HOfei5g/A+8VTBNbNbdE6lP5nIjIGGWJb7ooWjREpOq4hN9lADxjC9iEiHPFIV02zjlXi4hE2++4+li0l46ShqA4LW/83jV0pnQPvPQpznJVfr/iMmtVlxGQ6OPunifS7sIBt3+2AbVX06mdhwNg4+o9LoP+4BAYcGU+fIXasFXVs+mAzsTlOzpx6PENvNHSTG7ZWM+uijyn9eSuD7jua5KF7QhRS09nwyOd4d1ZRcPOJ7SqqdSC8yxch7A5MWR3kTmHKFJgwwdiEuuUW4/spU9ptOZ5Fc6j676MIh5OUOx4g7qQz2707U0fC2qsfqXc9hPPYE3HPnk7Fv/9OsKSoWecKsw3HWfegZHbH8+m/Ce5cF/L8QiioY+8EzY82978hnx9JOq4htzR6bX53yKcq8alIV42hKd0EQgjMufkEtm0OeZ69Mcc76HLlMVTP20jRh/MAsKU6OeyVPyFMCr+c9yHrX1yAyaZwzNOjuWTFqRzx4FBS+iUQrPXRsKmGho01BKq8xOc5GfmXAZz7y4mc+f3xZI5KxVPWwMp//cL0U97Gta2Gkc9MIv+sPTvfmi/Augc+oWL6KvKvOY6EYR2rP2Fgxza8i+fiGDOu42RWvPceTJsGTz1lfE2bZuScg2HQb73VyP+99daIG3jfulXUvPE8lm49SLntH5iz8yI6X2dFWCzEnXouSdfdgd5QR8Xj/8C7enkzz7XjOPs+REwSng8fQq8P/S5cxOeiDDwPuflH9OKlIZ8fKTrIJ+q3CGvjDrWvFmzN360GUBKNFD29ugQ1renwgqV7bxq++wzd1dCqpsOZfxpJ7eKtbPnvVEyxNtInDia2IImjPjyHZfdPZ81Tc9j85jLyTutL1oTuDLm+z25P+0B4iusp/HQ1xT9sovTnrUgJuSf3pu8th+0TF3dtKmXdg5/i3lxK/rXHkXNu+xcC7Y3ucVP92nMosXHETGheg482oV8/w3jvzeOPG49tqNGi+7zUvPkCprRMEq++9Q8dRmku1t4DSLnjAapeeorqFx4n/rwrcIwa2+R5ijMex1n34Hr1djyfPIrjwodDLhpSBp2Hvv5r9Hn/RZzyYofY+Oywhhy7kcQvPdWI+NyQTlVSjOP18m3NMuTWPgNp+PZTvKuX4RgRukjXLoQi6Hnfaay5+z02PPI5nh2VdLn0aKzJDkY+M4mKBTvY+OpiNryyiA0vLcQUYyG2exKOzFhMMRZAEHT78Za5aNhcja/SuBuxZcRQcPEQ8s8egDN3T757oNbN9jd/ofjj+ZhibfT913kkje7R4vVHAt3npfrFJ9DKS0m64S+tulC2CbsKNR5/fI8Rhz0GPgJ45sxEr60m8fIbo0Y8BNSkFJJv+hvVLz9N7VsvIgMBnEcc0/R5aV2wT7oez2eP4/vlPWzjzg9pXmGyoQ67Au3nR5BbZyK6HtWyFxBGOqwhF47G/FhX+cEPPABKai6oJrSSTZj7Hdnk8eYu3VASkvAunNMqQw6gWs30/ee5bHryG3a8OYvquRvp9ucTiB/UhZQROaSMyMFX5aZs1jaqlpXQsKmKmtXlBF1+kGBymLGmOkgb24X4PqmkDM8mrlfKPvFub1E1xZ8toOTzRWheP+knDiH/6vGYE9q/im9vtPpaql98ksC2zSRcfC3WHn3ae0n7smrVvj/n5e0p1GhNJV6IsgDe5YswZedh6dqxLsJNIV95Be+iNbjOvhzfC68TSEpD72XcYSpWM6ZYO9bUWGw5yTi6pqJawy8LoNjsJF19G9WvPEPd+68irNZmfYbN/Y8iuGkx/lkfYO45KuSCIdF9Aix/B23xq4j8I9td8rbDGnIaGy1LV1nIpwrVjJpRgLajeRsaQlGwjzgc1w9foVVXtboPpWIx0eMvJ5M4ugebn/mWFTe+RtzgLmSeMpykw3thTXKQe3Ifck9uvmHzldVRNWc9FT+tonbpVlAEqUf3I+fCsTi7hrcNVjjwF26m5pX/oNXXknj5n7EN+o08RPtzzjmGkT2QwW1NJV6IYZlgeQnWXuGt9GsWLdCh0YMaVbPXUzF9FTUzCwlqsbDyA8AOO+pQV84FmxXd40PKvUIOqsBZkEHC0HySDu9F3IC8A2/Gt2BNwmwm8fIbqbrvNmrfeB41LgHrC680ea7t+KsIbl2G56tncF7+ZEghFqGoqIMvQpvxf8htsxD5TTuMkaTDimYBBN44EaVgPOrht4Y8h/eHV/Av+IrY298zmuA2QbCynPL7b8N57CTiTgm9P+jvoXkDlHy+kKKP5+ErqUWxmogfnE9svxwcXdOwZSZgTnCi2g1vRfMECNS58ZfV4dleiWtjKXWrtuPdUQWAPTeZ1OMGkD5xMNb0lssKRAqp67imf0f9lx+gxCWQeMWfseR1a+9l/T6RENUKUSCp9N6bsPbqR8IFV7Vu3lC59dZ9w0e33PK7dx1Sl5R+s4TCV2fiL6/DnOQkcWR34p55AKerFJu3GtP1VyOefso4HtBuvAXfzXfhKazAtaGE2hWF1K/cjgzqWFLjSD9xMJmnDMeSslehWwhr2h/9lpupLN2E5rST8v43mK64qslzA2tm4/n4nyE1aN/zngQJfngBwp6I6eT/hXRuS+mUHYKCn10F1hhME0MvaQ1sXIjnvftxnPcApm5DmnVO9ZT/4FuznLR/PBn2WK7UdGqXbqNy1lpqF23Bva28WfVO5qQYYvtkEzcoj8RR3XHkp3aIzZUDESwrofadl/FvWod14DASzrscxdl8nYx2oRWGI1xjVj79ENLvJ+WO+1s3b6g084ITqHGx9u8fUbtkK7H9csi9cCyJo7oj7rh939d5881G9s9Bxgu6fVTP2UDZd8uonr8RYTI6XOVeMg5LorN1KoFSEkyIo+LsEzHV1JH8zhcI08HDOVJK3O/ch1a8kdjrX0LYQ/vcays/Qp/7DOopL6CkRj502OnUDwGIz0WWLGvRqaa8/qCaCW5c2GxDHnPCqXiXLqDhh6+IO6Xphs2hIFSFhGFdd6cFBt0+PIWV+EprCda60XwBkKDazJji7FhSYrHnJLVr+7bmIgN+Gn74mobvv0SYzcSffyX2UWM77AVnHyKxqRliWMbSsy8N334alrBeSDRjHyBQ62b5ja/hK66h+19OJv3EwXv+rnu9Tu3m26lYWEJNyvG4zCkEVDvyqH9hGjkYe3oMsd2TSRyUQUx+AqnH9if12P54dlQZHa6+WEjZ98vJv2Y8GTPe2VfUOZS9idtuw1TXQPxPc6iZOI6G224g9ukXDnqKEALb+MtwvXQTvjkfYzvm4ubN1YjScyL6opfQV3+GMq799oA6tCEXifnITdOQfjfCEtpGnrDYMOUPJLB+PtbjrmiWUTFn5WIffhiuGd/jOOxoTKnpLV16k5gcVmJ7ZxHbu/Nqjkgp8S1fRN1n76JVlGEbMoq40y9AjU9o76U1n0jIi4YokGQfcTgN336K65dpxJ3cRFgvnKGgZlxwNvzzC7xF1fR//ALiB+fv+8vLLsNb4Wb9QzMpnN0dzd0FUiW2jFisrkoQdgLLSyguaUAPGG3i7FmxZE/sSZcz+hHTJYked5xE9llj2PTkN2x6/GuqstPpeeOtmJ9+LPS9icbXY3/8cXw3XUmD7sG2YxvmnINnrqnpXTH1G4t/wVdYRp+K4mh+yFJYnCgF49E3fI8ccyPC0j5ZWR3ckBveq6zejGiBfKSp92EEv/4PesmmZu9Kx55yNt7li6j94HWSrrujc3iV7YC/cDP1n72Hf8MaTBnZJF3/F6y922HDrrVEWF60OZhS0rANGYl75jSc4yagxh9EPzuc+e1NXHBqlxdSNXsd+deM/60RB8p+LWThbd8RdPnJmdSTnMm9SBqShcmxbzhDajoNW2uoXLiTkhlb2PT6EjZOWUTWhO70uekwYvJT6P/khRR/uoAt//2eZbIL/XZUYQ/1grrX64l75Cl8D95J7YdvkHzzPU1+jq1jzyG46mf8C74KPR2x5yRY+yVy8wxEazTLW0GHjpHL+mKC75+NctitqH1PDXke3V1Hw1MXYxk5Gdv4y5t9nuvnadR9+Abx51y2Wwg/ikGwpIj6bz7Gu2Q+SkwsMRP/hOPwY/aoSEZpEcHyUsofvhvbgCEkXnbj7x/Yhj1INz72FeXTVjDy89tRbfsa5+oVpcy68CNi8hMY/sREYrsdOCSkazpCiH3TZ8tdbH57GZvfWoYMaPS8dhQ9rxxm9LhdtYM1d78LQtD/qYtalZHl/nUGte++QsJlN2If0rSErfuDB9G2rybmz682K0FiF1JKgh9diLAnYZr8TIvX2xx+L0becUv0AWIywBqLrNzQotMVRxym7sMIrJyJDEGm1nHEsVh69qPuk7cIFLdOg+VQIVheSs2bL1D+8F34Vi0j5oRTSb3vcZxHHhc14mHAlJpO7Amn4l0yH8+iOb9/4IFCQRGiYX0xsf1yfmPEpZQs+8dPWJPsHPbqafsYcSklW6bu4KvzZvBSwYc8m/QO/0l6m1f6fMJX581g5WsbEBYzfW8+jPHfXkTm+ALWPjOHX6/8HH+tl7h+OQx49lKEIlh121t4S2tbvH776CMxZWRT//XHSF1v8njLiJOQnnoCq2eFNI8QAqXbMciSZUhX+4hpdWhDLoRAJPdEVoQucLML86BjkQ3VBDcuav68ikLCRVcjrDaqX34a3RO63suhQrCkiJo3nqf8/+7As2QezqNOIPUfjxM76XQUe7QKMZw4x0/C3LU7te9NIVhWcuCDdoWCdN14jGAoKFjnwZz428322tXl1K4pp9d1I7HupYWvBXS+v3I2X541g9IlVXQ9IYdRdw9k2M39yDkijYo52/nppnlM6fsJc8f9G/Xj9xn++EQGPzieqkU7mXXRx/gq3TjyUuj3+IVoHj9r/vY+uq+FKqiKQsyJf0IrLcK7bEGTx6v5A1GSswksmRryXEq3YwCJvu2XFqy09XRoQw4gUvtA1SZksHmSlftj6j4CEZNEYNE3IZ2nxieScOkNaBVlVE/5D7KFkrqdFX/hZqpfeYbyh+/Cu2wBzqNOIO0fTxB32nmosR0vf/1QQKgqiZdcD4qJ6pefQvd6fnvQZZcZ8WwhjMdwN5LeSyxMqa5AW/vbu+GaVUaRXuqYfYW9Fjy2gnUfbmX0PYM495cT8ZitTHt6C18+sJ4ZU3ZSG3Bz6v8eIMc7h/lLM3nnIZ3yFdV0Oa0vo184Bff2WuZc/TlBdwBntzR63vMnXOuL2friDy1+ObZBI1BTM3D92PTnXwiBedBxaDvWoFU1T1VxNwldjCy7qCE/MCKtD0gNWbG+ZeerJsxDJhDctDjkP461Rx/iz70M/9qV1Lz5YrNuzzozUtfxrlpK5TMPU/nvv+Nbt4qYCSeR+o8nDQMel9DeSzzkUZNSSLz0eoKlxdS8/lzb/8/t2kxVFOyFa3GV/vZuNOg2mraYY/fEkfWgzrL/raPg5DyG3NiXl46byZz/biRreCK549NIHJJA2vgK8s7bQNlgB7muOQSdiXx0wlR2zi4ldXQuI548kdq1FSz7x08AJB/ei8xTh1P00Tzq17QsxCkUBee4CQS2bcZf2LTCqbn/UYAguHJmaPMIgZJ3GLJ4GTLQ9nfwHd+QpxoNjWVZ87uC7I9l6ERQVPzzvwj5XMfoI4k96Sy8i+YYwjxay1vCdVR0nxfXrB8pf/huqp9/nGB5idGV5v6niJ18Zki9EqO0Hmvv/sSdfgG+lUup++Qt2jQhYa88+vi6Qnx+Bc/2feVerUlGKrCnbE9Xrfodbny1fvInZLHkra0UL6vh2EcG8OvMEub+WMzGLXXE9J6LlNBz/CLm6UeiuytxZjr48pwZVK2rJX1cPr2vG8mOr9ZRNG0jAF2uHo85MYYt//2+xe+DfeThYLbg+bVp46zEJaPm9SWwJrQ4OYDIHW30UCha0pJltopWG3IhRK4QYroQYrUQYpUQ4qZwLGz3+I4kiM1ClrbckCuxSZj7jyOwdBq6O/TNk5gJJxEz6XQ8C2YbYZZmdibp6ATLS6n75B3K7r2JuvdfQ7FYSbjoGtL+8YTRlSYaA283nEceh/PoibhnTsP149dtN/Fem6fJFWsASdm0ffW+E/obmSRVi/bc4SqqkZUig5KiJTXYEswsmVmCLc5MzNgYFtdX0mfSYoSA/JPW4rf62LQzDiU3EdWi8N3ls9ACOj2uGkFcrxRW/usXNH8Qk9NK3iVHUre8kNrFW1r0khS7A9ug4XiWzEMGmw6Rmnofhl5eiB7iHbxIHwAmG3Jn0/H4cBOOPPIgcJuUcrEQIhZYJISYJqVcHYax4dJLESnbkIPcyGHDEAMHwquvhjyM5bDTCSz/Ef/8L7EddUHI58eecCqK3UHdx29R+fRDJF5xc9tW4YUJqQXxrliCe/Z0/GtXgKJiGzQc57jjMHfrGc2b70DEnnoOWm019Z+/jxITh2N0Gwgz7ZVXb73tNhKL7ZR8sYjc88eiNDbzjumaiDMvnh3frCf/bKOPbEy2A0u8meIF5VjjnJz1+iP0PWnfFGOfz8huSu9RzBOefSsoN309lNVv9mDAZT3pd9vhzLnqc3Z8uY4up/cj/cQhFL42k50fziNhWMt0e+zDxuBd+Cu+dSux9Rt80GPNPUbi+/4lAhsWYB11SrPnEKoFkT4AvWgxbZ3H1WqPXEpZLKVc3Ph9PbAGCF+H2OXLUeZuAW8NFK2B5c3rBrI/akoupt6H4V/wJdLTskbLznETSLzyZoKlxVQ8eg/eVUtbNE57ECjeSd1n71J2783UvPIMwZKdxJx4GmkPPEXiZTdgKegVNeIdDKEoJFx4NZbeA6h952U8S9vA09tvMzX7zrMJVLko/nyPURZC0OWMflQu2Ll741MogoJJuWz8Yju5I5P47u6zqS1Jw+/Zk7potRphSYt1j1cc8FioK0pj/cdXsuTZNUgpST08j7heKWx5bwVgqImmnziE6rkb8Fe27LNr7dUPYbPhXd509pqSmIGSnE1w8+KQ5xFZQ6BmK9JT04JVtpywxsiFEPnAEGDeAX53lRBioRBiYXl5CBrjCxYgNhhNe2WPeFjQ8n9m69hzwOfGN/fTFo9hGzCUlNvvR4lLoPr5x6l59xV0d/MaPbc1Wl0trhlTqfj336l4+C5c06dizi8g8epbSbv/SWIn/qlzldP/AREmE4lX/BlzfgE1r/0X35qWOTItJWFIPgnDu7H9jZ8J1O3Josk/ewDmOCurn/p1d+x60DW9CdQHqF1RgR7sy0tHP8viL4bidR+4uMbnsrDhlzH8u+ejJPcfS82meipWVCOEIPeU3tSuKsNVWANA6nEDQJdU/rKmRa9DmM1Yew/At3p5s2LtatchaIWrkFogtHnSBwEgS1e0aJ0tJWyGXAgRA3wM3CylrNv/91LKF6WUw6WUw1NTU5s/8IgRUOqBGj96r3jj5xaipnfF1Hcs/vlfoDdUt3gcU0YWKbf/A+exJ+KZM5PyB+/EPXt6h9gI1eprcc+eTuWz/6Tsnhup+/gtpBYk9k/nkfZ/T5N01S3Y+g9BKB1+nztKI4rVRtI1t2PKzKHqpafwbWiZMWspXa+fQNDlZev/9rTFM8da6XXdSMpnF1I8bRMAaYOS6H1OV5b8Zw3jbupOxTqdn667mo/vPR2ve9+iIo/bzLT/XcAn991NwG3DlGQ0mS6aZzh5GUcZIZTyOdsBcOSnYstKpHrepha/Dmvv/ug1VWilxU0ea8ofAAEfWlFoxYgipSco5lbt6bWEsHyahRBmDCP+tpTyk3CMuZuBAxFDhyKGHI/sl4IcOKBVw1nHnQ9BP75f3mvVOMJsNIFNueMB1NQMat+bQvlDf8H96wxkwN+qsUNBSkmgZCcNP35N5VMPUva3G6l9bwpaVQXO404i5a+PkHrXQ8QcMxE1Lpr/3VlRHE6SrrsTU3Iq1S88gX/rxoOfEMbm0c6CdLLPGkPp10uoXrDHkHY9bxDxfVNZ/n/T8VYYKXdjHxmOPcXK6hdWc/jgYuqqHfQs2IaqSHQdPC4Lug5mRcPh3EZKnlFwZI61oFoV6guNu1tnl3gsCbY9oRshiB/chboVhS3OXrH0NDLgfBubvhCqucax2vbQtvqEyYpI7oEsX9X0wWGk1ZudwgisvgKskVK2UjbuADRubIo1nyO3TIen/q9Vw6nJ2ZiHnkBg8XdYRkxGTQmtH+j+mHPzSb75HnwrFlP/7afUvvsKdV+8j2PE4diGjcHcpVtYY89SSrTqSvyb1uFfvxrfulXo1UZ6mCkrl5jjT8E2aDim7LxDMuYt/V70unJkQzXSVYP01CM9DciAF4J+o3BLShACoZrAbEVYHQhbLMIZjxKbhIhLRTgTOt37o8bGkXTDXVQ+9SBVz/2b5Bvvxpybf+CDw9w8Ou+yo6iavZ4N//ycIVOuwRzvQDEpDH1kAjPPeo/Fd01lzAunYE+ycuLrR/Lx5GnYB/XmsPR3GXqFkXZYWZjC2zefz0VPvUFsZj1HXj4D4Qqw9SNI7xuPYlbQNSNvXghBTLckGrbV7F5DTJ9sSr9Ziq+0FltGQsivQU1JQ4mLJ7B5Axxx7EGPVZzxKElZaDvWhjyPSO2Dvv4bpK6F3Ni5pYQja+Vw4EJghRBiaeNzf5VShlZK2QRK5hB0QBYvCbkZ8/5YjzyPwMoZeKe9jPPc1ov5CyGwDRyGdcBQ/OtX4571I65ZP+KaMRUlPhFr7/5YCnpizu2KKT0LYW5e70IZCBCsLEMrLSaws5DAjm0Etm1Gr6sx5nU4sfbog2XCydj6DUJNTG71a+kISCmR9ZVopVvQy7ehV2xHrypCrypG/l76qNJotFUVECB1w6gHfCAPUFRjtqEkZ6Om5KJkdEPN7I6a2QNhsUX0tbUWNT6RpBvvpuqpB6n8779IvulvmDNzfntgmHXWVauZXveexrJrX2b9I5/T9+FzEIogrkcyA/82jqX3/cTqp+bQ77bDyRyVygmvHMG3F81k4qOrUC0ay94dw7fXXkj8mD68d1IeJz77Pvnj5uNMeJS8MbcRm24h0BDEmbYn5dWaYqd+Y9Xunx1djJCsp7CiRYZcCIE5vzv+rc0Lz6jZvQhuCb0fgkjtBas/htrtkJgf8vktodWGXEo5C4i8axOfC44U9KLFKL1Da8m0P4ozHuuR5+Kb9gqB9fMw9xwVliUKIbD26oe1Vz90twvvisX4Vi7Bu3IJnnm/7DoINSEJJSERxRmLsFgRJhNIiQz40b1edFc9em0Nen2t4V3uOi81HUvPvli6dsfSrSemrNxDItYtfW60nevQdqxFK1qPVrRhH4MtYpJQknMw9RyFkpiBiEtBiUlCxCQgHPEIq/N3O8FIKSHgQ3rqkK5a9PpK9NoyZHUJWuUOgtuWI1fOaJxIQcnohil/EKaug1Hz+jXZYaY9MCWlkHTj3YZn/p9/knzzPZjSMvY9KAI66zG9Mul6/QQ2P/0dO96ZRe4FYwHockZ/alaVs/GVRTjz4sk/sz/dT85j4iVBAjF2Zt13PfGLMkjMiGfL1FIgm+ePvpVhl0ynz+SNnPPWaLZ8a1RuZi14D+QDcNttqNu7IwN7tF6smQkA+FohpGXO64pv+SJ0j6fJOgklsztyxXT0+kqU2OY7SSK5JwCyYj2isxjytkIIgcgcjCxajJSy1bfFluGTCSz5Hu/UFzF1HYQwh9cTUxxOHKPG4hg1FqnraOWlBLZvJVhahFZZjlZbg1ZThfR5QdOMUIDZjLDaUGPjMGfnoSYmo6amY0rLxJSRhWLt2N5ic5EBH1rhKoJblxPcthy9eFOj1yxQUnMxdR+OmlmAkt4NNa0LwtZysX4hBFhshqcdn4bKbzvV664atOKNaNvXoBWuwj/vc/xzPgaLHVPBUMy9D8PUY2SH8tZNqekk3XgXVU8/ROWz/yT5pr9hSt4riSBCOuuZp42kbuUOtr30E86CDJLGGO/ngL8eibuojmX3T8cSbyNrQne6P3UpxQsm8+v//YKnzMPQm/oy+cRcCudX4akOkNLzMHqdmEWgIcC8R5aTnOgh450H4Z0HAQiOewQ1Yc++jqWxW1agtuUl8OZso8lEsKgQS0Gvgx6rZhQAoJVsDsmQk5AHqgVZtRGY0NKlhkSnMeQASuZQtE0/QM22Vt+yCNWEbeK1uN/8K75f3g+5xVNIcykKpvRMTOmZEZujo6NXFRPYuIDgxoVo21aCFgDFhJrdE8thZ2DK64ea3Qtha/vWdoozAaX7cMzdDZln6fcaF5kN842vNbPBbMXcawzmwcehdumPEO1/J2RubOhR+czDVD37T5JvvndPOmmIXYqaixCCHneehKewgnUPfMzA5y7D2TUNxawy4skTmXPlZyy8/TuGPzGRrPEFZI5I5bzZk/jlr4tY+PhKlr+8jl5ndCVvXAa2ZAtr3trEogfn4a6TTJx6CmLkngbUnpQu2JL2eM3CooIi0DwtTyYwZRlhqEDxzqYNeVo+AHrZVujR/Gw5oZggoQuyquUZNqHSqQy5yDJ6b+rFS1DDcMti6jIA88Bj8c/9FHO/I1HTu7Z6zCgGUkr0kk0E1v5KcN1c9AojjUxJzsEybCKmgqGouf06lJe7C2GxYe45EnPPkUhdQ9u+msDKmQRWzyKwcgZKUhbmYSdiGTS+XS48e2PO6ULStXdQ9ew/qfqv4ZlHuuG1arfQ9+FzWHr1y6z+yzsM+t8VWJJjMDnMjH7+ZOZc9TkLb/mGIQ8dR+7JvbEnWZnw/GEMvroXi59dw5p3NrHilT0ieClJHk6oe5SMkXucKR2V+rVlpFw4dPdzuxtU6C3XnlETkhAWC8HSpsvvhc2JiEtBK9sW8jwisRuyqPnS2a2lUxlyYrPAmYosXgp9/xSWIa3jLyO4aRGer57BeeljbbbLfCiy23iv/oXA6lnI2jIQCmpef6xDT8DcYyRKYkbTA3UghKJi6jIAU5cB2CZcSWDtrwQWfYNv2sv4Zr6NZegJWEadihLbfnINlq7dSbz6Vqr+9xhVzz1G0o13odgiq5NjTY+n7z/PZcWfX2PVX95hwDMXY3JYMcdaGfPyqcy/4SsW3/U9nuJ6elw1HCEEaUOSOeGVIwh6NarW1OCt8ROb6yShWwxCvXrP4JpG5aX3oC8QJA/b09NWSokM6ghTyz+jQlFQUzPQfk/vfT+U1LzdTkhI8yR2RW6civTVI6yRvbBCJ1A/3BsjTj4EWbw0bIpwiiMO2wnXoBdvxP/rx2EZ84+GXl2C75f3cP3vWlyv3IJ/3ueoKbnYJv+ZmFvexHnhQ1hHntzpjPj+CLMVy4CjcV7yb5yXPYGp+wj88z6n4dkr8E59oVVFZq3F2rMviZfdQGDHVqpfehoZCK0isSXE9s6i9/1n4NpUwtp7PkD3G6X3ZqeF0S+cTM6kXqx5eg6L7phK0LUnHGKyqaQNSSbv6EwSu8chbr9934Fvv53CjHGoDjOph+3RPN8VUlEdllat25SaTrCirFnHqim56JU7kAfKfDoIuzY5Zc3WEFfXMjqVIQdQMgaDtxpqC8M2prnP4Zj6HoHv53fRSlumsPZHQ/rc+Jd8j+v1u2j475X4Zr6DiE3CduINxNz8Bo5z/4Fl8HEojkNTAlfN6oHjtDuIufZ5zAOOwr/wG8OgT38D6WufjlK2AUOJP+9K/OtXUfPm822iZZ40pic97jyZmoWbWffgp8igMadqMTH00Qn0uXkMO7/bwIwz36N6RemBB9mv61FdRl92frOeLqf13aeRc6DKKBYyJ7QunKUmp6JVVTTr/VGSc4z6hNrQWriJ+MYLUE2jnQpjgdaB6FyhFUBkGloGevFS1IQuYRvXdsI1uApX4fnscZyXP4Ewte6qfygipUTbuY7AkqlGX8OAFyU5G+vRF2HufxRKfAjSC4cISlIm9sl/xnrYGXhnvI1/9ocElk7DevTFmAcd0+aboo5RR6A31FH/2bvUxcUTd/qFES98Sp84mGC9hy3Pfs8Gu4UefzkZoQiEEPS8agRJgzNZdNf3/HzuB3Q7byC9rhuFJWGvvZG9NmYD9z/Coos+xhSj0/OafTcYfaU1gBHWaQ1qYgoEA+gNdU02S1GSjNCOXlWEkhBCI+jYDKNUf5fDGeYCrf3pdIacuBywJxmiNH2aLzHZFIojHtvkP+N57358P72ObcKVYRu7syO9LgIrZ+Bf9C16+Taw2DH3G4t58AQj06STVUhGAiUpC8dpd6CNPgXv9y/h/eppAkunYjvx+t3ZD21FzLEnotfW4Jr+LWpCMjHjJ0V8zuyzxqC5fBS+OhPFrFJw6yRjYxJIGZnDMZ+fz+onfmXz28so/HQ1Xc7sT+7JvYnrlYIQAikllQt3svz/ZtCwtYbRz520u4HFLtxbDa/YnpfSqrWqSUYqoVZd1bQhTzQyzfTqYmBws+cQignispG1jfH1MBdo7U+nM+RCCET6AGRJ+FXgzN2Ho42YjH/+F6hdB2MOIeXoUEQr24p/4dcEVswwvO/M7thOvAFzv7EIq6Op0/+QqFk9cVz8KIHlP+H7cQqul2/GctgZWI84u02Liwwt8yrqP38PNSkF+9DwFL0djNxLxqEHNHa8NQsUQcHNJ+425uZYK4P+fjRdzxvI+ufns/mtZWx6bQmmWAu2VCf+Kg/+Gi/WVCejnz+ZtL1i47twbSzBFG/HktzyugIwqmMB9Joq6HJwfXMRlwyqudGQh4aIz0HW7jB+iECB1t50OkMOINL7I7fORLorEI7WXZ33x3rspQQLV+H94knUK57+w4ULpK4RXD8f/4Iv0batAJMFc78jsQybiJrVs72X1ykQQmAZdCymHiPwTXsZ/6z3Ca6fh/3U29rMOxeKQsIFV1FZU03Nmy+gJiZj6do9snMKQZcrj0FqOjvf/RU0nYLbJu825gBxPZIZ/vhEfJVuSmZupWZVKf4qD+Y4G0lDMsk6vjsm+4EvePWrdhDbO7vVd4BKY6691ih1cfDXpKAkpKPXNC/LZZ9z43KQO+YjpY6IUIHWLjqtIQeQZasR+eHtmiJMFuyn/QXXK7fg+fRRHBc+jFA7Xpl2uJE+N/6l04zGGzWliLhUrMdcgvkQ3rCMNIojDvspt2LqcwTer/+D65VbsY2/DPPwSW0SjhJmC0lX3kzF4/+g+qUnSbn9ftSk8Do++zBlCmLlSvIfewwx/Sd2fLkYzR+k519OQZj23SuwJjvoclpfupzWt1lD+yrqcW8tJ+2EQa1ephITB0Kg1zWv1N8w5L+zUXsw4rJB84OrPGIFWrvodFkrACKpOygmZFl4usntj5qcjX3yjWg71uL7Iby7yx0Nva4C7w9TqH/mUnzTXkaJTcZ++l3E3PAS1sNO/+MZ8QhkF5h7jsR51X8wdR2Ed+oLeD7+Z5tltigxsSRefSsyEKDqpaci22+2cUNPqCpdPvwnXbK8lE9dzpr7PkD3Nd0r82BU/2oUECWOav1dhVBVlJhYQ8uoOccnpKHXNC9dcZ/z4owqUlm3I+RzQ6VzGnKTFRK7ISvWRWwOc9+xWEadgn/BV/iX/xSxedoLrWwbns+foOHZK/DP+xxTwTCclz2O8+J/Ye5z+B+3MGpXdoGiGI8rw9MgQHEmYD/7PiN0t24urim3orWg0KQlmDOySbjkOoI7C6l555Ww1WD8hr028ASQ++7DdLtpIlWz1rHy9rcI1nt+/9wmKJu2AntuMo5uIWSOHAQlNh6tuR55fDp4G0K++Iq4xmKmutCaOLeETmnIAZTUXsjK9ZH7pwSsx1yC2mUg3q+fJbgzcheNtiS4fTXu9+7H9eINBNbOwTLsRGKufxHHaXdGY+Dw22yCMGYXCCGwjjkNxwUPIj0NuF69neCm0PtCtgRbv8HETjoD76I5uGd+H5lJDrChl3X6SHr9/XTqV21n2XVT8BaFXjTl3lpO3bJtpJ0wKGwhKSUmDr3+N43MDnxsY9qhXhuiV+5MA6Ei66OG/PdJ6gG+enCFfsvTXIRqwn76nYjYJDwfPoReG0Kv0Q6ElJLAxoW4Xr8L9+t/QStaj3Xc+cT+eQq2469CSUhv7yV2HA6UXRBmTF0G4LzsCZT4NNzv3Y9/SYQM6344j5uMdcBQ6j59F/+WJjoMtYT9Cnt2beilHtuffo9fSKCqgaVXv0zNkq0hDbvj7dkoVhMZJw1t+uBmosTFoTc0z5CL+EZDHmJ4RSgqxGYgox757yOSDInJSCuMKY54HGffiwz4cL//QLtV7bUEKXUCa381Nm7fux+9phTrhCuJufEVrGPPQdgjrwHR6fgdYxRulIQ0nBf/C7XrYLxf/wffrPcjencJezJZ1MQkal59NvxNwy+7zNjIE8J43GuDL2FIPoOevwJzvIOVt77BjrdnIZshflW/toiy75eReeqIVld07o0aikfeaMhlXeiOnIjNgvrQUxdDpfMa8l1aBtVbIz6XmtoFx+l3oVdsx/3hw8hg5HUsWoPUNQIrZ+J68UY8Hz0Cfo+he3LDi1hHnhx27fVDioMYo3AjrA4cZ9+Luf9R+Ga8he+n1yNuzBWHk4RLrkerraH23QjGyw+APTeZQS9cQfLYPmx94UdW3vrmQUMtwQYv6x/8FEtyLLkXhTc7TYmJQ/q8SH/TkrjCGW/kkocaWsEw5LJ+Z0uWGBKd15BbY40KzzBqrhwMU7ch2CbdiLZ1GZ4vnkTqWpvMGwpS1/Av/wnX89fj+ewxkBL7qbfhvOY5LIOP+0OkUXY2hGrCdsotmIdNxD/nY3w/TIm4cbXkFxA7+Qy8SxfgmT8ronPtj8lppff9Z9D9zpNoWLOTxRc9x9bnf8Bf1bDPcb7SWlbe9hbenVX0vPc0TLFhbvwSa2Rjac0IrwihoMSltMiQE5cFvnqkv6HpY1tBp8wj34WIz4E2SO3ZhWXQsUh3Lb4fX8VrsWObdEOHKE+XWpDAihn4Zn+ArC5GSe+K/fS7MPUe0yEaIEQ5OEIo2E64FoSKf95nYLJgO/rCiM7pPPZEfKuWUvfRm1h79m3Tfq9CCDImDyVxZHe2vvADO96dzc735xA3MA97bjL+ahc18zaCIuj9wJkkDMkP+xp2GXK9rhaakVsv4tOQLdgjE7GNzWTqiiAlcskEndqQE5uJLGqbXf9dWMechvS68M/+AFQTthOuaTdjLrUAgWU/GQa8tgwlowDbmX/D1HNUh7jARGk+Qghsx18FWgD/7A8Q9liso0+N3HyKQvwFV1HxyN3UvjeFxGtub/P/GWtaHL3uPY3ci4+k9Osl1CzaQuXPa1CdNtJOHEzOOYdhy0qMyNxKrCG81dxcciUhjeCGBSHPs8uQy/oiRNSQHxgRk4F0VyL1oCFS00ZYj7oA9CD+OZ+ArmGbeG2b5l3LoJ/A0mn4fv0IWVeBktUT2wlXY+o+ImrAOzFCCGwTr0V6G/D98ApKXDLmvmMjNp8pJY3Yk86i7uO38C6ai334mIjNdTAceSl0vfa4Np1zV0s8vRll+mBseEpXDTLoD00ZNdbIJZcR3vDs1IYcR4rRtNdTZeRsthFCCKzHXAKKin/2h0hvA/ZTbo249K30e/EvmYp/7ifI+irUnD5YJ92A2m1o1IAfIghFxX7KrbgbqvF8/iQiPg1T9sF7S7YGx5HH4Vkwm7pP3sbabxCK/Y8hhrbLI9dqa5p1/O4UxNoy1OScZs8jrLFgjYt4UVCnDqAKe2N7LU/bd2YRQmA7+iKjVdya2bjfvhfd1bzbtFCRngZ8v7xPw7OXG2X0Sdk4zn8Qx8X/wlQwLGrEDzGEyYL9zL8a9QsfPRzRzkNCUYg7+xL0hjoavvssYvN0NITJhBIbh1bbvPd2V62FbIHmSltkrnRqQ47N2LCQvvp2W4J19J+w/+lOtOKNuF65meCOtWEbW68pxfv9S9T/5zJ8M99qlEj9F84LH8bUNXxVblE6HoojHseZf0N6GvB8+u+IZklZ8rphH30krpnfEyxvgThUJ0WJT0Svaa4hN9oUtkg8KzYz4qGVTm3IhblRlzjCqT1NYe43FufF/wKh4H79L3hnvIUMNp2feiCk1AluWYb7w4dp+O9V+Bd+jbnnKJxXPoPjnL9jym2eWlyUzo+a3hXbxOvQtq3AP+uDiM4VO+kMhKpS/9WHEZ2nI6EmJKHVVDXrWBGb2KhL3hI522yoL0HqrRMOOxidO0ZushqPwQgqujUTNbM7MVc+g3fqC/hnvU9g5QysR56Hud+RCLXpt1mr3EFw1S/4l/+ErClB2GOxjDkNy/BJKHERlB6N0qGxDDoWbctSfL+8h1owNGLxcjU+AefRJ9Aw9QsCE07GnP3bxg6HGmpiMv5NzdNQEkJBScxooSHPAqlBQ5mRVx4BOrch31XgoneMSkthc2I/5VbMA47B++MUvF88ie+n1zD3ORy1ywCUlFyELQZ0DdlQjVaxHa1oPdqWpeiVOwGB2mUA5nHnGQqE0b6hUTD6yQYLV+L94imcVz4dsf8L5zEn4po5jYbvPiPx8j9HZI6OhJqcgvS40d0uFEfT5f+GIW9BiGQvOVsRNeQHYFeMuA3LjJuDqdtgnF2fIrhxEYGl3xuiSAu+OvDBZhtqXl9swydh6jUm6n1H+Q3C5sQ+6Ubc7/4d3+yPsI07LyLzKA4njrHjcf3wFcGyEkxpGRGZp6OgJhuZKFpleTMNeSbBrcuRUoa0PyXisgEiKp7VuQ25rhuPHbB6UQgFc48RmHuMQAb9aKVbkNXFhuiWUBCOeJTkLJTknD+u9neUZmMqGIqp35H4f/0Qy4CjUZIyIzKP86jjcU3/FteM74g/65KIzNFRMKUYhjxYXoo5N7/J45WkLAj4kPVVRi/P5uJIBtUa0Sr0jmcBQ0Fr3FBUO3YIQpgsmLJ7Ye5/FJZhJ2IZegLm3mNQU7tEjXiUZmMbfxkoJrw/vRqxOdS4eOxDR+OZPxvd2/JGEJ0BNdVIKdSamamjNOaP61WhpRIKoUBc9p5GzBGgcxvyYOM/mtnevuuIEqUNUGKTsR52OsG1c8Ka5ro/jiOORfq8eBfNjdgcHQHFakNJSCJY2ryQh5JkxLf1ytANsojPiWjLt05tyKW3UbnMGtXVjvLHwDLqFIQjHt/MtyM2hzm/AFNGNu42VkZsD0wZWQRLmmfIRVwKmG3oFaEbZPWI2zGdFrn+v2Ex5EKIE4QQ64QQG4UQd4VjzGbRWNEpbJER1okSpaMhLHYsY05D27IUbef6yMwhBPbhhxHYvB6tqiIic3QUTBnZBEt3Infttx0EIQRKSk6Leq0KWwIigiHgVhtyIYQK/BeYCPQFzhVCNF21EoYO5dLdqA/sjGZ6RPnjYBl6Atic+OZ+ErE5bENHAeBdvihic3QEzFk5SL8frbJ5ErVqSh56Rdv0QAiFcHjkI4GNUsrNUko/8B5wykHPWLSodR3KL70Uhg2DumLwSMRV17dsnChROiHC6sAy5HiCa+eg10XGYzalpmPKyMa7YklExu8omBoLnwI7tjXreCU1D1lfhfS2bzX5/oTDkGcDe99r7Gh8bh+EEFcJIRYKIRbuvva1tEP58uWweDHy8zcRRfXGz1Gi/IGwDJ0IUiewdFrE5rD2HYh/8zqkv/0rpyOFOTMHFKX5hjytCwBaWfOObyvabLNTSvmilHK4lHJ46q4nW9qhfMECJCCzHFDshgWhC75HidKZURIzUPMHGpIOESqIs/TsB8Eg/i0bIzJ+R0CYLZgycwgUbmnW8WqqYcj1sq0RXFXohMOQ7wRy9/o5p/G532fYsNZ1KB8xAuItEGdBbHcZP3dUpkwx9gOkDMu+QJQouzD3PxpZU4JetCEi41u69QAh8G+OzKZqR8Gc141A4eZmXRBFXArYYtBKm2f424pwGPIFQA8hRFchhAU4B/iiybNa06F84EDksYMAENYsGDiwZeO0BStXGvsBitK6fYEoUfbD3Gs0KCqBdb9GZHzF7sCUnkmgcHNExu8oWPILkG4XWnnTglhCCNS0/EPPI5dSBoEbgKnAGuADKeWq1o57UF59FXnnpaCYEF/MglcjV+nWKqZM+a0OTEv3BaJE2Q9hj0HN609w/fyIzWHKySewo+NlaYQTc34BQLNDSGpGN0NyI4Ia8aESlhi5lPIbKWVPKWWBlPKhcIzZ5JwlSxCpfRC7pGw7IitXwlNP7ftcS/cFokQ5AKbuw9Artkcse8WcmYNeU4XuOXTL9U0Z2Qi7o9khJCWjAIL+RsXSjkGnrOyUvnpkxXpE1rD2XsrB2d/7vvnmlu8LRIlyAEz5RlgxuG1FRMZXGxUQtYpDt3OQUBQsXXvg39Q8Q65mGB68VrIpkssKic5pyHfMB6kjcjrwJif81vsWouX7Ap2J6AZvm6Gk5YPVgbZjTUTGNyUbOWbBZhbMdFYsBb3QSovQ6pvuu6uk5IDJgl7ccbJ5OqUh1wtngy0ekdrB2571729k5+h667J0OhvRDd42QygqamYPtAhlrigJRoNzvZkt0Torlh59APBvbFqMTCiqESePGvKWIzU/snAOIu/wji8Be9llRnaOEK3L0mkNu6pgdd14vPTSyM+5f0gpusEbUdSMbuhlWyOy+aY4Y0BR0Orrwj52R8Kcl4+wWPFvaN6djZrZHa1kU4fZ8Ox0jSXkjvkQcKF0Paq9l/IbpJTI6hK04g3o1SVGEwnVhBKbjJLRDTWze9tffBqrYFHbcN79Q0q33WZcyKJEBCUtH7QgelURakpuk8eHglAUFIcT6e5YJenhRqgmLN174Vu3ulnHK5k9YMFX6BU7UBurPduTTmfI9Y3TjLBK9vD2XsputIrtBJb9QGDNbGTNXptCqhl0DaShrCbssZj6HoFlxElh/8D9LgsW7GvE26IKdldI6fHHDSP+RwkptRPqroYHlTsj8n8lbPZDvskEGJWsvtXvotVUoTaGlH4PNbsnAFrR+qghDxXpq0cWzkbpdRJCaf+lB7etwDf7Q7TNS0BRMXUbgmn0n1Bz+qAkZyPMVqTUkXUVaDvXEVg3j8CyHwks+g5z/3FYj74IJT616Ylaw/5VryNGGKJlkWTvEFLUE484ItHILNFrQu/w3qzxLVakr/30VlybSqldug3d68eel0LCiAJUmzns81h79aMe8K1bhWPU2IMeqyRlgdWJVrQeBh8X9rWESvtbwxDQN34Pmh+l58R2XYdWsgnvj6+hbVmKUKxY3cmY//okyn3/B+5SGD5p97FCKIj4NJT4NMx9x6K7avHP+xT//C8JrJuL9egLsYyYbLSDigS7ql4XLDCMeEeugo3SIoQ9Fsw2ZG1kMkuEyQRaMCJjHwxfRT0bH/uK6l/3TQtUY2zknHcY2WcfhmIOX8jQlJWLEhuHb+3KJg25EApqVg/DkHcAOo0hl1Kir/0CkdILkdKzXdagu+vwTX+DwJLvEfYYrMddjuX9GYgnn4ZHXjcOuuWWg46hOOOxHXMJlqET8X77P3zfv0Rw/Xzsp9yKEnvw27kWsXfVa6Q98SjtghACJTYJvSFCmSWK2qzGC+HEXVjBylveIFjvpctVx5I2YSCmGBv1a3ZS9OFctr34E5U/r6X3/52FLT0+LHMKRcHSqx/+dSuRuo5QDu5cqVk98f/6ETLgRZhtYVlDS+k0WSuyZBlUb0Hpc3Cp84jMLSWBlTNwPX8tgaXTsIw6mZjrX8Q66lTE40/ue3AzMzSUhHTs5/wd26Qb0HaswfXyTQS3RdP0orQM4UxAuprOge4M+KsaWHXbW8igzqD/XU7uBUdgTYtDdVhIGNaVvv88l94PnoVneyXLrn4Z16bwFStZew9Ar68jWNR0FyA1uydIHa24/QuDOo0h11d+CNY4REHbxqP0hmo8Hz6E57PHURIzcV75NLbjrkDYYowDDpSh0UyEEFiGHI/z8icQVifut+/Bv+jbMK4+yh8FYY9FeuojM7iuRy70tx9Sl6x/8FMCNS76PXo+zoL0Ax6XcmQfBj53GUIVrLj5dVxbysIyv7W3sTHvW9t0payatWfDs73pFIZc1hUZm5y9T2pTbZXAurm4XryB4KbFWMdfhuPif6Gm5e97UBiKftTULjgvexxT18F4v30O77RXkLJtb2WjdG6E1Yn0uiIyttSCbZa+WvLFQmoWbqbbjScQ0yvzoMc6u6Yx4OlLEKrKqtvfxlfR+guZGp+IKTMH35qmDbkSk4iIT0Pbua7V87aWTmHI9ZXvg1BQ+p7eJvPJoB/Pd8/j+fAhRFwKziuewjr6TwfOAQ9T0Y+wObGffS/m4ZPxz/sMz6f/RgYDrXwlUf4wWO1If2RSBGUwiDCHP0tkfwI1bra++BPxw7qSftLQZp1jz0mi37/PR2vwsuav76H7Wr8pa+0zAP/m9c3qjKRm94pYE+xQ6PCGXHqq0dd9jeg+AdEGTZb1qiJcr95BYOHXWEadivOSx1BT8yI+Lxilv7bjr8J67KUEV8/C/f4DEftwRjm0EGYrBP2RGdzvQ5gj1wF+F9vf+BnN46PgpokIIZp9XkyPDHre8yca1hax+T/ftXod1t4DIBjEt6Hpcn01qyeyrhy9obrV87aGDm/I9ZUfgBZAHXhexOcKrJ9Pwyu3oteWYT/7XmzHXY4wRd4T2RshBNYxp2E76Wa0rctxv30v0nNoV9VFofVCY6oZgoGItH2TAT/CEtmQpq+8juLPF5J+wmAc+aHXViSP7U32uYdR8sUiKn5unYCYpaAXmM341zWdfLC7MKidwysd2pBLbx366k8RXY9CJETOK5ZSxzvzbTwf/B9KUiYxVzyFucfIiM3XHCyDjsV++l1oxZtwvX0PuvvQ1rr4w9NKoTGhmgC5u4o4nOheL8IW2fS6og/mInWd3AsPnr99MLpccQzOnplseuwrAjUt3y8QFguWbj3xrW2GIc/oBkKJmGhZc+nQhlxf+QEE3KhDLorYHNLvwfPRI/h/eQ/zwGNwXvwvlIQD75S3NebeY7Cf9Tf08kLcb9+D7j400suiHIDWCo3tyioJc763DAYhGEBYI2fINbefkq8Wk3JUP2xZib97nLfCTeXiIqpXlhL0/Hb/SDGr9PzrqQQbvGz+z9RWrcnaqz/B4h1otTUHPU6YbShp+e2eudJhDbn01qCv+hDR9WhEUkFE5tBry3C9difB9fOxTrgS20k3I0yRjwWGgrn7cBxn3YNeubMxzBKhFLMo7Usr0lgBY7Mdwu6RS5+xR6PY7GEdd2/Kf1iB5vKRdfqB74KrlhQz6+KPmXrky8y64CN+Put9vh3zIovunErD1n1j085uaeScfwTl01ZQs2Rri9dk7dUPAP+GpkW01KweaMUbDx7WirBGf4c15PrydyHgRR16SUTG14o24Hr1dvTaMhzn/B3ryJND2mBpS0wFQ3Gc+Tf0ih243rkvYmlmUdqR1qax7v7fDW+MfFeLNxFBQ1767VIcXVOJ7Zfzm99tnLKYXy74EFdhDb3/PIbRL5zMiGcm0eWMfhT/tJnpp7zNpjeX7mNEcy44AmtGApuf+Q6ptezCZsrpgrA78K1ruv2wmtkdvA37CubtT4Q1+jukIZfuCvRVnyAKxiMSu4Z9/MD6+bjevBtUM85L/o2poHmpTu2JqWAo9jPuQi/dgvu9+5F+b3svKUo4aXUaa2ScEOmNrCH3FlVTv2oHaScM+o0jtfG1xax6bBZZx/fg2K8upNc1I0gfm0/W+AIG3nMU47+9iLQjurDykZ9Z/uAMpG4Yc9VqJv/qY3FvKqXs++UtWpdQFCzdezer0YSa2R3g4I0mIqzR3yENub7kDdCDqMPC34jBv3gqng8fQknJxXlpE6mFHaxlmbnHSOyn3o62cx3ujx5BatE88yiRRXoNh0GJ0GZnxUwjdJFyVL99n1+wg1X/nkXWhO4M//fxmJy/DXnaUp2M/M9kul82lK3vrmDVv3/Z/buUo/vh7JlJ4Wsz0YMta/5g6d4braIMrfrgGjZKahdQTL/t4bm3/Ri+n+x2mJuwdzhDLmt3oK/90qjijMsO37hS4vvlfbzfPIup2xCcFz6CEvP7GytAh2xZZu57BLYTr0fbvBjPF09FK0CjRBTdZxhyYY2MR1716wacPTKwZSbsfk7zB1l6z484c+IZ8tB4hPr7Zkoogr63HU7X8wex6fWlbPt41e7n8y4dh6+4hvIfWva5tXbvDYB/08FTC4XJjJKai1ayed9f7G0/Fi+GoUMj1vaxwxlybdHLoJpRhlwctjGl1PFNexnfzLcwDzga+1n3ICzN8DA6aMsyy5AJWI+5mOCqn/H9EG1sHGUvwpxGviuEJ6zhzyMPun3Ur9xO4sh9kxm2vr8S1/ZaBt531AE98f0RQjDgrrGkjM5lxUMzd2+AJh3WE0fXNHa+92uL8utN2XlG+7fNTWekqGld0cu27Pvk/vZi4cKItX3sUIZcL1+D3PwTSv+zEI7ksIwpdQ3vV//BP/8LLCNPxnbyzY05t82gtZkEEcQy5nQsIybjn/c5vvlftPdyorQ3kcpa8Rvhu0hUdtav3IHUdOKH7NkH04M6m15dTPKIbNIO39N5R0rJpi8L+eLs6bwx9HPeP/pb5jy4FHdZYwxfVRj2rwkoFpWl9/2IlBIhBFlnjca9uYy6ZdtCXp9QVcxduhHY2rS6oZKej2yo3jdFuA3tR4cx5FJK9PnPgy0BZeC54RlTC+L57AkCy37AMvZcrMddEZqKWxgEsSKFEALrcVdg6jUG3/cvE1g/r72XFKU92fV/He7Kzka9n0hUONev2QlAbN89IdSyWdvwlDRQcOHg3c9pfo2pV8zm6wt+pnJ1DakDkzA5VBY+voo3hn/Bxi8KASNm3vfWw6lcWETx98bGY+qx/VFjrJR8ubhFazTnFxDYWYgMHFz+QE01Ljp6WeGeJ9vQfnSYxhJy+xxk8RKUw25GWJytH08L4vn0UYJr52A99lKsY04LfZAO3rJMKCr2U2/F9eZf8Xz6GMolj6Kmhz/LJ0onoLEJgtS1sOavSK1xozAC6oeuTaXYshMxxewJc+78bgPmeBvp4/J3PzfzjgWs/2grY+4ZxLBb+xFwa0hd4inz8P01c/jmop+Z8MJh9D67G11O78vmN5ey5j9zyTyuO6rNTOqx/SmbuhzN7Ud1hHZnYc7rBrpGYOd2LPm/X8+iNCZN6BWFkD/AeLIN7UeH8MilHkSb/z+Iy0HpfXLrx9OCeD5pNOITrmyZEe8kCLMNx5n3IGxO3O//H/oh0lwgSmgItdFjDnsmU6OHH4HsRk9hBY4ue3RVpJSUz95G+tguu1u4bf+5hJWvbWTYzf3InpDDi0dP5+/xn/CPxE9569x5DLy5PzljM/jh+rmULq5EqAo9rxlBw+ZqSn/eChheue4NUDU39DJ6c47haQd2HDw0I2KTwWJHr9wR8hzhoEMYcn3d11CzDXXkNa1uqix1Dc9njxFc12jER7b+wtDRUWKTcJz5N6S7Fs8njyL1lqVbRenEmBs3I5sIAYTM7th7+MW4fKW1WPfKVnHvrMNX6SF5WNbu5xY+thJnloO8Sbm8cORPVG5sYNQN3RlxfSbH3vcw75zzE8mHZ+FIs/HDDXPQNZ2sCd2xpjrZ9qGRrRI3IA9TvJ2qOaGX0avJqQibrcmOQUIIlKQstMqikOcIB+1uyGXAjb74VUT6QESXlgvmQKMR//xJgmtmYz3u8j+EEd+FmtXDSEvcthzf9DfaezlR2phdWVjhlj3enRgQDG/zZd0fRHP5MCfsCaPWbzTyteN6GXLVrhI322eW0P/i7nx+w2IsThOWAbF8/Ow61q/9jr4nz2TQRUV897cVdD+3gMpVNaz/aCuKWSV3ci9Kf9mGv9aLUBUShhdQs2BzyNkrQghMGdkES3Y2eaySlIleXRzS+OGi3Q25vvxd8FShjLquVSXyUkq83/6P4KqZWI++COuoU8O3yE6CZeAxmIdOxD/nEwLr57f3cqK0IcJqGMRwyzfskq+V/vB6+prXCAHtHbP2lBg6QvasWACK5pQDYMt0smNhNc5eMSz/oYSu41MYdtE6pARr3q84M2wseHsHiT3jWPai4XVnji9ABnXK5xiedPzgLgSqGvAV14S8VlNaJsHykiaPUxIykLXl7XJH3K6GXLrK0Ze/h+h2DEpa31aN5Zv+OoElU7EcfibWw88M0wo7H7YJV6BkdMP75VPodZXtvZwobYRwxAEgPeGVOxZ2oxBI97jDOi6N5fRC2eO8BRuMi4U5xrh41Gw0XkvFNuMuY/mcchL6OPl2xma6DpmLEDDk1KVUeAKUr28gdXgapQsrqN/pImFAOqrdTOUiI9QR29sI1zSsD91jVlPS0Guqm8xcUeJTQQ8iG2pCnqO1tGvWirboFZA66vCrWjWOb+5n+H/9GPPQiViPujBMqzswUkoI+A15T6EgrFaE0u43NrsRJgv2P92B6+Wb8Xz5FI7z7m+zxrlR2g/RWKUsGw5eTh4qitPwjvWG8F4gFIthevZpzbZfPN7fEESxKPQ55XqOve/nfc73+4z/6bRuxTxVtcdxO+F/0FA0HsU0jfg+KdStNbx6e+OmqntbRchrVZOMUI9WXYUpLeN3jxOxRu2LrK+EuPDUwTSXdjPksmoTcsN3KP3OQMRlNX3C7xBYOQPfD69g6nM4thOuDpuCoZQSrbwU/6Z1BAq3ECzZQbCiHL2uFva7dVJiYlGTUjBlZGPO64qloBemrNx2M/Bqcg628Zfj/fY5Aou+xTJ8UrusI0rbIRzxoJrRa8PTTX4XarxxgdBqw9vKTLGbUSwmAtV7QkGWeMMT99d4MTktmGNM6H6dNV9ehz1xNc7UWix2IyRjseqNj3suBEGvBXdZHNt+uI4Bl4EzN56KeUYWiWozY0504isLPatr93tQV3NQQ67EJAGgu6ppm1bVe2iVIRdC/Bs4CfADm4BLpZQ1zTlXm/88mB0og1veNCK4bQWeL55GzeuH/ZRbD9wcOQSklAS2bMCzeB6+FYvRqoyrt7DZMWXmYO3ZFyUuAcXhRJhMSF1Hej3o9XUEK8vwrV2BZ/4sAJT4RGyDhmMfeQTmvK5tLpFrHnoCgXVz8P74GqYeI1Di09p0/ihtixACJTEDvSq8m21KfAKYTGgV4b1ACCGwZibg2bnnDsKRGw9Aw9ZqHNlxJBQY4SK8vXii72NMnvI8gyYtweb8bVNkv9vKtl/H8ONlFzLgsnwAzPE2AvV7jjUnOAjWhr4ZrMTsuis5eC8A4TDWL9shBbi1Hvk04G4pZVAI8S/gbuAvTZ4VcCN3zEMZeS3CFteiibXKHbg/fBglKdPIow6lIcSUKYagzeOPw223offuhbsgF/fsn9DKS8FsxtqrP87xk7D06IMpLbPZ3rVWVYFv/Wp8K5fgnjMD98/TMOd2xXnsidiGjGwzL10Igf3E62l44Xq8372A4+x722TeKO2HkpKLXrql6QNDQCgKptQMgiXhT6tzFqRTv3JPWl9CnzRQBFWLi0k7vAvZh6eBADUQJOi1M+3ev7F50Xv86e8fYHPsyZf3uS3MeORsKjdejb92M9a4xpz6/RJUhNmEHgg9+0ZxNG4kew6+kSzsMcZx3rbvsdsqqyKl/F5KueudmQv8Vhn+QOe5ysGZhtK3ZYU6ursOz3sPIBQVx9n37X4Dm02jKpnmsFM3dwZlK2ZT/9m7KLHxxF9wFekP/5ekq2/FOXY85ozskIyvmpSCY/SRJF5xE+kPPUvcmRej+7zUvPZfKv75V7yrloX4aluOkpCO9cjzCG6YT2DjwjabN0r7oKZ3Q68uDnvmiik7j8D2rWEdE4z8bl9ZHZ4dhldujrOSNCiDoh82IaXEmW4n/7gs1n+4hWEX5OHa7Ca3dwWqItF18LvM6DqoikZcRjFZvQyDm9LfCIX4qz2Y4/dUjcpAEMUU+l37LsEw6fvtncA+WOyAQPrCvDHcDMLpHl4GfPt7vxRCXCWEWCiEWEjQizrscoQpdEU1qWt4PvkXel059jP/hpL4+zGr3x3jkYepHz6A8otOxTWkD9Zho0i58/9IueVeHKPGhq2tlWJ34DxyPKl/+ycJl96ADGpUP/8YVS893WQvwHBhGXkSSlI2vmmvRAuFDnEi1dHdkt8dva6GYGV5WMdNOsxYb8WMPV14ck/pQ/2GSioXGHnbo/86CF+1H1vQR7ejgow5/weEgOrtybx27S3UFyWBEIy86if8xZuwxJvJPsLouVu7roLYbkm7xw5UuzAlOEJfaGPIVjbRD1UIAWYLBJsw+BGgSUMuhPhBCLHyAF+n7HXM34Ag8PbvjSOlfFFKOVxKORxLDKL7hBYt2PfDFLSty7GdeD2m3D4hn+9dsZjy26+mYfQgrNuLSX3nKxKXb8Kcm9+i9TQHoSjYh44i9a+PEHvy2fjWLKP84bvxrmiZkE9Ic6tmrMdcjF65g8DynyI+X5T2Q83pDYqJ4Nbw3vVZehqfM38zusqHgi0zgbiBeZR8uRgZNIxkzkm9sKY6WfX4bKSmkzYkmTH3DmLzl9uZcNcHqBaNVZ+P5Kl+j7P5raE81vsJCucegWrWSB/+HMNu6ofZYcJdVE/9hkqSRxiCXMF6D4EaN/bspIMt6cA0ZtE0a59LNYEW3uKp5tBkjFxKOf5gvxdCXAJMBo6VzSybEnHZLdqYDKycYcjRjjgJy6CDLus36A311H7wOt4l8zDZnCQFTFi/nmFIS7aRqqEwmYg5bjK2gcOofv05ql98EueEk4mddHpEY+emXqNRMrvjm/UB5oHHtHpTOErHRFjsqLl9CW5YAMdeGrZxTRnZqInJeFcuxnH40WEbFyDrrNGsvecDyqYtJ33iYEx2M/3vOIJFd05l3f/m0/uG0Qy7pR96UMdV8iI///U6FMsVHHeXCWFScMSprH6hC5ve707vs7eTfbhRj7LlnWUgIHtiDwDqGmPxMb1Cz5CTgcZ4vLk5CpAiEmoGTdLarJUTgDuBcVLKiAaGtPJteL5+FjW3H9bxoYmy+9asoObNF9DdDcRMPoOY8ZP2lB63g6qhKT2TlFvuo/bDN3B9/wVaRSkJF16DMEUmG1QIgfWIs/B8+DDBtb9i7ts6KYQoHRdz7zF4p76AVl548DaGISCEwDZ4JK6fv0d31e/OLQ8HyUf0JqZ3Fltf+IGkw3thjrOTPaknZbO3se65+VhTnHQ9ZwAj7xxI0dyPWPPuMopmr97dnxPAGm9h6J9vIvvwvigmhdp1FWx+cyk5J/XGmWNkklTOXINqtxDXPzfkNeqNm5yKrRlhGV1rl7Tj1s74LBALTBNCLBVCPB+GNf0G6ffg+eifCIsd+2l3NrsxhNR16r/6iKrnHkWJiSHljgeIPf6U5jeWiCDCbCb+3MuIPeVsvIvnUf3K00aRUYQw9RyFSMzEv+DriM0Rpf0x9TkchEJg+Y9hHdc+6gjQNNxzfzn4gSH2uRWKoPvtkwnWetjwz8+RutEQYtD9x5A+Lp/lD0xnxT9/RvMGyRqdxulfHcfl607jpA+O4oQpR3DGdxO4fP3pjLi9P4pJoWFrNfOu/QJzgp3+dxwBQKDGTflPq0g5ui+KNfTPvl5npBMqsQfPsJNSQtAPLdj7ay2tzVrpLqXMlVIObvy6JlwL2xvv1BfRK3diP/V2lNjmxbh0j5vqFx6nYern2EcfScrt92PODo+HEi6EEMSMn0zcWRfjW7mUmjefb3JDpeVzKViGHI+2fRVaVfsotEWJPEpMIqZeowgsnYYMeMM2rjk7D0tBL9wzv0ceLAbcgj63MT0zyb/2OKpmrWPLc98jpUS1mBj5zCS6nj+IzW8s5aeT32Lbx6sIugM40ux0PT6HnqfnkzUmDZNNJegOsOmNJcw88z00v8aYF07Gmmx40IVTpqP7g2Sfc1iLXrvWuMm7q8Lzdwn6DI88Qv1ND0b7u6ZNEFj9i9Hh5/CzMHUd1KxzglUVVP/vMYJlJcSdfSnOI46J8Cpbh3PseKTPS/3n79OQmk7s5MhoxZj7H4Xvp9cJrvoZdew5EZkjSvtjGXkK7rVzCCydhmXESWEb13ncZKqffxzP3J9xHP47n6nHHzcM+N4/N4OsM0fhLa6m6IO5SH+Qbn+eiGJWGfi3cWQe241Vj81i6b0/suKhmSQNySS2RzLmWCuaJ0D95ioq5u9EcwdIPSyXwQ+Mx9EovFU5ax3Fny0k64xROPJTm1jFgQmW7ASTuUlDLt2GjMEu3Zu2pEMbcr2uEs83z6Fk9cR6ZPPavwWKtlP130eRAT9J192BtVe/CK8yPDiPnUSwrISGqV9gzu+Brf/gsM+hxCWjZvcksGE+1qghP2RRc/ui5vbDN/tDzIOOa16j8WZg7TsIc9ce1H/9CbahY1DsB/A8D9Snshn7UEIIuv35BBSLiZ3v/oprcxk9/3oqtqxEUkfnMu7Dc6haVMTOqRupWrSTbR+uQvMEUCwqjpw4cib1Ivfk3iQNzdydXVI9byPr7v+ImN5ZdLn62Ba/7sD2rZizchBNdEnS6418eBHTgsyYVtJhDbmUEs/Xz4AWwH7qbc2KawcKt1D530cRZjPJN9+DOSv0jY32QghB/JkXEdi2mdp3Xsbyt0fCuqm0C7XbUPy/vIf0uhC21rfUi9LxEEJgPeZi3K/fie/Xj7AddUHYxo074wIqH/sH9V+8T/zZl/z2oF19KhurpkPJCBNC0PXa43AWpLPpia9ZfPFzZJ81hqyzx2COs5M8PJvk4Xv6e0pd7qOeuAvNF2DHm7+w/a1ZOLul0fdf56FaW9ZzVAb8+Ldu/P07kL2PrTGkbpWEtpfD6LCGPLDsR7RNi7EdfzVqUtMpQ4HtW6l89p8odgdJN96NKaXzaYsIs4WEC6+m4t/3Uf/lh8SfE1p2TnMw5fTGj0Qr3tjsUNUfjv0kHOjff9/+i50AU24fzP2Pwj/nY8z9jgxbBoslrxvOo47HNf07rP2HYOu33/9QGPpUpk0YSPzgfLY89z3b3/yFnR/MIeWofiQf1Yf4wfmYnMZm4t5GXEqJZ3slFdNXUfLZQvyVDaQdP4iCW04MuU/n3vjWr4FAAGvvpi9IWsUOEApKYmaL52spHdKQ6w3VeH94GTWvH+bhJzZ5fKBkJ5X//ReKzU7STX/D1NSmRAfGnNMFx5HH4Z75PY6jjseckd30SSGgNDZn1sq3RQ3577Frw25XrPeWW9p3PS3EetzlBDcvxvP5Ezgv/feevp6tJHbymfjWraLmzedJuf3+iDhN1rQ4ev/jDFwXHUnRx/Oo+GkVZVON3HB7TjLW9HjUGBvokkCNC8/2yt1KignDu9Hr72cQP7hLq9fhXTwXYbNj7dl0vwS9dAtKcnZouk9hokMKVXunvQwBH7ZJNzSppa3VVFH13L8Rimp44p99EVL6U0ckZsLJCLMZ17Svwj62cCaA2YoMs9zpIcX+G3TN3LDraCjOBGyTbkAv2YTvh/B9DoTFQuLlfwZdp/qFJ9BdkROJcnZLo8cdJzHq89vp/+SF5F0yDke3NIIuH+4tZXi2V4AQJI7pQcFtkxj+4c30f+LCsBhx3dWAZ8l87MNGI8wHN85SSrSd61Aze7R63pbQ4Tzy4NblBFf9jGXsuajJB9fg0n1eql58Eul2kXzT3zClph8S3pQaG4d91Fjcc34m7rTzUZwhioIdBCEEwh6HdB9ckvMPTQs37Doi5l5j0Eadgn/e5yhpXbEMaZk0xv6Y0jJIvOImqv73b6qef4yk6/5y4M3PMKFYTCQM60bCsG4Rm2N/XD9Pg4Afx5HHNXmsXlGIdNei5rVPckWH8silruGd+iIiIR3rYacf/FgpqX3nZYI7tpFwyfV7tFIOEW/KMXocBAN4l4dftVCYzAfPBf6js2vDTteNxzaScIgU1mMvRe02xGg0EkYVTGvPviRecj2Bwq1UPfsIWn14uwi1J1p9La6fvsU6YGizkiaCGxcBYOo2OMIrOzAdyiMPLPkevXwb9jPuRpgPXh3lnvk93sXziD3prH1T9VrhTfnK66hbXohrUym+klqC9YYIvRpjw5aZQEyvLBKG5mOKjXzCvyk3HyUhCd/q5TjGHBXWsWUwEDE5gEOCMGzYdSSEouI4/S5cb/4Vz0ePIM6+L2z7I7ZBw0m88iaqp/yHyifuJ+nq2zBltLzjV0eh7pN3kAE/cSef3azjA2tmoWQUtFsDlw7zaZZ+L76f30HN7Yup15iDHhvYvpW6z97FOmAozuMm7/vLENOfArVuSr9ZSvkPK3BtMNKHhKpgTY/HFGsDIfBsr6RyxmqkpiNUhaQjepFz/hG7G7pGAiEEloJe+DevD+u4UkqkuxZhb/uihSjth7A6cJx7P+63/ob7/Qewn34X5h4jwjK2rf8Qkm+8m+qXnqLi8b8Tf94V2IeMCsvY7YFn4a94F/5KzMQ/NeuipJUXohdtCFkDKpx0GEPuX/Al0lWD9Yy/HlQuUgb81LzxPEpMHAnnX/HbY5vpTQVq3Wx/8xdKPl+I7gsS2y+H/GvHkzC0G46CtN8I0Ov+IA3riqiYuYayb5dSOXMNGacMo+sNx7c4R7UpzJk5eBfNQfp9CEt49BtkQxUE/SgJ6WEZL0rnQXHG47jwIdzv/gPPBw8iT7wOy5DjwzK2pWsPUu54gOop/6FmyrP4Ri839nfsLdD/bkf82zZT884rmLv1JOb4U5o+AfAv/BpUE+YB7VdB3iEMufR78M/9FFPBsCY1xhumfk6wZCeJ196B8v6Hzcv33SsvWN56G2W2fLYs9xB0+UibMJDscw7D2c24JdL8Qdw76wnU+1BMCvaMGCwJdhSLibgBecQNyCPv0qMofHUGRR/MxbWxlH7/Ph9TTHiq5/ZGiU8w1lRXG7YUL614kzF2Wn5YxovSuVAc8TgveAj3x//C+/Wz6OWFWI+9NCxCcmpiMsk330P9N5/imvYlvjUriDvtfKPFYRv3rG0Jge1bqXru36hx8SRe/ucmKznBSJUOLPsBc/+jUJzxbbDKA9MhDLl/8XdITz2WJsrGgyVFNEz7GvvII7D1HQgvv9a8DJXGTJbgM8+xoecpVKbEEzcwj4JbJ+HsloZrey1r/zuP0p+3UrumfLfI/S6cufFkTuhOt/MHYs+IxeS00u2G44kbkMe6f3zEuvs/pu+/zjtglVlr2B3H1sLX2UfbthxUM2pWY5rUIVD8EiU0hNWB45z78E17Bf/8L9CKN2H/0+0oca2vvxCqibiTzsQ2cBi1702h5tVnsfzSi9iTz8HStXsYVh8ZfGtWUD3lPwi7g6Tr/4Ia1zyj7Jv1PmhBLIdHRh+puYhm9oIIK8OHD5cLFxq751IL0vDslSiJGTgveuSg51X979/4t2wk9d5HUWPjjVzxvbV/dR0OdOWXEp8tnlX9L8DtSCX/2glkn3MYru21rHl6DkVTNwCQNDiT5GFZxBQkYYmzovs1XDvqqFywk7LZ21DMKv3uHEvXcwbsHrr40wVsevIbetx9CukTB7f6vdkb9+zp1L43hbQHnkJNTG71eFLqNDx7JWpKLo5z/2E8eeut+4oc3XLLIbHBtwup+aGhDOmuAF8d+F3IoBekcbEWqgVMNrDGgi0e4UgBe5LRfOPSS2H5cliwAEaMgIED4dVX2/kVhZfAyhl4vv4vqCbsJ16Pue8RYRtb6jruX2fQ8M3H6PV1WPsOJGbCyZi79ewwHrrUgjR89zkNUz/HlJlD0jW3NfuzppVuwfXyzZiHnoB94rURXqmBEGKRlHL4/s+3u0ceXDcXWV+BZeLBFXB9G9bgW72c2FPPMYw4NDtDxf/n21kx8BIC5hj6rXyLhAX1bPLaWfPMHITU6NG1hq4v3YL5ib8RPG4+FbXvIOxxpPSKJyvGTI/Lh+HeWcey+6ez/IHp6L4gBRcPASDjlOGUfLWYne/+StoJg8L6D6pVV4IQKLHhuWXTtq1C1pZhGnf+nidbqFbXEZHuSmTpSmTFOmTlBmTNNmgo5Tft1JtCMUFMBiJ7K6K+CnFYBqLEBQI6hvkJH+b+R6Fk9sDz+eN4PvkXgTWzsB1/NUpMYqvHFoqC84hjsI84DPfM72n46Vsqn3oQc143HEeOxz5kZNj2flqCb/1q6j5+i2DRduwjjyDurItRrM0LkUrt/9s77/C4yjNv3+85U9V7syzZlmzJliX3go1pBmMwMSSU0LIhPUuSjwDZFLLl22T3y27KJmzqBvIlm8BCaAktBgwYbAM27kWusqxeLFm9TD3P/vHKjRjbqiNZ576uc81IczTznpnR7zzneZ/39wTpffEnqKi4IfOyGQwRF/LA9jWo+DQc+X91kjmDrr88hxGfSPSya06lA4qKYO5cuPdeKC09a4VK2BektCaZQHSAmT/9NNG/8bG1Ip+6VzeSeXUeJaG3aP71S7yZd5zw1U5WF2/m/dWPUPN2EYbTIH/1RJZ+Zy6x2XEs/uVH2PLAGkp/9A5pl00idnIiylCkXz+H8ofX4K9vw5M1+H+AEwRrKzHTMoesVDDw/vMobyzO6UtP/XIML36RkA+p3YbUbMaq2wbtup0XyoTESaj0maipK1GxmRCVgvLEgytGG/8bptb3sB+CvUigC3ytSPdx6GpAOuuQOS5kggHOvqs+hwf10lf086aXoDKKUa6hW6wVKczkCUR/8vsE3nsO/4Yn6CrfiefKT+Ccu3JI2gIabg8xK1YTdfkKejdvpHv9Wtof+zUdz/wez+yFeOcuwjV1xoiUxIoIgYN76Vr7MoFDpZiJySR+7qt4Sub163n8b/wOq6Ec763fRnmH3tyuv0RUyK22RsIVu3Fffvc5vzCBiiMEyg4Q+9E7US7XqdWbJygt/VDxOfrTV+huCTLje3cSOyOb90NX0XCwnBkPLiX7piLe+GoMR6Jn4bK6uWTZE4jAxBsO09m7nORMN+VraqjZ2Mhtr68kLieGWf94JY1vHaXyqb3M/IZumRZToE1yeiqbh0zIJRwiUHYQzxCVcYXrywgd2oz7sjvPrNEfhFtdJJBAD1K1EevoW0jNFi3EDi8qcxaq4AZUejEqeSqqn11azhppz5uH7NoB6V4kJwZZMAVZ7sfa/STI46AMVPI0VNYc1IQF+rUj0B1mKFCmA/elt+GYvgTfml/ie+VXBLa/gmf5p3DkzR2S1zDcHqIvu5qoZcsJlB2gd/MGfDu30LtpvfYzKZyJu3AmrqnTMVMzhuzqVkQI1Vbh27WV3q3vEm4+hhEbT+xNdxC97GqtKf0gsHPtyd7BzoLFQzLGwRJRIQ+WrgfAWXzuhq4969eiPB6illyhf3GB6YC27UdpeHE7E+5YQtKSaex/+D0a3iyn+KHLSVs+ladXvErHkXYMXysVwXRuWnkEpWDipVt44Wt3cKA7xPXfK2Hvw3t47zs7ufbRS3EnR5FYkkHrnsaTr2M49UlIQkM3Kenfvwfx9eIpnjPo5xIRfK89ioqKw7Vw9ZkPjoHFL2KFkbptWIdfQSo2aPGOSsUoWIXKvRSVUaJz3UNNSYkW+C1bUAsWQGch3PhrfSVwrBSp34XUb8fa+zTsfgJMNypzNmriYoycS1CxY29hjJmcTdRd/0LowLv43vgtPU/8E+akWbivuBtHduGQvIZSCvfU6binTkc+fg/+A3vx7dmBf/8ufDu36H2iY3DlTMYxIQdHehaOtAzMxBSMuPhzVpNIMEC4tYVQUwOh+hqCVUcJHDmo27UphSu/kJjrP4Z39kLUBTVTPpPggXfxvfwzzClz+lc3PsxFBZEV8v0bMScUnNO/1/L10rtzC1GLLsXw9K2ovIB0gIhQ8avXcWfEk/PpK+g41MyhR7aS89EZTLq9mPrNS/ibbZvPHI9Pvx3JU+r4bsctJ3+/7OtQsXY+oL9khtsk2Bk4+bivrhXQjm1DRc+GNzBi43HPKBn0cwV3riVcXYrn+i+PKQ9y6T6GdfBlrIMvQ/cxcMdiTF2Jyr9GpzfOY6g2aE6f2Ny27eRd5fCgsuZB1jzg00iwR4t6zftYNZuQ9x7Geu9hSMjFyFmCyrkUlTZjSNIUI4FSCuf0pTimLiSw7S8E3nmant/9nRavpbdi5swcsmhZOV14iufiKZ6rjaeONRAoO0CgooxgdQX+Q6+cWbWlFMobpbXA6UIZSjdiDvixensQX+8Zz28mpeCaNgN3wUzcM2ZdcDXK2QjsWYfvhZ9gTphG1C3f6l/J5jB7QEVMyK2OZqyGctxX3XPO/fx7d0AwgHfBaXndC0gHdO6toetAHflfuwHT7eTQf23BEeWk6O8uZd/jR9j5i5u48bkyPEkdOL1BAJye0Bm3AIEeJ6G2GLY9fBeTrgErZNG+v4n0yyad3KdlUxlmtJuovKFZZBOsOop/3y5iVt086Ppeq6Ue39pHMXOLcc45v/lPpBERpH4n1r5nkcp3QCzUhPkYi76Eyl06PJH3IFHOKFTOJZBzCSb3Ie01WNXvIlXvYe15SkfrngRUzhKM3Et1GmYMpGCUw4l70Y245qwgsPUvBDb/mZ4/PISRNRX3optwFC4Z0kbmSikc6Zk40jOJWqqv0iUcIny8iVBTI+HW41gd7VjdXUhvDxIK6ko1w0A5XVrgY2IxE5NxpKThyJgwJIZzIhb+9U8Q2PAkZm4JUbd9G+Xqp03HMBcVREzIQ+U79QDyzz3J4CvdiREbh3PSaTWoF5AOaF5XiuFykHL1TML+EPVvlpN7cxGuBA8Hn65ApIjvF/yQm3/zMwpv2IMnOvBXzxHocnH0pULW//39TFoxDYDaNYcItPrIvEaPx9/cSfMbe0m7tuSvVoMOBLEs2p99DCMmlujLB+dUJ0E/Pc/9GxgG3o98dfgj2EEgIT9y5HXCe5+G1nJwx2MU34ZReCMqbmylKFR8Nmb8bTDzNiTQhVRvxqp6Bzn6NuFDf9GTptmLMCYtQ028BOWO/GTZuVAuL+4lN+NacAPB3W8Q2Pw8vX/6ASomCefsa3DNXjFsXXGU6cCRlokjbeSbNYAOOHtf+Anhil04S5bjuf5LKMcAVnIPc1FBxIQ8XLUX5Y3FSP1w32ARIXD4AK5pRSijfyLUUVpDbFE2jig37fubsPzhk22iumq6SZqeQHBrD8/c/kmKH1jPjd99AU/UKTEP9Lh4/Z9uoflXJQTdBgsenImvqZvS728kfkYqGVdMRkQ4+tNXEBGy7xqa+tued94kWH6I+Ds/M6jlzSIWvS8+jNVwFO/H/z4i7acuBPG1Y+3/M1bpc+BrhaQ8zGVfR+VdMyai1vOhXDGovOUYecuRcBCp34FUbMCq2ki44m0wHKisuRiTLtMpmKiR7/d4oSinG9e863HOXUnoyHaCW18msPEpAhufwpxUgrPkKpwFi1HusbUs/2yIFSa4/RV8634PVhjPqi/jnL1i4CmlYS4qiJyQ1x3CzC485xtjdbRjtbfimpTX7+cPNHWQuFD/XTigc2ymRx9u/JRYmne3kJvVQU1tIhPzmjANC8uCUK8LhzeAYYTJnVlPuXMl1/1NCG+ig3c/82dCPQHmfu+jKENR98xmmtftI/fzVw1JtUqwtoqOPz2Bq7AY7+LLB/w8IoL/9d8S2rcB91X34Jy6cNBjG2qksx5rzx+xDv0FQj4doRbfjsqaO2oWiww1ynSishdC9kIMuR85tk+LeuV6wht/COo/dO5/0mUYky5HxYxOPxylDJz583Hmz8dqO6aj9N1v4Hvhx/gcLhz583AWLsWRP3/452SGeBJRxCJ0cBP+tx7Daq7GnDwb73X3YiQN7orAuiwbddet+rs9DEUFkRFyEazjtTgKl5xzt1BjHQCOgbQ7U32TIEBMbgIoaN3VQMYVk5l/fxF/Wv0GiWluZs6rZ9FnNyKiaK9KYd3XPs41P34Sb1o7hXevJ6noYTxRaay//Sl8Td0s+ukNxE1NpuGl7ZT/9BXthHjn4KPxcEc7rb/+MYY3ioRPfGHAYiYi+N9+nMDmP+NacAOuSz426LENJdJyhPCu/0HK3wRA5a/ALLkdlTg5wiMbWZQyUOkzIX0mxsIvQssRrIr1WBVvI5t+hrXpZ6iUAi3quctQiZMiPeSzYiSk4b7sDlzLbidcs59g6QZCB94hdOA9MByYOUU48ufjyJuDkZIz9CfpIZpEFH8Pwb1vE3j/BazjNRjJE/De8hCOgsWDHrNVvo7wW/+CMfsTmPM/N6jn+jAiI+ThIIiFkXxugQ6362qQgSxP92Yn0V2mbWldCR4yrpjMkT/sZMKqaWQvy2DV45ex4aFtlHzxvzFdYQ4+s4g3vvJZQj0eXrx+NiuffYakaa/iNP6BDXcsx50azdLf3UzizDQqHnmDmj9sJGFhHgX/dPOgPVas3h5afvVDwp0dJN/37QHPrIsI/nX/TeDdZ3HOugb3is+NmujWatyDtfMxpPo9cHgxim7GKL4NFT06Uz4jiVIKkvMxk/Mx530aaa/Gqlivo/Wtj2BtfQTic3ROPXcZKrVw1M13KKVwTJyBY+IM5NrPEa45QOjQZkKHt+B//Tf4XwcVk4iZU4wjtwgzezpGas7gK3kGMYkoQR+h8p2E9r9D8OB7EPRjZOThvelBHDOWDUmVkdWwh/Db/4pKK8KY88lBP9+HEREhP9GdxohLPfd+fh8AytN/Z8GkpQUc/dmrdJTWEFeUTfFDl7P+9qfYePczTP/qJeSsns4ntq7G1/IkNRv+H77jH+Xqn3tJLowl2NxOxW9zqHSmkDz3MLm3zGTG/UsItnSw+yu/o3NvNek3zCHv/lUna8gHitXTTcsvvk+orprEz30VV+7AWllJOKQ7wOxci3PuSjzX/W3E/9lFBKndgrXzD0jDLj2BOe8zGNM/ivLYfugfhoqfiDnrLph1F9LdhFW5QYv67idh1+MQlYKRs1TX0GfNGXWVPEoZJ0Wd5Z/CajtG6OgOQhW7CVfuJbRPrx/B6cHMzMPMyMNIn4yZmqubF/cnx96PSUTxdRNuOKJPMpV7CFeV6qDSE4Nz5hU4Z12NOaFgyIIfq+kA4de+ATHpmNd8b1g/p4iYZs0rKpR1d0wl+gs/x0zN+dD9TplGPYyZ2L9JoFCPn+13/xzT66Lk55/CmRBNd007O761luPb6jDcJglFaURlxWE4TYJdfnpqOugsO44VtHDEuMheVUDeJ2fjjDapeWwjDS9sw4xyMeW+60hbMfj67nDrcVp++QNCTY0kfvoreIoHtoJOervoee7fCR/dievSj+O+/K6IRuJihZHKDYR3PgbHD0F0KkbxxzEKPoJyDn93pYsV8XUg1e9pYa/ZAqFecHr1/ELOUtTExdqGYBQjIkhrA6HaA4RrD2HVHybceBRCpwoNVGwSRkImRnwqKi4VIzYJFZ2A8sbqnLs7SneqN0x44kk4sB/+8R+R7/5fyJ+CXLsc6W7D6mpB2o9htdQTbq4+o+G4kZqLY/IsHPkLMHNnDmkZJYBVv5Pwa98CTxyOVf85ZPMdH2aaFSEhnybr7igg5kuPYCRmfOh+vTu30Pab/yTlG/+CM7v/XbHbd1dR+sAfcKXEMvWbq4mfPQkRoWVbHXWvH6Ft7zF8x7qwQhaOKCdRWXHEFaSQsmACyfOz6NpfS+NfdtC8rhQRIWPVXHI/eyXOhMFP4ATKD9H6m/9EAgESP3sf7oKBNW0NH6uk9+l/xWpvwnP9vbhmR65WXKwQUraW8K7Hob0K4rIxZ92Jyr8WZQ5P843xioT8SN12rMqNSNU70NuiLQPSZqJyFmNMXAKJk0dNau1ciBXGaq3HaqrCaq7GaqnHam3Aaj+GdB4/6VQ5IFxejMRMjOQJmGm5GBl5OCYUDKs/inX4NcIb/h1iM3Fc96MhnbQeZUJeIOvumEbMvf+FkfThNcLBmkqa//3vSfjkvXjnn7v924fRUVrDwX9+Bn9DO3ElOaRcWURcSQ7enOSTnX1EhFCnD1/NcboON9Cxu4q2LUcItvVgRrtJWzmLCbcuHpLKFLEsut96lc7n/4iZlEzi5+/HmZnd/+cRIbjrDXyv/BLlicZ78zf1pWwEkJBPr8Dc/YRegZmUjzn7btSky8fMasaxjIilHR+r3sWqeheOa1tmYtIxshehJi5CZc5DucZeWaBYYaSnA+lpR3o6EX83BHxI0A9WSFtZK6Wjc4cL5Y5CeaJR0QnawdEdPWInMwkHsDb/Emvfs6jMOZjLvzvkKcTRZWPbl7sVf885d3NkTkC53ASOHBywkMcVZTP391+i4fmtNLy4nfKH15x8zPA4UaaB5Q+e0UzCmRhNwvw8kpcVkLhk2pC1cgu3ttD2P48SOLAHd/FcEu7+PEZU/6N76e2id80vCO3bgJlbopsCDIHtaL/H4e/E2vcnrNJnwNeGSi/GuPRBVPbgZ/ptLhylDFTqdEidjjnvM0h3k16EVP0e1pG1cOAFXa+eXozKXoAxYQEkT434HMqFoAwTFZMIEfh+9wdpPkRo/feg5QjGzFsxFv4tyhg5eY1MRD5rpqy7dTLe2/4B57Rz1zi3PPIwwYrDpH3nJ4POY4kIvrpWug7U4atvI9jWDZZguB04E6PxZCYSnZeOOzNhSIVILIuejW/S+eIfwbKIvekOoi5dPqDXCB7egu8vP0O623FfdieuJTePeNQr3c1Ye5/GOvA8BHt0jnb23RgZQ9OZ3WbokHAQadyjrX5r3ocW3eoPTzwqax5G1jxU1lyIzbJPvgNAAt1YO36HtfcZ8MRjLvsGRs7Ags4LYVRF5Cdmb63mKjiPkEddcjmtu7fSu3UTUYsGV6+tlMI7IQnvhJFbPRcoO0j7c48Rqq7AVVBE/O2fHlD/TaurFd/aRwmVrsdIzSXqtn/AzBzZ1lnSVkV49xNI2WsgYdTkK3UOPHnq0L6Q3X5uyFCmUwt11lzMhX+rm2/UbsWq3YrUbSXcV89PTAYqczZG5hxU5iyIybSF/RxIOIB14EWsHb8HXyuq4AbMBV+MWDXWkAi5UupB4IdAqog0n/cPDAOVkEG49uB5d3XPKMExcRKdLz2Np2QehndsVD0E66rpfOkZ/Hu2YyQkknDPvXjm9j/lIFaY4LY1+N56DEJ+HYUvvWVEJw+txj1Yu5/QJlamE6NglV6FOVweKMPsFDeeUVHJqKnXYky9FhGBtkqs+u1I3Xak6j3Ch1/RO0anojJm6XRZerGeOLXnO3QEfvBlrD1/hJ4mVMZsjEX/hpF67qbxw82gUytKqYnAo0AhMO9ChHz+/Pmy4Z/vIVi6ntgHHtOlROcgUFHG8f/4Dp7ZC0i450v99l0ZSQJV5XSvfQnfzi0oj5foq1cRc+XKAbW0CpXvwLf2N1hNlZiTZ+NZ+QXM5P5PjA4EXUK4EWvPk8ixUnDHYUy/CaPoZpR3mPOVF9qL1WZIEbGg9ShW/U6kYTfSuBt6jusHnVGo1BmotOn6NrUQFTX4PrJjARGB44e0gJe9ptOJGbMwZv8NasL8Eb1yGc7Uyo+BrwPP9+ePnIVLCO54ldChzThnLDvnvq5J+cSu/jidzz9JR0wccbd8YlSJuYRD+PbsoOftVwmUHUR5o4i59kair1w5IBvNcH0ZvnW/J1y+A5WQjveWb+EouGREvjAS7ME6tEY3S+isg9gsjEvuw5h2/cjVgI+G9nPjML2jlKFNy5LyoOhmLWCd9TrHfqwU61gpsut/QPr8waNTUSmFqJRpuitTcj5EpV4UKRkROWWbUP6mLqc1XajJV2IUfSziEfgHGZSQK6VuBGpFZNf5Pjyl1OeBzwPk5ORgTp6FSkgnsPl5HNMvPe+HH738eqzOdrrfXEO4vY2Euz47oIqPoSTUUEfP+xvp3bwBq6MNMzFZT2QuuXJAKaDwsQr8658gdOBdlDcW99WfwTV/1cBsM/uJdDVilT6HdfBFCHTpJcULv6iXhI/0JfVoaD9np3f0/2Rclk6hTb0WE5BgL3L8ENJ0EGk+oMseKzdyssG1Ow6VOEV7wyRORiXkohJywZs0qgVeRHSv1oY9OtVUuwW6mwClU0wzb8WYctWotRw+b2pFKfU6cLZVO98GHgJWiEi7UqoCmH+hqZWtW7cS2LYG35pf4L31IZwF55/pFRF63nqVjj8/gREbT9xH78AzZ9GIReciQrixHt/ubfTu2EyophKUwl00i6glV+Iumj2gsYRrD+F/92lCBzeBOwrXwtW4F9007M5xIoI07sYqfVa3UANt0lR8G0bawBYoXTTY6Z0LRgI9SEuZ3o4fgdZypLUCgt2ndnJGo+KzIW4CKnaCbogdk46KzdCRvaP/NhwDHm/IDx01SGsF0noUOV6GNB/Qi6oA3LG6oid7kfaLH0XWwkO+IEgpVQy8AZwoBs8G6oCFItJwrr89IeQSDtH96H2Ir4eYz/8U5b2wNESgqpz2J/4/oZpKHJnZRF++As/cxcMyEWp1dxIoO4j/YCn+/bsJN+tlvs7cKXjmLsY77xLM+IR+P6+IRejwVgKb/0y4cg94onEt+AjuhauHvSu3hHy6icO+P+nFI+5YjGk3YBR9bNRap444DzxwphnT/feP2p6moxERge5jSFsl0l4N7VVIew3SUQtdjafSMydwxUBUMsqbBN5EbTXgjgd3DMoVA84ocLjB9OiFP4ajbz2KArF0ft8K6qX+oV4I9iCBLvB1gK8N6TkOPc1IV8OpvD+AMiF+onaaTJuuJ3aT8kZtjf2wr+wcSEQO2pe8+3dfx5E3F++t377gy3ixLHzb3qPr9ZcJ1VWD04l7WhHuwpk4J0/FmZWNcl64SY1YFlZ7G6HGOoJ11YRqKglUlhM+Vq+Pz+XClT8dd9FsPMVzBuTICHoxT2D3GwS2voy01qPiUnAtXI1rzrXDbsgv7TW6icPhNeDvhMQpmEUfQ+WvGNGIaEwwDnPkI4VYIejuE9WuRqS7CXqa+sS2BfG1gb8d/F2cTNkMBleMTu1Ep/ZdBWSi4rJRCTkQnzOmGpiMPiG/7LKT/xyBrS/je+VXOOdci+f6e/t1NhQRghVl9G7bhL9058mIGaUwE5Mxk5IxYuNRniiUy6nP4paFBPyIrxerq4NwezvhtuMQDJ58XiMuAWfOZFyT83HlFeDMzUM5BjalICKEq/cR3PEawf0bIRTAzC7EtWA1jsJLhtyw54zXtkJI5TtYB55HareCMnX6ZMZHde7PThfYjFLECkOgW6dogj1IyAchP4QDYIVPi+qV/r82nWC6dCs9Z5QWcE/ciK6wHG5GldfKfKVkK5xxuepb9wcC7zyFY8ZleD/yf1DOgZ0lw63HCVQcIVRXTai5Eau1hXBnB+LrQYLBk7lP5XJheLwY0bEYcQmYScmYyam6P2BWNmbs4F3krJY6gnvfJrhnHVZrPbi8OGdejmvuSsyM/nc96g/SUafLpQ69rHN/0akYhasxClaholKG9bVtbGyGh9Ep5KdNIIkIgXefwb/u9xjpU/De9OA5LW5HK1ZrA8ED7xLctwGrvgxAd7AvWY5z+lKUa/hSGBLyI5UbsA6+jNRt02542YsxCj+iLU7tBR02NmOa0SnkZ5lACh7egu+FHyOBXlyLP4Z7yc2jupmrWGHCdYcJHd5C6PD7WMcqADAy83HOWIZzxjKM+HM30BjU64sgTfuRQ2uwyt+AQBfEZOjVl9Ouszvw2NhcRIwuIf9AjvyDaF+R3xAqfRvljcW1cDXOuSsxohNGfKwfRESwjtfoTicVuwgd3QW+LlAG5sTpOKYtxlmw+Jw+60Myjs4GrCNrsQ6/2rdYwY2atAxj2irdNWaUzrrb2NgMnNEn5H1VK+ciXHsI/4YnCJVtBcOBY+oCnDMuxZE3F+Xp/4rJgSC+LsL1RwjXHyZce5Bw9X6kpx0AFZuiu4zkzcMxZfbwlw362rCOvo0cWYs07NZjyCjByF+JmnKFLtOysbG5aBmTQn6CcHM1wR2vEixdj3S16ug3ayrmxOmYmVMx0nIxkrIGbCQlVhjpasVqa9TdSVpqsJqqCR+rOLM9VGImZvZ0zJwZmLnFGInD7xAn/k7teVL+pq46kTAk5GLkXYORfzUqdpiMq2xsbEYdY1rITyBWmHDtQUJl2whX7iFcX6abp4Ke2ItJwohLRkXF64jd5dHL25UBCIRDSCiI+HsRXxfS24F0tSLdbbqc6QSGAyM5CyM1FzN9sm4Om5mPETUyFpXia0eq3tHRd+0W3QklJgNjypUYeVdDUr5dNmhjMw4ZVX7kA0UZ5qnu3GjTfKupmnBTJVZLHdJ2DKurBaujCTlWAYFeJBzSIq2U7pLidKFcXvBEY0TFo1JzdbPXuFSMhDQdZSekj3yzhs4G3X+xcoNOm0hYi3fRzajJV6JSp9vibWNjc1YiJ+QPPDDo1XLKdGJmTMHMmDKEAxsZxAojTfuQqk1Y1e+e6tySkItRcidq0jK9bNgWbxsbm/MQGSHftk1v48xRTrqbdHeWmvd1ysTfoVdaphejFt6LkbsUFT8x0sO0+QA6/WidpZu70p+ffbK1OQ/SWw2e7GH7rkRGyONdiAHqRz+KyMuPFOJrRxp2IXXbseq2QVulfsCbhMpZot3VsheOWmvMsYpYIQi29m0tEGyHUDsEOyDUqbdwF4S6IdyjN8sPYR9IQN+3AiAhPT/BBwX8A6+Hoc2XDAcoFxhOMNynNtMDhhfMqL7NC45oMGP1rSMWHDHgiNObMx4c8SjT9r8Zy0igGY69Bo0vQ8dOmPckxBUPy2tFRMgl3knom7MxfnALxhd+ctFEodLViDTu1dawDbtPpUscHlRGCWra9bqDeVKeHcUNABHRguyrA18D+BvA3wiBY+BvgkATBJoh2PbhT6IcWjjNGHD0Caszvk9oPX3i6+wTZIfeXzk46efBic9N9CZ9nh8nRF+CfSeBIIT9YPn0CSLcrcd34sQR6tL7nOt4DTc4E8ARD85EcCXq2xObKxmcSeBK0vcdcfb6gQgiItBbAc1vQ/M6aN8OWBCdD1MeAM+EYXvtyFStzJklm66MQgqdYIDKmo8xbSUq51KUa/Su4jwdCXQhzYe1uX7Tft0OrbtJP+jwotKKUJmzUJlz9ETlCPbYHMuIFYDeauit6rutAV+NvvXXQbj3zD9QDnClgjtV37pStKi5krTIORNObY44MDyj5iQqVkAL+omrhFDfFcPJK4h2fVIKtUGgVd8Ptuj9zoZy9Il7ct97kHLa+9F3352i3yczetS8D2MZ8TdC2xZo3QKt74GvVj8QPRVSr4bUFaiYaUP2eqOr/LBvib587ctYd87HOvgydDXoVkpZ81ATF2Fkzdc+wRH+sokV0u2uWo8iLeVIyxGkpQw6ak/tFJvZ18+wCJU+E5Wcf1E5rg01IgLB49BdDj3l0HO0b6vU0fbpqQwzGrzZ4MkGT6aOajyZ4M4Edzq4ksddFHoqddQCgRb9XgZaIHC8b2s+dRts0VcLH8TwnCb0JwQ+5azir4wLt4O+mJFgO3QdhM590LkXOnb1fV/RV3kJCyBpCSRdhvIOT/Q9KoWce+6B3/4WEUv3BTz6FlbVu9CpPcDxJOhoNmWabh+VkKM7jPTHO/s8vtIiov1JupuQ7kakswE665COWqS9Rgu2deISuK/1VVK+7lGYUqA3b8LQvDEXIRJsg67D0H0YustObaH2UzuZXvBOgqi+zZsL3hzwTgRnYsRP5mMZEUtH9oHms2xN4D/t59M/k9MJOCB+ItS0gScVps3rS+kkn5bmSdS/c4xt21ixQjpl56uBnqq+AKNcf2f9p/XLcWdA3CyInw0J8yCmEKXOUbL8qU/B7t2wZQssWAAlJfDb3/Z7fKNTyNPSoLHxjMdEBDpqkfodWI17kKYD2kvktIoBx21P6j6CF8J5Or2EN/1UNxo+HdMFsVmo+GxU/ERUwiRIyEUlTh65BsQXAdJbDZtWnvqFIw6i83TOMCoPoqdA1BRwZ9hiPQoQK3BaRN+3Pf8Y7H8fEk1IdEBeGiSYH57eQcGCZ1ExBSM69qFCNq3UKb0TGB4dXETn6XRJTCHEzkC5+tlYZt482L791M9z5+rKvX4yqoQ8RSmZBFRDxTE4fr79B8s8mHfi/jbYBqQA522AcREzno9/PB87DOD4z/L/M5aJ2Oc/RO9jroj8lZ1qRIQ80iiltp7trDZeGM/HP56PHezjv1iPf3zNEtnY2NhchNhCbmNjYzPGGa9C/utIDyDCjOfjH8/HDvbxX5THPy5z5DY2NjYXE+M1IrexsbG5aLCF3MbGxmaMM+6FXCn1oFJKlFIpkR7LSKGU+oFS6oBSardS6k9KqYRIj2kkUEqtVEodVEqVKaW+GenxjCRKqYlKqXVKqX1KqVKl1H2RHtNIo5QylVI7lFIvRXosQ824FnKl1ERgBVAV6bGMMGuBmSJSAhwCvhXh8Qw7Sq+f/jlwHTADuEMpNSOyoxpRQsCDIjIDWAx8aZwdP8B9wP5ID2I4GNdCDvwY+Drak3TcICKviZx0UtoEZEdyPCPEQqBMRMpFJAA8CdwY4TGNGCJSLyLb++53ogVt+HxVRxlKqWxgFfBopMcyHIxbIVdK3QjUisiuSI8lwnwaWBPpQYwAE4DTTDSoYRwJ2ekopSYBc4DNER7KSPITdNB27i4hY5Sxa1N2ASilXgcyzvLQt4GH0GmVi5JzHbuIPN+3z7fRl9yPj+TYbCKHUioGeBb4qoh8mPPVRYVS6gbgmIhsU0pdEeHhDAsXtZCLyNVn+71SqhiYDOzqc93LBrYrpRaKSMPZ/mas8WHHfgKl1D3ADcByGR+LCWqB01tRZff9btyglHKiRfxxEXku0uMZQZYCq5VS1wMeIE4p9ZiI3B3hcQ0Z9oIgQClVAcwXkXHhiqeUWgn8B3C5iDRFejwjgVLKgZ7YXY4W8C3AnSJSGtGBjRBKRyz/DbSIyFcjPJyI0ReRf01EbojwUIaUcZsjH+f8DIgF1iqldiqlfhXpAQ03fZO7XwZeRU/0PTVeRLyPpcAngKv6PvOdfRGqzUWAHZHb2NjYjHHsiNzGxsZmjGMLuY2Njc0YxxZyGxsbmzGOLeQ2NjY2YxxbyG1sbGzGOLaQ29jY2IxxbCG3sbGxGeP8Lxpde+0AzOh9AAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 432x288 with 1 Axes>"
       ]
@@ -197,7 +196,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -211,7 +210,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/global_optimization/bnd_mcs_solve.ipynb b/global_optimization/bnd_mcs_solve.ipynb
index 1623059..6dfaae2 100644
--- a/global_optimization/bnd_mcs_solve.ipynb
+++ b/global_optimization/bnd_mcs_solve.ipynb
@@ -5,7 +5,7 @@
    "metadata": {},
    "source": [
     "# Global Optimization\n",
-    "Finding the absolute maximum or minimum value of a function can be hard. For problems with a few tens of variables and only bound constraints the NAG solver [`glopt.bnd_mcs_solve`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.glopt.html#naginterfaces.library.glopt.bnd_mcs_solve) for multi-level coordinate search (from Huyer and Neumaier) is an effective routine.\n",
+    "Finding the absolute maximum or minimum value of a function can be hard. For problems with a few tens of variables and only bound constraints the NAG solver [`glopt.bnd_mcs_solve`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.glopt.bnd_mcs_solve.html) for multi-level coordinate search (from Huyer and Neumaier) is an effective routine.\n",
     "\n",
     "For a quick demonstration of `glopt.bnd_mcs_solve` we find the global minimum of the two-dimensional 'peaks' function, which (in a suitable form for the solver's `objfun` argument) is"
    ]
@@ -93,7 +93,18 @@
    "cell_type": "code",
    "execution_count": 5,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/tmp/ipykernel_709387/730370878.py:2: NagDeprecatedWarning: (NAG Python function naginterfaces.library.glopt.bnd_mcs_init)\n",
+      "This function is deprecated.\n",
+      "There is no replacement for this routine.\n",
+      "  comm = glopt.bnd_mcs_init()\n"
+     ]
+    }
+   ],
    "source": [
     "from naginterfaces.library import glopt\n",
     "comm = glopt.bnd_mcs_init()"
@@ -110,9 +121,22 @@
    "cell_type": "code",
    "execution_count": 6,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/tmp/ipykernel_709387/1372224297.py:1: NagDeprecatedWarning: (NAG Python function naginterfaces.library.glopt.bnd_mcs_solve)\n",
+      "This function is deprecated.\n",
+      "The following advice is given for making a replacement:\n",
+      "Please use handle_solve_mcs instead.\n",
+      "See also https://www.nag.com/numeric/py/nagdoc_latest/replace.html\n",
+      "  _ = glopt.bnd_mcs_solve(objfun, ibound, bl, bu, comm, monit=monit)\n"
+     ]
+    }
+   ],
    "source": [
-    "glopt.bnd_mcs_solve(objfun, ibound, bl, bu, comm, monit=monit);"
+    "_ = glopt.bnd_mcs_solve(objfun, ibound, bl, bu, comm, monit=monit)"
    ]
   },
   {
@@ -221,7 +245,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEICAYAAABLdt/UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3wU1fbAv3e2pPeEQEJC6DWBSJOmNKUoIoqgooL+FEEELMiz67M81Gd/YsGGoqKIDVGw0BQIHaS3hBBCQkgvpG25vz9mwJC6u1lIwPnms5/NzNy5c2Z25twz5557rpBSoqOjo6Nz8aA0tAA6Ojo6Ou5FV+w6Ojo6Fxm6YtfR0dG5yNAVu46Ojs5Fhq7YdXR0dC4ydMWuo6Ojc5GhK3YnEUI8LYT4rKHlqA0hhBRCtGloOeqDECJaCFEkhDA0tCy1IYSYL4R4rqHlaIwIIVYLIe5saDn+ieiKvRKaMjn9sQshSiosT3DzseYLIcq1unOEEL8JITq48xiuoj2UpZWuR59zeLxkIcTQ08tSyhQppa+U0naujnmuEUJM0hrZ1yqtH62tn19hnVkzGg4JIU5p1+MjIUSMtr2zEOJX7T7JE0JsFUKMrOG4ZiHEK0KIVO13SxZCvH4OT7XeCCEGas/b6XvtuBDi3w0t14WKrtgroSkTXymlL5ACjKqw7vNzcMiXtGM1B04C88/BMVzl3orXQ0qZ0NACXYAkAuOEEMYK6yYCByuVWwxcA9wMBABdga3AEG37j8BvQFOgCTADKKjhmI8APYBegB8wENhWz/OoQqVzcgdpFZ69/sD/CSGudfMx/hHoit01zEKIT4UQhUKIPUKIHqc3CCEihBDfCCEyhRBHhBAzHKlQSlkMfAF0qaseIUQvIUSCZrmlCyHeEkKYq6tXCNFfCHFMs4iEEOI1IcRJIUSBEGKXEKKLMyde+fVas0rXVliWQogpmuWZJ4SYK4QQFbbfJYTYp127vUKIS4QQC4Bo4EfNWpsthIjR6jJWuB5LNIv1sBDirgp1Pi2EWFTTb1LNObyhXZMCzfId4GhdQoh4IcQ2bdtXgGcdl+wEsAsYpu0fDPQFllSocyhwBTBaSrlZSmmVUuZLKedKKT8UQoQCLYH3pZTl2medlHJt1cMB0BP4TkqZJlWSpZSfVjiey/eW9ptME0IcAg5p60YLIXZo1zNRCDG8giwthBDrtOv1q3YudSKlPAKsBzpVOHZfIcRmIUS+9t1XWz9eOw9/bXmEEOKEECJMW75Du+dyhRC/CCFaaOvr/Tw0WqSU+qeGD5AMDK207mmgFBgJGIA5wAZtm4JqZT0JmIFWQBIwrIb65wPPaf/7oir2P+uqB+gOXAoYgRhgH3BfhXol0AYYDhwDemnrh2n1BgIC6Ag0q0G21cCdda0HJgFrKx17qXaMaCATGK5tuwE4jqp4hCZji+qutXZeEjBqy38Ab6Mq0m5avYPr+k1qOLdbgBDt+j2Iqnw9Hfh9zcBR4H7ABIwFLKd/w2qOMwlYi2qFf6Wtuwd4D3gOmK+tewFYU4u8AlWJLgWuBcLruG8fR33bvAeIBUSFbe64t34DggEv1LeCfNSGSQEigQ4V7pVEoJ1WdjXwQg0yDwRSKyy31e6V079xMJAL3KrJdpO2HKJt/xz1eQoB0oCrtfWjgcOo97pRuzbrnX0eLrRPgwvQmD/UrNh/r7DcCSjR/u8NpFQq/wjwcQ31z0dVInmoymUJ0NqFeu5DtdBOL0ut/FGgS4X1g1FdAJcCSh3nvhoo1mTLA7ZVWF+XYu9fYXkR8LD2/y/ATEeuNRUUOxAF2AC/Ctvn8LdirPE3cfB3zgW6OvD7XqYpjYqKcj11K3YvIAPVxbIB6MfZiv194Ms6ZGwOvIWqKO2oDV3bGsoagGnAOqBMk3mii/dodffW4ArL7wGv1XIPPV5h+R5geQ1lB2rnlYfqYpLAt4BZ234rsKnSPgnAJO3/QNTGbBfwXoUyy4D/q7CsoN7XLXDiebjQProrxjVOVPi/GPDUXAYtgAjtNTZPCJEHPAqE11LXy1LKQCllUynlNVLKxLrqEUK0E0Is1V43C4D/AJVfce8DFkkpd59eIaVciaoc5gInhRDzTr++1sAMTbZAKeUlDlyX01S+Pr7a/1GoislZIoAcKWVhhXVHUa3Dmo55+jepghBilvZqnq9d2wDOvn411RUBHJeahqggR61IKUuAn1CtxRAp5bpKRbKBZnXUkSqlvFdK2Rr1/jgFfFpDWZtU3Tj9UBXe88BHQoiOuOfeOlbh/7p+05ruhepI0+41f03uEuATbVsEVa/1mXtASpkHfI3qynylQpkWwBsVzjUH1TqPdOF5uGDQFbt7OQYcqaAMA6WUflLKaqMX6lHPO8B+VIvNH/XBFJXquAG4Vggxs+JKKeWbUsruqJZoO+AhJ2U7BXhXWG7qxL7HUN9IqqO2NKNpQLAQwq/CumjUV3Wn0Pzps4FxQJCUMhDVlVD5+lVHOhBZsc9Ak8MRPkV1+1QXKvs70EsI0dyRiqSUx1CVUZ3+YClliZRyLupbSSfcc29V/K1q+01dRkqZj+qaHKWtSkNV0hU5cw8IIboBdwALgTcryXd3pfP1klKu145T3+ehUaIrdveyCSgUQvxLCOElhDAIIboIIXq6uR4/1NfVIqGGR06tpo401IiKmUKIqQBCiJ5CiN5CCBOqgi5Fff11hh3AdUIIb6HGyv+fE/t+AMwSQnTXOq7anO7IQnVVtKpuJ02RrQfmCCE8hRBx2nFdGU/gB1hRffRGIcSTgKNWWoK27wwhhEkIcR2qj9kR1qD6of9XeYOU8ndUv/V32rUxCiH8hNoJfYcQIkgI8W/teilaB+QdqG6dKggh7hNqZ7mXVtdE7by34557qyIfArcLIYZoskUKN4TsCiF8gRuBPdqqn4F2QoibtXMaj6qMlwohPFHvhUeB21Eb33u0/d4FHhFCdNbqDRBC3KD9747noVGiK3Y3ItWY66tRO/eOAFmoyizAzfXMQu2QK0T1z35VQz0pqMr9YaFGsvhr5XNRX2Ozgf86IxvwGlCOqog/Qe20cvS8vkZ1C3yhyf49aqcYqD7zx7VX5lnV7H4Tqt89DfgOeEpTiM7yC7Ac1bd6FPVhPlbrHn/LXw5ch+o7zwHGo/qBHdlXSilXSClzaigyFlV5fYX6BrEbNWTxd9TrHaP9X6BtK9PkqI5iVHfECdR7ZxpwvZQyyV33VoXz2oSqTF/T5F5DVcvaUSKEFseO+tsEAxO042Rrcj+Iet/ORu0gzUK9d45JKd+RUpahdo4/J4RoK6X8DngR+FJzLe0GRmjHc8fz0CgRZ7sLdXR0dHQudHSLXUdHR+cio96KXfN5bhJC/CXUwRz6MGAdHR2dBqTerhgtQsBHSlmkdUKsRY1VrrZjR0dHR0fn3FLvXA9aTG+RtmjSPrrjXkdHR6eBcEsSH6GmVt2KOkR8rpRyYzVlJgOTARTFp3tYWKNIYlgrdjsoChgadeJY95GZqX4HB9de7mIlO1v9DglpWDkaiuxskPKf9fvb7X8/542dwkIoL9+aJaUMq6usW6NihBCBqKFo0yuOeKxM06Y95IkTW9x23HNFWpr6HRHRsHKcLwZoqbD+/LNh5WgoemkR6Zs2NawcDUW3bur3jh0NK8f55EJ6xidOhE8/FVullDUmuDuNW9spbVjvKtTkUzo6Ojo6DYA7omLCNEsdIYQX6ui6/fWtV0dHR0fHNdzhY28GfKL52RXUxFNL3VCvjo6Ojo4LuCMqZicQ7wZZdHR0LiAsFgupqamUlpY2tCguY9MmXszPb1g5KuPp6Unz5s0xmUwu7e/uqa10dHT+IaSmpuLn50dMTAxnJ7y8cCgvV7/N1c4/1jBIKcnOziY1NZWWLVu6VMcFEOSjo6PTGCktLSUkJOSCVeqNFSEEISEh9XoT0hW7jo6Oy+hK/dxQ3+uqK3YdHR2diwzdx67zj8COnXLKKaOMcsqxUI4FC1Zs2LFhx07YAHWw3n5AIFAwYMCAESNmTJgw46H9mXCtU0vH/Tz//PN88cUXGAwGFEXhvffeIyEhgcmTJ+Pt7V13BRWYP38+V155JREXwoilWtAVu84FjQ0bBeSTSx755FFAAYUUUKT9neIUJRRTQgmyjhRG3bWZMr9w4LhGjHjhhTfe+OCLL7744Ycf/vjjTwCBBBGEDz4Ih2bdu8h56SXo2RMGDfp73apVsHkzzJ7tcrUJCQksXbqUbdu24eHhQVZWFuXl5YwfP55bbrnFKcVus9mYP38+Xbp00RW7js75oIQSMsggkwwyySJb++SRh73SbGaeeOKLH7740oxmeGkq2BNPPPHAjAdmzBgxaTa5AQMKE29VFfCnC0AisWLDhg0rFqxYKdds/lLKKKGEEoop5hSnKCaFFIooxIr1LFnMmAkmmBBCCSGUMMJoQhPCaILxn/T49ewJ48bBokWqcl+16u/lepCenk5oaCgeHh4AhIaG8uabb5KWlsagQYMIDQ1l1apVTJ06lc2bN1NSUsLYsWP597/V7OLt2sUwdux4Vq78jQceeIAtW7YwYcIEvLy8SEhIwMvLq96n3hD8g+4snQuFYopJ5RhpHCeNNE6QTh55Z7abMBFCKBFE0oVYggkmgCACCcAPf8y4FrtWcED9dtVWk0hKKKGAfPK0v1xyyCKLdNLZx94zjZCCQihhNKMZzYggkuY0o5nLsjd6Bg1Slfi4cTB1Krzzzt9Kvh5ceeWVPPPMM7Rr146hQ4cyfvx4ZsyYwauvvsqqVasIDQ0FVHdNcHAwNpuNIUOGsHPnTuLi4gAIDg5h27ZtAHzwwQe8/PLL9OhRZzqWRo2u2HUanFxySeYIyRzhGClkkQWofu4QQmhOFD3pTTjhNCEcf/xRGmG/v0Dgrf01pVmV7Vas5JDDSTI4wQnSSSOJRP5CzbqloNCUZkQTTQtiiKElPvic79M4dwwapCr1Z5+FJ56ot1IH8PX1ZevWrfz555+sWrWK8ePH88ILL1Qpt2jRIubNm4fVaiU9PZ29e/eeUew33DC+3nI0NnTFrnPeKaGERA6TyGGSSCSXXAC88CKKaLpxCc2JIoIIPPFsYGndhxEjTbS/LsSeWV9IIcdJ5RgpHOMYW9nCBhIAaEI4rWlNa9oQQ8sL26JftUq11J94Qv0eNMgtyt1gMDBw4EAGDhxIbGwsn3zyyVnbjxw5wssvv8zmzZsJCgpi0qRJZ8WI+/hcRI2nhq7Ydc4LueSwl70cYD8pHMWOHQ88aEkr+tCPlrQijLBGaYmfa/zwowMd6UBHQO0QTuM4SSRxhCQ2s4kE1mPESAwt6UAHOtARfwIaWHInqOhTP63QKy67yIEDB1AUhbZt2wKwY8cOWrRoQXJyMoWFhYSGhlJQUICPjw8BAQFkZGSwbNkyBg4cWG19fn5+FBYWuixPY0FX7DrnjFxy2cVO9rCLdNIBCCecfgygHe1oThQG/iGzmDiBAQNRRBNFNJczEAsWkknmEAc5yAGW8iNL+ZHmRNGJznQhlkACG1rs2tm8+WwlftrnvnlzvRR7UVER06dPJy8vD6PRSJs2bZg3bx4LFy5k+PDhREREsGrVKuLj4+nQoQNRUVH069evxvomTZrElClTLvjOU7dOtOEo+kQbjRN3TLRRSim72cUOtpPCUYAzCqgTnQnm/E7PI7FRTj7l5GMhHwtFWDmFlWLslGGjDDsWJFY++1zt2JwwQSAwoGBEwYSCB0a8MOCNCV9M+GHCHzOBGM9zOKNEkkUm+9jHHnaTjnqTRtOCrnSjC7F44ZoycnaijX379tGxY0eXjtVYaIy5Yk5T+fo6M9GGbrHr1BuJ5DipbGYTu9mFBQthhDGUK4kljiCCzuGxbZSQwSlSKeY4xaRRSgYlZFBKJuXkQ6VwyMoIDAgM9BijgBQcQyKxYcdKXdP3KpjxIBRPQvEiHC+a4k0E3kTiQzRmN7tLBIIwLVzyMi4nh2x2sYud/MWP/MAyfqIjnehOT1rSUo+h/4eiK3Ydl7FhYze72MB6jnMcM2bi6Ep3ehBJc7crFSvFFHCQAg5RQCKFJHKKFOyUnymj4IEXTfEiHH/a4kEwZoLwIAgT/hjxxYgPRrwx4IkBD4Tm1+81UK3j9NR4UlPwNkqxUYKVYs3iL6KcPMrJo4wcysimlExy2EkpK6jYkJgIwJcY/GiFP23wpx2+xKC46dELJoTLGchlXE46aWxjKzv5i13sJJRQenEp3Yi/qDqhdepGV+w6TlNGGVvZwnrWUUA+oYRyFaPoSje3KpASMsjhL3LZRR57KCKZ0xa0B8H40ZoQLsGXaLyJwptIPAh2W4MiEAiMKPhiwtehfexYKCGDYo5zihSKOEohRzjOMlJQIzEUzPjTjiC6EEQsQcRiwq/eskYQSQSRDGMEe9jNRjbwM0tZwW90pwd96EtAY/fF67gFXbHrOEw55WxkA+v4k2KKiaEl1zCaNrR1SzSLlRKy2UoWm8lmC8Wa/9iID4F0oimXE0CHM5Z4Y0TBhA/N8aE5YfQ+s15ip5jjFHCIPPaRx16SWcwRvgQE/rQhhO6E0pMgYlHqkYvGhIluxNONeI6TSgLr2UACG0igK90YwOWEEuqGs9VprOiKXadObNjYymZWs4oiimhDWwYyiGha1LvuMnLIYC0nWUc225FYMOBFMPFEM4ZguuFHqzPuEnchpQUoRFIMlCKxENNKdaHYpAAMCMyAFwJfwBshXJdBoOBDFD5E0YzB6nEoJ5995LCDbLadUfQGvAmlJ03oSxP6Ovy2UB2RNGcs4xjKlaxnLVvYzA62E0dXBjKYEEJcrlun8aIrdp1aOcRBlvEzWWTSghhu5OZ6K3QrxZxgDemsIJvtgB1vImjBtYTRlyA6u2yxSmnBThJ2kpDyKHZSkRzHLk8gyUSSgyQHKKmy7wefq9+nqu1rVYAABEEohCJoghBNUWiOIBpFxKDQGkG4w7m0DZgJpivBdKUNE7FSQg7bOUkCmWwggzUIjITSg2YMpgn9MboY8RJIICO5mssYyDr+ZBMb2cVOutODQQzBtx6Nh07jQ1fsOtWSTx4/s5R97COEEG7mFtrTwWX/tUSSx16O8SMZrMFGKd5E0JoJNGUgvk5GcEipxuLY2IpN/oVd7sbOPuwkwVmJuEwImqHQDIUWCHEJgiAEAYAvAm/AE4GZRx41IKXghTl2wIqkDChBUqR9ctWPzMJOMlImIMk+fYIa/ii0xyA6odAFg+iGgW4I4V/nORnxOmOlS+zks58TrOEEa8jkPxjwJJzLieIqAuni0m/hiy/DGEFf+rGaVWxlCzv5i8sYiGLqi91yYamEjIwM7r//fjZs2EBQUBBms5nZs2czZswYVq9ezcsvv8zSpUtr3P/ZZ5/Gx8eXhx+e5Va50tLSmDFjBosXL3ZrvY5yYf2KOuceYWcTm/mV5UgkVzCMPvR1OROhnXLSWMlRvqGQwxjwohlDiGQEgXRyWDlJacPOTqxyDTa5HhsbkZzQtiootEGhE0YxBoW2KKI1CjEImjrsQvljpfptcsLjImUJdo4hOYJdHsbGQezyAFa5HMknmsIXKHTAIC7FQD+M4jIUUftbj0AhkE4E0on23E0uu0njV9JZRRq/4EsLohhNJMMw4lzOcQA//BnFaPrQl19Yzm/8wsDFW9g15xqgjdP1OcLnuz7nsRWPkZKfQnRANM8PeZ4JsRNcrk9KybXXXsvEiRP54gs12fLRo0dZsmSJu0R2mYiIiAZT6qArdp0KmEPz6fjItyzlMK1pwzVc63IMupUSjrGEZBZTRha+xNCJ+4ngCofdCXaZiVUux8pybHKl5kIBQUuMYjAGeqCIHhiIRQjnlZs7EMILA+2AdiCGnbXNLjOwsQ273IZNbsIiv8fCxyBPn8NQjGIYRgYjRM35SgQKwcQRTBwdmMYJVpHCEvbxJof4kCiupgVj8XShQzSUMCZwK4c4xDviR/q8+zGL6coIrnJrArLPd33O5B8nU2wpBuBo/lEm/zgZwGXlvnLlSsxmM1OmTDmzrkWLFkyfPr1K2ZycHO644w6SkpLw9vZm3rx5Z5KA7dr1F3369CErK4vZs2dz11131XrcmJgYbrrpJpYtW4bRaGTevHk88sgjHD58mIceeogpU6aQnJzM1Vdfze7du5k/fz5LliyhuLiYxMRExowZw0svveTSOTuKrth1ADjIAXp+vBiDh4VRjKYHPV161bdRRgrfk8RCLOQTTDyxzCaEHg7VZ5cZWOU3WOS32FgH2BE0xSiuwsBgjOJyFBHpuEBSgiULSo9BWRqUn4TyTLDkgLUAbEVgKwFZzmu3ai6cbQooJlA8weANBj8wBoI5BExh4NEMPCPBozkYag7vVEQ4CiNAjNBEsWNnj/bWsQqLXIhFvg94YGQoRnEdJjEKIWoe1GTEi+aMpDkjtciarznC1yTzLc0ZQSsm4EUTx6+PRlvasnrsdNr+3xoMd/9BIocZxWg60dnpuqrjsRWPnVHqpym2FPPYisdcVux79uzhkksucajsU089RXx8PN9//z0rV67ktttuY4c2xHbXrp1s3LiBU6dOER8fz1VXXVXnRBvR0dHs2LGD+++/n0mTJrFu3TpKS0vp0qXLWQ3NaXbs2MH27dvx8PCgffv2TJ8+naioKOdP2kF0xf4Px46dNaxmNSspzwpn95M38vwXYU7XI7GTzgoO8j6lZBJCD9pyO4F0qntfWY6VpVjs87HyG2BHoRNm8QgmcTUK8XV3SEo7FB+Cwr+gaDcU7YXig1CcCPbiquWFSVXWRl9QvEAxE+SjPQ5ldpBWsJeC7ZTWANSQGMojArzbgHc78O0MvrHg101tBCofUigYiMUgYoF7kbIcG2uxyqVY5BKs8idKpRkjV2FSbsXIMISo+RENpBPdeIpi0khiIan8TCrLiGYUrbkVs5Mx6/ZyEwfeGcqbd3fhW77hS74gnksYydV44OFUXZVJyU9xar0rTJs2jbVr12I2m9m8efNZ29auXcs333wDwODBg8nOzqagoACAUaNG4+XlhZeXF4MGDWLTpk1ce+21tR7rmmuuASA2NpaioiL8/Pzw8/PDw8ODvLy8KuWHDBlCQIDaYHfq1ImjR4/qil3n3GDBwrcsZg+76UY8b9w9Gnu589EohSSxh9fIYzf+tCWWRwghvs797DKdcjkPi/wAyUkEkZjFLEziJgyijgbBVgx56yH3D/U7f1MF5auAd2vwbg/BQ8ArBjyjVSXsEa5a3QZvqNRYTJqpfp8eeXq2sFaw5qkWf1k6lKZCaQqUJEHxYTj5HRz/4O/ynjEQeCkE9oOgy8C3C1Ty9QthxshgjGIwHvIVbGzCKr/CIhdhtX+HoBkmcTtmcReKqNmC9CaCLjxIa24hkQWk8D2pLKc1txDD9ShOpvoNpymTmcJqVvIHa0ghhfHcWG2OeUeJDojmaP7Rate7SufOnc8oa4C5c+eSlZXl9CQZlY0GR6KaTs/YpCjKmf9PL1ut1hrLg5pmuLoy7kRX7P9QSinlcxaQwlGuZDj96M9r5c65XuxYSOQzkvgcI7504SEiGV5nzLldJlImX8YiPwMsGBmBSZmMkSsRopZsj6cOQuYSyPwZ8taBLAcU8OsKzW6BgB7gFw8+HWt1kbiEYgRzqPrxraHRKcuAop1QsAMKNkHuWjjxpbrNFAohQyF0pPqpZNELITDSG6PojYd8ESs/Y7F/SLmcQ7l8CZO4AbN4ULP2q8eLcLowixhu4ADzOMg8UvmZTtxHKN2dOl0DBoZwBa1ow2K+Yh7vcg3X0s2BBrs6nh/y/Fk+dgBvkzfPD3nepfpAtbwfffRR3nnnHaZOnQpAcXE1b2fAgAED+Pzzz3niiSdYvXo1oaGh+PurkUo//vgDjz/+CKdOnWL16tXVTtRxoaEr9n8gJZTwKfNJJ42xjCOWOKfrOMUx/uJZCjhEBFfQgWl1Jryyy1TK5HNY5KeAEZOYhIeYiSJqicIoPgInPocTX6kuFlCt3+gZEDJEtYiN9RuO7zY8wsHjCgi54u91JUchdw1k/w7Zv2qKXlGt+KbjIXys2lhUQAgTJkZjMozGLpMol3Mpl/OxyIUYuRoP5QkMoluNYvjSgu48Tyab2MebbGEWEQyjI9OcTl3QkpZM5V6+5iu+ZTEnSOdKhjs90vi0H92dUTFCCL7//nvuv/9+XnrpJcLCwvDx8eHFF1+sUvbpp5/mjjvuIC4uDm9v77Mm44iNjWPQoEFkZWXxxBNPnPGvd+vW7Ywf/lxx5513MmXKFLdPxVfvtL1CiCjgUyAcNbhrnpTyjdr20dP2NhzllPMJH5PGccZz05nJHcDxtL0nWMMuXkTBRBdmEc6AWstLWUyZfJly+QpgxyzuwiweQhE1vNrbyyHjW0h9D3JXq+sC+0P4DdBkNHjVf8RrdfTqpX5X64pxB9IOBdsg8wfIWAyn9oMwQtgoiLwLQodVcdec2VXmUi7fpky+CeRhFDfgKZ5FES1rPaSNchL5lCMsxEwwsTxco/VeW9peGzaW8zMb2UAHOjKWcSTuS9TT9p5D6pO21x3jtK3Ag1LKTsClwDQh6nKQ6jQEduwsZhGpHGMs485S6o4gkRxiPjt4Gl9a0pf361TqVrmCIns85fJ5jOIafJXdeCqvVq/ULflw5CX4MwZ23QSlR6HNszAgGXr9CS1mnDOlfl4QiuouavMs9N0Ll26H6Jmqy2b7SFjbBo6+DtaqHbVCBOGhPIafcgCzeASrXEqRPY5S+9NIWb37AdTRre24k0t5GyM+bGEWB3gfOzanRDdg4CpGMZKrOcB+PuFjZB0pjXUajnordillupRym/Z/IbAPcCIeTed8sYoV7GcfI7iKznRxal+Jjd38l0Q+IZLh9Oa1WsPqpCyhxD6DYvtIBCa8lV/xVhZUPzDHWgRJz6sK/dC/wKczxP8E/Q9Dq8cvbGVeE0KAfzdo/zJcngpxX4FHJBy4H/5oAYnPqA1dld0C8VSexlfZg0lcT7mcQ5H9EqxyVa2HC6A9fXmX5lzNEb5gCw9pueqd41L6MI4bSeM4RRRic7KB0Dk/uNXHLoSIAeKBjbWVKwsp5gdS6EcTQvU80eeFRA6zhoLlR4QAACAASURBVNVcQncupY9T+0ps7OQF0vmd1txKG26vNSbdLg9TbL8RO7swixl4iGcQoppBSVJC+meqMi9LV10SrZ8Cf+c6+hw/EQm5WZB+FDLTIDcTCnLgVCGUl3K/zQJIeNUIZg/w8gG/QAgMhZCmEN4cwqPA5HrmxWpRzNB0nPrJ2whH5kDiU5DyBrR6AqLuUctU3EVE4iXmY5K3U2qfSrF9OGYxDQ/xfPXXGjDgSRceJIgu7OEVEphCd+bgS4xT4namCx54kkkmWTKTUBGmT3HoZurrInebYhdC+ALfAPdJKQuq2T4ZmAzgG9eG19nL6+ylNX70own9aEIb/FH0GV/cThllfM+3hBLGSK52al+JZC9vks7vtOMuWnFzreWt8g+K7eMQCLyVJRgrjcY8Q3Ei7LkLcleBfy/ouhgC+zolW61YymHvVtizCQ7sgMO74egBVYlXh4cno+ya8vzaCpYysFVjjSoKRLaElp2gXRx06gGxl0JoU/fIHdgb4r9XffEH/6Va8KnvQYe5EDK4SnGjuBwfZQtl8nHK5Vys8g+8lIUYRNsaDxHJMHxpwVYeZQPT6c5/CKLmaJvqaEMbyjzLyM/OhxBBmPhnTkR+LpBSkp2djaen60avW+Y8FUKYgKXAL1LKV+sq37RpD5lwYhUbySKBk+wmFzsQjAd9CKMfTehGMF4NHLRzsXSe/spy1vIndzK51syM1XWeJrOY/cylJTfSnrtrPY5FLqHEPgGFlngr36OIVtUXTFsA+6aCMEC7/0LknTV2GjpF8gFYswQSfoUda6FMndiCkHBoEwstO0JUa2gWA00iIKgJ+AeBty8oStXO0/IyKMxTLfusE5BxDFKT1AYiaS8k7/9b+Ue3hd5Doe9w9dvLDSkOpISsn2H/TChJVDtY279SYxSQRS6n1H47EhveyoKaG1WNYk6whdmUcpJLeJ6h3dQ3JUcDQSwWC/tT91NUWogREz7nef5Xd3D65zM0shcOT09PmjdvjqnC2+F5nfNUqNH8HwL7HFHqp2mJHy3x40ZakksZm8kigUxWks5PpGJCoQch9KEJvQmliYvpSv/pFJDPBhLoRrzT6Xbz2MsB3iGcAbSj9vwZFvkzJfabUIjHR1mCENVMhGG3woGZcOxtNdwv9jPwrOfou+wM+PET+PkzOLRLXde6M1x/N8QPgLhLoYmLXT5mD7VRCAmHNtX0SZSVqm8DO9bBllXw0wL4+h3w9IbLRsHVt0HfYa5rDSEg7CoIHqy6ZpJfUd9w4r4C/6pD6U1iOAZlA8X2sRTbx+Ap3sKs3FFj9d40pTdvsJlZbONRWvV4kaQtNYdRVjmeyURsy1h2sJ1vWUw34hnD9ReUcr9YjLfKuMMk7gfcCuwSQpxu6x+VUv7saAVBeHAlkVxJJOXY2EUuCWSylgwSyASgLf70JYzehNGeAN1l4yAb2IANG4Oo+hpfGzbK2MkcPAijC7NrHXRkk9s0Sz0OH+Wn6nOd2Ergrxsg6ydoMQvazlEH/bjKwZ3wyUvw6yKwWiCuDzz0OgwaA81cH83oFB6easMRdync9qDq/tm6Bn7/BlZ8A79+BU2j4Yap6sfPxYmtDV7Q7iW1D2LnzbCpH3R6HyJuqVJUES3wUVZRbL+JUjkVaS/EQ5lZ8ykQRC9eYRP3cdvrjzHvzteAdk6J1414csllFSsIpyn96O/sGeq4Gbe4YpzFZOoh4+MdiWOXiJanMPY/ieGykyixeQgF7Fke2P4Iw5YQhm1TCJRUVRBSQg2D0BzGYlH7ydzdV1YZKdVjKG52UQqDjYFLXyRvVzTbZ1dVApXZvRvi4mDDBkjkMw7xIT14udZRi1LmUmRXfRg+yloUEV61kL0Mtl8D2b9Bx7chqmqSJIdJTYI3/gW/LwYfPxh9B4ydAi07uF6nhlvj2C3lsOZH+Ppt2LQSfAPg1gfh1gfUTllXKc+Ev8ap8f1tnoeWj1RJjQBq/p0S+21Y+Q5P8TpmZWqt1ZaSyXdp01GMNkY3eRtPnMsXJJF8xUL2sZeJ3EEranDDNTIuJIv9fMexn0ME8ogvlgWtKL3rUoqHDab0yTjsfwVivDIdz/9ux/vXlXi8uhXj2KOI8L9nxSkuhtLS+h3dZALjeXDzFxVBQZXu5voTFJ+MR8gp0n52bBi43Q6nToGFIo7wJU3oV+dQ9FL5AJI0vJWF1St1KdVO0uxfofMHrit1iwXefw6u6wjrlsHkJ+Hno6qV7gal7nZMZhh6Pby3Ar7YCj0HwTtPwuh2sOJb1+s1h0H3X6DZBDj8mOqiqQYhzHgpCzAyilJ5Pxb5fa3VehLG/Bn/wdO3iO08hR2LU2IJBGO4nmBC+IZFnOKUU/vruBkp5Xn/hId3l/XFIm1ym8ySb8g98ma5Rg6Uy+RAuUzeJdfJD+QB+d2+XLllq73exzkfLF+uftzN7/JX+ZR8XJbKUofKd+2qfo7IRXKZHCjz5cFay1vsa2W+1SxLbE/VXCjlHSl/QcrD/3ZC8kpkHJfytj5SdkPK2ePU5XNAz57q55yxfa2U47up5/HoBCmLClyvy26Tcvcd6rVNfq3mYvZiWWQdIPOtgdJq311rlV27SjnhgdVymRwo98m3XRIrTR6XT8sn5BdygbTLxv/8HT+ufi4EbrtNSmCLdEDHXrC5YowoxBNCvDYZbwpFrOUkG8nkC45g75CEn8WDfoTSjyZ0J6TBo2zONyc4QSihTqdcTeM3AuiAPzWHzAGU2Z9B0AwPMbv6AqXH4OAsNXdKq8edkuEMiXth6hVQlA8vfAnDxrtWT2OgWz9YsAk+mgPz/q12vL61DJq60IEsFOg0Dyx5cOABNfFZaNUoGCG88FIWccreixL7zfgoG2qMcwfYveJyoriGZBYRRh9CcLwzFaAZEQzhCn5lObvYSRxdnT41nfrTyF0xjhONLzfTijfozXcM4qbkWFoXBrGWDJ5gO6NZyWy28AMpZFJPH80FQj75BDo5A5JvcA4FHKozVYBN7sPGaszi3ppnLzr8pJrXvNM818IZU5Ng8iA1x8onCRe2Uj+NyQR3Pwlzf1HDJ2/vB2lV09k6hDBA7AI1D/yuW6HsZLXFFNEUL+Uj7OynTD5TZ7UdmIo3EezhFeyUOy1WX/rRnCh+ZqnukmkgLhrFXhF/zPTIieTW5G58x2BepiejiSKNYl5nL+NYzV2s4yMOcZD8izbnhRULZidzcUd2OghAYB0pB6zye0BgEjVk5ys7oY4qbX63mg/dWcpK4YFrwWaF91dDW+cG0DR6Lh2qnldRAdw7ouaBU3Vh8Ia4L8GaDwcfrLGYUQzFJG6nXL6BTe6rvUo86cR9FJNKMs7P26mgMJoxlFLK7/zq9P469eeiVOwVMaLQnRCm0ZEFDOBj+jOZdnhh5HMSuZsEbmA1r7CbTWRSfhHlvjBixOJkJ1hwZDoAPjSvtZxV/oFCXM0ZGjO+Vq31qNqjMWrk4xfUuPRnF0BMe9fqaOx0iIdXvlUHPL1as1KuE9/OEDNLbUgLttdYzEM8C3hTZv93nVWG0pMw+pLEF1hwvtEJJ5ze9GEbW0njuNP769SPf5TTWSCIwZcYfLmJVuRRzgYy2cBJfiedpaTiiYEehNCfcHoTRqCTFm9jwp8A8sh1ah8PHzVG1FjHRMZ2DmAUtcTG56wCr1bg40LEyqlC+OxVGHI9DBjp/P4OkpuUxK4vvuD4pk3kJiUx5KB6rd6JCyGkXTua9+lD3C234BteTbSPu+g1GCbcDwtegRunu/5mEjMbjs2F5P9C3BfVFlFEGGYxjXL5AnZ5uPY8+EA77mAdd3KUb2nDRKdFGsRg/mI7v7CcSdxxQQ1cutC56C322gjEzHAieZp4vmcwL9CdYUSyn3xeYBfXsZIZbGQRRzh2AfoKm9KMTDIpo8zhfazlakNWl29Vko0gtOYCp/arc3+6wp8/qcp9wn2u7V8HZYWFfHvLLfyvbVtWPfEEOYcPE9K2LZkBw8kMGE5gTAwnduzgt1mzeD06mt/+9S/s1eWNcRf/9yh4esGit12vwxQAERMh45tqs0KexiymAAbK5Ud1VulHa8Loy1G+w+aCr90TTwYyiCMkkUii0/vruM4/ymKvDQ8M9NZGts6gI4cpYD0n+ZOTvMMB3uEALfChH+H0JYyOBDb60a+taM0frOYQB+niYJKn/Ax1YEoJJ+qYbceImoq/Bqx5YKomrYAj7N6kKro457JQOoK02/lqzBiSV6+mz6xZXDpzJn7a6JRXtAFKHyxRv7MOHGDdCy+w/qWXsFssDHvV4YwZzhEQrOaYSfilfvWE3wApb0LOCgi/rtoiimiGkaFY5Dd4yOfrnN+zBdeRyXoy+IMIhjotUg96sY51rOA3WtNat9rPE/9oi70mFATtCGASbfmQfizkcmbQkWA8+Ioj3MtGxrGaV9nDBjIpx97QIldLDDH4E8AWNtddWCNtvxrimEftHWwKzbDL1FoKeKkTTrtCXhYEh5+TzEzZBw9yZMUKhsyZwxUvvnhGqVdHaPv2jP74Y9pedRW7vqjeveE2WneB40fUUWKuEtBLnZGpoPZR3UYxEkkykqQ6qwwhHk/CSWeFSyIZMXIZl3OcVBI57FIdOs6jK3YHaIoXY2jBq/TiOwbzKHF0IpDfSOMRtnIdK3mGHawkneLarNjzjIJCby4liURSOebQPtnHIvCiKSdZX3vdIg4bm2vOG+0VA8UHnJRYw9dfzZN+DtJdeAQEoJhMHFu3DktJSZ3lUzduJG3LFoJbt3a7LGdhs9Y/p4RiVpOqlabUWswg1Dchmzo/Tq0IFJpyGVlsxeqiOzKeS/DHnz9Y49L+Os6jK3Yn8cPEFUTwDPH8wGDm0J3LacoOcniWv7iWlTzMVpZyjDwX/JLuphe98cWXn1iK3aE3C0EzBpPFZoo5UWMpI1cgScVODcohsJ8aoVGe7bzQHS5RwwAP7nR+3zrwa9aMoS+8wIEffuCtdu34efp0Di5dSvbBg5gtJ/EsO8ax9evZ+OabfD5iBB/17YvBbOaqd991uyxnsW8rtGjvBuXuqebmqa2IluTL7qDfuwl9kVjIpuaIm9owYqQv/UnmCMeovdHRcQ+6Yq8HZgxcShgP0YWvGcSb9GY0UaRQxCvs4XpWMpONLCa5wQZFeeDBcEZynFTWUscs1RrRXIvAQBILaixjEtcCXpTL96ovEH49YIf0muuokctGgdGkpsA9B/R54AFuW7mS8K5d2f7hhywcNYq32rfnih3hDNkZzUf9+rF85kyyDx6k38MPM3XXLsJjz2Ec/bFE2Pg7DBxd/7os2WCsPYukOvLUF4ljjW4gnVEwk8NfLovVnR544sl61rlch47j6J2nbsKAIJYgYgniHjqQSCF/kMFaMpjLfuaynw4EcBnhXEZTInHDRAwOEksc+9nHSn4ngkjaUHuYmydhRDOao3xLFKMIoGrIohBBmMXtlMt5mOWDGESlWHO/rhDYH5JfhuaT1YE0jhIcBtfdBd+8B2PuhM51JrNzmpaDBtFy0CAsxcWkb9tGblISzz1ZhF2YeGFuJOFxcfg3rz2W3y3YbPD8FPDwgptm1K+ushNQflJNL1AnCjjYN6Rgwp+2FOCiaw3VwOhBT9axllxyCMLFjnUdh9At9nOAQNAGf+6gLR/Rn0/oz520RSKZx0Fu4Q/uZB0LSCSFovMiz2jGEEYYi1jICdLr3KcNE/EgmJ3MwUr1vmizeATwodQ+HSmrURJt/wNlxyGx7gExVZj2HIQ2g9k3qJNpnCNM3t5E9+9P19tu42iTezgWdhdtR448P0rdboc501RrfdZrEFbDYC9HydTCeYJrz70vpRUoAvwdrtqP1hRypF6jtHvTB4EggQSX69BxDF2xnwei8WUCrXmXvizkMu6hA54Y+IhDTGQtH/Rdy9rWhzl6DpW8Bx5M4DY88GA+H3GiFv85gAlf4niEUxxjNy8hq7HuFNEET/EiNtZQLl+uWknQAHU6t+T/qrnYncE/SB2VmXMS7hoEGbVE4FyInCqEh29U30om/Ut9M6kP0g4p/wPfLnWOH7CTBNhRnJjE2ptIrBRhwfX80gEEEEsc29hC6T8kX1NDoSv280xTvLmBGN7iUhYxkOl0xNNiYm3rw0xiLbezlk85fE4s+UACmcT/YcTIR7xPMsm1lg/hEtpxFydYzQHmVWutmcQkjGIcZfJJLHJJ1Urav6YOef9rHBTudk7gzj3hfz+rybIm9IAtF0lURcKvML6rOsvS/f+FGXOqnSzDKY69C0W71SyaddRlkxsAMIjac+1XxAt19G2pNqOZq/ShL+WUsxl3zGaiUxO6Ym9AwvDkOlpwy+beTFujKnk/THzMYSayljtZx+ckcpx6TgVVgRBCuJPJ+ODLJ3zEjjoiHVpyI9FcSzJfcYgPqyh3IQRe4j0UulNivwWrrBTvbPSB+KWqj33rEOeVe4/L4dMN6gxEkwfBizPUCaYvRHZugGkj4J5hoBjggzVw26z6K/WC7WoCsJArIHxcncWt8gcEESh0dvgQZgIBKKd+1z6CSFrRmg2sx9qIQoMvNnTF3kjwK1OV/Jv0ZhEDmUYHPFD4gEPcwh9MJYFFHHFLdE0gQdzF3UQRzbcs5id+rPEhEwg6Mp3mXEUSn7OPN5GVEqUJ4Y238gMKbSm2j8Eil55diVcL6LFSTTO7eQDkrHZO4Nad1VmIxk2Dr96Ca9rAp69A8bnvn6g3Jadg6QKY1A8m9oHdG1UrffFuiHfD3KBFe2DbcHVmpS4L6mwk7DIZKz9jEjfVOeq0IiZ8AVyOZa/IAC6nkEK21xQqq1NvdMXeCAnDk7HEMJc+fMnlTKE9NiTvcIDxrOZ+NrGEFPLrESfvjTcTuZ0+9GUjG/iA9/BpUf1rtkChMw8Sw3hS+J5tPFHlAVdEKN7Kryh0ocR+A+X2uWcPXvJpD73Wg0dT2HoFHH3duQFI3r7w8P9UBd8+Hl6bBSOi4dVZkFT7KNnzTmGeOsn2oxNgSDg8cRvkZMBDb8CyFNVKNzs3+Um1ZC2HTf0BBbr/Bh51Jysrk88CJsziHqcOZcATAJsbDItWtKI5UfzBGt1qP0foir2RE44X42nJPPryKQOYSBuyKeM19jKWVTzGNlaSTpkL6YYNGBjBVdzEBHLJ5fIv5xIzPqHagUwCQQem0ImZZLGRBKZSyJGzyigiBB/lN4yMpFQ+QKm8EykrNABeMdBrA4ReBQfuh+1XQ2mac0J3iId3f1PdM72GwMI34PpOcGM8vPcM7NmshhCeT3Kz1MRl/3tUtcwHhcK/xqu+9OE3qS6XHw7BzTPUBqq+WAth/0zYNgI8o6F3gtpw1rWb/AWL/AyzmIkinIv6EVpktHSDIhYIBjOUfPLYovvazwmixiHh55CmTXvIEydqz2dRXzZtgs2boU3tIduNgi1boFs3uOoqx8pLJIcp5FeOs5oTZFGGD0YGEM4VRNCNYKcTlBVQwENrvyW8/yFaEMNoriW0hpnqc9jBDp7BSjEduIcoRp2V3ElKO+XyP5TJ51Boi5cy/+yOOinh2Ftw8F+geKhhkc0nq64aZ8nOgOULVQt51wa1br9ANYFY557QrqvqyolsqU4wXQu9tCRgm6rTNXa7eqzjRyDlkJpD/fBuOLQT0rUZkIxG6NhDTcXbb4Qqgzvz3djL4fjHkPRvNWY9ahq0ewkMNU91dxqb3E+xfRCCZvgo66qdHq+bFkyzY0fV/UvJZDXj6MyDRHF1fc8EiWQ+H5HBCWbyAF7UfQ7ngjTNrqglZVCjYeJE+PRTsVVKWefAjot2gFJ2NuQ6l4q8wSgocE5WgaAt/rTFnyl04C9y+I00/iSD5RwnDE+uoBnDiCQaxyxEf/zZeO9EokZvxevfy5nL/xjAZQzgckyYziobTDf68QE7mcNeXuMk6+nCg3hqDYEQCh7icQyyHyX2OzllH4BZPIiHeFRVKEJA9HQIGQZ7p8C+eyB1HrT7L4Q4mUEwJFxN7zvhPjU0csNvsHUN7ExQsyVWTKrVJBLCIiC4iRpO6e0Hnt7qKFfgXpsdE+XwXLEajliQC/nZqkLPSgdrhUlLjCaIbgtd+8K4e6BLb7Uh8ToHA8/KM+H4h5AyF8pSIbAvdP0OAns7tLtN7qPYfjVgxFv5utY5T+vGPdkZBYLhjOBd3mYVKxjphsZC528uWov9Fy0D6rCq8/s2Ok4nDrz55vrVU4aNdZzkV9LYTBZ2JB0IYDiRDKEZvpUUdGVOW2x/7ijkF5axk78IIojhjKQDHaukXJXYSeF7DjAPBSPtmEwUVyMqePikzKNUPoRFfoqgJZ7Kq5hEhckzpISMRar1XnoUggZCqycgeFD9o0VKiiFpLyTugbQjqmWdla42AAW5audrWYmqsKWk1GrAignfYC/w8VcjcQJD1EyTYc0gPEq1/KPbQkRLdf7Sc4W1CLJ+gvSF6re0QtAgaDlbbRAdvDYWuYQS+50IvPBWlmIQNadGcMxin0UUDr5aOsBSlrCZTUxmCpF1zNp1LtAtdp1GjwcGBtOMwTQjhzJ+J41fSON19jKX/QygCSNpTjwhtbpq/PBjLOO4hO78xFIW8jmtaM1wRtKUpmfKCRRacB2h9GYPr7CX1zjOcjpxHwFaoikhAvES72OSN1Fqn0mJfQzlXIGnMkdVMkJA0/EQNhpS34PkF9WwSP/uEH0fhI8Fg6drF8TLW01H4GBKgstOu2Jcy1BbP6RdjXDJWQFZy9TIIVkO5qYQPRMib1fHAziIXR6nTD6GRS5EIR5v5UsUEeMGQd2bonooV7KPvXzHN9zNPVXeDnVcQ1fsFynBeDCOltxADAcp4BeOs4J0VnKCcDwZQXOGE0l4Jd9mbu7fbxDQmmBxL6LtJpJjV/C2+S0Cki4hdOcQTCUVE01FAq9gjvkNe/y7rPecQlniSEp23oEsPZ0TZDBC2UpMm3do22kOVnNP0lLGcXDPY5wqbA94AjNRuJtWnp/Q3voaAQW3UrrzPo6WTSCp9DZybZfgLldAdeTkqJ6bc516HcAkcgk2biPEuIlQYwJhpnV4KDkA5Fs7kG6ZRmrZaDKt/ZFpBtjqWL3ePv/P3nnHR1Wlf/g5905PJwRCKiX03nsVG2JBkbWjriK2n2V13VVX13Vx17prWSui2MUuNgTphI40KaElEEJ6z2TqPb8/ZsBAJpmZzISiefzMZyRzy5lJ5nvPfc/7ft99dOjyEmkd54DQ2LfrQfbu+Aua5j8Lp6QEbDZ44AEf443QMeoR+OJLF4fD6ghgQuk6Bf2N7/Doih9xfxO+u4FAqKqCmhqIaLwT5GnBmjWBb9si7L9xBIKuxNCVGGbSlZUU8j25vM1e5rKXIbRmMqkMJ4HExPpJUkKqtMoaTkx2X0p6LqOsy2oq07cQt3sE8TvGoDrNx87kyD4H5+ERmHvPxdjlC4zpi6ndeQW2XZeDy4zUDBzIuovcA9fRqduztO/yP5LS5nHk0KXs23UfFWUD0DCx13YLe20301a/mAzT62SYXqWr+QWq3Bkcsk/hsGMyxa7hyDDP7vr0Cb8FvIKdKHUPMeoOYnS/EKtuJU63mUg1+9g2la4u5DouodA5mgLnBKxaWlDnMBgLaJv0HcnpH9G67VI0TUdu9tXs3fEXrDUdAz5O27YNr/W4HZ7fs2r072EfLNrurrhXDUM3OhO5vwPajh5hP0dDRIYhSelkYQ5iaaQlxn4aEK4YezDkY+U7DvM9uRRjJx4jlR+koPsxhe/ebvgvqIxSfmIRW9mCGTOjGMNQhmE4oel3DYfI4g0KWIGBODpyFalchFpnO00W4pAv4pCvApWojMGg3IqOCxGijmg7y6Dgcyj4xBOqkC5QoyBurMePJnY4RA3wVLmGwKxZnueHHgpyR1cl1GZD7QHPw7oPrHvBmuX5+bHwhQKWzh7ny+j+nnBT9MCgWwhqMg8363HL1bjkUjRv9bCgIwZxLXoxHUUkB/km4PLLPc+ffOL79YWcTwqT6M6dQR/bHy5czOZ1SijmFm5tMCPr98wDD8BTTwUWYw+LsAsh5gCTgUIpZS9/27cI+/GcCmE/ihuNNRQzn4Os1YpBCkarbbiYVAYQ32CPynyOsJAf2UMWkUQyhnEMZFC9GGk5O8jiDUrZjJHWdOAKUpmMyq+hASkrcMg5OOQrSHIQJKIX16AX16CKEyxonRVQushjKla6xCOeAAiwZHji0JbOnocpFYxJYGjrEU+l8Rn+MWF/UIK7xtO31VkGzmJwFIOjwPOw53ny7+25YDsErhOaR+uiwdwJIrqApasnxzyiB0R0C3i9QEqJpACNvWhyDxo7ccsdaGxDHjNwM6AyFJ04C524AIXeQVWTnog/Yc9kBnqiGYwPw7cwUE45r/I/zJi5mZlYTqK19ZnAqRD2MXh8QN9pEfbgOZXCXpdJf7TiOu8QlstzqcBJOhFcQjrnkoS5gahdDjn8xEKyOUA0MYxlLP0ZiO6E7Uv4mb28TRlbMRBHe6aSykXHStUBpHTj4gec2pu4+AFwo9APvZiKTlyMKrrUH4C9ECrXQeVGqNoKNTs9s2XprL+tYgFdpKcfq6LHU58nADdoDqqrbOiVWoxqNTRoT6t4qmeN7cCY4rl4mNLAnAbmDh5B17fym7UipQvJETRykTIXjYNoHELKHDRy0DgAx3kEmVDohip6o9APVQxCpT9ChKGC1Ys/Yd/BC+TyHWfx5bFK1HCTQzZvM4dU0riO6+v9Hf2eCUbYw/KpSSmXCyHah+NYLZw6lAILhrldmXd5BovJ5wtyeJ4dvEkWF5DCFNLrLbamk84N/JH97Gcxi5jP16xgOWMYRz/6H/tixtOfePpTymb28T5ZvME+3ieFSaRzGRYSEUJFzwXo1QvQZD5O+QkuOQ+7fBi7fBiFDHTiXFQxHh2jESIWjG0gYbLncRTpBpt3Nm3P98yynSWembW7Bty1XuHXPEF1oYJiIOugT91nYwAAIABJREFUCZdmYsjwSE8XIn0M6OJAHw+GNt5HfKOFVJ6JUhWazEOShyaPeJ45jJSH0fD83DPrPjHDJAaFNBQ6oBMTUOiAEJ1Q6YIgHdGUAq4wksgYDvIFeSwKS5GSL9JpzxQu41Pm8TmfMpVpKC0F8kFz0i6HQogZwAyA6OjgFodagFopOeDWyNE08qWkRJNUS4kNz9xSwZNXEiEErYQgQREkKwppiiBeiKBu0Q2onEcy55LEDsr5lBw+8T7GkcgfaE8Xfs2KEQg60YmOdGQve1jCYr7mS5aztJ7At6IfrehHBVlk8zEH+YIcPqcNw0njEuIZgEBBEYkYxZ0YuRNNHsQlv8Epv8ch3wT5PzzJlj1QxWBU+qGIXih0RZDgEUBzuucRBN9/5Xkecl3916R0IylBsgsp89FkAZJ8JPlo5COPCfgR8GmUFYNCMoIkVNHT666YghApKKSgkIoQjbe0O9XE0ZcYurGXubRlDIYgGnUEQx/6UkklP/IDFixccEJlcwv+OWnCLqV8HXgdPKGYk3XeMxFNSra5NZa5XKx1udnkcnNAq++GLvCIuQK4ATu+AwjRAroqCj1VlT46lYGqQj+dismP2AsEPYmjJ3EUUMtn5PAth1jMEQYSz5V0ZACtjn3pPBWxXcigM3vIOibwy1jKGMbSnwHHBD6GLvTlb3RlJgf5kkN8SyGrsJBEMueTzLnHKlkVkYZB3IaB25DShpu1uOUqXHI1LjkfJ2/XeePRKKR7RFQkImiFIBZBJGABjoZg8H5qTsCGxMrQ0TUYDJXUapVIWYakzCvmxd7+oL5yuM0I2qHQDkX0Q8ckBIkoJCFEklfAkxDiDMin84NA0IO7WcMdbOFxBvIESjPlnY9kFDVUs4qVmLFwFkFWJP/OaQlgnSZoSJY43XzicPKtw0W+d+0jXREMUFWuNqp0VhTSFUGiopCgCCxw3ExcSkkNUKZJCqUkV/PM8Pe5NXa5Nb51unjb4Yk9G4BBOpUxOpUJeh3DdSqN5Yi3xcxtdOM6OjGfQ3xKDvexnh7EcA2dGEbCcQLfha50pgt7yGIpS5jPVyxnKaMZy4A6MXgTCXThZjoxnQKWc4hv2MOb7GEO8QygHRNow6hjs0MhTOgYi06MxcjRRcbDaPyCW+5BYy9SHvSGPrYiKYYAXTCHjASHPQqXjPFeDFp57gLESARtUGiNoC1CtPX+OxGIDmnB8kwjhq705G628ww/8zf68ii6ZvB5EQjO4TxqqWUZSzBhYiRhsDn+ndAi7KeYEk3jm45OlqY6KKmSRADnGXScr9cxXq8jRQk8viiEZ14aqQpSgYEcH5OVUpInJRtcbta43Kx0unna5uDfNgdRgPkOHW026qmUOqIbEKtI9FxJRy4jnR84zAfs50E20ZVorqczQ2ntU+D3sZclLOYbvmY5SxnFaAYy+FgWjYqBJCaSxERqOEweP3KERWznaQTP0Yr+tGE4CQzFwq+pfEIIBJ5whk7UXyn3xLxteC55tYDzmJ+8QMUzgzchsPDEE2ZACT7dEY+plZtaHFTgpBInVbiowUU1Lqy4sXkfDjQcaMfGcfRWQ0FBRaBDxYiKCR0R6InCQCxG4jGRgIG4Ux6WSOECNNzs4HnWcgf9eIyIZrADEAgu4hLs2FnA98caYrfgn7AIuxDiQ2Ac0FoIkQs8KqV8MxzH/q1SpGk8bXPwhs2BtQt0L1H5b2sDFxp0mJtpBiiEIFkIkg0KFxs8glopJUudLr53univi4vCIS5SyuB8vY6rjXrO1+vQ+xiPAZWLSGMSKSwgj/fYx1/ZSE9iuZku9K3Thd7T3LsznchgP/tZymK+41uWs4yRjGYwQ47Lg48gmc7cQAbXU0kW+SylkEx28iI7eREzicTRlzh6EUt3IkhHaeBP2TObNiOaOKt0Y8NOCXZKsVHs/f8yHJQee3ZQjoNyNHxk4tQdCzoUDKgYEOgQqF5fHen9z42GEw17g77nCkYsJBNJe6LJII5exNCt2UIiDZHGRZhJZCuzyORmunE7KVwQ9ouOgsJlXI4DB/P5CiNGetMnrOf4LdJSoHSScUjJCzYH/661UwNcYdDTfbGBlGr1lKc7XnChpKKTmyGzXHzqcFIgJW2F4HqjnpuNBlLVhu8eXGh8Ry7vso9i7IwggVvo2qC75AEOsIwl7GcfFiwMZyRDGYapkTQ6K4cpYh0lbKKMbTjx5I8L9ESQQgQpmEk8NrPVE40OMwpGFO/di4Ybics7e67FSY13hl3Jmo0V6CwVdOxedky0fXUMEqgYiMNIK+9zHAZi0BODgVj0RB176IhAhwUVc4MXH19INFxYcVKNk3LslFBLIVbysJJLFQewUQCAipnWDCKJc2jDcO+dSPD4S3f0hY0itvIvSvmZeAbSk3uxEH5HLQcO3mUuuRziKq6hMz5SX3/jnPQ89mD5vQr7Bpebm2tq2eHWuECvY5bFSHdVPW3y2Cd7M9i++QZcUvKD08Ucu5PvnS4EcJlBx30mI311DQuHHTefks2HHMCGmymkcT2diWhA1A6SwzKWsocsTJgYynCGM8JvcYpEYuUwFeyiin1Uk4OVw9RSgIa9Ce9e4LJG4ayJIykhFiOtvILdCiPxGGmFiXiMtEZP1HEOlqcKBxWUsZVi1lPIKuyUYiGFrtxC2ybEo5si7OC5CB1iPrt5DYlGBtNpz+VBXcgCwYaNOcymhGKmcyNp/L6y61qEHY84ff899Dh5thMNoiH5qYeDBb3tRNcKLttgomfer7fOq1d7fDrOOaeRY2hN85c/akceSKj+qacgMRF++OH4n+e4NV6xO5htc1AFTNbreMxspFcjAl+GnTfZw3fkEoeRO+nOWNo2eKuex2GWsZSd7MCAgUEMZgSjiA4ypU4icVGNnVKcVOGmFjf24+LqCnpvHNvijWNHoieSJ2Z53k9TYuynGg03haxkL+9QzX7SmEJ37gjqAtRUYT+KjSJ28DyFrCKKjvTkT8QS3i9gNdXM5jVqqeVmbvldWQ+c9AKl05HSUqg+DXod23SS90bUsiPZRf9sHVM3mDE7jxe3nByPaDcm7GVlnvfUKjhbEXK8zX06dPC/bUMXjnRV4d8WE38xGfmf3cHzNjuDKl1cb9TzuNlIgo+rRhxG7qMXF5LKc/zCY2xmFG24l57EUb9aMolkruRqCilgBctZw2rWsoZ+9GckowL+AgvEsTDIycCFCys1WKnFRi127Lhw4caNRCIQqKjo0WPCTAQRRBFVz1snVBRUEhlLG0aym9fI4VMMxJKBj6T8ZsJEAgP4JwWsZCcvsIY7SOMSunBz2DJnIonkOq7nDV7jXeZyMzOJDLCZzO+J36yw63SeMMypDG/kahoXVlnJcms8bzFxS389YkD9Gesvv3ieGwsbBdoQoMYFOTWQXwvlTqCdJ+9C1xFi9NDGBKkWiDfWr3p/6qnGjx2rCB4yG7nVaOBftXZetjv4wuHkKYuJ6wx6n2l/XYnhZYbxCTnMIYsbWcWD9GEwrX2eow1tuYzLGc8EMlnFJjaykQ10oxvDGUV72p/UrBANjQoqKKGYEooppZQySimjnEoqqKVpboeRRNKGtiSRRBrptKdDo+sLgaKgoxu3YaeU/bxHChdgIj7k4wZDW0YRzwCymM1BvqSQTHrzZ+IZEJbjtyKea7iOOczmA97jBv7Y4uN+Ar9ZYT/V7HdrnFtVQ5kmmR9lYYI+/B+1lLClHBblQ2YRbCrziLpPjhz/z1g99ImDIfEwOgHG+W9wf4xWiuDpCBM3mvTcUWNjRo2Nrx0u3ogw00qpL7oqClfQgaG05nG28AAbuJ4MrqVTgyLdingmcxHjmMA61rCOtexiNm1pyxCG0pu+YRHCuki9Hdk2n7UcIZ8jFFBAIQU46uTBGzAQSxyxxJJGGlFEE0kEZiyYMGPEgB49KioCgQTcuHDgoJZaaqihkkpKKaGAAlaTyUpWoKKSQWcGMogudA2pjN6ThXQt+SymiExSuTAMn05w6LDQg/+jHePZxlOs50+kMYWu3HKcAVxTSSaFS5nKx3zI13zJpUw95WmgpxMtwt4MHPSKerWEhdER9G8kFt0UdlXAW/vhoxw46PWJyoiEEa3hpk7QMRKSzBBngP27PWVHGd2gwgkFNjhYA7sqYXMZvLAbntkJegVMUyF2J1hdYAngL6O7qrIwysKLdgcPWe0Mq6zmi0gLPRt4vx2I4mWG8yzbeYu9HMbK/fRC14iIRRLJBCYyijFsZytrWM18vuYHvqc7PehJLzqREXRow46dPPLI5whHyOMwh3HcXwRC8i1gxkxbEhnAQNrQhngSaE08kUSFVUCcOMnlELvZzVY2s5tdtCWR87mAjgTupX4inhRQIzUcCttYm0IcvRnJG2TxBjl8Timb6MujRBFAbNAPPenFBM5iMT+RRDLDGRGGEf82aBH2MFOqSSZXWamQkh+jIugXRlFfVw6v74bvj4Aq4Lx28GhvOLcdJDeQROL26l2vWN+v29ywphi+y4PnS+HQBZD8BdzSGe7pCm39hEYVIbjLZGSETsflVVbGV9XwdaSFYQ3coZhQeZA+pBDB2+zFicZD9EX1I5YGDAxgEP0ZyGFy+ZlNbGcbW9mCDh2ppJFCCq1JIJoYLJgRCBw4qcVKFZWUUUYxxRRSQCmlHDVpiCSSJJIpXdELkZ/EXdPaEU3MSZkB6tHTgY50oCNncw6/sJ2fWMjbvMlYxjGBiU0ah/BG92WYW9k1BRUT3bmTBIaxlX+xmlvpxZ9I4uyQjz2GceSRxwK+J5mU312mTEO0CHsYcUnJ1dVWDmga30ZZwibqeyrh1q3wU6knRv6P3jAjw7/oBoJJ9YRhxrWFBTdATQr0fwCe3gn/y4K/9oT7uoHBz1sZrFNZHh3BeVVWLqy2sjgqgt4NvH+BYDoZmFB5ld20xsRtdAtovJ4601RSSGUSk8kmmyx2k81+VrESrREhU1BoRSvakkhf+pNEEu1oR5Q382bWCs92p8qKS0WlD33pTg++ZT7LWIoLN+dyXtDH8lS7WjES5Gp7M9KawYxkNpv5B1t5ggqy6MbMJufdg+d3OoXLeJWX+YSPuY07MDeDxcGZRouwh5F/1NpZ7HLzeoSJMWGIqWsSntsFD28BvYAHO8JDgwILkzQFAUTmwiejIasSHtgMD22BeTnwwUjo4Ufx0lSFBVEWxlbWcFm1lTXRkT5j7kf5Ax0ooJZPyKY/rRhOm6DGq6LSyfsfeDJUKiinkips1CKR6NBhxkI0UUQRfUZYwOrRczFT0KFjFStII43uQaYNVrIHgMgwhDzCiZFWDOYZdvEyOXyKlTz68beQ/N3NmLmcaczmdb5lPlOZFsYRn5mc/n/lZwjLnS6esjm4wahnujH0VLZSO0xaCvf/DOcnwfIhcHta84n6iXSJhi/GwFdj4IgNhi2ABXn+90tVFT6OsnBYkzxg9V0WX5eZdCOdSF5iJ64QwwY6dMTTmg50oDs96EFPutCVVFKJIfaMEPWjCATncwFtaMuPLGj0TsQXpWwGBLH0bJ4BhoCCjh78H935P4pYw3ruw0lVSMdMIZWxjGcrW9jBL2Ea6ZnLmfOXfhpjlZKba2rpoAietYSeqbG/GoYugCUF8NoQ+Hw0tA1fo5yguCgFNpwLnaLgouWw8Ij/fQbrVO4yGXjH4WSry93otgYUbqYLedSyisIwjfq3gYrKGMZSQjHZZAe1byGriKF7s3mmh4N0ptCPR6ggi/X8KWRxH8NYEmnHt8zH1oDXzu+FFmEPA0/W2snWJK9FmIkI0cBrTyWMXgilDlhylieWfqpdYVMjYPFZ0C0apq6EvQF8/+43GbEAL9v9W+YOI4EY9GS2CHs9utINBYV97A14Hyt5VLKHRMY048jCQyJjGcA/qOIAG3gAVxPrAsBzIbyYS6immsX8FMZRnnm0CHuIHHRr/Mfm4AqDLuS4+pFamLgYHBosmwgjTqNq6TgDzB/ricPPWOfJoW90e0VwsUHP1w4Xmp+NVQTdiOEAp0Gp8GmGESOtSaDIa/gVCEdYDEAi45ppVOElgWH041Eq2M0WHkOj8bu8xkgmhYEMYh1rKKYojKM8s2gR9hD5l82OBB43hxaCcQu4ZDmUOOCH8Q2nJ55K0iJgVl9PiGhRvv/tx+pVSqRkv+bfjygCHVZcYRjlyWcvlbzObu5lHTPJ5H7WM5ssDobpQhVFFNU+2+3VRyI5wiJi6YWZIKrOGjqelGgyF5dcg0v+hEuuwC13IqXV/85B0JZR9OAuilhLFq+FdKwJTESHjkUsDNPozjxasmJCIE/TeNfu5EajnrRGLG0DYW172FICn42GgadPhlo9bu4E/9gOr+6Fs9s1vm1Hr4fMQU0jw8/nU4GTqDOsLNyFxn/YwXfkokPQiShiMFCGg484wPvs5zLSuZVufvP0G0NFxR3gRa+KvVSTQw/uafL5pKzFJb/EKT/HxXKg3MdWCgo90Inx6MTFqIwKuZNUGhdRTTbZfEIsPUlkbJOOE0kkIxjFUhZzhDzaNYON8OlOi7CHwGs2By7gblNoK5v5UbAlCW7tDJemhmdszYVBhSkp8H42uDVoTK8t3i+6zU8oRkOyh0pGBJnueKqZ43WvvJIOXEVHIutcmMqw8w77+AyPC9sddG/yedy4UQP8quaxEIGuSWEYVXUw4dxXqNaeRlKEIBW9mIJKf4RIQxAF2JGyCDe7ccu1OOTrOOSLKHTCIO5GL6YjRNO/D924lQp2sp1niKXHsb63wTKcEaxmFStZweX8ocnjOVNpCcU0EbeUzLU7OU+vo2MIs3VNwsqOEOGAJ/uFcYDNyJB4qHZBtp/oQKVX0CP9zOR2UUElTvqfRsU0/rB5fefPIYkZdD1O1MHjbnkXPZhCGp+RE1JYppbagHxxJBpHWEICQ4LOhnHLX3h41kiuuO7PKPTGovxApJKFWXkVg3ILenE+OjEKnTgLvXIFJuVRItTviFLyMIk5QCts8k6qtb445bdNfKegoKcPDyNx8Qv/oX4L98AwY2Ygg/mF7VT4vOP4bdMi7E1kmcvNESmZbgwtfPB1LhRFwZAciDpDIhFJ3sK+Aj8ZZQfcntzrND9m8D9wGAPKGTVjP4IVJ5IhDbhUHuVqr99LZggLedVUERWADXE5v2CnOOjZuksuoEYbQ0xsAS8+/QkR6vfoxHiE8C8PQkRiUK4mQlmBRZmPwEitdim12swmx+EjSCaD6yliNUVkNukYAEMZhkSygebt/XA60hKKaSJfOZyYgXNDzIR5dhdE2aCLn0w/hwMyMyG+AQdWlwuys+ts74Y1hbD+MFgFGI3QIQ4mdYG+dWLj3bt7LI4BnM5f/78xAo2kbnS7iRWQ3kj1aRl2fuQwE0mqN+s9nYn1mo4V+MmXjsdEDHoOB7j4eSIuXFRRRXQARgcFrESgp00QZlguuQCrdikKvfjHXz+nvCzZ/04+EEKg4xwilHHY5eM45NO45VYsyhcoIvhF3HQuI5fv2M1rtGbYsdaGwRBHHJ3IYDM/M54JZ1SBWqi0CHsT+dHpYrxedyyO3BSyKmFlEQw74v/WKTMTtmyBCRN8v56dDQcPQloaZJXDu3uhzA5GO0S6oWNX2JIPy7Ph6r5wTT/Y46k6p3dvz7MrwKSUIm/nufhGQqlSSn5yuhit0zW6qPYhB3Ci8QfaB3byOjhxsocs9rOPPPKopAI3bsxYSKA16XSgBz2IJS7oY/sjDiPdiOEHDvMHOjS6OCoBpYmLpxVUIJG0CiBMVUgm8fRHR0RAx3bL7Vi1K1HoRYTyI+VlobvkCGHAJB5HlUOp1a7Fqp2FRfkpaHFX0NGFm/iZR8hncZMNw/rQl8/5lFwOkUZ6k45xJtIi7E0gT9PYr0lmmkIz+frM66jaOcC79L59G27GkZAAw4eDPRLumwXtE+CzG+DlvwMKfPIkWO1w0xvwXiY8cJVnH/i1eUcgs3WA7RWgE9C+Ef3Y4NbI0SQPmhs+aB5WviSHc0husOm1LyqoYDWZbGQ9duwYMJBEMp3IQEXFipV88tnJThbwPZ3pwngmkExKwOcIhCvowN/ZzHfkciG+V71LsVOJkyQ/PVwbopRSAOL8CPvRJtfpTAnouFLaqdWuRRCNRfkCIcJrfaYXkxHKN1i1yVi1S4hQfkKI4D6DNowkkvYc4GPaNdHlshvdUVHZyY4WYW+hcTZ4y+SHqqEJ+6J86BsLkf6LM/2iabBzFzyYCfEWeOkSiLF72umZzb92YPrTWfBhJny1GgbFNBzaaYzlhTCgFRgbeftv2R2YgUv0vsMrEslL7ERF4UY6B3ReO3aWsZQ1ZKKh0ZNeDGAQ7WmP6uNWvZRSfmYT61jDa7xCX/pxLueHrZXaGNrSn1a8xE46EUUP6hcfrPQWFvVr4sJwKSUAfmfspfwMEHCXIod8Fo0dmJUvUUTzpAPqxEjMynvUapdhk3/CLF4Jan+BQjqX8gvPUc4O4prge2PCRDrt2UMW53J+0Pufqfx+gk5hZKd3UbChhhKBICVsKA1vdWl2JeSWw8yREOedHDmdUFunStvm9DzrdVBcDCUlwZ0j1+rxb5/ciBaUaBof2p38waAntoH4+goKWE0R08kgIYCMjyx28xIvsJLl9KAnd3Evl/MHOtHJp6iDRwzPYiL3cB9jGMd2tvE/XmA3uwJ6r/4QCB6hH60x8Vc2spHi414vwcZb7KUbMXRpomdLKSXo0ftdPC3jF/REExHArFSTJdjlM+iYgl40r9jpxQUYxH045Rxc8seg92/HWSgYORJCsVEnMiikkOrfUWVzi7A3gWxNo40QRIUQXy+0QaUTuofJo0lRINp7kThrCAwY4HlER3tm7ElJ0K4dvLPO4z0zdSS0bjyhwyez93pixlc34gb7gs2BFbjL5NvlsgIH/2UHGUQx1Y8QOXHyDV/zHu9gxMAfmcFUphEXRNzchImJnM2t3E4kUbzPuyxmUdCOib6IxcDTDPI2797A42wmk0J+5DD3sB4bbv5MryY37SijjDji/O5fwW5i6B7QeZxyDlCDUXm4SWMKFqP4GwoZ2LQ/I2Vwn7kOCwkMpYBVTU59PBqCyT3F3aROJi3C3gTyNUm7RjI9AqHQuwDZLow9ATK8Qv3R6vqv2Z1w/wfw+mK4dxJ0bEK1ebUTXt4Dk5I87fd8cUTTeNHmYKpBRw8fdzQSyX/YQRVOHqB3o23xSillNq+xjrUMZyS3cBvpIcRJ29CWGcykH/1ZyhI+ZR6uMNgYJGHhFYZxPRmspoiH2MS/2AZI/kF/OgSQqtgQ5ZT7XfzVcFJDDtFeX/rGkFLilG+jMgZV9GryuIJBCCNG8Xc0duJiftD7JzAUO8VUB+lweZR2tEMgOHJi49/fMC0x9iZQJSWxIZZP27w+RyGuvx5Huxi47Wx4YQGs3A0zJ8JhHVSq0PleOFQCt06EJ69s2vGf2enJiHm4kVDnI1Y7DuCxBrxzfuAwy8jnJjqT0Uh4Yh97mcdHAFzFNXQLoXKzLnr0TOEyEmjDQhZQQw1Xc23QPVNPxIyO6WQwlfbkeG/5uxITkpUAQCUVpDawMHsUK0eQuInwsx2Axk409mISd4c0rmDRiSkImYJTexO9enFQ+7aiLwBlbGtSr9SjDciLfkfuoS3C3gQcEiJDtNI9Kui1TTeyq0dREfzlbEi0wNxMmDEbsICQMKoVPD0VRneGAq+BV3Fx4OGYvVXw5E6YlgbDG1gXWO508Y7DyX0mg09vmGyqeYGd9KcVVzTSqHk9a/mWb2hNAldyNfE0YYW3EQSC0Ywhiii+4DPeZS7XMh1CFHfwmJn5WkRtCi5cWLH6ja/X4vmFmgPwRHHLlQDoxFmhDzAIhNChF9NwyBeQsgohAr+LMZOEjkiq2Nfk87ei1bEMo98DYQnFCCHOE0LsFkLsFUL8JRzHPJ3RCUK+gU/0TmgPh8kkr00bT/qiqsAfR8OyP8PyB+BsB1zkgo9u8Yh6XVq3DiwrxqXB9NVgUOC5BpIuqqVkhrfZyEPm+gnuVlz8nZ+PNbP2NZPV0PiRH5jP13Qig5uYEXZRr0s/+jOVaaQ+9RGLlzyMVJ2/vrhkCTz1VLOdOxBqvDN/f1k8Dq9gGQP4rNxsB2IQp6Blnudi4sLNuqD2EwgiSMVKbpPPHUMMlVQ0ef8zjZBn7EIIFfgfcDaQC6wXQnwtpdwR6rFPV6KEoEALbeGttdFT4LOtHMLRHElRIDHx15x0gORkaOfNNU/yMZnLD8B6F+CvWyCzGD4YAckNpCLfU2MjW5MsirLUK9rSkPybbRyihqcZTGsfWTAuXHzBZ2xjK4MZwgVceFIqBXvTB9PgaSRNu4f8Z/TkHn4cliyDadNg3rxmP39jWPFc9S1+Co6c3guAPoBYvpQHUWgfshNjU1C8IRW33BH0HYOJNlRzoMnnthBBrbcPblMXss8kwhGKGQLslVLuBxBCfARcDDQo7CUlMGRIGM7cCIWFnvPcdVf4j107S+AaI4nvCHZ7YPtI6ck1r4vjTngrGeQrYDDAJ580vH9NjcdW4IYbfL+uab6bX7i9oZ4PPvA9Jp3u18KkmhrofMKs/s19ntj6rZ3hyva+zz3X7uAdh5MHTQZG+bBYmMteVlDAbXRjgI9ZpR07H/I++9nH2ZzLKEaf1C9f5/G38Ms8B5dPe4ANF++D//zkEfXx40/aGHxR6+0mZPZT3OT22hroAjIKq0A0sBirabBrF8yaFeRAA6Y1t91nIHPDETKXBrdn2qRIYjtXMev5pp3ZNdKAe5ybWf9yI7QzMwKdGYRtTjimRMlwXB5RrvdnxyGEmCGE2CCE2KBpzd/ZpCGhCwfKIQXZRmLTSZxO/9sfHc+Jwq5sAZkAdPSItr/9G3s/vi4cgYzJfUKMv+6/Pz3o6ZZ0Xjt4fqDvY6xxurijxsZ4ncrDPkIwC8njHfZxHsk+UxurqeYtZpPNAS5lKqMZc0pmVD26gw1TAAAgAElEQVTH38mGCy9m7Jsfk3vrhadc1MFzwQMw+bmnk8fSNgNZiZc05PbTXN+XXxG4XGZUXfD9SKVbj1BCWJByez8bNfQU11NFMDdZJ+3SJaV8HXgdIDFxkFwXXJgtaI7OUK+6KvzH/sahcFk13P+Wmy7luoDOsWmT53lAnRh1uQNSvgTTVdBxATT2mfh7P76ODzBxoud50SL/x+xZJ9vlvQNw/RoY3ho+HQ16H1OAfW6Ny6trSVEE70eaUU/4y9tICU+xjX604l561hPsMsp4h7eppIIruZqudPP95uogkVjJpYztVLEfO0W4sCEQ3gKdVGLoRhy9UYMJci1ZwqCPF7HstksY9MrHHB4/nuTx1wa+fzPgwHO11/tZ1BVeQZe48C/ukcgGFhFVFXr0gIceCnakgSGlpEqzMmSwmTFDg9t3Oy4KUZs8tuVIFgEP/FmcQVZzx1NZCStWBLZtOIT9MByXZ5Xi/dlvliHe/Ow9cR5hbyqxBpiZAc86IHFjuEYXGhKYtR0e3grj28LXYyDCx1vM0zQuqKrBDXwZZSH+BGveXVTwNzaRRgSP0x/9CTeHhRTwDm/jwMF13OA3P72GwxzmO46wlFo8/ggKRky0QYcF0KhiH3l4qhtVTLRlNGlMIdZfquSSJTBtGl9cMY/s9BGUzbuPc6bNpGJeFDHjL2l832bkaI69zs/XVIenGMJNrd+LmSJScMnN4RlgkEjyASdK/Rt6v7ioCdjczBdOHAiE38/yt0I43uV6oLMQogMeQb8CaIZ58ulDG0Wht6qwLcHFBQdCW/p8sCc8vwkOTPRY7RrCmNceLG4j5E32iPo17WH2UN9+MPmaxvmVVoo0yffRFrqe4JmznyoeYAMxGHiSQfXseA9ykPd5Bx06/sjNtCWxwTGVsZ39vEcRaxEoxDOQDlxOK/oTQSrihAuGixrK2EYBq8hnCXkspDWD6cZtRDbkILl+PcybR07meIQTxo5/jC/m1dBh/VsMGj8p5Bz3pnK0MtbfIrLeWw/goAKDn1RLhe5I3kKTR1CEn96GYcbt9bNRmlAYZaMIYwiNWI42K/k9LJxCGIRdSukSQtwBLMBzHzhHSvlLyCM7zblIr+OJOAdlRo1AlyqKin4146pL8gLImQK3b4DXhwQXS/N3fIcDbLZfQzV12b8fOnrTyX/Kh303gysSnu0P93TzPY5Dbo1JVVZyNY2voywMOcES8gBV3Md6DCg84yMDJovdfMyHRBHNdK5v0LWwigNk8RpFrEVPDBlcTwqTMflJ6dMRQQLDSGAY3biVg3zFfj5gFTfRkWvoxDUoJ/7Z//nPnmfv4lQcrRg6/q+8O34uR/iKS5l6WguCydvsw0YRkX7ufHRiBHYJbrkMRVxxMoZ3DLdcCBhRGRz0vlZySWB4k89dSSVRTfTrORMJSz6ZlPI7KWUXKWUnKWWzramfTlxh1CMFrEoObPX0aJ65z9dyIGUjzN4H9/3saZcXLA0dPyHB85ovOnaE2PZwXSZMXAyKC9q/A/d29y3qO91uxlfVkC81vomyMPqEDJh9VHEv61EQPMtgkk/I5tjMz3zAeySQwE3M8CnqLmrYwQtkchPl7KALMxjLh2Qw3a+on4gOCx25kjG8SzsmsI+5rONubPh3PsugM+OYwBY2s+kUdeA5OlP352lj8YY2rAFEQBUGIkjCKU9uKqeUdpzyE3ScjxDB+WjYKMJBOVGNFLX5o4xSYsNUOHYm8PsIODUDXVSVHsUqP6U5sEsDRj/TbF955kcxGiF9HUy5Ep7b5ekl+uZQTww+UBo6fmSk53HiomqpHV4ugvdzwC3goZ7w2XUecffFYqeLK6qtmBAsjIqg3wk+MDsp5wE2YkThOYaQWiceKpGsZAULWUBHOnEFV/ns4VlIJr/wH+yUkMqFdOZGDAF0DvKHgVj68CCtGcovPMNqZjKIp/yWp49lHDlk8y3fkEoabWiCwU4I6L0hLBeNTx6MtEZHBFXs93tMIRT04mqPba88gCJOTqGSU76LpAiDMiPofcvYBkBsE2x7wdMMvIQSMgK0h/4t0GICFgKTDhgpN0nesIduqC7wpBQ+NwC+zIVe38JnB8Ofgra3Cu7ZCO2/gjdLYFQk7LgA/tnXt6hLKXnRZmdylZVkRWFFdH1R30Ax97KeKHS8wNDjRF1D4zu+ZSEL6E0fruG6eqLupJqt/ItNPISBaIbxP3pyT1hEvS5JnMVQXgQk67ibCnY3ur2CwmVcjhEjn4TJMCwYjsb2bX7a7wkEMXSlvOHSkeOPK24FdNjlv0IdYkBIWYFd/hOVoag00AKsETzhuChi6NKk85dQjAtXo2s5vzVahD0EepSodC9RmVXroDjESlTwhD/u6QZrzoE4A0xdCYMXwPsHIJRLh9UIr+6BsYug83x4KQsuTIaP2sOTyZDRQMFipZRcW1PLfVY7k/Q6lkdHkH6CB8xC8vgLG0nCzAsMpV2d8IsTJ/P4iLWsZjgjuYzL62UllLGNVdzEERbRiWsZzqv+s1hCIJoMhvICOixs4M9U+almjCKKS7iUAvJZwuJmG5cvIrxWAjUB9EuNoy9V7MMRQNm8IpIxiNtxyrm45NJQh9koUkps8m4khZiU54KueNVwUMgqEhh+LK0zWA5xEICUMHfQOp1pEfYQEAiu2mmiUkrutQZfdNEQg+Ph5/M94ZhKJ1yzGmYCzwPP74LVRVBirz+bl9ITYllfAm/vhzvWw9cj4NNxcOt6KLDBrL6QczG8PxI6N1KouNblYkhFNZ85XPzTbGRepPk4/3mJZC57eYKt9CGO5xlKfJ2ZuBUrc3mLnezgPCZxPpOOy+6QaOzjPdZxNwKVobxIZ25EOQlZxhaSGMyzKOjZyAPY/ZhDdaUbAxjIKlaQdxIzeWO8i30VlPvdNoGhgKSQwMoTjeIRFDpTq92AJpvvPTnkf3HKDzCKB1HFoKD3L2AlLmpIYmKTx3CAA0QSSTxNaEBwhtISYw+RklUq09ob+SDFTuIGB2eV+A6Ml5R42tS18pEEUlhYf4FTp8CNneD6jrC0AP65GDY44J5NHGs3oMfjMqkKcGhgleCqMyEyAaZyyNgN950F6SqIXNiWC9vwNLPu3PnXTBqnE9QIySNWO0/bHKQqgp+iLIw4YZHUjpun2c5PHOFskriPXhjqiHYpJbzLXCqoYBpX0JPj09scVLCVf1HMWhKZQC/uDShHWcoK3GxCk/uQFCGxI4hEIQVF9EahR8AzQgtJDOTfrOVONvMYg3mOxop7zuV8stjNfL7iZmaeFB+bSKIwYKD4hM5MvoimC2aSyGMhKQG0gBPCgln5gBptAlZtEhblRwjzGoJdexG7/As6LsUgHgx6f4kkm0+xkEQ8DZQ++8GNmz1k0YWup3VmU7hpEfYQGDHC8xx7xMC2aBcvt7eRZFfoXl3/Y41rpFdCmzaQ2oCVtiJgQiJ0HAGrMkHGwj43HHFDsVfMNUCRoDogFkgAkoBEYI8VYlKgvY/fdOfO0L1O1MM12MWR+208adOYbtDztMVEzAkNRYqw8Qg/s4sK/khnrqbjcV+YgxzkA94FYDo31is8qmQPP/MINkrowd2kclGjXzhNZuOUH+GU89HYyK+XNfCsTHj/LUGQiF5cgUHcgiL8Z1BEk0FP/sRWZrGf94DpDW5rxsw5nMfnfMp2ttHHa2jVnCgotCWRwwHcJQgEKZzPHt6kigMB+Zarog8W5XOs2sXUaKNJ7/AROQcC65naGFLWYpP345RvoOMizMpchAj+QljCRirYSQ/uqlevECg5ZFNLbdj8/M8UWoQ9BAwGGDcOkpIEQzQzYyqt/LuHlQVREfQNoh/qggWBnWv8ON9ZNY3RkNVAXQ5rGg9b7Rx+0Yn+iGB+pIVzDPX/NLZQymNsxoabx+nPqBNmeNvZxud8SjQxXMt19W59j7CYbTyFgWiG8l9i6dHgmFxyBQ7tWVx8D4DKEIziYVQxFIWuCBLx3LNY0cjGLdfjkt/hkC/hkC9hELdiFI8hRON3AklMpIjV7OM9jK3GYy9Na3DbPvRlFStYwmJ60fukzNrb055VrMSGzWcmUV1SuZD9fMA+5tKPvwd0fJ0YQ4SyCKv2Bx58fAw/zL8XKe8Pyi/9KFJKXHyPXbsfjb0YxJ8wisfxGMAGeSzc7OY1TLQlmUlB73+UrWzBgIHOTVx4PVNpibGHidaKwrdRFiKE4NyqGjKdJzeDoilUSsk/rDZ6lVfzmcNJ/HsGOt4YWU/UJZKPOcC9rCcSHS8z/DhRl0iWs4x5fEQSydzMLceJukRjD3PYwuPE0MW7QOpb1N1yCzXu87FqE3GzAYN4iEgliwh1BUblYXTibBSRhhAGhBAIEYEqemJQrseiziNS2YNeTMchX6JGG4Fb7vH7OXTjDlSMpEx4vdHtFBTGMI4SitmL/+OGg250R0NjB9v9bmsghvZMI59llBC4bYAqBhKhrGXtqiuYPOVJqrTO2LSHccudAe0vZTkObS412ihqtSkAWJTvMSlPNEnUAQ7yFVXspSszUJtY+WvHzna20ZNep6x6+FTRIuxhpIOqsCgqgnihcF6VlbfDkAbZHFRJyTO1drqVVzPL5mCSQceWmEjazDGh2I8Pi1Ti4GF+5lV2M4o2vMII2tdp/ODGzVd8wSJ+pDd9mM4NRNSJl7uxs4V/sI93SWESg3nWZ2m4lJXUandRow1FYwtG8SSRyh5MyiMoIvA+p4pIwqy8jEX5DkkxVm0immw8v9tIHO25nNiuqzDF5zS6bXd6YMbMNrYGPKZQSCGVNrRhDasDaubckSuwkMR2nsYVQDbNURQRz5xXZvP4g6vQMRqHfJYarR9V7m7Uatdj157Cob2LU36GU/sIu/YSNu0eatxjqdKSsckZQDUm8RIRymZ0Ivi0xqNUc5As3qA1Q0ik6S6bP7MJBw4G0cwe4achLaGYMNNBVVgWbeGa6lpuqbHxk9PFfy2meiZZp4J8TeMVm4NX7Q7KJZyr1/Go2cjABsJG2yjjn2yhFDu3043LSD8uHl5LLR/zIfvZx1jGMZ6zjgtPOKhgEw9Rzg66MpP2TPMZT3fJFdRqNyI5hF7MxCQeRYjGGzj7QycmYFEWYtXOwqpdSoSyutGKx1QuYo/7XeL7LAAaLqLRoaMTGRwIoelDMAgEIxnNF3zGdrbRmz6Nbq9iojd/YR13s5Un6M/jQcWns/cPwqJ+gibzcMlvcMkfccnlSD70bHDctSUClb4YxD3oxGRUhobcwMNFLVt4DAUDvbivyQuebtxksopU0vz2jP0tcurV5jdIa0XhmygLfzcb+dzhondFDW/YHDib3/C6HhLJJpOL66qtZJRX86TNwVidjpXREXwdZfEp6m403mYPd7MWHQovMYyptD/uS1ZGGbN5jRyymcJlnMXZx4l6Lfms5U4qyaIfj9KBP9T7kkqpYdf+jVU7B4Eei7IUs/LfkEX9KKrogVmZi8ZOHLLxDg1G4qg62JfoTmv9HjeRdlRSccwvvbnpSz8Sacf3fBtgTntvunE7hWSyg//W8WsPHEUkYVBmYFE/JUrdT5RSSqSygwhlExHKViKVQ0QpJUSoSzAp/0QnhoUs6hI3W5lFFdn04SFMNODBEQCb+ZlyyhjNmJDGdKbSIuzNhE4I/mo2sjY6gh6qwh1WG30qqpltc2BtZoGXUrLd5ebvVhuXJ1dze6KVH5wubjEa2B4TybwoC4MbmKUrqTX8H2uZyz4mksQbjKDrCRWgh8nldV6hiiqu43r6c/zKbDUHWcOd2CllEM+QyFgfY7RSq12JXT6KTkwjQlmHTgwL34fgRSfOQcf5OOSLSNl4aKwmrzvmhGw0Gm/oYPYuYjpOkrArKFzKZdRSy6fMw+1nfADpXEoHruIQ89nGU2h+bAn8IUQEiuiEKnqiiq4ook1Y2+tJ3GzjaQpZRXfuICGE8IkDB0v4iRRSA/L4/y3SIuzNTC+dysIoC59FmokVgtutNtqXV3F7TS0/OV1hm8VXaJJvHU7uqbHRo6KagZU1PGlzkORSeKTIRE5sFM9GmMhQff/KNSTGaQeJnpfJQWr4G335K32wnBCt28kO5jAbAwZuZiYdTjBmqmIf67gLiZuhPE8rH6EDKUuxaufh4iuM4inM4m2EaLxhcyjolRuQFOOm8dm4s7oVQtFweXuINkS1d9ZsIjgzq1BIpB2TuYh97OVrvvRrDAbQhZvI4HryWMB67gvI/OxUoOFgC0+QxwIyuJ50poR0vOUso5JKzuW831Xuel1aYuwnASEEkw16LtDrWOlyM8fu5AO7k9l2JxFA5EyVhAM6vnIodFYUUlWFSO9+dZFIqiXkahoH3BpZmsZ2l8ZGt5sdbg0JmIGxeh33mnRcZNBxONsj5OZG/r7zqeUZtmN5sARnZjxzRvQmwUdq3VrW8B3fkEQyV3MtkRwvxh5RvxcFA0N4jggfsU0pS6nRzkNjJ2blY/Ti4iA/zeBRvTnnmtwLYnSD2yl6zwxc8ZNBcZAcEkg4ZtJ1shjIICqpYAmLkUguZgpqI0VVAkEG072Lqc+yij/Sk3toe4raD/rCRjGbeYxyttOFGXTkypCOV0A+q1hBX/qR3pD//u+AFmE/iQghGK3XMVqv+3/2zjs+ijr94++Zrcmm994hQOgldAFFQKSKgL2AoqeeXe+n3Hmox1lO7yxn11OUohSRrkgRkCIdQgKBENJDek+2zvz+mA2k7Caho+STV15L2O/Ofnd25jPPPN/P83z4QNazwWJlg8XKd242jowyMa1BoKgHPAQBvaCsV9XqoBoZU1njbQYIAr3UKm7RahiiVjFArULf4ILQUmmLhMxKsvnU3gyr5tUumJeF43+w+QXlZ9bzK1vpRCduZXoz+Vg1WezhWTupv4PBgUuOLNdSK01C4iiu4jLUwqi27LaLgProtuUbVNeANMxVfqjdnUfi5ZRzinQGM+Qizq/tGM71CIhsYgOVVDKN23Btxew6hBvxoCOHmctB5uDPAOL5E2441+xfDhTwK8m8jQ0jPXiJ4AtQwIDiOLWMpejRM+YCtO9/BLQT+xWCqyAwQathglZDxVtg0co8/ZHESZtEtiRRLMtUyTImWamvtJrBgECUu0CIKBAlisSpRALOU22TRTVvkUwSZfTFl2foyphlzQmtXs54kAP0I5GbGd+sMMdIEXt5DhDskbojUpepk2dhYzcu4reXkdTBJiv91EXBeb7VSh0ecb9RnjqElopKN7AeAYF+nKNp50WCgMBwRuCBB6tYwcd8wK1MJ6IVknYjkgF8RCbLSGMe27mfEEYRze2XneBrySeVjylgK+7E0oO/tWoQ0has50dOk88d3NVIcnstop3YrxJozAJ91Sr6OlnUzKtUHkMuMK1rRmIR6SzgJHrUPE9XxhDq8Na8vjtjKscYwfX2aLHxOCt17ONFLFTRn3cdpl8ALPKXWOUl6IRX0QiXz0dUlmXM8qcIhKFqod9IFj+g1tdQfPBmp8SezBEOc4hhjLjipg296UMAASzmO/7HZwxhKMO5vkVPTxEV0UwjhBtJZwHZrCKXH/GjP+GMQ1ANQLZdOkqoJY9TfEcO6xBR0YEZRHPbRWn8dpAD7GInAxl0zbUPcIR2Yr+GsJ8S3iGZbGq5niAepTM+TsyPTZhYyHxOkc44xpNIc8WKjMwR3qCKdPrwGh5OjAwkuQCj/DwqhqMVnr2on6k1WORF2NiGXngHQXB8uNeQzUm+pvzEQGpyujkck0M2y1lGGOEMY3ib378II7sp4hBlZFBNEUZqsAACbqjxQ08kBjrjRQ98iMGtzfnvMMJ5hMdYy2q2soUUkhnHRGJacRrS4U1nHiOGO8liBTms5gB/447PPMjcPYQCBuJLnzMm2RcCKzUUsos81lPMHgRUhDKGOO65IDljQ5winRUsJ5oYRjHmomzz9452Yr8GUKEx8g9S2Ug+IbjwBn1IbOGkMmJkPl+TQzZTmEoPejocl8VyTrOFeB5qUZ5mlt8C6tCL759XM6jzhVXehVF+BBWD0QgPOhxjoYr9/A0RLVnrnnI4JodsvmEeBgzczh2tOt1XY+Fn8viJXFJRbrW80RKHB53wxIAa2T6uECMHKWUD+QD4oGMQ/owgmB74oGqF5PXouYVb6Uo31rCKr/iCBLpyI6PxacX8WYc3HbiPWO6mmN0sPrCJ6IG/cIC1CIh40BEvuuBOB9yIwJVQNHg4vfBIWKnjNDVkUkEqpRymnGRkrOjxJ5a7CGf8RSN0UL6bhczHB1+mc3uLi8nXEtqJ/Q8MCxKbAzL5OTgNCYl7iOUOYtC1cPCrXExnSP1WptEVxxFsNVmk8jH+DCSK6U63J8tmzPI81MIUVMLla8RkkX+kTroTkRBcxEUOo3UzFezleWrJoy9vsquqOeEc4yhLWYwBA/cxo0VD5EyqWUIGG8jDhEQc7syiIwPwJ6qVSLyAOvZTwm8Us4F8VpODDzpuJISxhBJBy3LQjsQTTQy/so1f2coxjtKXflzHsFZNnEVUBDCQLe8PRFRb+HDRYUo4QBlJ5LAWWwMHJxEtWjxR44qABkWBbsZKld3kQz4z0oM4orgVfwbiTdfz7tDoDFlk8g3zcMXAPdzX6iLytYR2Yv+DYieFfEQq2WE1dK7wZ7Zn52bm0k0haqwk/mcB2WQxlelOSV1GJoV3ENG1WvZtYw9QgUaYciEfp82QZTMm+TXM8muIdMNVXIEoNO8zXkM2+5hNHafpxcv4NrkrsWFjC5v5hc2EEMKd3O2UII9QxkLS2UkRWkRuJIQJhNPxHKz9AnHhJsK4iTCM2NhFERvIYykZfMcpuuPNRCIYSiAaJwSpQcMIrqcPffmFTexhN/vYS1/6MZgheLZhXUCyavClz5n+5zI2asillmxqycNIMRYqsVKLhBUBAREtagzo8MGFYAyE407MRUnlOEMKySxjCR54ch8z8LzINoq/d/yhif3QIfA9N2P7c0JL5hnngvR00Otbbt/b1vcq9azit16p5IQU41npSs+1ffA76c+WVtpzy0gkvLQU/wEnmWy/tXeGYvZQygE682eHDb0abVdWbMnEy1ABaJW3YJSeQiIZjXAXeuG9Zm17ZWTy2UQy/0ZETSJv493ks5ZSwvcsI4tMetKL8UxsplmXkdlHCd9wksOU4YGG+4hjIhF4XWAnQT0qhhPEcIIoxcRP5LKKbF7lEN5oGUc44wl3WGsA4IEHE5jEEIayhV/YzW/s5je60Z1BDCaYtvd+FlDhRsQVl0bWQ0JiC5vZzCbCCOcO7mpWT9GOPzCx15tgXEq0ZJ5xLrj+evBsJeBo7b1q9Sb2dTtBamwOGqua/vvjSTgeiWAVaYuSrLjHBqITksj6fAw9H+jV4tgMvkNPAOGMb33DghvIILdiP3chsMq7MElzsbEegQhcxKVohOZzM1LCUd6ngC14kUAPXsKFs9ZVsmDD1m8nH7DhjJF10/UFGZkdFLGAkxylAj90PEonbiYMl0twOvmg43ZimE40eylmOVnM5yQLSWcYQUwhki5OInEffJnMFEZwPTvYzn72cYiDRBJFIv3pTJdW1wuuJpRTznKWcYp0etCTCUy67EVivxf8fr7Vc8RZE4wrPZPW0RYzDGeoxcpiTrGMDCxITCaSe7SxePbWQhu3d4QkFrOFonX9KP5hCDzgfKyRIkrYTxz3t0mmpmIgoMMif45aGNi2CbUBslyDRf4ei/w5NnYh4INOmItWeLRZF0cJM5n8wEm+RsJMB2YSze2IDdYaTpGOZeYa5MDTxBLPeCY2ur23IbOF0ywgnXSqCMKFp0lgNKGNbAGdz1emCqVlskVWTPgMgoCnAKo29FwREUjEn0T8yaWWH8hkHblsIp8ueDKFKK4jELWDuXjhzVjGMYIb2M8+drOLJXyHK670oCc96XVOUfzlhg0be9jNRn4+U3Hbmz5XTfXs1Yg/LLH/0WHGxkqymc9JKrAwjCAeoANh51iYUUYpK1hOOBEc+GQctHKylNoNHAIZ3Kbti4IfWuEJzPKbCFIIOuElBOH8oixZLscqb8DCKqzyKqAGkTh0wttohfubpV0kbOSzgTTmUUc+fvSnM49haOBWX0QRG1jPUVJA74l66e3ceWvCGdIwI7GeXL7jFDnUEo6BF+jGDQSjckCiVlnmiE1ij9VGks1Gqk3ilCSRJ8kO23AJQKAgEKUS6SiKdFWL9FWp6NOkgrghQnHlUTpzPx34kVyWkcmrHCIAPZOIYBzhuDu46LrgwmCGMJBBnOQk+9nLbn5jJzsIIADfW7pTuaMbXCWmzzIyxzjKRn6mkEJiiWMCE/FuJf3XjnZi/93BgsSP5PI1aRRjog++PEBHOp3H4pGExPcsA2Aq01hhbf1wqCEbEDCcQx8OnfB3ZIowy29ilb9HI8xELYxVLO6ckJcsm5E4iSQnYWMvNnknNvYBNgT80AjT0Qh3omJws23YMJPHek7xLbXk4kEHuvBGI0lmKaVsYTOHOIgaNdczkl8/HoJg1SAANVhZSRbfk0kxJjriwRx6MpRAxAYXP1mWOSZJ/Gi2sslqZafFRpX9OQ8BOokqBqpVhIkifoKAuyCgEcAmQw0yJZJMniSTIUn8ZLHytVlRlWiB/moVIzVqxmjU9FCJzT6nK2puIZJJRLCTIpaSwacc52tOMoZQbiGScAcXehGRDvafWmrtZVeHCLh9AwG3b+C/BNCJznQknlDCLruE0IKFIySxk+2c5jS++HIbd9CZLu1RehvRTuy/E1iQ+Ilc5nOSAox0wZP/ozt9OP/V4SQOk0kGE5mEF21bMJCxIdh/2gpBUOMifIxavhmz9BYm+QVM8guAAZFgBAJR/EutyFQhU4RMPmelc3pU9EErPItaGG03dGh+6BopIptVZLMaM2V4EE8vXiGAIWfmW0Qh29jKYQ4hItKfgVzHMAwY2G4Fo3sdH5HJGnKowUpvfHmebvTF98w2bDdCpxwAACAASURBVLLMDquN5WYrqy0WMiVlnp1Ekdt0Goao1SSqVUSLwjm3ti2QJHZbbfxqtfGLxcrf60z8vc5EhCgwUaNhuk5D3yYkLyIwmAAGE0AalSwlgzVk8wNZDMSfW4miFz4OvzNXXElkAIkM4PaHy3Hvn0LU/Sn8yja2sgU9eqKJIZpoIokigMBLQvQ2bGSQQTJJJHOEOurwJ4DJTKE7Pdr16eeICyJ2QRCmAnOAzkCiLNubcrTjosGEjXXk8i3pFGAkHg+eJoF++F1Q9GLDxiY2EEwIvVootW8KF0KQkagh+5z7e2iE8WhU45HkDKzyJiRSkMhHlosAE6BBJARB6IlAGCKxqISuiHRxmr6RsFDELnJYRxG/AbJdWz8FH3ohICAjk0EGO9jGMY6hQUN/BjCYoXjYJYxHKSdpUgaFnQoQgOEEMo3oM73oZVnmN5uVb01WvjdbOC3L6IAbNGqe06u5Sasm7CK4ZAWKIuO1IuO1yuctkCTWWaysNFv5xGTmfZOZOFHkLp2Gu3WaZu8Zhwf/R3dmEc8KslhJNs+whxjcmEIUIwlG64QkrSVelK0dxIz7B1FHHSdJI40TpHNSSVWhSCqDCSGYEAIJxB9/fPHDgKHNx6OMTDXVFFJAHnlkkkEmGZgwoUFDZ7rQmz5EE9MeoZ8nLjRiPwLcAnxyEebSjgaoTwUsJZNSTCTgxVMkkHiBhF6Po6RQRhl3cHOzpl4tQUlniGSxgi48fl7vLQpRaIUZ5/VaUHLnZRwin80UsBULlejwJYbbCONmXO0LgfW39LvYQT75uOLKMEYwgIEYMGBFYhP5LCODFCpQxaoJ3xPJGwMiCbJrsNNsEgtMZhaZLZySFDIfq1Fzi1bDTVo17g4i8lITnKyGrBo4bYQSE1RZwWRT7kE0ArhpwFcLQS4Q4Qod3MHPgXoxUBS5T6flPp2WcknmB4vS8nlOnYlX6kyM0aiZpdMwWqNGbDAXH3TcTwfuJIafyed7MvgXR/iM44wnnImE4+tELglKPr4r3c7IXsspI4sssskmj1z2sxdLg1UDDRrccceAGy64oEOHChUCAhISZszUUUcNNVRQjpmzpid++NGN7nSgI7HEXXPG05cCF0TssqzYmF9MJ5VrHUUYWU4mK8k+kwr4K93p6eRW+nyRxGHccacj8ef0Oj3+hDOOLH7Am64Ec/6mxecCC9WUsI9CdlLETixUokJPAEMIYSS+9D2jcimmiL3s5QD7ztzSj2cCPeiFFi0lGFlKGqvIpgQTobjyZzqT9H4oarMal0SZL8xmvjFb2Gm1IQAj1Cpmu2iYqNXg0eB4z6mFncWwuwT2l0JSORQ5MFZyUYFOBEEAiwQ11ib2oUCAHnp5wwBfGBIAg/zAtcEZ6iUKZ0g+3SYxz2TmK5OFSRYr0aLAI3rluYbz06LiZsIYSygHKGUZGWfkksPtcsnObShc8sIbL7zpXt/bHolyyimhmBJKKKeMKqqooYYqqiihGBs2ZGRERDRo0aPHH39iicUHX/zxJ5iQ9orRS4DLlmMXBGEWdpdgD4+ro9jhakKOSwU/kslm8pGQuY4gbmuQCriYUFITp+hMl3OK1uvRiUeo5hSH+AeVnCCWu1Ff5JPTSh3lpFDGIUrYTwVHkZHQ4I4/AwhgCP4korJHnSZMpHCI/ewjkwxERDrThX4knnF5OkgpK8jmVwqwIZOIH8+QQH/8QYY1/jYOdarjzXILRqCzSmSui47bdRpC7SmPIiMsOg0bTsPmAjhltyDVitDdC8aHQmdPJQKPcFW6cfrqQN1kN0sylJkhrw4ya+B4JRypgH2l8GoySEeUC8GwAJgQBpPDIKTBLo5Ribzsqme2i46VZisfmMw8V2vi1ToTD+i0/FmvJaRBmkZAoDe+9MaXXGpZTibryGGjXS45mUhkdZBS99AGiIj42H8ct35rx5WEILdizSYIwgYgyMFTs2VZXmEf8wvwbFtz7EFBfeXTpy9tOj4vT3m8mnXsViS2UsA31ZlkuJXjiooxhHErkQRfwiimllpeZy5jGMugBrLFceOUx9WrW9+GDSNH+S85rEGNG6GMIYjr8KTTObVhlZGxUEE1mVSRThVpVHCMKjJQDDJEPInHlz740Q8vEs5E5jZsnOIUhzlICsmYMeOLL73oQy964447FZj5iVxWk0M2NXigYQyhTCCcUAxk2yS+MVv4ymQmU5LRmeA+Dw1367T0VYmAQHIFrMyFVTnwW4kSaXtpYEQgXBcAg/2hhxdoL9L6XqUFthfBz/mwJg+OVymyyGEBcE80TI1QUjlNsddq4x2jiWVmK2rgLp2G5/Q6YpzYIdZi5UdyWU4mOdQilOlwWR/ON9PDnXb9bMeVw1/+Am++KeyTZblva2NbJfa2oJ3Yzw0F1LGGHNaQQykmfI2uDC6O4MGwUNwuQyVdFVX8i9ebteM9F2KvRwXHSOdbCtmOjBURLe7E4EIQevxRYzhjNSdjxUotFqowUYaJImrJb+QxqsHjTFdBLxLwJgF1A8mehEQ22RwhiWSSqKYaPXoS6EpPehFBJDJKdL6GbLZRgAWZBLwYTzjDCUKQRdZYrPzPZOZniw0ZJdXivU5L/Ck1f/+LwIEyWJIFS7MgzT69fj5wcyjcFAx9fKAhX1bWwonTcKoIskvgdAWUVkO1EYwWJULXqMBVC14GCPCAcF+IDYDOoeDr7nwfH62AxVmwIANOVIG7Gu6Ohsc6KncHTZFuk/iP0cQ8kwUrcKdWwwsuzgleQmYPxfxtfyaW3sWoERhGELcQSWc82xcwrxKcC7G3yx0vEyxI/EYRq8lmD8XIwAD8GU84mhR/RATcwlrdzEWBK66oUVNKWeuDW4EnnejFnDM58DKOUE06laRRxK5GnQEBRPsymxYv9ATgRRdcCcNABO5Eo3OwOCwhkUkmKSRzlGQqqUSNmo7E043udCQeDRqKMLKAdNaRQx51uKE+01clGneO22zMMVmYb7JQKMuECgIv6LXco9MSrRJ5KgO2ukP8aoVAVQJcHwjPdIYJoWdTIeU18HMS7DoB+07B4WzIKm68XzQqhaw9XECnBlEEqw1qTMrry2sbjw/zgcRYGNoJRnaFhDAlHw8Kef+9G7zUFXYUw6dp8MVJ+PAEjA2BF7ooOfl6xKhE3je48IKLjn/XmfnMZGah2cK9Og2zXXRn0kpnvxOB/vjj+Zo/tuAaRryXxU/kspF8OuDBLUQwguAWu4K24+rCBUXsgiBMBt4H/IFy4KAsy6Nbe921ErHLyKRTzU/k8jN5lGPGDx032RezguzplgtpKXC+mMeXlFDCEzx1RiN8PhF7a5CwIdkVECIaxDbGEiZMpHGCVI5xnFRqqUWNmjg6kEBX4umEHj1mJHZSyDpy2EMxEtATH8YSxnUEIssiK8xWvjCZ2WK1oUZRtczQaRilUVNuFliUAV+fgj2lIMgwPAhuj1Ty2n56qDPDlqOw/jBsToFDWSDLIArQKQR6REK3cIgPhthAJRL3NpwlZkcwmpXIPq0AknNgf4ZyoThVpDwf7guT+8JtA2FAh+bbKjLCxyfg/ePKYu3wAHi1e2OCr0eeJPFGnYkvTBZUwBN6Lc+66BotsgJMnao8LlkCdVj5mTyWk0UG1Xig4SbCmEj4JU0TtsM5Lnsq5lzxRyf2IoxsJp/15HGSKlQIDCKAmwglEb9mpehXgthTOcYCvmEko7iOYQCMHg05OfDIIxf//Tw9lajVGWRkTJ4F1ASnURNynFr/DFDZEM16XLLiyd/cBXNKBzDpkJExhldSMSCXyn752NwsqMt0eO4KxWtnGNpiVyp8bRzrZ+FELwsmg4yhRCB2p5bo3Rp0VSL5fpAWCtkBIIngXQma38D3OAzvAbUSZFiU3xwr2FCssAMECBSURz9BkS42+yz2U6o1sdjQoeDahCOL6+BIEewrgKQiRUETZIDrI2BYOLjZlYBGI+zdCxYRjgbB/jCo00JkCQzMAO+65u9X5S2xb6SRkz2s6KsF+mzQ0XGfBlFWJrpmjTL3+gt8/fdS27GUsuuyqOpRCIKMW7I/3lsiMBz1Q5AvXZpGllvfh1cD3Nwuzzw3b4Y9e9pTMZcV5ZjZRgGbyecgpchAPB48TmdGEHzBrVwvNjoST1e6sZGfcUFPP/qTk6O0Br7YKC9XHht2qJSRsRjKqA1MP/NrdVWK8bXlAfikDsItLx6Xogi2b1Nx4gRE9zZRMfgUFQPyMIVVIVhE3A8F4LkrFMNRPyQRsjpZOTq+hvxYG4INQo+oCdusJTJLRZ1W4HgYnOgFtS6gM0N8NsTmgk8VLFwGJeFQUQV5NmWe7iJ00UKADTyM4G4nYlmG6lo4XQUV1cq/a+qgzqj8WiWQJGWsIIBaBTot6HVgcAFTHWTlwy0TwbfBfvFzgeERym+tBfachi3ZsPAoLDsOIyLg5hhI2QcnTkCHDtA9DzqfhqQQOBAGi3tBt3zomwVa29ltu5eJDF/iSsJ2G7+NNbJ9kpFj/cwMWqUnIEdNYWHz705AwHDcF8NxXyyeRsqHZlM2OJvqx/ahKXbBe2sEnjtDUddc3OO7yH7n4n/xzJYuCWrsqij3FtZILhYsjpoNOUF7xH4BKMXEdgrZymn2U4qETBiujCSEEQS16npTjysRsQOYMbOYbzlOKl1I4O0bb6I2z5vk5Iv7Pnl5YMOKEJJPDtlkkUUWmVTabeMMGIghlhhiiSOukSGEGRtvbivieEwuuaHFSMh0wpMxhHI9wbijIUeS+MJo5n8mpSI0UhSYqdNyr06DLV9kWxksLlWULTYZbgyCB+OUvDkSrNwHX2+D1fsAUUmvTBsAUxKVFIsgwMmTsOcgpKTCjj2w9wBUVJ79jL4+EBEGIUGADG4GCA9T7lIsFqiphdIyyC+AzGzIyTv72shwGDkMbh4FY24AFwf+FIcy4d9rYcF25SIxMhwmxsGD9zUeV2SEFw8pOfhQV/ikH4wNbb49WZZZbLbyl1ojp2WZWToNS3rpEWsEcnNb/j4tSPxKAT+QxWHK0CAynCAmEE4CXhdlsfVKnRPnisuZGXjkEfjoo/ZUDHDxd3gutWyngO0UcoQyJCAEV4YTyAiCicX9nA/sK3kQ27CxnV/5hU2YrRL5mzvz9I3diSbmvApHZGQqqaSYIgoppIDTZJnzKNUUIglK+OiBJxFEEEUUUcTgj3+jfSYjc5QKfiKXzZymCguutTomuoYwmlAicUOWZbZZbXxoNLPSYkWCRlWYRpvAvHR4JwVO1IKfDmbGwqw4iHGDY7nw6SaF0EuqIcQbSvaBNg8qMu1kfgpWrIW1G2DbDjBbFKLu0RUSe0OfHtCtC3TqCF4N1Clt+T7//R/IK4CIaNiyHTZuVS4Ubm4wdQI8dB/0d3D6ZhTBnGXw9VYlLfPOfXD/sOapgF3F8MBvkFyhfO53ejuWSFbKMnNqTXxoMiPkC7jNcaFoSdtv5E9RxQqyWU8uddiIxZ0JhHMjIRfUn76d2Jujndi5eDvchkwK5ey01zxm2KV5MbgxmECGEXROzvKOcDUcxBWUM+t/u4icuB+9r3J/6YsfAfjjhTcG3NCiRWM/WW3YMGHGaC8Tr6SSCioop6xRqbkBA16mIPzNIcS7hxFGmFOLtiKMrCeX9eSRRQ06RIYQiHZTKCEFvtx1u4BRlllktvCB0UySTcJHELhPp2GWXdmSW6ssKH6aphQA9XCH+0Ph4R6gFmDVPnh/PWxKVpQrk/rCzOEwshv4+ym59Odnw5IVcOiIMq+ETjC4PwwdABPHtn7b3Zbv84MPlMdHH1UeLRaF4Bctg8UroLoaBiXC356F0Tc0J+7XPoZ5RyC1VFHR/O8hZcG1IUw2eDkJ3jiqFEwtGQLdnBSZ7rZaGX7AiC1W4k86Da+56nE5h8Rx/WLrCrJJpwoDam4gmIlEEMO55ymuhnOiLWgn9ga42om9FBO7KWY3ReyjhEosqBHoijcD8WcogRdVGXC1HMQJCSCobKw+nE0mp8gjjyKKqKC8EVk3hIiIAQPuuOOJJ972akRf/AkgADfcyM9TCMLRd2HCxjYK+Ilc9lGCDHTDm9GEMpwgDKhZuBAqtRKFY818arJQJMt0VYk8qtNyu06DiyCQWglvpMD8DCXdcksYPNUJIs2KjnxtKryzDtILIcIPHr5BIfQAT6itVYj8gUfBap/XoES4dQJMuhmiIxsfT+XlNg4cqOPwYSPHjhnJyLCQm2uhqMhKZaUNo1FGlkGrFXB3F/H3VxMerqFDBx3du+sZONCVX37RI4rCGWJviKoq+HIhvP0BZOXAiKHw3mvQtcvZMQsXKtr4miB4Zj5o1fDNI3CzA/OrXwrg9u1K4dPXA2GKk8LvkGiZmidNGO82000lstDNhY6qc5M4yvZAaAXZ/MJpLEh0bVBD4KwBWVNcLedEa2gn9ga42ojdhI0jlLGHYvZRQpq9o7YPOvriywC7c43hEq01Xy0HcUKC8ugox262/9js1KdCjQYNWrSt3q00/S7qUy3ryGEzp6nBSiB6RhHKaEIbmW6ftEk8kmTi11ALVhXcrFHzuF7LMLUKQRBILodXjygFPHoVzIiBpzsr6ZaKWpi7FL7YBqU1MLADPD1WidLVKsjIgv9+Bl/Mh/IKRfWiBVIPK/nyelRW2li8uJqtW6vYu7eGo0fPNoPx8lIRE6MlPFyDv78aT0+R8nJF/uPrK1NZaaOw0Ep2toXUVBOVlcqKqpubii5dPHjlFS9GjnRDpWq+D81m+HQezHlDSdPMfhr++iyo1QqxA9xxB5zIh2nvKTLM12+D58Y1j/Dz62DKNiVF83Zv5aLXFKH2XPwXpyzMrDFiRuZLgwvjtOdXNFdf9buKbHKobVb12xKulnOiNVytxH5NqmKsSBynkv2UsJdiUqjAgoQGgQS8mUkHEvEjDo9GpgrXMrT2nwtBGSZ+Jo+15JBJDXpUDCWQMYTSE59G+zrFauM1o4mlZitiGAzO1fBeVy2d7BHkiUp4KQm+ywSDGv7SRSGrAD3UGOGfP8Bba6CsBm7oDHOmwhA7mSWlwD//DYt/UAhwynh4ZCZMGq+U7keEQUWFjWXLKvjuu3I2b67BYpFxcxMZOtTAHXd40a+fKz176gkIUDdrgueMlGRZJj3dzK+/1vDBB9UkJVUyZkwZkZEannnGnwcf9EGvP6sJ1WrhsQfhtlvgyRfh5Tdh86+w5MvG2+0QDNvnwIxP4C+L4HQ5vH1XY3IPdoFNN8DdO+Dp/VBlgZec+JWP0WrYqVIxvbqWW6vr+JerxJ/1595iwBMt04hmKlHsp4RVZLOUTBaTQS98mEgEgwlwaOfXjgvDNUHsFiROUMkhSjlAKUmUYURZyIvDnUlE0AsfeuJzSQyJr2XYkDmkK2azaw77KcSGTBc8eYYERhDc7C4oxWrjlToTyy1W3IAn9VrC12nxMol06gEFdTAnCT47qTTJ+r8uSmWorw5sEny2CV5aqpDbuF7w6DDoHqZEVEdT4W//hGWrwN0NnnkUHp8FYfWqEVnGaqvlrrtKWLasAqNRJjZWy1NP+dG/vzt9+hiIjDz/C70gCMTG6oiN1VFd7YPFIhEaWsl//1vC44/n8eabRbz7bgi33NK4T4CfL8z/RFHMzHoKBoyCx++HgAYOdq46WPgYBHrCf9aBRg1v3N74/fUq+HYwPLAb/p6kdI58trPjuUaoRDZ6GLivuo5na00USTIvu+jOq5OrgEAf/OiDH8UYWUcua8hmDgfxQcdYQrmZ8DOtkttx4fhDslgtVo5oKziuLSOdUpIpx4xyCxyFG2MIpYedyK82ffkfBQ1P4AJfI+42DVOI5CbCiHIgAz1lk3i5zsS3ZgtuwAt6pUOhryiy0KTkvt86Cq8kQZ0N/tQB/poAgXYu2HEcHvlSkQUO7gjLnoRBHZVb5dIyePVtJa1hcIWXnoMnHgYfu35ckmRWrqykqqoQm62OVatEZszw4d57venXzwVBEM7ccl9MaDQiU6d6MXWqF5s3V/PUU3lMmZLJPfd489FHobi6No5k75oGHWPhpmnw6jsw55nG2xNFeOceRUP/5iqI9oeHRzYeoxLh80SotcJzByDKALc6ybm7CgKL3Fx4rNbIG0YzNmCuq/Me7m2BH3ruJpY7iGE3RawimwWks4B0EvFnIuEk4gftUfwF4Q9B7AXUkUI5KZRzmDLSqETyU8rD6+VXXfGmO954t3etu2SQkTlAKSvJYhuFSMj0xpdppfH0MQYSGdL8ZC2XZF4zmvjAaEYFPK3X8oyd0OuRCnwO5B2Am0OUHHG8YnxEZS08vwg+2aj0W/nucZjaX0lDyDJ8+z28+hZU1cCjDygqE/8Gke7GjVU891w+Bw4YEUUtrq6h5OZ64ebmfJHv1Kkydu3K4dChAk6cKCUnp5LS0jqMRitqtYhWq8Pf34P+/X3p1y+UESOiCAxsuaZhxAg39uzpwD/+UcCrrxaSmmrixx+j8fJqPI/EPrDxBxg0Gt76GB6Y0Vj3Lgjw3r2KLPLxeUr/md7Rjd9LJSqLqNm1cN8upd1wRw/H81IJAh+66lEBbxnN+AoCT7tc+DmkQmAgAQwkgNPUsdbeFO9F9uOPnj5B4SSWhEILZiDtcI7fHbGbkThBBUepIIVykimn0N5oSodIJzy5k1iCS7zoYPYiLvjSd0u81lGHlfXksZxMMu2tcacSyXj7IlmesflrJFnmG7OFF2tNlMgy92o1vOTauEFVrRVeOAjvAX7AqmEwrkGxzbZjcPeHSs+Vp8fCy7eCm50H8vJhxp/hp03Qvw/8733o0mDBMDfXwhNP5LFsWQVRURrmzQvniSe8EAQBtyYcLMsyBw/msWLFETZuTOXkSaV5mkYjEhvrQ0SEJ7Gx3uj1amw2mYyMOgoKKvnww1MYjbsQRYFRo2J54on+jB4d6zSdodEIvPxyED17ujB9ehbjxp1i48YYdLrGF8Se3eCx++FfH8H/vQzvvt54OypRUch0+wvM+BT2/kNZLG4InQoWD4Eea+HenbB9lMMpAUoK6T1XPaWyzAt1JjqpRMae54KqIwThwgw6cA+x7KCQFWTzY8gJ1gen8QsBjCOcPvi2r3edA65qYpeRybNH46lUcJRyTlCFxZ5W8UdPAl5Mx5sEvIjF/cxCTJ4DF5t2XFwUUMdyslhDNtVY6YgH/0c3RrQia0u12XikxsivVhsD1SrWuOrp2YR5DpfB9O1wrBJGAdM5S+qyDG+sgtnfQXQA/Pp3GNjx7Gs3bYXbHoDqGpj7V7hnGoQ1ULksWVLOrFm5GI0Sc+cG8fTTfuj1Ik8+2XieNpvE4sXJvP32Tvbty0erVXHDDdE88UR/hg6NJCHBH42m+eesXzzt3l3i4MHTrFhxjC+/PMhNNy3gppvi+OKLCdCCtnvyZE/mzw9n+vQsXnqpgDfeCG42pmcC3HgdvP8ZPHhPYykkgI8bvHsPTH0X5m2FmSOav0+YK7zbB+7eCfPSnU4HAFEQ+MLgwklbDTNq6tirVl0Uj9eGUCNyHUFcRxDrk2vY6ZfN/sBctlJAGK6MI5wxhOLZnj5tFVcVsVdgPkPix6gk1e6OCEo03gEPJhNBV7zpjCd+7bdpVwRpVPIdp9jMaWRgKIFMJZIurZSTS7LMByYzf601oRfgY4Oe+7SaZhHs/FPw4G7FzGLD9VCw6exzRrMShS7aAdMHwGcPgnuDVMRn8+BPzyq56C2rwEUHW7eCr6+SS//ii3yWLSsmPt6FZ5+NwNVVx/ff27dtVJQoADt2ZPPYY2s5cOA08fG+vPLKWPT6boSGKsfc4cOwbVvjxmZRUYoUMSVFSYkUFYlACEOGhNC//zDWrNnDl19upGfPL7jxxnvp06dBk5gmmDbNi/Xrq3j77SIefNCHuLjm6Y8pY2Hnfnjzffj6o+bbmJIIfWPgzdUwY7jjRlV3RikFXXOSQBZBkJxOCRdBYL6bC4kVNTxeY+R790vX5dHPZGB8bideCOzIVk6zkmw+JpUvOMFwghhPOF0vUvuCPyKuGLHXYSWVSo5SznEqOU4FeSgt6QQgEjcG4E9nPOmCF9G4NeuK2I7LiyOUsYB0dlGECyomE8GtRBHYBjVDKRJ/qjbyo8XKWI2aDw16gptEfLIMLx2GfyQrbkHfDVYWR+2SbWqMMPFt2JgMr90GfxnfmKz+/QE88zdFPbL4f0qF6MKFcOgQDBsm89Zb2WzeXM64cb48/HAIFRUCpaXg46O83mYDk0nm1Ve3MmfOFkJD3Vm48BamT+/KRx8J7N59VuudnKxUh3axR8pZWcpjXBxs3KjMq3MDxYlGo2LSpAEkJETywgtfs2bNMtzcZtDSIuGrrwbx9dflfPRRCW+/3Vwo7e4Gd02FrxbBx2837xQpCPDYKLjvY6UlcMO7moZj/poAE7aCdwK4JDmdDgAdVCr+6qLjxToT681WRmkvLYVoERlJCCMJOdO+YAN5/EweMbgznnBGEYLr1RWjXnFckb1RF1jNODZQHxwE4UJHPBhHOJ3xIh6PdtnhVYQjlPEVaeyjBE803E8ck4nEvY1uTymCjVnaWootMu+46nlY1zxKl2V4bK9iHjEzFj7qB5oGnGeVYPJ/lH7o8x6Ge65r/B7zFimkfusEWPgZaBpMrUcPWLs2j82by5k7N4gXX1SaljctLpk5U8ZiWctLL+3lrru68+GHY3F3PxspJyYqBUGg3AFsKlrAv4pnk1WRRaBvBI+Fz2X06DtZsUIZM9qBM8Ho0cF4ed3E3XcvJzPzOOCgUsiO4GANN9zgxo8/VvH2247HjB8DH38Jv+1TKlSbYmIfpW/8T4cdEzsoZh1Beijv0TqxA/xZr+UTk5l/1JkuObE3RDTuPEkXHqIjP5PHanJ4lxQ+I5WRhDCJCKLPo33BHxFXhD1Fq8jdxBJvj8bbc2ZXJ05SxWek8hvFeKPlIeKZSPg5XXQ3WqxM09bijsAmDwN9m67i0jxTJgAAIABJREFU2fH8QYXUn+0Mb/Zsnjb4Mgl+yYYvH2pO6geTFH33DcNgwaeNSR1g585yPvighGee8TtD6qC01W3YqtZq3Y3NtpfnnhvEG2+MbHTxkSSorDx7MfghfQFfFM7CgmKFdLouk38cnkVUNMCdLe6T227ryowZa8jOPklLxA7Qo4eeDRuqkGXZ4aJrD3u1cGqaY2L3MijWe/sznL+HSoSbQuCrOGhLe3WtIPCEXsfTtUYOWm3N1kcuNVxQM4EIJhBhb1+QxTpyWUk23fBmEhEMJRDNNXyHf0WIXVfiyn3t3uZXLYow8jnH+Zk83NAwi45MIuKc76LWmi1Mr64jRhb50uxKb7XjE+3TNEWj/mgHx6S+I1ch9Rcnwn3DGj9ns8H9jyltc7/9/GyOvB4mk8T8+Xn06+fC6683XoQsLFT6fgcFQUWFEat1M6IY14zUQSH1qqqzf39XPPsMqdfDaKtl9sbZjG2F2OslkTabtcVxoPSbsdmcm0542mWKDefWFJF+kNeKC2KiL3xpAJsDD1VHuF2r4flaI0vMlstO7A3Rxe6O+widWEcuq8nmVQ7hjfaMLaL/NbgW157vaMdZaG243p/B3ZxEQmY60dxBTJtTLg2xzWLltuo6uqlEvjAa8HSyyJVcDo/vhdHBikKjKXlV1MI3yRDrpcgZm2LxD0rEvugzpUKzKXbuLKe83Mpbb0WgVjefg7+/korZti0NMKFWX+dUjujufjZtUyZlORyTVeH4/xsiNbWYmpoqfHwc+Ng1QVqamdBQDaLoeE71PeFb6jipVimprJYQZW/dIrWR2H1EgcFqFRstVua27SWXFJ5ouY1ophHFbopZSRbzOckCTjKYQG4hgh74XDOLre3E3g4A9lKM74pkVBF1DCCQh4g/7w6WWTaJadV1RIkiq9xdMdU4PplkWVG/uGuUghmVg4D+g/VQaYbnEptrsQE++Qo6xMK0yY7ncuBAJf7+GoYObbnpVE6OwpCC0DbLHj91BMXWzGb/H+EZAQXOXyfLMs8++zNqtYa4uK4tvofJJLF+fRWjRztn7UP2hm3xcc63U1yleLC2BBf7vpXPgRH6qVW8azRjlWXUV4mHnYjAAPwZgD951LKabFaTwzYKiMKNW4hkJMF/+DW8azcJ1Q4AqrDwOod5jr3IkkDZzL7Modd5k7pNlrm7pg4rMt+7uzaqIG2KVbmwsxje6Kk072oKWYbPNkNXP4hx0Ee8pgZ+3QVTJzr3Uy0sNBMWpncahRcVKXlzb29FGiNJ2U7nW1WljM3Lg7G6uWia7CO9ypW5NziPXyVJ5umnf2L16uMkJl6PwdDyQt+XX5ZRUmLj3nudyyJX/wR6vVKE5Qg2STHL7tRcCt8IVfaskGBueVxDRIoiFqDgCnSIbQtCcGUW8SxmOM/RFTUC/yaZqfzCxxwjv0kq7Y+EP/Zlqx0tYh/FvE4SpZi5ixj+PTkWzBeWL/3UZGGX1cZXBhfiHIXgDfBeKkS4wj3Rjp8/lqeUxs900oUwPVPJsdcvIDqCWi1gsTgmnoAGmZDhw+MAD6zW9ZSUhOLr25i0PZqU3N+WcCeBxbCwcDZ51VkEukTwYuJc7ux2J9sdvFdBQTUPPriKVauO8/jjiZjN/Z1PGqUydvbs01x3nYEbb3TcjqCmFuYvVrpTNpU61mN3mpLOus5Js696pNlz9KpWcvEN4W6/WNZcpcReDz0qxhLGTYSSTDnLyGSJvcvkEAKZSAS9/2BpmnZivwZhReJLTrCQU4Rj4EN6E48n/6pTTCd++un8tmsUZf7e3US3OhXee9TUb6akBAYNajy2xASbCuCvXcHJmipJ9uA53ACLFil69IY4bTc8/vZb2LdLsZVrGrlbrXpSUirp21dCbPKkyaRE4Wo1KKfCZGR5PlFRnzN06GT8/cPPziUJMjJg3jzl77o6gDtxdbmTOMBqhc8XwDc6xR9VlmHHDrBa6ygp2UNR0Q4kyUp4+Gh27OhPZqbAuHGOP3dNjcTkyRmYTDKffhrq8G7DYoG3/gtV1eDtAnOd3Cj8kKc4R6VsgLmbHY8B+NbfHq1XOB/TFEYUQtf9TghRsJvldMWbIoysJIuVZLONAuJwZwqRXE8I2j9AIqOd2K8xlGFiDgc5TBnjCOMxOqOzl//X1tYT1vnhF18LFRqZO9N0jaKfekKOijo7dlcxyCjG0s5QbneAl+ocz8vNnjeuqFKKhaB5ZB0e7k1WVhmFhaUEBfk1es5iUQhZfeYsiALuRZKWsm7d/wgNjaNjx74EB8dQWqrB3CBNUf/v+gZcVquyPZ0OLBYTVmsGWVkplJenIMtWPDw6ERFxAy4uyhycqVzKyqxMnJjJvn11LF8eSXy8Y0VH6kk4ngV9u0GQk2WBSgscLIeeXkrLXmewCJDmAqqDzsc4Qq4kIwCBThZ2r2b4o2cmHbmbWH4mj6Vk8gZH+IwTTCCcSUT8rmXY7cR+DeEkVcxmH+WYeZHu3EjzakYXF8eFNW3BvyotdJFFnhykakRaJSXNx6bbiTjeSVdBAIO9NkgSYfJkHNrI/bQDBB3Mnq383dTJJirKQFWVG2lp+axcaaBnz7NVsk0NMRSpZDinTz/Ce+/9xvvv72bz5m/R6VR4eYURERHMQw95EhLizt69OkRRYNAgK2VlRvbsqSI7u4TMzNNUVxcgyzI6nZ6HHurBLbf0JSEhqNHcHnmk+Wc5fLiOW2/NJCPDwqJFEUyY4FiikpUDH86DQD/YuKr5xawed/wXxHRYMgeiWlgTnn8KjDvBNwXOxQnvsNVGjCiiv0oWTs8HWlTcTDhjCWM/JSwmg3mksYh0RhHKVKIIb8Xt6WrEFSH20lIY6qCY4mLCZFKiqqa65qsRNfbI1HAJjx+xXwn6Nw4g16gwPdef2cc8md1kTF6eouk+HxhlmZ1WG0/otW0yYzAqPie4tkAknexEmFMDQU5yyPffAX+dqxhP93AgMhEEgVmzwnn99TRGjkxn7dpoEhNbXhh2d9cxe/Z1PP/8YDZvzuDHH9P45ptsjh/fy9NP25AkxzllHx8DffoE0rXrEIKColm9OgKtVtVqL3eTSeKtt4p45ZVCvL1VbNoUw5Ahjg+GnFy4YRJYrPDi485JfelvSj+dOVNaJnWbBK+lQBdPKEtreZ4NYZVltlqtjG9aDfY7RUMzkEyqWUwGP9p18QMJ4A6iScD5IvbVhitC7JfjAq/7HbVdd3W9tPtENbgQ3esHkbNdMT7VB7nAcW8XUVQUFueD4zYJK9CrjSGfl/2CW2IGNyfc0CMSfN3gUAn0dUJOf35Q6XD47N9h5QLHY7y9NfzySwwjR6YzZMhJ/vnPIJ580g9ayQ1rNCpGjYpl1KhYSkoUqeJbb9VSVFTD0qVmJEli/Hg1Xl568vMNGAw6eveGe+9VXt9aUCFJMosWlfPSSwWkpZm59VZPPvwwFH9/x6fl4WQYf7viz/r8nyDMidLlSLbSKC0xVinqagmfn4SUClgyBJ44hzXQTRYbZTKMu4wtBS4XInHjOboykw4sJ5OVZPMYhSTgxZ3EMAD/q36h9Yp8K35+Sme8dlx67KaI2RwgBnfejOuL5yrnbNPRSS+RtqDQrowIaWO+tZM90jxUBpFO7lTUKrj3OnhnLRQ5yf17eMDn7yqE98SL8MP8hjnzs4iN1bF3bwdmzszhuefy+eqrUu69N4iuXT3Iy1Pm7CzvXQ+jUcBqNeDtbcDXVxlbn16prW37HVd5uY2kpDKSkor55BMzXbvq+fHHaKd6dVlW1C8PP6NUmv6yCo4ecbztjCIY8wa46WDpk4pFnjNk1SitHIYHwJRweKJt0wfgc5NiujGmpTf4ncMHHTPpyB3EsJYclpDBi+wnGjfuJIbhBHG1KsYvaFaCIPxLEIRjgiAcFgRhuSAIDtTG7bhSSKaMlzhAFG68Tb9LuhhUH+y1NY7p5wtuakXL3hKevVlpBrY4XSE4Rxg3WnFGWrMeps04m9pqCl9fNcuXR7J8eSRms8zzz2fy0EOpvP9+IdnZZgTBObEbDI2dimJjISbm7N/+/o3lk01RVWVj8eJypk3LJDg4hV9/zUOnU7F4cQSHDnVwSuqnC2D6DLjnT/D/7Z15eJTV9cc/553JLAkkgYRACPsOBhBEEFFEERGLigt1K+4LKsW6VKH8XCtKq7Zaa2u1KFpXFBV3KYq4FUUQlTVsQkhYZEkIyWS29/7+uBPBmGVCJkwy3M/zvM9kkvu+c+4kOXPfc8/5noH94OsPYUC/ql9jTSGc8Eco88P7U6B9FZW4FQTCcMHnYCv495C63TGuCIV5MxjiKncS7iYcX48WL07OoRPPMZwp9EUB9/IdE/iUj5O3EKKWst44UN+Pm/8CuUqpfkAeMLX+JhliwXZ83M43ZODhzwyi2UHIAtSFVpF/8G1R5jR7HLrX5oubYHcNTVGyW8AZnWBVkW6uUR0TL4W7b4O578LQ0fD9yqrHiQjjxqWxalVP/vnPDuTkJDFjxjaOOWY1oVAeoVAhc+cWs3VrEFVpLikpeoXeti20bq2Piudt2uxPtVRKUVoaYO7cYqZO3cq4cevIzV3BeedtZuHCUq64oiXnntuNc87pzvjx6VXKBfj98NDfodcQePN93TDk47egbTXhlwUr4Ni7tF79h9OgXzV9TLV9cM1i+GInzBwCXesgiKiUYoqvnFSByZ4msIEVQ5xYjCaHmQzjjwygOUk8mb6cm7I+4U02o7vCNg7qdR+llJp3wNNFQBVqHoZDTQCb2/mGADYPM/CQ9Hnt7rCw0JkSZ0fZNu3mXrpzz30r4MGB1Y8b3gbW74WpL0HrVLhsRNXjrpwAQwbBxdfBUSfCzddD9/bgqWL6DodwxhnpnHFGOn5/gFdeKWLKlBJsexfjxu0EoEULBz17uunYMYlVq5LweJw8+qiF2y3k5+viqIULbYqLw2zaFGb79iDbtgVYvjxAMGgzZ44OC/Xtm8zEia0477xUhg5NxuGQKrNiQDf7mPUi3PcXyC/Q2vKP3A89qpEMsG144G2YNht6ZMNbt0DX1tW/l0rpJtazNsCdufDrjtWPrYpXAiHmBcM8kOyusao4kbEQjqM1w8ji/V07ea35Ov7KSv7DeibQlVPJqbGD2KEglgGyy4GXY3g9w0EykzzWspd7GUgHam6iHCtSRDjKYfHfYIi7ojwnN11rrz+8Bn7dAQZnVj1OBCZ0h4xsuOJJ2FMKN55Wdfhg9EhY/jnccgfMeFg3oxh7MowdW30GSefOLm69NYvbb89CKZsFC3wsWeJj1apy8vICfP21j02bSgiFbL76quprpKc7yMpy0rWri7KyFNLS3Dz8sJf+/b0UFWkHWDkV80A25cOTz8ITz8CPO2Ho0TDzbzCqipZ2FewohZH3wccr4dzBMPNqSK0h4cdWcNNSeGQNTOoBd1ZT0Vsd+WGbyWU+jnZYXOc+vFbrVSEI/f2t6OfPZFvbXTzFWv7KSl5kIxPoymjaxq05UK2OXUTmA1UlwU1TSs2NjJkGhIBq8hJARK4GrgZIS6vhPtFQL75nD7P5gTNozzBqVw+MJWe7kpjq87MyFKZPlFKuDwyAeVth/Gew+NSqNWNAx9nn3qybV9/8vNYX/+flP2+LV0GrTHjmH3Dd5XDVZHjxDXh7Plx4rk6PHFyFimQFIhbDhqUwbNjPd0Kvu073QJ0+3SYQUCxbpnA4hCFDLJo3t9i+XV+wbdv9WTFDh+rHoqKqX8tXDv9+Fl58DRZEkgnGjoYbr4URx1VvY3kA5q6FN9bq7K9/X1V967ufXisEly6C2Zvhxp7w0MC6xdXLleKCfWUEFcxqltxoRL8aAxWpkgPJYAm7eJI8HmA5s9nIZXRnOK0PeRZNrY5dKXVyTT8XkUuBscBIVTko+fPrPAE8AZCTM6hxi0s0UcLYPMJKWuNhIj0P+etf7E7iHp+fP5cHmNWs9nZ5oNMe5xwPx8+H0z6GD0+CtGoWg14XzJ4M974Bd8+Bz/Pg8cthdP+qxw8ZBFMmwQfzoXA3PP28VoNskwVDj4IeXSCrJbSJhC5CIR0nryhcOpCdO2H3bot58/QKbONG/f2K4quKFnsZGVBQoGsoXnjh5z9LTYO1G2DZcnjrfSjaB7PegG5d4K7b4JILoGP7X752BWEbXvgcbn8FNu2Eo9vAnGk1b5ICbNwH534K3+zReve39K6bU7eV4opSH4vDNrOb1a4BdLgiCIPI5Cgy+IwdzCSPu1hGH9K4ih4cSS2/qBhSr1CMiJwK3AqcoJRKXKm0JsK7FLCeEu7kyLjIkmZaFtd7XDxUHuD6kIujo1y1D8qAV4+DcZ/AyR/BuyOgVTUrd8uCO86Gk3Phsn/p1L5xg+DGk6BbFTcoFRo1GRlw7SXw+WL4dJFewQeDOgbeuQN07Qji0boqZT5IrvS5NGbM/r6mAB0rxaZbtoQWLfaP3bET1v0AW7bC5gJ9rP8BAkE9plULOPk4mHGPznKpydEGQtqhz3gT1myFgZ3gwm5a9bI2p/7SDzBxsf76zRNgbE7N4yujlOKGsnJeDYS4z+vmzCj3Tw5nBOF4WnMsWXxAAU+zlhtZzDCyuIaeh6SStb7//X8H3MB/I9WGi5RSE+ttlaHOhLB5nvUcQTonUMPuWQNzm9fNC/4gV5f6+CI1BW+US8Nf5cDrw3VIZsgHMPcE6FtD8uyxPeC7GfDQO3D/m/DmEhg3AO4YrwubKnC5YMSI/fHtsyO67aWl8MkX8PHnWvp34SIIuyEMHH86ZLWCDu0guzVktIBgQKc7Opvtz5MPBnU4ZW+JLhr6cScUboONm2DfASmXyckwoC+MGQXDhsDwY+Hll/TPBlZztwGQvwtmLoB/fQTbivS85vxOf5C99FLN7+c2H0xeAq9shiEZ8OIw6FzH7RZbKSaXlfOkP8jNHhc3HWZZMPXFgXAa7RhJNq/wAy+xkcv5jDPpwGV0J6UBF1/1zYqpQd7fcCj5jB1sp5zf0ieuVXGpIvwrxcvp+8r4XWk5j6d4iDa7fWwOLBwJZ36infsjR8GVXasf706CP4yDK0+EO1+CZ/8Hry2FEX3g6pO0A6yOlBTtaMeM0s9DIWiRCTYw7Q7tnPML9KbmN9/B7j16JV8Zh0Nv0KanQVYmdOkEvbpB2zZw0gnQu4f+XrQaLCU+/SH13Ocw7ztdH3BqP7jhGjillpU96E5Jj6+F27+DsjBM7w+39q5eQbM6/EpxZamP2YEQt3hc3Ot1RyUVYfglbhz8hq6cRjueYi2vsYkP2co19OAUcrAa4P81ccvGDjPmspm2eDmG6DoANSSnuJxM9bi4vzxAN4dFTh3SLQdnwjdj4DdfwNVfwev5MMSCzBpqQLLS4PbT4bcj4e1V8Ph8LYDV3Aun9IFf9YVft4SUGuQSnE5woI8/3PTLny9dqlMFc3N1iqFSuml2VVIplcXFaiN/F7z/Lby1FOZ9D/4gdMiEqWfCFSOgcxR74ErB2wUw5VstETCyNTx2dM0ia9Wx3bY5f5+PL0Jhpnvd3OJtQvocjZiWuLmFXE6nPY+yij+xnLfZws0cQWfqUEwQBcaxJwA/Us4ydnMZ3XA0Eg2LO7xuNtg2/+fzc1EH4eTN0d/Gt/HCvJPgsTyY+i3MT4WTy+GSYPW6MgDpyXDr6bpa9eNV8J9P4fXFMGcJXPs8DO8FI4/QjwM76xV/XRCpvwaRUrBhByzeAetL4NGbddwcdNPpiSNh/BAY2r36rlCVr/duIfxxOXy5C7o3h9eOh3HtDk5/KNg/xNBiH7uV4rkUL+Pr+iYZaqUnafyNIXxAAf9kDVfyBRfRhd/QJWb578axJwCL0B0nhleZlRofLBFmpnjxKR/P9ymnLElxgYpO+VGfD7/tqR3UuFfgPS90fQum9IFrukFyDX+5lgUnHaGPO0+DRRvgy3wd2pgSiU27nNC3PQzopB97tQXbC1Je/7mDzmDJ3wXrt0PeVlhVCN9vhm82we6IZLHHASfmwlUnwan9oU9O9M44APwPmPEefF+k9XaeGAyXdtGpoXW2VynKrgpQdq2fliJ83DyFI6Pc/DbUHQthDO04liweYzX/YT0L2cZt9KUP9VdmMY49AfiW3WTgpmMj041OEuGFZl5OWV7O6939XFlq81iKp0763e1T4PJSOLEclrXWBTb3rYDrusO13fXqviZcThjeA84foZ/vKIbP1sCX62HJBnhtMfy7orPQiYCCdpOgbboO8bRMgbRkKCkCjxM6bNYfHLYNwTD4AlDqh70+7bB/LIFN2+HHUu3cK/C6ILcdnH00DOoCPyyB7GSYPKku7yjk7dWKjI8DJUCuglnHwIWdDs6hA6wJh7mmtJyyyWFc7zn58gIvaU2weUZTJA0Xf6AfJ5PNg6xgEou4iC5MoFu9OjkZx54ArKKIPqQ3SinRJBGu/N5DVpnFc939LA+Hea6Zl+516egAdA7DgyPhsx3w51Vwz3Lt4M9sB5d30Q4umg3CrDQ4e7A+QIcythfrcMiY8XrVPuoE2FoEhXu0BG5xmXbewSqkQJIc0MwDqV5okQJZqXBUe2jVDI7pC12yoHsb6JDx89DKY6ujn/t2n85uef4HWLQLHAIDgFHA9GoqcKPBrxQPlQeY4fOTLNBsihf3O07SLmp8f0eJzmBaMYvj+BsreY4NfM0uptL3oCvHjWNv4vgIUYiPU2kXb1OqRRDOXO/m4gEWV5T6GFJcyp+SPVzpTqpzpsVxWfpYuxceXwfPbIQ5+ZCRBL9qBRMsOCEr+tWrCLRJ14dri/7e01Uk7C5dqkvy+/bbL++b5Kg6Dl7XzdPKKAV5JfBOAcwtgE936OyY3DRdYPSbzrDg9f321/36ineCIX5fVs4GWzHe5eSBZA+D3jGFR/EkGSdT6MexZPEQK7iW/3ETRzCyik5ntWEcexNnGzoHL4eauwI1Bn7lSmKxw8E1pT4mlZXzciDIoykeetdx9Q7QPVWXxd/fH94phKdWw+xt8GwhpCbpXqqnZMMRQKfoimBrxZK6b7hGS0EZfLJDN/j+cBtsjOTB902H23NhfAetrVNfFofC/F9ZOR+HwvSwLN5u7mVUAmuqN0WG04bepHM3y7iX71hJMdfSk7qI8ZrfaBNnD7qrcstDoOAYC9o7LN5pnszT/iBTfeUMKi7lWreLqV7XQakFuhxwVnsY4gBfGL5HO/r3CvVKHqC1C4a11oU6R7WEI1tARpzeLqVgRzmscsIWByz8DL7cCZsjddtpSXBia/h9HxiTDZ1ipOG2NBRmus/P28EQmSI8HLljSjK56Y2SVnh4hMH8gzW8xibCKKBP1Ocbx97E8UU0oL1xlgmtCyLC5R4Xp7uc3Onz85g/wDOBADd53FzvcZF6kM7G64BxbWFce+1A1+yFN/Lgq2L4Zje8lr9/bBsP9E6DHs2hazPtQEOdwSrW/Vg9B/l2KgX7wrA7DCXbIb8MfiiF9ftgbQms3gu7/FCRttxpFxyTCTdl6hDTkekQKykWpRQfhcL8xednfihMusBdXjeTPC6aG4fe6HFg8Vt604s0+tGCu+twrnHsTRwV6V3UENVrDU0ry+IfKV4muV3c4fNzl8/PI+V+rnO7mOhxkVUPvW8R6JUGF+foo21b2FmuhbC+LYIVxbC6WG9K7g5ETvq9fvC+DClOaOnSYZ0UJ4TLdNy+RbEOydgKgkp/CJSFYF8IioP6WsGKbJgN++3J9uoc87Pb6cbRGxZCThhuu/Cgp1gt+5TiZX+Qf/gDLA/btBZhutfNVW6XyXZpgowyMfbDj4qUqMbUvaWu9HE6eLV5MktCYe73+ZleHuDB8gDnu5KY6HFBjO5GMj0wKlsfB1IUgE2lcOxYUGkw7c96Vb0nCMUBHeLZUaZX4iG/3sgUtKN3WzrlsplTh1FauqH8R2jphGN7Q/tkfVTOu3/sw5hM6SeUUnwdtpnlD/CyP0gJ0M9h8USKh/Ndh0cLO8N+jGNv4jSPtLzbSzDOltSfoyIOfnU4zN/LA7zgD/JMIEjOaIvBG1ycZzvJbICuPekufSSt0M+n5f5yTF0yXX4aewjqxfLCYV4NhHjJH2SNbeMFznElcYU7iaFOh9F3OUwxjr2Jk4kWQNlOjEomGwG9HA7+nuJlutfDC4EgD+wJ8Pqgct4qgpFJTs5xORmb5DwsW7MppVgWtnmjW5ClWSHyi3Xc53ingxs8Hs51JZlwi8E49qZOBm48ONhCae2Do6C0FD74ICaX+olvv4X+NcjTVkeaJVzrcWG/72Jefhjr3CBfZgf5wBtCFPTY46Dvj0767nSSsskio6WQUUmffNeu/Y0uasPv17H5igYZB1LRWGN1FIVF0Yz96isYPLj2a4EW5VoQDPNRMMS8YIitSiFdIXuLgyuK3AzbnURmUH/ILYruklVSXg6eGoTSDE0H49ibOBZCF5qxlr31vlbz2ArM/UT//vsbXhwMY8YA7zlokefg3Dw3m1JtlmYFWZYV4tWefl7t6Sd1kNB3n4Mj9jnpvc9BpzILB/JT84toSE2tXnircmONmohm7ODBkXlVwlaKtbbNl6Ewi0JhPg+GWW3rVXkL0Xcso5OcHLHNyZoV1i8+yOqDx2Mce6JgHHsC0JM03qOAMHa9muc6HJCeDqNHx9A4oLCwfud7PHDWWRXNMoT9ArtQaNt8GAzxkSvMJ94Qn2eEAEgBBjgd9Hc46O+06Otw0MthkVxDzHn6dP14YQNkqlSmsBDKUCwN2SwPh1ketvk2FGZZOExRpHFkmsAxTicT3EmMSHIywGHhiNhfmATZI2pukF1XUhqX1JChHhjHngDk0oLX2Uwee+kdA2W4pkRby2KC28UEt44/b7YViyKr3aXhME/7A5T59VgBOlhCV8uis8Ois2XRwbLIsYRsy8L2CuKrGFk/lFIUK9imbLbZii22zWZbsdm22Ri2yXPbFIqi4kbLA+Q6LM51JTHI6WBI5IPIMpufhoOu+nCPAAAGFElEQVTAOPYEYCAZCPAVOw87x34gIkJHh9DRYXFepPY/rBTrbZsVYZuVYZu8cJh1YZu5gRA7K/denwfih857hDRLSEVIFkgWwSP6n8VCsNCdlsIoggp8gE8pSiPOvFgpditFqAobW4vQybIYYjvpYlsc3cKij8Oim7V/NW4w1Bfj2BOAdFwcQTqfsI1LMN0KD8QhQg+Hgx4OB2dV+tk+pci3bbbYim22zW0PKsLpilGXKIqVYq9SlAG7bZsAEFBESrs1ToQk0avtZBFaWkInEdJEaClCpghtLIvWlpBjCe0t66cesBXhqbamjaihATCOPUE4iWz+xio2UEKXGLfZSlSaidDb4aB3pP5pRiQb5onr42eTwRALDr9E4ATlJLJxIHxAQbxNMRgMccY49gQhDRfDyOJ9CvA3YXkBg8FQf4xjTyDOoiN7CZpVu8FwmGMcewLRnxb0Io3Z/PCzTT6DwXB4YRx7AiEI59OZAsr4iK3xNsdgMMQJ49gTjONpTVeaM4u1BLFrP8FgMCQcxrEnGBbCVfSgEB9vk1/7CQaDIeEwjj0BGUwmA2jJLNZRTKD2EwwGQ0JRL8cuIn8Uke9EZJmIzBORGEoSGQ4WQZhEb/YR4inWxtscg8FwiKnviv0BpVQ/pdSRwNvAHTGwyRADutCccXTgLfJZSVG8zTEYDIeQekkKKKUOFAFPgehy7EpK9kukGhqOkKs77qu389ev99BpUe3iYAUFEAjAddfF1o7SUi0Je7B67yUl+6/RkBQU6EYbsZ5/VTTG92T7drBtuOSS2F3zYNm1Sz/GUm++ISgrg+TkQyN5vHBh9GNFVVa4qyMiMh24GCgGTlRK/VjNuKuBqyNPc4Hl9Xrhxk0msDPeRjQgiTy/RJ4bmPk1dXoqpWpdDtTq2EVkPlBVW95pSqm5B4ybCniUUnfW+qIiXyulBtU2rqli5td0SeS5gZlfUyfa+dUailFKnRzlaz4PvAvU6tgNBoPB0HDUNyum+wFPzwSiaPVrMBgMhoakvnrsM0SkJ7qhzCZgYpTnPVHP123smPk1XRJ5bmDm19SJan713jw1GAwGQ+PCVJ4aDAZDgmEcu8FgMCQYcXPsiSxHICIPiMjqyPxeF5Haq4OaECIyXkRWiIgtIgmTWiYip4rIGhFZJyJT4m1PLBGRp0Rkh4gkZP2IiLQXkQUisjLyt3lDvG2KFSLiEZGvROTbyNzurvWceMXYRSS1onJVRCYDfZRS0W6+NmpE5BTgI6VUSET+BKCUui3OZsUMEemN3jD/F3CLUurrOJtUb0TEAeQBo4AtwGLgAqXUyrgaFiNEZDiwD3hWKZUbb3tijYhkA9lKqaUi0hxYAoxLhN+fiAiQopTaJyJJwGfADUqpRdWdE7cV+8HKETQFlFLzlFKhyNNFQLt42hNrlFKrlFJr4m1HjBkMrFNKbVBKBYCX0Cm8CYFS6hNgd7ztaCiUUluVUksjX5cAq4Cc+FoVG5RmX+RpUuSo0V/GNcYuItNFJB+4iMQVELsceC/eRhhqJQd+JmC/hQRxDIcbItIJGAB8GV9LYoeIOERkGbAD+K9Sqsa5NahjF5H5IrK8iuNMAKXUNKVUe3TV6qSGtCXW1Da3yJhpQAg9vyZFNPMzGBobItIMmAP8rlJUoEmjlApHVHTbAYNFpMZwWn0LlGozJmHlCGqbm4hcCowFRqomWCxQh99dolAAtD/gebvI9wxNhEj8eQ7wvFLqtXjb0xAopYpEZAFwKjUIKcYzKyZh5QhE5FTgVuAMpVRZvO0xRMVioLuIdBYRF3A+8GacbTJESWSDcSawSin1l3jbE0tEpFVFZp2IeNEb/DX6y3hmxcwBfiZHoJRKiBWSiKwD3EBEVZpFiZLxAyAiZwGPAq2AImCZUmp0fK2qPyJyGvAw4ACeUkolTNcAEXkRGIGWtd0O3KmUmhlXo2KIiBwHfAp8Dz91cf+DUurd+FkVG0SkH/AM+u/SAmYrpe6p8ZwmGCUwGAwGQw2YylODwWBIMIxjNxgMhgTDOHaDwWBIMIxjNxgMhgTDOHaDwWBIMIxjNxgMhgTDOHaDwWBIMP4fkDERYiygpvoAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEICAYAAABLdt/UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADF2ElEQVR4nOydd3wU1fqHnzPb0ysJaQQIvXfpVUUsiCIWVNCfIvaGeu1XvV67Xrtiw67YFQsqVXrvvQQICSG9bbbO+f0xCwZStmSp7pPPfjY7e+bMmdmZ75x5z3veV0gpCREiRIgQpw/KiW5AiBAhQoQILiFhDxEiRIjTjJCwhwgRIsRpRkjYQ4QIEeI0IyTsIUKECHGaERL2ECFChDjNCAm7nwgh/i2E+OREt6MhhBBSCJF1otvRGIQQGUKISiGE7kS3pSGEENOEEP850e04GRFCzBVCXHei2/FPJCTsR+ERk0MvVQhRXePz+CBva5oQwuGpu1gI8YcQom0wtxEonovSdtTx6HsMt5cthBhx6LOUcq+UMkJK6T5W2zzWCCEmem6yLx21fLRn+bQay4yeTsN2IUSV53i8L4TI9HzfQQjxu+c8KRVCrBRCjKpnu0YhxAtCiBzP75YthPjfMdzVRiOEGOK53g6da/uFEI+d6HadqoSE/Sg8YhIhpYwA9gLn11j26THY5LOebaUBB4Fpx2AbgXJLzeMhpVx8oht0CrITGCeE0NdYNgHYdlS5r4ELgCuAaKALsBIY7vn+J+APIBloAtwGlNezzfuBnkBvIBIYAqxq5H7U4qh9Cga5Na69AcD/CSEuDPI2/hGEhD0wjEKIj4QQFUKIjUKInoe+EEKkCCG+EUIUCCF2CyFu86VCKaUV+Azo6K0eIURvIcRiT88tTwjxmhDCWFe9QogBQoh9nh6REEK8JIQ4KIQoF0KsF0J09GfHj3689vRKF9T4LIUQkz09z1IhxOtCCFHj++uFEJs9x26TEKK7EOJjIAP4ydNbu1cIkempS1/jePzo6bHuEEJcX6POfwshptf3m9SxDy97jkm5p+c70Ne6hBDdhBCrPN99CZi9HLIDwHrgbM/6cUA/4McadY4AzgRGSymXSyldUsoyKeXrUsr3hBAJQHPgHSmlw/NaKKVcUHtzAPQCvpNS5kqNbCnlRzW2F/C55flNbhZCbAe2e5aNFkKs8RzPnUKIkTXa0kwIsdBzvH737ItXpJS7gUVA+xrb7ieEWC6EKPO89/Msv9SzH1Gez+cIIQ4IIRI9n6/1nHMlQoiZQohmnuWNvh5OWqSUoVc9LyAbGHHUsn8DNmAUoAOeApZ4vlPQelmPAEagBbALOLue+qcB//H8H4Em7H95qwfoAZwB6IFMYDNwR416JZAFjAT2Ab09y8/21BsDCKAd0LSets0FrvO2HJgILDhq2zM828gACoCRnu8uAfajCY/wtLFZXcfas18S0Hs+zwfeQBPSrp56h3n7TerZtyuBeM/xuxtNfM0+/L5GYA9wJ2AAxgLOQ79hHduZCCxA64V/6Vl2E/A28B9gmmfZ08C8Btor0ER0BnAhkOTlvH0I7WnzJqATIGp8F4xz6w8gDrCgPRWUod2YFCAVaFvjXNkJtPaUnQs8XU+bhwA5NT638pwrh37jOKAEuMrTtss9n+M933+Kdj3FA7nAeZ7lo4EdaOe63nNsFvl7PZxqrxPegJP5Rf3C/meNz+2Bas//fYC9R5W/H/ignvqnoYlIKZq4/Ai0DKCeO9B6aIc+S0/5PUDHGsuHoZkAzgAUL/s+F7B62lYKrKqx3JuwD6jxeTrwL8//M4HbfTnW1BB2IB1wA5E1vn+Kv4Wx3t/Ex9+5BOjiw+87yCMaNYVyEd6F3QLko5lYlgD9OVLY3wG+8NLGNOA1NKFU0W50reopqwNuBhYCdk+bJwR4jtZ1bg2r8flt4KUGzqGHany+CfitnrJDPPtVimZiksC3gNHz/VXAsqPWWQxM9Pwfg3YzWw+8XaPMr8D/1fisoJ3XzfDjejjVXiFTTGAcqPG/FTB7TAbNgBTPY2ypEKIUeABIaqCu56WUMVLKZCnlBVLKnd7qEUK0FkLM8DxulgP/BY5+xL0DmC6l3HBogZRyNpo4vA4cFEJMPfT4Wg+3edoWI6Xs7u2g1ODo4xPh+T8dTZj8JQUollJW1Fi2B613WN82D/0mtRBCTPE8mpd5jm00Rx6/+upKAfZLj0LUaEeDSCmrgZ/ReovxUsqFRxUpApp6qSNHSnmLlLIl2vlRBXxUT1m31Mw4/dEE70ngfSFEO4Jzbu2r8b+337S+c6Eucj3nWpSn3dXAh57vUqh9rA+fA1LKUuArNFPmCzXKNANerrGvxWi989QArodThpCwB5d9wO4aYhgjpYyUUtbpvdCIet4EtqD12KLQLkxxVB2XABcKIW6vuVBK+YqUsgdaT7Q1cI+fbasCwmp8TvZj3X1oTyR10VCY0VwgTggRWWNZBtqjul947On3AuOAWCllDJop4ejjVxd5QKoQombZDB83/RGa2acuV9k/gd5CiDRfKpJS7kMTI6/2YClltZTydbSnkvYE59yq+Vs19JsGjJSyDM00eb5nUS6aSNfk8DkghOgKXAt8DrxyVPtuOGp/LVLKRZ7tNPZ6OCkJCXtwWQZUCCHuE0JYhBA6IURHIUSvINcTifa4Wik098gb66gjF82j4nYhxI0AQoheQog+QggDmkDb0B5//WENcJEQIkxovvL/58e67wJThBA9PANXWYcGstBMFS3qWskjZIuAp4QQZiFEZ892A5lPEAm40Gz0eiHEI4CvvbTFnnVvE0IYhBAXodmYfWEemh361aO/kFL+iWa3/s5zbPRCiEihDUJfK4SIFUI85jleimcA8lo0s04thBB3CG2w3OKpa4Jnv1cTnHOrJu8B1wghhnvaliqC4LIrhIgALgM2ehb9ArQWQlzh2adL0cR4hhDCjHYuPABcg3bzvcmz3lvA/UKIDp56o4UQl3j+D8b1cFISEvYgIjWf6/PQBvd2A4VoYhYd5HqmoA3IVaDZZ7+sp569aOL+L6F5skR5ypegPcYWAc/50zbgJcCBJsQfog1a+YSU8is0s8BnnrZ/jzYoBprN/CHPI/OUOla/HM3ungt8BzzqEUR/mQn8hmZb3YN2Me9rcI2/2+8ALkKznRcDl6LZgX1ZV0opZ0kpi+spMhZNvL5Ee4LYgOay+Cfa8c70/F/u+c7uaUddWNHMEQfQzp2bgYullLuCdW7V2K9laGL6kqfd86jds/aVFOHxY0f7beKA8Z7tFHnafTfaeXsv2gBpIdq5s09K+aaU0o42OP4fIUQrKeV3wDPAFx7T0gbgHM/2gnE9nJSII82FIUKECBHiVCfUYw8RIkSI04xGC7vH5rlMCLFWaJM5QtOAQ4QIEeIE0mhTjMdDIFxKWekZhFiA5qtc58BOiBAhQoQ4tjQ61oPHp7fS89HgeYUM9yFChAhxgghKEB+hhVZdiTZF/HUp5dI6ykwCJgEoSniPxMSTIohhg6gqKAroTurAscGjoEB7j4truNzpSlGR9h4ff2LbcaIoKgIp/1m/v6r+fZ2f7FRUgMOxslBKmeitbFC9YoQQMWiuaLfWnPF4NMnJPeWBAyuCtt1jRW6u9p6ScmLbcbwY6AmF9ddfJ7YdJ4reHo/0ZctObDtOFF27au9r1pzIVhxfTqVrfMIE+OgjsVJKWW+Au0ME9T7lmdY7By34VIgQIUKEOAEEwysm0dNTRwhhQZtdt6Wx9YYIESJEiMAIho29KfChx86uoAWemhGEekOECBEiRAAEwytmHdAtCG0JESLEKYTT6SQnJwebzXaimxIwbk/ixbKyE9uOozGbzaSlpWEwGAJaP9iprUKECPEPIScnh8jISDIzMzky4OWpg8OhvRvrzD92YpBSUlRURE5ODs2bNw+ojlPAySdEiBAnIzabjfj4+FNW1E9WhBDEx8c36kkoJOwhQoQImJCoHxsae1xDwh4iRIgQpxkhG3uIfwQqKg4c2LHjwIETB06cuHCj4kZFJXGgNllvCyAQKOjQoUOPHiMGDBgxef4MBDaoFSL4PPnkk3z22WfodDoUReHtt99m8eLFTJo0ibCwMO8V1GDatGmcddZZpJwKM5YaICTsIU5p3Lgpp4wSSimjlHLKqaCcSs9fFVVUY6WaaqSXEEY9PJkyP/Nhu3r0WLAQRhjhRBBBBJFEEkkUUUQRTQyxxBJOOMKnrHunOc8+C716wdChfy+bMweWL4d77w242sWLFzNjxgxWrVqFyWSisLAQh8PBpZdeypVXXumXsLvdbqZNm0bHjh1Dwh4ixPGgmmryyaeAfAoopMjzKqUU9ahsZmbMRBBJBBE0pSkWjwSbMWPGhBETRozoMXj65Dp0KEy4ShPgjz4GicSFGzduXDhx4cLh6fPbsFNNNdVYsVJFFVb2spdKKnDhOqItRozEEUc8CcSTQCKJNKEJiTRB/0+6/Hr1gnHjYPp0TdznzPn7cyPIy8sjISEBk8kEQEJCAq+88gq5ubkMHTqUhIQE5syZw4033sjy5cuprq5m7NixPPaYFl28detMxo69lNmz/+Cuu+5ixYoVjB8/HovFwuLFi7FYLI3e9RPBP+jMCnGqYMVKDvvIZT+55HKAPEopPfy9AQPxJJBCKh3pRBxxRBNLDNFEEoWRwHzXyrdq74H21SSSaqopp4xSz18JxRRSSB55bGbT4ZuQgkICiTSlKU1JIZU0mtI04Laf9Awdqon4uHFw443w5pt/i3wjOOuss3j88cdp3bo1I0aM4NJLL+W2227jxRdfZM6cOSQkJACauSYuLg63283w4cNZt24dnTt3BiAuLp5Vq1YB8O677/L888/Ts6fXcCwnNSFhD3HCKaGEbHaTzW72sZdCCgHNzh1PPGmk04s+JJFEE5KIIgrlJBz3FwjCPH/JNK31vQsXxRRzkHwOcIA8ctnFTtayBtDEPpmmZJBBMzLJpDnhhB/nvTiGDB2qifoTT8DDDzda1AEiIiJYuXIlf/31F3PmzOHSSy/l6aefrlVu+vTpTJ06FZfLRV5eHps2bTos7Jdccmmj23GyERL2EMedaqrZyQ52soNd7KSEEgAsWEgng650J410UkjBjPkEtzZ46NHTxPPXkU6Hl1dQwX5y2Mde9rGPlaxgCYsBaEISLWlJS7LIpPmp3aOfM0frqT/8sPY+dGhQxF2n0zFkyBCGDBlCp06d+PDDD4/4fvfu3Tz//PMsX76c2NhYJk6ceISPeHj4aXTz9BAS9hDHhRKK2cQmtrKFvexBRcWEiea0oC/9aU4LEkk8KXvix5pIImlLO9rSDtAGhHPZzy52sZtdLGcZi1mEHj2ZNKctbWlLO6KIPsEt94OaNvVDgl7zc4Bs3boVRVFo1aoVAGvWrKFZs2ZkZ2dTUVFBQkIC5eXlhIeHEx0dTX5+Pr/++itDhgyps77IyEgqKioCbs/JQkjYQxwzSihhPevYyHryyAMgiST6M5DWtCaNdHT8Q7KY+IEOHelkkE4GgxmCEyfZZLOdbWxjKzP4iRn8RBrptKcDHelEDDEnutkNs3z5kSJ+yOa+fHmjhL2yspJbb72V0tJS9Ho9WVlZTJ06lc8//5yRI0eSkpLCnDlz6NatG23btiU9PZ3+/fvXW9/EiROZPHnyKT94GtREG74SSrRxchKMRBs2bGxgPWtYzV72ABwWoPZ0II7jm55H4sZBGQ7KcFKGk0pcVOHCioodN3ZUnEhcfPKpNrA5frxAoENBj4IBBRN6LOgIw0AEBiIxEIWRGPTH2Z1RIimkgM1sZiMbyEM7STNoRhe60pFOWAhMjPxNtLF582batWsX0LZOFk7GWDGHOPr4+pNoI9RjD9FoJJL95LCcZWxgPU6cJJLICM6iE52JJfYYbttNNflUkYOV/VjJxUY+1eRjowAHZXCUO+TRCHQIdPQco4AU7EMicaPiwlv6XgUjJhIwk4CFJCwkE0YKYaQSTgbGIJtLBIJEj7vkIAZTTBHrWc861vITP/ArP9OO9vSgF81pHvKh/4cSEvYQAePGzQbWs4RF7Gc/Rox0pgs96EkqaUEXFRdWytlGOdspZycV7KSKvag4DpdRMGEhGQtJRNEKE3EYicVELAai0BOBnnD0hKHDjA4TwmPX7z1Eq+NQajzpEXg3NtxU48Lq6fFX4qAUB6XYKcZOETYKKGYdNmZR80ZiIJoIMomkBVFkEUVrIshECdKlF0c8gxnCIAaTRy6rWMk61rKedSSQQG/OoCvdTqtB6BDeCQl7CL+xY2clK1jEQsopI4EEzuV8utA1qAJSTT7FrKWE9ZSykUqyOdSDNhFHJC2JpzsRZBBGOmGkYiIuaDcUgUCgRyECAxE+raPipJp8rOynir1UsocKdrOfX9mL5omhYCSK1sTSkVg6EUsnDEQ2uq0ppJJCKmdzDhvZwFKW8AszmMUf9KAnfelH9Mluiw8RFELCHsJnHDhYyhIW8hdWrGTSnAsYTRatguLN4qKaIlZSyHKKWIHVYz/WE04M7UlmMNG0PdwTPxlRMBBOGuGkkUifw8slKlb2U852StlMKZvI5mt28wUgiCKLeHqQQC9i6YTSiFg0Bgx0pRtd6cZ+cljMIpawmCUspgtdGchgEkgIwt6GOFkJCXsIr7hxs5LlzGUOlVSSRSuGMJQMmjW6bjvF5LOAgyykiNVInOiwEEc3MhhDHF2JpMVhc0mwkNIJVCCxAjYkTjJbaCYUtxSADoERsCCIAMIQIvA2CBTCSSecdJoyTNsODsrYTDFrKGLVYaHXEUYCvWhCP5rQz+enhbpIJY2xjGMEZ7GIBaxgOWtYTWe6MIRhxBMfcN0hTl5Cwh6iQbazjV/5hUIKaEYml3FFowXdhZUDzCOPWRSxGlAJI4VmXEgi/YilQ8A9VimdqOxCZRdS7kElB8l+VHkASQGSYiTFQHWtdd/9VHuvqnOsVQGiEcSikICgCUIko5CGIANFZKLQEkGSz7G0dRiJowtxdCGLCbioppjVHGQxBSwhn3kI9CTQk6YMowkD0Afo8RJDDKM4j0EMYSF/sYylrGcdPejJUIYT0YibR4iTj5Cwh6iTMkr5hRlsZjPxxHMFV9KGtgHbryWSUjaxj5/IZx5ubISRQkvGk8wQIvz04JBS88VxsxK3XIsqN6CyGZVdcEQgLgOCpig0RaEZQnRHEIsgGohAEAaYERi5/wEdUgqefkoFXEjsQDWSSs+rRHvJQlSykXIxkqJDO+ghCoU26ER7FDqiE13R0RUhorzukx7L4V66RKWMLRxgHgeYRwH/RYeZJAaTzrnE0DGg3yKCCM7mHPrRn7nMYSUrWMdaBjEExdAP1XlqSUJ+fj533nknS5YsITY2FqPRyL333suYMWOYO3cuzz//PDNmzKh3/See+Dfh4RH8619Tgtqu3NxcbrvtNr7++uug1usrp9avGOLYI1SWsZzf+Q2J5EzOpi/9Ao5EqOIgl9ns4Rsq2IEOC00ZTirnEEN7n8VJSjcq63DJebjlItwsRXLA862CQhYK7dGLMSi0QhEtUchEkOyzCWX+bO3d4IfFRcpqVPYh2Y0qd+BmG6rcikv+huRDj+ALFNqiE2egoz96MQhFNPzUI1CIoT0xtKcNN1DCBnL5nTzmkMtMImhGOqNJ5Wz0+BdzHCCSKM5nNH3px0x+4w9mMuTrFax/6gIgy+/6fOHT9Z/y4KwH2Vu2l4zoDJ4c/iTjO40PuD4pJRdeeCETJkzgs8+0YMt79uzhxx9/DFaTAyYlJeWEiTqEhD1EDYwJZbS7/1tmsIOWZHEBFwbsg+6imn38SDZfY6eQCDJpz52kcKbP5gRVFuCSv+HiN9xytseEAoLm6MUwdPREET3R0Qkh/Be3YCCEBR2tgdYgzj7iO1Xm42YVqlyFWy7DKb/HyQcgD+3DCPTibPQMQ4j645UIFOLoTBydacvNHGAOe/mRzbzCdt4jnfNoxljMAQyIJpDIeK5iO9t5U/xE37c+4Gu6cA7nBjUA2afrP2XST5OwOq0A7Cnbw6SfJgEELO6zZ8/GaDQyefLkw8uaNWvGrbfeWqtscXEx1157Lbt27SIsLIypU6ceDgK2fv1a+vbtS2FhIffeey/XX399g9vNzMzk8ssv59dff0Wv1zN16lTuv/9+duzYwT333MPkyZPJzs7mvPPOY8OGDUybNo0ff/wRq9XKzp07GTNmDM8++2xA++wrIWEPAcA2ttLrg6/RmZycz2h60iugR303dvbyPbv4HCdlxNGNTtxLPD19qk+V+bjkNzjlt7hZCKgIktGLc9ExDL0YjCJSfW+QlOAsBNs+sOeC4yA4CsBZDK5ycFeCuxqkg5eu8phwVimgGEAxgy4MdJGgjwFjPBgSwdQUzKlgSgNd/e6dikhC4RwQ53iaoqKy0fPUMQen/BynfAcwoWcEenERBnE+QtQ/qUmPhTRGkcYoj2fNV+zmK7L5ljTOoQXjsdDE9+PjoRWtmDv2Vlr93zx0N8xnJzs4n9G0p4PfddXFg7MePCzqh7A6rTw468GAhX3jxo10797dp7KPPvoo3bp14/vvv2f27NlcffXVrPFMsV2/fh1Lly6hqqqKbt26ce6553pNtJGRkcGaNWu48847mThxIgsXLsRms9GxY8cjbjSHWLNmDatXr8ZkMtGmTRtuvfVW0tPT/d5nXwkJ+z8cFZV5zGUus3EUJrHhkct48rNEv+uRqOQxi228g40C4ulJK64hhvbe15UOXMzAqU7DxR+AikJ7jOJ+DOI8FLp5H5CUKli3Q8VaqNwAlZvAug2sO0G11i4vDJpY6yNAsYBiJDbccznYVZAuUG3grvLcAOoJDGVKgbAsCGsNER0gohNEdtVuAkdvUijo6IROdAJuQUoHbhbgkjNwyh9xyZ+xSSN6zsWgXIWesxGi/ks0hvZ05VGs5LKLz8nhF3L4lQzOpyVXYfTTZ111GNj65gheuaEj3/INX/AZ3ejOKM7DhMmvuo5mb9lev5YHws0338yCBQswGo0sX778iO8WLFjAN998A8CwYcMoKiqivLwcgPPPH43FYsFisTB06FCWLVvGhRde2OC2LrjgAgA6depEZWUlkZGRREZGYjKZKC0trVV++PDhREdrN+z27duzZ8+ekLCHODY4cfItX7ORDXSlGy/fMBrV4b83SgW72MhLlLKBKFrRifuJp5vX9VSZh0NOxSnfRXIQQSpGMQWDuByd8HJDcFuhdBGUzNfey5bVEF8FwlpCWBuIGw6WTDBnaCJsStJ63bowOOpmMfF27f3QzNMjG+sCV6nW47fngS0HbHuhehdYd8DB72D/u3+XN2dCzBkQ0x9iB0FERzjK1i+EET3D0IthmOQLuFmGS36JU07HpX6HoCkGcQ1GcT2KqL8HGUYKHbmbllzJTj5mL9+Tw2+05EoyuRjFz1C/SSQzicnMZTbzmcde9nIpl9UZY95XMqIz2FO2p87lgdKhQ4fDYg3w+uuvU1hY6HeSjKM7Db54NR3K2KQoyuH/D312uVz1lgctzHBdZYJJSNj/odiw8Skfs5c9nMVI+jOAlxz+mV5UnOzkE3bxKXoi6Mg9pDLSq8+5Kndil8/jlJ8ATvScg0GZhJ6zEKKBaI9V26DgRyj4BUoXgnQACkR2gaZXQnRPiOwG4e0aNJEEhKIHY4L2iqjnpmPPh8p1UL4GypdByQI48IX2nSEB4kdAwijtdVSPXgiBnj7oRR9M8hlc/IJTfQ+HfAqHfBaDuASjuNvT268bC0l0ZAqZXMJWprKNqeTwC+25gwR6+LW7OnQM50xakMXXfMlU3uICLqSrDzfsunhy+JNH2NgBwgxhPDn8yYDqA63n/cADD/Dmm29y4403AmC11vF0BgwcOJBPP/2Uhx9+mLlz55KQkEBUlOap9NNPP/DQQ/dTVVXF3Llz60zUcaoREvZ/INVU8xHTyCOXsYyjE539rqOKfazlCcrZTgpn0pabvQa8UmUOdvkfnPIjQI9BTMQkbkcRDXhhWHfDgU/hwJeaiQW03m/GbRA/XOsR6xs3HT9omJLAdCbEn/n3suo9UDIPiv6Eot89Qq9ovfjkSyFprHazqIEQBgyMxqAbjSp34ZCv45DTcMrP0XMeJuVhdKJrvc2IoBk9eJIClrGZV1jBFFI4m3bc7HfoguY050Zu4Su+5Fu+5gB5nMVIv2caH7KjB9MrRgjB999/z5133smzzz5LYmIi4eHhPPPMM7XK/vvf/+baa6+lc+fOhIWFHZGMo1OnzgwdOpTCwkIefvjhw/b1rl27HrbDHyuuu+46Jk+eHPRUfI0O2yuESAc+ApLQnLumSilfbmidUNjeE4cDBx/yAbns51IuP5zcAXwP23uAeaznGRQMdGQKSQxssLyUVuzyeRzyBUDFKK7HKO5BEfU82qsOyP8Wct6GkrnaspgBkHQJNBkNlsbPeK2L3r219zpNMcFAqlC+Cgp+gPyvoWoLCD0kng+p10PC2bXMNYdXlSU45BvY5StAKXpxCWbxBIpo3uAm3TjYyUfs5nOMxNGJf9Xbe28obK8bN7/xC0tZQlvaMZZx7Ny8MxS29xjSmLC9wZin7QLullK2B84AbhbCm4E0xIlAReVrppPDPsYy7ghR9wWJZDvTWMO/iaA5/XjHq6i75Cwq1W445JPoxQVEKBswKy/WLerOMtj9LPyVCesvB9seyHoCBmZD77+g2W3HTNSPC0LRzEVZT0C/TXDGasi4XTPZrB4FC7Jgz//AVXugVohYTMqDRCpbMYr7cckZVKqdsan/Rsq6zQ+gzW5tzXWcwRvoCWcFU9jKO6i4/Wq6Dh3ncj6jOI+tbOFDPkB6CWkc4sTRaGGXUuZJKVd5/q8ANgN++KOFOF7MYRZb2Mw5nEsHOvq1rsTNBp5jJx+Sykj68FKDbnVSVlOt3oZVHYXAQJjyO2HKx3VPzHFVwq4nNUHffh+Ed4BuP8OAHdDioVNbzOtDCIjqCm2eh8E50PlLMKXC1jthfjPY+bh2o6u1Wgxm5d9EKBsxiItxyKeoVLvjknMa3Fw0bejHW6RxHrv5jBXc44lV7x9n0JdxXEYu+6mkArefN4gQx4eg2tiFEJlAN2BpQ+Xs8VZ+YC/9aUJCKE70cWEnO5jHXLrTgzPo69e6EjfreJo8/qQlV5HFNQ36pKtyB1b1MlTWYxS3YRKPI0Qdk5KkhLxPNDG352kmiZaPQpR/A32+74iEkkLI2wMFuVBSAOXFUFUBDht3up2AhBf1YDSBJRwiYyAmAeKTISkNktLBEHjkxTpRjJA8TnuVLoXdT8HOR2Hvy9DiYUi/SStTcxWRikVMwyCvwabeiFUdiVHcjEk8WfexBnSY6cjdxNKRjbzAYibTg6eIINOv5nagIybMFFBAoSwgQSSGUhwGmcaayIMm7EKICOAb4A4pZXkd308CJgFEdM7if2zif2yiJZH0pwn9aUIWUSihjC9Bx46d7/mWBBIZxXl+rSuRbOIV8viT1lxPC65osLxLzseqjkMgCFN+RH/UbMzDWHfCxuuhZA5E9YYuX0NMP7/a1iBOB2xaCRuXwdY1sGMD7NmqiXhdmMycr3rE8ysXOO3grqM3qiiQ2hyat4fWnaF9T+h0BiQkB6fdMX2g2/eaLX7bfVoPPudtaPs6xA+rVVwvBhOurMAuH8IhX8cl52NRPkcnWtW7iVTOJoJmrOQBlnArPfgvsdTvbVMXWWRhN9spKyqDeEGi+GcmIj8WSCkpKirCbA680xuUnKdCCAMwA5gppXzRW/nk5J5y8YE5LKWQxRxkAyWoQBwm+pJIf5rQlTgsJ9hp53QZPP2d31jAX1zHpAYjM9Y1eJrN12zhdZpzGW24ocHtOOWPVKvjUWhOmPI9imhRd8Hcj2HzjSB00Po5SL2u3kFDv8jeCvN+hMW/w5oFYNcSWxCfBFmdoHk7SG8JTTOhSQrENoGoWAiLAEWpPXjqsENFqdazLzwA+fsgZ5d2g9i1CbK3/C3+Ga2gzwjoN1J7twQhxIGUUPgLbLkdqndqA6xtXqjXC8gpf8OmXoPETZjycf03VQ9WDrCCe7FxkO48yYiu2pOSr44gTqeTLTlbqLRVoMdA+HHO/xoMDv18upPsgcNsNpOWloahxtPhcc15KjRv/veAzb6I+iGaE0lzIrmM5pRgZzmFLKaA2eTxMzkYUOhJPH1pQh8SaBJguNJ/OuWUsYTFdKWb3+F2S9nEVt4kiYG0puH4GU75C9Xq5Sh0I1z5ESHqSIShumDr7bDvDc3dr9MnYG7k7LuifPjpQ/jlE9i+XlvWsgNcfAN0Gwidz4AmAQ75GE3aTSE+CbLqGJOw27SngTULYcUc+Plj+OpNMIfBoPPhvKuh39mBq4YQkHguxA3TTDPZL2hPOJ2/hKjaU+kNYiQ6ZQlWdSxWdQxm8RpG5dp6qw8jmT68zHKmsIoHaNHzGXat6Opz8wwGA52ad2INq/mWr+lKN8Zw8Skl7qdL5+1ogtEl7g9cBawXQqzxLHtASvmLrxXEYuIsUjmLVBy4WU8JiylgAfkspgCAVkTRj0T6kEgbokMmGx9ZwhLcuBlK7cf4hnBjZx1PYSKRjtzb4KQjt1zl6al3Jlz5ue5YJ+5qWHsJFP4MzaZAq6e0ST+Bsm0dfPgs/D4dXE7o3Bfu+R8MHQNNA5/N6Bcms3bj6HwGXH23Zv5ZOQ/+/AZmfQO/fwnJGXDJjdorMsDE1joLtH5WG4NYdwUs6w/t34GUK2sVVUQzwpU5WNXLsckbkWoFJuX2+neBWHrzAsu4g6v/9yBTr3sJaO1X87rSjRJKmMMskkimPwP83cMQQSYophh/MRh6ym7dfPFjl4jmVegHHEQ36CBKp1KEAmqhCff8RNyLE3Evi4fq2gIhJdQzCc1nnE5tnCzYY2VHI6W2DSXIJkqhczNkxjOUrs9g9b21ReBoNmyAzp1hyRLYySds5z168nyDsxalLKFS1WwY4coCFJFUu5Bqh9UXQNEf0O4NSK8dJMlncnbBy/fBn19DeCSMvhbGTobmbQOv00NQ/didDpj3E3z1BiybDRHRcNXdcNVd2qBsoDgKYO04zb8/60lofn+t0Aigxd+pVq/GxXeYxf8wKjc2WK2NAr7LvRVF72Z0kzcw41+8IInkSz5nM5uYwLW0oB4z3EnGqdRjP95+7McQgdwdgfPjFtiuPwPr2cOwPdIZdW0M+rPyMD+3mrDfZ2N6cSX6sXsQSX9nxbFawWZr3NYNBtAfBzN/ZSWU1xpubjyx3bIxxVeR+4tv08BVFaqqwEklu/mCJvT3OhXdJu9CkkuY8nndoi6lNkha9Dt0eDdwUXc64Z3/wEXtYOGvMOkR+GWP1ksPgqgHHYMRRlwMb8+Cz1ZCr6Hw5iMwujXM+jbweo2J0GMmNB0POx7UTDR1IIQRi/Ixes7HJu/EKb9vsFoziUy77b+YIypZzaOoOP1qlkAwhouJI55vmE4VVX6tHyLISCmP+yspqYdsLE7plqtkoXxZbpRXyHlyiPxVDpG/yuvlQvmu3Cq/21wiV6xUG72d48Fvv2mvYPOn/F0+Kh+SNmnzqXyXLtprt5wuf5VDZJnc1mB5p7pAlrmMstr9aP2F9r4p5Uyk3PGYr82uTf5+Ka/uK2VXpLx3nPb5GNCrl/Y6ZqxeIOWlXbX9eGC8lJXlgdeluqXccK12bLNfqr+YapWVroGyzBUjXeqGBqvs0kXK8XfNlb/KIXKzfCOgZuXK/fLf8mH5mfxYqvLkv/7279depwJXXy0lsEL6oLGnbKwYPQrdiKebJxnvXipZwEGWUsBn7EZtu4tIp4n+JNCfJvQg/oR72RxvDnCABBL8Drmayx9E05Yo6neZA7CrjyNoikncW3cB2z7YNkWLndLiIb/acJidm+DGM6GyDJ7+As6+NLB6Tga69oePl8H7T8HUx7SB19d+heQABpCFAu2ngrMUtt6lBT5LqO0FI4QFizKdKrU31eoVhCtL6vVzB9gwazDpXEA200mkL/F09atZTUlhOGfyO7+xnnV0poufOxYiGJzkphjfySCCK2jBy/ThO4ZyeXYnWlbEsoB8HmY1o5nNvazgB/ZSQCNtNKcIZZQR42cGpIi4YsrZ7jVUgFtuxs1cjOKW+rMX7XhEi2vefmpg7ow5u2DSUC3GyoeLT21RP4TBADc8Aq/P1Nwnr+kPubXD2fqE0EGnj7U48OuvAvvBOospIhmL8j4qW7DLx71W25YbCSOFjbyAisPvZvWjP2mk8wszQiaZE8RpI+w1icJIz+JUrsruyncM43l6MZp0crHyPzYxjrlcz0LeZzvbKDttY164cGL0MxZ3avttAMR4CTngkt8DAoOoJzqf/YA2qzTtBi0eur/YbXDXheB2wTtzoZV/E2hOes4Yoe1XZTncck79E6e8oQuDzl+Aqwy23V1vMb0YgUFcg0O+jFtubrhKzLTnDqzkkI3/eTsVFEYzBhs2/uR3v9cP0XhOS2GviR6FHsRzM+34mIF8wAAm0RoLej5lJzewmEuYywtsYBkFOE6j2Bd69Dj9HASLS80DIJy0Bsu55HwUOtcfoTH/K623nt6wN0a9fPC05pf+xMeQ2SawOk522naDF77VJjy9WL8oeyWiA2RO0W6k5avrLWYSTwBh2NXHvFaZQC8S6ccuPsOJ/zedJJLoQ19WsZJc9vu9fojG8Y8yOgsEmUSQSQSX04JSHCyhgCUc5E/ymEEOZnT0JJ4BJNGHRGL87PGeTEQRTSklfq1jCtd8RPVeEhmrbEUvGvCNL54DlhYQHoDHSlUFfPIiDL8YBo7yf30fKdm1i/Wffcb+Zcso2bWL4du0Y/Vm53jiW7cmrW9fOl95JRFJdXj7BIvew2D8nfDxC3DZrYE/mWTeC/teh+znoPNndRZRRCJGcTMO+TSq3NFwHHygNdeykOvYw7dkMcHvJg1lGGtZzUx+YyLXnlITl051Tvsee0PEYGQkqfybbnzPMJ6mB2eTyhbKeJr1XMRsbmMp09nNvlPQVphMUwoowI7d53VcDu1G5s22KilCkFB/gaotWu7PQPjrZ03cx98R2PpesFdU8O2VV/Jqq1bMefhhinfsIL5VKwqiR1IQPZKYzEwOrFnDH1Om8L+MDP647z7UuuLGBIv/ewDMFpj+RuB1GKIhZQLkf1NnVMhDGMVkQIdDvu+1ykhakkg/9vAd7gBs7WbMDGEou9nFTnb6vX6IwPlH9dgbwoSOPp6ZrbfRjh2Us4iD/MVB3mQrb7KVZoTTnyT6kUg7Yk762a8taMl85rKdbXT0MchTWb42MaWaA16y7ejRQvHXg6sUDHWEFfCFDcs0oevsXxRKX5CqypdjxpA9dy59p0zhjNtvJ9IzO+UFzwSld3/U3gu3bmXh00+z6NlnUZ1Ozn7R54gZ/hEdp8WYWTyzcfUkXQJ7X4HiWZB0UZ1FFNEUPSNwym8wySe95vdsxkUUsIh85pPCCL+b1JPeLGQhs/iDlrQM9dqPE//oHnt9KAhaE81EWvEe/fmcwdxGO+Iw8SW7uYWljGMuL7KRJRTgQD3RTa6TTDKJIpoVLPde2EPuFs3FsZSGB9gUmqLKnAYKWLSE04FQWghxScckMlPRtm3snjWL4U89xZnPPHNY1OsioU0bRn/wAa3OPZf1n9Vt3ggaLTvC/t3aLLFAie6tZWQqb3hWt16MQpKNZJfXKuPphpkk8pgVUJP06BnEYPaTw052BFRHCP8JCbsPJGNhDM14kd58xzAeoDPtieEPcrmflVzEbB5nDbPJw9pQL/Y4o6DQhzPYxU5y2OfTOkX7UrCQzEEWNVy36Iyb5fXHjbZkgnWrny32EBGlxUk/BuEuTNHRKAYD+xYuxFld7bV8ztKl5K5YQVzLlkFvyxG4XY2PKaEYtaBqtr0NFtMJ7UnIreXHaRCBQjKDKGQlrgDNkd3oThRRzGdeQOuH8J+QsPtJJAbOJIXH6cYPDOMpejCYZNZQzBOs5UJm8y9WMoN9lAZglww2velDBBH8zAxUn54sBE0ZRiHLsXKg3lJ6zkSSg0o94hDTX/PQcBT53+i23TU3wG3r/F/XC5FNmzLi6afZ+sMPvNa6Nb/fcw/bZsygaNs2jM6DmO372LdoEUtfeYVPzzmH9/v1Q2c0cu5bbwW9LUeweSU0axMEcTdrsXkaKuIJ8qX6aPduQj8kToqo3+OmIfTo6ccAstnNPhq+6YQIDiFhbwRGdJxBIvfQka8Yyiv0YTTp7KWSF9jIxczmdpbyNdknbFKUCRMjGcV+cliAlyzVHjK4EIGOXXxcbxmDuBCw4JBv110g6WJAhbz666iXQeeD3qCFwD0G9L3rLq6ePZsmHTuy9OWX+fz883mtTRvOXJPE8HUZvN+/P7/dfjtF27bR/1//4sb160nqdAz96PfthKV/wpDRja/LWQT6hqNIajNPI5D4dtONoQMKRopZG3CzetATM2YWsTDgOkL4TmjwNEjoEHQilk7EchNt2UkF88lnAfm8zhZeZwttiWYQSQwimVSCkIjBRzrRmS1sZjZ/kkIqWTTs5mYmkQxGs4dvSed8oqntsihELEZxDQ45FaO8G504ytc8sgvEDIDs5yFtkjaRxlfiEuGi6+Gbt2HMddDBazA7v2k+dCjNhw7FabWSt2oVJbt28Z9HKlGFgadfTyWpc2ei0hr25Q8Kbjc8ORlMFrj8tsbVZT8AjoNaeAGvKODj2JCCgShaUU6ApjW0DkZPerGQBZRQTCwBDqyH8IlQj/0YIBBkEcW1tOJ9BvAhA7iOVkgkU9nGlcznOhbyMTvZS+Vxac9oxpBIItP5nAPkeV0niwmYiGMdT+Giblu0UdwPhGNTb0XKOkSi1X/Bvh92ep8QU4ub/wMJTeHeS7RkGscIQ1gYGQMG0OXqq9nT5Cb2JV5Pq1Gjjo+oqyo8dbPWW5/yEiTWM9nLVwo87jxxDcfel9IFVAJRPlcdSUsq2N2oWdp96ItAsJjFAdcRwjdCwn4cyCCC8bTkLfrxOYO4ibaY0fE+25nAAt7tt4AFLXew5xiKvAkT47kaEyam8T4HGrCfAxiIoDP3U8U+NvAsso7enSKaYBbP4GYeDvl87UpiB2rp3LKf02Kx+0NUrDYrs/ggXD8U8hvwwDkVqaqAf12mPZVMvE97MmkMUoW9r0JER6/zB1R2ASqKH0msw0jFRSVOAo8vHU00nejMKlZg+4fEazpRhIT9OJNMGJeQyWucwXSGcCvtMDsNLGi5g4ks4BoW8BE7jklPPoYYJvJ/6NHzPu+QTXaD5ePpTmuu5wBz2crUOntrBjERvRiHXT6CU/5Yu5I2L2lT3teOg4oN/jW4Qy949RctWNb4nrDiNPGqWPw7XNpFy7J053Nw21N1Jsvwi31vQeUGLYqml7rccgkAOtFwrP2aWNBm39o8Gc0CpS/9cOBgOcHIZhKiPkLCfgJJxMxFNOPK5X24eZ4m8pEY+IAdTGAB17GQT9nJfhqZCqoG8cRzHZMIJ4IPeZ81XjwdmnMZGVxINl+ynfdqibsQAot4G4UeVKtX4pJH+Tvrw6HbDM3GvnK4/+LeczB8tETLQDRpKDxzm5Zg+lRk3RK4+Ry46WxQdPDuPLh6SuNFvXy1FgAs/kxIGue1uEv+gCAFhQ4+b8JIDAAOSgNspEYKqbSgJUtYhOskcg0+3QgJ+0lCpF0T+Vfow3SGcDNtMaHwLtu5kvncyGKmszso3jUxxHI9N5BOBt/yNT/zU70XmUDQjltJ41x28SmbeQV5VKA0IcIIU35AoRVWdQxOOePISizNoOdsLczs8oFQPNe/BrfsoGUhGnczfPkaXJAFH70A1mM/PtFoqqtgxscwsT9M6Asblmq99K83QLcg5Aat3AirRmqZlTp+7PUmocpsXPyCQVzuddZpTQxEAATsy16TgQymggpW1+cqG6LRhIT9JCQRM2PJ5HX68gWDmUwb3EjeZCuXMpc7WcaP7KWsEX7yYYQxgWvoSz+WsoR3eZvwZnU/ZgsUOnA3mVzKXr5nFQ/XusAVkUCY8jsKHalWL8Ghvn7k5KXwNtB7EZiSYeWZsOd//k1ACouAf72qCXybbvDSFDgnA16cArsaniV73Kko1ZJsPzAehifBw1dDcT7c8zL8ulfrpRv9S35SJ4W/wbIBgAI9/gCT92BldvkEYMAobvJrUzrMALiD0LFoQQvSSGc+80K99mNESNhPcpKwcCnNmUo/PmIgE8iiCDsvsYmxzOFBVjGbPOwBhBvWoeMczuVyxlNCCYO/eJ3MSxfXOZFJIGjLZNpzO4UsZTE3UsHuI8ooIp5w5Q/0jMIm78Imr0PKGjcASyb0XgIJ58LWO2H1eWDL9a/RbbvBW39o5pnew+Hzl+Hi9nBZN3j7cdi4XHMhPJ6UFGqBy159QOuZD02A+y7VbOkjL9dMLj9shytu025QjcVVAVtuh1XngDkD+izWbpzeVpMzccpPMIrbUYR/Xj/C4xktgyDEAsEwRlBGKStCtvZjgqh3SvgxJDm5pzxwoOF4Fo1l2TJYvhyyGnbZPilYsQK6doVzz/WtvESygwp+Zz9zOUAhdsLRM5AkziSFrsT5HaCsnHLuWfAtSQO204xMRnMhCfVkqi9mDWt4HBdW2nIT6Zx/RHAnKVUc8r/Y5X9QaIVFmXbkQJ2UsO812HYfKCbNLTJtkmaq8ZeifPjtc62HvH6JVndkjBZArEMvaN1FM+WkNtcSTDdAb08QsGV1aY2qatvavxv2btdiqO/YANvXQZ4nA5JeD+16aqF4+5+jtSGY8W5UB+z/AHY9pvmsp98MrZ8FXf2p7g7hlluwqkMRNCVcWVhneryuXbX3NWtqr2+jgLmMowN3k855jdsPtHN4Gu+TzwFu5y4seN+HY0Gup1/RQMigk4YJE+Cjj8RKKaXXiR2n7QSloiIo8S8U+QmjvNy/tgoErYiiFVFMpi1rKeYPcvmLfH5jP4mYOZOmnE0qGfjWQ4wiiqW3TCB99Eosj/3G67zKQAYxkMEYMBxRNo6u9Odd1vEUm3iJgyyiI3dj9twIhFAwiYfQyf5Uq9dRpQ7EKO7GJB7QBEUIyLgV4s+GTZNh802QMxVaPwfxfkYQjE/SwvuOv0NzjVzyB6ycB+sWa9ESDwXVUhTNLz4xBeKaaO6UYZFgDtNmuQK3uFUMOOA/Vs0dsbwEyoo0QS/MA1eNpCV6A2S0gi79YNxN0LGPdiOxHIOJZ44C2P8e7H0d7DkQ0w+6fAcxfXxa3S03Y1XPA/SEKV81mPPUO8GJzigQjOQc3uIN5jCLUUG4WYT4m9O2xz7TEwH17Nr5fU86DgUOvOKKxtVjx81CDvI7uSynEBVJW6IZSSrDaUrEUQJ9NId6bH+tqWAmv7KOtcQSy0hG0ZZ2tUKuSlT28j1bmYqCntZMIp3zEDUsfFKWYpP34JQfIWiOWXkRg6iRPENKyJ+u9d5teyB2CLR4GOKGNt5bpNoKuzbBzo2Qs1NzmyzM024A5SXa4Ku9WhNsKbG5dLgwEBFngfAozRMnJl6LNJnYFJLStZ5/RitIaa7lLz1WuCqh8GfI+1x7ly6IHQrN79VuiD4eG6f8kWr1OgQWwpQZ6ET9oRF867FPIR0fHy19YAY/spxlTGIyqV6ydh0LQj32ECc9JnQMoynDaEoxdv4kl5nk8j828TpbGEgTRpFGN+IbNNVEEslYxtGdHvzMDD7nU1rQkpGMIpnkw+UECs24iAT6sJEX2MRL7Oc32nMH0Z5AU0LEYBHvYJCXY1Nvp1odg4MzMStPaSIjBCRfComjIedtyH5Gc4uM6gEZd0DSWNCZAzsgljAtHIGPIQkGHTLFBBahtnFIVfNwKZ4Fhb9qnkPSAcZkyLgdUq/R5gP4iCr3Y5cP4pSfo9CNMOULFJEZhIYGN0T1CM5iM5v4jm+4gZtqPR2GCIyQsJ+mxGFiHM25hEy2Uc5M9jOLPGZzgCTMnEMaI0kl6SjbZknJ308Q0JI4cQui1TKyO83iDeNrRO/qTsK64RiqawaaSgVewJj5B2q3t1hknox95yiq112LtB2KCTIMoawkM+tNWrV/CpexF7l7x7Ft44NUVbQBzMDtKNxAC/OHtHG9RHT5VdjW3cEe+3h22a6mxN2dYJkC6qK4WLPcHOvQ6wAGUUKcfhXx+mUk6BeTaFiISSkGoMzVljznzeTYR1PgGoDM1cFK3+oNC99J89avkdHifRAqO7c8wI5N/0JVvXvhFBWBzQb33VdHe8P1DHgEvvvexf6gRgQwo7QZg+Haj3j0r99xzwje04AvVFRAVRWEN5wJ8qRgyRLfy4aE/TRHIGhDNG2IZjJtWMBBfiWHaezgQ3bQmwTOI52+JJKcXNtJSkgdcdv6Ep3dhaIO8yhpvZjyZmuJ3dqP+E2D0Dkth7fkyD4L5/5+WDp9iKn1d5iazaZ682XYtlwCLgtSNbJ72+3k7L6alm1fILP166RkTCdv30Xs3DKFspLuqJjZYbuBHbbrSTLMJss8lSzzW7SxvEKFO4t99jHsd5xHoasvMsi9u86dgx8CXsFOpG470bpNROs3EqNbR6x+DRG67MNlyl2tyXFcyEHnQPKdw7CqGX5tw2jKJynlF1KbfUFC0lxUVU9O9nh2bPoX1qoWPteTlFT/WI/bof3OOpP3GPb+om5tg3vhGegHLkLuao66qX3Qt1EfEUFwUjpeWPwYGgnZ2E8CgmVj94cDWPmF/fxKDoXYicdE+Wdp6H9P45dp9Z9BJRQziz9Zx1osWBjAIPpwBsajkn5XsY9tvEM+f2EklhZcQToXoKtRTpUHcchXcci3gHJ0DMKo3Iie8xGihmg7SyD/W8j/SjNVSBfoIiF2sBaPJqYvRHbXZrk2gief1N4ffNDPFV3lUJ0N1bu1l3UnWHeAdZu2/LD5QoGwVlrky6humrkpqoffKQRVmYub5bjlYlxyLqpn9rCgBUZxFQYxAUWk+rkTcMkl2vtXX9X9/R+cQxqjaMetftftDRcu3mUqRRRyAzfW65H1T+a+++DZZ32zsQdF2IUQ7wPnAQellB29lQ8J+5GcCGE/hBuVJRTyE3tZqhaCFAzUNWE06XQnvt4clQfI4w9+ZzvbiCCCQQyhBz1r2UhL2cQ23qGYNZhIoDmXkc556PjbNCBlGQ75Pg75JpI9CJIxiCsxiCvRiaNC0DrLoPhPLahY8RxNPAEQEJal2aHD2kBYSy2bkCkFjEmaeCoN9/APC/sDEtxVWt5WZwk4C8FRCI587WXP1fzv7Tlg2weuo5JH66PA0hLCW2ttCW8D4e0hvK3P4wVSSiT5qOxAldtR2YxbbkJlPfJwADcjOvqgF8PRi3NR6OTXbNKj8Sbsi5iEgSh6UUfAtyBQSilv8ToWLFzPZMKOY2jrU4ETIeyD0OKAfhQSdv85kcJek1H/Z8U1ch9hl+RQhpNmhHMhzTibFCz1WO32sIdZ/EE2u4kimsEMphs90B9VvojV7GAaJazDSCyZjCWdCw5PVQeQ0o2L33Cq7+HiN8CNQlcMYix6MRqdaF27AfaDUL4MyldCxTqo2qT1mKWzdlklDPQRWj5WxYA2P08AblAdVFbYMCjVmHSVUG94WkWbPWtqCqY07eZhzgBLBliaa4JuiPPqtSKlC0keKjlImYPKXlT2IeUeVPagshuOiBFkRqEtOtEJha7oRE90dEOIIMxg9eBN2DfxCjn8wnC+PzwTNdjsIZtpvE86GVzNxFrn0T8Zf4Q9KEdNSjlfiKAMuYc4gSj5YRg/bMP0S7KYzQG+Yw8vs4n32Ma5pDGGZrUGW5vRjGv4P3axi9n8yU/8yF/MZxBD6Eq3wxdmPN2IpxvFrGEnn7KNd9jJp6QximZcTBjJCKHDwLkYdOeiygM45Ve45HTs8iHs8iEUstCLs9GJoegZiBAxYGoCiedpr0NIN9g8vWn7Aa2X7SzSetbuKnBXe4Rf1YzqQgeKkW17zbhUM737RmhZiAzRoI8FQzwYm3he8Q1OpNI6ShWoMhdJLqrM097Zj5T7UdGWa73uoz1MolHIQKE5ejEMheYI0RIdrRE0QwQygSuIJDOIvXxHLn8GZZJSXTQjkzFczNdM51u+ZizjUEIT5P3muN0OhRCTgEkAUVH+DQ6FgGop2e1W2aOqHJCSIlVSKSU2tL6lguZXEi4EcUKQqAhSFYUMRRAvhF+P6EZ0jCSVs0lhE6V8zR6+8ryGkMylZNKav71iBIKWtKQFLdjBduYwmx/5nvnMrSXwcXQljq6UsY1svmQv37GHb2lCXzK4kHi6I1BQRDImcSsmbkWVe3HJGTjlrzjkeyBfR3O2bI9O9EJHVxTREYU2CBI1AbQ0015+8OsP2nvvq2t/J6UbSRGSLUh5AFXmIzmA5AAqB5CHBTwP6gyUFY1CKoIUdKKDJ7piGkKkoZCGQjpCNJzS7kQTSxeiacsOPiSJQRj9SNThD53pQjnl/M5vhBHGuUfNbA7hneMm7FLKqcBU0Ewxx2u7pyKqlKx3q8xzuVjqcrPK5Wa3WjsaukATcwVwA3bqNiBECWijKHTQ6eis19FDp9BVr8PsRewFgg7E0oFY8qnmG/bwM/uYTR49iOdyWtCduMMXnTYjtjVZtGI72w4L/DzmMojBdKP7YYGPpjVdeJg2TGYv37OPnznIQsJIIZVzSOXswzNZFZGBUdyEkZuQ0oabpbjlQlxyMS75E06m1djxKBSaaSIqkhHEIYhBEAGEAYdMMHiOmhOwIbHSZ2AVRmM51Wo5UpYgKfGIeaEnP2hdPtwWBE1RaIoiuqJnFIJkFFIQIsUj4CkIcQr403lBIGjPHSzhFtbyBD34L8ox8jvvzwCqqGQhC7AQxnD8nJH8DydkwDpJUJHMcbr5yuHkZ4eLA56xj2aKoLtOx3iTjlaKQjNFkKwoJCqCMDiiJy6lpAooUSUHpSRH1Xr4O90qW9wqPztdTHNotmcj0FOvY5BexzCDnr56HQ35iCdh4SbacjUt+Yl9fM0eprCc9kRzJS05g8QjBL41bWhFa7azjbnM4Sd+YD5zGchgutewwZtJpDXX05IJ5DOffcxgO++xnfeJpztNGUYTBhzuHQphRs9g9GIwJg4NMu5HZSNuuRWVXUi512P6WIekEHyMgtm7PzjskbhktOdmEKc9BYj+CJqgkIAgCSGSPJ+TgahGDVieakTThg7cwQaeZzUP04VH0R+DOC8CwVmMpJpq5jEHM2b6E4Qwx/8QQsJ+gilSVWa0cDI33UFRhSQcGGnUc45Bz1CDnjTFd/uiEFq/NEInSAd6cKRNVkpJrpSscLlZ4nKzwOnmOZuDp20OIgHLLXqarDRQLvVE1SNWERi4nBZcTDN+Yz+fsYsHWEUbophIK/qQUKfA72QHc5jNDH5kPnMZwEB60OuwF40OIymMIIURVLGfXH4njz/ZwHMIXiSObjShL4n0IYy/XfmEEAg0c4Ze1B4p12zeNrRbXjXgPBxPXqBD68GbEYTx3/9aAMV/d0e0oFZuqnFQhpNynFTgogoXlbiw4sbmeTlQcaAebsehRw0FBR0CPTpM6DCjJxwDkRiJwUQ8ZhIxEnvCzRJpnIuKm028zFJuoSuPEX4MwgEIBBdwIXbszOTXwwmxQ3gnKMIuhPgcGAIkCCFygEellO8Fo+7TlQJV5Tmbg3dsDqytoV2Rjv8lGDnfqMdyjHqAQghShSDVqDDaqAlquZTMdbr41enik9YuDvZ2kVYC5xj0jDcZOMegx1BHe4zouIAMRpHGTHL5hJ3cz0o6EMP1tKZLjSz0WnLvVrQki13sYi6z+YWfmc88+jOQXvQ+wg8+nFRacQ1ZTKScbRxgLgdZxGZeZTOvYiGZWLoQS0diaEc4zVDqOZW13rQFEWCv0o0NO0XYKcZGoef/EhwUH353UIqDUlTq8MSp2Rb0KBjRYUSgR6DzxNWRnj83Kk5U7PXGPVcwEUYqEWQSRRaxdCSatsfMJFIfGVyAhWTW8SSLuJ623Ewa5wb9pqOgcDGX4MDBT/yACROd6BzUbZyOhCYoHWccUvKKzcHT1XaqgMuMBtrNNpJWqTvh7o7nni8pa+mm95MuvnY4yZeSJCGYaDJwvclIuq7+pwcXKr+Qw8fspBA7/UjkBtrUG11yN7uZxxx2sZMwwuhLf/pwBuYG3Ois7KeAZRSxihLW40TzHxcYCCeNcNKwkHy4Z2sgCj0WFEwonqcXFTcSl6f3XI2TKk8Pu5wlK8vQh5XRol3JYdGuK2OQQIeRWEzEed5jMRKNgWiMxGAg8vBLTzh6wtBhqffmUxcSFRdWnFTipBQ7RVRzECu5WMmhgt3YyAdAh4UEepLCWTShr+dJxH+8uTvWhY0C1vEUxawmnh504C7CCH5ELQcOPuZDctjHFVxJK+pwfT3NOe5+7P7yTxX2FS4311dVs8mtcq5Bz5NhJtrpdCeNH/t5Hg+2GTPAJSW/OV28b3fyq9OFAC426pliNtFFX79w2HHzNdl8zm5suBlDBhNpRXg9oraXPcxjLtvZhhkzfehLX/p5nZwikVjZTxlbqGAnlezByn6qyUfFHsDeC1zWSJxVsaQkxmAiziPYcZiIx0QcZuIxkYCByCMiWJ4oHJRRwjoKWc5BFmKnmDDSaMMNJAVgjw5E2EG7Ce3jJ7byNhKVLCaQySV+3ch8wYaN93mXIgqZwLVk8M/yrgsJO5o4/fortD9+YSfqRUUyq72DmZ3sRFULLl5hpkPu34/OixdrcTrOOquBOtTA4svXDEfujWefheRk+O23I5fvcau8aXfwrs1BBXCeQc9jFhMdGxD4Euy8x3Z+IYdYTNxKOwaTVO+jei77mcdcNrMJI0Z60ot+DCDKT5c6icRFJXaKcVKBm2rc2I+wqysYPHbsMI8dOwIDEfz3SW1/ArGxn2hU3BxkATv4iEp2kcEY2nGLXzegQIX9EDYK2MTLHGQhkbSgA3cTQ3AvwEoqeZe3qaaa67nhHxV64LhPUDoZKS6GypMg17FNL/mkXzWbUl10y9YzdoUFi/NIcduzRxPthoS9pETbpzj/woqwx5Pcp3lz72Xru3E00yk8HWbmX2YTr9sdvGyz07PcxUSTgScsJhLruGvEYmIKHTmfdF5kI4+xhgE04S46EEvt2ZIppHI54zlIPn8xnyUsZilL6Eo3+jPA5wtYIA6bQY4HLlxYqcJKNTaqsWPHhQs3biQSgUCHDgMGzFgIJ5xIImvF1mksCjqSGUwT+rOVt9nD1xiJIYs6nPKPEWYS6c5/yGcBm3mFJdxCBhfSmuuD5jkTQQRXM5F3eJuP+ZDrmUyEj8lk/kmctsKu12tmmBNp3shRVc6vsLLNrfJymJkbuhkQ3Wv3WDdu1N4bMhv5mhCgygV7quBANZQ6gaaa34W+BUQboIkZ0sMg3lR71vuzzzZcd4wieNBi4kaTkaeq7bxhd/Cdw8mzYWauNhrqdPtrQzRvcAZfsYf32ca1LOQBOtOLhDq30YQkLuYShjKMRSxkFStZyQra0pa+DCCTzOPqFaKiUkYZRRRSRCHFFFNCMSWUUk4Z1QQW7TCCCJqQRAopZNCMTJo3OL7gKwp62nITdorZxSekcS5m4htdrz8kMYB4urONd9nL9xxkEZ24l3i6B6X+OOK5kqt5n3f5jE+4hv8LxXE/itNW2E80u9wqZ1dUUaJKfooMY5gh+IdaSlhbCn8egEUFsKpEE/U6yTvyY4wBOsdC73gYmAhDvCe4P0ycIngu3My1ZgO3VNmYVGXjR4eLd8ItxCm1RVeHwmU0pw8JPMFa7mMFE8niKlrWK9JxxHMeFzCEYSxjCctYyhbeJYkketOHTnQJihDWRBrsyKQDLCWPA+SRTz4HycdRww/eiJEYYokhhgwyiCSKCMKxEIYZCyaMGDCgQ4dAIAE3Lhw4qKaaKqoop5xiisgnn8UsYgF/oUNHFq3oQU9a06ZR0+g1L6SrOMBsClhEOucH4ej4h54w2nMbTRnKep5lOXeTwRjacMMRAeACJZU0LmIsX/I5P/I9FzH2hLuBnkyEhP0YsNcj6pUS/ogKp1sDtuhA2FIGH+yCL/bAXk+cqKwI6JcA17WEFhGQYoFYI+zaqk07ymoLZU7It8HeKthSDmtK4JWt8PxmMChgHgsxm8HqgjAfzox2Oh1/RIbxqt3Bg1Y7Z5RX8l1EGB3q2d/mRPIGfXmBDXzADvZj5R46om9AxCKIYBgjGMAgNrCOJSzmJ37kN36lHe3pQEdakuW3acOOnVxyOUAeeeSyn/047ikAIfkZsGAhiWS604MmNCGeRBKIJ4LIoAqIEyc57GMrW1nHGrayhSSSOYdzaYHvsdSPRnMBNVHFvqC1NRBi6UR/3mEb77CHbylmFV14lEh8sA16oQMdGcZwZjOLFFLpS78gtPj0ICTsQaZYlZxXYaVMSn6PDKdrEEV9WSlM3Qq/5oFOwMim8GgnOLsppNbjROL26F3HmLq/t7lhSSH8kgsvF8O+cyH1O7ihFdzZBpK8mEYVIbjdbKKfXs8lFVaGVlTxY0QYZ9TzhGJGxwN0Jo1wprEDJyoP0gWdF7E0YqQ7PelGD/aTw2pWsYH1rGMtevSkk0EaaSSQSBTRhGFBIHDgpBorFZRTQgmFFHKQfIop5lCQhggiSCGV4r86Ig6kcPu4pkQRfVx6gAYMNKcFzWnBmZzFRjYwiz+YxnsMZgjDGBFQO4THui+DnMouEHSYacetJHIG63iKxdxIR+4mhTMbXfcghpBLLjP5lVTS/nGeMvUREvYg4pKS8ZVWdqsqP0eGBU3Ut5fDjetgVrFmI3+8E0zK8i66vmDWaWaYIUkw8xqoSoNu98Fzm+H1bXB/B5jSFoxedqWXXsf8qHBGVlg5v9LK7MhwOtWz/wLBBLIwo+MttpKAmZto61N7tXmm6aSRzijOI5tstrGVbHaxkAWoDQiZgkIccSSRTBe6kUIKTWlKpMfz5sm/tHInKhSXDh2d6UI72vMzPzGPubhwczYj/a5Lm+1qxYSfo+3HkAR60Z93WcPjrOO/lLGNtkwO2O8etN90DBfzFm/wFV9yE7dgOQYhDk41QsIeRB6vtjPb5WZquJlBQbCpqxJe3AIPrQWDgAdawIM9fTOTBIIAInLgq4GwrRzuWwMProXpe+Cz/tDei+Jl6BRmRoYxuLyKiyutLImKqNPmfohLaU4+1XxFNt2Ioy9N/GqvDh0tPX+geaiUUUo5FdioRiLRo8dCGFFEEknUKREC1oCB0YxBj56F/EUGGbTz022wnO0ARATB5BFMTMTRi+fZwhvs4Wus5NKVhxsV392ChUsYx7tM5Wd+YizjgtjiU5OT/yw/RZjvdPGszcE1JgMTTI13ZSu2w6i5cM9qOCcF5veGmzOOnagfTeso+G4Q/DAI8mxwxkyYmet9vXSdwpeRYexXJfdZ654WX5PJtKUZEbzGZlyNNBvo0RNPAs1pTjva054OtKYN6aQTTcwpIeqHEAjO4VyakMTvzGzwSaQuilkDCGLocEza1xgU9LTnNtpxGwUsYTlTcFLRqDrTSGcwQ1nHWjaxMUgtPXU5dc70kxirlFxfVU1zRfBCWOM9NXZVQp+ZMCcf3u4N3w6EpOAlyvGLC9JgxdnQMhIumA9/5Hlfp5dex+1mIx85nKxzuRssa0ThelqTSzULORikVp8e6NAxiMEUUUg22X6te5CFRNPumMVMDwbNGENXHqGMbSzn7kaL+yAGk0xTfuYnbPXE2vmnEBL2IPBMtZ1sVfJ2uIXwRgbw2l4OA/+AYgfMGa7Z0k90VNj0cJg9HNpGwdgFsMOH6+8es4kw4A2795C5Z5BINAYWhYS9Fm1oi4LCTnb4vI6VXMrZTjKDjmHLgkMyg+nO41SwmxXchyvAeQGg3QhHcyGVVDKbWUFs5alHSNgbyV63yks2B5cZ9Y22q+dVw4jZ4FBh3gjodxLNlo41wk+DNTv8pGWaD32D5RXBaKOBHx0uVC+FdQjaEs1uToKpwicZJkwkkEiBJ+CXL+QxG4BkhhyjVgWXRM6gK49SxlbW8hgqDT/lNUQqafSgJ8tYQiEFQWzlqUVI2BvJUzY7EnjC0jgTjFvAhfOhyAG/Da3fPfFEkhEOT3bRTER/HvBefrBBR5GU7FK9xyMKR48VVxBaefzZQTlT2cpdLGMyi7iH5bzLNvYG6UYVSSSVdabbq41EksefxNARC37MOquvPilRZQ4uuQSXnIVL/oVbbkZKq/eV/SCJAbTndgpYyjbeblRdwxiBHj1/8keQWnfqEfKKaQS5qsrHdifXmgxkNBDS1heWZsLaIvhmIPQ4eTzUanF9S3h8A7y1A85s2nDZFp4YMntVlSwvx6cMJ5Gn2LRwFyovsYlfyEGPoCWRRGOkBAdfsJtP2cXFNONG2nr1028IHTrcPt70KthBJXtoz50Bb0/Kalzye5zyW1zMB0rrKKWg0B69GIpejEbHgEZnksrgAirJJpuviKEDyQwOqJ4IIujHAOYymzxyaXoMwgif7ISEvRG8bXPgAu4wN25k80AkrE2BG1vBRenBaduxwqiDMWnwaTa4VWhIr8M8F7rNiylGRbKdcvr56e54onnfE73ycppzBS2IqHFjKsHOR+zkG7QobLfQLuDtuHGj8/FSzeUPBPqAzDA6nYNhZ79JpfockgIE6RjEGHR0Q4gMBJGAHSkLcLMVt1yKQ07FIV9FoSVGcQcGMQEhAr8e2nIjZWxmA88TQ/vDeW/9pS/9WMxCFvAXl3BpwO05VQmZYgLELSUf2p2MNOhp0YjeuiphQQsId8AzXYPXvmNJ73iodEG2F+tAuUfQI7z05LZQRjlOup1Ek2m8YfPEnT+LFCbR5ghRBy265e20ZwwZfMOeRpllqqn2KS6ORCWPOSTS229vGLfcyENP9ueyq+9FoRNhym9EKNuwKG9hVG7AIM5BLwagF8MxKJdhVh4lXPcLkUouZvE+EIdN3kql2gWn/DnAPQUFA515CImLjbxE7RTuvmHBQg96sZENlNX5xHF6ExL2AJnncpMnJRNMjTMf/JgDBZHQew9EniKWiBTPxL58Lx5lu92a73WGl2Dwv7EfI8op1WPPw4oTSe96olQeYrwn3suiRgzkVVJBpA9hiEvZiJ1Cv3vrLjmTKnUQ0TH5vPrcV4TrfkUvhiKEd3kQIgKjMp5w5S/ClJ8QmKhWL6JanRywHT6cVLKYSAGLKWBRQHUA9OEMJJIVHNvcDycjIVNMgPzgcGIBzm6kJ8wLWyDSBq29ePo5HLBoEcTXE4HV5YLs7Brl3bDkICzfD1YBJhM0j4VRraFLDdt4u3ZaiGMAp/Pv/xvCV0vqSrebGAHNGph9WoKd39nPCFJq9XpPZmI8QcfyvfhLx2MmGgP7fRz8PBoXLiqoIMqHQAf5LEBgoIkfwbBcciZW9SIUOvL4/d9SWpLqfaU6EEKg5yzClSHY5RM45HO45TrClO9QhP+DuM24mBx+YStvk8AZh1Mb+kMssbQkizWsZijDTqkJao0lJOwB8rvTxVCD/rAdORC2lcOCAjgjz/uj06JFsHYtDBtW9/fZ2bB3L2RkwLZS+HgHlNjBZIcIN7RoA2sPwPxsGN8FruwK27VZ53TqpL27fHRKKfBknotvwJQqpWSW08VAvb7BQbXP2Y0TlUvJ9G3jNXDiZDvb2MVOcsmlnDLcuLEQRiIJNKM57WlPDLF+1+2NWEy0JZrf2M+lNG9wcFQCSoCDp2WUIZHE+WCmOsgi4umGnnCf6nbLDVjVy1HoSLjyO6UljY+SI4QRs3gCnexDtXoVVnU4Ycosv8VdQU9rrmM1j3CA2QEHDOtMF77la3LYRwbNAqrjVCQk7AGQq6rsUiWTzY0L8vWNJ6JqKx+f0rt0qT8ZR2Ii9O0L9giY8iRkJsI318Ab/wYU+OoZsNrhunfgk0Vw3xXaOvB38g5feusAG8pALyCzAf1Y4VbZo0oesNRfaS5WvmcPZ5Fab9LruiijjMUsYiXLsWPHiJEUUmlJFjp0WLFygANsZjMz+ZVWtGYow0glzedt+MJlNOffrOEXcjifuke9i7FTjpMULzlc66OYYgBivQj7oSTXzRjjU71S2qlWr0IQRZjyHUIEN/SZQZyHUGZgVc/Dql5IuDILIfw7Bk3oTwSZ7OZLmgYY5bIt7dChYzObQsIeomFWeKbJ99E1Ttj/PABdYiDC++RMr6gqbN4CDyyC+DB47UKItmvp9CyWvzMw3T0cPl8EPyyGntH1m3YaYv5B6B4HpgZ2/wO7AwtwoaFu84pE8hqb0aFwLa182q4dO/OYyxIWoaLSgY50pyeZZKKr41G9mGJWs4plLOFt3qQLXTmbc4KWSm0QSXQjjtfYTEsiaU9MrTILPBOLugY4MFxMEYDXHnsxqwF8zlLkkC+gsgmL8j2KODbugHrRH4vyCdXqxdjk3VjEm36tL1BoxkVs5EVK2URsAHFvzJhpRibb2cbZnOP3+qcq/xyjUxDZ7BkUrC+hhC9ICSuKgzu7NLscckphcn+I9XSOnE6orjFL2+bU3g16KCyEoiL/tpFj1eK3n9eAFhSpKp/bnVxqNBBTj339L/JZTAETyCLRB4+PbWzlNV5hAfNpTwdu5y4u4VJa0rJOUQdNDIczgjuZwiCGsIH1vM4rbGWLT/vqDYHgEbqSgJn7WclKCo/4vggbH7CDtkTTOsCYLcUUYcDgdfC0hI0YiCLch16pKouwy+fRMwaDOLZiZxDnYhRTcMr3ccnf/V6/KcNRMJHXiMlGLcniIAep/AfNbA4JewBkqypNhCCyEfb1gzYod0K7IMVoUhSI8twkhveG7t21V1SU1mNPSYGmTeGjZVrsmbH9IaFhh446eXeHZjMe30A02FdsDqzA7ea6o1yW4eB/bCKLSMZ6ESInTmbwI5/wESaM/B+TGMs4Yv2wm5sxM4IzuZGbiSCST/mY2fzpd8TEuojByHP09CTvXsETrGERB/md/dzJcmy4uZeOASftKKGEWGK9rl/GVqJp59N2nPJ9oAqT8lBAbfIXk3gYhSxs6r1I6d8x1xNGIn3IZ2HAro+HTDA5Jzib1PEkJOwBcECVNG3A08MXDnoGIJsGMSdAlkeov1hc+zu7E+75DKbOhrtGQYsAZptXOuGN7TAqRUu/Vxd5qsqrNgdjjXra1/FEI5G8xCYqcHIfnRpMi1dMMe/yNstYSl/6cwM30awRdtImJDGJyXSlG3OZw9dMxxWEMAYphPEmZzCRLBZTwIOs4inWA5LH6UZzH1wV66OUUq+DvypOqthDlCcufUNIKXHKaegYhE50DLhd/iCECZP4NyqbcfGT3+sn0gc7hVT6GeHyEE1pikCQd3Ti39OYkI09ACqkJKaR06dtnjhHjRx/PYKm0XDTmfDKTNh2AC7qBfv1UK6DVnfBviK4cQQ8c3lg9T+/WfOIeagBU+cjVjsO4LF6Yuf8xn7mcYDraEVWA+aJnexgOl8AcAVX0rYRMzdrYsDAGC4mkSb8wUyqqGI8V/mdM/VoLOiZQBZjyWSP55G/DdGNCiUAUE4Z6fUMzB7CSh4SN+FeygGobEZlB2ZxR6Pa5S96MQYh03Cq72HQjfZr3Ti6AFDC+oBypR5KQF7wD4oeGhL2AHBIiGhkKN1Dgl4deCC7WhQUwL/O1CIxvvsX/LYWCAMhYUAcPDcWBraCfE8Ar8JC380xOyrgmc0wLgP61jMuMN/p4iOHkylmY52xYbKp5BU20404LmsgUfNylvIzM0ggkcsZTzwBjPA2gEAwkEFEEsl3fMPHfMhVTIBGijtowczqGkQNBBcurFi92ter0X5Qiw8xUdxyAQB6MbzxDfQDIfQYxDgc8hWkrEAI359iLKSgJ4IKdga8/TjiDnsY/RMIiilGCDFSCLFVCLFDCPGvYNR5MqMXNPoBPtnTod0fpCB5TZpo7os6BW4aCisfhvn3wZkOuMAFX9ygiXpNEhJ884pxqTBhMRgVeLEep4tKKZnkSTbyoKW2g7sVF/9m9eFk1nX1ZFVUfuc3fuJHWpLFdUwKuqjXpCvdGMs40p/9gtlzHkLqnH9/OWcOPPvsMdu2L1R5ev7evHgcHsEy+XCs3GwAohEnIGWedjNx4WaZX+sJBOGkYyUn4G1HE005ZQGvf6rR6B67EEIHvA6cCeQAy4UQP0opNzW27pOVSCHIVxs38JZg0ib4rC+FYCRHUhRITv7bJx0gNRWaenzNU+rozB3wIfQuwP1rYVEhfNYPUutxRb6zyka2KvkzMqzWpC0VydOsZx9VPEcvEurwgnHh4ju+YT3r6EVvzuX84zJTsBOdMfcaR8q4OznwvIGc/U/AnHkwbhxMn37Mt98QVrS7fpiXCUdOzw3A4IMtX8q9KGQ2OhJjICgek4pbbvL7icFMEyrZHfC2wwin2pMHN9CB7FOJYJhiegM7pJS7AIQQXwCjgXqFvagIevcOwpYb4OBBbTu33x78uqufFLgGSeJbgN3u2zpSar7mNXHcCh+kgnwTjEb46qv616+q0sIKXHNN3d+rat3JL9weU89nn9XdJr3+74lJVVXQ6qhe/Xs7Ndv6ja3g8sy6t/2h3cFHDicPmI0MqCPEwofs4C/yuYm2dK+jV2nHzud8yi52ciZnM4CBx/XiazX0BjZOd3DJuPtYMXonvDRLE/WhQ49bG+qi2pNNyOJlcpPbE9ZA71OgsDJEPYOxqgpbtsCTT/rZUJ9J4KYpRhatyGPRXP/WzBgVQUyrCp58ObAtu/obcQ9x8+RTboR6alqgF/kRNicYXaJUOMKPKMez7AiEEJOEECuEECtU9dhnNqlP6IKBsk9BNpHY9BKn03v5Q+05WtiVtSATgRaaaHtbv6H9qevG4Uub3EfZ+Gt+/nqvli1pZFN4uUfddSxxurilysZQvY6H6jDB/EEuH7GTkaTW6dpYSSUf8C7Z7OYixjKQQSekR9Vh6K2sOH80g9/7kpwbzz/hog7aDQ/A7OWZTh522/RlJF5SX7SfY3W9/I3A5bKg0/ufj1S6DQilEQNSbs+x0TXexfVE4c9D1nG7dUkppwJTAZKTe8pl/pnZ/OZQD/WKK4Jf9wyHwsWVcM8HblqX6n3axqpV2nv3GjbqUgekfQ/mK6DFTGjomHjbn7rqBxgxQnv/80/vdXao4e3yyW6YuAT6JsDXA8FQRxdgp1vlkspq0hTBpxEWdEedeSsp4lnW05U47qJDLcEuoYSPmEY5ZVzOeNrQtu6dq4FEYiWHEjZQwS7sFODChkB4JuikE01bYumEzh8j15w59PzyT+bddCE93/yS/UOHkjr0Kt/XPwY40O72Bi+DusIj6BIX3sU9AlnPIKJOB+3bw4MP+ttS35BSUqFa6d3LwqA+/q27ARcH0QXctvlI/gTuu1ecQqHmjqS8HP76y7eywRD2/XCEn1WaZ9lpS2+Pf/b2WE3YAyXGCJOz4AUHJK8MVusahwSe3AAPrYOhSfDjIAivYxdzVZVzK6pwA99HhhF/VGjeLZTxMKvIIJwn6IbhqIfDg+TzEdNw4OBqrvHqn17FfvbzC3nMpRotPoKCCTNN0BMGqFSwk1y02Y06zCQxkAzGEOPNVXLOHBg3ju8um052s36UTJ/CWeMmUzY9kuihFza87jHkkI+93stlqkebDOGm2uvNTBFpuOSaoLTPXyQHACdK7Qd6r7io8jm4WV04cSAQXo/l6UIw9nI50EoI0RxN0C8DjkE/+eShiaLQSaewPtHFubsbN/T5QAd4eRXsHqGF2jUG0a/dX9wmyD1PE/UrM+HdPnXHgzmgqpxTbqVAlfwaFUabo2Lm7KKC+1hBNEaeoWetcLx72cunfIQePf/H9SSRXG+bStjALj6hgKUIFOLpQXMuIY5uhJOOOOqG4aKKEtaTz0IOMIdc/iCBXrTlJiLqiyC5fDlMn86eRUMRThg89DG+m15F8+Uf0HPoqEb7uAfKoZmx3gaRDZ75AA7KMHpxtVRoh+QDVJmHIrzkNgwybk88GyWAiVE2CjA1IhHLoWQl/4SBUwiCsEspXUKIW4CZaM+B70spNza6ZSc5Fxj0/DfWQYlJxdehioKCv4Nx1SR1JuwZAzevgKm9/bOleavf4QCb7W9TTU127YIWHnfyWQdg5/XgioAXusGdbetuxz63yqgKKzmqyo+RYfQ+KiTkbiqYwnKMKDxfhwfMNrbyJZ8TSRQTmFhv1MIKdrONtylgKQaiyWIiaZyH2YtLn55wEjmDRM6gLTeylx/YxWcs5DpacCUtuRLl6NP+3nu1d8/gVCxx9Bl6Px8P/ZA8fuAixp7UgmD2JPuwUUCElycfveiHXYJbzkMRlx2P5h3GLf8ATOjo5fe6VnJIpG/A2y6nnMgA4/WcigTFn0xK+YuUsrWUsqWU8piNqZ9MXGYyIAUsTPVt9PSQn3md3+2BtJXw7k6YslpLl+cv9dWfmKh9VxctWkBMJly9CEbMBsUFmR/BXe3qFvXNbjdDK6o4IFVmRIYx8CgPmJ1UcBfLURC8QC9Sj/LmWMNqPuMTEknkOibVKeouqtjEKyziOkrZRGsmMZjPyWKCV1E/Gj1htOByBvExTRnGTj5kGXdgw3vksyxaMYRhrGUNq05QBp5DPXVvMW3CPKYNqw8WUIUeCFJwyuPryimlHaf8Cj3nIIR/cTRsFOCglMgGJrV5o4RiYoI0cexU4J9hcDoGtNbpaF+oY1aGA7s0YvLSza7Lz/wQJhM0WwZjLocXt2i5RN/ro9ngfaW++iMitNfRg6rFdnijAD7dA24BD3aAb67WxL0uZjtdXFZpxYzgj8hwuh4VB2YzpdzHSkwovEhv0mvYQyWSBfzFH8ykBS25jCvqzOF5kEVs5CXsFJHO+bTiWow+ZA7yhpEYOvMACfRhI8+zmMn05Fmv09MHM4Q9ZPMzM0gngyYEEGCnERg8JiwXDXceTCSgJ5wKdnmtUwgFgxivhe2Vu1HE8Zmo5JQfIynAqEzye90S1gMQE0DYXtCSgRdRRJaP4aFPB0JBwBrBqN0mSs2Sd+yND6gu0FwKX+wO3+dAx5/hm73Bd0HbUQF3roTMH+C9IhgQAZvOhf90qVvUpZS8arNzXoWVVEXhr6jaor6CQu5iOZHoeYU+R4i6isov/MwfzKQTnbmSq2uJupNK1vEUq3gQI1Gcwet04M6giHpNUhhOH14FJMu4gzK2NlheQeFiLsGEia+CFDDMHw7Z9m1e0u8JBNG0obT+qSNH1ituBPTY5VONbaJPSFmGXf4HHX3QUU8KsAbQzHGRRNM6oO0XUYgLV4NjOacbIWFvBO2LdLQr0vFktYPCRs5EBc38cWdbWHKWFu9l7ALoNRM+3Q2NuXVYTfDWdhj8J7T6CV7bBuenwheZ8EwqZNUzYbFcSq6qqmaK1c4og575UeE0OyoGzB/k8i9WkoKFV+hD0xrmFydOpvMFS1lMX/pzMZfU8kooYT0LuY48/qQlV9GXt7x7sTSCKLLowyvoCWMF91LhZTZjJJFcyEXkc4A5zD5m7aqLcE8ogSof8qXG0oUKduLwYdq8IlIxiptxyg9xybmNbWaDSCmxyTuQHMSsvOj3jFcVBwdZSCJ9D7t1+ss+9gKQFuQMWiczIWFvBALBFZvNlEvJXVb/J13UR694WH2OZo4pd8KVi2Ey8DLw2lZYXABF9tq9eSk1E8vyIpi2C25ZDj/2g6+HwI3LId8GT3aBPaPh0/7QqoGJiktdLnqXVfKNw8V/LCamR1iOiD8vkXzIDv7LOjoTy8v0Ib5GT9yKlQ/5gM1sYiSjOIdRR3h3SFR28gnLuAOBjj68SiuuRTkOXsZhpNCLF1AwsJL7sHsJDtWGtnSnBwv5i9zj6Mkb7RnsK6PUa9lE+gCSg/g2PdEkHkGhFdXqNajy2O2TQ/4Pp/wMk3gAnejp9/r5LMBFFSmMCLgNu9lNBBHEE0ACglOUkI29kRQt1DEu08RnaXaSVzgYXlS3YbyoSEtTF1eHE8jBg7UHOPUKXNsSJraAufnwn9mwwgG31vB3N6BFmdQJcKhgleCq0SEyA+ZSyNoKU4ZDMx2IHFifA+vRklm3avW3J43TCbpwySNWO8/ZHKQrglmRYfQ7apDUjpvn2MAs8jiTFKbQEWMN0S6miI/5kDLKGMdldOBI9zYHZazjKQpZSjLD6MhdPvkoS1mGm1WocieSAiR2BBEopKGITii097lHGEYKPXiapdzKGh6jFy/S0OSeszmHbWzlJ37geiYflzg2EURixEjhUZmZ6iKK1lhIIZc/SPMhBZwQYViUz6hSh2FVRxGm/A5BHkOwq69il/9Cz0UYxQN+ry+RZPM1YaQQTz1Tn73gxs12ttGaNie1Z1OwCQl7I+jXT3uPyTOyPsrFG5k2UuwK7SprH9bYBnIlNGkC6fWE0lYEDEuGFv1g4SJwx8BuN+S5odAj5iqgSNA5IAZIBFKAZGC7FaLTILOOX7pVK2hXw+rh6uUi7x4bz9hUJhgNPBdmJvqohCIF2HiE1WyhjP+jFeNpccQFs5e9fMbHAEzg2loTj8rZzmoewUYR7bmDdC5o8IJTZTZO+QVO+RMqK+GILDri788SBMkYxGUYxQ0owrsHRRRZdOBu1vEku/gEmFBvWQsWzmIk3/I1G1hPZ09Aq2OJgkISyez34SlBIEjjHLbzHhXs9iluuU50Jkz5Fqs6mip1IM2af8Ge3b7lTG0IKauxyXtwynfQcwEW5UOE8P9GWMRKythMe26vNV/BV/aQTTXVQYvnf6oQEvZGYDTCkCGQkiLorVoYVG7l6fZWZkaG08WPfKgzZ/q2raFD6vaqaYj6Qg3UZL+q8pDVzv5XnRjyBD9FhHGWsfapsZZiHmMNNtw8QTcGHNXD28B6vuVroojmKq6u9eibx2zW8yxGoujD/4ihfb1tcsm/cKgv4OJXAHT0xiQeQif6oNAGQTLaM4sVlWzccjku+QsO+RoO+RpGcSMm8RhCNPwkkMIICljMTj7BFDcUe3FGvWU704WF/MUcZtORTsel155JJgtZgA1bnZ5ENUnnfHbxGTv5kK7826f69WIQ4cqfWNVLeeCJQfz2011IeY9f8dIPIaXExa/Y1XtQ2YFR3I1JPIEWANbPunCzlbcxk0Qqo/xe/xDrWIsRI60CHHg9VQnZ2INEgqLwc2QY4UJwdkUVi5zH14MiEMql5HGrjY6llXzjcBL/iZEW10bUEnWJ5Et2cxfLiUDPG/Q9QtQlkvnMYzpfkEIq13PDEaIuUdnO+6zlCaJp7RkgrVvU3XItVe5zsKojcLMCo3iQCGUb4bq/MCkPoRdnoogMhDAihECIcHSiA0ZlImG66UQo2zGICTjka1Sp/XDL7V6PQ1tuQYeJtGFTGyynoDCIIRRRyA681xsM2tIOFZVNbPBa1kg0mYzjAPMoYo3P29CJHoQrS1m68DLOG/MMFWorbOpDuGXDXkOHkLIUh/ohVeoAqtUxAIQpv2JW/huQqAPs5Qcq2EEbJqELcOavHTsbWE8HOp6w2cMnipCwB5HmOoU/I8OJFwojK6xMC4Ib5LGgQkqer7bTtrSSJ20ORhn1rI2OoMn7ZhT7kWaRchw8xGreYisDaMKb9COzRuIHN25+4Dv+5Hc60ZkJXEN4DXu5GztreZydfEwao+jFC3VODZeynGr1dqrUPqisxSSeIULZjll5BEX4nudUESlYlDcIU35BUohVHYEqG/bvNhFLJpcQ02Yh5vg9DZZtR3ssWFjPOp/b1BjSSKcJTVjCYp+SObfgMsJIYQPP4fLBm+YQiojn/Tff5YkHFqJnIA75AlVqZyrcbalWJ2JXn8WhfoxTfoNT/QK7+ho29U6q3IOpUFOxyUlAJWbxGuHKGvTCf7fGQ1Syl228QwK9SSbwKJurWYUDBz05xjHCT0JCppgg01ynMC8qjCsrq7mhysYsp4v/hZlrBck6ERxQVd60OXjL7qBUwtkGPY9aTPSox2y0nhL+w1qKsXMzbbmYZkfYw6up5ks+Zxc7GcwQhjL8CPOEgzJW8SClbKINk8lkXJ32dJf8i2r1WiT7MIjJmMWjCNFwAmdv6MUwwpQ/sKrDsaoXEa4sbnDGYzoXsN39MfGdZwL1T6LRo6clWexuRNIHfxAI+jOQ7/iGDaynE50bLK/DTCf+xTLuYB3/pRtP+GWfzt7VkzDdV6gyF5f8Dpecg0vOR/K5VuCIe0s4OrpgFHeiF+eho0+jE3i4qGYtj6FgpCNTAh7wdONmEQtJJ8NrztjTkROvNqchCYrCjMgw/m0x8a3DRaeyKt6xOXAe+4DXtZBIVpldXF1pJau0kmdsDgbr9SyICufHyLA6Rd2NyjS2cwdL0aPwGmcwlswjLrISSniXt9lDNmO4mOGceYSoV3OApdxKOdvoyqM059JaF6mUKnb1aazqWQgMhClzsSj/a7SoH0In2mNRPkRlMw7ZcIYGE7FU7O1CVMulXutNpinllB2Ol36s6UJXkmnKr/zso097J9pyMwdZxCb+VyNeu+8oIgWjcjNhuq+J1O0iUikmQtlEuLKKcGUdEco+IpUiwnVzMCv/QS/OaLSoS9ys40kqyKYzD2KmnhgcPrCG1ZRSwkAGNapNpyohYT9G6IXgfouJpVHhtNcp3GK10bmskndtDqzHWOCllGxwufm31cYlqZXcnGzlN6eLG0xGNkRHMD0yjF719NKV9CpuYykfspMRpPAO/Whz1AzQ/eQwlTepoIKrmUg3jhyZrWQvS7gVO8X05HmSGVxHG61Uq5djl4+iF+MIV5ahF2cE7yB40Iuz0HMODvkqUjZsGqvKbYclMRuVhhM6WDyDmI7jJOwKChdxMdVU8zXTcXtpH0AzLqI5V7CPn1jPs6hewhJ4Q4hwFNESneiATrRBEU2Cml5P4mY9z3GQhbTjFhIbYT5x4GAOs0gj3acY/6cjIWE/xnTU6/gjMoxvIizECMHNVhuZpRXcXFXNLKcraL34MlXys8PJnVU22pdV0qO8imdsDlJcCo8UmNkTE8kL4WaydHX/5CoS07i9RE1fxF6qeJgu3E9nwo6y1m1mE+/zLkaMXM9kmh8VmKmCnSzjdiRu+vAycXWYDqQsxqqOxMUPmMSzWMQ0hGg4YXNjMCjXICnETcO9cWdlHEJRcXlyiNZHpafXbMa/YFaNIZmmnMcF7GQHP/K918BgAK25jiwmkstMljPFp+BnJwIVB2v5L7nMJIuJNGNMo+qbzzzKKedsRv6jfNdrErKxHweEEJxnNHCuQc8Cl5v37U4+szt51+4kHIiapCN+j54fHAqtFIV0nUKEZ72aSCSVEnJUld1ulW2qygaXykq3m01uFQlYgMEGPXeZ9Vxg1LM/WxNySwPn9wGqeZ4NhD1QhHNRPO/360RiHa51S1nCL8wghVTGcxURHCnGmqjfhYKR3rxIeB22TSmLqVJHorIZi/IlBjHaz6PpPzqPz7kqd4AYWG85xaD1wBUvHhR72UMiiYeDdB0vetCTcsqYw2wkktGMQdfApCqBIIsJnsHUF1jI/9GBO0k6QekH68JGIWt4jFI20JpJtODyRtWXzwEW8hdd6Eqz+uLv/wMICftxRAjBQIOegQY9r0szfzpd/Pn/7Z11nFTl/sffz5nc7mALdpfu7hQURMrATlTMq9cOrnW9XPv+jGvrVQxQFJEykBBQQLo7tmHZ7snz/P44s7A1G+zCwjJvXvMaZueZc54z8Tnf832+YXfwTaCTYx2sXF3BUDQD/kJgFtp6VakJipFY8ypvM1wIeul1XGE0MFSvY6Beh7nCCaG21BYVyUJS+chVDKvkxc7Y5sUStq36CeU3lvIHq+lIR67immrhY8WksJFHXaL+Jj41dMmRspRSdQoqe/FW5qEXl9TnbWsCyq3b2i9QvcMPYSsKRe/n3hLPJ5+jHGEIQ5twfvVnJBchUFjBMgop5GquxbuOZtdRXIw/7dnBTLbxPGEMpAP34Iv7mP2zQSZ/sJs3cGKhB8/SqhERMKB1nJrH95gxM64Rse8tAY+wNxPeQjDJaGCS0UDBq2A3Sh5+X+WwUyVVVcmWkiIpsUotv9JhAx8EbfwEUYqgjaLQVqcQfprRNikU8zq72UkefQnhEboybl51QSsPZ9zGVvrRn8uYWC0xx0IWm3gMEC5LvSZRl5TJ6TjZgJfyzVkUdXBKrZ66Itz7Wx2U4d/2L/L3D6W2pNJlLEUg6EcDm3Y2EQLBSEbhjz+LWMAHvMtVXENcHSLtS2sG8j7JzOMQs/iT24jiEuK57qwLfCnH2M8HZLIaPxLpwTN1NgipD0v5heMc43purBRyeyHiEfZzBINN0Fevo6+bRc2MQu0+qpFuXRsqczjC1xzGjJ7H6co4omu8NC+vzriffYziIpe1WHmcgzI28zR2ihjAWzW6XwDs8jMc8jtM4kUMYkrjDqIBSCmxyY8QxKCrpd5ICj+iN5eQve0yt8K+m13sYDsjGNXsTRt604dwwpnLt/yPjxnKMEZyUa09PRV0xHM1UVzMEb4mlUWk8wuhDCCWCQjdQKTzzElCKRkc5VvS+BkFHe2YRjzXNknht21sZT3rGMTgC658QE14hP0CYgs5vMluUinlIiK5j04Eu2l+bMXKbL7iKEeYwET6Uz1iRSLZxSsUcYQ+vIS/m0YGqszEIh9Hx0iM4tEmPaa6sMs5OFmDWbyJEDV/3UtI5TBfkH9wECVp3Wock0Yq85lHDLGMYGS995+FhQ1ksZ08kigmCwsl2AGBL3pCMdMaHzoRSA+CScC33v7vGGK5l/v5icWsZhV72M0EJpNQR6chE0F04n4SuIEUFpDGYrbyDNd/7E/yhqFkMogQ+pxskt0YHJRwgvVksJRsNiLQEc042nJzo8IZK3KUIyxgPvEkcAnjmmSb5zseYb8AKDBY+Bf7Wc4xovDiFfrQv5YflQULX/EFaaRyJVPpQc8ax6Uwn+OsogN31RqeZpOvA2WYlXdOqxjU6eKQ67HIe9ExBIO4s8YxdorYwjMoGEn5+aEax6SRypfMwgcfruP6OjvdF2PnNzL4lXT2o11qBWGkLf50JAAf9EjXuBNY2EYuyzgGQDAmBhPGKFrRg2B0dYi8GTNXcBVd6cYSFvE5n9KFrlzMWILraP5sIoh23EoiN5HNBuZuXUH8oN/Zyk8IFPxpTyCd8aMdvrTGmygM+Ls98ag4KOM4JSRTwH5y2UE+u5E4MBNGIjcSy8QmE3TQPpvZfEUwIVzDdbUuJl9IeIS9BWNHZWV4Mr+1OoSKys0kcj0JmGr58uu8rCdF/Squpis1W7DFpLCfDwhjEG24xu32pLRhk7PQiyvRibNXiMkuf6FMvQGFKLyUOTVa6zYK2MTjlJJBX15lfVF1wdnHXr5nLj74cCvTam2InEwx35HEMjKwotIWP6bTnoGE0aYOSzyTMraQw19ks4xjLCaNYExcTBTjiSaO2sNB29OBeBL4gzX8wWr2sZe+9GM4I+ps4qygI5xBrHpnEIrezntzdpDDVvLYSRo/4azQwUnBiJEA9HgjMKBFoNtwUORq8iFPjvSnLW24ijAGEUTX067Q6I4UkvmSWXjjw83cWuci8oWER9hbKOs4wfvsJzWmhE4FYcwI6FStuXRVFIOD/v/3NamkMJVr3Iq6RLKHN1Ew1Zn27WQjUIBBXNmYw6k3UtqwypewyZdQ6Ia3sgBFVK8zXkIqm5lBGcfpxQuEVLkqceJkFSv5nZVEEcUN3ORWIHeRx2yOsI4sjChcTBSTiKV9A1r7ReDFpcRwKTFYcLKeLJaRwfck8S1H6U4Qk4ljGBEY3AikAQOjuIg+9OV3VrCRDWxmE33pxxCGElCPdQHVYSCEPifrn0uclJBOCSmUcQwL2dgpxEEpKg4EAgUjenwwEYwXrfAhFj8SmsSV44497GYe3+FPALcyjYAmbqN4vtOihX37dghpWGP7BlFb84yGcOQImM21l++t775yA4r4q9d+0qKyCSj0pudPfQg9HMaqOspzS1S6PPs9YQMPc7nr0t4d2Wwkl6104m81FvSqtF2ptSVTzkIGoEOuwqI+hMpuDOJGzOLtamV7JZJjrGA3/0FBT3/eIKjKseaSww/MI4VketKLiUyuFrMukWwmhy85zA7y8MfArbRlMnEENrKSoBkdI4lkJJHkYuVX0llEKi+ynSCMTCCWicTWmGsA4I8/k5jCUIaxit/ZwF9s4C+60Z3BDKEV9a/9LNDhS1yzh0aWo6KyipWsZAUxxHI9N1bLp/DQgoW9vAnGmaS25hkN4aKLIKAOg6OufZWarWzudpD9iWkYHHoGbOlAlwOtEQ6F+kSSZfdYRnyXnaR8Mo6ed/SqdWwS32ImnFgm1r1h4QsSZB3t5xqDQ67Hqs7EyVIEcXgp32MQ1edmIYe9vEMmqwikCz14Fi9Ota6Swomz3zreZdnJRtZV1xckkrVk8TWH2UsBoZi4j45cRgxeZ+DnFIyJ60jgGuLZRDbzSeErDjObI4wgkitpTWc3lngwIVzOlYziItbyJ1vYzHa20Zo29GcAnehc53rBuUQ++cxnHkc5Qg96MokpZz1J7Hzh/PlUG8ipJhjNPZO6qU8zDHeU4mAuR5lHEnZULqc1NxsTCehthHpubxc7mcsqsn7uR/aPQ+EO92MtZJHDFtpyW73C1HQMAkzY5SfoxaD6TageSFmCXf6AXX6Ck/UIgjGJmRjFfdWqOKrYSOZHDvMFKjbacTvxXIdSYa3hKEew374EGXGcRDowkcmVLu+dSFZxnK85whGKiMSLh+nCWKIrtQV0P19JEVrJZLvUmvD5CEGAAF09aq4oCPoTRn/CSKeUH0nmZ9JZwTE6E8CVtGE4EehrmEsgQYxnAqMYzRY2s4H1fMe3eONND3rSk14NsuLPNk6cbGQDy/ntZMZtb/qcM9mz5yItVthbOjacLCSVrzhMAXZGEMkdtCOmgYkZeeSygPnEEsfWDydAHT+WXFcDhwiG1Gv7igjFKB7EJl9FqFGYxLMIcXpWlpT5OOQy7CzCIRcBJSi0xSTewChuq+Z2UXFyjGUcYhZlHCOUAXTifnwqdKvPIotlLGUve8AcgP7767jhqi4nRcOGylLS+ZajpFFKLD48RTdG0wpdDSLqkJJdTpWNDic7nU72O1WOqioZqqyxDJcAIoSgjU6hvaLQVa/QV6ejT5UM4opE4819dOI22vEL6cwjmRfZTjhmphDHBGLxq+Gk64UXQxjKIAZzmMNsYRMb+It1rCWccEKu6E7h2m5wjjR9lkj2sZfl/MYJTpBIWyYxmaA63H8ePMJ+3mFH5RfS+YJDZGOlDyHcQXs6nsbikYrKD8wDYCpXs8BR99ehhFRA4NOAOhwm8RySLGzyVRzyBwzidvRivNbizo14SWlD5TCq3ImTTTjlOpxsBpwIQjGIazCIG9AxpNo2nNjIYClH+YZS0vGnHZ15pVJIZi65rGIl29mGHj0XMYY/PhiKcBgQQAkOFpLCDySTjZX2+PM8PRlGBEqFk5+Ukn2qyi82ByscDtbZnRS5nvMX0FHRMUivI0ZRCBUCPyEwCHBKKEGSo0oyVEmSqvKr3cEXNi2qxAgM0OsYY9AzzqCnh06pdpze6LmC1kwhjnVk8T1JfMQBvuAw44jmCloTW8OJXkGhnetfKaWutKvthF+3jPDrlvFfwulIJ9rTgWhiznoIoR07u9jJOv7kOMcJIYRruZ5OdPZY6fXEI+znCXZUfiWdrzhMJhY6E8CTdKcPp786vJMdJJPEZKYQSP0WDCROhOtffRFCj5f4AL28DJv6Olb5FFb5FOCDQhyCYLT+pQ4kRUiykBzjVOicGR19MIpH0YuxroYO1b+6FrJIZRGpLMZGHv50oBf/JJyhJ+ebxQnWsJodbEdBYQCDGM4IfPDhTwdY/Mp4n2SWkEYJDnoTwuN0oy8hJ7fhlJK1DifzbQ4W2+0kq9o8OyoK15oMDNXr6a/XEa+IBpe2zVRVNjic/OFw8rvdwXNlVp4rsxKnCCYbDFxjMtC3isgrCIYQzhDCOUQh35PEElL5kRQGEcZVtKEXwTV+Zt5405+B9Gcg192dj9+APbS5bQ9/sIbVrMKMmXgSiCee1rQhnIgzIvROnCSRxG52sptdlFFGGOFczpV0p4cnPr2BNErYhRBTgeeBTkB/KV1FOTw0GVac/Ew633CETCx0wJ+H6UI/QhtlvThxsoJltCKKXrWk2lfFiygkKiWkNri+h0FMxKCbiCqTcMgVqOxGlWlI8gArYEAhCiF6IohBIRGd6IpCZ7fuGxU7WawnjZ/J4i9AumLrrySYXggEEkkSSaxlDfvYhwEDAxjIEIbh7wph3Es+O6ckcaJjJgIYSQRXE3+yFr2Ukr+cDr6xOvjBZue4lJiA0QY9j5n1XGrUE9MEXbIiFIWJRoWJRu14M1WVn+0OFtocfGi18Y7VRltF4UaTgZtMhmr7bIs/T9Kd6XRgASksJJVH2EgCvlxJG8bQCqMbkXTkBJL302Cm3TaYMso4zCEOcZAjHNZcVWghla2IohVRRBBBGGEEE4JvAzJmJZJiijlBJhlkkEwSySRhxYoBA53oTG/6EE+Cx0I/TRprse8CrgA+bIK5eKhAuSvge5LJxUoXAnmILvRvpKCXs5c95JHH9VxWrahXbWjuDIUUFtCZB05r34pog1FMO63XguY7z2M7x1hJJquxU4iJEBK4lhguw9u1EFh+Sb+etRzjGN54M4JRDGQQPvjgQGUFx5hHEnsoQJeoJ3Zja14Z2JpIVwz2IafK11Ybc2x2jqqamI836LnCaOBSox6/GizyXCscLoaUEjhugRwrFDnA6tSuQQwCfA0QYoRIL4jzhnZ+EFpD9GKEonCrycitJiP5quRHu1by+fkyK/8sszLOoGe6ycBYgx6lwlyCMXEb7biBBH7jGD+QxGvs4mMOMJFYJhNLiJtwSdD88V3pdjLsNZ88UkghlVQySGcLm7BXWDXQo8cff3zwxQsvTJjQoUMgUFGxYaOMMkoooYB8bJxqehJKKN3oTjvak0jbC67x9JmgUcIupdwL1euGezh9srAwn2QWknrSFfAPutPTzaX06bKTHfjhR3s6NOh1ZsKIZQIp/EgQXWnF6Tctbgh2islhMydYRxbrsFOIDjPhDCWKMYTQ92SUSzZZbGITW9l88pJ+IpPoQS+MGMnBwvccYhGp5GAlGm/+Rid2vhON3qbHq7/kU5uNL2121jmcCGCUXscMLwOTjQb8K3zf00phXTZsyIEtubAzH7JqaKzkpQOTAkKAXYUSR5X2oUC4GXoFwcAQGBoOg0PBu8IvNFARJ0X+iFNlltXG51Y7U+wO4hXBvWbtuYrzM6LjMmIYTzRbyWUeSSfDJUe6wiU71SNxKZAgAgmie3lte1TyySebLHLJJZ88iiiihBKKKCKHbJw4kUgUFAwYMWMmjDASSSSYEMIIoxVRnozRM8BZ87ELIabj6hLs739uJDucS6R5FfALyazkGCqS4URybQVXQFOiuSaO0onODbLWy+nIvRRzlO38i0IOkshN6Jv4x+mgjHz2kMd2cthCAXuRqBjwI4yBhDOUMPqjc1mdVqzsYTtb2EwySSgodKIz/eh/ssvTNnJZQCp/kIkTSX9CeYQuDCAMJCwJc7K9Yxmv5tuxAJ10CjO9TFxnMhDtcnlkWWDOcVh2HFZmwlFXC1KjAt0DYWI0dArQLPA4b60aZ4gJ9FXeZlVCng0yyiC5BA4Uwq4C2JwLL+4GdZd2IhgRDpNi4PIYiKrwFifoFF7wNjPDy8RCm4N3rTYeK7XyYpmVO0xG/mY2ElXBTSMQ9CaE3oSQTinzSeZn0ljuCpe8nNZIfaSW91APFBSCXf88nHsIWUdrNiHEMiCyhqdmSCkXuMb8DjxaXx97ZGRfefz4mXXHZ2Ro9+dyHLsDldVk8mVxMkm++XijYxwxXEVrWp1BK6aUUl5mJuMYz+AKYYsTJmj3ixfXvQ0nFvbyX9JYgh5fohlHJMMJoGODyrBKJHYKKCaZIo5QxCEK2EcRSWgNMhQC6EAIfQilH4F0OWmZO3FylKPsYBt72I0NGyGE0Is+9KI3fvhRgI1fSWcxaaRSgj8GxhHNJGKJxodUp8qXNjufW20kqxKTFW71N3CTyUhfnQIIdhfAwnRYlAZ/5WiWdqABRkXA8HAYEgY9AsHYROt7hXb4Mwt+OwZLMuBAkRYWOSIcbo6HqXGaK6cqmxxO3rRYmWdzoAduNBl4zGwiwU07xFIc/EI680kmjVJEngmvpbF8eU2s26qfHpqPJ56AV18Vm6WUfesaW6ew1wePsDeMTMpYQhpLSCMXKyEWb4Zkx3FnTDS+ZyGTrogiXuPlauV4GyLs5RSwjyN8wwn+ROJAwYgfCXgTjYlg9PicbDUnceCgFDtFWMnDShalHKvUY9SA/8mqgoF0IYgu6CuE7KmopJLKLnaym50UU4wZM13oSk96EUdrJJp1voRU1pCJHUkXAplILCOJREiFJXYH/7Pa+M3uRKK5WoJ+NtLhqJ7nnhBszYPvUuD7FDjkml6/YLgsGi5tBX2CoaJeFpbCweNwNAtSc+B4AeQWQ7EFLHbNQjfowNsIgT4Q7g+xIZAYDp2iIcTP/Xu8twDmpsDXSXCwCPz0cFM83N9euzqoyhGnyv9ZrMyy2nEANxgNPOXlXuBVJBvJ5pktydh7Z6NHMIJIrqA1nQjwLGCeIzRE2D3hjmcJOyp/kcViUtlINhIYSBgTicWwJwwFgW9MnZtpErzxRo+eXPLqHlwHAXSkF8+f9IHnsYtijpDPHmzkVaoMCKBgwIAfRgIxE04gnfEmBh/i8CMeUw2LwyoqySSzh93sZTeFFKJHT3s60I3utKcDBgxkYeFrjvAzaWRQhi/6k3VV4vHjgNPJ81Y7X1ntnJCSaCF4ymzkZpOReJ3CQ0mw2g86LNYEVCfgogh4pBNMij7lCskvgd92wvqDsPko7EiFlOzK74tBp4m1vxeY9KAo4HBCiVV7fX5p5fExwdA/EYZ1hDFdoUuM5o8HTbyf6wbPdoW12fDRIfj0MLx3EMZHwVOdNZ98OQk6hXd8vHjKy8R/ymx8bLUx22bnFpOBGV6mk26lU5+JYABhBLwUhrNVCaPeTuFX0lnOMdrhzxXEMYpWtVYF9XBu0SiLXQhxOfAOEAbkA9uklGPret2FYrFLJEco5lfS+Y0M8rERiolLXYtZkS53S2NKCpwus/iMHHJ4kIdOxgifjsVeFypOVFcEhIIBpZ62hBUrhzjIfvZxgP2UUooePW1pRxe60oGOmDFjQ2UdJ/iZNDaSjQr0JJjxxDCcCKRUWGBz8KnVxiqHEz1aVMs0k4FLDHrybYI5SfDFUdiYC0LCyEi4rrXm1w41Q5kNVu2FpTtg5R7YngJSgiKgYxT0aA3dYqFDK0iM0CzxIJ9TwlwTFptm2R/KhN1psCVJO1EczdKejw2By/vCtYNgYLvq28qywAcH4Z0D2mLtyHB4sXtlgS8nQ1V5pczKp1Y7OuBBs5FHvUyVFlkBpk7V7r/7Dspw8BsZzCeFJIrxx8ClxDCZ2DPqJvTgnrPuimkoLV3Ys7CwkmMsJYPDFKFDMJhwLiWa/oRWS0VvDmHfzz6+5kvGcAnDGQHA2LGQlgb33tv0+wsI0KxWd0gk1oBMSlodoiTqAKVhSaBzotjMeKV04NjKztj2tAOrCYnEEltIwcB0Cvsdw+lrR59nImB9NIHrYjBme1MQ4mRfPzsHe9mx+kh8cgSJ64zEbzBgKlI4FgqHoiE1HFQFggrB8BeEHICRPaBUhSS7dktzgBOtFXa4gAih3YcKLXSx2rG4flJ1BYsNGwbeVTQyuwx2ZcHmTNiZpUXQRPrARXEwIhZ8XZGAFgts2gR2BfZGwpYYKDNC6xwYlARBZdX3VxSksnmMhcM9HJiLBX2WmWi/2YAitYkuWaLNvfwEX/65lLbPJW94CkU9ToCQ+O4OI2hVHD57QxHyzLlppKz7PTwX8PU9O/NcuRI2bvS4Ys4q+dhYQyYrOcY2cpFAB/x5gE6MolWjS7k2Ne3pQFe6sZzf8MJMPwaQlqaVBm5q8vO1+4oVKiUSu08epRFHTt4c3loyvjE/nOD9g/HN6IBXVhx/rtFx8CDE97ZSMOQoBQMzsMYUIewKftvDCVgfjc/eUFQFUjo62DuxhGOJToQTonfpiVlppHWKjjKj4EAMHOwFpV5gskGHVEhMh+AimD0PcmKhoAgynNo8/RTobIRwJ/hbwM8lxFJCcSkcL4KCYu3/JWVQZtFuDhVUVRsrBOh1YDKC2QQ+XmAtg5RjcMVkCKnwvoR6wcg47VZqh43HYVUqzN4L8w7AqDi4LAH2bIaDB6FdO+ieAZ2Ow84o2BoDc3tBt2PQNwWMzlPb9stTGPmdN13+dPLXeAt/TrGwr5+NwYvMhKfpOXGi+mcnEPgcCMHnQAj2AAv5w1LJG5JK8f2bMWR7EbQ6joB10ehLmvb7neW6cglrumZLZ4QSV1SUXy1rJE2FvaZiQ27wWOyNIBcrf3KC1RxnC7moSGLwZgxRjCKyzq435TSHxQ5gw8ZcvuEA++lMF964+FJKM4LYvbtp95ORAU4ciKhjpJFKCimkkEyhq22cDz4kkEgCibSlbaWGEDacvLomiwMJ6aRHZ6Mi6UgA44jmIlrhh4E0VeVTi43/WbWM0NaK4HaTkVtMBpzHFNbkwdxcLbLFKeHiSLizreY3R4WFm+GLNbB4M6Bo7pWrB8KV/TUXixBw+DBs3AZ79sPajbBpKxQUnjrGkGCIi4GoSECCrw/ExmhXKXY7lJRCbh4cy4TkVEjLOPXa1rEwZgRcdgmMGw1eNfSn2J4M//kJvv5TO0mMiYXJbeHOWyuPy7LA09s1H3y0N3zYD8ZHV9+elJK5NgdPlFo4LiXTTQa+62VGKRGkp9f+edpR+YNMfiSFHeRhQGEkkUwili4ENslia3P9JhrK2fQM3HsvvP++xxUDNP0bnk4pf5LJn5xgF3moQBTejCSCUbQiEb8Gf7Gb80vsxMmf/MHvrMDmUDm2shMPX9ydeBJOK3FEIimkkGyyOMEJMjlOii2DXMMJVKGZj/4EEEccbWhDGxIII6zSeyaR7KWAX0lnJccpwo53qYnJ3lGMJZrW+CKlZI3DyXsWGwvtDlSolIVpcQpmHYE398DBUgg1we2JML0tJPjCvnT4aIUm6DnFEBUEOZvBmAEFyS4xPwoLfoKflsGatWCza0Ldoyv07w19ekC3ztCxPQRWiE6pz+f5n/+DjEyIi4dVf8Ly1dqJwtcXpk6Cu26FATX8fJOy4Pl58MVqzS3z5q1w24jqroD12XDHX7C7QDvuN3vXHCJZKCXPl1p5z2pDHBP4Pu9F1nf1v5A/ShELSGUp6ZThJBE/JhHLxUQ1qj69R9ir4xF2mu4NdyLZQz7rXDmPSa7QvAR8GUIEI4hsUGf5mjgXvsQF5DP9f+tpPXkL5hDt+jKEUMIJI5AgfPDFhAl9hRhyKzYsrjTxQgopoIB88iqlmvvgQ6A1kjBbFB38Yoghxm2LtiwsLCWdpWSQQgkmFIYSgXFFNFGZIdx4ncAiJXNsdt612NjpVAkWgltNBqa7IlvSS7UFxY8OaQlAPfzgtmi4uwfoBSzaDO8shRW7tciVKX3h9pEwphuEhWq+9MdnwHcLYPsubV5dOsKQATBsIEweX/dld30+z3ff1e7vu0+7t9s1gZ8zD+YugOJiGNwfnnkUxo6uLtwvfQCzdsH+XC2K5n93aQuuFbE64YWd8MpeLWHqu6HQrea3ng0OByO3WnAmqtxjMvCStxmvBjiOyxdbF5DKEYrwQc9oWjGZOBJouJ/iXPhN1AePsFfgXBf2XKxsIJsNZLGZHAqxo0fQlSAGEcYwIpo0MuBc+RJ36QJC52TxjlSSOUoGGWSRRQH5lcS6IgoKPvjghx8BBBDkykYMIYxwwvHFl2MZmkDU9FlYcbKGTH4lnc3kIIFuBDGWaEYSiQ96Zs+GQqPKifE2PrLayZKSrjqF+0xGrjMZ8BKC/YXwyh74Kklzt1wRAw91hNY2LY78p/3w5s9w5ATEhcLdozVBDw+A0lJNyO+4DxyueQ3uD1dNgimXQXzryt+n/HwnW7eWsWOHhX37LCQl2UlPt5OV5aCw0InFIpESjEaBn59CWJie2FgD7dqZ6N7dzKBB3vz+uxlFESeFvSJFRfDZbHjjXUhJg1HD4O2XoGvnU2Nmz9Zi40si4ZGvwKiHL++Fy2pofvV7Jlz3p5b49MUguNJN4ndUvKTk71YsN9noplOY7etFe13DQhylyxBaQCq/cxw7Kl0r5BC4K0BWlXPlN1EXHmGvwLkm7Fac7CKPjWSzmRwOuSpqB2OiLyEMdHWu8TlDa83nype4SxftviYfu831z+mSPh16DBgwYqzzaqXqZ1HuavmZNFZynBIcRGDmEqIZS3SlptuHnSr37rTyR7Qdhw4uM+h5wGxkhF6HEILd+fDiLi2Bx6yDaQnwcCfN3VJQCjO/h0/XQG4JDGoHD4/XrHS9DpJS4L8fw6dfQX6BFvViBPbv0Pzl5RQWOpk7t5jVq4vYtKmEvXtPFYMJDNSRkGAkNtZAWJiegACF/Hwt/CckRFJY6OTECQepqXb277dSWKitqPr66ujc2Z9//jOQMWN80emqv4c2G3w0C55/RXPTzHgY/vEo6PWasANcfz0cPAZXv62FYb58LTw2obqFf6wMrlyjuWje6K2d9KoS7fLFf3rUzu0lFmxIPvPxYoLx9JLmyrN+F5FKGqXVsn5r41z5TdTFuSrsF2RUjAOVAxSyhRw2kc0eCrCjYkDQhSBupx39CaUt/pWaKlzIGF3/GkMeVn4jg59II5kSzOgYRgTjiKYnwZXe6z0OJy9ZrHxvc6DEwJB0A293NdLRZUEeLIRnd8K3yeCjhyc6a2IVboYSC/z7R3h9CeSVwOhO8PxUGOoSs5174N//gbk/agJ45US493aYMlFL3Y+LgYICJ/PmFfDtt/msXFmC3S7x9VUYNsyH668PpF8/b3r2NBMerq9WBM+dKEkpOXLExh9/lPDuu8Xs3FnIuHF5tG5t4JFHwrjzzmDM5lMxoUYj3H8nXHsF/P1peOFVWPkHfPdZ5e22awV/Pg/TPoQn5sDxfHjjxsri3soLVoyGm9bCw1ugyA7PuulXPs5oYJ1OxzXFpVxVXMZr3ip/Mze8xEAARq4mnqm0YQs5LCKV70lmLkn0IpjJxDGE8Brb+XloHBeEsNtROUgh28llK7nsJA8L2kJeW/yYQhy9CKYnwWekIfGFjBPJdlM2K73T2MIJnEg6E8AjdGEUrapdBe1xOPlnmZX5dge+wN/NRmJ/NhJoVejYAzLL4Pmd8PFhrUjWk521zNAQEzhV+HgFPPu9Jm4TesF9I6B7jGZR7d0Pz/wb5i0CP1945D54YDrElEeNSInDWcqNN+Ywb14BFoskMdHIQw+FMmCAH336+NC69emf6IUQJCaaSEw0UVwcjN2uEh1dyH//m8MDD2Tw6qtZvPVWFFdcUblOQGgIfPWhFjEz/SEYeAk8cBuEV+hg522C2fdDRAD8389g0MMr11Xev1kH3wyBOzbAczu1ypGPdqp5rnE6heX+PtxaXMajpVayVMkLXqbTquQqEPQhlD6Eko2Fn0lnCak8zzaCMTGeaC4j9mSpZA+Np0WqWCkOdhkLOGDM4wi57CYfG9olcBt8GUc0PVxCfq7Fl7cUKv6AM0Ms+DkNXElrLiWGNjWEgR51qrxQZuUbmx1f4CmzVqEwRFGYbdV836/vhX/uhDIn3NMO/tEFIlxasPYA3PuZFhY4pD3M+zsMbq9dKufmwYtvaG4NH2949jF48G4IdsWPq6pk4cJCiopO4HSWsWiRwrRpwdxySxD9+nkhhDh5yd2UGAwKU6cGMnVqICtXFvPQQxlceWUyN98cxPvvR+PtXdmSvfFqaJ8Il14NL74Jzz9SeXuKAm/erMXQv7oI4sPg7jGVx+gU+KQ/lDrgsa3QxgeucuNz9xaCOb5e3F9q4RWLDScw09t9Dff6EIqZm0jkehLYQBaLSOVrjvA1R+hPGJOJpT+h4LHiG0WLEPZMythDPnvIZwd5HKIQNVRLDy8Pv+pKEN0JIshTte6MIZFsJZeFpLCGE6hIehPC1bkd6GOJoHVU9R9rvip5yWLlXYsNHfCw2cgjLkEvZz/wCZCxFS6L0nzEHbTGRxSWwuNz4MPlWr2Vbx+AqQM0N4SU8M0P8OLrUFQC992hRZmEVbB0ly8v4rHHjrF1qwVFMeLtHU16eiC+vu4X+Y4ezWP9+jS2b8/k4MFc0tIKyc0tw2JxoNcrGI0mwsL8GTAghH79ohk1qg0REbXnNIwa5cvGje34178yefHFE+zfb+WXX+IJDKw8j/59YPmPMHgsvP4B3DGtcty7EPD2LVpY5AOztPozveMr70unaIuoqaVw63qt3HB7/5rnpROC97zN6IDXLTZChOBhr8b/hnQIBhHOIMI5Thk/uYriPc0WwjDTJzKW/jnRUEszEA/uOe+E3YbKQQrYSwF7yGc3+ZxwFZoyodCRAG4gkVY5gbSzBdK21ZmvlnihU4aDpWQwn2SSXaVxp9Kaia5FsgxL9deoUvKlzc7TpVZypOQWo4FnvSsXqCp1wFPb4G0gFFg0AiZUSLZZsw9uek+rufLweHjhKvB16UDGMZj2N/h1BQzoA/97BzpXWDBMT7fz4IMZzJtXQJs2BmbNiuXBBwMRQuBbRYOllGzblsGCBbtYvnw/hw9rxdMMBoXExGDi4gJITAzCbNbjdEqSksrIzCzkvfeOYrGsR1EEl1ySyIMPDmDs2ES37gyDQfDCC5H07OnFNdekMGHCUZYvT8BkqnxC7NkN7r8NXnsfnnwB3nq58nZ0ihYh0+0JmPYRbPqXtlhcEZMO5g6FHj/BLevgz0tqnBKguZDe9jaTKyVPlVnpqFMYf5oLqjURiRfTaMfNJLKWEywglV+iDrK01SF+J5wJxNKHEM96VwM4p4VdIslwWeP7KWAv+RykCLvLrRKGmS4Ecg1BdCGQRPxOLsRk1NDFxkPTkkkZ80lhCakU46A9/jxJN0bVEda23+nk3hILfzicDNLrWOJtpmcV5dmRB9f8CfsK4RLgGk6JupTwyiKY8S3Eh8Mfz8Gg9qdeu2I1XHsHFJfAzH/AzVdDTIUol+++y2f69HQsFpWZMyN5+OFQzGaFv/+98jydTpW5c3fzxhvr2Lz5GEajjtGj43nwwQEMG9aaLl3CMBiqH2f54mn37irbth1nwYJ9fPbZNi699GsuvbQtn346CWqJ7b788gC++iqWa65J4dlnM3nllVbVxvTsAhcPh3c+hjtvrhwKCRDsC2/dDFPfglmr4fZR1fcT4w1v9YGb1sGsI26nA4AiBJ/6eHHYWcK0kjI26XVN0uO1InoUhhPJcCJZuruEdaGpbIlIZzWZxODNBGIZRzQBHvdpnZxTwl6A7aSI76OQ/a7uiKBZ4+3w53Li6EoQnQgg1HOZ1iwcopBvOcpKjiOBYUQwldZ0riOdXJWSd602/lFqxSzgAx8ztxoN1SzYr47CnRu0ZhbLLoLMFaees9g0K3TOWrhmIHx8J/hVcEV8PAvueVTzRa9aBF4mWL0aQkI0X/qnnx5j3rxsOnTw4tFH4/D2NvHDD65tW7RIFIC1a1O5//6f2Lr1OB06hPDPf47HbO5GdLT2nduxA9asqVzYrE0bLRRxzx7NJZKVpQBRDB0axYABI1iyZCOffbacnj0/5eKLb6FPnwpFYqpw9dWBLF1axBtvZHHnncG0bVvd/XHleFi3BV59B754v/o2ruwPfRPg1cUwbWTNhapuaKMldD2/E6QCQnU7JbyE4CtfL/oXlPBAiYUf/LzdD24koVYfJqZ35KmI9qzmOAtJ5QP28ykHGUkkE4mlaxOVL2iJNJuwl+FgP4XsJZ8DFHKAAjLQStIJoDW+DCSMTgTQmUDi8a1WFdHD2WUXeXzNEdaThRc6LieOq2hDRD2iGXJRuafYwi92B+MNet7zMdOqisUnJTy7A/61W+sW9O0QbXHUFbJNiQUmvwHLd8NL18ITEyuL1X/ehUee0aJH5v5PyxCdPRu2b4cRIySvv57KypX5TJgQwt13R1FQIMjNhWBXdzenE6xWyYsvrub551cRHe3H7NlXcM01XXn/fcGGDadivXfv1rJDO7ss5ZQU7b5tW1i+XJtXpwoRJwaDjilTBtKlS2ueeuoLliyZh6/vNGpbJHzxxUi++CKf99/P4Y03qgdK+/nCjVPh8znwwRvVK0UKAfdfArd+oJUErnhVU3HMP7rApNUQ1AW8drqdDgDtdDr+4WXi6TIrS20OLjGeWQkxojCGKMYQdbJ8wTIy+I0MEvBjIrFcQhTe55aN2uw0y7tRFlHMBJZRbhxE4kV7/JlALJ0IpAP+nrDDc4hd5PE5h9hMDgEYuI22XE5r/OrZ7WmPcDLdWEq2XfKmt5m7TdWtdCnh/k1a84jbE+H9fmCooHkOFS7/P60e+qy74ebhlfcxa44m6ldNgtkfg6HC1Hr0gJ9+ymDlynxmzozk6ae1ouVVk0tuv11it//Es89u4sYbu/Pee+Px8ztlKffvryUEgXYFsCLra17LnkFKQQoRIXHcHzuTsWNvYMECbczYGjoTjB3bisDAS7nppvkkJx8AasgUctGqlYHRo3355Zci3nij5jETx8EHn8Ffm7UM1apM7qPVjf91R83CDlqzjkgz5PeoW9gB/mY28qHVxr/KrGdc2CsSjx9/pzN30Z7fyGAxabzFHj5mP2OIYgpxxJ9G+YKWSLOop+JQuIlEOriscY/P7NzkMEV8zH7+IpsgjNxFByYT26CT7nK7g6uNpfghWOHvQ9+qq3guHt+mifqjneDVntXdBp/thN9T4bO7qov6tp1afPfoEfD1R5VFHWDdunzefTeHRx4JPSnqoJXVrViq1uHYgNO5icceG8wrr4ypdPJRVSgsPHUy+PHI13x6Yjp2tFZIx8uS+deO6bSJB7ih1vfk2mu7Mm3aElJTD1ObsAP06GFm2bIipJQ1Lrr2cGUL7z9Us7AH+mit97Ykud+HToFLo+DztlCf8upGIXjQbOLhUgvbHM5q6yNnGi/0TCKOScS5yhek8DPpLCSVbgQxhTiGEYHhAr7CbxZhN+V4cyvtmmPXHupBFhY+4QC/kYEvBqbTninENfgq6iebnWuKy0iQCp/ZvOmtr/mH9tEhLUb9vnY1i/radE3Un54Mt46o/JzTCbfdr5XN/eaTUz7ycqxWla++yqBfPy9efrnyIuSJE1rd78hIKCiw4HCsRFHaVhN10ES9qOjU42+zZ5wU9XIszlJmLJ/B+DqEvTwk0ul01DoOtHozTqf7phMBrjDFinOrSutQyKijC2L/EPjMB5w19FCtieuMBh4vtfCdzX7Whb0inV3dce+lIz+TzmJSeZHtBGE82RYx7AJci/P4OzycwujE+7YkbuIwKpJriOd6EurtcqnIGruDa4vL6KZT+NTiQ4CbRa7d+fDAJhjbSovQqCpeBaXw5W5IDNTCGasy90fNYp/zsZahWZV16/LJz3fw+utx6PXV5xAWprli1qw5BFjR64e7DUf08zvltslTU2ock1JQ898rsn9/NiUlRQQH19DHrgqHDtmIjjagKDXPqbwmfG0VJ/U6zZVVG21cpVvUegp7sCIYotex3O5gZv1eckYJwMi1xHM1bdhANgtJ4SsO8zWHGUIEVxBHD4IvmMVWj7B7AGAT2YQs2I0uroyBRHAXHU67gmWKU+Xq4jLaKAqL/LyxltT8Y5JSi37xM2gJM7oaDPp3l0KhDR7rXz0WG+DDz6FdIlx9ec1z2bq1kLAwA8OG1V50Ki1NU0gh6teyJ1QfR7Yjudrf4wLiINP966SUPProb+j1Btq27VrrPqxWlaVLixg71r1qb3cVbOvQ1v12sou0Hqy14eV6b2UDFKGfXsdbFhsOKdGfIz3sFAQDCWMgYWRQymJSWUwaa8ikDb5cQWvG0KrFr+FduE4oDwAUYedldvAYm5CqIO/2vjxPr9MWdaeU3FRShgPJD37elTJIq7IoHdZlwys9teJdVZESPl4JXUMhIbD68yUl8Md6mDrZfT/VEydsxMSY3VrhWVma3zwoSAuNUdVUt/MtKtLGZmTAeNNMDFXeI7POm5mj3duvqip5+OFfWbz4AP37X4SPT+0LfZ99lkdOjpNbbnEfFrn4VzCbtSSsmnCqWrPsjtVD4StR5PIKCVvt4yrSWlGwA5nNUCG2PkThzXQ6MJeRPEZX9Aj+w26m8jsfsI9jVVxpLYmWfdryUCubyeZldpKLjRtJ4D+XJ4Ktcf7Sj6x21jucfO7jRduaTPAKvL0f4rzh5vian9+XoaXG3+6mCuGRZM3HXr6AWBN6vcBur1l4wit4QkaObAv443AsJScnmpCQyqLtXyXl/touNxCRDbNPzCCjOIUIrzie7j+TG7rdwJ817Cszs5g771zEokUHeOCB/thsA9xPGi0zdsaM4wwf7sPFF9dcjqCkFL6aq1WnrBrqWM6GQ5o7a7ibYl/lHHL56HV1+OIr4uc6WZaco8Jejhkd44nhUqLZTT7zSOY7V5XJoUQwmTh6tzA3jUfYL0AcqHzGQWZzlFh8eI/edCCA18q0phO//np627Uokue6W+lWpiNoo57yzeTkwODBlcfmWGFFJvyjK7hZU2Wny3iO9YE5c7R49IocdzU8/uYb2LxeaytX1XJ3OMzs2VNI374qSpUnrVbNCtfrQfspXI6UX9GmzScMG3Y5YWGxp+ayE5KSYNYs7XFZGcANeHvdQFvA4YBPvoYvTVp/VClh7VpwOMrIydlIVtZaVNVBbOxY1q4dQHKyYMKEmo+7pETl8suTsFolH30UXePVht0Or/8XioohyAtmurlQ+DFD6xy1ZxnMXFnzGIBvwlzWeoH7MVWxoAm66TwRROFqltOVILKwsJAUFpLKGjJpix9X0pqLiMLYAhwZHmG/wMjDyvNsYwd5TCCG++mEyZX+X1paLlinx+8hdgoMkhsOmSpZP+WC3KbNqbHrs0GiNZZ2R76rA7xaVvO8fF1+44IiLVkIqlvWsbFBpKTkceJELpGRoZWes9s1Qdaf/BW0AW5BVb/n55//R3R0W9q370urVgnk5hqwVXBTlP+/vACXw6Ftz2QCu92Kw5FESsoe8vP3IKUDf/+OxMWNxstLm4O7KJe8PAeTJyezeXMZ8+e3pkOHmiM69h+GAynQtxtEulkWKLTDtnzoGaiV7HWHXcAhL9Btcz+mJtJViQAi3CzsnsuEYeZ22nMTifxGBt+TzCvs4mMOMolYphB3Xodhe4T9AuIwRcxgM/nYeJruXEz1bEYvr5oTa+rDa4V2OkuFvw/WVRKtnJzqY4+4hLiDm6qCAD6u3CBVgcsvp8Y2cr+uBWGCGTO0x1U72bRp40NRkS+HDh1j4UIfevY8lSVbtSGGFioZy/Hj9/L223/xzjsbWLnyG0wmHYGBMcTFRXLvvcGEh/uwebMJRREMHuwgL8/Cxo1FpKbmkJx8nOLiTKSUmExm7rqrB1dc0ZcuXSIrze3ee6sfy44dZVx1VTJJSXbmzIlj0qSaQ1RS0uC9WRARCssXVT+ZlXP9f0E5At89D21qWRP+6ihY1kHIHmhIJ7wdDicJioL5HFk4PR2M6LiMWMYTwxZymEsSszjEHI5wCdFMpQ2xdXR7OhdpFmHPzYVhNSRTNCVWq2ZVVY1rPhcpcVmmPmfw+6P0y8H8ylZkiQ7rYwOYsS+AGVXGZGRoMd2ng0VK1jmcPGg21qsZg0Xrc4J3LULS0SWEaSUQ6caHfNv18I+ZWuPpHjUEmQghmD49lpdfPsSYMUf46ad4+vevfWHYz8/EjBnDefzxIaxcmcQvvxziyy9TOXBgM3/7m/vY8+BgH/r0iaBr16FERsazeHEcRqOuzlruVqvK669n8c9/niAoSMeKFQkMHVrzlyEtHUZPAbsDnn7Avah//5dWT+f5K2sXdacKL+2BzgGQd6j2eVbEISWrHQ4mVs0GO0+p2AwkmWLmksQvrrj4QYRzPfF0wf0i9rlGswj72TjBm86jsuve3mf2PdENOYHp5W3IVG8sD/VBZtZc20VRtAiL0+GAU8UB9KqnyRfoOuHm2MDXjTb0aA0hvrA9B/q6Eae/3alVOHz0OVj4dc1jgoIM/P57AmPGHGHo0MP8+9+R/P3voVCHb9hg0HHJJYlcckkiOTlaqOJrr5WQlVXKvHk2VFVl4kQ9gYFmjh3zwcfHRO/ecMst2uvrMipUVTJnTj7PPpvJoUM2rroqgPfeiyYsrOaf5Y7dMPE6rT/r4/dAjJtIl12pWqG0/olaUldtfHIY9hTAd0PhwQasga6wO8mTMOEslhQ4W7TGl8foyu20Yz7JLCSV+zlBFwK5gQQGEnbOL7Q2y6cSGqpVxvNw5tlAFjPYSgJ+vNq2LwGL3KtNeze1ROrDCVdkRFQ9/a0dXZbm9jxo7eZKRa+DW4bDmz9Blhvfv78/fPKWJngPPg0/flXRZ36KxEQTmza14/bb03jssWN8/nkut9wSSdeu/mRkaHN25/cux2IROJ2+BAf7EhKijS13r5SW1v+KKz/fyc6deezcmc2HH9ro2tXML7/Eu41Xl1KLfrn7ES3T9PdFsHdXzdtOyoJxr4CvCb7/u9Yizx0pJVoph5HhcGUsPFi/6QPwiVVrujGuth2c5wRj4nbacz0J/EQa35HE02whHl9uIIGRRHKuRow3alZCiNeEEPuEEDuEEPOFEIFNNC8PTcBu8niWrbTBlzfod0YXg8qNvfraMf1CwFevxbLXxqOXacXA5h7RBK4mJozVOiMtWQpXTzvl2qpKSIie+fNbM39+a2w2yeOPJ3PXXft5550TpKbaEMK9sPv4VO5UlJgICQmnHoeFVQ6frEpRkZO5c/O5+upkWrXawx9/ZGAy6Zg7N47t29u5FfXjmXDNNLj5HujdHTYth17da97H/gwY8SKUWuGXJyG2hkzccmxOuO5PUCV8MqBhV4y7HU4W2h3caTJgOo/96/XFCz1X0oavGM6TdEMC/2IHN7GG373TcFBHWm8z0NjTzW9AVylld+AA8FTjp+ShKcikjGfYSghmXqUvvqdRFqAhhLl+4MfrGdNs1mm9NuckQ24tTVFaBcGkNrA3X2uu4Y67b4UXnoAFP8GgsbBzT83jhBBMmRLA3r0deP/9OKKjDbz88nEGDtyHw3EAhyODBQsKOHbMjqxyLD4+moUeFQUREdqt/HFk5KlQSyklJSU2Fiwo4KmnjjFlyiG6dt3NNdeksGpVCbffHsxVV7XlyivbMXVqYI3lAqxWeOO/0HEALPxFaxjy+yKIcuN+WbkbBj+v1atfPgO6u+ljqs0P7toIa7Ph0wGQ2ICCiFJKniyz4C/gAfN5sIDVhOhRGEs0nzKEF+mFHwY+DtzFw+GrWUgKWlfYc4NGXUdJKZdWeLgeqKGah4ezjQ2VZ9iKDZU36X1W+ry20ykoaJESV9SzbdojHbXOPf/eDa/3dj9ueCQcLoSnvoEIf7htZM3j7rgJBvSFm++FPqPgkfugXSyYazh8nU4waVIgkyYFYrXa+O67fJ58sghVzWHKlGwAgoJ0dOhgonVrA3v3GjCb9bzzjoLJJEhN1ZKjVq1SKShwkpzsJDPTzvHjNnbtsmG3q8ybp7mFunXz5u67w7jmGn8GDfJGpxM1RsWA1uzj8znw7/9AarpWW/6tl6C9m5IBqgqvLYYZc6F9K1j0KCRGuH8vpdSaWH9+BJ7rCle3dj+2Jr6zOVhqd/Kat6nWrOKWjIJgKBEMIZxfcrL5we8Q/8cevuQwN5HIOKJr7SB2NmhKB9k04Nsm3J6H0+RTDnCQQv5Fb+KovYlyU+EjBH10Cr/ZHTxfz9d0DdRqr7+5H66Og/6hNY8TAm5qByGt4PaPIa8EHhpfs/tg7GjY9Sc8+iy8/KbWjGLCGJgwwX0ESXy8kccfD+eZZ8KRUmXlyjI2by5j714LBw7Y2LSpjOTkIhwOlQ0bat5GYKCO8HA9iYlGSkt9CAgw8eabXvTo4UV+viaAVUMxK5KcCh9/AR/NgqxsGNQPPn0bLq6hpV05J0pg9L/h9z1wVX/4dDr41xLwo0p4eAu8tR/ubw/PucnodUeqU+WB0jL66RTuNV1Y1npNCAQ9rGF0t4ZyPCqH/3GQ/2MPczjKTSQylqhmaw5Up7ALIZYBNQXBzZBSLnCNmQE4ADdxCSCEmA5MBwgIqOU60UOj2Ekec0liErEMoe7qgU3JFUYDT5VZ2eNw0rmepVxf6wVLj8HUP2DjuJprxoDmZ1/wiNa8+pGvtfri70+r3BavnLBQmPUe3DsN7nwA5vwIi5fB9Vdp4ZH9a6giWY4QCkOG+DBkSOWV0Hvv1XqgzpypYrNJtm2T6HSCAQMU/PwUMjO1DUZFnYqKGTRIu8/Pr3lfZRb45AuY8wOsdAUTTBgLD90DI4e6n6PFBgsOwo8HteivT+503/ru5L4ccOt6mJsCD3WAN3o3zK9ukZLrikuxS/jc1/ucKfp1LlAeKtmbEDaTw8cc4DV2MZej3EY7hhNx1qNo6hR2KeWY2p4XQtwKTABGy6pOycrb+Qj4CCA6uu+5XVziPMWJylvsIQIzd9PhrO//ZpOBf5ZZedVi43PfutvlgRb2OG8YDFsG43+H5RdBgBtj0MsIcx+Af/0IL8yDPw/AB9NgbI+axw/oC0/eD78ug4xc+OxrrRpkZDgM6gPtEyA8GCJdrguHQ/OTlycuVSQ7G3JzFZYu1Sywo0e1v5cnX5W32AsJgfR0LYdi9uzKz/kHwMEjsG0XLPoF8ovh8x+hbQI8/wTcch20jq2+73KcKsz+E575DpKzoV8kzJtR+yIpwNFiuGoNbM3T6t0/2qlhoq5Kye0lZWx0qsz1rbsG0IWKQNCXUPoQwh+c4FMO8Dzb6EwAd9KentTxQTUhjXLFCCHGAY8DI6SULbdU2nnCT6RzmCKeo2ezlCUNVRTuMxt5w2LjPoeRfvW02vuGwPdDYcpqGLMCfhoJYW4sd0WBZ6+AMV3htg+10L4pfeGhi6BtDRco5TVqQkLgnlvgz42wZr1mwdvtmg88Pg4SW4Mwa3VVSsvAu8p56dJLT/U1BWhdxTcdHAxBQafGnsiGQ0mQdgxS0rXb4SSw2bUxYUEwZii8/E8tyqU2obU5NEF/eSHsPwa928D1bbWql3WJ+jdJcPdG7f8LR8CE6NrHV0VKyYOlFr63Ofi3l4nJ9Vw/uZARCIYRwWDC+ZV0PuMgD7GRIYRzFx3OSiZrY3/9/wVMwG+ubMP1Usq7Gz0rDw3GgcrXHKYLgYygltWzM8wTXiZmW+1MLyljrb8PXvU0DS+LhvnDNZfMgF9hwQjoFuh+/OD2sONleGMJvLQQFm6GKb3g2alaYlM5RiOMHHnKv32Fq257SQmsXgu//6mV/l21HpwmcALDJkJ4GMTFQKsICAkCu00Ld9T7noqTt9s1d0phkZY0lJUNGcfhaDIUVwi59PaGXt3g0othyAAYPhi+/UZ7rrebqw2A1Bz4dCV8uAKO52vHNe/v2onsm29qfz+Pl8EDm+G7FBgQAnOGQHwDl1tUKXmg1MLHVjuPmI08fIFFwTQWHYLxxDCaVnxHEt9wlGn8wWTiuI12+JxB46uxUTG1lPf3cDb5gxNkYuFvdG7WrDh/IfjQx4uJxaX8vcTCBz5m6hvdPiEaVo2Gyas1cX+rD9yR6H68yQBPT4E7RsFz38AX6+CHLTCyM0y/SBNAd/j4aEJ76cXaY4cDgkJBBWY8q4lzarq2qLl1B+TmaZZ8VXQ6bYE2MADCQyGhDXRsC1GRcNEI6NRe+1t9a7AUlWknqa/+hKU7tPyAcd3hwbvgkjose9A6JX1wEJ7ZAaVOmNkDHu/kvoKmO6xSckdJGXNtDh41G/mXl6lepSI8VMeEjhtJZDwx/I+D/EAyyznGXbTnEqJRzsDvteWmjV1gLCCFKLwYSP06AJ1JLjHqecps5CWLjbY6hegGhFv2D4Wtl8KNa2H6BpifCgMUCK0lByQ8AJ6ZCH8bDYv3wgfLtAJYfl5wSWe4rBtcHQw+tZRL0OtBh3Z7+uHqz2/ZooUKdu2qhRhKqTXNrqlUStXiYnWRmgO/bIdFW2DpTrDaIS4UnpoMt4+E+HqsgUsJi9Phye1aiYDREfBuv9qLrLkjU1W5triMtQ4nM71MPOp1HtXnOIcJxsSjdGUisbzDXl5hF4tJ4xG6EE8DkgnqgUfYWwBZWNhGLrfRFt05UsPiWS8TR1SVf5RZuSFOMCal/pfxkV6w9CJ49wA8tR2W+cMYC9xid19XBiDQGx6fqGWr/r4XvlwD8zfCvM1wz9cwvCOM7qLd947XLP6GIETjaxBJCUdOwMYTcLgI3nlE85uD1nT67tEwdQAMaue+K1TV7f2UAS/ugr9yoJ0f/DAMpsScXv0hew8HgwrKyJWSr3y8mNrQN8lDnXQggLcZwK+k8z77uYO13EACN5LQZPHvHmFvAaxH6zgxvMao1OZBEYJPfbwok2V83dlCqUFynaxf5Uft9fC3DppATfkOfvaCxEXwZGe4qy141/LNVRS4qIt2e248rD8Cf6Vqro0nXb5pox66xUKvNtp9xyhQvUBYGn/soEWwpObA4Uw4cAz2ZsDOFNiaDLmuksVmHYzqCndeBON6QOfo+ouxDVgHvPwz7MzX6u181B9uTdBCQxs8XykpvdNG6T1WgoXgdz8fetZz8dtDw1EQXEoMgwnnXfbxJYdZxXGeoBudCWz09j3C3gLYTi4hmGh9jtWNNgjBbF8vLtllYX47K3eUqLzrY25Q/e5YH5hWAqMssC1CS7D59264tx3c006z7mvDqIfh7eHakdrjEwXwx3746zBsPgI/bIRPyjsLjQIkxNwPUYGaiyfYBwK8oSgfzHqIS9FOHKoKdieU2aDECoVlmmBnFUFyJmSVaOJejpcRusbAFf2gbwIkbYZW3vDA/fV/PwEOFGoVGT8AioCuEj4fCNe3OT1BB9jvdHJXiYXSB5wYf9bz13VeBJyHzTPORwIw8jTdGUMrXmc397OeG0jgJto2qpOTR9hbAHvJpzOB52QpUYMQ3LHTTHipwlftrOxyOvnK14t2DenoAMQ74fXR8McJeHUv/HOXJvCTY2BagiZw9VkgDA+AK/prN9BcGZkFmjvk0qma1X7xCDiWDxl5WgncglJNvO01lAIx6MDXDP5eEOQD4f7QJxbCfGFgN0gIh3aREBdS2bXy7r76H3tmmRbd8nUSrM8BnYBewMXATDcZuPXBKiVvWGy8XGbFW4Dvk16YlugJuOHc+x61dPoTxucM5W328BVH2EQOT9HttDPHPcJ+nlOGgwzKGEdMc0/FLQLB5MMmbu6lcHtJGQMKSnjF28wdJkODIy2Ghmu3g4XwwSGYdRTmpUKIAS4Lg5sUGBFef+tVCIgM1G7GNO1vn9UQsLtli5aS3637qfK+Bl3NfvCGLp5WRUo4UARL0mFBOqw5oUXHdA3QEoxujIeV80/Nv+HblyyxO3is1MIRVTLVqOc1bzN9l3gSj5oTb/Q8SXcGE84b7OYe1vEwXRhdQ6ezuvAI+3nOcbQYvGhq7wp0LnCZ0cBGnY67Ssq4v9TCtzY77/iY6dRA6x2gnb+WFv9SD1iSAf/bB3OPwxcZ4G/Qeqle0gq6AG3qlwRbJ4po+IJrfUkvhdUntAbfy4/DUVccfLdAeKYrTI3Taus0lo0OJ/8otfC7w0l7RWGxnxcXt+Ca6ucjw4mkE4G8wDb+xQ72UMA9dKAhxXg9n+h5Th5aV+Xgs1DBsSmI1Sks8fPmM6udp8os9C0o4R6Tkae8jKdVLdCog8tjYYAOypywE03of87QLHmACCMMidASdfoEQ88gCGmmt0tKOGGBvXpI08GqP+CvbEhx5W0HGGBUBDzWGS5tBW2aqIbbFoeTmWVWFtsdhArBm64rJoMnNv2cJAwzb9Gf99jPDyTjRAKd6/16j7Cf55S5akB7NXOZ0IYghGCa2chEo57nyqy8a7Uxy2bjYbOJ+8xG/E9TbLx0MCUKpsRqArq/EH48ABsKYGsu/JB6amykGToFQHs/SPTVBNQRD0qB1o/VfJpvp5RQ7IRcJxRlQmopJJXA4WI4WAT7CiHHCuVhy21yYGAoPByquZh6BkJTlWKRUrLC4eQ/ZVaWOZwECnjey8T9ZiN+HkE/59Gh8Dc60ZEAuhPECw14rUfYz3Okq3fRmcheO9OEKQrv+Xhxv8nIs2VWni+z8pbFyr0mI3ebjYQ3ot63ENAxAG6O1m5RUZBt0Qphbc+H3QWwr0BblMy1uV70mHbn9S346CHYqLl1fPTgLNX89kEFmktGlWCX2kmg1AHFDiiwa9uyl0fDHDk1n1ZeWoz5FTFa4+gjqyDaCU9cf9qH6JZiKfnWauc9q41dTpUIIZjpZeJOk9ET7XIecrHHx37hUR4SdS51b2konfU6vvfzZrPDyUtlVmZabLxusXGt0cDdZiM00dVIqBkubqXdKpJvg+QSGDwBZADMeFWzqvPsUGDTXDwnSjVL3GHVFjIFmtCbFC3k0levuVGCTWDJgmA9DO4Esd7arWrc/bvLm+SQTiKlZJNT5XOrjW+tdoqA7jqFj3zMXGu8MFrYeTiFR9jPc/xcLe8KsTfzTBpPH5fA73M6+a/FxmyrnVk2O9FjFfofMXKNqif0DHTtCTRqN8Nu7fGMrtXHNCTS5eTYs5AvdsDp5Hubg2+sdvarKl7AlUYDt5sMDNLrPPVdLlA8wn6eE4pWACWTJkqZPAfoqNPxXx8vZnqZmW2z81qejfl9LSzKh9EGPVca9Uww6C/I1mxSSrY5VX5sa2dLuIPUAs3vM0yv40GzmauMBo+7xYNH2M93QjBhRkcaJXUPrgclJfDrr02yqZNs3w49ailP644ARXCP2Yj6i5GlqU6Uq+z81crOr14OhIT2eTq6Zenplq3HJ1khJFgQUqU+eU7OqUYXdWG1ar758gYZFSlvrLGvHolF9Rm7YQP071/3tkAryrXS7mSF3cFSu4NjUiISoVWajtvzTQzJNRBq105y6+u3yRqxWMBcS6E0D+cPHmE/z1EQJODLQQobvS2/pi0wd5IePU41vDgdLr0U+FlH0AEdVx0wkeyvsiXczrZwB993sPJ9Byv+fQXdinV0KdbTqVhHm1IFHeJk84v64O/vvvBW1cYatVGfsf37u46rCqqUHFRV/nI4We9w8qfdyT5Vs8qDhHbFMtagp8txPft3K9VOZI3BbPYIe0vBI+wtgA4E8DPpOFEb1TxXp4PAQBg7tunmBpCR0bjXm81w+eXlzTIEpwrsQoaqstzuYIXRyWovB3+GOADwAXrpdfTQ6eihV+im09FRp+Bdi8955kzt/vozEKlSlYwMKEWyxaGyy+lkl1Nlu8PJNqeTfFfjyAABA/V6bjIZGGnQ00unoHPNP8MArUbW3iC7oficW6WGPDQCj7C3ALoSxHxSOEAhnZqgMtz5RJSicJPJyE0mzf+cokrWu6zdLU4nn1ltlFq1sQKIUwSJikK8TiFeUYhTFKIVQStFQfUSiLLykY1DSkmBhONS5bgqSVNVUlRJiqpy1KlywKSSISTlF1pmoKtO4Sqjgb56HQNcJyLFs/jp4TTwCHsLoDchCGAD2RecsFdECEFrnaC1TuEaV+6/U0oOqyq7nSp7nCoHnE4OOVUW2BxkV+29vhSEFeLzBAGKwB+BtwBvITAL7ceic5VaUwEnEruEMqBMSkpcYl4gJblS4qhhjhFC0EZRGKDqSVAV+gUpdNYptFVOWeMePDQWj7C3AAIx0oVAVnOcW/B0K6yITgja63S01+m4vMpzxVKSqqqkqZLjqsoTr0ucgZKLb5EUSEmhlJQCuaqKDbBJXKndGnoEBqFZ295CEKwI2ghBgBAEC0GoEEQqChGKIFoRxCrKyR6w5e6pKE8bUQ9nAI+wtxAuohVvs5cjFJHQxG22Wiq+QtBJp6OTK//pZVc0zEf3Nd+cPHhoCi68QOAWykW0QofgV9KbeyoePHhoZjzC3kIIwMgQwvmFdKzncXkBDx48NB6PsLcgLqc1hdg9VrsHDxc4HmFvQfQgiI4EMJekSot8Hjx4uLDwCHsLQiC4lnjSKWUFx5p7Oh48eGgmPMLewhhGBIn48TkHsaPW/QIPHjy0ODzC3sJQENxJezIoYzGpdb/AgwcPLQ6PsLdA+hNKL4L5nEMUYKv7BR48eGhRNErYhRAvCiF2CCG2CSGWCiGasCSRh9NFILifThTj4H8cbO7pePDg4SzTWIv9NSlldyllT2Ax8Gzjp+ShKUjAjynEsYhU9pDf3NPx4MHDWaRRJQWklBWLgPtA/WLsiopOlUj1cOZwGNthmp7J/23Ko836wDrHp6eDzQb33tu08ygp0UrCnm6996KiU9s4k6Sna402mvr4a+JcfE8yM0FV4ZZbmm6bp0tOjnbflPXmzwSlpeDtfXZKHq9aVf+xQlatcNdAhBAzgZuBAmCUlDLLzbjpwHTXw67Arkbt+NwmFMhu7kmcQVry8bXkYwPP8Z3vdJBS1mkO1CnsQohlQE1teWdIKRdUGPcUYJZSPlfnToXYJKXsW9e48xXP8Z2/tORjA8/xne/U9/jqdMVIKcfUc59fAz8BdQq7Bw8ePHg4czQ2KqZdhYeTgXq0+vXgwYMHD2eSxtZjf1kI0QGtoUwycHc9X/dRI/d7ruM5vvOXlnxs4Dm+8516HV+jF089ePDgwcO5hSfz1IMHDx5aGB5h9+DBg4cWRrMJe0suRyCEeE0Isc91fPOFEIHNPaemRAgxVQixWwihCiFaTGiZEGKcEGK/EOKQEOLJ5p5PUyKE+J8Q4oQQokXmjwghYoUQK4UQe1zfzQebe05NhRDCLITYIITY7jq2F+p8TXP52IUQ/uWZq0KIB4DOUsr6Lr6e0wghLgFWSCkdQohXAKSUTzTztJoMIUQntAXzD4FHpZSbmnlKjUYIoQMOABcDacBG4Dop5Z5mnVgTIYQYDhQDX0gpuzb3fJoaIUQroJWUcosQwg/YDExpCZ+fEEIAPlLKYiGEAfgDeFBKud7da5rNYj/dcgTnA1LKpVJKh+vheiCmOefT1Egp90op9zf3PJqY/sAhKeURKaUN+AYthLdFIKVcDeQ29zzOFFLKY1LKLa7/FwF7gejmnVXTIDWKXQ8NrlutetmsPnYhxEwhRCpwAy23gNg04OfmnoSHOomGSgXs02ghwnChIYRoA/QC/mrmqTQZQgidEGIbcAL4TUpZ67GdUWEXQiwTQuyq4TYZQEo5Q0oZi5a1ev+ZnEtTU9exucbMABxox3deUZ/j8+DhXEMI4QvMA/5exStwXiOldLqq6MYA/YUQtbrTGpugVNdkWmw5grqOTQhxKzABGC3Pw2SBBnx2LYV0ILbC4xjX3zycJ7j8z/OAr6WUPzT3fM4EUsp8IcRKYBy1FFJszqiYFluOQAgxDngcmCSlLG3u+XioFxuBdkKIeCGEEbgWWNjMc/JQT1wLjJ8Ce6WU/2nu+TQlQoiw8sg6IYQX2gJ/rXrZnFEx84BK5QiklC3CQhJCHAJMgKuqNOtbSsQPgBDicuAdIAzIB7ZJKcc266SaACHEeOBNQAf8T0rZYroGCCHmACPRytpmAs9JKT9t1kk1IUKIocAaYCec7OL+tJTyp+abVdMghOgOzEL7XirAXCnlP2t9zXnoJfDgwYMHD7XgyTz14MGDhxaGR9g9ePDgoYXhEXYPHjx4aGF4hN2DBw8eWhgeYffgwYOHFoZH2D148OChheERdg8ePHhoYfw/GLkN57TzzzYAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 1 Axes>"
       ]
@@ -253,7 +277,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -267,7 +291,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   }
  },
  "nbformat": 4,
diff --git a/linear_algebra/real_toeplitz_solve.ipynb b/linear_algebra/real_toeplitz_solve.ipynb
index 948fa4b..c10f2ad 100644
--- a/linear_algebra/real_toeplitz_solve.ipynb
+++ b/linear_algebra/real_toeplitz_solve.ipynb
@@ -49,8 +49,8 @@
     "\n",
     "# Construct a real, symmetric, positive definite toeplitz matrix \n",
     "matrix_size = 5000\n",
-    "t = np.arange(0, matrix_size);\n",
-    "a = np.exp(-np.abs(t)/10);\n",
+    "t = np.arange(0, matrix_size)\n",
+    "a = np.exp(-np.abs(t)/10)\n",
     "# The toeplitz matrix is defined by its diagonals.  We can construct the full matrix from the diagonals using scipy\n",
     "A = scipy.linalg.toeplitz(a, a)\n",
     "# Construct and a random Righ hand side\n",
@@ -202,39 +202,39 @@
     "\n",
     "### Real matrices\n",
     "\n",
-    "* [library.linsys.real_toeplitz_solve](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.linsys.html#naginterfaces.library.linsys.real_toeplitz_solve) Solution of **real symmetric positive definite Toeplitz** system of linear equations.\n",
-    "* [library.lapacklin.dgbsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dgbsv) Computes the solution to a **real banded** system of linear equations.\n",
-    "* [library.lapacklin.dsgesv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dsgesv) Computes the solution to a **real** system of linear equations using **mixed precision arithmetic**.\n",
-    "* [library.lapacklin.dsysv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dsysv) Computes the solution to a **real symmetric** system of linear equations.\n",
-    "* [library.lapacklin.dspsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dspsv) Computes the solution to a **real symmetric** system of linear equations, **packed storage**.\n",
-    "* [library.lapacklin.dpbsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dpbsv) Computes the solution to a **real symmetric positive definite banded** system of linear equations.\n",
-    "* [library.lapacklin.dposv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dposv) Computes the solution to a **real symmetric positive definite** system of linear equations.\n",
-    "* [library.lapacklin.dppsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dppsv) Computes the solution to a **real symmetric** positive definite system of linear equations, **packed storage**.\n",
-    "* [library.lapacklin.dsposv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dsposv) Computes the solution to a **real symmetric positive definite** system of linear equations using **mixed precision arithmetic**.\n",
-    "* [library.lapacklin.dptsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dptsv) Computes the solution to a **real symmetric positive definite tridiagonal** system of linear equations.\n",
-    "* [library.lapacklin.dtbtrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dtbtrs) Solution of **real band triangular** system of linear equations, **multiple right-hand sides**.\n",
-    "* [library.lapacklin.dtrtrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dtrtrs) Solution of **real triangular** system of **linear equations, multiple right-hand sides**.\n",
-    "* [library.lapacklin.dtptrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dtptrs) Solution of **real triangular** system of linear equations, **multiple right-hand sides, packed storage**.\n",
-    "* [library.lapacklin.dgtsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.dgtsv) Computes the solution to a **real tridiagonal** system of linear equations.\n",
+    "* [library.linsys.real_toeplitz_solve](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.linsys.real_toeplitz_solve.html) Solution of **real symmetric positive definite Toeplitz** system of linear equations.\n",
+    "* [library.lapacklin.dgbsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dgbsv.html) Computes the solution to a **real banded** system of linear equations.\n",
+    "* [library.lapacklin.dsgesv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dsgesv.html) Computes the solution to a **real** system of linear equations using **mixed precision arithmetic**.\n",
+    "* [library.lapacklin.dsysv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dsysv.html) Computes the solution to a **real symmetric** system of linear equations.\n",
+    "* [library.lapacklin.dspsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dspsv.html) Computes the solution to a **real symmetric** system of linear equations, **packed storage**.\n",
+    "* [library.lapacklin.dpbsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dpbsv.html) Computes the solution to a **real symmetric positive definite banded** system of linear equations.\n",
+    "* [library.lapacklin.dposv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dposv.html) Computes the solution to a **real symmetric positive definite** system of linear equations.\n",
+    "* [library.lapacklin.dppsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dppsv.html) Computes the solution to a **real symmetric** positive definite system of linear equations, **packed storage**.\n",
+    "* [library.lapacklin.dsposv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dsposv.html) Computes the solution to a **real symmetric positive definite** system of linear equations using **mixed precision arithmetic**.\n",
+    "* [library.lapacklin.dptsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dptsv.html) Computes the solution to a **real symmetric positive definite tridiagonal** system of linear equations.\n",
+    "* [library.lapacklin.dtbtrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dtbtrs.html) Solution of **real band triangular** system of linear equations, **multiple right-hand sides**.\n",
+    "* [library.lapacklin.dtrtrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dtrtrs.html) Solution of **real triangular** system of **linear equations, multiple right-hand sides**.\n",
+    "* [library.lapacklin.dtptrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dtptrs.html) Solution of **real triangular** system of linear equations, **multiple right-hand sides, packed storage**.\n",
+    "* [library.lapacklin.dgtsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.dgtsv.html) Computes the solution to a **real tridiagonal** system of linear equations.\n",
     "\n",
     "### Complex matrices\n",
     "\n",
-    "* [library.lapacklin.zgbsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zgbsv) Computes the solution to a **complex banded** system of linear equations.\n",
-    "* [library.lapacklin.zhesv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zhesv) Computes the solution to a **complex Hermitian** system of linear equations.\n",
-    "* [library.lapacklin.zhpsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zhpsv) Computes the solution to  **complex Hermitian** of linear equations, **packed storage.**\n",
-    "* [library.lapacklin.zpbsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zpbsv) Computes the solution to a **complex Hermitian positive definite banded** system of linear equations.\n",
-    "* [library.lapacklin.zposv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zposv) Computes the solution to a **complex Hermitian positive definite** system of linear equations.\n",
-    "* [library.lapacklin.zppsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zppsv) Computes the solution to a **complex Hermitian positive definite** system of linear equations, **packed storage**.\n",
-    "* [library.lapacklin.zcposv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zcposv) Computes the solution to a **complex Hermitian positive definite** system of linear equations using **mixed precision** arithmetic.\n",
-    "* [library.lapacklin.zptsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zptsv) Computes the solution to a **complex Hermitian positive definite tridiagonal** system of linear equations.\n",
-    "* [library.lapacklin.zgesv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zgesv) Computes the solution to a **complex** system of linear equations.\n",
-    "* [library.lapacklin.zcgesv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zcgesv) Computes the solution to a **complex** system of linear equations using **mixed precision** arithmetic.\n",
-    "* [library.lapacklin.zsysv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zsysv) Computes the solution to a **complex symmetric** system of linear equations. \n",
-    "* [library.lapacklin.zspsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zspsv) Computes the solution to a **complex symmetric** system of linear equations, **packed storage**.\n",
-    "* [ibrary.lapacklin.ztbtrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.ztbtrs) Solution of **complex band triangular** system of linear equations, **multiple right-hand sides**.\n",
-    "* [library.lapacklin.ztrtrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.ztrtrs) Solution of **complex triangular** system of linear equations, **multiple right-hand sides**.\n",
-    "* [library.lapacklin.ztptrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.ztptrs) Solution of **complex triangular** system of linear equations, **multiple right-hand sides**, **packed storage**.\n",
-    "* [library.lapacklin.zgtsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.html#naginterfaces.library.lapacklin.zgtsv) Computes the solution to a **complex tridiagonal** system of linear equations.\n"
+    "* [library.lapacklin.zgbsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zgbsv.html) Computes the solution to a **complex banded** system of linear equations.\n",
+    "* [library.lapacklin.zhesv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zhesv.html) Computes the solution to a **complex Hermitian** system of linear equations.\n",
+    "* [library.lapacklin.zhpsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zhpsv.html) Computes the solution to  **complex Hermitian** of linear equations, **packed storage.**\n",
+    "* [library.lapacklin.zpbsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zpbsv.html) Computes the solution to a **complex Hermitian positive definite banded** system of linear equations.\n",
+    "* [library.lapacklin.zposv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zposv.html) Computes the solution to a **complex Hermitian positive definite** system of linear equations.\n",
+    "* [library.lapacklin.zppsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zppsv.html) Computes the solution to a **complex Hermitian positive definite** system of linear equations, **packed storage**.\n",
+    "* [library.lapacklin.zcposv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zcposv.html) Computes the solution to a **complex Hermitian positive definite** system of linear equations using **mixed precision** arithmetic.\n",
+    "* [library.lapacklin.zptsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zptsv.html) Computes the solution to a **complex Hermitian positive definite tridiagonal** system of linear equations.\n",
+    "* [library.lapacklin.zgesv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zgesv.html) Computes the solution to a **complex** system of linear equations.\n",
+    "* [library.lapacklin.zcgesv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zcgesv.html) Computes the solution to a **complex** system of linear equations using **mixed precision** arithmetic.\n",
+    "* [library.lapacklin.zsysv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zsysv.html) Computes the solution to a **complex symmetric** system of linear equations. \n",
+    "* [library.lapacklin.zspsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zspsv.html) Computes the solution to a **complex symmetric** system of linear equations, **packed storage**.\n",
+    "* [ibrary.lapacklin.ztbtrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.ztbtrs.html) Solution of **complex band triangular** system of linear equations, **multiple right-hand sides**.\n",
+    "* [library.lapacklin.ztrtrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.ztrtrs.html) Solution of **complex triangular** system of linear equations, **multiple right-hand sides**.\n",
+    "* [library.lapacklin.ztptrs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.ztptrs.html) Solution of **complex triangular** system of linear equations, **multiple right-hand sides**, **packed storage**.\n",
+    "* [library.lapacklin.zgtsv](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.lapacklin.zgtsv.html) Computes the solution to a **complex tridiagonal** system of linear equations.\n"
    ]
   }
  ],
@@ -254,7 +254,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   }
  },
  "nbformat": 4,
diff --git a/linear_algebra/triangular_matrix_multiply.ipynb b/linear_algebra/triangular_matrix_multiply.ipynb
index b4c4952..6299d16 100644
--- a/linear_algebra/triangular_matrix_multiply.ipynb
+++ b/linear_algebra/triangular_matrix_multiply.ipynb
@@ -150,7 +150,8 @@
     "    [0.0,0.0,0.0,7.4]]\n",
     ")\n",
     "\n",
-    "alpha*(np.transpose(A) @ B)"
+    "product = alpha*(np.transpose(A) @ B)\n",
+    "product"
    ]
   },
   {
@@ -234,7 +235,8 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "from naginterfaces.library.blas import dtrmm"
+    "# The dtrmm import below is used in a timeit block:\n",
+    "from naginterfaces.library.blas import dtrmm # pylint: disable=unused-import "
    ]
   },
   {
diff --git a/local_optimization/BXNL/Readme.md b/local_optimization/BXNL/Readme.md
index 8b13789..1a3e2cb 100644
--- a/local_optimization/BXNL/Readme.md
+++ b/local_optimization/BXNL/Readme.md
@@ -1 +1,108 @@
+[![NAG Logo](../../nag_logo.png)](https://www.nag.com)
 
+# Nonlinear Least-Squares Trust-Region Method (BXNL)
+
+[[`handle_solve_bxnl`](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_bxnl) | [`e04ggf`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html) | 
+[`e04ggc`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04ggc.html) ]
+
+Data fitting and calibrating parameters of complex numerical models is one of the most common
+problems found in numerous industries such as  physics, space exploration, simulations, engineering, amongs many others. 
+[NAG](https://www.nag.co.uk/) introduces to the [NAG Library at Mark 27.1](https://www.nag.co.uk/content/nag-library) a novel [nonlinear least-square](https://en.wikipedia.org/wiki/Non-linear_least_squares) [trust-region solver](https://en.wikipedia.org/wiki/Trust_region) for unconstrained or bound-constrained fitting problems, [`handle_solve_bxnl`](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_bxnl) ([`e04gg`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html)). It offers a significant variety of algorithms and regularisation techniques.
+
+The solver [`e04gg`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html) is aimed at small to medium sized fitting problems (up to 1000s of parameters) bound-constrained nonlinear least-squares problems 
+and is also part of the [NAG Optimization Modelling Suite](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#optsuite) common handle interface. It offers clarity and consistency of the interface of the solvers within the suite, making it trivial to switch among compatible solvers.
+
+Figure 1 shows an illustrative simple problem of data fitting ([Jupyter Notebook](./notebooks/orbit_ex.ipynb)). The task is to find the optimal orbit path given a variety of measurements for which the orbit has to approximatly pass-by.
+
+<table>
+  <tr>
+ <td width=50%><img src="./images/est_orbit.png" width="100%" alt="Optimal orbit from data orbit measurements."/>
+ <td width=50%><img src="./images/estw_orbit.png" width="100%" alt="Weighted optimal orbit from data orbit measurements."/></td>
+</tr>
+</table>
+
+**Figure 1.** Example of a NLLS orbital data fitting.
+ Given a set of 7 orbital data points the task is to estimate an optimal orbit path that minimizes the error between the path and the fixed data points. For this example assume that expert knowledge provides insight on the reliability of each measument and that for this satellite configuration operational orbit height should around 250 +/-3 units. Center plot shows a simple fit where each measurement (data point) contributes the same amount and provides an optimal orbit height of 238.76 units. The fit is quite poor in the sense that it does not satisfy expert advice. Evidently data point 0 (yellow cross closest to earch surface) unreliablity should be taken into account while doing the fitting. Weights for the residuals should be proportional to the inverse of their variability. For this example suppose we are provided with the accuracy for each of the data measurements, this can be factored using weighted nonlinear least-squares. The rightmost plot shows the weighted optimal solution with orbit height of 254.90 units wich is withing the suggested tolerance. Image credit: [Image of Earth](https://pics.eumetsat.int/viewer/index.html) was taken from [EUMETSAT, Copyright 2020](https://pics.eumetsat.int/viewer/index.html#help).
+ 
+ 
+# More Info
+ 1. [BXNL information leaflet](https://www.nag.com/content/faster-data-fitting-solver)
+ 2. [BXNL in the NAG Library for Python](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_bxnl)
+ 3. Examples [[Python example](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_disable_ex.main), [C example](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04ggc.html#example), [Fortran example](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html#example)]
+ 
+ # Unfolding Nuclear Track Data
+ 
+ [[Python Jupyter notebook for this example](./notebooks/simple_BXNL.ipynb)]
+
+This example illustrates the usage of [`handle_solve_bxnl`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04ggc.html) ([`e04gg`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html)) to fit PADC
+etched nuclear track data of alpha particles to a convoluted distribution. A target
+sheet is scanned and track diameters are recorded (red wedges,
+left in Figure 2) into a histogram (Blue bars right plot of Figure 2)
+and a mixed Normal and log-Normal model is to be fitted
+to the obtained experimental histogram. 
+
+The [Jupyter notebook](./notebooks/simple_BXNL.ipynb) uses `e04gg` to fit the
+six parameter model φ(t, x = (a,b,Al,μ,σ,Ag)) = Al log-Normal(a, b) + Ag Normal(μ, σ) with 0 ≤ x,
+using as data the histogram heights. The NLLS solution provides the unfolded
+parameters for the two distributions (red and blue curves in right plot in Figure 2). 
+Adding these together produces the green curve which is the one used to perform the fitting with.
+
+<table>
+<tr>
+<td valign="top" width=50% ><img src="./images/tracks.png" width="100%" alt="PADC etch track diameter histogram unfolding"/></td>
+<td width=50%><img src="./images/fig-unfolding.png" width="100%" alt="Experimental histogram of track diameter"/></td>
+</tr>
+</table>
+
+**Figure 2.** Left: example of a PADC target with alpha 
+particle etched tracks, wedges in red show the track diameter. 
+Right: experimental data histogram of track diameters (blue bars), 
+aggregated model used in the fitting (green curve) and unfolded models (blue and red curves).
+Optimal parameter values are reported in the legend.
+
+
+# Modern Replacement Alternative
+Solver [`handle_solve_bxnl`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04ggc.html) ([`e04gg`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html)) is a modern and attractive replacement for the unconstrained nonlinear least-squares solver [`lsq_uncon_quasi_deriv_comp`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04gbc.html) ([`e04gb`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04gbf.html)). 
+
+More recent and modern methods have been incorporated into [`e04gg`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html) making it much faster than [`e04gb`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04gbf.html). Our benchmarks comparing [`e04gg`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html) to [`e04gb`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04gbf.html) using 68 unconstrained nonlinear least-squares CUTEst problems is reported in Figure 3 using performance profiles. 
+
+Contrasting the three plots, it can be seen that the new solver is more efficient in time: solves 60%
+of the problems faster (left plot). In general terms it is more robust (solves 25% more problems) and less expensive in terms of user call-backs: 55% of problems
+require less function calls (center plot) and 65% of the problems require less gradient evaluations (right plot).
+
+
+[`e04gg`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04ggf.html) 
+should present significant improvement for unconstrained or bound-constrained nonlinear 
+least-squares solvers in the NAG Library and current users of [`e04gb`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04gbf.html) 
+are highly encourage to try out the new solver.
+
+<table>
+  <tr>
+ <td width=30%><img src="./images/b-ral_sif-e04gg-e04gb-NT.png" width="100%" alt="Performance Profile (time:seconds)"/>
+ <td width=30%><img src="./images/b-ral_sif-e04gg-e04gb-NF.png" width="100%" alt="Performance Profile (number of function calls)"/>
+ <td width=30%><img src="./images/b-ral_sif-e04gg-e04gb-NG.png" width="100%" alt="Performance Profile (number of gradient calls)"/>
+</tr>
+</table>
+
+**Figure 3.** Performance profiles comparing solvers e04gg and e04gb over 68 CUTEst unconstrained nonlinear least-squares problems.
+Performance measure are: time in seconds (left), number of function calls (center) and number of gradient calls
+(right). For the time plot (left), higher line indicates faster solver. For the center and right plots, higher line
+represent less functions and gradients calls.
+
+
+
+# References
+
+ * Gould N I M, Rees T, and Scott J A (2017) _A higher order method for solving nonlinear least-squares problems_. Technical report, RAL-P-1027-010 RAL Library. STFC Rutherford Appleton Laboratory http://www.numerical.rl.ac.uk/people/rees/pdf/RAL-P-2017-010.pdf
+ * Kanzow C, Yamashita N, and Fukushima M (2004) _Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints_. Journal of Computational and Applied Mathematics 174 375–397
+ * Nocedal J and Wright S J (2006) _Numerical Optimization_. (2nd Edition) Springer Series in Operations Research, Springer, New York 
+ * Adachi S, Iwata S, Nakatsukasa Y, and Takeda A (2015) _Solving the trust region subproblem by a generalized eigenvalue problem_. Technical report, METR 2015-14. Mathematical Engineering, The University of Tokyo https://www.keisu.t.u-tokyo.ac.jp/data/2015/METR15-14.pdf
+ * Conn A R, Gould N I M and Toint Ph L (2000) _Trust Region Methods_. SIAM, Philadephia
+
+
+<!-- foot banner for commercial material -->
+
+# Obtaining the NAG Library for Python
+
+ * Instructions on [how to install the NAG Library for Python](../Readme.md#install)
+ * Instructions on [how to run the Jupyter notebooks in the Repository](../Readme.md#jupyter)
diff --git a/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NF.png b/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NF.png
new file mode 100644
index 0000000..4175ee1
Binary files /dev/null and b/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NF.png differ
diff --git a/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NG.png b/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NG.png
new file mode 100644
index 0000000..fe629c6
Binary files /dev/null and b/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NG.png differ
diff --git a/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NT.png b/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NT.png
new file mode 100644
index 0000000..946ce3c
Binary files /dev/null and b/local_optimization/BXNL/images/b-ral_sif-e04gg-e04gb-NT.png differ
diff --git a/local_optimization/BXNL/images/est_orbit.png b/local_optimization/BXNL/images/est_orbit.png
new file mode 100644
index 0000000..0322d5b
Binary files /dev/null and b/local_optimization/BXNL/images/est_orbit.png differ
diff --git a/local_optimization/BXNL/images/estw_orbit.png b/local_optimization/BXNL/images/estw_orbit.png
new file mode 100644
index 0000000..94e99ac
Binary files /dev/null and b/local_optimization/BXNL/images/estw_orbit.png differ
diff --git a/local_optimization/BXNL/fig-unfolding.png b/local_optimization/BXNL/images/fig-unfolding.png
similarity index 100%
rename from local_optimization/BXNL/fig-unfolding.png
rename to local_optimization/BXNL/images/fig-unfolding.png
diff --git a/local_optimization/BXNL/images/tracks.png b/local_optimization/BXNL/images/tracks.png
new file mode 100644
index 0000000..35bfd74
Binary files /dev/null and b/local_optimization/BXNL/images/tracks.png differ
diff --git a/local_optimization/BXNL/notebooks/earth.png b/local_optimization/BXNL/notebooks/earth.png
new file mode 100644
index 0000000..a4e8421
Binary files /dev/null and b/local_optimization/BXNL/notebooks/earth.png differ
diff --git a/local_optimization/BXNL/notebooks/ltx_optprb.png b/local_optimization/BXNL/notebooks/ltx_optprb.png
new file mode 100644
index 0000000..afc4d24
Binary files /dev/null and b/local_optimization/BXNL/notebooks/ltx_optprb.png differ
diff --git a/local_optimization/BXNL/notebooks/orbit_ex.ipynb b/local_optimization/BXNL/notebooks/orbit_ex.ipynb
new file mode 100644
index 0000000..5bd303b
--- /dev/null
+++ b/local_optimization/BXNL/notebooks/orbit_ex.ipynb
@@ -0,0 +1,401 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Orbital Data Fitting\n",
+    "\n",
+    "Example of a nonlinear least-square orbital data fitting. Given a set of orbital data points the task is to estimate an optimal orbit path that minimizes the error between the path and the fixed data points."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import math\n",
+    "import matplotlib.pyplot as plt\n",
+    "import matplotlib.patches as pch\n",
+    "from naginterfaces.base import utils\n",
+    "from naginterfaces.library import opt"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM8AAADnCAYAAAC5fgIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlCUlEQVR4nO3d6Y8kZ37Y+W9cGZmR91lnV3VV9d0km+wZciiS4gxHHg20oAzpxWJtvzDHB7Cv1ob9F+wC+1bvDMPAYoSZhW0Iou0RdnWsTImtkSlZIqVpNsk+2VfdlfedkXHviyJLM7Jmhoxms6q7fx8gUUVmVlbk0/mtiMh8IlKJogghxOenHvYCCPGokniEiEniESImiUeImCQeIWLSf8718lKceNIpP+0KWfMIEdPPW/MA0Ov1uHLlysNeFiGOhAsXLlAoFH7u7T5TPO+//z7f+ta3CMPwQZdLiCNNVVXeeustvvGNb/zc236meADCMJR4xBPhs866kX0eIWKSeISISeIRIiaJR4iYJB4hYpJ4hIhJ4hEiJolHiJgkHiFikniEiEniESImiUeImCQeIWKSeISISeIRIiaJR4iYJB4hYpJ4hIhJ4hEiJolHiJgknifcG28c9hI8uiSeJ9x3vnPYS/DokniEiOkzn7dNPD7eeOMn1ziXLu1//d734PvfP4wlejRJPE+g73//byK5dAlee+1wl+dRJZttQsQk8Tzhvve9w16CR5fE84STfZz4JB4hYpJ4hIhJ4hEiJolHiJgkHiFieiLikcmP4mF4IuKRyY/iYXgi4hHiYXhs57bJ5EfxsD228cjkR/GwyWabEDE9EfHI5EfxMDwR8cg+jngYnoh4hHgYJB4hYpJ4hIhJ4hEiJolHiJgkHiFikniEiEniESImiUeImCQeIWKSeISISeIRIiaJR4iYJB4hYpJ4hIhJ4hEiJolHiJgkHiFikniEiEniESImiUeImCQeIWKSeISI6bE93e6jSFEUEokElmWRSllYlkUmnSYIQsbjMaPxiOnUZjqd4nkeURQd9iI/0SSeQ6aqKsVSibNnzvLMMxdYWVnB0BOM+xMy6QyZfJpuv0e700U3VRKmzl69zrDX58qVK+xsb9PpdAj84LAfyhNH4jkkhmGwsLDE11/9OidPnqFWnSGbzxAECoQqC/MGIVOuXr2OrunkyhYjbUSuUGav0+TXfu3X+fbr32Zq23z04Uf8f3/8h9y9fgdn4hz2Q3tiSDxfMl3XOXfuPK+9+sssLa9hmkmqM0UyGZOpY3P92k0CJ2L55BJ+6FJbKvK7//mPcEOH0y+uoaIRBRFe6DHSBgzUDicvrtGoPsPy3hIfv3OLzfe3cB33sB/qY0/i+RKVy2W++dq3eOVr3yCZzDO1p5gJk+3NHdLZNEtLSzxz4TnefPNN3r/9VwztIScvLHLiYpmFlUVKtTK5RJHaV2c5Pr9Ca9Dkh9f+gPda/xU70yO7ZvF87SxnTq/xwQ+vsbWxI/tFD5HE8yVQFIXTp87wzde+xdkTF6jMV9ndatJttbF3xuSyGTKJFPdv3QVdo7HVYK+5hx1NMCptzn2liKONCHiWWukk5VSJqzuX+WD9bXa9Bn7YoTgy0f2Q5FTjmeMrfG3lad5660/4i3c/wPP9wx6Cx5LE85AljATPXXiBixef5+yZ8ywcq/Hf3vlznKmHgUEYhux0u4wbHQbjMXfWb9PoN6ismGS0WTK6Tkavcf3yOuuRxn9X/oIwcBiqU4rHIUxMsWyNnXcnjHohVl6n8lSetJrl1RdeYqZQ4vcv/TcmtuwLfdEknocokTD5n771q6wtnyObtajNFtna3uKDDz7iwjPPkEll6Ow1caY2YdrCD31MVcXKaDz/VJrl8izjqc+f/t59bt3q4LlNZmaTuFFEtWaxccdn9asWvZENhsZEdwm9kMsfT3j926dJFh3mS2WyKYs3/+AtRhP7sIfkgb3xxtH5yBiJ5yHRdZ3XXvsllo+dIFAC1JTOj96/wvuXPySdtBj2+4RTj7lyld0gYGdnh/vbG5SsLKYG2sSgp3rc3+zR3vWYKebwQp9iNsvWdoepGdBoTeh3xuQLCTxH4YWLFRZLZVBzBGGXYrXC3a7G+bPn0cwE/+EHv4dtP9oBfec7Es9jTVVVLjz7VYrFOe5s3SeXy+KENlevXSPwAvZGQ0xNp3isQKPfpdvvcXdrnYViBctIsL1TZ6+ps6inWJrN8EsvPEMxn4dQByXkN//zn/JXV9fxg4DJCIZdH13T+PM/rVMsDKlVSvzixSy+NSWbjpiMU5w/fZpf/RWfH/y/v4fneYc9RI8FiechmJ1ZIpOuce3GLXRNoz/skzBXCP0QP/Apl8vkc3nShRzL5TLrm/eYq9UoW3lubtzm7z2/wtPnTjJXKVKqWCQzaQw9gaGkIVT5J/+zxVOnr/LDd2+ysdvhufNLjMYOdzfq3O8NaDV8njuxzEplFtUfUshadHY8XnzqLM12i0s/fOewh+hzOaqfbC7xfMEsK8Py8TP0Bl1830XXkniuw7vvvovve6wsHWdhboHV46tUyhXCMOKrz32VY/Nz3PvwGkuLVVbnDXJmkbyZI5POYJgqUeSiJQKUKOTUiRprx/N8+9WL3Lrf5PixOQqZFNuNDh/cuMtev8FCuYwS+SyUC2w2WugJlUl7zPNnTvDx7Ttsbe8e9lB9Zkf1k80lni+QoigsL5/BD0Jc18X3PVx3ShSFaKpKuVhkaXGRueoMC/NzDDs9rl2/xl6nwb37eS6uzXP6WJZsKYORLKA4IaprYQ+bhOEE1RijGyqKEqEZJpZpMZPPU8vl0DWNU8cXOT5Xo9ls8NG1DXTfY+30EsfVCn92eR0lmyZhe7z6/Av8p8Yf4HryRuqDkHi+QOVyjUy2hONMUBVIWxaGpqMoYCYSZK00KgpaGGL3R/Q7XUxFZbEyy8pSgeefmScKQoxkin6rTS5bQ1VNIrXKsLeHj4vij7BSGvn5OcxUlqw5hUhH1VTcSR81YZHP5UinDf6fP/4RLw2mzM8UefbkDH/03i0IVWZzNVaXVrlx58ZhD9nndpQ+2Vzi+YIoqsrcwip+4GOlLLKpDIahc/7EaUr5Ar1Bn/6gS+j59Lo9StkSg16PUydP4XkDnjmVx0gkSJgmznRCMZsioUYoZor0zCLJ2XkG3TbhYIdsMYmqKUxGA0wrR73eYqaWRdF0wtBF0wwWZ8rMVQtc+strfOMrZ1ldmuNr547zx395k8kETq+c597mPRz30Xr/56i80gZyPM8XJpstkEzmsJIWs7V5zpw6RyppkU9nmS1XWTu2zGxlhpXFFY7PHyedTHNy7RTpYp7RuEUpncHUdPL5IrXyDIXSAqlcgSBSsJt1pvVtMhpkTZNk0kIJIzQ0Rn0H2w1QFB9FUVEjBR0Vzdd4bmUBLYJGq8doMGGmlOXXXn6a4+UMupVnZfXEYQ/bI03i+YLMzBzD0BNkMzlyuQIztRmSySQbu7t8dPM6u/U9MukMSSNJbXaOmcV58tkcg1YfFIO0aWAqOpGroJLESCRJ6gG6P2Y8ahPYTfzBDp1mk06jh5mqks9VmS3nyCUyhEqeIEigkyB0XTRFoVgocHqxyru3NumOJqiaSipX4NziHJais7xwClWVp0BcMnJfAMMwqMxWqFZLqIqCrqq06nuEETT6bRrdLhN7Sr8/wDBNmoMOw9GIrj3m0o/+Ek0NmEzGjJQkfnGWrfp9Ot17dIbb2Hjo1UWC8iq25+IRkEymwFPADyGA4twSEQb22CWIdCI1iZlMEakwW8wzm0vz59c3GHv7bxUFSRNDT1ApzJHL5Q97+B5Zss/zBchkClhmnmwmjaP79PtdWu06mq6TtSya3Rb1bp25UpVmr8lgMiKbzbJV38FxHI6vvMxWlOP40kmqy8e5s3Gdzc2PyKUtrIkPyi6JhIXvjsnmTZSgx7g/ZuIm0Y0kajTG6deJDIvu2MMftgnsCY12h4Efsrpa4ke3OtxpjChqTd65WsfDIJtPs7i4RK/XPewhfCRJPF+AcmUGTTOo7zVwPZdioUjCMJg4NpV8nkq+yFZjl83WLlEUUa4UmVupsbA2z1//1RWmORNbHzPauoGVzXH8zPPcCHT0dJbxoMd4XMfp3MBM5QinYypWkqRZpuuOcQc+hjdk7swrWIVZNm9fIxEN6U7rjNwxN3vbFI7VmC8V+e/vXmGv1SJQUpxbO0vKSnLq1EmuXv1ADl2IQeJ5QIqiUC5XiaKQqTPBdV3aXZ+Tx0+RdE1aww7NZpswCjAMnUqlxPmnzvDrv/6rGLrB00+d58KFpxjZI7br22ztbJHNZFk99RRB4LPujAmjApPAx48U0FJsTwOUyRAtVWQ0bpLKH2MuWWBzb5s7jQ2MwTp7vRHp6jLH5i18XyVq9zDsiFoxhaYa7PXqrJQWOL6yzD/9pyrf/a4cxv15STwPKJFIsLwyg5nI8NGHdVBgMp1w8951KuUKF597GnvikUwmSCR0FBVOnlpld3ePpJni+PElWq0OmYzFiaU1PN/H8wKiSCEMoVpbQgFqrovv20ydKYNhmzD02ezcR9MMTCWDbU9RFJWJHnJnsMvJY88zV1tmydL5sw8vQdbmXLVCSTP44HaD7Z0+S8Es+VyWX3094LvfPeyRfPRIPA8olUqxsnQcN/ApFLJ4jk+332M0HNHrdtjZ3qJaqZIyk6ytrXJsaZGr798gm8vjewFWxsK2J5w6tUoYRiwsz6MnNLRIYTDq4/sBru1RqVZQdYu7GzcJopBeOGKo+sznF2g7fdY//CNOzpwmk0zhpVO4hoEbBFz9+Eek9RRaUUMfTnD8kL4dUq6U0HWNlGUd9hA+siSeB5RMJklZSQJ3wMxaiuZ9m4yXxnZsoiiiP+jhug4KCrqu0+l06A96OLbHxLbRExrlQokr773P/a37rK2tsrA0y7g7oZYv0Gy32G20uPi1r/D0c+eoFRYZTUd4g4jFQopsMk+zc43+pM49VccLbVJmiru9G3g4uO0hQcchbfigqARKmoGtcPHF93j5lasHj+OoTLZ8lEg8D0jXdcaTCe3RNsWkxR4DsrksdnOC6zgEoU8Y7O9PXP7oMqqqooQRqqLiBR6KorJn7qCg4Houl9+/zLWr+1N5UmaK7mhAIpnk7R/+Cbfv32FpaZFXnn+JheISNzY/omhW8KYu5cQ8g0EbP5pQzdSYr6xCFOKnu/Q2uyj6BC8zx0bLZmT7/JcfVHn7T14nl8vwL//Fbx2ZyZaPEonnAWmqzqg/QdE0QiUglTPYvLWL67jouk5CNQg+icd1XRRFQdd03MAliiI0TSMIAjRVxfM9Qk1D13QGkzGRouB4Ln7oMxgFECrsrG8TjgK+8a2vc2H1RQa9Lnm9yF5/i0iJUJWQyI5otbrMV+ZZKJ/GOBFgdobsDHyu3W0zsl1QIqxklun00Zqec5RIPA8oCsEdeGgFk7HfIzejsGTm2Lzaw516BKFCGIYoQDadIZlM4jgOo/EIgCAIiKKIiTMlCEOCKCQCoihi6jooqooaKvhBQKPVwPd9Fo4tgKqAF9LZu489spkvrpFOWqw3brHe3uFYzcQdTrl94wa1+SxGuUZ79x7V8iwoHXRXIwgiojDBD36nBHQOcxgfSRLPA/I8F11XmXou5VKNcdBkrlAhX1BgaLBxd0whX+Hj27eIgPF4jOs5VEvl/UCcKWtLa9zdvEcYRiSTJr1hH03TUVQFQ9cwjARje4Lre5h6gn6rw91rtzhxfIntu9e4ufUxy8vnKZ+8yPHSGRQ2mI4mDPwtahkP1VVZ39lmb7fDqbXT5EtFypUs167dpdvp8zs/kHjikHge0NSZEvhQZxPPzZLTDWrZKjo+ej4in9f5yrOv82//7f9Fr99DV1UMXadUKtHtdrnwzLOkzBSDyZD+oM9sbQZNVXE9l6SZAmBi20CErmtEWsRwNOS//vFbhC+dZ69Vx3MCOq0W26l7OJMOvd4uE9+HXI5KJkE2XeT+1lUMTcdKWRRrGZIpjexGmp3tOo7zaJ/X4LBIPA9oOrWZTFzUgsrUH5EKEuxuXsV3JqTTOUwr5Nrty0RhSDGfp1Iuk0lnUD85qfutj2+Rz+ZpNBskDINGs04xX6TZbWNPbQzDwDQMEoaOnjTwfZ/BZMTYGXPjbmr/lTcvoFvfY9TvYCYUNDUknbDoNDYppE6hqjqO42DbKteuX+X5/EX6vR7NVhvd0B75k4IcFonnAbmeS3fYIZHTCKcD7MhD8VR0RaNQWKNjdmmtD6iUK0SBz+zMLJVKhdFwyHg8RtdUNnc2iKKIhGkQ+D6bu1sYCZNsOoOuaZw5eQrLMFFNg+FoSLfeZK6Q5fTSST683WES9tE0m8BRcUiRNBOMhnUSqsdOax1X1XCdIe2uS7MNrd9vEYYRmUwey0riutPDHsZHksTzgIIgoNFdZ7aUJa1opJJZMqbFaLhLa3qPqZdH8SySqRSmrjMZj2krCvfu3SWbzVGr1ji+tIxlWQzHIwq5PEEUcO36DfK5HL/4i19ndW2VYX+EPZnQb3dobu3RH0/o99po0ZCkGeAHHqGvELo+CS1NFEX7LzI02nhTG1OH/rCPooDrOyiqTiKZwrddPDkcOxaJ5wvQ6zUo+hZpR0FRXFQzj6qaOJMhYzfN9sYmnU6bbCZDsVhAmU4plspYlkW9XqfZbqOqCqqmsrO3x0ytRtpK0x8N2Gvt0Zv0abfa2BObxdocupng+sY9qqUWCWOKoQdEQEJXcYIAIp+UEWHoaVx/ShgEqEoWoiZrJ+cpFOawbR/Xddlc3yQI5HS8cRyZeI7SmSA/r2arz6qr4ygqjjpl0N/GD33K6RX6Y49GYw9N10kkErSaLYbjIZVyhdFkjD21SZgJfN8nmHqkUinqzSa6oRMBV65cQVFVxqMRuWwOTVFRDI20pZMvqEymCumUTioCDQU/UMhm8kRKxHTqkUq6jGyHO+sDVpeLPHX2Ka7f2GRi2yhaRKO5c9jD98g6MgfD/fh5uR41o9GY6cCBKIPtaYQBBCjoaoa8VSUMI8IwpNfv0+52caZTMtks9XqdXq/LoN/HmToEQcBwNGQ4HNJutZlOp7TbbZzplFKxRLlcwXVdbt75mIQBVirDfK1MrZCimDHJZhIUsiZmIqJSXcIw02y1J7z7QY+JbbO8YHH91se4gUPKSuC5Nr2uHMsT15GJ51EWhiGbm9so/hQ/MHBCnQiVyaDP3t5dslYGQ9UZDod4vofne6zfv890OmXqOHiex3g8wvM9NE1D13UMXSdpmmQzGdJpi9W1VU6fOYWRMAijkI3dHt0+BGECXU+QtZJYZop82kILHYat+zTaPW7fcXAcKOVMAkVnNHGBiDDyadR3cR+xE4AcJYe62XZUzwQZx+5unePLc1QqZRKmySTosdfus73do9keo6kK2WyWWrVGfzhg0O+RtiymUxvP81EUBddxCYOA+dkFLMtCN3QMQyeXy2EYBjdv3qTT7eAFPiPb4f7uhFIxi64Z6KpCytAY2y4TJ2IwGTGdeEShhqZGrB4r0u4qGJpBFEZ4vsve7vZhD9sj7VDjOapngozDcRzWN3ZJJS2SqSTp7Dwf3rpHt70/uzqKFAI/oN6oUy6XKRaK7NV38QOfMAgxEgkK+f0jUI8tHsP3Pfb29lhcWGBudo5Ov0en22UynqAqKqqq0h/Z+EGRXCqH5zn4gcdw4uD4MA2StPoB+WyOTr9Hsx8ycSckk0miMKTV3GUwGBz2sD3SjswLBo+D7e09qpUKVibP3NwsF89n+Yv3LjMaj9F1DT/wUUKFbreL4ziYpkm5VAXAtid0Oh1Mc396zlNPPUWlWsWburRbbTb3dpjYNqPRCMd1MQyDie3RGYKeMEnqMJ46aIk0ugKRX2CuCkFYpzscsl0fkc1mCDwfVQ25v35PDr1+QEcmnqN0Jsi4XNfl3v0NUhkTJ7JZXjjBKy9/jY+u3mAy2T8K1PN9bGdKFIaM7TFRFJFKWRxbWsKe2Extm93dXQzdYHl5GSNhsrWxwfbmFuPJBNue7E80VWCn2WfsWoz9PCOvRRDlMQtFlhdOkjCrtJttbv7Wm1gpC9udEkURppng9u1rDGWt88COzAsGj9o+zk/TarXZ2qrT6XW4cu0KXuDy1ecvkM2l0TQN2J8xnc3lyOcLpNNpFGBza4swCvnK8xd55unzTJ0pW1tbbG1u4roeCT2BM50SBOEnLyoY2G7Axs4WW5tb9G0D36hxd7NFpOVQdBU/9JgrVdE0lWw6TSmfp9XaY3Nz43AH6TFxZOJ5XERRxMb6Fv3mmOnI5coHH9Futzl79gS5fIYwCgHwfZ8oCkkkEqTTaarVKigKV69dwzANzp8/i+d7JJImVibN/OI8CwsLzM/Pkk6nSaaSJFNJRp5Dvd+nb4d0Bj6KXiLwQzbWN+m2uwREOJ5LwjTo9tvcunVdPp/nC3JkNtseJ57rcu/OfZaWl7GsDDs7O9RqVc6cXqVSLlBvNBlPHDwvRNc1DMPAspIsLizS7/e4ceMm5UqZZ545S9JMEkbQbrZZnJul1Wpw5/46tjMll81gTxTCAFrdDebmZykVcozHY7q9HuP+AHSNTDrFYNBje3Od0Wh02MPz2JB4HpLJZMLW5iYLi4tk0hbD0ZAgCKjVqqTTKfbqLcYTG01VSSYTZDMWxUKGQj7NdDrl/r37bNzf5OLFCzz11FlmZys0my32mrsoqoKm7ken6xoT20ZV9g918H2PdrdNu9tmPBziBROIPOq7W3Jywy+YxPMQjUYjNjc3CIKAMAwYJ1NMp1OKxQLVShGjrxMG7E/WdB0azQa6ZpC2LKxUmkzaotXq0Ov1MAydZDLBsWMLjMYjWq3uJ3PSIqJo/6VuTVXwPI/t7W2GwyGDwYBGo8G9e/fodORgty+axPOQTcYTNjc28FyXSrVCEPioqsJ0OgUUkikT295/lc1Pp8hk0qTTKWZnq5hmAl3X0DSVfr+P7/v4voeqgK6ruK5HFIXomkYum0bXVYbDIY7j0O12aTQabG5uyqbaQyLxfAkcx2FrawvbtqlUq0ynUxKJBIqq4jgOgR8w9gM832cwHBEGIaqqkM6kURSFKIoIw4jJeEK318dxHBRFgShC0ww0VcX3Xba2thiPxwyHQ1qtFo1GA9eVww0eFonnSxIEAc1mk9FoRKlUIpfLkUym0I0EqqqRTJpEUbQ//83zcV0Po9NFVRU81yMCFCD65L5SSRPXcwl8j0hVqNd72J+8idrpdBgOh/Im6EMm8XyJoihiMpkwnU7p9/vkcjnSmQypZAqiAM/T0VQVXdewUon9k4AokDB0omg/Gj/w0TQD19s/2864P8L3PSbjCf1Bn9FwhO/L8TlfBonnEIRhyPCTw7CTSZN0OoNlWSSTSQzDwDAMNE1D0zQUVUXXNCL2z9TjuR6u6+J5Ho7rYE9sxuMx0+n04Pxw4ssh8RyiMAyZTGwmExtVVTEMg0QiQSKRQDd0NFXb37eBT/Z7QnzfP4jHdV0J5hBJPEdEGIY4joPj/M3xNZ+G8ynZhzlaJJ4jTGI52mRumxAxSTxCxCTxCBGTxCNETBKPEDFJPELEJPEIEZPEI0RMEo8QMUk8QsQk8QgRk8QjREwSjxAxSTxCxCTxCBGTxCNETBKPEDFJPELEJPEIEZPEI0RMEo8QMUk8QsQk8QgRk8QjREwSjxAxSTxCxCTxCBGTxCNETBKPEDFJPELEJPEIEZPEIz63N9447CU4GiQe8bl95zuHvQRHg8QjREwSzwN6UjZh3ngDLl3av8DffP+kPP6/UxRFP+sSRVEUXbp0KVJVNQLk8rculy4d/jLIY/7iLqqqRm+//Xb0Y35qH7LmESIm+TTsGN544yd3mj/dlPne9+D73z+MJfpyfe97h70ER4RstskmjFz+5iKbbUJ8CSSeBySbME8uiecBPQn7OOLvJvEIEZPEI0RMEo8QMUk8QsQk8QgRk8QjREwSjxAxSTxCxCTxCBGTxCNETBKPEDFJPELEJPEIEZPEI0RMEo8QMUk8QsQk8QgRk8QjREwSjxAxSTxCxCTxCBGTxCNETBKPEDFJPELEJPEIEZPEI0RMEo8QMUk8QsQk8QgRk8QjREwSjxAxSTxCxCTxPERLS0ucPHkSRVEAMAwDwzD+h9uVSiU0Tfs770NVVarVKoZhUCqVDv5/pVJBVff/+crl8k/8fLlc5uTJk2SzWU6fPk06nebs2bOk02lOnz6NZVlf5MN8YsmnYT8kpmny+uuvs7m5SRRFHDt2DNM00XWd9957j3K5TLVapd/v89JLL/HOO+9QKBRoNpt0Oh0cx6HX63Hu3Dlefvllrl+/zszMDG+++SYAr776Krdu3aLT6fDKK68cfL+3t8fa2hrLy8tkMhmazSYnTpzA8zxeeukl6vU6S0tLvPXWW4c8Qo8+WfM8JGEYcvXqVWq1GmfOnOHpp59meXmZZDLJysoKr7zyCjMzM5w7d452u83Jkyd58cUXefbZZ3n99dcP7ufWrVs0m03ef/99xuMxAPl8HlVVee655zh9+jSFQoHz58/z8ssvEwQBm5ubqKrKZDLh3r179Pt9CoUCjUaD+/fvk0wmD2tYHisSz0OiKAqzs7N4noeu64zHY+r1Op7ncfr0aYbDIXfu3KHb7ZLL5TBNk16vx82bN9F1nZWVFRRFIQgC2u02vu/T7XYBeOGFF0gkErRaLVZXV6nX66yvr9Pv9wmCgF/5lV/BMAx2dnZ49tlnKZfLzM/Ps7e3x7PPPsu9e/cOeXQeEz/rc+Y//SD6S5cuRaqqPpTPvX+cL4qiRKqq/sTXH//+77rNmTNnotXV1ahcLv/E/fztr3/7vl588cWoWCxGQKSqaqRp2k9c/+P/fdjjcpQvqqpGb7/9dvRjfmofn2mfZ21tjd/4jd8gDMPPcnMhHlmKonDixInPdtsoin7W9T/zSiGeAMpPu0L2eYSISeIRIiaJR4iYJB4hYpIZBuLIiKKI3Uaft965hpVK8MuvnCOXTR1MbzpqJB5xJERRxIc3t/nH//q73N9uo6DwD/7+8/yb//0foarg+QEKCooKqqIQhNH/EFUURkREqIpCGEX7t1cgjCJ0XSMMwv03nj95y0VTVTQt/sZX7HiiKGI6nWIYBr7v47oupmmiKAphGOL7Pp7nkUwmCYLg4N1y0zSJoghVVQmCgDAMD24TRdHBz6XTaYIgwHEcFEXBsiw8zzv4nUEQkMlkAA7uR9M0bNtG13VSqRSTyQRVVdH1/YfpeR6GYRBFEUEQ4LruwfKmUimiKDr4fZqmoWkaQRAc3Menb475vk8YhqiqiqZpJBIJxuMxmqbhui6ZTObgd34enucB4Ps+QRBgGMbBMiuKgq7rB5NBH0e/+eafcW+rDYCqKTTbI65c32Rxrsi//D9+i5e+cgLPC3j+wnH+yx/+iGNzJTxv/3mTSZtcvrrJqZUaa8s1fvv3/oqXLq5xf6tNKmnwz//BL/Kbv/0Oq8eq3N1scme9yb/6Z3+Prz27Gnt5H2jN87u/+7uUSiXu3r3L+fPn2draOnjyFItFms0m+XwewzC4e/cuiUSCbDZLo9FgYWHh4El54cIF3n33XQaDAb7vH8wGvnz5MsViEVVVMU2Tra0tVFUlm83S6/X4hV/4BWzbZmNjg729PRYXFw/mcV28eJEPPviAVCpFOp3Gtm3++q//mpWVFUzTZGNjg9nZWQzDYHd3l9dee43bt2/jui7b29skk0lKpRK6rnP16lVOnz5NsVhkOBwymUzodDqkUinG4zHnzp3D933a7TZhGPLNb36TbDb7ucfz2rVrbG5u0mg0sCzr4LEbhkGr1eLrX/861Wr1Qf7JjrT+YALsr1lOLFf55ktn0HUNzwv4eL3Br/3yc1y+ukF/aHNnvYkC3Flv4gchtXKWuxstzp6Y49uvnucP//Qq//Dvv8C//j9/m3QqwW69x/vXNtne6/G//qNX+fe/85e8cGHlgZb3gf6M1Wo1dnZ2KJVK+L6PaZrUajV6vR6VSoXl5WUSiQRhGFIsFimXy+i6ztraGru7uyiKwmAwwDRNbNsmnU5Tq9VQFIX19XWy2SyZTIa5uTlM08QwjIMn0+zsLKqqUq/XCYKAubk5dnd3gf13iVVVJYoiXNdlc3OTyWRCrVaj3W7TbDYpl8sYhsHc3NzBWtCyLE6dOsXc3NzBkz8MQ+bm5qjX66TTaTKZDOPxmGq1yvnz56lUKmxsbBysLRRF4ee88fxTWZZFp9OhXC6Ty+UYDAZEUUS9Xj9YCz3OXv+lCxTzFv/bd77J//0b/4xvvXKOlcUKALl0Ck1TURSF967cQ1EU7m+1ma3lWZwr0uyMSCYNysU0g6GNpqlEEfzSS2fYrvf4d//xh2TSJvX2gK3dLpqmPPC+VOwZBp9u+ny6+fLjmxdBEKBp2sFmThAE6Lp+cN2nT+woigjDENM08X3/4Innui66rqPr+sH9w/7m2acTLT/djAIONr1gf5NHVVUSiQSO4xws26ebPJ/+jK7rB8synU5JJBKoqnoQEuyHE4bhwXJomkYYhj/xeD59TL7vo2nawabqTzs+52cJguAnNnF/fLNR07SDPwqPK98P+P0/+YjL1zZImQb/y+vPs7xQxnV9Pry1jaaqzFRyrG+3qZay+EFAOmWiKDAYTXE9H9cLOLUyQ7s7Yraa5/rt/T/SxbxFIZdiMJpiGBqO47NyrPJZFuunFibTc8SREkXRJzv7HPxxOmQSjxAxydw2Ib5oEo8QMUk8QsT0897nOfS9NSGOKlnzCBGTxCNETBKPEDFJPELEJPEIEZPEI0RM/z8IQzNeDD/IagAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "im = plt.imread(\"earth.png\")\n",
+    "implot = plt.imshow(im)\n",
+    "tx = np.array([441.23, 484.31, 265.15, 98.25, 180.66, 439.13, 596.54])\n",
+    "ty = np.array([333.92, 563.46, 577.40, 379.23,  148.62, 100.28, 285.99])\n",
+    "cc = np.array([355.00, 347.00])\n",
+    "tr = (tx-cc[0])**2 + (ty-cc[1])**2\n",
+    "plt.plot(tx,ty,'y+')\n",
+    "plt.axis('off')\n",
+    "plt.savefig('dat_orbit.png', bbox_inches='tight', dpi=150)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Image credit: [Image of Earth](http://pics.eumetsat.int/viewer/index.html) was taken from [EUMETSAT, Copyright 2020](http://pics.eumetsat.int/viewer/index.html#help).\n",
+    "\n",
+    "\n",
+    "The previous image shows the orbit measurements to which an optimal orbit, `r`, must be estimated. \n",
+    "The simple univariate problem to solve is:\n",
+    "\n",
+    "![LaTeX equation: min f(x) = sum i=1 to nres of (tr[i]^2 - r^2)^2](ltx_optprb.png)\n",
+    "\n",
+    "Here `tr[i]` contains the squared norm for the measurement point `i`, given by the coordinate pair `(tx[i], ty[i])`. Note that the coordinates for the center of the planet are provided by the vector `cc`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# problem data\n",
+    "# number of observations\n",
+    "nres = len(tx)\n",
+    "# observations\n",
+    "# Define the data structure to be passed to the callback functions\n",
+    "data = {'tr': tr}\n",
+    "# number of parameter to fit\n",
+    "nvar = 1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Define the least-square function and add first derivatives.\n",
+    "def lsqfun(x, nres, inform, data):\n",
+    "    \"\"\"\n",
+    "    Objective function call back passed to the least squares solver.\n",
+    "    Return the difference between the current estimated radius squared, r^2=x^2 and \n",
+    "    the squared norm of the data point stored in tr[i] for i = 1 to nres:\n",
+    "    rx[i] = r^2 - tr[i], i = 1, ..., nres.\n",
+    "    \"\"\"\n",
+    "    rx = x**2 - data['tr']\n",
+    "    return rx, inform\n",
+    "\n",
+    "def lsqgrd(x, nres, rdx, inform, data):\n",
+    "    \"\"\"\n",
+    "    Computes the Jacobian of the least square residuals.\n",
+    "    Simply return rdx[i] = 2r, i = 1, ..., nres.\n",
+    "    \"\"\"\n",
+    "    rdx[:] = 2.0*np.ones(nres)*x[:]\n",
+    "    return inform"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Initialize the model handle\n",
+    "handle = opt.handle_init(nvar)\n",
+    "\n",
+    "# Define a dense nonlinear least-squares objective function\n",
+    "opt.handle_set_nlnls(handle, nres)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Restrict parameter space (0 <= x)\n",
+    "opt.handle_set_simplebounds(handle, np.zeros(nvar), 1000.0*np.ones(nvar))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Set some optional parameters to control the output of the solver\n",
+    "for option in [\n",
+    "        'Print Options = NO',\n",
+    "        'Print Level = 1',\n",
+    "        'Print Solution = X',\n",
+    "        'Bxnl Iteration Limit = 100'\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "\n",
+    "# Use an explicit I/O manager for abbreviated iteration output:\n",
+    "iom = utils.FileObjManager(locus_in_output=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Define initial guess (starting point) Away from zero which is problematic.\n",
+    "x = np.ones(nvar)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Call the solver"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GG, Nonlinear least squares method for bound-constrained problems\n",
+      " Status: converged, an optimal solution was found\n",
+      " Value of the objective             1.45373E+09\n",
+      " Norm of projected gradient         2.23690E-01\n",
+      " Norm of scaled projected gradient  4.14848E-06\n",
+      " Norm of step                       3.75533E-06\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1   0.00000E+00    2.38765E+02    1.00000E+03\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Call the solver\n",
+    "slv = opt.handle_solve_bxnl(handle, lsqfun, lsqgrd, x, nres, data=data, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Optimal Orbit Height: 238.76\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Optimal parameter values\n",
+    "rstar = slv.x\n",
+    "print('Optimal Orbit Height: %3.2f' % rstar)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM8AAADnCAYAAAC5fgIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2YUlEQVR4nO29eXRcd33//brb7ItGo122ZNmWZUve4i2LnQQTEugTx2zp4UcKOAUKJD08OQRoKdD8aKEspQQ47UOBQBM4BFpCE3DYSoIdspRgvMSOJTuON+2aGWk0+3aX7/OHYpHNiT1xckf2fZ3zPlpmdOc9V/c938/33s+9VxJC4ODgcPbIdhtwcJirOOFxcKgSJzwODlXihMfBoUqc8Dg4VIn6Mo87u+IcLnSk0z3gjDwODlXyciMPAKlUiv3797/aXhwcaoJVq1ZRV1f3ss87o/A88cQTXH311ViW9Up9OTjUNLIs88ADD/C6173uZZ97RuEBsCzLCY/DBcGZdt04cx4HhypxwuPgUCVOeBwcqsQJj4NDlTjhcXCoEic8Dg5V4oTHwaFKnPA4OFSJEx4HhypxwuPgUCVOeBwcqsQJj4NDlTjhcXCoEic8Dg5V4oTHwaFKnPA4OFSJEx4HhypxwuPgUCVOeBwcqsQJj4NDlTjhucDZts1uB3MXJzwXODfeaLeDuYsTHgeHKjnj67Y5nD9s2/bcEWfnzpmvd90F3/ueHY7mJk54agyv10tLSws+nw9VVVFVFUmS0HUdwzAolUpMTEyQz+erfo3vfe9PIdm5EzZvPkfmLzCc8LzGyLJMT08Pa9euZfny5bS3t9Pa2kpbWxutra14vV4mJibI5XKzgQFmg+T3+2lpaUHXdcbHxxkbG5v9OjAwwJ49exgYGJj9O4dXDyc8rzKdnZ1cfvnlrF27lnXr1rFq1SpisRh79uxh//799Pf3Mz4+PhuA6enpM1puOBx+Tuja29t5/etfz8c//nE6Ojp48skn2bNnD3v27OHRRx/l6aefftHl3HXXOXyzFxjSy1yXVwA89NBDXHXVVc61qs8ASZJYt24dW7duZevWrbS2trJjxw727NnD7t272bt3L+l0+lX1EAgEWL16NevWrWPt2rVs3ryZXC7H9u3b2b59O7///e8xTfNV9TBXkWWZBx98kM1/qmVPe38ehBAvJSGEEDt37hSyLAtmwuToeZIkSbzhDW8Q3/rWt8TY2Jjo7+8XX/jCF8Sll15aM+ttzZo14jOf+YzYu3evSCQS4q677hLXXXedUBTFdm+1JFmWxY4dO8SzOG0+nPC8AkUiEfGRj3xEHDlyROzdu1fceuutYvHixbb7ejnNnz9f3HTTTeKxxx4TQ0ND4lOf+pRobm623VctyAnPq6y1a9eK7373uyKZTIrvf//74pJLLrHdU7VatWqV+OY3vymSyaT40Y9+JC6//HLbPdkpJzyvki699FLx0EMPiRMnToi//du/FQ0NDbZ7OlcKhULiwx/+sDh06JDYvXu3uOaaa2z3ZIec8Jxj9fX1iZ/+9Kfi5MmTYtu2bef9unj7298uDh8+LH7729+KDRs22O7ntZQTnudp27bq/q6jo0PceeedIhaLiY985CPC7Xbb/l5eKymKIt7//veL4eFh8ZOf/ET09PTY7um10NmE54LobTvb5kdVVfn0pz/N3r17GR4epru7m69+9auUy+VXxV8tYpom3/nOd1iyZAm7du3ikUce4V/+5V/weDx2W6sZLojwnA0rVqzg8ccfZ+PGjaxevZrbbruNTCZjty3bKBaL/PM//zO9vb20t7fzxBNPcOmll9ptqzY4X8u2bdsQO3e+UKcr4VRVFZ/+9KdFPB4X733ve233X6t6+9vfLsbGxsSXv/xl4fF4bPdzruXMeZ6nnTtf+vHe3l6xe/du8atf/UrMmzfPdr+1rmg0Kn70ox+Jw4cPi4svvth2P+dSTniep5cKz1vf+lYRj8fF+973Ptt9zjW97W1vExMTE+fVSO2E53l6sVJNkiRx2223icHBQbF27VrbPc5VLVmyRBw6dEh8/etfPy9afZy9bc/j+Sd4+Xw+fvzjH/OmN72JDRs2sGfPHnuMnQccOXKESy65hO7ubn79618TiUTstvSacUGE59l0dHTw2GOPkc1med3rXkcsFrPb0pwnnU6zZcsW9u3bx65du1i2bJndll4bLoSy7ZSWLFkiBgcHxa233mq7l/NV7373u8X4+PicLYWdOc+LqK+vT4yMjIgbb7zRdi/nu7Zs2SJisZi49NJLbfdytnLC8zz19fWJsbEx8c53vtN2LxeKrrnmmjkZICc8z1J3d7cYGRlxgmODTgVoLpVwTnie0fz588Xg4KD4y7/8S9u9XKi67rrrxMTEhOjt7bXdy5nICQ8In88n9u7dKz760Y/a7uVC11/8xV+Io0ePivr6etu9vJyc4zzAnXfeyYEDB/jKV75it5ULnrvvvpuf/OQn3HPPPajq+XPBpvMyPJ/61Kfo6Ojggx/8oN1WHJ7hk5/8JMVikdtvv91uK+eO861se/Ob3yyGhoZES0uL7V4cPVehUEgcOnRIvP/977fdy+l0wc55li5dKuLxuFi3bp3tXhy9uLq7u2t6F/YFGR5FUcSuXbvEBz7wAdu9OHppvfnNbxZPP/208Pl8tnt5vi7IHQYf+9jHSKVSfPvb37bbisPL8LOf/YzHH3+cf/qnf7LbyivjfBh5ent7RTweFx0dHbZ7cXRmqq+vF6Ojo2LTpk22e3m2LqiRR1EU7rrrLj71qU8xNDRktx2HMySZTHLTTTdx55134vP57LZTFXM+PB//+MeZnp7mjjvusNuKw1myfft2Hn/8cT7/+c/bbaU65nLZ1t7eLiYnJ51ybQ4rEomIiYkJsXz5ctu9wAVUtv3f//t/+fa3v+2Ua3OY6elpvvCFL8zN0Weujjw9PT0iHo+Luro62704emVyu93i5MmTYuPGjbZ7uSBGns997nN8+ctfJpVK2W3F4RVSLpe57bbb+OIXv2i3lbNiToZn/fr1XHLJJfzrv/6r3VYczhE/+MEPqKurY8uWLXZbOWPmZHg+//nP8w//8A+USiW7rTicIyzL4pOf/CSf//znkaTT38mwlphz4Vm5ciVLly7lLudOtOcd999/P6ZpctVVV9lt5YyYcydX3HTTTXzrW986L2+VLkkSLpcLn8+H1+vD5/MR8PsxTYt8Pk8un6NUKlIqldB1faY58TzjG9/4BjfffDMPPvig3VZeljkVnlAoxDve8Q56e3vttnLOkGWZSH09y5YuY+XKVXR1daGpLvLpAgF/gEDYz3Q6xVRyGtUt43KrTMRiZFNp9u/fz9joKMlkEtM4P+5u/cMf/pAvfOELzJs3j5GREbvtvCRzKjzvfve7+c1vfsPExITdVl4xmqbR3t7BlVdcSXf3UpoamwmGA5imBJZMe5uGRYn+/kOoikoo6iOn5AjVRZlIJnjLW97KG7e8kVKxyMEnD/Lr3/4Pxw8do1yY2/cQyufz3H333XzgAx/gtttus9vOSzKnwnPzzTdz00032W3jFaGqKr29fWy+4ho6OhfhdntobI4QCLgplYscGngKsyzo7O7AsCo0dUT4+X8/SMUq03PJImQUhCnQLZ2ckiEjJ+les4h440o6Jzp4+tEjDD8xQqVcsfutVs2///u/s2PHDj772c+i67rddk7LnAnP5ZdfjhCChx9+2G4rVRONRnn95qvZdPHr8HjClIol3C43o8Nj+IN+Ojo6WLnqIu655x6eOLqbbDFL96p5LF4Tpb1rHvVNUUKuCE3rWljQ1sVkJsHvBn7FHyd/QzGQIrjIx/qmZSztWcSB3w0wMjQ2J+dFhw8f5tChQ7zlLW/hnnvusdvOaZkz4bn++uu5++677bZRFZIk0bNkKa/ffDXLFq+ioa2R8ZEE05NTFMfyhIIBAi4vJ48cB1UhPhJnIjFBURTQGqboXRuhrOQwWU1TfTdRbz39Y/s4MLiDcT2OYSWJ5NyohoWnpLByQRcXd63ggQce4vFdB9Dn4M6VH/zgB1x//fVOeM4FW7dunVMH0E7h0lxctGoDa9asZ9nSPtrnN/HIo/9LuaSjoWFZFmPT0+TjSTL5PMcGjxJPx2nochNQWgioKgG1iUP7BhkUCr+XHscyy2TlEpEFYLlK+IoKY7sK5FIWvrBKw/IwfjnIFRsuo7munl/ufIRCcW7NhX7xi19w++2343K5qFRqswSdE+FZsWIFlmXR399vt5WzwuVy8/9cfR2LOnsJBn00tUQYGR3hwIGDrFq5koA3QHIiQblUxPL7MCwDtyzjCyisX+6nM9pCvmTw8C9OcuRIEr2SoLnFQ0UIGpt8DB0zWLjORypXBE2hoFawdIt9TxfY8sYePJEybfVRgl4f9/zqAXKFot2r5IyJx+MMDAxw5ZVX8sADD8z+ftu2F94yxi7mRHi2bt3K9u3b7bZxVqiqyubNV9E5fzGmZCJ7VfY+sZ8n9j2J3+Mjm05jlXRao42MmyZjY2OcHB2i3hfErYBS0EjJOieHU0yN6zRHQuiWQSQYZGQ0ScltEp8skE7mCde50MsSG9Y0MK8+CnII05om0tjA8WmFvmV9KG4Xd9/3C4rFuROg7du3s3Xr1ueE58YbnfCcFVu3buUTn/iE3TbOGFmWWbV6HZFIK8dGThIKBSlbRfoHBjB1k4lcFreiEplfRzw9zXQ6xfGRQdojDfg0F6NjMSYSKvNULx0tAa7asJJIOAyWCpLFf/z3w+zuH8QwTQo5yE4bqIrC/z4cI1KXpamhnsvXBDF8JYJ+QSHvpa+nh+v+zOC++39R03uwns327dv59a9/zYc//GG7rbwoNR+elpYWFi9ezCOPPGK3lTOmpbmDgL+JgcNHUBWFdDaNy92FZVgYpkE0GiUcCuOvC9EZjTI4fILWpiaivjBPDR3lDeu7WNHbTWtDhPoGH56AH011oUl+sGT+8s99LO/p53e7nmJoPMlFfR3k8mWOD8U4mcowGTe4aHEnXQ0tyEaWuqCP5JjOJcuXkZiaZOfvHrV7FZ0Rhw4dolKp8Ld/28yb3vSnm5Dt3Dnz9a677B2Faj48Gzdu5NFHH50z7Tg+X4DOBUtJZaYxjAqq4kGvlNm1axeGodPVsYD21nYWLlhIQ7QByxKsu2gd89taOfHkAB3zGlnYphFyRwi7QwT8ATS3jBAVFJeJJCyWLG5i0YIwb7xiDUdOJlgwv5W6gJfReJIDh48zkY7THo0iCYP2aB3D8UlUl0xhKs/6pYt5+ugxRkbH7V5VZ8Rvf/tbcrnr2bz5/wNmgrN5s82mnqHmw7Nu3Tp2795tt40zQpIkOjuXYpgWlUoFw9CpVEoIYaHIMtFIhI5582htbKa9rZVsMsXAoQEmknFOnAyzZlEbPfODBOsDaJ46pLKFXPFRzCawrAKylkfVZCRJoGhufG4fzeEwTaEQqqKwZME8FrQ2kUjEOTgwhGroLOrpYIHcwGP7BpGCflxFnSvWb+An8V9R0WtzL9az2bNnD5dddpndNl6Umu+qXrt27Zy54W402kQgWE+5XECWwO/zEQlFiNZFaW5oJhKMICOhWBbFdI50chq3JDOvoYXli1pZv7KNYMiP5vGSnpzCQkOW3Qi5kWzGzdSUTnxkiuxkGiEpuL1hgm4PCBVZUdALGWRFJhwK4fdrbN/xBH/44xGS0xlWdzeTGI9R1HVaQk0s7Fho9+o6I/bs2cPatWtnf66lZvqaH3nmSngkWaa1fSGGaeDz+gh6A2iaSt/iHurDdaQyadKZaSzdIDWdoj5YTyaVYkn3EnQ9w8olYTSXC5fbTblUIBL04pIFktuLv3kenpY2MtNTWJkxghEPsiJRyGVw+0LEYpM0NwWRFBXLqqAoGvOao7Q21rHzDwO8bu0yFna0cnHvAn77h6coFKCnq48TwycoV2r7+M/BgwdZtGgRXq+XYrFYM3vaoMZHngULFlAsFufEHauDwTo8nhA+j4+WpjaWLunF6/ER9gdpiTayaH4nLQ3NdM3rYkHbAvweP92LluCPhMnlJ6n3B3ArKuFwhKZoM3X17XhDdZhCopiIUYqNElAg6Hbj8fiQLIGCQi5dplgxkSQDSZKRhYSKjGIoXNTVjiIgPpkilynQXB/kLRtXsCAaQPWF6Vq42O7V9rJUKhUOHTrEqlWr7LbyAmo6PHNl1AFobp6PproIBkKEQnU0NzXj8XgYGh/n4FOHGI9NEPAH8GgemlpaaZ7XRjgYIjOZBknD79ZwSyqiIiHjQXN58KgmqpEnn5vCLCYwMmMkEwmS8RRubyPhUCMt0RAhVwBLCmOaLlRcWJUKiiQRqaujZ14ju44MM50rICsy3lAdvfNa8Ukqne1LkOWa3gQA2L1793NKt1qhptfc8uXLOXDggN02XhZN02hoaaCxsR5ZklBlmcnYBJaAeHqK+PQ0hWKJdDqD5naTyCTJ5nJMF/Ps3PsHFNmkUMiTkzwYkRZGYidJTp8gmR2liI7aOA8zupCiXkHHxOPxgi6BYYEJkdYOBBrFfAVTqAjZg9vjRcjQEgnTEvLzv4eGyOszh4pMjxtNddFQ10ooFLZ79b0sBw4cYPny5XbbeAE1Pedpa2tj7969dtt4WQKBOnzuMMGAn7JqkE5PMzkVQ1FVgj4fielJYtMxWusbSaQSZAo5gsEgI7ExyuUyC7o2MiJCLOjoprFzAceGDjE8fJCQ34evYIA0jsvlw6jkCYbdSGaKfDpPoeJB1TzIIk85HUNoPqbzOkZ2CrNYID6VJGNYLFxYz94jSY7Fc0SUBI/2x9DRCIb9zJvXQSo1bfcqfElGR0d54xvfaLeNF1DT4WltbWV8vPaPR0QbmlEUjdhEnIpeIVIXwaVpFMpFGsJhGsIRRuLjDE+OI4Qg2hChtauJ9kVt7Nm9n1LITVHNkxs5jC8YYsHS9Rw2VVR/kHwmRT4fo5w8jNsbwirlafB58LijTFfyVDIGmp6ldekmfHUtDB8dwCWyTJdi5Cp5nkqNUje/ibb6CL/ftZ+JyUlMyUvvomV4fR6WLOmmv/9ATZ+6MD4+Tmtrq902XkBNh6etrY2xsTG7bbwkkiQRjTYihEWpXKBSqTA1bdC9YAmeipvJbJJEYgpLmGiaSkNDPX3Ll/LWt16HpmqsWN7HqlXLyRVzjMZGGRkbIRgIsnDJckzTYLCcxxJ1FEwDQ0igeBktmUiFLIo3Qi6fwBueT6unjuGJUY7Fh9Ayg0ykcvgbO5nf5sMwZMRUCq0oaIp4UWSNiVSMrvp2FnR18t73ynz3u7V7Gvf4+DhtbW1223gBNR2euTDyuFwuOruacbsCHHwyBhIUSgWeOnGIhmgDay5aQbGg4/G4cLlUJBm6lyxkfHwCj9vLggUdTE4mCQR8LO5YhG4Y6LqJEBKWBY1NHUhAU6WCYRQplUtkslNYlsFw8iSKouGWAhSLJSRJpqBaHMuM0z1/Pa1NnXT4VB57cicEi/Q2NlCvaBw4Gmd0LE2H2UI4FOS6LSbf/a7da/L0TExM0NjYiCzLWJZlt51ZajY8sizT0NBQ87upvV4vXR0LqJgGdXVB9LLBdDpFLpsjNZ1kbHSExoZGvG4PixYtZH7HPPqfOEwwFMbQTXwBH8VigSVLFmJZgvbONlSXgiIkMrk0hmFSKeo0NDYgqz6ODz2FKSxSVo6sbNAWbmeqnGbwyQfpbu4h4PGi+71UNI2KadL/9F78qhcloqBmC5QNi3TRItpQj6oqeOfA7T10XSedTtPQ0EA8Hrfbziw1G57GxkZSqVTN97R5PB68Pg9mJUPzIi+Jk0UCup9iuYgQgnQmRaVSRkJCVVWSySTpTIpyUadQLKK6FKJ19ez/4xOcHDnJokULae9oIT9doClcR2JqkvH4JGsuXsuKi3ppqptHrpRDzwjm1XkJesIkkgOkCzFOyCq6VcTr9nI8dRidMpWpLGayjF8zQJIxJT+ZosSaS/7Ixk1/Oj+qVpotT8epeY8TnjPA5/ORz+fttvGyqKpKvlBgKjdKxONjggzBUJBiokClXMa0DCxzZj6x7+A+ZFlGsgSyJKObOpIkM+EeQ0KiolfY98Q+BvpdBH1+vG4v07kMLo+HHb97iKMnj9HRMY9N6y+jPdLB4eGDRNwN6KUKUVcbmcwUhijQGGiirWEhCAvDP01qeBpJLaAHWhmaLJIrGtx7XyM7HtpCKBTglv/3P2um2fJ0FAoFvF6v3TaeQ82GR1XVmh91ABRZJZcuICkKlmTiDWkMHxmnUq6gqiouWcN8JjyVSgVJklAVlYpZQQiBoiiYpokiy+iGjqUoqIpKppBHSBJlvYJhGWRyJlgSY4OjWDmT1119JasWXkImNU1YjTCRHkFIAlmyEEXB5OQ0bQ1ttEd70BabuJNZxjIGA8enyBUrIAl8niClUm2355xC13VUtbY219py8yzmSniEBZWMjlLnJm+kCDVLdLhDDPenqJR0TEvCsiwkIOgP4PF4KJfL5PI5AEzTRAhBoVzCtCxMYc3c60IISpUykiwjWxKGaRKfjGMYBu3z20GWQLdITpykmCvSFlmE3+NjMH6Ewakx5je5qWRLHD18mKa2IFq0ianxEzRGW0BKolYUTFMgLBf3/bQeSNq5Gl8WwzDQNM1uG8+hZsMzV9D1CqoqU9IrROubyJsJWusaCNdJkNUYOp6nLtzA00ePIJi5qF9FL9NYH50JSLnEoo5FHB8+gWUJPB43qWwaRVGRZAlNVdA0F/ligYqh41ZdpCeTHB84wuIFHYweH+Cpkafp7Owj2r2GBfVLkRiilCuQMUZoCujIFZnBsVEmxpMsWdRDuD5CtCHIwMBxppNpfnpf7YenFqnZ8BiGUXPD9ItRKpcwDYgxjF4JElI1moKNqBioYUE4rLJ29Ra+8Y07SKVTqLKMpqrU19czPT3NqpWr8bq9ZApZ0pk0LU3NKLJMRa/gcc/U+IViERCoqoJQBNlclt/89gGsy/qYmIyhl02Sk5OMek9QLiRJpcYpGAaEQjQEXAT9EU6O9KMpKj6vj0hTAI9XITjkZ2w0Rrlc+9c1UFW15k4fr9mtc86Ep1SkUKgg18mUjBxe08X4cD9GuYDfH8Ltsxg4ug9hWUTCYRqiUQL+APIzF3U/8vQRwsEw8UQcl6YRT8SIhCMkpqcolopomoZb03BpKqpHwzAMMoUc+XKew8e9M3vedJPp2AS5dBK3S0KRLfwuH8n4MHXeJciySrlcpliUGTjUz/rwGtKpFInJKVRNmRMXBanFMr5mt85CoYDf77fbxstS0StMZ5O4QgpWKUNR6Ei6jCop1NUtIumeZnIwQ0O0AWEatDS30NDQQC6bJZ/Poyoyw2NDCCFwuTVMw2B4fATN5SboD6AqCku7l+DT3MhujWwuy3QsQWtdkJ6Obp48mqRgpVGUImZZpowXj9tFLhvDJeuMTQ5SkRUq5SxT0xUSUzD5y0ksSxAIhPH5PFQqtX+fI7/fX3Mhr9nwJBIJIpHI7N6oWsU0TeLTg7TUB/FLCl5PkIDbRy47zmTpBCU9jKT78Hi9uFWVQj7PlCRx4sRxgsEQTY1NLOjoxOfzkc3nqAuFMYXJwKHDhEMhLr/8ShYuWkg2naNYKJCeSpIYmSCdL5BOTaGILB63iWHqWIaEVTFwKX6EEDM7GeJT6KUibhXS2TSSBBWjjCSruDxejGIFfQ6cjt3a2lpzF/iv2fBYlkUikaC5ubnm+9tSqTgRw4e/LCFJFWR3GFl2Uy5kyVf8jA4Nk0xOEQwEiETqkEolIvVRfD4fsViMxNQUsiwhKzJjExM0NzXh9/lJ5zJMTE6QKqSZmpyiWCgyr6kV1e3i0NAJGusncWklNNVEAC5VpmyaIAy8mkBT/VSMEpZpIktBEAkWdbdRV9dKsWhQqVQYHhzGNGurHHo+mqZRV1dHIpGw28pzqJnwvNiVIE81BNZ6eBKTaRZWVMqSTFkukUmPYlgGUX8X6bxOPD6Boqq4XC4mE5Nk81kaog3kCnmKpSIutwvDMDBLOl6vl1gigaqpCGD//v1Iskw+lyMUDKFIMpKm4PephOtkCiUJv1fFK0BBwjAlgoEwQhKUSjpeT4VcscyxwQwLOyMsX7acQ4eHKRSLSIognqjtdQvQ3NxMPB6vqb42qKGT4W688YW/Gxsbq8lW9OeTy+UpZcogAhR1BcsEEwlVDhD2NWJZAsuySKXTTE1PUy6VCASDxGIxUqlpMuk05VIZ0zTJ5rJks1mmJqcolUpMTU1RLpWoj9QTjTZQqVR46tjTuDTweQO0NUVpqvMSCbgJBlzUBd24XYKGxg40t5+RqQK7DqQoFIt0tvs4dORpKmYZr8+FXimSmq7tc3mgdrvrayY8L0attqI/H8uyGB4eRTJKGKZG2VIRyBQyaSYmjhP0BdBklWw2i27o6IbO4MmTlEolSuUyuq6Tz+fQDR1FUVBVFU1V8bjdBAMB/H4fCxctpGfpEjSXhiUshsZTTKfBtFyoqougz4PP7SXs96FYZbKTJ4lPpTh6rEy5DPUhN6akkitUAIElDOKxcSo1fgEQqN3uelvLtm3bnjviPL85cWxsjPb2djusnTXj4zEWdLbS0BDF5XZTMFNMTKUZHU2RmMqjyBLBYJCmxibS2QyZdAq/z0epVETXDSRJolKuYJkmbS3t+Hw+VE1F01RCoRCapvHUU0+RnE6imwa5YpmT4wXqI0FURUOVJbyaQr5YoVAWZAo5SgUdYSkosmDh/AhT0xKaoiEsgW5UmBgftXu1nRHt7e3OyPN8vve9mas/nmpKPPX9qblPf38/K1eutM/gWVAulxkcGiefK6LrEn5/GydP5khOzXRXCwGmYRKLx/D7fHR2diErCoZpUKmUsYRFKBymri7C/HnzCYdCZNMZfG4vrS2tWEKQnJ6mkC8gSzKyLJPOFTFMFb83hCy7MCyLbKFM2YCS6WEyLRMOhgBBIm2RSBawLAvTmBl1MpmM3avtjFi5cmVN3iGjpsu251/wrtYZHZ1gKpmmWLSIBlpY07cSv9eHIsuo6kxQdF1nenqaoaFBJCSi9Y00NjbjdrlJJpNMp1KksmkWLFrI8hUr8PsCTE1OMTQ8M8nP5XKUKxU0TaNQ1ElmoWC6UVQ3Jd1CcflR3X6E1kpr42KC/gCSrDAay83slNANEAYnB0/U9KnXz6ZWr6JUM3vbXuxKkCdOnMDn89Hc3FzzJ8XBTNf0iZNDeANuyqJIZ/tiNm28mIP9hykUZs4C1Q2DYrmEsCzyxTxCCLxeH/M7OigWipSKRcbHx9FUjc7OTjSXm5GhIUaHR8gXChSLM6OHJMFYIk2+4iNvhMnpk5gijLsuQmd7Ny53I1OJKZ76z3vweX0UKyWEELjdLo4eHSA7R0YdTdPo7e3liSeesNvKC6iZked0J2DNtdFncnKKkZEYyVSS/QP70c0K69avIhjyoygKMNMxHQyFCIfr8Pv9SMDwyAiWsFi7fg0rV/RRKpcYGRlhZHiYSkXHpbool0qYpvXMTgWNYsVkaGyEkeER0kUNQ2vi+PAkQgkhqTKGpdNa34iiyAT9furDYSYnJxgeHrJ3JZ0Fy5cv59ixYzXXXQA1FJ7TMdfCI4RgaHCEdCJPKVdh/4GDTE1NsWzZYkLhAJaYOVZhGAZCWLhcLvx+P42NjSBJ9A8MoLk1+vqWoRs6Lo8bX8BP27w22tvbaWtrwe/34/F68Hg95PQysXSadNEimTGQ1HpMw2JocJjpqWlMBGW9gsutMZ2e4siRQzXXYPlSrFu3riZLNqihsu107Nmzh3e961122zgr9EqFE8dO0tHZic8XYGxsjKamRpb2LKQhWkcsniBfKKPrFqqqoGkaPp+Hee3zSKdTHD78FNGGKCtXLsPj9mAJmEpMMa+1hcnJOMdODlIslwgFAxQLEpYJk9NDtLa1UF8XIp/PM51KkU9nQFUI+L1kMilGhwfJ5XJ2r56zolbnOzAHRp5HH32Uyy+/fE50WD+bQqHAyPAw+XyWUqn4zMHPHE1NjSzs6qCxIYLP58HrceP1uAgGfETqAnR2zOymPnniJL/85W84OThIKOSjb0UP8zrbMISJJEso8kzoPG43xWIJy7LQVBXD0JmanppROoluFkDoxMZHav7ihi/GVVddxaOP1ubNuGp+i5yYmODYsWNs2rSJhx56yG47Z0Uul2N4eAjTNLEsk7zHS6lUIhKpo7EhgpZWsUxmmjUrZeKJOKqi4ff58Hn9BPw+JieTpFIpNE3F43Exf347uXyOycnpZ3rSBEJYaC4Xiiyh6zqjo6Nks1kymQzxeJwTJ06QTM69k92WLl2Ky+WqyZ0FMAfCA3+6setcCw9AIV9geGgIvVKhobEB0zSQZYlSqQRIeLxuisWZvWyG30sg4Mfv99LS0ojb7UJVFRRFJp1OYxgGhqEjS6CqMpWKjhAWqqIQCvpRVZlsNku5XGZ6epp4PM7w8PCcK9VOsXXrVu6//367bZyWOROe++67j1tvvdVuK1VRLpcZGRmhWCzS0NhIqVTC5XIhyTLlchnTMMkbJrphkMnmsEwLWZbwB/xIkoQQAssSFPIFplNpyuUykiSBECiKhiLLGEaFkZER8vk82WyWyclJ4vE4lUrtn25wOrZu3co//uM/2m3jtMyJ8Bw4cABFUejt7WVgYMBuO1VhmiaJRIJcLkd9fT2hUAiPx4uquZBlBY/HjRBipv9NN6hUdLTkNLIsoVd0BCAB4plleT1uKnoF09ARskQslqL4zEHUZDJJNpudMwdBX4zGxkb6+vpqutqYE+GBmdHnuuuum7PhgZnd2IVCgVKpRDqdJhQK4Q8E8Hq8IEx0XZ3tRvB5XTMXAZHApakz7T2miWEaKIpGRZ+52k4+ncMwdAr5AulMmlw2V3OnK1fDtddeywMPPFDTI+ecCc9///d/82//9m986UtfstvKK8ayLLLPnIbt8bjx+wP4fD48Hg+apqFpGoqioCgKkiyjKgqCmSv16BWdSqWCruuUK2WKhSL5fJ5SqVTTZ9yeLe9617v49re/bbeNl2TOhOd3v/sdiqJw+eWX88gjj9ht55xgWRaFQpFCoYgsy2iahsvlwuVyoWoqiqzMzG3gmXmPhWEYs+GpVCrnVWBOsXTpUvr6+rjvvvvstvKSzJnwAHzjG9/g5ptvPm/C82wsy6JcLlMu/+n8mlPBOcVcnsOcDR/60If4zne+U/udEDPt8qeVEEKInTt3ClmWBTPzVdsUCoVEMpkUzc3Ntntx9OrI5/OJyclJMX/+fFteX5ZlsWPHDvEsTpuPmu8weDaZTIYf//jHvP/977fbisOrxA033MAjjzzC8PCw3VZenrk08gBi1apVYmhoSCiKYrsXR+dee/fuFVdffbVtr3/ejjwwczWZI0eOsG3bNrutOJxjrr32WjRN48EHH7Tbypkx10YeQGzYsEEMDQ0Jj8djuxdH50ayLIsDBw6I6667znYf5+3IA7Br1y7++Mc/8td//dd2W3E4R9xwww1kMpma7mV7AXNx5AHE0qVLRSwWE+Fw2HYvjl6ZXC6XOH78uNi0aZPtXs77kQfg8OHD3H///fzN3/yN3VYcXiEf+tCH6O/vr9nzdk7LXB15ADFv3jxbjwk4euWqq6sT4+PjYsWKFbZ7gQtk5AEYGRnh9ttvr/keKIfT8/Wvf5177rmHJ5980m4rZ82cDg/Al770JRoaGnjf+95ntxWHs2TLli1s3LiRT3ziE3ZbqY65XLadUl9fn4jH4075NocUiUTEyMiIuOKKK2z38mxdMGXbKfr7+/na177GHXfcYbcVhzPka1/7Gvfeey8PP/yw3Vaq5rwID8yUb9Fo1Ol7mwNcd911c7tcO8X5ULadUm9vr4jH42LNmjW2e3H04lq8eLGYmJgQGzdutN3Li+lsyrbzKjyAeNvb3iYGBwed0xZqUMFgUPT394sPfvCDtns5nS64Oc+zuffee/nud7/Lfffdh8vlstuOwzPIsswPf/hDHnroIb71rW/ZbeeccN6FB+Czn/0so6OjfPOb37TbisMzfO5zn8Pv93PLLbfYbeWccV6GRwjBjTfeyJo1a/jIRz5it50Lnne+85284x3v4M///M/Piyv7zHK+zXmerc7OTjE0NCTe85732O7lQtW1114rJiYmxPLly233cia6oHcYPF89PT1idHRUvOMd77Ddy4WmN7zhDSIWi4n169fb7uVM5YTneVq+fLkYHx93AvQa6uqrrxaxWKxmd0mfTk54XkTLly8Xo6OjTgn3Gujaa68VsVhMXHbZZbZ7OVs54TmNenp6xNDQkLjlllts93K+6oYbbhATExNzqlR7tpzwvIQ6OzvF/v37xR133CFcLpftfs4XybIsvvjFL4qjR4+Kvr4+2/28kvdxwR4kfTkGBwe57LLLqK+vZ8eOHTQ1Ndltac4TCoXYvn0769evZ8OGDfT399tt6TXhggsPQD6f5/rrr+eBBx5g165dXHTRRXZbmrMsXryYxx9/nOPHj/PGN75xTt6BrmoutLLt+Xr7298u4vG4uPHGG233Mtf05je/WUxMTIi/+qu/st3LuZIz5zlLLV++XOzdu1f8/Oc/F21tbbb7qXXV19eLu+++Wxw5ckRceumltvs5l3LmPGfJwYMHufjii9m1axf79u1zrkb6ErzlLW/hySefJBaLsWrVKn7/+9/bbck+nJHnuVq1apXYt2+fMwo9T88ebebagc+zkTPyvAL279/Phg0b2LVrFwcOHOAzn/kMwWDQblu24fF4+OhHP8qhQ4dmR5vHHnvMblu1gTPynF6dnZ3ie9/7npiYmBC33HLLBXVcSFEU8d73vlcMDQ2Je++9Vyxbtmz2sW3b7Pf3asnZYXCOtWLFCrF9+3Zx4sQJ8Z73vOe8XxdvfetbxcDAgNi5c6e4+OKLX/D4zp32e3y15ITnVdKmTZvEI488Io4dOyY+9rGPiWg0arunc6VgMChuvvlmcfDgQbFv3z7xpje96bTPdcLjhKdqrV+/Xtx5550imUyK++57s9iwYYPtnqrV8uXLxTe+8Q2RTCbFf/3Xf4krr7zyRZ+3bdtMaJ6v862Ec8LzGqm+vl7s3Ik4evSo2L17t7jllltEV1eX7b5eTu3t7eKDH/ygePjhh8Xw8LD4+7//e9Ha2nrGf++MPDOaU3fDrjVOtaJ0d3dzzTXXcP311/N3f/d3JBIJtm/fzv33388f/vCHmU8pm1m9ejVbt25l69atLFiwgF/+8pfcfvvt/PznPz+/To1+DXHCUwXbtsGNN/7p5x07BPA/3HXX//CBD0hs2LCBrVu3cscdd9DY2MiOHTvYvXs3e/bsYd++fWQymVfVn8/nY/Xq1axdu5Z169axefNmyuUyP/vZz7j11lt57LHHME2z6uXfdde58zqXkV7mU1EAPPTQQ1x11VVYlvXauJpD7NwJmzef/vGuri4uv/zy2Q155cqVjI2NsWfPHvbv38/IyAjj4+OMjY0xPj5OOp0+o9cNBAK0tbXR2tpKW1sbbW1trFy5krVr19LV1cXBgwfZs2cPe/bs4bHHHuPw4cPn6B2f38iyzIMPPsjmP/1TpdM91xl5XmVOnDjBiRMn+P73vw+AoigsXbqUtWvXsmLFClauXDkbgNbWVlRVZXx8nHw+j2EYGIYxU1+rKqqq4vP5aG1tRZIkxsbGZkM3Pj7Oww8/zFe/+lX6+/vRdd3md37+44TnFXK2JYxpmvT395/2nBe/309rayter3c2MJIkoes6hmFQKpWYmJggm82+cvMOrwgnPK+Q733v3C4vn89z9OjRc7tQh1cFp7fNwaFKnPA4OFSJEx4HhypxwuPgUCVOeBwcqsQJj4NDlTjhcXCoEic8Dg5V4oTHwaFKnPA4OFSJEx4HhypxwuPgUCVOeBwcqsQJj4NDlTjhcXCoEic8Dg5V4oTHwaFKnPA4OFSJEx4HhypxwuPgUCVOeBwcqsQJj4NDlTjhcXCoEic8Dg5V4oTHwaFKnPA4OFSJEx4HhypxwuPgUCVOeBwcqsQJj4NDlTjhcXCoEic8Dg5V4oTnVaSjo4Pu7m4kaea2lpqmoWnaC55XX1+PoigvugxZlmlsbETTNOrr62d/39DQgCzP/Pui0ehz/j4ajdLd3U0wGKSnpwe/38+yZcvw+/309PTg8/nO5du8YHHuDPcq4Xa72bJlC8PDwwghmD9/Pm63G1VV+eMf/0g0GqWxsZF0Os1ll13Go48+Sl1dHYlEgmQySblcJpVK0dvby8aNGzl06BDNzc3cc889AFxxxRUcOXKEZDLJpk2bZr+fmJhg0aJFdHZ2EggESCQSLF68GF3Xueyyy4jFYnR0dPDAAw/YvIbmPs7I8yphWRb9/f00NTWxdOlSVqxYQWdnJx6Ph66uLjZt2kRzczO9vb1MTU3R3d3NJZdcwurVq9myZcvsco4cOUIikeCJJ54gn88DEA6HkWWZiy66iJ6eHurq6ujr62Pjxo2Ypsnw8DCyLFMoFDhx4gTpdJq6ujri8TgnT57E4/HYtVrOK5zwvEpIkkRLSwu6rqOqKvl8nlgshq7r9PT0kM1mOXbsGNPT04RCIdxuN6lUiqeeegpVVenq6kKSJEzTZGpqCsMwmJ6eBmDDhg24XC4mJydZuHAhsViMwcFB0uk0pmnyZ3/2Z2iaxtjYGKtXryYajdLW1sbExASrV6/mxIkTNq+d8wQhxEtJCCHEzp07hSzLAnB0FpIkSciy/Jyvz/7+xZ6zdOlSsXDhQhGNRp+znOd/ff6yLrnkEhGJRAQgZFkWiqI85/Fn/2z3eqllybIsduzYIZ7FafNxRnOeRYsW8ZWvfAXLss7k6Q4OcxZJkli8ePGZPVcI8VKPv+SDDg4XANLpHnDmPA4OVeKEx8GhSpzwODhUiRMeB4cqcToMHGoGIQTj8TQPPDqAz+vimk29hILe2famWsMJj0NNIITgyadGec+t3+Xk6BQSEv9n63r+7TM3IMugGyYSEpIMsiRhWuIFoRKWQCCQJQlLiJnnS2AJgaoqWKY1c+D5mUMuiiyjKNUXX1WHRwhBqVRC0zQMw6BSqeB2u5EkCcuyMAwDXdfxeDyYpjl7tNztdiOEQJZlTNPEsqzZ5wghZv/O7/djmiblchlJkvD5fOi6PvuapmkSCAQAZpejKArFYhFVVfF6vRQKBWRZRlVn3qau62iahhAC0zSpVCqzfr1eL0KI2ddTFAVFUTBNc3YZpw6OGYaBZVnIsoyiKLhcLvL5PIqiUKlUCAQCs695Nui6DoBhGJimiaZps54lSUJV1dlm0POR/7jnMU6MTAEgKxKJqRz7Dw0zrzXCLf/wn1y2djG6brJ+1QLu/Z+9zG+tR9dntpuA382+/mGWdDWxqLOJH/9iN5etWcTJkSm8Ho33/5/L+Y8fP8rC+Y0cH05wbDDBR973Bi5evbBqv69o5Pn5z39OfX09x48fp6+vj5GRkdmNJxKJkEgkCIfDaJrG8ePHcblcBINB4vE47e3tsxvlqlWr2LVrF5lMBsMwZruB9+3bRyQSQZZl3G43IyMjyLJMMBgklUpx6aWXUiwWGRoaYmJignnz5s32ca1Zs4YDBw7g9Xrx+/0Ui0X27NlDV1cXbreboaEhWlpa0DSN8fFxNm/ezNGjR6lUKoyOjuLxeKivr0dVVfr7++np6SESiZDNZikUCiSTSbxeL/l8nt7eXgzDYGpqCsuyeP3rX08wGDzr9TkwMMDw8DDxeByfzzf73jVNY3JykiuvvJLGxsZX8i+radKZAjAzsizubOT1ly1FVRV03eTpwThvueYi9vUPkc4WOTaYQAKODSYwTIumaJDjQ5MsW9zKG6/o438e7uedWzdw6+d+jN/rYjyW4omBYUYnUnzwhiv4wU//wIZVXa/I7yv6GGtqamJsbIz6+noMw8DtdtPU1EQqlaKhoYHOzk5cLheWZRGJRIhGo6iqyqJFixgfH0eSJDKZDG63m2KxiN/vp6mpCUmSGBwcJBgMEggEaG1txe12o2na7MbU0tKCLMvEYjFM06S1tZXx8XFg5iixLMsIIahUKgwPD1MoFGhqamJqaopEIkE0GkXTNFpbW2dHQZ/Px5IlS2htbZ3d+C3LorW1lVgsht/vJxAIkM/naWxspK+vj4aGBoaGhmZHC0mSeJkDz6fF5/ORTCaJRqOEQiEymQxCCGKx2OwodD6z5apVRMI+Pnzj6/n+V97H1Zt66ZrXAEDI70VRZCRJ4o/7TyBJEidHpmhpCjOvNUIimcPj0YhG/GSyRRRFRgi46rKljMZSfPOHvyPgdxObyjAyPo2iSK94LlV1h8Gp0udU+fLs8sI0TRRFmS1zTNNEVdXZx05t2EIILMvC7XZjGMbshlepVFBVFVVVZ5cPM+XZqUbLU2UUMFt6wUzJI8syLpeLcrk86+1UyXPqb1RVnfVSKpVwuVzIsjwbJJgJjmVZsz4URcGyrOe8n1PvyTAMFEWZLVVPd37OS2Ga5nNK3GeXjYqizH4onK8YhskvHzrIvoEhvG6Nd2xZT2d7lErF4MkjoyiyTHNDiMHRKRrrgximid/rRpIgkytR0Q0qusmSrmampnO0NIY5dHTmQzoS9lEX8pLJldA0hXLZoGt+w5nYOm3CnPYch5pCCPHMZJ/ZDyebccLj4FAlTm+bg8O5xgmPg0OVOOFxcKiSlzvOY/tszcGhVnFGHgeHKnHC4+BQJU54HByqxAmPg0OVOOFxcKgSJzwODlXy/wNyNl/qwdZuAwAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "figure, axes = plt.figure(), plt.gca()\n",
+    "implot = plt.imshow(im)\n",
+    "orbit = plt.Circle(cc, radius=rstar, color='w', fill=False)\n",
+    "axes.add_patch(orbit)\n",
+    "plt.plot(tx, ty, 'y+')\n",
+    "plt.axis('off')\n",
+    "plt.savefig('est_orbit.png', bbox_inches='tight', dpi=150)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Suppose expert knowledge provides insight on the reliability of each measurement and that for this satellite configuration, operational orbit height should be around 250 +/-6 units. The previous image shows a fit where each measurement (data point) contributes the same amount and provides an optimal orbit height of 238.76 units. The fit is quite poor in the sense that it does not satisfy expert advice. Evidently data point 0 (yellow cross closest to Earth surface) is unreliable. Unreliability should be taken into account while doing the fitting. For this end, weights for each residuals are introduced (weights should be set to be proportional to the inverse of their variability). For this example, suppose we are provided with the accuracy for each of the data measurements. \n",
+    "\n",
+    "With this new information, the problem is solved again using weighted nonlinear least-squares. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GG, Nonlinear least squares method for bound-constrained problems\n",
+      " Status: converged, an optimal solution was found\n",
+      " Value of the objective             1.25035E+06\n",
+      " Norm of projected gradient         6.26959E-03\n",
+      " Norm of scaled projected gradient  3.96468E-06\n",
+      " Norm of step                       8.72328E-03\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1   0.00000E+00    2.54896E+02    1.00000E+03\n",
+      "Optimal Orbit Height: 254.90\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Add weights for each residual\n",
+    "weights = np.array([0.10, 0.98, 1.01, 1.00, 0.92, 0.97, 1.02])\n",
+    "weights /= weights.sum()\n",
+    "\n",
+    "# Define the reliability of the measurements (weights)\n",
+    "opt.handle_set_get_real(handle, 'rw', rarr=weights)\n",
+    "\n",
+    "# Indicate to the solver that weights are to be used\n",
+    "for option in [\n",
+    "        'Bxnl Use weights = Yes',\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "\n",
+    "# Solve again\n",
+    "slv = opt.handle_solve_bxnl(handle, lsqfun, lsqgrd, x, nres, data=data, io_manager=iom) # monit=monit,\n",
+    "\n",
+    "# Objective and solution\n",
+    "rstar = slv.x\n",
+    "print('Optimal Orbit Height: %3.2f' % rstar)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM8AAADnCAYAAAC5fgIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2rklEQVR4nO29eXRcZ33//7rb7DPSaKTRZkuWZdmOd1t2SGJnw02B1nHhtOUHOZQE+BaSFNLDUgoY+i1bKUvbnJ4es4eENqEkXyiYpCkkoITswWvifZO1jmbRaEazz12e3x+K1QDZPLF9R/Z9nfM+sqXR3Pe9uu/5fO69z32uJITAwcHhzJHtNuDgMFdxwuPgUCNOeBwcasQJj4NDjTjhcXCoEfVVfu6cinO42JFe7gdO5XFwqJFXqzwAZDIZ9u3bd669ODjUBatXr6axsfFVX/eawrN3716uu+46LMt6vb4cHOoaWZZ56KGHuOaaa171ta8pPACWZTnhcbgoeK2jbpxjHgeHGnHC4+BQI054HBxqxAmPg0ONOOFxcKgRJzwODjXihMfBoUac8Dg41IgTHgeHGnHC4+BQI054HBxqxAmPg0ONOOFxcKgRJzwODjXihMfBoUac8Dg41IgTHgeHGnHC4+BQI054HBxqxAmPg0ONvOYJQBzOPrIs09LSQkdHB+3t7bNfW1tb8Xg8qKqKqqpIkoSu6xiGQbVaJR6PE4vFiMVijI+PE4vFiMfjmKZ5xh5uvBHuuuscrNxFgBOe80Q0GqW/v39Wa9eupaOjg3Q6/XtBOHz4MKVSaTYwwGyQPB4P0WiU9evX/1bgmpubSSQS7N27l127ds1qbGzsFX3ddJMTnlpxwnOO6OvrY+vWrVx55ZX09/fj9/tnd+h77rmHj33sYwwNDc2G4/WiKArz5s1j7dq19Pf3c/PNN7N+/Xosy2Lnzp088cQT/OxnP2P//v1nZXkOIL3KHFUC4JFHHmHz5s3OvG2vgKIoXH755WzdupXrr7+eYDDIjh07GBgYYOfOnQwODtria/78+fT393PNNddw/fXXI8syzzxzC62t//N7r73zTqcKybLMww8/zLXXXnv6Wy87VzVCiFeSEEKIgYEBIcuyYCZMjl6kq666Stx5550ikUiI3bt3i7//+78X69ats93Xy2n58uXik5/8pHjqqadEOp0WAwOIN7/5zUKSJNu91YNkWRa/+tWvxIt42Xw44alBwWBQ3HrrrWL//v3iwIED4rbbbhPz58+33deZqrW1VQwMIHbu3CmOHz8uPvaxj4mmpibbfdkpJzznSCtWrBDbt28X6XRa/PCHPxRXX3217Z5er268cebrhg0bxPe+9z2RTqfF9773PbFhwwbbvdkhJzxnWWvXrhUPPvigGBkZEZ/5zGdEe3u77Z7OlZqamsRHP/pRcfz4cfHYY4+JTZs22e7pfMoJz1lSb2+v+MEPfiDGx8fFLbfcIjRNs93T+dyJ3vWud4nBwUHxs5/9TKxcudJ2T+drvZ3wvA61tbWJ7du3i2QyKbZt2yb8fr/tnuySy+USt912m4jFYuL73/++WLBgge2ezqXOJDzO8JwXoaoqn/rUp9i/fz/FYpGlS5fyxS9+kUKhYLc126hWq/zrv/4rfX19nDhxgp07d/LlL38Zj8djtzX7cSrPjFasWCF27twpHnzwQdHV1WW7n3pVNBoVP/jBD8Thw4fF5Zdfbrufsy2nbTsDqaoqtm3bJhKJhHjve99ru5+5oj/90z8V4+Pj4qtf/arweDy2+zlbctq23+HGG1/6+ytWrODpp59m06ZNrFu3jjvuuOP8GpvD/OhHP2LVqlXMnz+fvXv3cvnll9tt6fxzMVSegYHf/97NN9/sVJuzpNNVaNu2bbZ7eb1y2rbf0YvDo2ma2L59u9i/f79YuHCh7d4uFLW1tYmnnnpK/PCHPxQ+n892P7XKaduYadUGBmYE//vvX/ziBjo7O7n88ss5efKkvSYvICYmJrjmmmsolUo89thjzJ8/325L556LpfKsXLlSnDx5UnzhC19wBkGeY334wx8WY2Nj4oorrrDdy5nKadt+RwMDiHg8Lt7xjnfY7uVi0Zve9CYxMTEh3v3ud9vu5Ux0JuG54G+Ge/vb304kMp8//uM/ZufOnXbbuWj4+c9/zlVXXcUvfvELAoEA27dvt9vS2edCrjzvfve7xdjYmFixYoXtXi5WdXd3i+PHj4uPfOQjtnt5LXLaNmaCMzIyIpYsWWK7l4tdnZ2d4siRI+KjH/2o7V5eTRd9eN7+9reLsbExJzh1pM7OTnH8+HHxV3/1V7Z7eSVd1OHZsmWLiMViTqtWh+ru7hanTp0SN910k+1eXk4XbXhWrFghEonERXsX5FxQX1+fmJiYEFdeeaXtXl5KF2V4IpGIOHHihLjhhhts9+LolXXdddeJ8fHxuhy9ftGNMFBVlfvuu497772Xe+65x247Dq/CQw89xFe+8hV++tOf4vP57LZTMxdEeG6//XYKhQLbtm2z24rDa+T2229nz5493HXXXUjSy0+NVs/M+fC8//3v59prr+WGG25wJmWcY9x88810dHTw6U9/2m4rtTGXj3mWLVsmEomEWLRoke1eHNWm1tZWMTY2Vjez9FwUxzyKonDnnXeybds2jh8/brcdhxqJx+PccsstfO9738Pr9dpt54yYs+H52Mc+RiaT4dvf/rbdVhxeJzt27ODpp5/mH/7hH+y2cmbMxbbtdLtWj6c6HdWmpqamumjfLui27XS79ulPf5rh4WG77TicJdLpNLfccgt33HHHnGnf5lx4PvrRj5LJZPjWt75ltxWHs8yOHTt45pln+OIXv2i3ldfGXGrbWlpaRCqVEj09PbZ7cXRuFIlERDKZtO0M6gXbtm3bto27777btgdFOZx7Jicn+ed//me+8IUv2G3l1Zkrlae7u1ukUinR0tJi+6ejo3Mrn88nxsbGbHlI2AVZeT73uc/xb//2bySTSbutOJxjisUin//85/nSl75kt5VXZi5UnpUrV4pYLCaCwaDtn4qOzo9UVRXHjh0Tb3zjG8/rci+4yvPFL36RL33pS+RyObutOJwnDMPg05/+NP/4j/9ot5WXpe7Ds3TpUjZs2MA3vvENu604nGfuvfdeAoEAV155pd1WXpK6D8/NN9/Md77zHarVqt1WHM4zQgi2b9/OrbfeareVl6aej3l8Pp9IpVJz8knTjs6OQqGQSKfTorW19bws74KZ9PCGG27gscceY2RkxG4r5wVJknC5XPh8PrxeHz6fj4Dfj2laFAoF8oU85XKJcrmMrusz99Ff4ExPT3Pvvffyl3/5l3V37aeuw3PrrbfyiU98wm4b5xRZlgk3NXHJ0ktYtWo1PT09aKqLQrZIwB8g0OBnKpthMj2F6pZxuVUm4nFymSz79u1jfGyMdDqNaZh2r8o54+tf/zr3338/X/rSlzDN+lnPug3PZZddRjAY5KGHHrLbyjlB0zQ6O7u4+qqr6etbSrSllWBDANOUwJLp7NCwKHPgwCFURSUU8ZFX8oQaI0ykk7z1rW/jTVveRLlUYv/z+/mfX/6ck4dOUClW7F61s86+ffsYGhri+uuv5yc/+Ynddmap2/DcdNNNfPvb377gWhNVVVm2bDnXXvWHdHX34nZ7aGkNEwi4KVdKHDp4BLMi6O7rwrCqRLvC3P+jh6laFZZc1ouMgjAFuqWTV6aZltP0resl0bKK7okujj1+lJG9o1QrF9YJlm9+85u85z3vqavwSK+ycwqARx55hM2bN5+3OQIkSWJ0dJSrr776grpLNBKJ8MZrr2PTG67B42mgXCrjC3nI5TP4g366urrQjQr33XcfeX2KXClH3+p5KIZMZ888mqIRQq4wUX8bCzp6SE0nefTggxya2kNWyaAIH0pOIXegynOPHmR0ePyC+fBpbGxkaGiItrY2SqXSOVuOLMs8/PDDXHvttae/9bKzk9Rl5env7yebzV4wwZEkiSWLl/LGa6/jkkWrae5oITaaZCo1SWm8QCgYIODycuroSVAVEqMJJpITlEQRrXmSZf1hKkoekzVEm/qIeJs4ML6H54Z+RUxPYFhpwnk3qmHhKSusWtDDG3pW8tBDj/D0s8+hG4bdm+B1k8lk2LVrF5s3b+b++++32w5Qp+HZunUrO3bssNvGWcGluVi7+lLWrdvAJUuX0zk/ymOPP0mlrKOhYVkW41NTFBJppgsFTgwdJ5FN0NzjJqC0EVBVAmqUQ3uGGBIKT0lPY5kVcnKZ8AKwXGV8JYXxZ4vkMxa+BpXmFQ345SBXXXoFrY1N/PfAYxRLc/9YaMeOHWzdutUJzyuxdevW+r0wdga4XG7+6Lrr6e1eRjDoI9oWZnRslOee28/qVasIeAOkJ5JUyiUsvw/DMnDLMr6AwoYVfrojbRTKBr9+4BRHj6bRq0la2zxUhaAl6mP4hMHC9T4y+RJoCkW1iqVb7DlWZMubluAJV+hoihD0+rjvwYfIF89du3M+2LFjB+99r4wkSXXRjtZdeLq7u2lvb+fpp5+228rrQlVVrr12M93zF2FKJrJXZffefezd8zx+j49cNotV1mmPtBAzTcbHxzk1NkyTL4hbAaWokZF1To1kmIzptIZD6JZBOBhkdCxN2W2SSBXJpgs0NLrQKxKXrmtmXlME5BCmNUW4pZmTUwrLL1mO4nZx9389cE6PF841J0+eZHLyn1m/fgO/+c1v7LZTf+HZsmULDzzwwJyewFCWZVavWU843M6J0VOEQkEqVokDBw9i6iYT+RxuRSU8v5FEdoqpbIaTo0N0hpvxaS7GxuNMJFXmqV662gJsvnQV4YYGsFSQLO740a/ZeWAIwzQp5iE3ZaAqCk/+Ok64MUe0uYkr1wUxfGWCfkGx4GX5kiVc/xaD//rZA+i6bvcmel1s3brVCc9LsWnTJh588EG7bbwu2lq7CPijHDx8FFVRyOayuNw9WIaFYRpEIhEaQg34G0N0RyIMjQzSHo0S8TVwZPg4f7Chh5XL+mhvDtPU7MMT8KOpLjTJD5bMe/7cx4olB3j02SMMx9KsXd5FvlDh5HCcU5lpUgmDtYu66WluQzZyNAZ9pMd1LltxCcnJFAOPPm73JjojbrwRbrrpf/+/adNnGBiAO++Eu+6yy1Udhqe/v5/Pf/7zdtuoGZ8vQPeCpWSmpzCMKqriQa9WePbZZzEMnZ6uBXS2d7JwwUKaI81YlmD92vXM72hn8PmDdM1rYWGHRsgdpsEdIuAPoLllhKiiuEwkYbF4UZTeBQ286ap1HD2VZMH8dhoDXsYSaZ47fJKJbILOSARJGHRGGhlJpFBdMsXJAhuWLuLY8ROMjsXs3lSvmbvu+t+QDAzAmjVTNDU12X7cU1fhCYVCtLe3c/jwYbut1IQkSXR3L8UwLarVKoahU62WEcJCkWUi4TBd8+bR3tJKZ0c7uXSGg4cOMpFOMHiqgXW9HSyZHyTYFEDzNCJVLOSqj1IuiWUVkbUCqiYjSQJFc+Nz+2htaCAaCqEqCosXzGNBe5RkMsH+g8Oohk7vki4WyM08sWcIKejHVdK5asOl/L/Eg1T1uXkhNZPJ0Nvba/uljLq6JWHdunXs27dvzh7vRCJRAsEmKpUisgR+n49wKEykMUJrcyvhYBgZCcWyKGXzZNNTuCWZec1trOhtZ8OqDoIhP5rHSzY1iYWGLLsRcgu5aTeTkzqJ0UlyqSxCUnB7Gwi6PSBUZEVBL04jKzINoRB+v8aOX+3lmd8cJT01zZq+VpKxOCVdpy0UZWHXQrs3V03ceSfs2rWL/v5+u63UV+Xp7++fs497l2SZ9s6FGKaBz+sj6A2gaSrLFy2hqaGRzHSW7PQUlm6QmcrQFGxiOpNhcd9idH2aVYsb0FwuXG43lXKRcNCLSxZIbi/+1nl42jqYnprEmh4nGPYgKxLF/DRuX4h4PEVrNIikqFhWFUXRmNcaob2lkYFnDnJN/yUs7GrnDcsW8MtnjlAswpKe5QyODFKpzq3rP3fdBR0dM+H54Q9/aKuXuqo869evZ9euXXbbqIlgsBGPJ4TP46Mt2sHSxcvwenw0+IO0RVrond9NW3MrPfN6WNCxAL/HT1/vYvzhBvKFFE3+AG5FpaEhTDTSSmNTJ95QI6aQKCXjlONjBBQIut14PD4kS6CgkM9WKFVNJMlAkmRkIaEioxgKa3s6UQQkUhny00Vam4K8deNKFkQCqL4GehYusnuz1cSuXbtYv3693TbqKzxr1qxh9+7ddtuoidbW+Wiqi2AgRCjUSGu0FY/Hw3Asxv4jh4jFJwj4A3g0D9G2dlrnddAQDDGdyoKk4XdruCUVUZWQ8aC5PHhUE9UoUMhPYpaSGNPjpJNJ0okMbm8LDaEW2iIhQq4AltSAabpQcWFVqyiSRLixkSXzWnj26AhT+SKyIuMNNbJsXjs+SaW7czGyXFe7wGti9+7drF271m4b9RWerq4uTp06ZbeNM0bTNJrbmmlpaUKWJFRZJhWfwBKQyE6SmJqiWCqTzU6jud0kp9Pk8nmmSgUGdj+DIpsUiwXykgcj3MZo/BTpqUHSuTFK6Kgt8zAjCynpVXRMPB4v6BIYFpgQbu9CoFEqVDGFipA9uD1ehAxt4QbaQn6ePDRMQZ+5VGR63Giqi+bGdkKhBrs33xmTSqXQNI1AIGCrj7o55gmFQpimSaFQsNvKGRMINOJzNxAM+KmoBtnsFKnJOIqqEvT5SE6liE/FaW9qIZlJMl3MEwwGGY2PU6lUWNCzkVERYkFXHy3dCzgxfIiRkf2E/D58RQOkGC6XD6NaINjgRjIzFLIFilUPquZBFgUq2ThC8zFV0DFyk5ilIonJNNOGxcKFTew+muZEIk9YSfL4gTg6GsEGP/PmdZHJTNm9Cc+Y8fFx2tvbOXbsmG0e6iY8HR0djI+P222jJiLNrSiKRnwiQVWvEm4M49I0ipUSzQ0NNDeEGU3EGEnFEEIQaQ7T3hOls7eDXTv3UQ65KakF8qOH8QVDLFi6gcOmiuoPUpjOUCjEqaQP4/aGsMoFmn0ePO4IU9UC1WkDTc/RvnQTvsY2Ro4fxCVyTJXj5KsFjmTGaJwfpaMpzFPP7mMilcKUvCzrvQSvz8PixX0cOPCc7ddMzpRYLEZHR4cTHoD29nZisblz4e40kiQRibQghEW5UqRarTI5ZdC3YDGeqptULk0yOYklTDRNpbm5ieUrlvK2t12PpmqsXLGc1atXkC/lGYuPMTo+SjAQZOHiFZimwVClgCUaKZoGhpBA8TJWNpGKORRvmHwhibdhPu2eRkYmxjiRGEabHmIik8ff0s38Dh+GISMmM2glQTTsRZE1JjJxepo6WdDTzXvfK/Pd79bP7c2vhdOVx07qJjwdHR1zMjwul4vunlbcrgD7n4+DBMVykSODh2iONLNu7UpKRR2Px4XLpSLJ0Ld4IbHYBB63lwULukil0gQCPhZ19aIbBrpuIoSEZUFLtAsJiFarGEaJcqXMdG4SyzIYSZ9CUTTcUoBSqYwkyRRVixPTMfrmb6A92k2XT+WJ5wcgWGJZSzNNisZzxxOMjWfpMttoCAW5fovJd79r95Y8M05XHjupm/C0t7fPybbN6/XS07WAqmnQ2BhErxhMZTPkc3kyU2nGx0ZpaW7B6/bQ27uQ+V3zOLD3MMFQA4Zu4gv4KJWKLF68EMsSdHZ3oLoUFCExnc9iGCbVkk5zSzOy6uPk8BFMYZGx8uRkg46GTiYrWYaef5i+1iUEPF50v5eqplE1TQ4c241f9aKEFdRckYphkS1ZRJqbUFUFr89n9yasiVgs5lSe00SjURKJhN02zhiPx4PX58GsTtPa6yV5qkRA91OqlBBCkJ3OUK1WkJBQVZV0Ok12OkOlpFMslVBdCpHGJvb9Zi+nRk/R27uQzq42ClNFog2NJCdTxBIp1r2hn5VrlxFtnEe+nEefFsxr9BL0NJBMHyRbjDMoq+hWCa/by8nMYXQqVCdzmOkKfs0AScaU/EyXJNZd9hs2bjowux4DAzNf7R5s+VqZmJhg5cqVtnqom/C43W7K5bLdNs4YVVUpFItM5scIe3xMME0wFKSULFKtVDAtA+uF6ZL27N+DLMtIlkCWZHRTR5JkJtzjSEhU9Sp79u7h4AEXQZ8fr9vLVH4al8fDrx59hOOnTtDVNY9NG66gM9zF4ZH9hN3N6OUqEVcH09OTGKJISyBKR/NCEBaGf4rMyBSSWkQPtDOcKpEvGfz4v1r41SNbCIUC/PVt/8n/3rI/N6hUKrjdbls91E14VFWdk/eZKLJKPltEUhQsycQb0hg5GqNaqaKqKi5Zm51rrFqtIkkSqqJSNasIIVAUBdM0UWQZ3dCxFAVVUZkuFhCSREWvYlgG03kTLInxoTGsvMk1113N6oWXMZ2ZokENM5EdRUgCWbIQJUEqNUVHcwedkSVoi0zc6Rzj0wYHT06SL1VBEvg8QcrluTU85zS6rqOq9u6+dRMeTdMw5uBEFcKC6rSO0uimYGQItUp0uUOMHMhQLeuYloRlWUhA0B/A4/FQqVTIF/IAmKaJEIJipYxpWZjCmpn3VQjK1QqSLCNbEoZpkkglMAyDzvmdIEugW6QnTlHKl+gI9+L3+BhKHGVocpz5UTfVXJnjhw8T7QiiRaJMxgZpibSBlEatKpimQFgu/usnTUDazs14xhiGgaZptnqom/DMVXS9iqrKlPUqkaYoBTNJe2MzDY0S5DSGTxZobGjm2PGjCKBQKFDVK7Q0RWYCUinT29XLyZFBLEvg8bjJ5LIoiookS2iqgqa5KJSKVA0dt+oim0pz8uBRFi3oYuzkQY6MHqO7ezmRvnUsaFqKxDDlfJFpY5RoQEeuygyNjzERS7O4dwkNTWEizUEOHjzJVDrLT/5r7oWnHqib8NRDGa6FcqWMaUCcEfRqkJCqEQ22oGKgNggaGlT612xh+/Zvk8lmUGUZTVVpampiamqK1avW4HV7mS7myE5naYu2osgyVb2Kxz3zSPViqQQIVFVBKIJcPscvfvkQ1hXLmUjF0Ssm6VSKMe8glWKaTCZG0TAgFKI54CLoD3Nq9ACaouLz+ghHA3i8CsFhP+NjcSqVuTevQT20+XWztxqGMTfDUy5RLFaRG2XKRh6v6SI2cgCjUsTvD+H2WRw8vgdhWYQbGmiORAj4A8gvTOp+9NhRGoINJJIJXJpGIhkn3BAmOTVJqVxC0zTcmoZLU1E9M63tdDFPoVLg8EnvzJk33WQqPkE+m8btklBkC7/LRzoxQqN3MbKsUqlUKJVkDh46wIaGdWQzGZKpSVRNmZOTgqiqanubXzd7a7VaxePx2G3jjKnqVaZyaVwhBas8TUnoSLqMKik0NvaSdk+RGpqmOdKMMA3aWttobm4mn8tRKBRQFZmR8WGEELjcGqZhMBIbRXO5CfoDqIrC0r7F+DQ3slsjl88xFU/S3hhkSVcfzx9PU7SyKEoJsyJTwYvH7SKfi+OSdcZTQ1RlhWolx+RUleQkpP47hWUJAoEGfD4P1ercO8vp8Xhsf2ZT3YQnHo/T1tZmt40zxjRNElNDtDUF8UsKXk+QgNtHPhcjVR6krDcg6T48Xi9uVaVYKDApSQwOniQYDBFtibKgqxufz0eukKcx1IApTA4eOkxDKMSVV17Nwt6F5LJ5SsUi2ck0ydEJsoUi2cwkisjhcZsYpo5lSFhVA5fiRwgxc5IhMYleLuFWIZvLIklQNSpIsorL48UoVdHn4O3Yra2tTExM2OqhbsITi8Xq4h6NWshkEoQNH/6KhCRVkd0NyLKbSjFHoepnbHiEdHqSYCBAONyIVC4Tborg8/mIx+MkJyeRZQlZkRmfmKA1GsXv85PNTzORmiBTzDKZmqRULDEv2o7qdnFoeJCWphQurYymmgjApcpUTBOEgVcTaKqfqlHGMk1kKQgiSW9fB42N7ZRKBtVqlZGhEUxz7p3l7OjoYHR01FYPdROevr4n6Oj4P3bbqIlkKsvCqkpFkqnIZaazYxiWQcTfQ7agk0hMoKgqLpeLVDJFrpCjOdJMvligVC7hcrswDAOzrOP1eoknk6iaimDm8RqSLFPI5wkFQyiSjKQp+H0qDY0yxbKE36viFaAgYZgSwUADQhKUyzpeT5V8qcKJoWkWdodZcckKDh0eoVgqISmCRHLuDYmCmeFcds/dVjfhufrqU7aPVaqVfL5AebqCrzlMSZ9GkwWmJKHKARp8bizrBJJlkclmyefzCMsgEAwyODiIaeh4PJ6ZU9OSRC6fwzItLMtC0zRyuRzBYJCmcBMNDY1Uq1WOnDhGW5OGzxugMeRmOjdNRX/h+pAlo2qCQGMX8cQEo+NJjp8sY5rQ3Rnl0NFjVE0Jr89FLpchMzX37uWB+riFpa7uJJ2r4bEsi5GRMSSjjGFqVCwVgUxxOsvExEmCvgCarJLL5dANHd3QGTp1inK5TLlSQdd1CoU8uqGjKAqqqqKpKh63m2AggN/vY2HvQpYsXYzm0rCExXAsw1QWTMuFqroI+jz43F4a/D4Uq0IudYrEZIbjJypUKtAUcmNKKvliFRBYwiARj1GdYxOAnKYebmGxtfL87kyQu3c31MVMkLUQi8VZ0N1Oc3MEl9tN0cwwMZllbCxDcrKAIksEg0GiLVGyuWmmsxn8Ph/lcgldN5AkiWqlimWadLR14vP5UDUVTVMJhUJomsaRI0dIT6XRTYN8qcKpWJGmcBBV0VBlCa+mUChVKVYE08U85aKOsBQUWbBwfpjJKQlN0RCWQDeqTMTG7N5sNVMPo/BtrTx33QXXXsvsoMT29sN88IPL51xwYGag4tBwjEK+hK5L+P0dnDqVJz1ZeuHpyWAaJvFEHL/PR3d3D7KiYJgG1WoFS1iEGhpobAwzf958GkIhctlpfG4v7W3tWEKQnpqiWCgiSzKyLJPNlzBMFb83hCy7MCyLXLFCxYCy6SGVlWkIhgBBMmuRTBexLAvTmKk609PTdm+2mohEIhiGQT6ft9VHXbVte/bsYd26dXbbqJmxsQkm01lKJYtIoI11y1fh9/pQZBlVnQmKrutMTU0xPDyEhESkqYWWllbcLjfpdJqpTIZMLsuC3oWsWLkSvy/AZGqS4ZGZg/x8Pk+lWkXTNIolnXQOiqYbRXVT1i0Ulx/V7Udo7bS3LCLoDyDJCmPx/MxJCd0AYXBqaHDO3Xp9mnXr1rFnzx67bdTPCYM774SWlpnJ7P793//dbjs1Ua1WGTw1jDfgpiJKdHcuYtPGN7D/wGGKxZm7QHXDoFQpIyyLQqmAEAKv18f8ri5KxRLlUolYLIamanR3d6O53IwODzM2MkqhWKRUmqkekgTjySyFqo+C0UBeT2GKBtyNYbo7+3C5W5hMTnLkP+/D5/VRqpYRQuB2uzh+/CC5OVp1YGZyzHqY369uKs9dd9XPNKqvh1RqktHROOlMmn0H96GbVdZvWE0w5EdRFGBmxHQwFKKhoRG/348EjIyOYgmL/g3rWLVyOeVKmdHRUUZHRqhWdVyqi0q5jGlaL5xU0ChVTYbHRxkdGSVb0jC0KCdHUgglhKTKGJZOe1MLiiIT9PtpamgglZpgZGTY3o30OqmXyTHrJjwwM5nd6tWr5+REfKcRQjA8NEo2WaCcr7Lvuf1MTk5yySWLCDUEsMTMPNyGYSCEhcvlwu/309LSApLEgYMH0dway5dfgm7ouDxufAE/HfM66OzspKOjDb/fj8frweP1kNcrxLNZsiWL9LSBpDZhGhbDQyNMTU5hIqjoVVxujansJEePHrJ9QOXrpV4qT920bQDZbJaJiQmWLFnCoUOH7LZTM3q1yuCJU3R1d+PzBRgfHycabWHpkoU0RxqJJ5IUihV03UJVFTRNw+fzMK9zHtlshsOHjxBpjrBq1SV43B4sAZPJSea1t5FKJThxaohSpUwoGKBUlLBMSE0N097RRlNjiEKhwFQmQyE7DapCwO9lejrD2MiQ7QfZr5empibC4bDtT0iAOgsP/O88xHM5PADFYpHRkRE6580j4PeRy+cwTZNotAW/38tEPEWhWEKRZTweF8GAj3BjgMYGP+VymVODpxg+NcK6datZseIS2tqaSSZTTCRjSLKEIs+ETlUViqUSsjRzq4Nh6ExOTTI5NUkhl0M3iyB04rHROTm54e/S39/P7t276+JkR92F54knnuCaa66ZsycNXkw+n2dkZBjTNLEsk4LHS7lcJhxupKU5jJZVsUxmBmtWKySSCVRFw+/z4fP6Cfh9pFJpMpkMmqbi8biYP7+TfCFPKjX1wpg0gRAWmsuFIkvous7Y2Bi5XI7p6WkSiQSDg4Ok0xfGzW7XXHMNTz75pN02gDoMz/33389nPvMZZFmes8/peTHFQpGR4WH0apXmlmZM00CWpRcmO5HweN2USjNn2Qy/l0DAj9/vpa2tBbfbhaoqKIpMNpvFMAwMQ0eWQFVlqlUdISxURSEU9KOqMrlcjkqlwtTUFIlEgpGRkTnfqr2YrVu38r73vc9uG0AdhufUqVNMTEzwhje8gaeeespuO2eFSqXC6OgopVKJ5pYWyuUyLpcLSZapVCqYhknBMNENg+lcHsu0kGUJf8A/+9h0yxIUC0WmMlkqlQqSJIEQKIqGIssYRpXR0VEKhQK5XI5UKkUikbD9npezycKFC2lubrZ9QOhp6i48ADt27GDr1q0XTHhg5r6fZDJJPp+nqamJUCiEx+NF1VzIsoLH40YIMTP+TTeoVnW09BSyLKFXdQQgAeKF9/J63FT1KqahI2SJeDxD6YWLqOl0mlwuVxfHBWeT66+/nvvvv79u1qsuzwmfDs+FhhCCYrHI+Pg4IyMjxOMTZDJpSsU85VKRYrFAtVJBkcHndeFxu3C7NPx+L36f94U2Tsbj0ajqZUzLIJPNkEgmSCQSjI6NMjo6yvT0dN3sYGeTrVu3smPHDrttzFKXlWfnzp2Ew2F6e3s5ceKE3XbOOpZlkXvhNmyPx43fH8Dn8+HxeNA0DU3TUBQFRVGQZBlVURDMzNSjV3Wq1Sq6rlOpVigVSxQKBcrl8uz8cBcijY2NrF+/nocffthuK7PUZXiEEPzsZz/jbW97G1/72tfstnPOsCyLYrFEsVhClmU0TcPlcuFyuVA1FUVWZo5t4IXjHgvDMGbDU61WL+jAvJgtW7bw6KOP1tdkJTMjfl9WQgghBgYGhCzLgpmW+7zo8ssvF0eOHBGSJJ3X5daTJEn6Ldntx079+te/Fm9729vO+XJkWRa/+tWvxIt42XzU5TEPwFNPPUWxWGTz5s12W7GN3/1jXaysXLmSnp6eujregTo9YXCa7du3c+utt9ptw8FmbrnlFr71rW/VX4tar20bIPx+v0ilUmLevHm2tw2O7FEoFBLpdFq0t7efl+VdEG0bzMzrfPfdd/P+97/fbisONvEXf/EXPPTQQ7bPV/CS1HPlAcTSpUvF+Pi4cLlctn8KOjq/kiRJHDhwQFx11VXnbZkXTOUBOHz4MLt27XKqz0XIn/3Zn1EsFvn1r39tt5WXpt4rDyBWrlwpYrGYCAQCtn8aOjo/UlVVHD16VGzevPm8LveCqjwAzz//PA8//DAf+chH7LbicJ5473vfy9DQEL/85S/ttvLyzIXKA4ienh6RSqVEc3Oz7Z+Kjs6tvF6vGB0dFevXrz/vy77gKg/A4OAg99xzD9u2bbPbisM55rbbbuPJJ59k586ddlt5ZeZK5QFENBoVqVRKLFiwwHYvjs6NwuGwSCQSoq+vz5blX5CVByCRSPC1r32Nb37zm3ZbcThH3H777dxzzz0cO3bMbiuvypwKD8BXv/pVmpqa6uZWXIezx5YtW7jiiiv41Kc+ZbeV18ZcattOa/ny5SKRSIj58+fb7sXR2VE4HBajo6PiyiuvtNXHBdu2nebAgQP8y7/8C9/5znfstuJwlrj99tv50Y9+xGOPPWa3ldfMnAwPwFe+8hWnfbtA2LJlCxs3buSTn/yk3VbOjLnYtp3W6fatt7fXdi+OalM0GhWjo6PndfzaK+mCb9tOc+DAAf7u7/6On/70pwSDQbvtOJwhLpeLH//4x3znO9+p3/Frr8CcDg/AN77xDR577DHuvvvuOT1B/MXI9u3bicfjfPazn7XbSk1cEHvbbbfdRigU4vOf/7zdVhxeIx/60IfYsGED7373u+fuLeZz+ZjnxWpubhYnT54U73jHO2z34uiVtXnzZjE+Pi66u7tt9/K7OpNjngsmPIBYtWqVSCQStgwodPTatGjRIjExMVE3Jwh+VxdteACxdetWEYvFxPLly2334ui31dXVJQYHB8X73vc+2728nC7q8ADine98pxgdHRWLFy+23YujGXV0dIhjx46J2267zXYvr6SLPjyAuOmmm8Tw8LAToDpQR0eHOHTokPj4xz9uu5dXkxOeF3TTTTeJ0dFRsWzZMtu9XKzq6uoSx44dE3/zN39ju5fXIic8L9I73/lOMT4+LtatW2e7l4tNfX19YnBwUHzoQx+y3ctrlROe39Gf/MmfiHg8Lv78z//cdi8Xi6677joxMTEh3vOe99ju5UzkhOcltHr1ajE4OCg+97nPXfSTpp9r/fVf/7UYHx8XmzZtst3LmeqiGdt2Juzbt49LL72Uq6++mh//+McEAgG7LV1wuFwu7rjjDt7znvdw2WWX8fjjj9tt6Zxy0YQHIJlM8gd/8AckEgmeeuopenp67LZ0wdDa2srAwADBYJCNGzcyPDxst6VzzkUVHgBd1/nABz7A17/+dZ5++mluvPFGuy3Ned761reye/dufv7zn/P2t7+dQqFgt6Xzw8VyzPNSWrVqldi9e7e4//77RUdHh+1+5opuvHHma1NTk7j77rvF0aNHxcaNG233dTbkHPO8Rp577jkuvfRSnn32Wfbs2eNUodfITTfNVJvnn3+eeDzO6tWreeKJJ+y2df65mCvPi/XiKuQ8D+jl1dzcLAYGuKCqzYvlVJ4aOF2FnnnmGfbu3cuXv/xlwuHwq/7exVKs/vIvNQYG4L77UgCMjS3mC1944qJZ/5fEqTy/r/b2dvH1r39dJBIJ8YlPfEL4fL6Xfe3AgP1+z6U0TRMf/OAHRSwWE//xH/8henp6Luh1dirP6yQWi3HLLbewceNG1qxZw9GjR/nABz6Aqqp2WztvSJLEDTfcwOHDh3nLW97Cm9/8Zt71rncxODhot7X6wak8r67+/n7xi1/8QgwPD4tt27aJv/orvxgY4Pd0+izUXFY4HBYf/vCHxdGjR8WTTz75kjetXQjr+XJyhuecI61Zs0Z885vfFOl0WvzgBz8QV1555QXTwvT394vvfve7Ip1Oi+9///visssus92THXLCc47V0NAgPvShD4mDBw+KgQHEBz/4QdHZ2Wm7rzNVS0uLeN/73ieeeeYZcfLkSfHxj3/8on/+kROe86j/+3+7xfe//32RSqXEzp07xd/93d+JNWvW2O7r5XTJJZeIv/3bvxWPP/64mJqaEvfee6/4oz/6I+fv+4LOJDwXzxHwOeKznx0C3o2iKGzcuJGtW7dy33334Xa72bFjBwMDA+zcuZOhoSFb/HV2dtLf38/VV1/N1q1bcblc7Nixg89+9rM8+uijVKtVW3xdCEhCiFf6uQB45JFH2Lx5M5ZlnR9XFwBLly5l69atbNq0if7+ftxuN7t27ZrV7t27GR4exjTNs7I8WZbp6Ohg3bp19Pf309/fz/r165FlmZ07d/LUU0+xY8cO9u3bd1aWd6EiyzIPP/ww11577elvSS/3Wic854m2trbZnbq/v59169bR2tpKKpUiFosRi8UYHx8nFosxMTFBuVxG13UMwwBAVVVUVcXtdtPa2kpHRwft7e2zX6PRKJOTk+zZs+e3QjoyMmLzms8tziQ8Ttt2npiYmOCBBx7ggQcemP2eqqpEo9HfC8KqVatwu92zgZEkaTZIuq4Tj8fZt28f//M///NbgdN13cY1vPhwwmMjhmEwPj7O+Pi43VYcasAZYeDgUCNOeBwcasQJj4NDjTjhcXCoESc8Dg414oTHwaFGnPA4ONSIEx4HhxpxwuPgUCNOeBwcasQJj4NDjTjhcXCoESc8Dg414oTHwaFGnPA4ONSIEx4HhxpxwuPgUCNOeBwcasQJj4NDjTjhcXCoESc8Dg414oTHwaFGnPA4ONSIEx4HhxpxwuPgUCNOeBwcasQJj4NDjTjhcXCoESc855Curi76+vqQpJmnVGiahqZpv/e6pqYmFEV5yfeQZZmWlhY0TaOpqWn2+83NzcjyzJ8vEon81u9HIhH6+voIBoMsWbIEv9/PJZdcgt/vZ8mSJfh8vrO5mhctzlMSzhFut5stW7YwMjKCEIL58+fPPjbkN7/5DZFIhJaWFrLZLFdccQWPP/44jY2NJJNJ0uk0lUqFTCbDsmXL2LhxI4cOHaK1tZX77rsPgKuuuoqjR4+STqfZtGnT7L8nJibo7e2lu7ubQCBAMplk0aJF6LrOFVdcQTwep6uri4ceesjmLTT3cSrPOcKyLA4cOEA0GmXp0qWsXLmS7u5uPB4PPT09bNq0idbWVpYtW8bk5CR9fX1cdtllrFmzhi1btsy+z9GjR0kmk+zdu5dCoQBAQ0MDsiyzdu1alixZQmNjI8uXL2fjxo2YpsnIyAiyLFMsFhkcHCSbzdLY2EgikeDUqVN4PB67NssFhROec4QkSbS1taHrOqqqUigUiMfj6LrOkiVLyOVynDhxgqmpKUKhEG63m0wmw5EjR1BVlZ6eHiRJwjRNJicnMQyDqakpAC699FJcLhepVIqFCxcSj8cZGhoim81imiZvectb0DSN8fFx1qxZQyQSoaOjg4mJCdasWcPg4KDNW+cCwXka9rmTJElCluXf+vrif7/Ua5YuXSoWLlwoIpHIb73P73793fe67LLLRDgcnn2is6Iov/XzF//f7u1SzzrrT8Pu7e3ln/7pn5xnkjpc8EiSxKJFi17ba1/LA30dHC5iXvaBvs4xj4NDjTjhcXCoESc8Dg414oTHwaFGnBEGDnWDEIJYIstDjx/E53Xxh5uWEQp6Z4c31RtOeBzqAiEEzx8Z490f+S6nxiaRkHjH1g3829/fgCyDbphISEgyyJKEaYnfC5WwBAKBLElYQsy8XgJLCFRVwTKtmQvPL1xyUWQZRam9+ao5PEIIyuUymqZhGAbVahW3240kSViWhWEY6LqOx+PBNM3Zq+VutxshBLIsY5omlmXNvkYIMft7fr8f0zSpVCpIkoTP50PX9dllmqZJIBAAmH0fRVEolUqoqorX66VYLCLLMqo6s5q6rqNpGkIITNOkWq3O+vV6vQghZpenKAqKomCa5ux7nL44ZhgGlmUhyzKKouByuSgUCiiKQrVaJRAIzC7zTNB1HQDDMDBNE03TZj1LkoSqqrODQS9E7rjvCQZHJwGQFYnkZJ59h0aY1x7mrz/7n1zRvwhdN9mwegE//vlu5rc3oesz+03A72bPgREW90Tp7Y5y7wM7uWJdL6dGJ/F6NP7PO67kjnsfZ+H8Fk6OJDkxlOTD7/sD3rBmYc1+X1fluf/++2lqauLkyZMsX76c0dHR2Z0nHA6TTCZpaGhA0zROnjyJy+UiGAySSCTo7Oyc3SlXr17Ns88+y/T0NIZhzI4G3rNnD+FwGFmWcbvdjI6OIssywWCQTCbD5ZdfTqlUYnh4mImJCebNmzc7jmvdunU899xzeL1e/H4/pVKJXbt20dPTg9vtZnh4mLa2NjRNIxaLce2113L8+HGq1SpjY2N4PB6amppQVZUDBw6wZMkSwuEwuVyOYrFIOp3G6/VSKBRYtmwZhmEwOTmJZVm88Y1vJBgMnvH2PHjwICMjIyQSCXw+3+y6a5pGKpXi6quvpqWl5fX8yeqa7HQRmKksi7pbeOMVS1FVBV03OTaU4K1/uJY9B4bJ5kqcGEoiASeGkhimRTQS5ORwiksWtfOmq5bz818f4J1bL+UjX7gXv9dFLJ5h78ERxiYyfOCGq/iPnzzDpat7Xpff1/UxFo1GGR8fp6mpCcMwcLvdRKNRMpkMzc3NdHd343K5sCyLcDhMJBJBVVV6e3uJxWJIksT09DRut5tSqYTf7ycajSJJEkNDQwSDQQKBAO3t7bjdbjRNm92Z2trakGWZeDyOaZq0t7cTi8WAmavEsiwjhKBarTIyMkKxWCQajTI5OUkymSQSiaBpGu3t7bNV0OfzsXjxYtrb22d3fsuyaG9vJx6P4/f7CQQCFAoFWlpaWL58Oc3NzQwPD89WC0mSeJULzy+Lz+cjnU4TiUQIhUJMT08jhCAej89WoQuZLZtXE27w8aGb3sj3/+l9XLdpGT3zmgEI+b0oiowkSfxm3yCSJHFqdJK2aAPz2sMk03k8Ho1I2M90roSiyAgBm69Yylg8wzfueZSA3018cprR2BSKIr3uY6maRxicbn1Oty8vbi9M00RRlNk2xzRNVFWd/dnpHVsIgWVZuN1uDMOY3fGq1SqqqqKq6uz7w0x7dnqg5ek2CphtvWCm5ZFlGZfLRaVSmfV2uuU5/Tuqqs56KZfLuFwuZFmeDRLMBMeyrFkfiqJgWdZvrc/pdTIMA0VRZlvVl7s/55UwTfO3WtwXt42Kosx+KFyoGIbJfz+ynz0Hh/G6Nf6/LRvo7oxQrRo8f3QMRZZpbQ4xNDZJS1MQwzTxe91IEkzny1R1g6pusrinlcmpPG0tDRw6PvMhHW7w0RjyMp0vo2kKlYpBz/zm12LrZRPmDM9xqCuEEC8c7DP74WQzTngcHGrEGdvm4HC2ccLj4FAjTngcHGrk1a7z2H605uBQrziVx8GhRpzwODjUiBMeB4caccLj4FAjTngcHGrECY+DQ438/xWbf2oCftyJAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Optimal Orbit Height: 254.90 (should be between 244 and 256)\n"
+     ]
+    }
+   ],
+   "source": [
+    "figure, axes = plt.figure(), plt.gca()\n",
+    "implot = plt.imshow(im)\n",
+    "orbit = plt.Circle(cc, radius=rstar, color='w', fill=False)\n",
+    "axes.add_patch(orbit)\n",
+    "plt.plot(tx, ty,'y+')\n",
+    "plt.axis('off')\n",
+    "plt.savefig('estw_orbit.png', bbox_inches='tight', dpi=150)\n",
+    "plt.show()\n",
+    "print('Optimal Orbit Height: %3.2f (should be between 244 and 256)' % rstar)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "For this weighted model the orbital solution provided concurs with expert advice."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.10"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/local_optimization/BXNL/notebooks/simple_BXNL.ipynb b/local_optimization/BXNL/notebooks/simple_BXNL.ipynb
new file mode 100644
index 0000000..708f958
--- /dev/null
+++ b/local_optimization/BXNL/notebooks/simple_BXNL.ipynb
@@ -0,0 +1,563 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Simple Nonlinear Least-Squares Fitting Example\n",
+    "\n",
+    "This example demontrates how to fit data to a model using weighted nonlinear least-squares. \n",
+    "\n",
+    "**handle_solve_bxnl** (`e04gg`) is a bound-constrained nonlinear least squares trust region solver (BXNL) from the NAG optimization modelling suite aimed for small to medium-scale problems. It solves the problem:\n",
+    "\n",
+    "$$\n",
+    "\\begin{array}{ll}\n",
+    "{\\underset{x \\in \\mathbb{R}^{n_{\\text{var}}}}{minimize}\\ } & \n",
+    "\\frac{1}{2} \\sum_{i=1}^{n_{\\text{res}}} w_i r_i(x)^2 + \\frac{\\sigma}{p}\\|x\\|^p_2\\\\\n",
+    "\\text{subject to} & l_{x} \\leq x \\leq u_{x}\n",
+    "\\end{array}\n",
+    "$$\n",
+    "\n",
+    "\n",
+    "where $r_i(x),i=1,\\dots,n_{\\text{res}}$, are smooth nonlinear functions called residuals, $w_i ,i=1,\\dots,n_{\\text{res}}$ are weights (by default they are all defined to 1, and the rightmost element represents the regularization term with parameter $\\sigma\\geq0$ and power $p>0$. The constraint elements $l_x$ and $u_x$ are $n_{\\text{var}}$-dimensional vectors defining the bounds on the variables.\n",
+    "\n",
+    "Typically in a calibration or data fitting context, the residuals will be defined as the difference between the observed values $y_i$ at $t_i$ and the values provided by a nonlinear model $\\phi(t;x)$, i.e., $$r_i(x)≔y_i-\\phi(t_i;x).$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The following example illustrates the usage of `e04gg` to fit PADC target with $\\alpha$ particle\n",
+    "etched nuclear track data to a convoluted distribution. A target\n",
+    "sheet is scanned and track diameters (red wedges in\n",
+    "the following Figure 1) are recorded into a histogram and a mixed Normal and log-Normal model is to be fitted to the experimental histogram (see Figure 2).\n",
+    "![PADC](../images/tracks.png)\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Figure 1**: PADC with etched $\\alpha$ particle tracks."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "`e04gg` is used to fit the six parameter model\n",
+    "$$\n",
+    "\\begin{array}{ll}\n",
+    "\\phi\\big(t, x = (a, b, A_{\\ell}, \\mu, \\sigma, A_g)\\big) = \\text{log-Normal}(a, b, A_l) + \\text{Normal}(\\mu, \\sigma^2, A_g)\\\\\n",
+    "\\text{subject to } 0 \\leq x,\n",
+    "\\end{array}$$\n",
+    "using the histogram heights reported in Figure 2."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import math\n",
+    "import matplotlib.pyplot as plt\n",
+    "from naginterfaces.base import utils\n",
+    "from naginterfaces.library import opt\n",
+    "\n",
+    "# problem data\n",
+    "# number of observations\n",
+    "nres = 64\n",
+    "# observations\n",
+    "diameter = range(1, nres+1)\n",
+    "density = [\n",
+    "     0.0722713864, 0.0575221239, 0.0604719764, 0.0405604720, 0.0317109145, \n",
+    "     0.0309734513, 0.0258112094, 0.0228613569, 0.0213864307, 0.0213864307,\n",
+    "     0.0147492625, 0.0213864307, 0.0243362832, 0.0169616519, 0.0095870206,\n",
+    "     0.0147492625, 0.0140117994, 0.0132743363, 0.0147492625, 0.0140117994,\n",
+    "     0.0140117994, 0.0132743363, 0.0117994100, 0.0132743363, 0.0110619469,\n",
+    "     0.0103244838, 0.0117994100, 0.0117994100, 0.0147492625, 0.0110619469,\n",
+    "     0.0132743363, 0.0206489676, 0.0169616519, 0.0169616519, 0.0280235988,\n",
+    "     0.0221238938, 0.0235988201, 0.0221238938, 0.0206489676, 0.0228613569,\n",
+    "     0.0184365782, 0.0176991150, 0.0132743363, 0.0132743363, 0.0088495575,\n",
+    "     0.0095870206, 0.0073746313, 0.0110619469, 0.0036873156, 0.0051622419,\n",
+    "     0.0058997050, 0.0014749263, 0.0022123894, 0.0029498525, 0.0014749263,\n",
+    "     0.0007374631, 0.0014749263, 0.0014749263, 0.0007374631, 0.0000000000,\n",
+    "     0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000\n",
+    "     ]\n",
+    "\n",
+    "# Define the data structure to be passed to the callback functions\n",
+    "data = {'d': diameter, 'y': density}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEYCAYAAABGJWFlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAn10lEQVR4nO3df5wdVX3/8debhPAj0UQhUQtooolGkB8CggLqRgVjRYM1SFQQWmjqV/OtP1up30oDtRVsC1rBH+GHYFD5qbBiFAXcqhQxQUBIICWQqKFoSAjIBpIQ+Hz/OGfNZHZ29252Z/fu5f18PO5j75w5M/M5987ez5wzc+cqIjAzMyvbYbgDMDOz5uQEYWZmlZwgzMyskhOEmZlVcoIwM7NKThBmZlbJCaIPkk6SFIXH45LulDRP0uhS3V0kPZbr7d/D+joK63pa0npJd0j6kqR9eonjdZKukPS/kjZLWifpx5JOlDRqENrZJmm+pH7vE4XXaOp2LDshb/fA/i47GAYSew/rm5zXd1Kh7GJJqwZj/XWQ9FFJfzGE2+uQ9PMG6s2X1K/r8Ie6La3OCaJxxwKvA94N/BL4EnBaqc67gOfm5x/oZV2/zus6HDgO+AYwA7hD0ofKlSV9FLgZeD7wKeAtwF8B/wN8BTh6expU0gb8E0O/T0zI2x2WBDFE/pm0bzSrjwLN+KF6Aen/pD8+SnO2ZUQa3XcVy+6IiBX5+Y/yEedH2DZJnAg8AtwHvF/SpyJiS8W6Ho+IXxSmfyTpS8C3gS9JWhwRiwEkvQE4Gzg3Iv62tJ5rJZ0NjB1w60YISTtFxKbhjqM/IuL+4Y5hqA3G+xQRq4HVgxRS7UbivtkX9yC232LguZImAUjag3RkfxnpyOcFwFsbXVlEPAV8CNgCFBPBp0hJ5+97WO7+iPh1b+uWNFHSVyU9KGmTpHslzS3Mn086igd4qmsIrDB/rKQzJd2fl/+9pKslvaC0qd0lfVPSH/NQ2H9K2rmXuCYDK/Pk+YWht5Py/A5JP5f0Dkm3S9qUXyPyEN8tkh6R9KikX0h6e8U2Go29uMzBkv4g6Tt9xL+rpC/n4b5OSe3AnhX1ug0xSTpd0q/ya7VW0k2SXluq05Zfj2Mkfa3Q1i9IGiXpNfn12SBpqaRu+5ukN0q6UWlodIOk6yW9qjB/FfAS0gFN1+t/cWH+/pLalYZCn5R0s6TXV7RvtdIw6H9LehL4fE+vW2G5t+TX4AlJd0t6V2l+tyEmSR+RdE+OZb2kJV3LNdCWmXmfeVJpKPgaSa8orX+UpM9KeijHdZOk6Xld88uxSXpVfk07gSvyvKMkLSqs425Jn1BpKFjSKkmXSjpB0vIc188kTcv77dfyvvUHSf+h0pD2UHAPYvtNAZ4GOvP08aSE+w3gXtIQ1AeA7ze6wohYI2kJaeiJvEPNAK6JiI3bE6Sk5wI/B3YB5pM+kN8KfEXpiOdLpIS2J3AycERuV9fyY4AfA/sDZwK/AMbndTwP+ENhcwtJvaC/IA0NzAfWszX5lD2U634H+BzQnsuLR9wvB/6TNEzzAClZAkzOca8i7cfvAK6T9LaI+OF2xN7V3qOAq4FvAh+OiKfLdQq+RhoiPJ10wHAk8K1e6hftAZxDOkIeS9p/firpoIi4q1T3C6TX6DjgDcA/AqNIByT/BjyYy74j6SURsTa35e3AtaR98Pi8rk8BP5O0X0T8jjT0tQi4k/R+ATyclz8Q+BlwO/DXwBPAB4EbJB0WEbcVYhxPOjj6d+DTwJN9tP9lwBdJ7/ta4BPAlZKmF3rq25D0fuA/gDNyXLsA+5GGXumjLTPz63BTfh3H5fX8XNIBEfFgrn96jv/fgBuAg9i6X1a5FrgQOAt4Jpe9FLiR9BmwETg4xzMROLW0/Bvya/EpYAzpvb6atK+vAOaw9T2/H/hyL7EMvojwo5cHcBIQwCtIH0TPA/6G9CF6TaHeMuDewvS3Sf8kE0rr6wB+3sv2vg08mZ+/IG/7cwOI/zOknXRaqfx80j/m6Dw9P29rdKneX+XydzbwGp1eKr8O+J8+4puclz2lYl4H6Z/ugD7WsUN+b34EXLudsU8F3g9sLrejh+VekfeBU0vlX8nrO6lQdjGwqpd1jcrxLwe+WChvy+u6qFT/V7n8iELZfrnsxELZCuDG0rLPze/7Fwplq4BLK+K6EbgHGFOK9Z7Svn9x3vasBvfJDuCp4j4JTMqv56cLZfOBKEyfC/yqj3X31JYlpKHf0YWyKTmOs/P080gHfF8uLfvx3L755diAj/QRj/J7+/9IB0s7lGJ9BBhfKPvbvN4LKt7znzTy+g7mw0NMjbuXtDM9Qsri3yR9ACHpNcArSUfQXS4BdiYdrfSHSDvIYJkJ3AqslDS66wFcD+wG7N3H8kcBv4+I3o6iupR7S3cBL+5vwCWrIuKOcqGkgyRdJ+kPpGG5p0hH8MUhg/7E/lHSB91HIqKnHk/RoaTEdEWp/LIGlu0aXvmJpHVsjf/lbBt/lx+Upu8FNkTEz0tlAHvl9U8jHZl+s/S+PwHcQjoq7S2+XYA3AlcCzxSWF+nIurz8U6QDgkbdFxH3dU1ExBpgDb3vL4uBA5Su+HuLpF0b2ZCksaSLIC6PwjnBiFhJuvjjjbloX1Jv7srSKq7qZfXfrdjei/Lw0G9IBxxPAZ8lXZAxqVT9loh4rDDd9T5eX6p3L/m9HUoeYmrcu0jDAY8Dv4lth3xOzH+/J2lCfr6Y1L39AGkoolF7kYZeANaReiEv2c6YIe2QU0k7aZXd+lh+N9IQRiMeKU1vAnZqcNmePFQukLQX6eh2GfB/gd+SPmT/mZSou/Qn9jm57tUN1n9R/lsepuo2bFWWh24WkT4ETia18WnSkFnVOY/1penNwKPFgojYLInC8l0fRBfmR9lv+wjz+aTewmfyoxtJO0RE17DKw9H7cFxZeV+BtL/0eM6HNHy7M+k1+xDpfNki4OMRsaqX5Z5HSmzd9iXg92z9/+p6T9eU6vT2nm6zTqXLxNuBPyP1Mu4l/Q8fQ+pFlNtX9d72VN7ba1MLJ4jG3R0VY6N5nPu9efLOiuUmSppWPFrqidIJ74PJR6ERsUVSB3Cktv8KiXWkHf4jPcxf3sfya4FX9VGnTlW9qZmkMe/3RLrSBUgnjUv1+hP7u4EFQIekN0XE7/uo3/XB8ALSeDGF6Ua2tQX4i0gXJwAg6XmUPvgHYF3++w+kI/6yzRVlRY+ShvfOI30wd1NIDjC4vd5KkcZavgZ8Lb9WR5HOSVxO6tH1ZH2O74UV817I1mTV9Z5OApYW6vT2npbb/TLS//AJEXFpV6Gkd/SyjqblIaaBO5p0tHU66YRy8TEn1+ntOxEASNqRNHQ1mnRStsuZpCPhyqtCJE2RtF8vq/4hMB34bUQsqXg8nut1JZ9dSsv/CHhhjTt4T9vtTVciKH64vpx8cr+gP7E/SBrz3wH4iaQX9V6dW0kfoO8plc+pqFu2K6nHULxS7E0MfDiuaDlpjHufHt734pVvmyi9/hGxgXQieH/SuH+3dQxirP0WEesj4nLSEF/xIKCnttwGHFu8kkjSS4DDSOdEIA2JbiB956moPN2bqn1zR9L5rRHHPYiBO5F0YuvfI6KzPFPSx4DjJZ2Wj4AAnqOtlzQ+hzT2+Zek8ecPReHqkIj4qaSPA2dL2ps0Tv5bUrf5zcApwPtIX76rcg7pPMjPJJ1D+uAYS0oar4+IWbnesvz3E5J+ADydPwQuJV3B8m1JnyN9MD6HdCXQFyLiXgbmD6Sj3TmSfk36B10ZEet6WeYG0hH4NyT9B2lo4HTS61I86OlX7BHxkKQ20pUuP8k9if+tCiAilkv6FnBGHlZYTDqi/fMG2vxD8jkPSV8nnXv4DI0Ph/UpIkLSh0nflRlD+iBdSzoaPox0wHB2rr4MeL2ko0lDLmvzkM3HgZ8C10u6kHSEvTtpPH9URJSvyKmVpAWkId5bSL3ilwMnkA4EuvTUls+QzpFdJ+nLpKuYTgceI/VCiIj1kr4AfFrS46T97EDSkBZsvUqpN/cAvwH+RdLTpETxse1s8vAb6rPiI+1B4SqXinkTSV31C3tZ/q/z8m15uiNPB2mHewy4g3RJ3D69rOcw0smzh9h6svxH5Mtr+2jD80iJYmWOdw3p6PCjhTqjSMMJa3JcUZg3jnTZX9dJt4dIJ+4m9fYaUboKpZf4jiH9Yz9F4Qogernii3Tkfi/pCq2lpCP3iyldLbQ9sZOGGO4ifVN9j17i3pV01dIjpIOEdlIvps+rmEjnTlaSxqcXky5Z7QA6CnXa8rreUlr2YmB1RTwBfLZU9jrSyeP1+bVaRRrCfF2hzvS8PzyR13FxYd4rc/01pKPz1bmdf95XPL28bpXva46tuO1t9h/SwVhHIZaVpP36uQ22ZSYpuTxJ+r+7FnhFKYZRwL+QksuTeXuHUbpiiR6u+svzDiBdWv5Efr3OIB3IBTC51N5LS8v26z2v+6G8cTMzqyBpNung7A0R8bPhjmcoOUGYmWWSDgXeThqO3Ej6otyppKHZw+JZ9oHpcxBmZlt1kr7j8WHSlwrXkM7f/MOzLTmAexBmZtYDX+ZqZmaVWmaIaffdd4/JkycPdxjbZcOGDYwd21p37G61Nrk9za/V2jRU7bntttvWRsTEqnktkyAmT57MkiXD+t2d7dbR0UFbW9twhzGoWq1Nbk/za7U2DVV78j2jKnmIyczMKjlBmJlZJScIMzOr5ARhZmaVnCDMzKySE4SZmVVygjAzs0pOEGZmVskJwszMKrVMgni0cxPX3rxyuMMwM2sZLZMgzMxscDlBmJlZpVoThKSZkpZLWiGp2w+cS9pJ0uV5/q2SJufy90u6o/B4RtIBdcZqZmbbqi1BSBoFnAe8DdgbeK+kvUvVTgbWR8RU0o+PnwUQEd+MiAMi4gDgBGBlRNxRV6xmZtZdnT2IQ4AVEfFARGwGLgNmlerMAi7Jz68C3ixJpTrvzcuamdkQqvP3IPYAfleYXg0c2lOdiNgi6TFgN2Btoc5xdE8sAEiaC8wFmDhxEjx6Hx0dPd7avGl1dnbS0dEx3GEMqlZrk9vT/FqtTc3Qnqb+wSBJhwJPRMTdVfMjYgGwAGDq9H2DCdNoO3zKUIY4KFrth06g9drk9jS/VmtTM7SnziGmB4G9CtN75rLKOpJGA+OBdYX5c4Bv1xijmZn1oM4EsRiYJmmKpDGkD/v2Up124MT8fDZwU0QEgKQdgPfg8w9mZsOitiGmfE5hHnA9MAq4KCKWSjoDWBIR7cCFwEJJK4BHSEmkyxuA30XEA3XFaGZmPav1HERELAIWlcpOKzzfCBzbw7IdwGvrjM/MzHrmb1KbmVklJwgzM6vkBGFmZpWcIMzMrJIThJmZVXKCMDOzSk4QZmZWyQnCzMwqOUGYmVklJwgzM6vkBGFmZpWcIMzMrJIThJmZVXKCMDOzSk4QZmZWyQnCzMwqOUGYmVklJwgzM6vkBGFmZpWcIMzMrFKtCULSTEnLJa2QdGrF/J0kXZ7n3yppcmHefpJukbRU0l2Sdq4zVjMz21ZtCULSKOA84G3A3sB7Je1dqnYysD4ipgLnAGflZUcDlwIfjIh9gDbgqbpiNTOz7kbXuO5DgBUR8QCApMuAWcCyQp1ZwPz8/CrgXEkCjgJ+HRF3AkTEusEI6NqbV24zPevwKYOxWjOzlqSIqGfF0mxgZkSckqdPAA6NiHmFOnfnOqvz9P3AocDxwEHAJGAicFlEfL5iG3OBuQATJ0466PyvL2T82DE9xvTYhs3bTPdWdyh1dnYybty44Q5jULVam9ye5tdqbRqq9syYMeO2iDi4al6dPYiBGA0cAbwGeAK4UdJtEXFjsVJELAAWAEydvm8wYRptvfQKyj2I3uoOpY6ODtra2oY7jEHVam1ye5pfq7WpGdpT50nqB4G9CtN75rLKOvm8w3hgHbAa+GlErI2IJ4BFwIE1xmpmZiV1JojFwDRJUySNAeYA7aU67cCJ+fls4KZIY17XA/tK2jUnjjey7bkLMzOrWW1DTBGxRdI80of9KOCiiFgq6QxgSUS0AxcCCyWtAB4hJREiYr2ks0lJJoBFEfH9umI1M7Puaj0HERGLSMNDxbLTCs83Asf2sOylpEtdzcxsGPib1GZmVqlZr2IakPLVSuDvPJiZ9Zd7EGZmVskJwszMKjlBmJlZJScIMzOr5ARhZmaVnCDMzKySE4SZmVVygjAzs0pOEGZmVskJwszMKjlBmJlZJScIMzOr5ARhZmaVnCDMzKySE4SZmVVygjAzs0pOEGZmVqnWBCFppqTlklZIOrVi/k6SLs/zb5U0OZdPlvSkpDvy46t1xmlmZt3V9pOjkkYB5wFHAquBxZLaI2JZodrJwPqImCppDnAWcFyed39EHFBXfGZm1rs6exCHACsi4oGI2AxcBswq1ZkFXJKfXwW8WZJqjMnMzBpUZ4LYA/hdYXp1LqusExFbgMeA3fK8KZJul/Rfkl5fY5xmZlahtiGmAXoIeHFErJN0EHCNpH0i4o/FSpLmAnMBJk6cBI/eR0fHb2DD5m4rrCrv6PhNbQ3oj87OTjo6OoY7jEHVam1ye5pfq7WpGdpTZ4J4ENirML1nLquqs1rSaGA8sC4iAtgEEBG3SbofeDmwpLhwRCwAFgBMnb5vMGEabYdP4dqbV3YLpqq87fAp29+6QdTR0UFbW9twhzGoWq1Nbk/za7U2NUN76hxiWgxMkzRF0hhgDtBeqtMOnJifzwZuioiQNDGf5EbSS4FpwAM1xmpmZiW19SAiYoukecD1wCjgoohYKukMYElEtAMXAgslrQAeISURgDcAZ0h6CngG+GBEPFJXrGZm1l2t5yAiYhGwqFR2WuH5RuDYiuWuBq6uMzYzM+udv0ltZmaVnCDMzKySE4SZmVVygjAzs0pOEGZmVskJwszMKjlBmJlZJScIMzOr5ARhZmaVnCDMzKySE4SZmVVygjAzs0pOEGZmVqmhBCHpO5LeLskJxczsWaLRD/wvA+8D7pN0pqRX1BiTmZk1gYYSRETcEBHvBw4EVgE3SPpvSX8pacc6AzQzs+HR8JCRpN2Ak4BTgNuBL5ISxo9riczMzIZVQ78oJ+m7wCuAhcA7IuKhPOtySUvqCs7MzIZPoz85en7++dA/kbRTRGyKiINriMvMzIZZo0NMn60ou2UwAzEzs+bSa4KQ9EJJBwG7SHq1pAPzow3Yta+VS5opabmkFZJOrZi/k6TL8/xbJU0uzX+xpE5Jn+xXq8zMbMD6GmJ6K+nE9J7A2YXyx4FP97agpFHAecCRwGpgsaT2iFhWqHYysD4ipkqaA5wFHFeYfzbwgwbaYWZmg6zXBBERlwCXSHp3RFzdz3UfAqyIiAcAJF0GzAKKCWIWMD8/vwo4V5IiIiQdA6wENvRzu/1y7c0rt5medfiUOjdnZjZiKCJ6nikdHxGXSvoE0K1iRJxdsVjXsrOBmRFxSp4+ATg0IuYV6tyd66zO0/cDhwIbSZfPHgl8EuiMiH+v2MZcYC7AxImTDjr/6wsZP3YMj23Y3C2eqvKeyoZaZ2cn48aNG/Lt1qnV2uT2NL9Wa9NQtWfGjBm39XSxUV9DTGPz36F+1ecD50REp6QeK0XEAmABwNTp+wYTptF2+JRuvQKgsrynsqHW0dFBW1vbkG+3Tq3WJren+bVam5qhPX0NMX0t/z19O9b9ILBXYXrPXFZVZ7Wk0cB4YB2pFzFb0ueBCcAzkjZGxLnbEYeZmW2HRm/W93lJz5W0o6QbJT0s6fg+FlsMTJM0RdIYYA7QXqrTDpyYn88Gbork9RExOSImA18A/tXJwcxsaDX6PYijIuKPwNGkezFNBf6utwUiYgswD7geuAe4IiKWSjpD0jtztQuB3SStAD4OdLsU1szMhkej36Tuqvd24MqIeKy3cwNd8revF5XKTis83wgc28c65jcYo5mZDaJGE8R1ku4FngT+j6SJpCuNzMysRTV6u+9TgcOAgyPiKdJ3E2bVGZiZmQ2vRnsQANOByflqoy7fGOR4zMysSTR6u++FwMuAO4Cnc3HgBGFm1rIa7UEcDOwdvX3t2szMWkqjl7neDbywzkDMzKy5NNqD2B1YJumXwKauwoh4Z8+LmJnZSNZogphfZxBmZtZ8GkoQEfFfkl4CTIuIGyTtCoyqNzQzMxtOjd6L6a9Jv9fwtVy0B3BNTTGZmVkTaPQk9YeBw4E/AkTEfcCkuoIyM7Ph12iC2BQRf/plnfxlOV/yambWwhpNEP8l6dPALpKOBK4EvldfWGZmNtwaTRCnAg8DdwF/Q7pD6z/WFZSZmQ2/Rq9iekbSNcA1EfFwvSGZmVkz6LUHoWS+pLXAcmB5/jW503pbzszMRr6+hpg+Rrp66TUR8fyIeD7p96IPl/Sx2qMzM7Nh01eCOAF4b0Ss7CqIiAeA44EP1BmYmZkNr77OQewYEWvLhRHxsKQda4pp2F1788ptpmcdPmWYIjEzGz599SA2b+c8MzMb4frqQewv6Y8V5QJ27mvlkmYCXyTdt+mCiDizNH8n0o8OHQSsA46LiFWSDgEWFLY1PyK+29f26lTuVYB7FmbW2npNEBGx3TfkkzQKOA84ElgNLJbUHhHLCtVOBtZHxFRJc4CzgONIvz9xcERskfQi4E5J34uILdsbj5mZ9U+jX5TbHocAKyLigXybjsuAWaU6s4BL8vOrgDdLUkQ8UUgGO+PbepiZDTnV9SuikmYDMyPilDx9AnBoRMwr1Lk711mdp+/PddZKOhS4CHgJcELVEJOkucBcgIkTJx10/tcXMn7sGB7b0P30SFX5QMq6ygdDZ2cn48aNG5R1NYtWa5Pb0/xarU1D1Z4ZM2bcFhEHV81r9AeDhlxE3ArsI+mVwCWSfhARG0t1FpDPVUydvm8wYRpth0+pPF9QVT6Qsq7ywdDR0UFbW9ugrKtZtFqb3J7m12ptaob21DnE9CCwV2F6z1xWWSffIXY86WT1n0TEPUAn8KraIjUzs27qTBCLgWmSpkgaA8wB2kt12oET8/PZwE0REXmZ0QD5l+ymA6tqjNXMzEpqG2LKVyDNA64nXeZ6UUQslXQGsCQi2oELgYWSVgCPkJIIwBHAqZKeAp4BPlT1hT0zM6tPrecgImIR6dbgxbLTCs83AsdWLLcQWFhnbGZm1rumPUlt9mzi27tYM6rzHISZmY1gThBmZlbJCcLMzCo5QZiZWSUnCDMzq+SrmAbIV5+YWatyD8LMzCo5QZiZWSUnCDMzq+RzECOYz3+YWZ3cgzAzs0ruQZiNMO452lBxD8LMzCq5B1EDH+FZs/rTvrlhM9fevNL7pvXKPQgzM6vkHoRZkyr3RKHn3qh7rVYH9yDMzKySE4SZmVWqdYhJ0kzgi8Ao4IKIOLM0fyfgG8BBwDrguIhYJelI4ExgDLAZ+LuIuKnOWOtWNQTQnxOGHkIws6FWWw9C0ijgPOBtwN7AeyXtXap2MrA+IqYC5wBn5fK1wDsiYl/gRGBhXXGamVm1OnsQhwArIuIBAEmXAbOAZYU6s4D5+flVwLmSFBG3F+osBXaRtFNEbKoxXrPt1p8TykPFvU4bKEVEPSuWZgMzI+KUPH0CcGhEzCvUuTvXWZ2n78911pbW88GIeEvFNuYCcwEmTpx00PlfX8j4sWN4bMPmbvFUlQ+kbFDXuWUjjN6Z8WPHdNtGl0bX2Sw6OzsZN27ccIcxaPpqT0/7R6OacZ8baZ5t+9xgmTFjxm0RcXDVvKa+zFXSPqRhp6Oq5kfEAmABwNTp+wYTptFWHNsvqCofSNmgrvPR++iKvSeNrrNZdHR00NbWNtxhDJq+2tPT/tGoZtznRppn2z43FOq8iulBYK/C9J65rLKOpNHAeNLJaiTtCXwX+EBE3F9jnGZmVqHOBLEYmCZpiqQxwBygvVSnnXQSGmA2cFNEhKQJwPeBUyPi5hpjNDOzHtSWICJiCzAPuB64B7giIpZKOkPSO3O1C4HdJK0APg6cmsvnAVOB0yTdkR+T6orVzMy6q/UcREQsAhaVyk4rPN8IHFux3GeBz9YZm5klzXgFljUHf5PazMwqNfVVTGY2fPw9CnMPwszMKrkH0WJ81Ndcer0HV6HMrBm5B2FmZpWcIMzMrJIThJmZVXKCMDOzSk4QZmZWyQnCzMwq+TLXJjRUl0EOZDuteHsGX35qti33IMzMrJJ7ELaNgR5F/2n5DZu59uaV/mKY2QjmHoSZmVVyD8L6VEcPoD/rbLYeSLPFM5R865BnF/cgzMyskhOEmZlVcoIwM7NKPgdhTaOO71Y0MmY+GNsxa0XuQZiZWaVaexCSZgJfBEYBF0TEmaX5OwHfAA4C1gHHRcQqSbsBVwGvAS6OiHl1xmkjz5B/27zwvQ6rn6+Mag619SAkjQLOA94G7A28V9LepWonA+sjYipwDnBWLt8IfAb4ZF3xmZlZ7+rsQRwCrIiIBwAkXQbMApYV6swC5ufnVwHnSlJEbAB+LmlqjfFZi/FRp9ngUkTUs2JpNjAzIk7J0ycAhxaHiyTdneusztP35zpr8/RJwME9DTFJmgvMBZg4cdJB5399IePHjuGxDZu71a0qH0jZoK5zy0YYvTPjx44BGNQ4u9ZZpdbXo9CmpniNB7qdfrZn2OIchPYMxnYGanvW2dnZybhx4wa87WYxVO2ZMWPGbRFxcNW8EX0VU0QsABYATJ2+bzBhGm09XKVSVT6QskFd56P30RU7dD8SriP2qqt5BvX1KLSpKV7jgW6nn+0ZtjgHoT2DsZ2eNNrL6886u3R0dNDW1tZnvZGiGdpT51VMDwJ7Fab3zGWVdSSNBsaTTlabmdkwq7MHsRiYJmkKKRHMAd5XqtMOnAjcAswGboq6xrzMbMj4uyatobYEERFbJM0Dridd5npRRCyVdAawJCLagQuBhZJWAI+QkggAklYBzwXGSDoGOCoilmFmZkOi1nMQEbEIWFQqO63wfCNwbA/LTq4zNjMz652/SW1mZpWcIMzMrNKIvszVzEY+f8GxebkHYWZmlZwgzMyskhOEmZlV8jkIM2s5Pq8xONyDMDOzSu5BmNmI5h91qo97EGZmVskJwszMKjlBmJlZJZ+DMLMRwbcQH3ruQZiZWSX3IMzMCtxT2co9CDMzq+QehJk9a/kb171zD8LMzCo5QZiZWSUPMZnZs8JAh5MaXb6q3kg98V1rD0LSTEnLJa2QdGrF/J0kXZ7n3yppcmHeP+Ty5ZLeWmecZmbWXW09CEmjgPOAI4HVwGJJ7RGxrFDtZGB9REyVNAc4CzhO0t7AHGAf4M+AGyS9PCKeriteM7P+GqpeyXCpswdxCLAiIh6IiM3AZcCsUp1ZwCX5+VXAmyUpl18WEZsiYiWwIq/PzMyGSJ3nIPYAfleYXg0c2lOdiNgi6TFgt1z+i9Kye5Q3IGkuMDdPdh5zxEuXD07oQ253YO1wBzHIWq1Nbk/za7U2DVV7XtLTjBF9kjoiFgALhjuOgZK0JCIOHu44BlOrtcntaX6t1qZmaE+dQ0wPAnsVpvfMZZV1JI0GxgPrGlzWzMxqVGeCWAxMkzRF0hjSSef2Up124MT8fDZwU0RELp+Tr3KaAkwDflljrGZmVlLbEFM+pzAPuB4YBVwUEUslnQEsiYh24EJgoaQVwCOkJEKudwWwDNgCfLjFr2Aa8cNkFVqtTW5P82u1Ng17e5QO2M3MzLblW22YmVklJwgzM6vkBDHEJF0kaY2kuwtlz5f0Y0n35b/PG84Y+0PSXpJ+ImmZpKWSPpLLR3Kbdpb0S0l35jadnsun5FvCrMi3iBkz3LH2h6RRkm6XdF2eHrHtkbRK0l2S7pC0JJeN5H1ugqSrJN0r6R5Jr2uG9jhBDL2LgZmlslOBGyNiGnBjnh4ptgCfiIi9gdcCH863ShnJbdoEvCki9gcOAGZKei3pVjDnRMRUYD3pVjEjyUeAewrTI709MyLigMJ3BUbyPvdF4IcRMR3Yn/Q+DX97IsKPIX4Ak4G7C9PLgRfl5y8Clg93jANo27Wk+2+1RJuAXYFfke4CsBYYnctfB1w/3PH1ox17kj5k3gRcB2iEt2cVsHupbETuc6Tvf60kXzTUTO1xD6I5vCAiHsrPfw+8YDiD2V75bryvBm5lhLcpD8fcAawBfgzcDzwaEVtylcrbvzSxLwB/DzyTp3djZLcngB9Jui3fcgdG7j43BXgY+HoeArxA0liaoD1OEE0m0uHCiLv2WNI44GrgoxHxx+K8kdimiHg6Ig4gHXkfAkwf3oi2n6SjgTURcdtwxzKIjoiIA4G3kYY131CcOcL2udHAgcBXIuLVwAZKw0nD1R4niObwB0kvAsh/1wxzPP0iaUdScvhmRHwnF4/oNnWJiEeBn5CGYCbkW8LAyLr9y+HAOyWtIt1V+U2kMe+R2h4i4sH8dw3wXVISH6n73GpgdUTcmqevIiWMYW+PE0RzKN5y5ETSOP6IkG/PfiFwT0ScXZg1kts0UdKE/HwX0jmVe0iJYnauNmLaFBH/EBF7RsRk0t0KboqI9zNC2yNprKTndD0HjgLuZoTucxHxe+B3kl6Ri95MuovEsLfH36QeYpK+DbSRbuX7B+CfgGuAK4AXA78B3hMRjwxTiP0i6QjgZ8BdbB3f/jTpPMRIbdN+pN8pGUU6iLoiIs6Q9FLSEfjzgduB4yNi0/BF2n+S2oBPRsTRI7U9Oe7v5snRwLci4l8k7cbI3ecOAC4AxgAPAH9J3vcYxvY4QZiZWSUPMZmZWSUnCDMzq+QEYWZmlZwgzMyskhOEmZlVcoKwliTp6Xynz6X5rqyfkLRDnnewpP+sefvH5JsWDnQ9r5Z04SDFdHT+RUezhvgyV2tJkjojYlx+Pgn4FnBzRPzTEG3/YuC6iLiqH8uMLtwbqavsSuCzEXHnIMQk0o0HD4+IJwa6Pmt97kFYy8u3Y5gLzFPSVvhNhEMk3ZJvkvbfXd9mlXSSpGvyffhXSZon6eO53i8kPT/Xe5mkH+abxv1M0nRJhwHvBP4t92JeVlUvL3+xpK9KuhX4fDHu/G3h/bqSg6T5Sr8n0iHpAUl/m8sn598RuFjS/0j6pqS3SLo5/5bAIfl1CKADOLr2F91awui+q5iNfBHxgKRRwKTSrHuB10fEFklvAf4VeHee9yrS3Wl3BlYAn4qIV0s6B/gA6Q6pC4APRsR9kg4FvhwRb5LUTqEHIenGcj3SPZEg3QfpsIh4uhTbwaRbSBRNB2YAzwGWS/pKLp8KHAv8FbAYeB9wBClRfRo4JtdbArye9A1ds145Qdiz3XjgEknTSHfL3LEw7ycR8TjwuKTHgO/l8ruA/fIdbA8DrkyjNwDsVN5AA/WurEgOkH4D4OFS2ffz7TA2SVrD1ltAr4yIu/L2lpJ+aCYk3UX6/ZEua4A/q9iWWTdOEPaskO/f8zTpA/KVhVn/TEoE71L6PYuOwrzifYmeKUw/Q/rf2YH0mwoH9LH5vupt6KH8SVLvpagY09Ns/R/uK9YuO+f1mvXJ5yCs5UmaCHwVODe6X5Uxnq23uT6pP+vNv3uxUtKxeTuStH+e/ThpGKiver25hzR0NJheTvdhK7NKThDWqnbpuswVuAH4EXB6Rb3PA5+TdDvb16N+P3CypDuBpcCsXH4Z8Hf5pPbLeqnXo4i4FxjfdWvrQTID+P4grs9amC9zNWtikj4GPB4RFwzCul5AujX2mwcemT0buAdh1ty+wrbnFwbixcAnBmld9izgHoSZmVVyD8LMzCo5QZiZWSUnCDMzq+QEYWZmlZwgzMys0v8HXHILPPFyaz0AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Plot histogram of PADC etch track diameter count (densities)\n",
+    "dh = np.arange(1, 10*nres+9)/10.0\n",
+    "fig = plt.figure()\n",
+    "ax = fig.add_subplot(111)\n",
+    "ax.set_title('PADC etch track diameter histogram', fontsize=16)\n",
+    "ax.set_xlabel('Diameter (nm)')\n",
+    "ax.set_ylabel('Density')\n",
+    "ax.set_xlim(xmin=1, xmax=65)\n",
+    "ax.bar(diameter, data['y'], color='lightsteelblue')\n",
+    "ax.grid()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Figure 2**: Histogram of etched track diameter of $\\alpha$ particles. Bar heights are the data that will be fitted unsing the aggregated model $\\phi(x, t)$. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Define Normal and log-Normal distributions\n",
+    "def lognormal(d, a, b, Al):\n",
+    "    return Al/(d*b*np.sqrt(2*math.pi))*np.exp(-((np.log(d)-a)**2)/(2*b**2))\n",
+    "\n",
+    "def gaussian(d, mu, sigma, Ag):\n",
+    "    return Ag*np.exp(-0.5*((d-mu)/sigma)**2)/(sigma*np.sqrt(2*math.pi))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "In terms of solving this problem, the function to minimize is the sum of residuals using the model $\\phi(x;t)$\n",
+    "and the data pair (`diameter`, `density`). The parameter vector is $x = (a, b, A_l, \\mu, \\sigma, A_g)$. The next step is to define a function to return the residual vector \n",
+    "$\\text{lsqfun}(x) := \\big[r_1(x), r_2(x), \\dots, r_{n_{\\text{res}}}(x)\\big]$."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Define the least-square function as a mixture of Normal and log-Normal \n",
+    "# functions. Also add its first derivatives\n",
+    "def lsqfun(x, nres, inform, data):\n",
+    "    \"\"\"\n",
+    "    Objective function callback passed to the least squares solver.\n",
+    "    x = (a, b, Al, mu, sigma, Ag)\n",
+    "    \"\"\"\n",
+    "    rx = np.zeros(nres)\n",
+    "    d = data['d']\n",
+    "    y = data['y']\n",
+    "    a = x[0]\n",
+    "    b = x[1]\n",
+    "    Al = x[2]\n",
+    "    mu = x[3]\n",
+    "    sigma = x[4]\n",
+    "    Ag = x[5]\n",
+    "    for i in range(nres):\n",
+    "        rx[i] = lognormal(d[i], a, b, Al) + gaussian(d[i], mu, sigma, Ag) - y[i]\n",
+    "    return rx, inform\n",
+    "\n",
+    "def lsqgrd(x, nres, rdx, inform, data):\n",
+    "    \"\"\"\n",
+    "    Computes the Jacobian of the least square residuals.\n",
+    "    x = (a, b, Al, mu, sigma, Ag)\n",
+    "    \"\"\"\n",
+    "    n = len(x)\n",
+    "    d = data['d']\n",
+    "    a = x[0]\n",
+    "    b = x[1]\n",
+    "    Al = x[2]\n",
+    "    mu = x[3]\n",
+    "    sigma = x[4]\n",
+    "    Ag = x[5]\n",
+    "    for i in range(nres):\n",
+    "        # log-Normal derivatives\n",
+    "        l = lognormal(d[i], a, b, Al)\n",
+    "        # dl/da\n",
+    "        rdx[i*n+0] = (np.log(d[i])-a)/(b**2) * l\n",
+    "        # dl/db\n",
+    "        rdx[i*n+1] = ((np.log(d[i])-a)**2 - b**2)/b**3 * l\n",
+    "        # dl/dAl\n",
+    "        rdx[i*n+2] = lognormal(d[i], a, b, 1.0)\n",
+    "        # Gaussian derivatives\n",
+    "        g = gaussian(d[i], mu, sigma, Ag)\n",
+    "        # dg/dmu\n",
+    "        rdx[i*n+3] = (d[i] - mu) / sigma**2 * g\n",
+    "        # dg/dsigma\n",
+    "        rdx[i*n+4] = ((d[i] - mu)**2 - sigma**2)/sigma**3 * g\n",
+    "        # dg/dAg\n",
+    "        rdx[i*n+5] = gaussian(d[i], mu, sigma, 1.0)\n",
+    "    return inform"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# parameter vector: x = (a, b, Al, mu, sigma, Ag)\n",
+    "nvar = 6"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Initialize the model handle\n",
+    "handle = opt.handle_init(nvar)\n",
+    "\n",
+    "# Define a dense nonlinear least-squares objective function\n",
+    "opt.handle_set_nlnls(handle, nres)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "HandleSetGetRealReturnData(lrarr=64, rarr=None)"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# Add weights for each residual\n",
+    "weights = np.ones(nres)\n",
+    "weights[55:63] = 5.0\n",
+    "weights /= weights.sum()\n",
+    "\n",
+    "# Define the reliability of the measurements (weights)\n",
+    "opt.handle_set_get_real(handle, 'rw', rarr=weights)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Restrict parameter space (0 <= x)\n",
+    "opt.handle_set_simplebounds(handle, np.zeros(nvar), 100.0*np.ones(nvar))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Set some optional parameters to control the output of the solver\n",
+    "for option in [\n",
+    "        'Print Options = NO',\n",
+    "        'Print Level = 1',\n",
+    "        'Print Solution = X',\n",
+    "        'Bxnl Iteration Limit = 100',\n",
+    "        'Bxnl Use weights = YES',\n",
+    "        # Add cubic regularization term (avoid overfitting)\n",
+    "        'Bxnl Reg Order = 3',\n",
+    "        'Bxnl Glob Method = REG',\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "\n",
+    "# Use an explicit I/O manager for abbreviated iteration output:\n",
+    "iom = utils.FileObjManager(locus_in_output=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Define initial guess (starting point)\n",
+    "x = np.array([1.63, 0.88, 1.0, 30, 1.52, 0.24], dtype=float)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Call the solver"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GG, Nonlinear least squares method for bound-constrained problems\n",
+      " Status: converged, an optimal solution was found\n",
+      " Value of the objective             4.44211E-08\n",
+      " Norm of projected gradient         1.18757E-09\n",
+      " Norm of scaled projected gradient  3.98428E-06\n",
+      " Norm of step                       1.66812E-01\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1   0.00000E+00    2.02043E+00    1.00000E+02\n",
+      "     2   0.00000E+00    1.39726E+00    1.00000E+02\n",
+      "     3   0.00000E+00    6.93255E-01    1.00000E+02\n",
+      "     4   0.00000E+00    3.65929E+01    1.00000E+02\n",
+      "     5   0.00000E+00    7.01808E+00    1.00000E+02\n",
+      "     6   0.00000E+00    3.36877E-01    1.00000E+02\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Call the solver\n",
+    "slv = opt.handle_solve_bxnl(handle, lsqfun, lsqgrd, x, nres, data=data, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The optimal solution $x$ provides the unfolded parameters for the two distributions, Normal and log-Normal (blue and red curves in Figure 4). Adding these together produces the aggragated curve (shown in color green of Figure 3 and 4) this last one is the one used to perform the fitting with. The optimal solution is"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Optimal parameter values\n",
+    "# Al * log-Normal(a, b):\n",
+    "aopt = slv.x[0]\n",
+    "bopt = slv.x[1]\n",
+    "Alopt = slv.x[2]\n",
+    "\n",
+    "# Ag * gaussian(mu, sigma):\n",
+    "muopt = slv.x[3]\n",
+    "sigmaopt = slv.x[4]\n",
+    "Agopt = slv.x[5]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "and the objective function value is "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "4.4421102582032486e-08\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(slv.rinfo[0])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The next plot in Figure 3 illustrates the mixed-distribution fit over the histogram:\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEYCAYAAAByXKB5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTfUlEQVR4nO3dd3wUdfrA8c+TRiCBAKETlA7SpYooRhTFAtgQ1FM49dTzOOvdT847FcvdeWevZ0PBLuIJnB2VCIIooiBNkBKkl1ATEpJNnt8fM1k2S3qy2ZLn/XrllZ2Z78w8393ZfWa+M/MdUVWMMcaYiooKdgDGGGPCkyUQY4wxlWIJxBhjTKVYAjHGGFMplkCMMcZUiiUQY4wxlRJWCUREJoiI+vwdEpFlIjJRRGL8ytYVkQNuud4lLC/NZ1n5IrJPRJaKyFMi0r2UOAaLyHQR2SYiuSKSISJzRGS8iERXQz1TRWSyiFT48/F5jzpWYt6G7nr7VnTe6lCV2EtYXlt3eRN8xk0VkfTqWH4giMgtInJRDa4vTUS+Lke5ySJSoWv+a7outZH7W6EiklqOsneKyK8i4hGRpe44FZHJPmUuEJHbyrv+sEogPsYAg4GLge+Ap4C7/cpcCDRwX19VyrJ+cpc1BBgLvAqcDiwVkRv9C4vILcACoDFwB3AmcDWwFvgPcH5lKuQnFbiHmv98GrrrDUoCqSH342wboeoWIBR/dF/C+Z5UxC2EZl1qHREZCPwdeBsYClzpThqM89kWugAodwKJKbtISFqqquvc15+5e6w3UzSJjAf2Ar8AV4jIHarqKWZZh1R1kc/wZyLyFPAW8JSILFbVxQAiMhR4FHhaVW/yW84sEXkUSKhy7cKEiNRR1SPBjqMiVHV9sGOoadXxOanqFmBLNYUUcOG4bQbYCe7/51R1Q+FIv9++ilPVsPkDJgAKdPQb/293fDN3uDWQDzwDXOtOO6+Y5aUBX5ewrmbAEeA1n3EfAnuA+CrUoSnwHLDVXf7PwHU+0ye78Rb585meADwIrHfn3wG8BzT3e49OAt4ADgLbgCdLixtoW9x6gQm+7xUwEvjRXfet7rSJwDc4CXs/sKiE97u8sXf0mac/sBP4bxnx1wOeBTKATGA2cIpvHdxyU4F0v3nvBX5w36s9wJfASX5lUt1lXQA871PXx4FoYID7/mQBK4Gzi4nxNOAL4JBb7lOgh8/09GLe/6k+03u79doHZOMcCZ/qt46pOD/0g4GFbrknSnnfCj/XM9334DCwArjQr9xkfLZDd9zNwGp3HfuA7wvnK0ddRrjbTDZwAJgJdPFbfjTwALDdjetLoKu7rMnFfGd6uO9pJjDLnXYW8JHPMlYAtwPRfutKB17H2TNf48Y1H+iEs90+j7Nt7QQeAWLK8V2vyHY1CnjaLbfHjaVhMb8db7rL24/TWnKBO39qGZ+x/2cx2Z3m+3pqMeXSS6tjuB6B+GuHkzAy3eHf4DT/vIrzA/0UTjPWh+VdoKruEpHvcZq2cM9tnA7MVNWcygQpIg1wvqx1cTb6jcDZwH/cPaancA4nU4BrcH4A833mjwPm4PyQPIjzQ53kLqMRzsZd6DWco6iLcH5MJuN8ye8pIbztbtn/Av/E+aEC58e+UGecRHQ/sAHnRxSc5PMSzpcwBifJfCAi56jqJ5WIvbC+Z+EkmDeAP6hqvn8ZH8/jNEHeCywGhuN82cqjNfAYzg9vAs72M09E+qnqcr+yj+O8R2NxmgL+hvNDdybwEM6Owd+A/4rI8aq6x63LecAsnG3wN+6y7gDmi0gvVd2M07T2EbAM5/MC2O3O3xfnB+1H4Hc4P4Y3AJ+LyMmqusQnxiScpoqHgTtxfgxL0wF4Audz34PzA/uuiHTVo0f6RYjIFTg/pPe5cdUFeuE07VJGXUa478OX7vuY6C7naxHpo6pb3fL3uvE/BHwO9OPodlmcWcAU4F9AgTuuPU7SfgrIwdkhmYzzYzzJb/6h7ntxBxCH81m/h7OtrwPGcfQzX4+zw1KaimxXTwAfAJcDXXB2ivNxWlIK/Rfn+3MnTsvKWLdeZbnRXfdfcL7j2yn+aPJ+nPdlAE5CA2dHr2SV3ZMOxh9H91C74PxQNQKud9/omT7lVgE/+wy/hfMl8s/oaZRwBOI7n/u6ubvuf1Yh/rtwNuJOfuNfxPnixvjtUcX4lbvaHT+qHO/RvX7jPwDWlhFfW3fea0vYiykA+pSxjCj3s/kMdy+wErF3BK4Acv3rUcJ8XdxtYJLf+P9QjiMQv3mi3fjX4LPnztE9xZf9yv/gjj/FZ1wvd9x4n3HrgC/85m3gfu6P+4xLB14vJq4vcPb24/xiXe237U911z26nNtkGpDnu03iHH3nA3f6jJtM0SPhp4Efylh2SXX5HucHMMZnXDs3jkfd4UY4O4TP+s17GyUfgdxcRjzifrZ/xdmZivKLdS+Q5DPuJne5LxXzmc8tz/tbge1qml/5p3F+K8QdHu6WG+dX7mPKOAJxyxW2xLT1G+//Xk4FtpS3XuF6Ev1nnI1tL85ewBs4P1CIyACc9r7XfMpPA+JxMnZFCM4bXF1GAN8CG0UkpvAP57A7GehWxvxnATtUtbS9sEL+R1vLgeMqGrCfdFVd6j9SRPqJyAcishPw4Hw2w3F+2AtVJPZbcDbkm1W1pCMmX4NwEtd0v/Fvl2NeRORMEZkrIhkcjb8zReMv9LHf8M9Alqp+7TcOoI27/E44e7Zv+H3uh3GacYaWEV9dnOavd4ECn/kFZ8/cf/48nB2G8vpFVX8pHFDVXcAuSt9eFgN93CsWzxSReuVZkYgk4Fyk8Y76nJNU1Y04TXKnuaN64uy1v+u3iBmlLP79YtbXUkSeF5FNODskeTjNYg1xEqWvb1T1gM9w4ef4qV+5n3E/29JUcLsq7vtaB2fHFZxWhHycIyJf5drGAyVcm7AuxDkEOwRs0qJNSoWHfP8TkYbu68U4h89X4TR1lFcbnMM9cNo/s4HjKxkzOBtsR5wNqTjJZcyfjNNEUh57/YaP4GyQVbHdf4SItMHZO14F/BH4FefLcj9HT9xBxWIf55b1/7KUpKX7378Z7JhmMX9u09BHOD8S1+DUMR+nSS6+mFn2+Q3n4rRHe6lqrojgM3/hD9UU98/fr2WE2RhnD/Yu9+8YIhKlqoXNNru19OY+f/7bCjjbS3H1L/SqO/0anCaSPBH5CLhNVdNLma8RTuI7ZlvCOSdW+P0q/Ex3+ZUp7TMtskz3MvjZQCuco5Sfcb7DF+AchfjXr7jPtqTxpb03ldmuivu+4lO2JbBPVf1/O8rcxgMpXBPICi2mbdZtZ7/MHVxWzHxNRaST795WSUSkGU576dsAquoRkTRgeBWu8MjA+ULcXML0NWXMvwfnRGGwFHc0NgKnzf1Sda7UAaCYPdKKxH4x8AKQJiLDVHVHGeULfzia47RX4zNcnnV5gIt8v5wi0gi/xFAFGe7/v+AcMfjLLWacr/04zYfP4PxwH8MneUD1HjUXS532jueB59336iyccyLv4BwRlmSfG1+LYqa14OgPaeFn2gznooRCpX2m/vXugPMdvlJVXy8cKSIjS1lGdanu7Wo70EhEYv2SSHm28YAJ1yaskpyPs7d2L84Jb9+/cW6Z0u4JAUBEYnGaxmJwThoXehBnT/rfJczXTkR6lbLoT3CuIvlVVb8v5u+QW64wOdX1m/8zoEUAvwAlrbc0hYnC90vSGffiAx8ViX0rTttwFDBXRFqWXpxvcX5gL/UbP66Ysv7q4ewZen98RGQYVW/u87UGp429ewmf+08+ZY/g9/6rahbOiereOOcdjllGNcZaYaq6T1XfwWlC9N1JKKkuS4AxvjfdisjxwMk452TAacLJwrnny5f/cGmK2zZjcc6vBVp1b1ff4ByFXuw3vjzbeEUc85mVJlyPQEoyHufE28Oqmuk/UURuBX4jIne7e1AA9UXkpMLXOG2vv8Vpp7xRfa5uUdV57l2aj4pIN5x2+l9xDsvPwDlRdTnOzYnFeQznPMx8EXkM54clASepnKqqo91yq9z/t4vIx0C++yPxOs4VOG+JyD9xfjjr41zJ9Liq/kzV7MTZWx4nIj/hfIE3qmpGKfN8jrOn9aqIPIJzqH0vzvviu4NSodhVdbt7d+2XOElkmKpuKy4AVV0jIm8C97nNFotx9ojPLUedP8E95yIir+C0Ud9F+ZvbyqSqKiJ/wLlXKA7nh3YPzt7jyTg7FI+6xVcBp4rI+ThNOnvcJqHbgHnApyIyBWePtAnO+YRoVfW/oiigROQFnCbkb3COqjvjXAL7mU+xkupyF06b/wci8izOVVj34lzO+wg4SUlEHgfuFJFDONtZX5zmIDh6lVVpVgObgL+LSD5OIrm1klWuqGrdrlR1jjg9BjwvIk04ehVWdbdIrAIai8jvcS52yNFjrxgrEljY/FHCfSDutKY4TQFTSpn/d/hcsUDR66MLcDbgpTiXxnUvZTkn45zc287Rk/mf4V4+XEYdGuEkko1uvLtw9i5v8SkTjdNcscuNS32mJeJc1lh4UnA7zonFZqW9RxRzHX8J8V3gbkR5FHMfSAnzXIrTvpyD09wwjuLvt6hw7DhNGMtx7vRvXUrc9XCuutrL0ftAhvjWQY9eZeIf1x/dzyMbJ/mc6dY3zadMqrusM/3mnUoxV624ZR/wGzcY5+T2Pve9SsdpIh3sU6aruz0c5th7J05wy+/C2VPc4tbz3LLiKeV9K/ZzdWPzXXeR7QdnZy3NJ5aNONt1g3LWxf8+kFkUfx/I33GST7a7vpPxu+KKEq5adKf1wbl0/rD7ft1HMVckUcwVYxX9zItZd1W2qwnFxNgU58rQQxy9D2Q01XsVVoK7jsKmxvTSllt4iZgxxoQ8EbkEZ+dtqKrOD3Y8tZ0lEGNMSBKRQcB5OM2dOTg3Ek7Cafo9We3HK+gi7RyIMSZyZOLc4/IHnJsud+GcP/qLJY/QYEcgxhhjKiXSLuM1xhhTQyKmCatJkybatm3bYIdRKVlZWSQkRFYv8JFWJ6tP6Iu0OtVUfZYsWbJHVZtWZt6ISSBt27bl+++Dej9VpaWlpZGamhrsMKpVpNXJ6hP6Iq1ONVUft5+wSrEmLGOMMZViCcQYY0ylWAIxxhhTKRFzDsSYvLw8tmzZQk5OpR4YWaqkpCRWr15d7csNlkirD0Renaq7PvHx8aSkpBAbG1tty7QEYiLGli1bqF+/Pm3btsV9Hke1OXToEPXr16/WZQZTpNUHIq9O1VkfVSUjI4MtW7bQrl27alkmWBOWiSA5OTkkJydXe/IwJtyJCMnJydV+dG4JxEQUSx7GFC8Q3w1LIMYYYyrFEogx1WzmzJmICD//XNXnewXGP/7xjwrPM3XqVCZOnBiAaEw4i5gEsj/zCLMWbAx2GMbw1ltvccopp/DWW29Vy/I8Hk+1LKdQZRKIMcWJmARiTCjIzMzk66+/ZsqUKbz99tsAFBQUcOONN9K1a1eGDx/Oueeey4wZMwD46KOP6Nq1K/369eOmm27i/PPPB2Dy5MlceeWVDBkyhCuvvJLdu3dz8cUXM2DAAAYMGMCCBQsA2L17N8OHD6d79+5ce+21HH/88ezZsweACy64gH79+tG9e3deeOEFACZNmkR2djZDhgzhiiucR4O//vrrDBw4kD59+nD99deTn58PwCuvvELnzp0ZOHCgd33G+LLLeE1E6jmtZ8CWvXx8yY+InjVrFiNGjKBz584kJyezZMkSNm7cSHp6OqtWrWLXrl2ccMIJXH311eTk5HD99dczb9482rVrx2WXXVZkWatWreLrr7+mbt26XH755dx6662ccsop/Prrr5x99tmsXr2ae++9l2HDhvGXv/yFTz75hClTpnjnf/nll2ncuDHZ2dkMGDCAiy++mAcffJCnn36aBQsWUL9+fVavXs0777zDggULiI2N5cYbb+SNN95g+PDh3HPPPSxZsoSkpCROP/10TjzxxIC9pyY8BTSBiMgI4AmcZxu/pKoP+k2vg/Nc335ABjBWVdNF5Argzz5FewF9VXVpIOM1pqreeustbr75ZgDGjRvHW2+9hcfjYcyYMURFRdGiRQtOP/10AH7++Wfat2/vvS7/sssu8x4pAIwaNYq6desC8Pnnn7Nq1SrvtIMHD3qPdt5//30ARowYQaNGjbxlnnzySe+0zZs388svv5CcnFwk3i+++IIlS5YwYMAAALKzs2nWrBnffvstqampNG3qdNI6duxY1q5dW31vlIkIAUsgIhINPAMMx3mY/WIRma2qq3yKXQPsU9WOIjIO+BdOEnkDeMNdTk9gpiUPE+r27t3Ll19+yfLlyxER8vPzEREuvPDCSi3PtyvvgoICFi1aRHx8fLnmTUtL4/PPP+ebb76hXr16pKamFnsPgKoyfvx4/vnPfxYZP3PmzErFbGqXQB6BDATWqeoGABF5GxgN+CaQ0cBk9/UM4GkREb/HVV4GvF3WyvI0l0OefUD13WVpwldpzUyVUZ67gmfMmMGVV17J888/7x132mmn0bhxY9577z3Gjx/P7t27SUtL4/LLL6dLly5s2LCB9PR02rZtyzvvvFPiss866yyeeuop/vxn58B86dKl9OnThyFDhjB9+nTuuOMOPvvsM/bt2wfAgQMHaNSoEfXq1ePnn39m0aJF3mXFxsaSl5cHwBlnnMHo0aO59dZbadasGXv37uXQoUMMGjSIm2++mYyMDBo0aMC7775L7969K/3+mcgUyATSGtjsM7wFGFRSGVX1iMgBIBnY41NmLE6iOYaIXAdcBxDfNp7HNl1H7ic30j6+ffXUoIZkZmaSlpYW7DCqVTDqlJSUxKFDhwKy7Pz8/DKX/frrr3PLLbcUKXfeeeexdu1amjdvTteuXUlJSaF3797Exsbi8Xh45JFHOOuss0hISKBv377k5eVx6NAhjhw5QmxsrHdZ//jHP7j99tvp0aMHHo+HIUOG8Pjjj3P77bdz9dVXM23aNAYOHEjz5s0BGDJkCE8//TRdunShU6dODBgwgMOHD3Po0CEmTJjA4MGD6d27N1OmTOGvf/0rZ555JgUFBcTGxvLwww8zcOBAJk2axKBBg0hKSqJXr17k5uYG7P2tDuX5jMJJIOqTk5NTvd9LVQ3IH3AJznmPwuErgaf9yqwAUnyG1wNNfIYHAcvLs774tvHaY2oPHfn+SC0oKNBwMnfu3GCHUO2CUadVq1YFbNkHDx6s0vyHDh1SVdU9e/Zo+/btdfv27UXGFxQU6O9//3t99NFHK7TcnJwczcvLU1XVhQsXau/evcs1X1XrE4oirU6BqE9x3xHge63k73wgj0C2Am18hlPcccWV2SIiMUASzsn0QuOACl1Mv/HARr7b8R2DWvof7BgTPOeffz779+8nNzeXu+66ixYtWgDw4osvMm3aNHJzcznxxBO5/vrrK7TcX3/9lUsvvZSCggLi4uJ48cUXAxG+McUKZAJZDHQSkXY4iWIccLlfmdnAeOAbnCOWL92MiIhEAZcCp1Z0xV9t+coSiAkpJTUb3Hrrrdx6662VXm6nTp348ccfKz2/MVURsBsJVdUDTAQ+BVYD01V1pYjcJyKj3GJTgGQRWQfcBkzyWcRQYLO6J+ErYuHWhVUL3hhjTJkCeh+Iqn4EfOQ37m6f1znAmBLmTQNOKu+6YiWOGInFo3msP7CeHVk7aJHQonKBG2OMKVPEdGUSI3EcH9/NO7xo+6JSShtjjKmqiEkg0RJD+7q9vMPLdi8LYjTGGBP5IqYvrGiJISW+s3d4xZ4VQYzGhILq7p159JDSbyQUEa644gpef/11wOlFt2XLlgwaNIgPPvigWmOpTomJiWRmZhYZt3//ft58801uvPHGalnH5MmTSUxM5E9/+lOF49q2bRs33XSTtwPKQEhLSyMuLo6TTz652pY5YcIEzj//fC655JJqW+bJJ5/MwoULSU9PZ+HChVx+uf91STUroo5AWsd3QnCeuvXLvl/I9mQHOSpTmyQkJLBixQqys53tbs6cObRu3ToosVS1C/j9+/fz7LPPBmTZFdWqVauAJg9wEsjChRW7+Kam3wfAG2N6ejpvvvlmja/fX8QkkChiiI+qR/sk5y70fM1ndcbqIEdlaptzzz2XDz/8EHA6VvTtYTcrK4urr76agQMHcuKJJzJr1izA+TE49dRT6du3L3379vX+SGzfvp2hQ4fSp08fevTowfz58wFnz7zQjBkzmDBhAuDs8d5www0MGjSI//u//2P9+vWMGDGCfv36ceqpp3ofcLVx40bOOOMMevbsyd/+9rdi6zFp0iTWr19Pnz59+POf/0xaWhqnnnoqo0aNols351xjcd3FA3zyySf07duX3r17c8YZZxyz7BdffJFzzjnHm2gLbdy4kcGDBx8TV3p6Oj169Cj1vUpLS+Occ85h9OjRtG/fnkmTJvHGG28wcOBAevbsyfr16wGK7RY/PT2d5557jscee4w+ffowf/78ErvP9+9m35eqMnHiRLp06cKZZ57Jrl27vNOWLFnCaaedRr9+/Tj77LPZvn07AKmpqdxxxx0MHDiQzp07ez/jlStXkpqaSp8+fejVqxe//PJLkc9+0qRJzJ8/nz59+vDYY48xdOhQli5d6l3fKaecwrJlNdCMX9k7EEPt7/jOnXXm1xv0r/P/qj2m9tAeU3vo1BVTy32HZjDZnejVw/8u25lfb6jWv7IkJCTosmXL9OKLL9bs7Gzt3bu3zp07V8877zxVVf3LX/6ir732mqqq7tu3Tzt16qSZmZmalZWl2dnZqqq6du1a7devn6qqPvzww/rAAw+oqqrH4/HemZyQkOBd57vvvqvjx49XVdXx48freeedpx6PR1VVhw0bpmvXrlVV1UWLFunpp5+uqqojR47U5557TlVVn3766SLLK7Rx40bt3r27d3ju3Llar1493bDh6PuQkZGhqqqHDx/W7t276549e3TXrl2akpLiLVdY5p577tGHHnpIn3rqKR01apTm5OQcs86RI0fqtGnTjonLN5aS3qu5c+dqUlKSbtu2TXNycrRVq1Z69913q6rq448/rjfffLOqql522WU6f/58VVXdtGmTdu3atUh8hUor17dvXz18+PAx8b/33nt65plnqsfj0a1bt2pSUpK+++67mpubq4MHD9Zdu3apqurbb7+tv/3tb1VV9bTTTtPbbrtNVVU//PBDPeOMM1RVdeLEifriiy+qquqRI0e86yt8T3y3K1XVqVOneuu4Zs0a7/viL5zuRK9RUUQD0L1Jd2atd/bsft4bmo8UNZGrV69epKen89Zbb3HuuecWmfbZZ58xe/ZsHn74YcDpl+jXX3+lVatWTJw4kaVLlxIdHe3tNn3AgAFcffXV5OXlccEFF9CnT58y1z9mzBiio6PJzMxk4cKFjBlz9Cr5I0eOALBgwQKmTp0KwJVXXskdd9xRrroNHDjQ2/U8FN9d/O7duxk6dKi3XOPGjb3lX331Vdq0acPMmTOJjY09ZvkLFizgvffeKzWuvLy8Yt8rgL59+9KyZUsAOnTowFlnnQVAz549mTt3LlByt/j+Sivn282+r3nz5nHZZZcRHR1Nq1atGDZsGABr1qxhxYoVDB8+HHD6uCqME+Ciiy4CoF+/fqSnpwMwePBg7r//fjIyMrjooovo1KnTMevzNWbMGO6//34eeughXn75Ze9RaaBFTAJxblyHro27eset2bcmWOGYWmzUqFH86U9/Ii0tjYyMoz3zqCrvvfceXbp0KVJ+8uTJNG/enGXLllFQUODtsn3o0KHMmzePDz/8kAkTJnDbbbdx1VVXISLeef27aC/sAr6goICGDRsWadbw5buM8vLtXr683cX76tmzJ0uXLmXLli1FElFF4nrssceKfa8A4uLivK+joqKoU6eO93Xh+YrydotfWjnf96E8VJXu3bvzzTffFDu9MM7o6GhvnJdffjndu3fnq6++4txzz+X555/3JqTi1KtXj+HDhzNr1iymT5/OkiVLKhRjZUXMOZDCk+edGx29Emvj/o3k5ucGKyRTS1199dXcc8899OxZ9KmIZ599Nk899VRhR6HeLkgOHDhAy5YtiYqK4rXXXvM+UnbTpk00b96c3/3ud1x77bX88MMPADRv3pzVq1dTUFDgPQLw16BBA9q1a8e7774LOD9ihW3iQ4YM8Z6UfuONN4qdv379+qX2BFtSd/EnnXQS8+bNY+NG5wq4vXv3euc58cQTef755xk1ahTbtm07ZplDhgzxPga4pLhKeq/Kq7Bb/EKFCda/viWVK83QoUN55513yM/PZ/v27d6jni5durB7925vAsnLy2PlypWlLmvDhg20a9eOm266idGjR/PTTz8VmV7c53Pttddy0003MWDAgCIPFgukiDkCKZQQm0Cb+m3YfGgzHvWwfv96Tkg+IdhhmSAYPaT6ng1TkW61U1JSuOmmm44Zf9ddd3HLLbfQq1cvCgoKaNeuHR988AE33ngjF198Ma+++iojRozw7uGmpaXx0EMPERsbS2JiIq+++ioADz74IOeffz5Nmzalf//+xTbBgPMj/Pvf/54HHniAvLw8xo0bR+/evXniiScYO3YsTz75JKNHF/ukBJKTkxkyZAg9evTgnHPO4bzzzisyfcSIETz33HOccMIJdOnShZNOcjqNaNq0KS+88AIXXXQRBQUFNGvWjDlz5njnO+WUU3j44Yc577zzmDNnDk2aNPFOe+KJJ7j88sv517/+VWJcJb1X5fXkk0/yhz/8gV69euHxeBg6dCjPPfccI0eO5JJLLmHWrFk89dRTJZYrzYUXXsiXX35Jt27dOO644xg8eDDgHBnNmDGDm266iQMHDuDxeLjlllvo3r17icuaPn0606ZNo06dOrRo0YI777yzyPRevXoRHR1N7969mTBhArfeeiv9+vWjQYMG/Pa3v63Qe1IVUrg3FO46du2pj0yZzegh7bgt7TbmbHI22vtOvo8LO1XuiXA1JS0tjdTU1GCHUa2CUafVq1dzwgmB2VkozwOlwkmk1Qcir04Vrc+2bdtITU3l559/Jiqq+Mal4r4jIrJEVftXJsaIacLy5duMtXafPcfZGBPZXn31VQYNGsTf//73EpNHIERcExYUPZFuV2IZYyLdVVddxVVXXVXj643II5AujY5e5bJm3xoipZnOlM0+a2OKF4jvRkQmkBYJLWgQ1wCAQ7mH2J61PcgRmZoQHx9PRkaGJRFj/KgqGRkZZV6+XFER2YQlInRp3IXFOxYDTjNWq8RWQY7KBFpKSgpbtmxh9+7d1b7snJycav/yBVOk1Qcir07VXZ/4+HhSUlKqbXkQoQkEnGaswgSyZu8ahh1X8k04JjLExsaWeINaVaWlpXHiiScGZNnBEGn1gcirUzjUJyKbsAC6ND56HsSuxDLGmOoXuQnE70S6McaY6hWxCaRDww5Ei9PB4uZDm8nKywpyRMYYE1kCmkBEZISIrBGRdSIyqZjpdUTkHXf6tyLS1mdaLxH5RkRWishyEanQ2aS46DjaJR1tD/9l3y9VqYoxxhg/AUsgIhINPAOcA3QDLhORbn7FrgH2qWpH4DHgX+68McDrwA2q2h1IBfIqGoPdkW6MMYETyKuwBgLrVHUDgIi8DYwGVvmUGQ1Mdl/PAJ4Wpz/ns4CfVHUZgKpmUAldGnfho40fAc6VWP7PyK7OzvaMMaa2CWQCaQ1s9hneAgwqqYyqekTkAJAMdAZURD4FmgJvq+q//VcgItcB1wE0bdoM9v9CWtom7/Qj2Ue8rxdvWkyv+kVX71s2mDIzM0lLSwt2GNUq0upk9Ql9kVancKhPqN4HEgOcAgwADgNfuD1GfuFbSFVfAF4ApzdeGnYi1eeoovvh7jz77rMA7MjfQUFSB6LkaKtdaogcgVhvvKHP6hP6Iq1O4VCfQJ5E3wq08RlOcccVW8Y975EEZOAcrcxT1T2qehj4COhb0QCa1G1C43jnkZrZnmz2eXZWdBHGGGNKEMgEshjoJCLtRCQOGAfM9iszGxjvvr4E+NJ9yPunQE8RqecmltMoeu6kXESkyIn0HUc2llLaGGNMRQQsgaiqB5iIkwxWA9NVdaWI3Ccio9xiU4BkEVkH3AZMcufdBzyKk4SWAj+o6oeVicP3hsIdR9IrVRdjjDHHCug5EFX9CKf5yXfc3T6vc4AxJcz7Os6lvFXSubHPEUiuHYEYY0x1idg70QvZEYgxxgRGqF6FVSW+93t4VIgmhnw87PPsJKfgMPFR9YIYnTHGRIaIPwKJkViaxh3tA9+OQowxpnpEfAIBaF6nrfe1XYlljDHVo1YkkJZxR28Y3JGbHrxAjDEmgtSKBNLCjkCMMaba1Y4E4nMEsjN3EwWaH8RojDEmMtSKBJIY05Dk+GQA8vQIe/N2BDkiY4wJf7UigUDRZ6TbeRBjjKm62pNAitxQaOdBjDGmqmpNAinSpYndC2KMMVVWaxJI10Zdva+3HVkfxEiMMSYy1JoE0i6pHbFSB4CD+Rkc8uwLckTGGBPeak0CiY6KpmWd9t7hbUfWBTEaY4wJf7UmgQC0rtPR+3qrJRBjjKmSWpVAWvkkkG05dh7EGGOqolYlkNbxHbyv7QjEGGOqplYlkCaxrYmTeAAO5e9l1+FdQY7IGGPCV61KIFFS9ET6qoxVQYzGGGPCW0ATiIiMEJE1IrJORCYVM72OiLzjTv9WRNq649uKSLaILHX/nquumHxPpFsCMcaYygvYI21FJBp4BhgObAEWi8hsVfX91b4G2KeqHUVkHPAvYKw7bb2q9qnuuFrFd4ADzuuVGSure/HGGFNrBPIIZCCwTlU3qGou8DYw2q/MaGCa+3oGcIaISABjonWdTt7XqzJWoaqBXJ0xxkSsQCaQ1sBmn+Et7rhiy6iqB+fYINmd1k5EfhSRr0Tk1OoKKjm2FXFSF4A92XvsRLoxxlRSwJqwqmg7cJyqZohIP2CmiHRX1YO+hUTkOuA6gKZNm8H+X0hL2wRZuccssHB8FNAquiXpng0AvPPVO/Sq1yvQ9SlVZmYmaWlpQY2hukVanaw+oS/S6hQO9QlkAtkKtPEZTnHHFVdmi4jEAElAhjrtSkcAVHWJiKwHOgPf+86sqi8ALwB07NpTadiJ1CHtmLXg2O7afce39vQifb+TQAqaF5DaL7VqNa2itLQ0UlODG0N1i7Q6WX1CX6TVKRzqE8gmrMVAJxFpJyJxwDhgtl+Z2cB49/UlwJeqqiLS1D0Jj4i0BzoBG6orsDbxR58Nsmz3suparDHG1CoBOwJRVY+ITAQ+BaKBl1V1pYjcB3yvqrOBKcBrIrIO2IuTZACGAveJSB5QANygqnurK7bj4o927b4yYyV5BXnERsVW1+KNMaZWCOg5EFX9CPjIb9zdPq9zgDHFzPce8F6g4moQk0xSTFMOeHaT7clm7b61dE/uHqjVGWNMRKpVd6L78j0KWbbLmrGMMaaiam0CsfMgxhhTNbU2gRwXf4L3tSUQY4ypuFqbQFrUaUudaOcRt1szt7Ine0+QIzLGmPBSaxNIjMQWOXFu50GMMaZiam0CAejdrLf39dLdS4MXiDHGhKHanUCaHk0gdh7EGGMqxhKIa+WeleTmH9uHljHGmOLV6gTSpG4Tjqt/HAC5Bbks37M8yBEZY0z4qNUJBGBAiwHe14t3LA5iJMYYE15qfQLp17yf9/X3O78vpaQxxhhftT6B+B6BLNu1jLz8vCBGY4wx4aPWJ5AWCS1ISUwBICc/hxUZK4IckTHGhIdyJRAR+a+InCciEZlwfI9Cvt9hzVjGGFMe5U0IzwKXA7+IyIMi0qWsGcJJ/xb9va/tRLoxxpRPuRKIqn6uqlcAfYF04HMRWSgivxWRsH8SU//mRxPI0t1LySuw8yDGGFOWcjdJiUgyMAG4FvgReAInocwJSGQ1qFViK1ontgYg25PNT7t/CnJExhgT+sp7DuR9YD5QDxipqqNU9R1V/SOQGMgAa8rgVoO9rxduWxjESIwxJjyU9wjkRVXtpqr/VNXtACJSB0BV+5c+a3gY3PJoAlm0bVEQIzHGmPBQ3gTyQDHjvqnOQIJtUMtBRLkXma3IWMGBIweCHJExxoS2UhOIiLQQkX5AXRE5UUT6un+pOM1ZpRKRESKyRkTWicikYqbXEZF33Onfikhbv+nHiUimiPypQrWqhKQ6Sd7ngxRoAd9u/zbQqzTGmLBW1hHI2cDDQArwKPCI+3cbcGdpM4pINPAMcA7QDbhMRLr5FbsG2KeqHYHHgH/5TX8U+LjsalQP3/Mg32yPqAMsY4ypdjGlTVTVacA0EblYVd+r4LIHAutUdQOAiLwNjAZW+ZQZDUx2X88AnhYRUVUVkQuAjUBWBddbIbMWbPS+Lshu5329cOtCVBURCeTqjTEmbJWaQETkN6r6OtBWRG7zn66qj5Yye2tgs8/wFmBQSWVU1SMiB4BkEckB7gCGAyU2X4nIdcB1AE2bNoP9v5CWtgmyjn2uR3Hj/ce10WjqSB2O6BG2ZW3j3c/fpVlss1KqWD0yMzNJS0sL+HpqUqTVyeoT+iKtTuFQn1ITCJDg/q/pS3UnA4+pamZpRwCq+gLwAkDHrj2Vhp1IHdKuyFFFoeLG+4+LBk6udzJzN88FIKdVDqndU6talzKlpaWRmhr49dSkSKuT1Sf0RVqdwqE+ZTVhPe/+v7cSy94KtPEZTnHHFVdmi4jEAElABs6RyiUi8m+gIVAgIjmq+nQl4qiQ01JO8yaQeVvmcVX3qwK9SmOMCUvlvZHw3yLSQERiReQLEdktIr8pY7bFQCcRaSciccA4YLZfmdnAePf1JcCX6jhVVduqalvgceAfNZE8AE5NOdX7esnOJRzKPVQTqzXGmLBT3vtAzlLVg8D5OH1hdQT+XNoMquoBJgKfAquB6aq6UkTuE5FRbrEpOOc81uFc2XXMpb41rVm9ZnRLdi4W86iHBdsWBDkiY4wJTWWdA/Evdx7wrqoeKM/VSar6EfCR37i7fV7nAGPKWMbkcsZYbVJTUlmV4VwsNm/zPEa0HVHTIRhjTMgr7xHIByLyM9AP+EJEmgI5gQsruIa2Gep9PX/rfPIL8oMYjTHGhKbyduc+CTgZ6K+qeTj3ZowOZGDBdELjE2hatykA+4/sZ9nuZUGOyBhjQk9FnjDYFRgrIlfhnPA+KzAhBV+URJHaJtU7PGdT2PdYb4wx1a68V2G9htOlySnAAPcvInrhLcnw44d7X8/ZNIcCLQhiNMYYE3rKexK9P9BNVTWQwYSS/i3607BOQ/Yf2c/OwztZvmc5vZv2DnZYxhgTMsrbhLUCaBHIQEJNbFQsw44b5h3+LP2zIEZjjDGhp7wJpAmwSkQ+FZHZhX+BDCwUnHX80dM8czbNoRYdgBljTJnK24Q1OZBBhKqBLQfSIK4BB3MPsj1rOyv2rKBn057BDssYY0JCeS/j/QrnDvRY9/Vi4IcAxhUS/Jux7GosY4w5qrxXYf0O53kdz7ujWgMzAxRTSPG9GuuT9E/saixjjHGV9xzIH4AhwEEAVf0FCPyDMkLA4JaDSaqTBMD2rO0s2bkkyBEZY0xoKG8COaKq3icvuV2v14ozyrHRsUX6wpq9PuKvHTDGmHIpbwL5SkTuBOqKyHDgXeB/gQsrtIzqMMr7+rP0z8j2ZAcxGmOMCQ3lTSCTgN3AcuB6nB52/xaooEJNzyY9adugLQCHPYf54tcvghuQMcaEgPJehVWAc9L8RlW9RFVfrE13pYtIkaOQ/62vNQdfxhhTolITiDgmi8geYA2wxn0a4d2lzReJzm9/PoLzDJRF2xexM2tnkCMyxpjgKusI5Facq68GqGpjVW2M87zyISJya8CjCyEtE1sysMVAAAq0gP9tsKMQY0ztVlYCuRK4TFU3Fo5Q1Q3Ab4CrAhlYKBrd8egjUGasnWEPmjLG1GplJZBYVd3jP1JVdwOxgQkp+GYt2Fjkr9Dw44d77wnZmrnVnpdujKnVykoguZWcFpHiY+K5oMMF3uHpa6YHLxhjjAmyshJIbxE5WMzfIaDMXgVFZISIrBGRdSIyqZjpdUTkHXf6tyLS1h0/UESWun/LROTCStWuGhUejTTKHOwdN2/LPLZmbg1iVMYYEzylJhBVjVbVBsX81VfVUpuwRCQaeAY4B+gGXCYi3fyKXQPsU9WOwGPAv9zxK3Cev94HGAE87979HnRN4lrRoW4fABRlxtoZwQ3IGGOCpCLPRK+ogcA6Vd3gdoPyNjDar8xoYJr7egZwhoiIqh5WVY87Pp4Q6zZlUNI53tf//eW/5ObXutY8Y4xBAnU/oIhcAoxQ1Wvd4SuBQao60afMCrfMFnd4vVtmj4gMAl4GjgeuVNX3i1nHdcB1AE2bNuv34iuvkZQQx4GsY3/Qixtf2XH5ms8j+/7OwYIDAFyefDmDEwdTWZmZmSQmJlZ6/lAUaXWy+oS+SKtTTdXn9NNPX6Kq/Sszb0g0CxVHVb8FuovICcA0EflYVXP8yrwAvADQsWtPpWEnUoe0K3LlVKHixld2XDRwEhfwWYZz8LTIs4g7TruDKKncAV1aWhqpqamVmjdURVqdrD6hL9LqFA71CWQT1lagjc9wijuu2DLuOY4kIMO3gKquBjKBHgGLtBIGNDibejH1ANhwYAPzt8wPckTGGFOzAplAFgOdRKSdiMQB4wD/vtBnA+Pd15cAX6qquvPEAIjI8UBXnCcihoy60Ylc0vkS7/DUlVODF4wxxgRBwBKIexJ8IvApsBqYrqorReQ+ESnsmXAKkCwi64DbcHr9BTgFWCYiS4H3cTpxPOaGxmC7stuVxLgXh32/83tW7FkR5IiMMabmBPQciKp+hNP1u++4u31e5wBjipnvNeC1QMZWHVoktGBEuxF8sOEDAKYsn8Jjpz8W5KiMMaZmhOxJ9HAxofsEbwL5/NfPWbN3DV0adwlyVCbc+F+4MXpIuyBFYkz5BfIcSK3QpXEXhrUZ5h3+z7L/BDEaY4ypOZZAqsGNfW70vv7i1y9YnbE6iNEYY0zNsARSDbo07sLw44d7h59d9mwQozHGmJphCaSa3ND7Bu/rtM1pdkWWMSbiWQKpJp0bdebstmd7hx/+/mFq0WPjjTG1kF2FVUW+V8+cUHABX8gXeNTDkp1L+HLzl5xx3BlBjM4YYwLHjkCqUZO41oztOtY7/NiSx8jLzwtiRMYYEziWQKrZDb1uoH5sfQA2HdzE9LX21EJjTGSyBFLNGsY35Lpe13mHn136LHtz9gYxImOMCQxLIAFw+QmXk5KYAsDB3IM8+v2jAVlP4WN2C/+MMaYmWQIJgLjoOP4y6C/e4VnrZ7Fk55IgRmSMMdXPEkiADE0ZypnHnekdfmDRA+QV2Al1U3V25GlChSWQALpj4B3UjakLwLr965i2cloZcxhjTPiwBBIAhXuG3y7N5rSkcd7xzy59ll/2/RLEyExtV7htHsjKtaMXU2V2I2GADW44ii0sZkXGCvIK8vjbgr/x+rmvExsVG+zQTIhRVTLytrMjdyNbln7E5kOb2Z+zn/1H9pOv+cRFxREXHUdeVgKNYpuTHNuK4+K7otoWEQl2+KYWsgQSYNESzQOnPMCl/7uU3IJcVmWsYsryKUX6zjK1V44nh3lb5vHezo9Yf3gpB/MznAk7yr+MV6cnkxLTgx6JQ+hYry+xUXH2PBFTIyyB1IAODTsw8cSJPLrEuZz3+WXPM6TVEHo27RnkyEywrNizgnfXvstn6Z+RmZdZpWVl5GSQwVcsy/yKOlKX3vVT6bn/Bto3bF9N0RpTPEsgNeSqblfx5a9fsnT3Ujzq4c/z/sz0kdNpENcg2KGZGlKgBczfMp9XVr5S4mXd8VEJpNTpzJB2vTi4pwGJ0Q2pF12faGLJJ49+JzTk42XL2Zu3g+1HNvJrzmpyCrK88x/RbL47+DGjZ33Mya1O5sY+N9K7ae+aqqKpZQKaQERkBPAEEA28pKoP+k2vA7wK9AMygLGqmi4iw4EHgTggF/izqn4ZyFgD7YNvfmVYvRv5OepWcgqy2Jq5letm/5lxLe5A3BOapTU72CNPw5eq8vXWr3n8h8dZu2/tMdPb1G9Dh5iT6ZLQj1Z1OhEt0Ywe0K7Yk9yDW7Vj18YW3uECLaDzCTk8u2AGKzK/Zm/e0bavhdsWsnDbQlJTUrmp7010atQpMBU0tVbAEoiIRAPPAMOBLcBiEZmtqqt8il0D7FPVjiIyDvgXMBbYA4xU1W0i0gP4FGgdqFhrSuPYFlzY7I+8tcPJoyuzFvLtgY84ic5BjswEysqMlTz6/aN8t+O7IuNjJIYR7UYwtstYejftzeyF6ZVafpRE0T25O2cl12N44yvZmL2CRQf+x8+Hv6NACwBI25LG/K3z+c0Jv+G4gnOpE1W3qtUyBgjsEchAYJ2qbgAQkbeB0YBvAhkNTHZfzwCeFhFR1R99yqwE6opIHVU9EsB4a0T3xJMZlHQu3x74CICP90whJekPpGB7h+HM/2ghJz+LdXGzeGfNOyhHnwtTN6Yul3a+lN90+w0tElr4L6ZKRIT29XrSvl5P+vSM4s45D7E8cx6Kkq/5TFs1jQYxHzKyyXWcQHK1rtvUThKohx6JyCXACFW91h2+EhikqhN9yqxwy2xxh9e7Zfb4LecGVT0TPyJyHXAdQNOmzfq9+MprJCXEcSAr95h4ihtflXFVmT9P85hy8Gm25G0BoL7U5/cNb6VNg6bHrKNQedcTKjIzM0lMTAx2GNWmrPoUfhaqyqrc5XyQ9T6HCg56p0cRxcmJJ3NOw3NoEH3sea9AbXM7PNv4MGsmG/PWF5neN64v5yVeTLP6kXMOrrZtc9Xl9NNPX6Kq/Sszb0ifRBeR7jjNWmcVN11VXwBeAOjYtafSsBOpQ4pvOy5ufFXGVWX+WOCFoS9w8axLyS7I5JAe4o3DbzLz3LeIj4kvrqrlXk+oSEtLIzU1NdhhVJuy6jNrwUay8g8wa9czrMpaVGTakNZDuGPAHbRLKv85rura5lrQiauTh7L0UBpzD07z9gz9Q+4PbDy4jScHPUSfZn1KjCuc1LZtLhQE8k70rUAbn+EUd1yxZUQkBkjCOZmOiKQA7wNXqep6IkybBm0Y1+IOotyPYOuRddy94G57DG6YWpO1mKd+/WOR5JEcn8xDQx/iP2f8p9TkEWgiwokNTmf2BbPplXiad/w+zw4mfDKBaSun2XZnKiWQCWQx0ElE2olIHDAOmO1XZjYw3n19CfClqqqINAQ+BCap6oIAxhhUHer15twmv/MOf5z+MU/9+FQQIzIVdTjvMPd/cz+vbb+fzPz93vH9G5zN7AtnM6LdiJC5SzypThKXtridMc1vp444R7r5ms/D3z/MHfPu4HDe4SBHaMJNwBKIqnqAiThXUK0GpqvqShG5T0RGucWmAMkisg64DZjkjp8IdATuFpGl7l+zQMUaTIOSzmVg/GDv8IvLX+SN1W8EMSJTXmv3rWXsB2OLPHUyMboRV7W8hwua/SFk7/HpXf80Jja8nZQ6R6/++zj9Y6746Ap+PfhrECMz4Sag50BU9SPgI79xd/u8zgHGFDPfA8ADgYwtVIgI5yVcyIGoPNYc/h6AB797kEZ1GnFu+3ODHJ0pycx1M/n7or+Tk5/jHdctYTCjm/2BhGJOkoeaRtGNuTbln6yMfpt3174LOD1GXzJrHFe0vJObzzw/yBGacGC98YaAaIlmbIs7itwx/Nev/8q8LfOCGJUpTo4nh7sX3M1dC+7yJo+6MXW5qNnNXNZiUlgkj0IxEsvdg+/mwmZ/JEaczj2zCw7xyta7+HDDh0GOzoQDSyAhIi6qDs+c8QwdkjoA4FEPt8y9ha82fxXkyEyhTQc3ccVHV/D+uve949onteet896ib4MzQuZcR0X1azCca1v/k8TohgDk42HS/Enc8r8Hmfn1BntwlSmRJZAQklQnieeGP0frROem+7yCPG5Ju4W5v84NcmTmx6wfGfvB2CJdkZzX/jzeOu8tOjTsEMTIqkdKfGeuT3mIZnFHL5z8Yu8bvL/rSfLVE8TITCgL6ftAaqMWCS145exXuPrTq9mSuQVPgYfbvrqNS5rdTo/EIWXOb31mVa+8/DweWfIIb+w5emFDbFQskwZOYkznMWUedRT3eYTqZ9Qotjm/a/0v3trxIBuyfwLgh0NfcDj/EGNb/DnI0ZlQZEcgIahlYkteGfEKbeo7e4OeAg/v7Pi3t/sTUzO2Z25nwicTilwVl5KYwuvnvs6lXS4N2yar0tSNTuSqVvcwusNo77ifD3/HtG33cij3UBAjM6HIEkiIapHQgpfPfpm2DdoCoCj/2/0cn2e8bjd91YCvt37NmA/G8NOen7zjhrUZxjsj36FbcrcgRhZ4MRLL/UPu59SGF3vHpees4JpPryEjOyOIkZlQYwkkhLVIaMG0c6bRI7mHd1zavum8t+txjuSHfb+SISm/IJ+nfnyKGz+/kQNHDgDOVXIXNrqQx09/PGTv7ahuIsLZTcZzdvJ477jVe1cz4ZMJbMvcFsTITCixBBLiGsc3ZsrZU+hcr5933NJDc/ntJ7/loMf2BqtTRnYG139+PS/89IK3B91mdZvxyohXGNZgWEQ2WZXl1EYXc0GziYj7U5F+MJ2rPr6KDfs3BDkyEwosgYSBerH1uKLlX+nXYLh33PI9y3l28238mv1zECOLHD/u+pFL/3cp327/1jtuUMtBTB85nRObnRjEyIKvf4OzGNfi/4iNcu4V2Xl4JxM+mcCqjFVlzGkinSWQMBEtMVzQdCLnNfmdtwPGzPx9TNl6J9/s/5+dF6mkAi1g2spp/PaT37IrexcAgnB9r+t5/sznSa5rz80A5zk2z575LHVjnIdR7Tuyj2s+vabER/Oa2sEu4w1BJV3mKSIMbjiSZnHH8d+Mhzlw5AD5ePhwz4usO7yU03IeqZb1VGbeis4fCvZk7+FvC/7Ggq1H++usG1WfMc1vo83hfkRHRQcxutBzUsuTeOmsl/j957/nYO5BMvMyuX7O9Tya+ihDU4YGOzwTBHYEEoY61OvN2+e9Tcs67b3j1hxezMWzL2b94WVBjCx8zNsyj4tnX1wkeaTU6cwf2jxO54R+pcxZu/Vq2otXRrxCk7pNADiSf4Sbv7yZTzZ+EuTITDDYEUiYSqmfwvUpD/HZnmksPOD0kr87ezevZN/FgAYjODt5PPHRCRVeblVvcvPOn5XLrAUbQ+7GuSP5R3hsyWPH9Hg8ofsE2uaM9PYJZUrWuVFnXh3xKr+b8zu2Zm7Fox7+b97/kZmXySWdLwl2eKYG2RFIGIuRWM5tei1XtrybhOgk7/jFBz/hyV8n8nPW4iBGF3p+2v0TY/83tkjyaFq3Kc8Pf57b+99uyaMC2jRow7QR02if5BwFK8q939zL1BVTgxuYqVF2BBIBuiT0Z2KbJ/gufxpzNzv9Zh3Mz+D17fezM20Rt/e/3du/VmUE4giiIsus6vpzPDk8s/QZXl31KgVa4B2fmpLKvUPupXF84wotL5SOqGqaf92njpjKuJlXs+3IOgAeWfIIB3MP8scT/1grL3uubewIJELUj2nME6c/wbgW/1fkaGTOpjmMen8UT/34VK184tySnUu45H+XMHXlVG/yqBtTl78N+htPDnuywsnDFNUovhFXt36AtvHdveNeXP4if//270WStYlMlkAiiIjQI/EUbj7uGU6sP8w7Prcglxd+eoGR749k+prp5OXnBTHKmrHr8C4mzZ/EhE8msOngJu/4QS0H8d9R/2Vs17G2h1xN4qPqMb7VZDrX6+8d986ad/jr138lryDyt7XazBJIBKoX3YCLm9/Cda3/Tffko3uGu7J3cf+i+xk5cyQz180kX/ODGGVg5OXn8cqKVxj5/sgiD0VKiE3gnsH38OLwF0mpnxLECCNTbFQdLm/5F3omnuod98GGD7gt7TbrdieC2TmQCHZc3a784Yw3mb1+Nk/88AR7svcAsDVzK3ctuItGMS0Y0nA0fRucQVxUfJCjrdq9JZ4CD/9b/z+eW/Yc27KK9tXUPeFkzmlyDbG7myKdJSLuYQlFMRLLmOa30bVVC+9jctM2p3Hj5zfy5LAnSYit+FWBJrRZAolwURLFBR0v4Kzjz+KdNe/w8oqX2X9kPwD7PDv4YM/zfLH3TQYlncNJWdcFN9hKyC/IZ86mOTyz9BnSD6YXmdYhqQNDEybQoV7v4mc21S5KornrpLtIjEvklRWvAPDdju/43We/4z9n/oekOkllLMGEk4AmEBEZATwBRAMvqeqDftPrAK8C/YAMYKyqpotIMjADGABMVdWJgYyzNqgXW4/f9vgtYzqP4fXVr/Pqqle9z3fILjhE2r7pzHtvBp3q9qN/0ll0rtefaAndO7Gnz1/FDwc/Z+H+2ezz7CwyrVGdRlzX6zrGdh3LR99sqdJ6iruvxZRORLit3200iGvAEz88ATh9t034ZALPD3+eZvWalbmM2nylWzgJWAIRkWjgGWA4sAVYLCKzVdW3B7ZrgH2q2lFExgH/AsYCOcBdQA/3z1STxLhEbuh9A1d1u4r7PpvCwv2zvD/ABVrAmsOLWXN4MYnRjeiReDKtd1xCgTYkKgSSiaqy7cg6Hlj0BrPSPyCnIKvI9MTYRMZ3H8+V3a605pIQcG3Pa0mMTeTv3/4dgHX713HVx1fx7BnP0r5h+zLmNuEgkEcgA4F1qroBQETeBkYDvglkNDDZfT0DeFpERFWzgK9FpGMA46vV6sXWY3DD8xmYdA6rs77h2wMfszF7uXd6Zv4+Fh34kEWffkj96MZ0TRhIx3p96FC3ZpuDVJUdR9JZnbWIFZkL2Jm76ZgydaMS+U33y2iamUq9zPp8/p3TKaLttQbfuK7jSIhN4K4Fd5Gv+WzN3MpvPvoNj57+KCe1PCnY4ZkqkkD14ioilwAjVPVad/hKYJBvc5SIrHDLbHGH17tl9rjDE4D+JTVhich1wHUATZs26/fiK6+RlBDHgazcY8oWN74q46p1mZ4ciIknKSEOoFrjLFxmcfzL5sYdIG3f1/yQs5hMLf7xpVFEcXyd42kddTxtYpy/Bu59JyXVqaKxH8jfz8a89aR7NrDR8wsZJTz3JDmqCSfXHcqJ8f1pmlg/sJ9lBetTkfUHe5sLxHr8rTi8glf2vEKuOmWjiGJc43EMrj/4mLJQ/HegLJmZmSQmJpZZLlzUVH1OP/30Jarav+ySxwrrk+iq+gLwAkDHrj2Vhp1ILabvJaDY8VUZV63L3P8LhbHDse2/gYi9uD6qxgxpR9yC/pyh+aRnr2Bl5gLW5X7H3py93jIFFLDxyEY2cnTexOiGNIlNoX/jrmRlNiAptgkJeZkk1uvBqSd1Z87i7UQTTbTEUEABffo3Y9aitRzOP8iB/D0cyNtDw3pZLNy1nJ256WTlHzgm3kKxUodz2p9N05yTOD6+G1ESVS3vR0U+oxrfPgKxzFLqUx3rOWZ5pDIsYxjXfvx7DuXvpYAC3tz7JvGt4rm5783ez7FQeZbpLy0tjdTU1DLLhYtwqE8gE8hWoI3PcIo7rrgyW0QkBkjCOZlugihaoulQrzcd6vXmvMH/5OkvP2bd4R/55fCPbD+y3vu0vkKZ+fvJzN9P+toVRRd0AJ749djlT15fzEr3lBxPHalL54T+nJAwiM4J/Rl7Svdif/RMaOuW3I0b2jzMa9vuZ0eu8/m9vOJlNh7YyD9O+QeJcZFz9FBbBDKBLAY6iUg7nEQxDrjcr8xsYDzwDXAJ8KXak5FCSkxUDO3q9qBd3R4MT76SrPwDND8+g/eWzmdzzhq2HVlHruZU6zpjpQ5t4rvSrm53rhhwJr+uS7KODsNMSUe9STFN+F3Kg0zf8TBrDjudfc7dPJfLPryMx09/nA4NO9R0qKYKApZAVNUjIhOBT3Eu431ZVVeKyH3A96o6G5gCvCYi64C9OEkGABFJBxoAcSJyAXCW3xVcJggSopM44/g+ZG5xrqIp0Hz2e3azJ3crzVsf5qu1KziUv4+sIzvIlBw8cpicvDwK8JCv+QhCYlwCUhBHfFQCSTFNaBCTzEntO7N3R32axx1Po9gW3iaNAS3asW29HW1EkjpRdbmi5Z18mjGVBftnAc6z1i/78DLuH3I/Z7c9O8gRmvIK6DkQVf0I+Mhv3N0+r3OAMSXM2zaQsZnqESXRNI5tQePYFozu3o6k/UXb2Et6Hsgx43q3Y1amJYraIkqiOafJNYzqeTKTv5lMtiebbE82f/rqTyzbvYwOeoEddYYB6wvLGBM057Y/l9fPfZ029Y+eLn1t1Ws8v/lP7M6t2k2gJvAsgRhjgqpzo868ff7bpKakesdtz93Is5tv4bsDn2CnRUNXWF/Ga4wJf4XNmWfUuZWEJp2Ys3cauQW55Gkus3c/y9qs7zn58D/L1QWKqVl2BGKMCQkiwuCGI3nr/LdoFnecd/zPh79j9MzRvLv2XXtIVYixBGKMCSmdG3Xm9ymPcFLSed5xmXmZ3PfNfVzz6TVsOLAhiNEZX5ZAjDEhJzaqDuc3vZ6rW/2d5NiW3vHf7/yei2ddzL+++xcHjpTcY4GpGXYOxBgTstrX68nENk+yud7HTFs5jXzNx6MeXl/9Oh9s+ICJfSZyUeeLiI0qesmvdQdfM+wIxBgT0mKj6nBrv1t5+/y36de8n3f8/iP7eeDbBxj5fuQ+ojnUWQIxxoSFro278srZr/DIaY/QKqGVd3zhI5rv3/IA93z8Enn5eUGMsnaxBGKMCRsiwlltz2LWBbO4pe8tRR6Rm1Gwh//ueoKz3zubtL3TOZx/MIiR1g6WQIwxYSc+Jp5rel7DJxd9whmNryA+6ugTKHdn7+bzva/zUPrVvLfzCdKzV9rNiAFiCcQYE7YS4xI5vfFYbj/+Rc6sdw71oxt7p+VpLj8e+oKXtv6FUTNH8dLyl/j1YDHPFzCVZldhGWPCQkldxAPUjU4ktd6ZnNLyWuJaruGp715ke+7R8ukH03nihyd44ocn6NyoM2cefybDjxtOh4YdEJEaq0OksQRijIkYMRLLyA4jyd/ena1HfuH7g3NYfmgeRzTbW2btvrWs3beWZ5c+S/N6zRncajCDWw5mUMtBJNdNDmL04ccSiDEm4ogIKfGdSYnvzLlNriW+1S98tukzFm5dSG7B0eet7zy8k5nrZjJz3UwA2jZoS0NtR5v4LrSJ70LzuLZES7TdR1ICSyDGmIgWF1WHkR1GMrLDSLLyspi3ZR5zNs3hm23fkJmXWaRs+sF0IJ2lh+YCzhFN09gUvinoRseGHenYsCMdGnagZUJLYqLs59PeAWNMrZEQm8A57c7hnHbn4Cnw8J8v57AueynrDy9lc84aCih6M6JH89ieu5EPNxQ9/xIt0bRIaEGrxFa0TmxN68TWtExoSXLdZJrUbUJyfDKN4htFfJKJ7NoZY0wJYqJiOK5uV46r25VhjceRV3CEjl1yePO7uWw+spbNOWs44Nld7Lz5ms/WzK1szdzKYhYXW0YQGsU3onF8YxrFN6J+bH3qxxX9S4xNpEFcAxLiEqgbU5f46Hjnf0w8hwsOk5efR0xUTMie6LcEYowxOF2m9GnWlU2Njt6cmJ2fyc7cX2nZJot1+9exbv86Nh7YyJ7sPWUuT1H25uxlb87eSsd0x+t3EC3RxMfEe5NLneg6xEXHERsVS0xUDLHRscRG+fxFxxIXFed97T+tcL4YceatCksgxphaoTIdLNaNTqRt3W6M7tKOWQs20j0RSIS8giP07RXH1kNb2Za5ja2ZW9l5eCcZ2Rls3LudTM9+DhdUz53w+ZpPVl4WWXlZ1bK86hTQBCIiI4AngGjgJVV90G96HeBVoB+QAYxV1XR32l+Aa4B84CZV/TSQsRpjTHnFRtWhfVI72ie1P2ZaYaLKVw9Z+Qfo3yOBj39YQ05BFtkFmRzJP0x2QRatmkdzKPcQh3IPkZmXSY4nh5z8HLI92eR4csg6kkUeeSHdSWTAEoiIRAPPAMOBLcBiEZmtqqt8il0D7FPVjiIyDvgXMFZEugHjgO5AK+BzEemsGsLvpDGm1intqCZaYmgQk8wJye1YWy/+mHlHD3KOaojH+fObPy0tjdNOOw1PgYfsfCepFCYZT4GH3Pxc8gryyCvIw1PgIS8/zzucV5BXZNi3bG5+Lp4CDx714CnwsIIVla5/II9ABgLrVHUDgIi8DYwGfBPIaGCy+3oG8LQ4Z4tGA2+r6hFgo4isc5f3TQDjNcaYkCIiznmL6FgaxDUIyDoe4IFKzxvIBNIa2OwzvAUYVFIZVfWIyAEg2R2/yG/e1v4rEJHrgOvcwcwLTmm/pnpCr3FNgLLPyoWXSKuT1Sf0RVqdaqo+x1d2xrA+ia6qLwAvBDuOqhKR71W1f7DjqE6RVierT+iLtDqFQ30C2RvvVqCNz3CKO67YMiISAyThnEwvz7zGGGOCKJAJZDHQSUTaiUgczknx2X5lZgPj3deXAF+q03H/bGCciNQRkXZAJ+C7AMZqjDGmggLWhOWe05gIfIpzGe/LqrpSRO4DvlfV2cAU4DX3JPlenCSDW246zgl3D/CHCL8CK+yb4YoRaXWy+oS+SKtTyNdH7EldxhhjKsOeSGiMMaZSLIEYY4ypFEsgNUxEXhaRXSKywmdcYxGZIyK/uP8bBTPGihCRNiIyV0RWichKEbnZHR/OdYoXke9EZJlbp3vd8e1E5FsRWSci77gXh4QNEYkWkR9F5AN3OGzrIyLpIrJcRJaKyPfuuHDe5hqKyAwR+VlEVovI4HCojyWQmjcVGOE3bhLwhap2Ar5wh8OFB7hdVbsBJwF/cLuiCec6HQGGqWpvoA8wQkROwulq5zFV7Qjsw+mKJ5zcDKz2GQ73+pyuqn187pUI523uCeATVe0K9Mb5nEK/PqpqfzX8B7QFVvgMrwFauq9bAmuCHWMV6jYLp/+ziKgTUA/4AacXhT1AjDt+MPBpsOOrQD1ScH6EhgEfABLm9UkHmviNC8ttDuf+t424FzWFU33sCCQ0NFfV7e7rHUDzYAZTWSLSFjgR+JYwr5Pb3LMU2AXMAdYD+1XV4xYptnudEPY48H9AgTucTHjXR4HPRGSJ26URhO821w7YDbziNjG+JCIJhEF9LIGEGHV2N8Lu2moRSQTeA25R1SIPQgjHOqlqvqr2wdlzHwh0DW5ElSci5wO7VHVJsGOpRqeoal/gHJxm06G+E8Nsm4sB+gL/UdUTgSz8mqtCtT6WQELDThFpCeD+3xXkeCpERGJxkscbqvpfd3RY16mQqu4H5uI08TR0u9yB8OpeZwgwSkTSgbdxmrGeIHzrg6pudf/vAt7HSfLhus1tAbao6rfu8AychBLy9bEEEhp8u3QZj3MeISy43e9PAVar6qM+k8K5Tk1FpKH7ui7OOZ3VOInkErdY2NRJVf+iqimq2hant4cvVfUKwrQ+IpIgIvULXwNnASsI021OVXcAm0WkizvqDJxeOEK+PnYneg0TkbeAVJyumncC9wAzgenAccAm4FJVrfyDlGuQiJwCzAeWc7R9/U6c8yDhWqdewDScLniigOmqep+ItMfZg28M/Aj8Rp1n1oQNEUkF/qSq54drfdy433cHY4A3VfXvIpJM+G5zfYCXgDhgA/Bb3G2PEK6PJRBjjDGVYk1YxhhjKsUSiDHGmEqxBGKMMaZSLIEYY4ypFEsgxhhjKsUSiIlIIpLv9tS60u1V93YRiXKn9ReRJwO8/gvcTiWrupwTRWRKNcV0vvtEUGOqhV3GayKSiGSqaqL7uhnwJrBAVe+pofVPBT5Q1RkVmCfGp2+qwnHvAg+o6rJqiElwOoYcoqqHq7o8Y+wIxEQ8t7uL64CJ4kj1eSbGQBH5xu3EbmHh3cAiMkFEZrrPYUgXkYkicptbbpGINHbLdRCRT9xO/eaLSFcRORkYBTzkHgV1KK6cO/9UEXlORL4F/u0bt3u3da/C5CEik8V5nkyaiGwQkZvc8W3d50hMFZG1IvKGiJwpIgvcZ0kMdN8HBdKA8wP+pptaIabsIsaEP1XdICLRQDO/ST8Dp6qqR0TOBP4BXOxO64HTu3A8sA64Q1VPFJHHgKtwerh9AbhBVX8RkUHAs6o6TERm43MEIiJf+JfD6ZMKnH6oTlbVfL/Y+uN00eGrK3A6UB9YIyL/ccd3BMYAVwOLgcuBU3AS2Z3ABW6574FTce5wNqZKLIGY2i4JmCYinXB6O431mTZXVQ8Bh0TkAPA/d/xyoJfbA/HJwLtO6xAAdfxXUI5y7xaTPMB5BsRuv3Efut2NHBGRXRzt4nujqi5317cS50FEKiLLcZ4/U2gX0KqYdRlTYZZATK3g9p+Uj/MDeoLPpPtxEsWF4jzPJM1nmm+/UAU+wwU4350onGdq9Clj9WWVyyphfDbO0Y8v35jyOfodLivWQvHuco2pMjsHYiKeiDQFngOe1mOvGkniaDfmEyqyXPe5JxtFZIy7HhGR3u7kQzjNTGWVK81qnKap6tSZY5vFjKkUSyAmUtUtvIwX+Bz4DLi3mHL/Bv4pIj9SuSPyK4BrRGQZsBIY7Y5/G/ize9K9QynlSqSqPwNJhV2XV5PTgQ+rcXmmFrPLeI0JYSJyK3BIVV+qhmU1x+n6/IyqR2aMHYEYE+r+Q9HzG1VxHHB7NS3LGDsCMcYYUzl2BGKMMaZSLIEYY4ypFEsgxhhjKsUSiDHGmEqxBGKMMaZS/h87GXhBO5ewxgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "lopt = lognormal(dh, aopt, bopt, Alopt)\n",
+    "gopt = gaussian(dh, muopt, sigmaopt, Agopt)\n",
+    "w = lopt + gopt\n",
+    "fig = plt.figure()\n",
+    "ax = fig.add_subplot(111)\n",
+    "ax.set_title('PADC etch track diameter histogram and fit', fontsize=16)\n",
+    "ax.set_xlabel('Diameter (nm)')\n",
+    "ax.set_ylabel('Density')\n",
+    "ax.set_xlim(xmin=1, xmax=65)\n",
+    "ax.bar(diameter, data['y'], color='lightsteelblue')\n",
+    "ax.plot(dh, w, '-', linewidth=3, color='tab:green')\n",
+    "ax.grid()\n",
+    "ax.legend(['Aggregated', 'Measured track diameter density'])\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Figure 3**: Histogram with aggregated fit.\n",
+    "\n",
+    "The plot below in Figure 4 shows the unfolded fit, in red the log-Normal distribution and blue the Normal one:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEYCAYAAABoYED3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB62klEQVR4nO2dd3hUxdrAf+9ueocQIBBK6ITQm1QBpagoFhQQC/ZrufZ75Vqu2K569cPutXdFFAsIiIAQ6b13AgkQOum97M73x9lsNptNJZvG/J5nn90z9Z1zzp73zMw784pSCo1Go9Fo3I2ptgXQaDQazYWBVjgajUajqRG0wtFoNBpNjaAVjkaj0WhqBK1wNBqNRlMjaIWj0Wg0mhqhVhWOiEwTEeXwSReR7SLygIh4OKX1FZFUW7qepZQX41CWRUSSRWSbiLwjIt3KkGOQiPwgIidEJE9EEkVkiYjcKiLmamjnCBGZISKVPt8O56hDFfKG2OrtU9m81cH5yF5KeW1t5U1zCPtCROKro3x3ICIPi8i1NVhfjIisqkC6GSJSqTURNd2WCwEReVJEjopIgYhsq0S+Ebb/wogKpFUiMsPhuNLXvrqoKz2c64FBwHXABuAd4N9Oaa4Bgmy/bymjrB22soYAk4CvgJHANhG5zzmxiDwMrAYaA08AlwK3AweA/wHjq9IgJ0YAz1Lz5zvEVm+tKJwa4gWMe6Ou8jBQFx/Sn2D8TyrDw9TNttRLRGQA8BLwPTAcuLmGqq7Kta8WPMpPUiNsU0rF2n4vtr0RP0RxpXMrkAQcBKaKyBNKqQIXZaUrpdY5HC8WkXeAWcA7IrJRKbURQESGAzOBd5VSDzqVM1dEZgL+5926eoKIeCulcmtbjsqglDpU2zLUNNVxnZRSCUBCNYnkdurjvVkButq+P1BKHa6pSmv12iulau0DTAMU0MEp/L+28Ka245aABXgPuNMWd4WL8mKAVaXU1RTIBb52CFsAnAN8zqMNYcAHwHFb+fuAux3iZ9jkLfZxiPcHXgEO2fKfAn4Cmjmdo4uAb4E04ATwdllyA21d1QtMczxXwJXAVlvdj9jiHgDWYij4FGBdKee7orJ3cMjTDzgN/FyO/H7A+0AikAHMA4Y6tsGW7gsg3invc8AW27k6BywDLnJKM8JW1tXAhw5tfRMwA/1t5ycT2A2MdSHjxcCfQLot3R9AtEN8vIvz/4VDfE9bu5KBbIye9jCnOr7AeDgMAtbY0r1VxnkrvK6X2s5BFrALuMYp3Qwc7kNb2EPAXlsdycCmwnwVaMs42z2TDaQCvwKdnco3Ay8CJ21yLQO62Mqa4eI/E207pxnAXFvcGGChQxm7gMcAs1Nd8cA3GL2G/Ta5VgIdMe7bDzHurdPA/wEe5fzPC++XEaU8w9q6qHuy7Xxm2s7lUKfr5Hw+Z9jigoB3Mf7nuTb5HwGkLHlcnN8YoFtp59epHcqW90EgDuOe/gvoVpVrWNqnrvRwnInEUDAZtuObMIajvsJ4oL+DMay2oKIFKqXOiMgmjKE2bHMzI4FflVI5VRFSRIIw/ty+GBcxDhgL/M/2RvYORvc1ArgD44FpccjvBSzBePC8gvFgD7aV0Qjjz1DI1xi9tGsxHj4zMB4Kz5Yi3klb2p+BlzEebGAoh0I6YSiuF4DDGA9dMJTVJxh/HA8MpTRfRC5TSi2qguyF7R2DoZC+Be5XSlmc0zjwIcaQ6HPARmA08F0Z6R1pCbyB8aD2x7h/VohIX6XUTqe0b2Kco0kYwxpPY/ypLgVew3iReBr4WUTaKKXO2dpyBTAX4x68yVbWE8BKEemhlDqGMdS3ENiOcb0Aztry98F4AG4F7sL48/4NWCoig5VSmx1kDMYYdnkdeBLj4VkW7YG3MK77OYwH8o8i0kUVjSQUQ0SmYjx4n7fJ5Qv0wBhqppy2jLOdh2W28xhgK2eViPRSSh23pX/OJv9rwFKgL0X3pSvmAp8CrwJWW1g7DCX/DpCD8QIzA+PFb7pT/uG2c/EE4IVxrX/CuNdjMRRC4TU/hPGCU10MAzoDz9jkfAHjP9RWKZUC3Idx3/wL4396EkiwzfMuwBgG/zewE7gCYyQmDOP8lcYMW/xMYDHGuSnr/DpzE4ZyewjjfL2GMdLTRRWNJlX2GhanPI3kzg9FbwedMR5sjYB7MB7Kvzqk2wPscziehfGnC3H1dldGfbOAbNvvZra6Xz4P+Qtvpo5O4R9j/NE9nN7YPJzS3W4Lv6oC5+g5p/D5wIFy5Gtry3uni7gYjD9xr3LKMNmuzWJsb5lVkL0DMBXIc25HKfk62+6B6U7h/6MCPRynPGab/Ptx6BlQ9Ib4mVP6LbZwx7fRHrawWx3CYoE/nfIG2a77mw5h8cA3LuT6E+Pt18tJ1r1O9/4XtronVPCejAHyHe9JjN69BXjSIWwGxXva7wJbyim7tLZswhjq9nAIi7TJMdN23AjjBfJ9p7yPUnoP56Fy5BHbtX0K4+XL5CRrEhDsEPagrdxPXFzz5eXUVXi/jCjlHm/rVHcy0MghrJ8t3Y0OYXe6yDsep3vcFv4JRm+niSt5HM7vB075nijt/DqlU7Zr6OkQNtEWPriy17C0T10xGtiHcXMmYbxlfIvxQENE+mOMdX7tkP5LwAfjbaoyCMaJqS7GAeuBOBHxKPxgDAOEAlHl5B8DnFJKVeQNwbk3txNoXVmBnYhXSm1zDhSRviIyX0ROAwUY12Y0hiIopDKyP4zx4HxIKVVaj8yRgRiK7gen8O8rkBcRuVRElotIIkXyd6K4/IX87nS8D8hUSq1yCgNoZSu/I8ab87dO1z0LY1hpeDny+WIMx/0IWB3yC8Zbo3P+fIwXjIpyUCl1sPBAKXUGOEPZ98tGoJfNovNSEfGrSEUi4o/xNj5bOcypKqXiMIYIL7YFdcfobf7oVMScMor/xUV94SLyoYgcwXiByccY4gnBUKyOrFVKpTocF17HP5zS7cN2bauRtUqpZIfjwp51ef/Z4Rgvgs69+W8weh2lTfYXnt8q/WdsLFFK5TscO8tclWtYjLoypHYNxvBHOnBEFR/iutX2/ZuIhNh+b8Tozt+CMfRSUVphdF3BGL/NBtpUUWYwbvAOGDe9K0LLyR+KMWRTEZKcjnMB7wrmLY2TzgEi0grj7XsP8HfgKMZD+wWKJjmhcrJPtqX9qYLpw23fzsNyJYbpnLENVS3EeKjcgdFGC8Yboo+LLMlOx3kYczl2lFJ5IoJD/sIH26e2jzNHyxGzMUZv5hnbpwQiYlJKFQ4jnVVlDz8643yvgHG/uGp/IV/Z4u/AGO7JF5GFwKNKqfgy8jXCUJQl7iWMOb3C/1fhNT3jlKasa1qsTNtw0zygBcZb+j6M//DVGL0c5/a5uralhZd1bqpCsWuglMp1uodKozGQpJTKcwo/5RDviir/Zxxw9YyBIpmrcg2LUVcUzi7lYmzZNk8wxXa43UW+MBHp6Pg2Vxoi0hSjW/s9gFKqQERigNHnYQGTiHHyHyolfn85+c9hTIzWFq56e+Mw5gxuUIY1CwAu3ngrI/t1wEdAjIiMUkqdKid94YOmGcZ4Ow7HFamrALjW8W1NRBrhpEjOg0Tb978weiTOOD8snEnBeIt9D+NBXwIHZQPV2yt3iTLGRj4EPrSdqzEYczqzMXqcpZFsk6+5i7jmFD3ECq9pUwwjjELKuqbO7W6P8R++WSn1TWGgiFxZRhnVReFLsJdTeHkvlZUlCWgsIl5OSqe5Q7wrHP8zFT2/laUq17AYdWVIrTTGY2j05zAm+B0/k21pylqTA4CIeGIM1XlgTJIX8grGDfPfUvJFikiPMopehGGhcVQptcnFJ92WrlCZ+TrlXww0d+MfprR6y6JQsTg+rDthM7ZwoDKyH8cYczYBy0UkvOzkrMd4IN/gFD7ZRVpn/DB6NPaHlYiM4vyHHx3ZjzFO362U677DIW0uTudfKZWJMTHfE2PepEQZ1ShrpVFKJSulZmMMzzi+VJTWls3A9Y6LpEWkDTAYY04JjOGZTIw1d444H5eFq3vTE2N+0N0csX07v2RdUc31/IXxP3E+L4VzoGtLybcD4/xW5T9TUc77GtaVHk5p3IoxSfW6UirDOVJEHgFuEpF/297QAAJF5KLC3xjjjrdhjN/fpxysf5RSK0TkUWCmiERhzDMcxRgmuARjUu9GjIvpijcw5pFWisgbGA8ifwwlNEwpNcGWbo/t+zER+R2w2B4q32BYKM0SkZcxHrSBGJZebyql9nF+nMZ4G58sIoU3ZJxSKrGMPEsxeghficj/YXSjn8M4L44vKJWSXSl10rYqehmG0hmllDrhSgCl1H4R+Q543jaMshHjjfvyCrR5EbY5IxH5HGPu5hkqPvxXLkopJSL3Y1jweGE8mM9hvOkNxngBmWlLvgcYJiLjMYZFztmGqB4FVgB/iMinGG+PTTDmQ8xKKWeLK7ciIh9hDGmvxei1d8IwKV7skKy0tjyDMcc4X0Tex7BSew7DPPr/wFBiIvIm8KSIpGPcZ30whvCgyAqtLPZiPPhfEhELhuJ5pIpNrhS2+/cv4F8icg7jHN2EYTVXnfyOYfn6gYiEYfQkLsd4Fr2sbFaSLuRLsT2DnrKd38UYpv13uEpfFarlGpZnVeDOD6Wsw7HFhWFo9E/LyH8XxS01Yiiyabdi3PDbMEwou5VRzmCMibCTFBkvLMZmjl1OGxphKJ44m7xnMN5eH3ZIY8YYPjljk0s5xAVgmBgWToKexJiEa1rWOcKFpUkp8l2N8aDIx8U6nFLy3IAxPp6DccNPxvV6l0rLjtEd34mxk0PLMuT2w7BKS6JoHc4QxzbY0rmS6++265GNoawutbU3xiHNCFtZlzrl/QJIcCGPAl50ChuEMZmfbDtX8RhDtoMc0nSx3Q9ZlFy70tWW/gxG7yHB1s7Ly5OnjPPm8rraZHOsu9j9g/FyF+MgSxzGfR1UwbY4r8OZi+t1OC9hKKtsW32DcbJIoxSrTltcL4wHcpbtfD2Pa2uveJws6ip7zV3UHQH8hjEkegr4T0XrdriHZjgcl8hrCy9ch3MS4391gMqtw3E8v1Eu6i127cu4v9tS8v9WoWtY2kdshWg0Gk2NIyITMV72hiulVta2PJrKU5lrqBWORqOpEURkIMacx3qMHmFfjMWa+zHWeuiHUR3nfK9hXZ/D0Wg0DYcMjHUm92MMG53BmP/6l1Y29Ybzuoa6h6PRaDSaGqGum0VrNBqNpoHQYIbUmjRpotq2bVvbYlSJzMxM/P0blheEhtYm3Z66T0NrU021Z/PmzeeUUmFur4gGpHDatm3Lpk21ul6uysTExDBixIjaFqNaaWht0u2p+zS0NtVUe2z70tUIekhNo9FoNDWCVjgajUajqRG0wtFoNBpNjdBg5nDqMyJCXFwcOTlVcjxaJwkODmbv3r21LUa1odtT92lobaru9vj4+BAREYGnp2e1lVlZtMKpA/j7+xMYGEjbtm2x+cyo96SnpxMYGFjbYlQbuj11n4bWpupsj1KKxMREEhISiIyMrJYyq4IeUqsDmM1mQkNDG4yy0Wg0dQsRITQ0tNZHUbTCqSNoZaPRaNxJXXjGaIWj0Wg0mhpBKxyNRqPR1AgNRuGkZOQyd3VcbYuh0Wg0mlJoMApHc37Ex8cTHV3cXfuMGTN4/fXXy8z39ttv07VrV6ZOLdutfEBAgMvwitRR0fSl1VFZRITHHnvMfvz666/zn//8p1rKrgyO7cnOzubiiy/GYrFUW/nHjh1j5MiRREVF0a1bN956661S0y5atIjOnTvToUMHXnnllUrndyQmJoabb775vOW//fbbadq0aYn71hUWi4XevXszfvx4e5irNlWEv//977Rp06ZKMlem7pSUFCZOnEiXLl3o2rUra9eutce99dZbREdH061bN958800A8vLyGD58OAUFBeclmzvRCkdzXrz//vssWbKEb7/9trZFqTa8vb35+eefOXfOpfv4clFKYbWW7969Mnz22Wdce+21mM3maivTw8OD//u//2PPnj2sW7eO9957jz179pRIZ7FYuP/++/n999/Zs2cPs2bNYs+ePRXO78z27dvp3bv3ecs/bdo0Fi1aVKG0b731Fl27drUfl9am8oiPj2f58uXk5eWRnp5eJbkrWvcTTzzBuHHj2LdvH9u3b7fLv2vXLj7++GM2bNjA9u3bmT9/PrGxsXh5eXHJJZcwe/bsKslVE7hV4YjIOBHZLyKxIjLdRby3iMy2xa8Xkba28Kkiss3hYxWRXu6UtS6wt0tXt36qSnx8PF27duWuu+6iW7dujBkzhuzsbP72t79x+PBhLrvsMt544w0AZs6cSXR0NAMHDrS/eTnz0ksv0alTJ4YOHcr+/fvt4d988w0DBgygV69e3HPPPfa3+dLSl0ahDNHR0cVkeOGFF+jcuTNDhw5lypQppfaUPDw8uPvuu+1tqkj58fHxdO7cmVtuuYXo6GhWrlxJly5dmDZtGp06dWLq1KksXbqUIUOG0LFjRzZs2GAv7+qrr6Zv375069aNjz76yGWd3377LRMmTLAfz5kzh4suuoiePXsydOhQzp49W+55cSY8PJw+ffoAEBgYSNeuXTl+/HiJdBs2bKBDhw60a9cOLy8vJk+ezNy5cyuc35lt27Zx/PhxBg4cSLt27YiJiam07ADDhw+ncePG5aZLSEhgwYIF3HnnneW2qTyeffZZnn76aaKioti9e3eV5K5I3ampqaxZs4Y77rgDAC8vL0JCQgDYu3cvAwcOxM/PDw8PDy6++GJ+/vlnwLiX6vLLn9sUjoiYgfeAy4AoYIqIRDkluwNIVkp1AN4AXgVQSn2rlOqllOoF3AzEKaW2uUtWTfkcPHiQ+++/n927dxMSEsJPP/3EBx98QIsWLVi+fDmPPPIImzdv5vPPP2f9+vX8+eeffPzxx2zdurVYOZs3b+b7779n27ZtLFy4kI0bNwLGn2j27NmsXr2abdu2YTab+fbbb0tNXxqOMqxbt84uw8aNG/npp5/Yvn07v//+e7k7i99///18++23pKamVqj8wnN03333sXv3btq0aUNsbCyPPfYY+/btY9++fXz33XesWrWqxBDdZ599xubNm9m0aRNvv/02iYmJxerMy8vj8OHDOLrfGDlyJOvWrWP79u2MHj2aH374oVieYcOG0atXrxKfpUuXumxvfHw8W7duZeDAgSXijh8/TqtWrezHERERJRRLWfmd2b59O4GBgaxfv54PPviAZ5555rxkL4+HH36Y//73v5hMRY+7irTJmd27d7Nr1y4mTZpE165d2bVrV4k0FZG9InXHxcURGhrKbbfdRu/evbnzzjvJzMwEsL/QJCYmkpWVxcKFCzl27Jg9rrz/SG3izp0GBgCxSqnDACLyPTABcOw7TgBm2H7PAd4VEXFyVToF+L7c2hJP4P3DGxREPYdHo0bVIP6FRWk2+oXhkZGR9OrVC4C+ffsSHx9fIu2qVau45ppr8Pf3x2q1cu2117Jy5cpiwycrV67kmmuuwc/PD4CrrroKgD///JPNmzfTv39/wJizaNq0KUlJSS7Tl4ajDIBdBqvVyoQJE/Dx8cHHx4crr7yyzHKCgoK45ZZbePvtt/H19S23/Kuuuoo2bdpw0UUX2dNGRkbSvXt3ALp168Yll1yCiNC9e/di5+/tt9/ml19+AYx5kYMHDxIaGmqPP3funP3ttpAvvviC2bNnk5uby6lTp0rMMa1cubLM9jmSkZHBddddx5tvvklQUFCF81Ulf35+PufOnePJJ58EoFevXiWGLisje3nMnz+fpk2b0rdv3yr3pAp5+umnef755xERunbt6rKHU12yFxQUsH37dt5//30GDhzIQw89xCuvvMILL7xA165deeKJJxgzZgz+/v706tXLPtRqNpvx8vKqs7suuFPhtASOORwnAM6vP/Y0SqkCEUkFQgHHO3AShmIqgYjcDdwN4NPWh2e6LSPjvh00ueNp8Kg/u/YEBQVVeTy4MpRVh5eXF0lJScXSnDp1iubNm5ORkYGnp6c9rqCggMzMTNLT01FKkZGRgbe3Nzk5OeTm5pKeno7FYiE3N5ecnBx7vvT09GJpwHh7z83NRSnFlClTmDFjRjG53nvvPZfpS2uLc/mFMlit1lLL+eijj/jyyy8BY6iqUNY77riD4cOHM3XqVJRSLuUvLD8jIwNfX197uPM5s1gsWK1W0tPTycrKss8BrFy5kj/++IPFixfj5+fH5ZdfXuw6pKenU1BQQHZ2tj3su+++Y82aNcydO5eAgADGjRtH27Zti52TsWPHkpGRUeL8vPjii4wcORKLxUJ6ejr5+flcf/31TJw4kdGjR7s8ryEhIcTFxdnjDh06RJMmTSqc35Hdu3cTGRlJbm4uubm5rFq1iqioqErJ7khGRob9vBa2yZHly5czd+5cFixYYL8XJ02axF133VVqm1yxceNGFi1axJYtWwDjPuvWrVuJ9BWRvazzWUhISAgtWrSwn5vLL7+cmTNn2tPccMMN3HDDDQA899xztGjRwh6Xk5NDfn6+y7bk5OSct+I9L5RSbvkAE4FPHI5vBt51SrMLiHA4PgQ0cTgeCOysSH0+bX1U9BfRauzr3VTi99+r+sSWLVtqWwSllFJ9+/ZVf/75p1JKqcTERNWxY0cVGxur4uLiVLdu3ezpXnvtNfXss88qpZRq06aNOnv2rFJKqc2bN6vu3burzMxMdfLkSdWtWzd72/z9/YulycrKUmlpaapDhw7qtddeU7t371YdOnRQp0+fttcfHx9fanpX+Pv7F5MhIyPDLsOGDRtU7969VXZ2tkpPT1cdO3Yss5xC/vGPf6hWrVqp6dOnl2ijY/nO58j5+NZbb1U//vhjibhff/1VjR8/Ximl1N69e5W3t7davnx5CTkiIiJUdna2Ukqpxx9/XL355ptKKaXmzJmjzGazysjIcNmW0khLS1NWq1XdfPPN6qGHHiozbX5+voqMjFSHDx9Wubm5qkePHmrXrl1l5h81apRKSEgoEf7VV1+ptm3bqpycHJWenq4uuugitXbt2krJ7ojjuUxLSysz7fLly9UVV1xRZptKk3/UqFFqyZIl9uNTp06p8PDwKslcXt2FDBo0SO3bt08ppdSzzz6rHn/8cXtc4f/kyJEjqnPnzio5OVkppdS5c+dU586dS617z549JcKATcpNesD5406jgeNAK4fjCFuYyzQi4gEEA44D2JOBWZWqtImwYvlXlRZWA1999RUvvPACvXr1YtSoUTz77LO0b9++wvn79OnDtGnTGDBgAKNGjeLOO+8sYY3Up08fJk2aRM+ePbnsssvsQ2hRUVG8+OKLjBkzhh49ejB69GhOnjxZavqKyDBw4EC7DP379+eqq66iR48eXHbZZXTv3p3g4OBy2/TYY48VG/IprfyqMm7cOAoKCujatSvTp08vNiTnyJgxY1i1ahVgWGe9//77DBgwgK1bt9KuXbsquSJevXo1X3/9NcuWLbPPNSxcuBCAyy+/nBMnTgCGEcW7777L2LFj6dq1KzfccAPdunUrNb/VaiU2NtblhP727du59tprGTx4MAMGDODBBx8stc3lMWXKFAYNGsT+/fuJiIjgq6+K/veO8ruitDYBJeRfunQpeXl5XHrppfb8zZo1IyMjg6SkpErLXVbdjnK/9tprTJ06lR49erBt2zb7MCTAddddR1RUFFdeeSXvvfeefch1+fLlXHHFFZWWqcZwlybDGK47DEQCXsB2oJtTmvuBD2y/JwM/OMSZMBRSu4rUV9jDif4iWj1xX5TKT0wsVcvXNepKD6c6Ke9tszZIT09XSimVmZmp+vbtqzZv3lzhvLXdns2bN6ubbrqp2spzZ3t27typHnnkEbeVXxrV1abakt+ZqrTnmmuuUfv37y81vsH2cJRSBcADwB/AXpsy2S0iz4tI4czvp0CoiMQCjwKOptPDgWPKZnRQGbZHCplr1pafUHNBcffdd9OrVy/69OnDddddZzfprQ/06dPHPvdS14mOjmbmzJm1LUaVqa/y5+XlcfXVV9OpU6faFqVUxFBw9Z/gVr6q/Yz25HsYVlXfxF5Kzxdcr6Ooa2zdurVaFsLVJeqqlUxV0e2p+zS0NrmjPXv37i22ABZARDYrpfpVa0Wl0GB2GvAqgC7HipTnuhO6h6PRaDR1iQajcMwWiD5SpHD2BaaTf+pULUqk0Wg0GkcajMLxsAqtaW0/jg0XsnfsqEWJNBqNRuNIg1E4ZkyEB0Ujtjmpo00hZceWWpZKo9FoNIU0IIXjgbSJpqVtyYTVJOyK31B2Jo1Go9HUGA1G4ZjETE67TnQ4WTSPszv7MKqat4nXaDQaTdVoUAonv0lzOqT42MPiGueTf/RoLUql0Wg0mkIajMIRkxlE6OQfaQ870lTI2bevFqXSaDQaTSENSOEYu0N3adHTHnY8FNL2Vc1J0oVGQ3Ax7co1tPPu0+7G3W6hc3JyGDBgAD179qRbt248++yzxeLLcktcSNu2bbnooovo1asX/foVrfdz5ba4pti/f38x/zFBQUEuZSjL1XX//v0r5eoaas5ddHnXzdkFdl5enn2fvYZEg1E4yuZcqVHn7jRLNuZxLGYh9ujWsrJpzpO65GL6fFxDK1U/3EJ7e3uzbNkytm/fzrZt21i0aBHr1q2zxz/00EMu3RI7s2DBArZt22Z3RFea2+KaonPnzmzbto1t27axefNm/Pz8uOaaa4qlKc/V9caNGyvl6rom3UWXd92cXWB7eXlx8cUX12l30VWhASkc40/t07ULbU87LABNO1RbIlWattMXuPVTVeqLi+myXEOfr1voXr16nbdb6BEjRrDPNsSbmJhYokdZEUTE3ovKz88nPz/f7iQvNTWVFStWuHRLXB5luS0ui+3btzN8+HCioqIwmUyICP/+978r3S5H/vzzT9q3b1+i51Hdrq5ryl00lH3dXLnABhg/fnydeJGrThqMwsHWw/Fu144254qaFeeTRkFycm1J1WCoLy6mXbmGrg630C+99NJ5u4WOjY21b6y4Y8cOuzfQQirqWtlisdCrVy+aNm3K6NGj7W6d4+LiCAsLc+mW2BERsSvMQmVZltvi0sjJyWHSpEm8/vrr7Nmzh6eeeorHH3+c5557rtJtcuT7779nypQpJcKr09V1TbqLLqS06+bKBTYYLjvqsrvoqlB/3GKWh+1iiZcXHc3hwEkA4psKufv341FFnxsXCg3FxbQr19DV4RY6KirqvNxCHzlyhJYtW9ofKjt27KBHjx7FZK+oe2Kz2cy2bdtISUnhmmuuYdeuXURHR1NQUMCWLVt45513SrgldmTVqlUEBQWRnZ3N6NGj6dKlC8OHDy/VbXFpLF26lD59+jBgwAAAevTowaJFi4rdS5V1uZyXl8e8efN4+eWXK5UPKufquibdRRfi6rrFx8eX6gK7rruLrgoNRuEoh7eDLk2iKFQ4R5pC9t69+GuFUyahoaEkO/UEk5KSiIw0rP68vb3t4Wazmezs7GqtXynFrbfeWuJBU5XJ64cffpg+ffpw2223lZvW2XGZYztNJpP92GQy2SdwY2JiWLp0KWvXrsXPz48RI0aQk5NTrBxfX99iYdu3by+mYDZv3sykSZOK5Rk2bJjLuYTXX3+9mPOvQkJCQhg5ciSLFi0iOjqaiIgIIiIi7G/OEydOdDmJ3bJlS9LT02natCnXXHMNGzZsYPjw4dxxxx324bgnn3ySiIgIF2esiF27dhXrpW3ZsqWEy4fKtun333+nT58+NGvWzKXcjr2uhIQEWrZsCRjDVDfddBNTp07l2muvLVPu9evXs2jRIrZu3cr9999PTk5Oid5mRWUvS6bScLxuiYmJzJs3j4ULF5KTk0NaWho33XQT33zzDWC4MPfx8SmzvHpFTTnecfenQ4eu6tdVh5VSSp39/DM18H/d7A7Ztjz191IdEtUF6ooDtobgYrqQQtfQzz77bLW4hd65c+d5uYV+7rnn7A7UDhw4oIKCgtSRI0cqdmEcOHPmjN2dcFZWlho6dKj67bff7PFDhw4t1S2xUkplZGSotLQ0lZaWpjIyMtSgQYPU77//rpQq3W2xUq5dRn/00Udq8uTJSiml9u/frzp16qTOnTtX6TY5MmnSJPXZZ5+5jCvP1fW9997rMl9dcBdd3nVTqrgLbKWM+7Esd9FVocE6YKtplEM33rdLFG3POBgOnNtbGyLVOxqCi+lCHF1D1wW30Nu3b8dqtdKzZ0+ef/55oqKi+PLLLytd98mTJxk5ciQ9evSgf//+jB492m5KC/DOO++4dEtc6Lr49OnTDB061O7i+YorrmDcuHFA6W6LS3MZPWXKFDIyMoiOjubuu+9m1qxZxYYVK0tmZiZLliwp0UMplL08V9crVqwo4Sq7rriLLu+6uWLlypV12110VagpzebuT/vO0fYeTkFysvrnfVH2Hs5zd0UrS25uRV4AaoW60sOpTmrbJXN1U5X2OLqF7tChQ506J5WRpa64XC4PV22qL7K74sorryzTXXRV0D0cN2AOCaFdXrD9+EiolbxD9cc8WtMwKHQLnZqaiojU24nf+upyGeqv7Hl5eVxxxRV12l10VWiQCgegc2DRUNCRZkJOGes3NBp3cfvttxMcHMyBAwdqWxRNPcLLy4sbb7yxtsWodhqswunQqhcmqzGPc7qRkLy/pJ29RqPRaGoOtyocERknIvtFJFZEpruI9xaR2bb49SLS1iGuh4isFZHdIrJTRCplGxjUJYqWDmvx9p/Yfh4t0Wg0Gs354jaFIyJm4D3gMiAKmCIiUU7J7gCSlVIdgDeAV215PYBvgL8ppboBI4D8ytTv3bkLbRws1Q5mxGHMj2k0Go2mNnDnws8BQKxS6jCAiHwPTAAcd7abAMyw/Z4DvCvGMuUxwA6l1HYApVTxfUMqgFeb1rRN8mAVxoaMcQHZLFi4BUtIkWnnhCGRpWXXaDQaTTXjToXTEnDcjCkBcN7gyJ5GKVUgIqlAKNAJUCLyBxAGfK+U+q9zBSJyN3A3QFhYU0g5SEzMkaLCCxoBhq460lTw3reKrC5FO7I6pq1NgoKCqrxbbV3FYrE0qDbp9tR9Glqb3NGenJycElvo1CR1dWsbD2Ao0B/IAv4Ukc1KqT8dEymlPgI+AujQpbsipCMjHHotu2L6A4sAY4sbz/gcCOlojx9RR3o4W7durbcms6XRkPZ/At2e+kBDa5M72uPj43Nei57PF3caDRwHWjkcR9jCXKaxzdsEY3RJEoAVSqlzSqksYCHQh0oS3r4nQZnGvE2ul5CeWL6PjAuZX3/9FRGxb6Ff13DcrbmifPHFFzzwwANukEaj0VQWdyqcjUBHEYkUES9gMjDPKc084Fbb74nAMtvK1z+A7iLiZ1NEF1N87qdC+HYtbjhwKie+0o24kJg1axZDhw5l1qxZ1VJedXsrrIrC0Wg0dQe3KRylVAHwAIby2Av8oJTaLSLPi0jhHvOfAqEiEgs8Cky35U0GZmIorW3AFqVUpT2IeXfqRJszRcfHvRKR/Lwqt6khk5GRwapVq/j000/5/vvvAWMfqvvuu48uXbowevRoLr/8cubMmQPAwoUL6dKlC3379uXBBx+07ws1Y8YMbr75ZkaPHs3NN9/M2bNnue666+jfvz/9+/dn9erVAJw9e5bRo0fTrVs37rzzTtq0aWPf+8yVc7Pp06eTnZ1Nr1697O6sS3PY9vnnn9OpUycGDBhgr0+j0dQ+bp3DUUotxBgOcwz7t8PvHOD6UvJ+g2EaXWXMQUG2LW6MibcjYYqLThwlt02H8ynWrXT/suQ26dXFzlt3lho3d+5cxo0bR6dOnQgNDWXz5s3ExcURHx/Pnj17OHPmDF27duX2228nJyeHe+65hxUrVhAZGVnCWdaePXv4/fffadq0KTfeeCOPPPIIQ4cO5ejRo4wdO5a9e/fy3HPPMWrUKP71r3+xaNEiPv30U3v+zz77jMaNG5OdnU3//v257rrreOWVV3j33XfZtm0bUNxhm6enJ/fddx/ffvsto0eP5tlnn2Xz5s0EBwczcuTIWh2z1mg0RdRVo4Fqo1NIR2ALAEfDBO9jh+u0wqktZs2axUMPPQTA5MmTmTVrFgUFBVx//fWYTCaaN2/OyJEjAdi3bx/t2rWz+8qZMmVKMTfLV111ld352dKlS4v5eE9LS7P3pgodmI0bN45GjRrZ05Tn3AxKd9i2fv16RowYQVhYGACTJk3S28poNHWEBqlw5q6Os/8ONkVitmzGYhbONBKsWw5iLPPRFJKUlMSyZcvYuXMnIoLFYkFEuOaaa6pUnqNTM6vVyrp16yrsRKoizs2gdIdtv/76a5Vk1mg07qdBKhxHLC3bE3EOjtgcCJ7J2I9f7YpUJmUNe7mLOXPmcPPNN/Phhx/awy6++GIaN27MTz/9xK233srZs2eJiYnhxhtvpHPnzhw+fJj4+Hjatm3L7NmzSy17zJgxvPPOO/zjH/8AYNu2bfTq1YshQ4bwww8/8MQTT7B48WK7t9HU1FQaNWqEn58f+/btY926dfayPD09yc/Px9PTk0suuYQJEybwyCOP2F1Rp6en210rJyYmEhQUxI8//kjPnj3ddOY0Gk1laLCbdxaS2yqS1meLLNVOWo+D3uKmGLNmzSrRm7nuuus4deoUERERREVFcdNNN9GnTx+Cg4Px9fXl/fffZ9y4cfTt25fAwECCg4Ndlv3222+zadMmevToQVRUFB988AEAzz77LIsXLyY6Opoff/yR5s2bExgYWKZzs7vvvpsePXowderUUh22hYeHM2PGDAYNGsSQIUPo2rWrS7k0Gk3NIw1lf7EOXbqr//t0HhOGRBYbUsNqZe/n1/LtxcYWN5dutXLpJV9Q0LhJndnaZuvWrXV2YjsjI4OAgAASExPtVl/Nmze3hyuluP/+++nYsSOPPPKIPV95i9Zyc3Mxm814eHiwdu1a7r33XrtBQF1ELyqs+zS0NrmjPXv37i3xEmZbVN+vWisqhQY/pIbJRAvVHDBcvR5pKngnxFHQuEntylVPGD9+PCkpKeTl5fHMM8/QvHlzAD7++GO+/PJL8vLy6N27N/fcc0+lyj169Cg33HADVqsVLy8vPv74Y3eIr9Fo6hANX+EAzfw7UqhwjoaBR1ws9Ohfu0LVE0rbd+mRRx4p1qOpLB07dmTr1q1Vzq/RaOofDX4OB8C7WWeCM4q2uElNrJtbt2g0Gk1D5oJQOLmtImnrsMXN6dy4MlJrNBqNxh1cEAonLyLSaYubZCQvt/YE0mg0mguQC0LhWH39aFdQtJL9SFOF1/G64QtHo9FoLhQuCKMBgC4hnTD2AoW4ZoLPkVhgbK3KVBrFzLqrgYqYf4sIU6dO5ZtvjO3rCgoKCA8PZ+DAgcyfP79a5alOAgICyMjIKBaWkpLCd999x3333VctdcyYMQNPT0+eeuqpSst14sQJHnzwQfump+4gJiYGLy8vBg8eXG1lTps2jfHjxzNx4sRqK3Pw4MGsWbOG+Ph41qxZw4033lhtZWvqBxdEDwegQ/t+eOcZ8zhJQULOid21LFHdwt/fn127dpGdnQ3AkiVLaNmyZa3Icr5uDVJSUnj//ffdUnZladGihVuVDRgKZ82aNZXKU9PnAbDLGB8fz3fffVfj9WtqnwtG4fh360Hb00XHJzO1pZozl19+OQsWGF4gZs2aVWwX6MzMTG6//XYGDBhA7969mTt3LmA8PIYNG0afPn3o06eP/aFy6tQphg8fTq9evYiOjmblypWA8eZfyJw5c5g2bRpgvFH/7W9/Y+DAgfzzn//k0KFD9p0Mhg0bZncKFxcXx6BBg+jevTtPP/20y3ZMnz6dQ4cO0atXL/7xj38QExPDsGHDuOqqq4iKigJcu0AAWLRoEX369KFnz55ccsklJcr++OOPueyyy+yKuZDS5IqPjyc6OrrMcxUTE8PFF1/MhAkTaNeuHdOnT+fbb79lwIABdO/enUOHDgG4dPUQHx/PBx98wBtvvEGvXr1YuXJlqS4hCl1HDBkyhLvuuquY/EopHnjgATp37syll17KmTNFk56bN2/m4osvpm/fvowdO5aTJ08CMGLECJ544gkGDBhAp06d7Nd49+7ddrcRPXr04ODBg8Wu/fTp01m5ciW9evXijTfeYPjw4cUW/Q4dOpTt27e7vLaa+s0FM6TmE92NdrMV+1sJAEc9z2LNzcXk7V3LktUdJk+ezPPPP8/48ePZsWMHt99+u/0h8tJLLzFq1Cg+++wzUlJSGDBgAJdeeilNmzZlyZIl+Pj4cPDgQaZMmcKmTZv48ccfGTt2LE899RQWi4WsrKxy609ISGDNmjWYzWYuueQSPvjgAzp27Mj69eu57777WLZsGQ899BD33nsvt9xyC++9957Lcl555RV27dplf4jFxMSwZcsWdu3aZd/h2pULBKvVyl133WV3u5CUlFSs3HfffZclS5bw66+/4u1031RErtLOFcD27dvZu3cvjRs3pl27dtx5551s2LCBt956i3feeYc333yThx56yKWrh7/97W8EBATw+OOPA5TqEgIM1xGrVq0q0cP55Zdf2L9/P3v27OH06dNERUVx++23k5+fz9///nfmzp1LWFgYs2fP5qmnnuKzzz4DjJ7Shg0bWLhwIc899xxLly7lgw8+4KGHHmLq1Knk5eXZ/RQ5Xp/XX3/dPlTbuHFjvvjiC958800OHDhATk6O3v+ugXLBKByPRo1okxEIZAIQ18xK7oED+HZ3n/+Z+kaPHj2Ij49n1qxZXH755cXiFi9ezLx583j99dcByMnJ4ejRo7Ro0YIHHniAbdu2YTab7a4A+vTpwwMPPEB+fj5XX301vXr1Krf+66+/HrPZTEZGBmvWrOH664tcJeXmGlaFq1ev5qeffgLg5ptv5oknnqhQ2wYMGGBXNuDaBcLZs2cZPny4PV3jxo3t6WfNmkWbNm349ddf8fT0LFF+ReTKz893ea4A+vfvT3h4OADt27dnzBhjR/Pu3buzfPlyoHRXD86Ula7QdUR6enqxPCtWrGDKlCmYzWZatGjBqFGjANi/fz+7du1i9OjRAFgsFrucANdeey0Affv2JT4+HoBBgwbx0ksvkZCQwLXXXkvHjh1LyOjI9ddfzwsvvMBrr73GZ599Zu/1ahoeF4zCAWjp2Q4wdmM+3FzI2b1bKxwnrrrqKh5//HFiYmJITEy0hyul+Omnn+jcuXOx9DNmzKBZs2Zs374dq9Vqd0MwZMgQVqxYwYIFC5g2bRqPPvoot9xyCyJiz+vsdqDQrYHVaiUkJKTUvdUcy6goji4TKuoCwZGoqCh2795NQkJCMcVVGbneeOMNl+cKKNZjMplM9mOTyWTvjVTU1UNZ6RzPQ0VQStGtWzfWrl3rMr5QTrPZbJfzxhtvZODAgSxYsIDLL7+cDz/80K7AXOHn58fo0aOZO3cuP/zwA5s3b66UjJr6wwUzhwMQEhZtNxxIDhQS9m6sZYnqHrfffjvPPvss3Z0U8dixY3nnnXco3Oy1cFua1NRUwsPDMZlMfP311/bhk6NHj9KsWTPuuusu7rzzTrZsMZzgNWvWjL1792K1Wu09DGeCgoKIjIzkxx9/BIyHXuGY/pAhQ+wusL/99luX+QMDA0u8wTtSmguEiy66iBUrVhAXZ1gJOg6p9ezZkw8//JCrrrqKEydOlCizInKVdq4qSqGrh0IKFbJze0tLVxbDhw9n9uzZWCwWTp48ae9Vde7cmbNnz9oVTn5+Prt3l21wc/jwYdq1a8eDDz7IhAkT2LFjR7F4V9fnzjvv5MEHH6R///7FnPFpGhYXVA8nv01nIk/DvlbG8e4zO6mL/Zva3MU6IiKCBx98sET4M888w8MPP0yPHj2wWq1ERkYyf/587rvvPq677jq++uorxo0bZ3+DXrlyJZMmTcLT05OAgAC++uorwBi/Hz9+PGFhYfTr18/lkBAYD+17772XF198kfz8fCZPnkzPnj156623uPHGG3n11VeZMGGCy7yhoaEMGTKE6OhoLrvsMq644opi8ePGjeODDz6ga9eudO7c2e4CISwsjI8++ohrr70Wq9Vqn3MpZOjQobz++utcccUVLFmyhCZNijaArYhcpZ2rivL2229z//3306NHDwoKChg+fDgffPABV155JRMnTmTu3Lm88847paYri2uuuYZly5YRFRVF69atGTRoEABeXl7MmTOHBx98kNTUVAoKCnj44Yfp1q1bqWX98MMPfP3113h6etK8eXOefPLJYvE9evTAbDbTs2dPpk2bxiOPPELfvn0JCgritttuq9Q50dQv3OqeQETGAW8BZuATpdQrTvHewFdAXyARmKSUiheRtsBeYL8t6Tql1N/KqqtU9wQ2JgyJ5Lc/trNq3o0sHGB07Cauhmfe2VTrhgN12T1BVdFbxddt6lp7Tpw4wYgRI9i3bx8mU9UGXupam86XhuiewG1DaiJiBt4DLgOigCkiEuWU7A4gWSnVAXgDeNUh7pBSqpftU6ayqSjWgCDaZAbZjw83s5K7f38ZOTQajbv56quvGDhwIC+99FKVlY2mfuDOqzsAiFVKHVZK5QHfA85jDROAL22/5wCXSFVmhCtBS8/29t+HmwtZO2vepbNGoynilltu4dixY8WsEjUNE3cqnJbAMYfjBFuYyzRKqQIgFQi1xUWKyFYR+UtEhlWXUMFNo/HJNYYRUwKE4wfqhkVMQ/G8qtFo6iZ14RlTV40GTgKtlVKJItIX+FVEuiml0hwTicjdwN0AYWFNIeUgMTFHIDOvRIGF4flN/Ik8DXtbG+GbjmwgqRQnYzWFj48PCQkJBAcHV8nkty5isVjKtBSrb+j21H0aWpuqsz1KKVJTU8nMzCzVqWJN4E6Fcxxo5XAcYQtzlSZBRDyAYCBRGao4F0AptVlEDgGdgE2OmZVSHwEfgWE0QEhHRpRiNFAYntOtOe1//YC9rY0He5xPCrf26485oHIWQ9XJX3/9RUFBAcePO5+e+ktOTk6560XqE7o9dZ+G1qbqbo+Pjw89e/Z0uXC5pnCnwtkIdBSRSAzFMhlw3h52HnArsBaYCCxTSikRCQOSlFIWEWkHdAQOV4dQVv9AIrMaAykAHGgBOTt34G8zA60NlFKlLiasr8TExDQoyzvdnrpPQ2tTQ2sPuHEOxzYn8wDwB4aJ8w9Kqd0i8ryIXGVL9ikQKiKxwKPAdFv4cGCHiGzDMCb4m1Kq+MZW50Fr3yJjuUPhkL6tbszjaDQaTUPGrXM4SqmFwEKnsH87/M4BSpimKKV+An5yl1w+rXrRJHU154KFXC9h9541NOcBd1Wn0Wg0Gi6wrW0Kye7QlU7Hiyw2dqbtR1mttSiRRqPRNHwuSIWTF96KDmeKJs72h+aQZ9vpVqPRaDTu4YJUOJhMtDG1sx/ubylkb91We/JoNBrNBcCFqXCAsCY98cw3htXOhgjHd7refl2j0Wg01cMFq3AK2kXT/lTR8baT2lJNo9Fo3MkFq3By2nUuZjiw23waSwNapazRaDR1jQtW4Vj9/OlmbW4/PtBCyN6+o4wcGo1GozkfLliFA9ArvK/99+FwSN2yoRal0Wg0mobNBa1wWvQaTPMkY1gt30PYdmBFLUuk0Wg0DZcLWuH49+9P1NGieZyteYew5ubWokQajUbTcLmgFY5ny5Z0Tw+xH+9pYSF72/baE0ij0WgaMBe0wgHo17y//ff+CCF147palEaj0WgaLhe8wmnbezjNko1htTxPYbuex9FoNBq3UCGFIyI/i8gVItLgFJTfwAHF53GyD2DNK+kxVKPRaDTnR0UVyPsYztMOisgrItLZjTLVKJ4tWxKdFmw/3t3SQs4OvR5Ho9FoqpsKKRyl1FKl1FSgDxAPLBWRNSJym4jUnr/SakBE6N+8n/14f0shdf2aWpRIo9FoGiYVHiITkVBgGnAnsBV4C0MBLXGLZDVIZO+LaWqbx8n1ErbsXVbLEmk0Gk3Do6JzOL8AKwE/4Eql1FVKqdlKqb8DAe4UsCbwv+giesQXzeNsyD+EJSOzFiXSaDSahkdFezgfK6WilFIvK6VOAoiIN4BSql/ZWes+ni1b0iezif14ZxtF1ga9zY1Go9FUJxVVOC+6CGtQDmQGth2OWI1eTmw4nFy3vJYl0mg0moZFmQpHRJqLSF/AV0R6i0gf22cExvBamYjIOBHZLyKxIjLdRby3iMy2xa8XkbZO8a1FJENEHq9Uq6pA+KBRdv84yiSsj9PrcTQajaY68SgnfiyGoUAEMNMhPB14sqyMImIG3gNGAwnARhGZp5Ta45DsDiBZKdVBRCYDrwKTHOJnAr9XoB3njd+AAfSYLcS2MI63+J9l8okTeLZoURPVazQaTYOnTIWjlPoS+FJErlNK/VTJsgcAsUqpwwAi8j0wAXBUOBOAGbbfc4B3RUSUUkpErgbiALfO3s9dHWf/3TmvFXAMgO2RQsbq1TS6/np3Vq/RaDQXDGUqHBG5SSn1DdBWRB51jldKzXSRrZCWFD69DRKAgaWlUUoViEgqECoiOcATGL2jUofTRORu4G6AsLCmkHKQmJgjkFlypwBX4c5hLYI745N7lBxv4WyIsPaP2fiFhZXRxOohIyODmJgYt9dTkzS0Nun21H0aWpsaWnug/CE1f9t3TZs+zwDeUEpliEipiZRSHwEfAXTo0l0R0pERQyKL9VoKcRXuHJbb10r0vsVs6mTUuYdDPDZ4MOLldf4tKoOYmBhGjBjh1jpqmobWJt2euk9Da1NDaw+UP6T2oe37uSqUfRxo5XAcYQtzlSZBRDyAYCARoyc0UUT+C4QAVhHJUUq9WwU5KkxO2470X+7Ppk7ZAGxulUfW5s34Dxrkzmo1Go3mgqCiCz//KyJBIuIpIn+KyFkRuamcbBuBjiISKSJewGRgnlOaecCttt8TgWXKYJhSqq1Sqi3wJvAfdysbAEwmhrUcZj/c20o49ddit1er0Wg0FwIVXYczRimVBozH2EutA/CPsjIopQqAB4A/gL3AD0qp3SLyvIhcZUv2KcacTSzwKFDCdLqmaTNsLO1OGutxLGZhVeyfKKXKyaXRaDSa8ihvDsc53RXAj0qp1LLmVgpRSi0EFjqF/dvhdw5QphmYUmpGBWWsFvwHD6HfHOFwuHG8ISSRyXHxeLeLrEkxNBqNpsFR0R7OfBHZB/QF/hSRMCDHfWLVHuYAfwb7RtuPt7YXUmP0Zp4ajUZzvlTUPcF0YDDQTymVj7E2ZoI7BatNeva9nEbpxjBaup+wcctvtSyRRqPR1H8q48GzCzBJRG7BmOAf4x6Rap+gUaPoe7Bo3mYFB8k/c6YWJdJoNJr6T0Wt1L4GXgeGAv1tn3q/S3RpeEW0ZHhOa/vx+s5C6mJtrabRaDTnQ0WNBvoBUeoCMtca1HcCgVnvku4nJAYJm9f9ytibyrME12g0Gk1pVHRIbRfQ3J2C1DUaj72M/geK9GuM2kfBuXO1KJFGo9HUbyqqcJoAe0TkDxGZV/hxp2C1jVebNgzLirAfr+sMaUvqvTdtjUajqTUqOqQ2w51C1FWG9p6Af/b7ZPoK54KFTWt+ZsyUKbUtlkaj0dRLKmoW/RfGDgOett8bgS1ulKtO0MhpWO0vy14KkpJqUSKNRqOpv1TUSu0uDH81H9qCWgK/ukmmOoN3ZCTDMoocsK3pAim/14g/OI1Go2lwVHQO535gCJAGoJQ6CDR1l1B1iWF9riYg2+jlnAsW1q6aVcsSaTQaTf2kogonVyll91RmcyVwQZhIh46/msF7ipq62DeO3MMl/e1oNBqNpmwqqnD+EpEnAV8RGQ38CFwQ+714RbRkrLWr/XhdF+H0vMp629ZoNBpNRRXOdOAssBO4B2MH6KfdJVRdo/+IKbRINHo5Od7C4p0/o6zWWpZKo9Fo6hcVtVKzYhgJ3KeUmqiU+vhC2nUgaNxYLt5rth/HRKSStWFjLUqk0Wg09Y8yFY4YzBCRc8B+YL/N2+e/y8rX0DAHBHBZ2HDEpmN3tBUOLfi+lqXSaDSa+kV5PZxHMKzT+iulGiulGgMDgSEi8ojbpatDdLx8Mt2OGApHmYQFp5djycioZak0Go2m/lCewrkZmKKUsptlKaUOAzcBt7hTsLqG/6CLGHUkyH68pFsBSb/+UosSaTQaTf2iPIXjqZQqsWOlUuos4OkekWqfuavjin0AxGzmst6T7GtyzoYIy//6ggtoKkuj0WjOi/IUTl4V4xokzW6YwoidRccLmp0ie/Pm2hNIo9Fo6hHlKZyeIpLm4pMOdC+vcBEZJyL7RSRWRKa7iPcWkdm2+PUi0tYWPkBEttk+20Xkmiq1rhqZuzqOhbFZDM7taQ/b2kHY++NntSiVRqPR1B/KVDhKKbNSKsjFJ1ApVeaQmoiYgfeAy4AoYIqIRDkluwNIVkp1AN4AXrWF7wL6KaV6AeOAD227G9Q6PgOvo0ecsQZHifBr2krtJ0ej0WgqQEUXflaFAUCsUuqwbVuc74EJTmkmAF/afs8BLhERUUplKaUKbOE+1KFtdLK69GTk4Ub24+XdFWfmzK5FiTQajaZ+IO6a9BaRicA4pdSdtuObgYFKqQcc0uyypUmwHR+ypTknIgOBz4A2wM1KqRImYSJyN3A3QFhY074ff/41wf5epGaWnF5yFV7VsMC//uS5VgtIChIA7l7mRfebXgHPqtlRZGRkEBAQUKW8dZWG1ibdnrpPQ2tTTbVn5MiRm5VS/dxeERV3wFbjKKXWA91EpCvwpYj8rpTKcUrzEfARQIcu3RUhHRkxJNJuWeaIq/CqhmWODmfs7EXMGmYMrS3okcvUlBQaX399ldoaExPDiBEjqpS3rtLQ2qTbU/dpaG1qaO0B9w6pHQdaORxH2MJcprHN0QQDiY4JlFJ7gQwg2m2SVhKrXwADAkbjk2v0Do83ERYv+p/eX02j0WjKwJ0KZyPQUUQiRcQLmAzMc0ozD7jV9nsisEwppWx5PABEpA3QBcPjaJ0hd+RELt1RdPxLmzNk/PVX7Qmk0Wg0dRy3KRzbpP8DwB/AXuAHpdRuEXleRK6yJfsUCBWRWOBRjF2pAYYC20VkG/ALxqahdcoUrKBJMyYFjsBsMXo5e9oI6358t5al0mg0mrqLW+dwlFILMVwZOIb92+F3DlBi4kMp9TXwtTtlqw663Hwfgz9fzspow3jg++B9DNmyBb8+fWpZMo1Go6l71FmjgfqAT1QUN2RHs5I9AGzoYmLD5/9lRB+9k7SmcjgbqkwYEllLkmg07sOdczgXBP1veYz++4uMBb4O3EnWpk21KJFGo9HUTbTCOU/8Bwzg5tRu9uMNnU2s+/y/tSiRRqPR1E20wqkGBt72Twbuc+jlhOwmc8OGWpRIo9Fo6h5a4VQDfv36cUtG0V6mmzqZWP3Zy9p1gUaj0TigFU410e+2Jxi0p6iX80nLg6QtXlyLEmk0Gk3dQiuc86TQSduS7BCuPBttX5ezt7Uw/4eXUHkXnNsgjUajcYlWONWIx2X3MWZr0fGX0UmcmfVt7Qmk0Wg0dQitcKqRvBatuSPsSvxyjF7OycbCtyvfxZKSUruCaTQaTR1AK5xqpv39j3PdxqL1tD/0y+XAO9pMWqPRaLTCqWY8QkO5qd/dNEs2ejmZvsL7KXPJ3rmz2usqnD8q/Gg0Gk1dRiscN9D8tju4a3uo/Timh4k/334CZbHUolQajUZTu2iF4wZM3t5cccd/GOCwGPT9zkc5+502INCcP7pnq6mvaIXjJgKGDuEBy3C884yhtWNhwqerZpJ/4kQtS6bRaDS1g1Y4bqDwzfP48DuYuNZsD/9hQAFr//Oo3oFAU2sU3pupmXm6d6SpcbR7AjdiaRRK/8jbWHfiEw61EAo8hP+L2EXX72cRNuXG2hZPU8dQSpGYf5JTeXEkbFvIsfRjpOSkkJKbgkVZ8DJ54WX2Ij/Tn0aezQj1bEFrny4o1RYRqW3xNZpy0QrHzWSMuJLHvlvLQ013k+8hHA4XPvzrv/xz2HC8IiJqWzxNLZNTkMOKhBX8dHohh7K2kWZJNCJOVbyMr34IJcIjmuiAIXTw64OnyUv709HUSbTCcTcmEwOfmsnkGVfw9TDDSm3OgAIGvHA/o9+dg3h61rKAmtpg17ld/HjgRxbHLyYjP+O8ykrMSSSRv9ie8Rfe4kvPwBF0T/kb7ULaVZO0Gk31oBVODeAV0ZLbL3mCDYdfYn+EYDELr0QdosM7r9Hu0SdrWzxNDWFVVlYmrOTz3Z+z+fRml2l8TP5EeHdiSGQP0s4FEWAOwc8ciBlPLOTTt2sIv2/fSVL+KU7mxnE0Zy851kx7/lyVzYa035kw93cGtxjMfb3uo2dYz5pqokZTJm5VOCIyDngLMAOfKKVecYr3Br4C+gKJwCSlVLyIjAZeAbyAPOAfSqll7pTV3axuNZDbF3XjuSa7yfIRzoYI/9n3LTd82JHsiGDmro4rcxhEuyCuvyilWHV8FW9ueZMDyQdKxLcKbEV7j8F09u9LC++OmMXMhP6RLif1B7WI5Excc/uxVVnp1DWH91fPYVfGKpLyi8bi1pxYw5oTaxgRMYIH+zxIx0Yd3dNAjaaCuE3hiIgZeA8YDSQAG0VknlJqj0OyO4BkpVQHEZkMvApMAs4BVyqlTohINPAH0NJdstYIIlim/Iu7vrqHt8ZmAbC+i4muf71C58DpWEJqVzyNe9iduJuZm2ay4VRxh3we4sG4yHFM6jyJnmE9mbcmvkrlm8REt9BujAn1Y3Tjm4nL3sW61N/Yl7UBqzLWgcUkxLDy+Epu6noTra2X423yPd9maTRVwp09nAFArFLqMICIfA9MABwVzgRghu33HOBdERGllMOey+wGfEXEWymV60Z53Y41MJjWo59m7OZ/8Udfw6romyG5PDn/A7zv/l8tS6c5H5x7IzmWTGK95jJ7/2wURWbwvh6+3NDpBm6Kuonm/s2dizkvRIR2ft1p59edXt1NPLnkNXZmrEChsCgLX+75kiCPBVzZ5G66Elp+gRpNNSPuWhMiIhOBcUqpO23HNwMDlVIPOKTZZUuTYDs+ZEtzzqmcvymlLnVRx93A3QBhYU37fvz51wT7e5GaWdIHjavw8wk7n/yBf/7OG82WEN/cUDqN0hX/2tYD36l3QSnmrRWtp66QkZFBQEBAbYtRbZTXnsJroZRiT95O5mf+Qro1zR5vwsTggMFcFnIZQeagUvMX4ur65lkU/r5eZGbn4WECk+1eKeueO1VwggWZvxKXf6hYfB+vPlwRcB1NA0vKUl+50O656mLkyJGblVL93F4RddxoQES6YQyzjXEVr5T6CPgIoEOX7oqQjowY4nrs21X4+YSdT/70a9rx9PdneSh4G5m+QnKg8GGHHfzv6GHCb73DVVMrXE9dISYmhhEjRtS2GNVGee2ZuzqOTEsqc8+8x57MdcXihrQcwhP9nyAyuGJzdIlZeeT6+zF/fwIn0nI4l5lHZp6FfKsCCgAwCYT4eNLI15OBHUMht4DIRr6E+XshIvb7ozkduT10ONvSY1ie9iVJOUkAbMnbQlzaCd4e+Bq9mvaq6mmpU1xo91x9xJ0K5zjQyuE4whbmKk2CiHgAwRjGA4hIBPALcItS6hANCZOZfv95jwfvHs+r45KxmoRD4cKMPW/w+srOBA4bWtsSairJ/syN/HLmHTIsKfawUJ9Qpg+Yzti2Y8tdmHk8LYeNx1LYfTqDMy56085YFSRl55OUnc+h9UeL6vTzpGd4EG1aN0IphYggIvQOGskjo67jvvlPsSPjLwCSC04xbdE0Hun7CLdE3aIXj2rcjju3ttkIdBSRSBHxAiYD85zSzANutf2eCCxTSikRCQEWANOVUqvdKGOtYQ4OptHEF7k1pkjnr4kS/u/7+8nevbsWJdNUhqz8LF5Y+wJfn3yhmLLpFzSWedfMY1zkuFIf5LkFFr7fcJTx76zkv38dZvnhpAopm7JIzMpn2aFErn5vNa+tOMyaI8nkFhjGA8HewdzQ/DGub/YY3uIDgEVZeH3T6zyx4gmy8rPOq26NpjzcpnCUUgXAAxgWZnuBH5RSu0XkeRG5ypbsUyBURGKBR4HptvAHgA7Av0Vkm+3T1F2y1hZ5LVrT/aJ/MXpL0a7SPw2w8sFb08g7cqQWJdNUhAPJB5g0fxI/HPjBHhZgbsQt4c9yddP7CfJyPT+SlVfARysOMezV5Uz/eSe7jqe5TOeMWSDA2wMPU8V6IsfTcpm94yTP/XmQP2PPkZVnDMf1DLyYB0IeI8K7kz3t7/G/M3XhVI6mHS2tOI3mvHHrHI5SaiGw0Cns3w6/c4DrXeR7EXjRnbLVFbJ6DGB83HgSY+ezpYOh/z8bkkPIC1O5+eVf8AgLq2UJNa74NfZXXlr3EjmWHHtYlP8gJjS9H38XRgEAVqvil63Hee2P/ZxKy3GZBoz5mf5tG9PI00SLIB/CA70J9vHEyyxcPbQdc1fHkVdgJTk7n7NZefgGeLNox0kOJ2VRYC1pBJSZZ2He3jOs+e9yRkQ2ZkibRjQyN+bOiJfZbf6eHw/8CEBsSiwT505maviTPHTp+PM8QxpNSeq00cCFQvrFlzBtqZCRMJ8DEcbb61uDU/B/6kaufWU2Ho0b17KEmkJyCnL4z/r/8EvsL/YwXw9fLmt8N70DR5U6fLblaDIz5u1mR0Kqy3gBOof5M6BVCN2aBjBpRIcyd3P28jDRLNCbZoHeTBgSSXt/L3LyLew5k8Hm46nsOZOBs+45l5HHnJ2nWHc0hevbWmkb4sm/B/2bgpTm/Hb2AwpUPtnWdD4//gwdDgtXtLui0udHoykLrXDqCGnX3sVLC/N45OxiEsKM7W9eHngSNf0Grnvlh/IL0LidI2lHeDTm0WK7BbQLbsfMETPZtdv16HR2noXXF+/ns9VxuFqB4OtpZsqA1rTy8aCx3/ntq+fjaaZPy2D6tAymb1QzZvy0g5XxRXM4hSSk5vDGdhiUfIJL+rWib9Bomnm14ZuTL5JhScFCAdNXTmfJ7p2MaHSDXYnq3S0054v2h1NXMJno/Pyr/OdIf5omG0+mAg/h5YtO8eO/bsCc7vrNWFMzbM3cyqT5k4opmyvaXcGsK2bRPqS9yzwb4pIY99YKPl1VUtl4mU3cM7wda6aP4t9XRp23snEmopEfV3ZtxrOXdOTSDqF4mUv2vNYeTWHcmyuITcwkwqcT90S8RlOvIsPSP5O+5Zczb2NRBdUqm+bCRSucOoR4etLztf/x6v5eNLMpHYtZeHXgKU7MfgiP5HPllKDdD1c3+ZZ8XtnwCp+d+4zMfGOTTE+TJ89c9AwvD30ZP0+/EnmsSvH7/rNM/mgtRxJLWn71Cg/kiYvbERXsw4ptzisFqhd/LzNXdm3GUyM7ML5HeIn4hORs3l1zhLl7ThNobspdLV+lnW8Pe/yW9D+ZdfIV8q31epMPTR1BK5w6hsnHhz5vfFJC6bx7cSL7f30Az1MJtSzhhcPJjJNMWzSNb/d+aw+LCIjgm8u/4YbON7icr0nNyef9tUdYdOBsiTmUxr6efH3HAG7r14omNbwrRIivJ+/e2If7B7WhqVPdClh2KJF31sSTk+fNLS2eZUL7Cfb4fVkb+PLEc6TnpdeozJqGh1Y4dRCTjw+93/iE/+7rTXii8dRSInw+LIt1yx7E+9C+Wpaw4bPq+Cqun389O87tsIeNajWK2VfOJio0ymWe/Wcz+O9fhznoolczrG0jnhjRjmEda9fqsFMTf/5xcTsublHyrx+fnM1rfx3m4NlcXhjyAsNCriuKy9nFHX/cQWJ2Yk2Kq2lgaIVTRzH5+NDrzY+ZGT+I9ieKXpV/GVDAb7ue4Ozv82tRuoaLxWrhna3vcN/S+0jNNebNzGLmmkbX8ObIN12urVFKEXM4kf+tO0pGnqVYXICXmXsHtmZi93B8PMw10oby8DKbuLa9mQcGtaFFsE+xuMx8Cx+uP8o7y2IZE3oLY0NvtcftTdrLtEXTOJFxoqZF1jQQtMKpw5h8fOg283/MzBpP70NFlkYruinu3jYd04JPwGotowRNZUjMTuSepffw0Y6P7Ds8N/VtyufjPmdUkGuT59wCC/+Ys4Nfdp/G2QhtcPtQnri4PV2a1s0NJTs28WfBg8OIcpJPATOXHODLLccZGHQNVzd9ALE9KuLT4rnl91s4nHK4FiTW1He0wqnjiIcHkc+/zB2Z1zFqW5FyiW0h/LflXDJnPYXklr6IUFMxtp7Zyg2/3cD6k+vtYQPDB/LDlT/Qu2lvl3nOpOUw+aN1zNlcfF5NgMs7h/H1HQMJ8qnbKw8a+Xtx14BWXNElDGd1uvVEGm+vjqej10gmN/8nnibDku501mmmLZrGnsQ9JQvUaMpAK5x6gIiQcu1tXB12P9OWKky22eiUAOG1vrvYO+cuPI/rrXCqglVZ+XL3l9y26DbOZJ8BQBDu6XEPH176IaG+rv3GHDydztXvrWbr0ZRi4T4eJu4a0IqxncIwV3ALmtrGJMKYjmHcN6gN/p7Fh/2OpebwfyvjCCrozfuXvo+vh+G8LTk3mTv+uKNUV9kajSvq9uvXBUpp7qTTLr6M7s0j+Nfc53lrXA4ZvkKBh/DNwFT67Po7UaYnIHzIeddTlbyVzV8XOJd9jqdXP83q40X7w/qaArm+2aO0yuqL2eR6zmVjfBJ3fLGRtJzi61PC/L24s38rmgd6u1Vud9GpiT+PDovk4w3HOJVRZAadmlPA22vi+aB9Xz4Z8wn3Lr2XtLw0MvIzuGfJPcwcMZPhEcNrUXJNfUH3cOoZ2Z27E3jbu8yMaU3kqaJZgy3t4ZZTr5D009OYsvWuv+WxImEF1827rpiyifDuxP2t3qSTf99S8y3adZKpn6wvoWy6hhkP6/qqbApp4u/FI0PbMrJzcWu6PIvirq82sycuhM/HfU4T3yYA5FpyeWjZQyyKW1Qb4mrqGVrh1EMKmjRj4Kc/8s99Q7l8Q9G8TnKgMLPnDpYuuQX2rCujhNI534WjhflSM/Ps+evSYtRcSy6vbHiF+/+83+6MDGBat2ncGfEyIZ6lmy1/uSaee7/dQp7TVjFTB7bmrgGt8fOsG1Zo54uPp5lPbu3PiHbF9/CzWBXTf97J/E3w5bgvaRnQEoACVcA/V/yTOQfm1Ia4mnqEVjj1FJO/P4l3/JNxrR7kiZ9NBGUW9XaWReUxM+clTs1/FmtmZi1KWbfYcXYHk36bVGwhZ5hvGB+O/pDH+j2Gh7jeXkYpxY/783h23u4SW9Q8PqYTL14dXW/mayqK2SRc060513dvXsKY4O0/D/Lu4mQ+HfM57YLbAaBQPLf2Ob7Y9UWNy6qpP+g5nPqMCGnDxhDarjMvffkiX/Y6yaZOxjtEUpDwbtBWNr9+MY8Pmk6nMROrXM35zPVUR5nnW39OQQ7vbXuPr/Z8hVUV9U5GRIzguSHP0din9N248wqsTP9pBwvi8ouFmwQm92xBK2+PBu0pc2jbxgR5e/DVluM2F9cGP2xKYOfRFD658xNuX3g3J3JjAfi/zf9HWl4af+/99wZ9XjRVQ/dwGgB5LduQ9vi7vBx4Mw//YiHYobeztm0uk4/N4KX/XEHa0YblqbsibD69mYm/TeSL3V/YlY2vhy9PD3yat0e9Xaayycgt4I4vN/Lz1uL7nXmZhbv6t2JgqxB3il5n6BEexP2D2hDitMHo3jMZ3PvVfq5vMoO2Pt3s4R/v/JiX1r9UTLlrNKAVToNBeXnTfPp0Wk14lVd+acLFO4r+7PkewvctjzL+t6v57OO/k5vZ8PfEOpN1hukrpzNt0TSOpBWZjA8MH8jPV/3MpC6TynwDT8spYNKHa1l5sPiGqaH+XjwwuC1RzQLdJntdJLKxHz/dO5jGvsWVzo6EVD5Yc5orQp6kk18/e/js/bN5atVT5FvznYvSXMBohdPAyO4UTdK//seNeVfxwldW2p8s6u0kB8AbXjFc8flQvpv9byyWvFqU1D3kW/L5fNfnXPnLlSw4vMAe7u/pz7ODnuXj0R8TERhRZhmnM3J5Y1Ucu08Ud/3cNtSPn+8bTJsQX7fIXtdpHxbAI0MjiQgqvh3Ouax83l19gqE+j9A9YJg9fP7h+Twa8yi5Fr3TtMZAz+E0QJS3D2cn343P0UuYOfcT/ti8g+9GmEgJMN7oTwdaeTnnF5rumMdQ7zFEd56Gl7n2H6Lns7anwFrAb4d+44PtH3Ais/heX938B3NZkzvwPBuGdJIy64lPzuKj9cfIzC++J1pksIkf7x1MkwBvtlWwPQ2RIB8P/j6kDZ9vSmDf2SKDlIw8C/9bl8Atfe6mS6fmdrfVMcdiuG/pfbw96m38Pf1rSWpNXUH3cBowua3bE/ndd0yZ9DzvzQrgpmUWArOKejxnAi387PU7/7dvCn/tfY1TmadqUdqqYbFaWBS3iGvmXsO/1/y7mLJpH9ye21q8wJTw6WWaOxey81Q67645UkLZjOwcxvT+PjQJqN9rbKoLHw8zdw9oTf+I4GLheRbFZ5uO09k8jduib7OHbzi1gbsW32XfDFVz4eJWhSMi40Rkv4jEish0F/HeIjLbFr9eRNrawkNFZLmIZIjIu+6UsaEjJhMhEyfSbf4ipkVN491PhBtWWPDPLlI8md5WlniuZOyPo/lu32PszViHRVnKKLX2+WHlHqYveJuRs8byjxX/ID4t3h7XyLsRT/R/gh+v+pH2fj0rVN7X647w6cZjxSyxAAa2CuHKDk3Iyc2v9TVEdQmzSZjaqwX3jSju7dSq4Imfd+KZciUP9X7IHr7z3E6mLZrGmawzFSq/Lq3d0lQfbhtSExEz8B4wGkgANorIPKWU445/dwDJSqkOIjIZeBWYBOQAzwDRto/mPDGHhNDsiX/SaOqNNHvzLca/N5/lPYQF/U2caWQMtVkF9ngcZM+p/xBk8SMq5GJanroBqwrBJLW/qFEpxYncWF5c9y1z4+eTYy2+xijAM4Bbu93KzVE3V3j4RinF/H1nWBpb0s/Lg5d0pJ1vwzZ7Ph9EhH+O68Lpc5n8vOtUsd2y/2/JAaYOHMi/BjzJyxv+A0BsSiy3/H4L71/yPu1C2tWO0JpaxZ1zOAOAWKXUYQAR+R6YADgqnAnADNvvOcC7IiJKqUxglYh0cKN8FyReERG0fP01Gk+bRsHzrzLmw41s6Cws7i3sblvU4U0zZ7Eu/XfW/fE7gaYQugRcRAe/XrT3rViPobpQSnEqN569mevYlbGa03klNyn1NQVwU7cphGWMwC8jkKUbjLfo8uZ/CqyKWdtOsOl48aEeAW7oEc6jozvpt+sKMDyyMcE+xlqdAoce4rfrjzI6vSPPXfQSz6//NxZl4XjGcW5aeBMzR87kovCLalFqTW0gynnpdHUVLDIRGKeUutN2fDMwUCn1gEOaXbY0CbbjQ7Y052zH04B+jnmc6rgbuBsgLKxp348//5pgfy9SM0taX7kKP5+wai2zIAc8fAi2uf6tTjmDy3BlnJqZh/exY4Qu+YOA3Ts51QiW9TAR00PsBgbOmDDRxrsNLU1taOVhfILMwWW2qbKyp1pSiMs/RHzBYeIKDpJY4NrLZKipCYN9h9Pbpx9hAYGVqie7QPHZXgsHUorf/14muLWLmehQ03m1pyLtrGxYtZZZRnuqWuahVCsf77GQXXybOTqEmBgbFcv3KV+Qp4y0JkxMbjyZQYGDStQNrv8D5ZGRkUFAQN30PVQVaqo9I0eO3KyU6ld+yvOnXlupKaU+Aj4C6NCluyKkIyOGRLp8K3UVfj5h1VpmykEKZYeS1lrukH2CLTw3pCMnuo/C++ghotf+RrMlS5i0wsre1sLaLsL6zkKaf5HysWIlLjeOOIrKDDCH0MQzgn6Nu5CZEUSwZxP88zMI8Itm2EXdWLLxJGbMmMUDK1Z69WvK3HUHyLKkkWo5R2r+OUL8MllzZien8+LJtJQ+uewp3lzWbixhORfRxicKk5gqfT6+XHqAD7cf5URa8SdjgJcxGd6mkW/J/A7XqMbvD3eUWUZ7qlpm+xB4qHEOX249wcnUIh9NsSlWrAe78/o1H/PUmkdItyRhxcp3Sd/h08KHh/o8ZL+OhbiqpzxiYmIYMWJEuenqCw2tPeBehXMcaOVwHGELc5UmQUQ8gGBAO02vBXJbtydiylss/HUNIUvnEbVyMdFHsrl9MeyPgO2RJra3E+Kag3Ka08iwpJBhSSH+wK7ihabCW0dL1jXD1YYH51yE2fAWXzr596Or/0A6+fdj0tBuVR7q2pGQwv+tjCMtt7iyaRvqx809W9CkAm/SmtIJD/Th5/sGM+2zjew/XbTA+PDZTB7/Np9rerzAX1mvcyrPuH6f7fqMuNQ4/jP0PwR4NZzeicY17lQ4G4GOIhKJoVgmAzc6pZkH3AqsBSYCy5S7xvg0FSI/LJyzU+4hccJNBK1aTMvVvxN1LIGoY1amrIA0X9jXSjjYwvgcCodcr+qdVPcUb1r5dCHStxtT+1/K0djgUjfWrAxbjqfyz9/3keu023ObEF9+uncwq7afKCWnpjKEB/syrXcLPt14jNjEIlcZiZl5fL4uj+t6/IvDfh+zP2sjAMuPLWfKgim8OfJN2oe0L61YTQPAbQpHKVUgIg8AfwBm4DOl1G4ReR7YpJSaB3wKfC0isUAShlICQETigSDAS0SuBsY4Wbhp3IjVz5+UMdcw/NmHWfrxLwSvXETA1nUEZRcw4IBiwAHjvcAqcDYYTjQWjofCiabenGsRQkqQiTQ/ocCUTU5+PlYKsCgLghDg5Y9YvfAx+RPs0YQgj1AuateJpFOBNPNqQyPP5vYhlv7NIzlx6Pwm7q1K8ceBsyw6ULIbFd0sgFv7RBCq19hUK36eZu4d2Jpvtp1gq8OODRYFP2xPYmT7Oxkc1oI1qXMBiE+LZ8qCKbww5AXGth1bW2Jr3Ixb53CUUguBhU5h/3b4nQNcX0retu6UTVMxxGQiK7oPWdF9MKelELTmT1puWkZenKEETAqapUCzFEXvw2BYtBsLSK1e3gQNG0ps6+5k9hyIJdAwLpjgYi5gQs9I5mZUv0VYboGV77adYNvJtBJxo9qHcmXXppi02bNb8DCbuKVPS5r6e/GH0550yw8lE5U+mhlXDOTVTS+QXZBNdkE2j//1ONvPbqe9urpaerWaukW9NhrQ1CyWoBCSx13HsOcf449vFxO0PobADSvwSE1ymd6Ul0vGn3/SnD9RYiInsiNZ3fqQ5XMFFASBh3tvv9gzGcxcGVfMXTKAWeCGHi24qHWIW+vXgEmEy7s0pXmgN9/vOFlsOHPPmQzenx/ISxM+4o0dT3Is/RgAX+/5mnCvVdzQ/B+EeZW9752mfqEVjqbSiAi5kZ04G9mJszfcge+BXQSti6HR9rVY00r2JABEWfE9vB/fw/s58tss2vv4kt2lJ5ndepPVtRfV3aHdeiKNJ//YT2Ze8R0TGvt7cVPPFrQP9avW+jRl06dlMNcOasvNn6wvZrBx6GwmD36ZwzMTZrI29T1iEmIAOJkXx/vHHuayJnfSP0gPsTUUtMLRnB8mM9ldepLdpScD+/+XpV/Ox3/rOgK2rMQzJaXUbOacbAK2rSNgm+EK++DMxoS37UJ2p2iyO0WT2yoSTJXf3aDAqvht72liDpfsdYUHevPDvYPZsvd0pcvVnD89W4Xw2LBIPtl4jGMOZtPZ+RaenHOIQa0nMa5VB5alfEWeNY98lce8s+9zIHMTg7Nepqlf01qUXlMdaIWjqTbEy4usqN5kRfXm7OWX4J1mou+5fST8tgifY4fLzGtJSiIwaQ2BW9YYxz6+5HSI4uy2QfiZm5IT2QlrQFCZZZxOz+XrrceLPcwK6dsymEk9wmnV2I8tVW+i5jwJ8fXkwSFt+XHHSTYkFF9vtfZoKi1Tonn1hk95eeNTnMkzbOr3ZW1gwq8TeLTfo1zX8boSa3Y09QetcDTuQYTcNh0Iu3E0a/qOx5yciN/ebfjv3kKjgzuwJJa93Mqck43/rs2c27WZwlH8vKbh5LTtROLBi/ChCbmt26O8fVBK8c26I7y24nCJzTfNAtdGN2dIm0Z6T7Q6gpfZxI29WtAu1I+fd58mz2Fe53haDvd9cZJxnZ4iMmge69MMn0YZ+Rk8v/Z5Fh5eyDODnqFdsN6LrT6iFY6mRrA0CiV98CWkD76EAYPasOiH5fjv3oLf3u34xO7BnJNdbhleZ07ideYkZzb8RWtAmUycbtWJd7peyRafZiXStwj2YXL3cPvOAZq6g4gwqHUjbr64Pbd+sp5zWUWeQfMKrMzbk0ynJuO4oesA/kz9gMT8kwBsOr2J6+Zex+Quk/lbz78R7B1cWhWaOohWOJoaR0wm8lq1I69VO5LHTQSLhTGNc9kwZzG+B3bhe2AXHhmujQ8KUcAfrfrxabfxZHiVNAAYmH6EFwIzOL4riLzmEeSFt8YacGG5ha4PdGsRzOPD2zF7x8li63UADpzL5NhaXy7v8jwtu63lqz1fYlEWClQB3+z9hvmH5/NArwe4ttO1eJqKm1CXMLuvoCM/jXvRCkdT+5jN+EZ3IyXVj5TRV4NSeJ08hk/sHrpkn+LU2k14H49HrMbQS4J/E97ufT07m5Rcle6bn8O9O3/l0qObsADNHeIKAoOJ79yBpn5h5DWPID+8FXnhEeSH6sno2sTX08ytfVoS3SyQOTtPku0wxJZdYOWnXYn0SRvAy5cOY/bhd9l8ejMAKbkpvLj+RT7f/Tl/6/k3ApV+oajraIWjqXuIkNeiNXktWhM+JJINq+OQ3Bys8YdZciiJxQUh5LuYOO6aGM/jm2fRIsv1/JBHeirZmzYT4hRu9fDgUKtWtAwIJS8snPyw5uSHNSenST6Sa0F5+1R/GzXFEBH6RQTTPtSPxXFJrDlU/BpuOZrC378Qpg3+B1cPOsr/drxp9+56POM4z6x+hlBTE1b8HsfTY26tjSZoKoBWOJo6j1Up1p3KZkG8mQxLY8NhjQNeWLnHnMDw40vxK8iodPmmggLy4uLwJw5Ht21x70JHoCCoEfmNgskPj+TMhk4EZ3lQ0CiM/MZhFDRugt7+r/po5OvJN3cM5PFvNzN/3xnyLEXntsCq+GRVPI22eHLfyLcgeBVf7vnC7ro60XqOn8+8xcqfvqOn71gGBI/Dz1y2ZaOmZtEKR1NnsSrFgh0nefWvw5xKz3WZpkuYPzf0COf20Vcyd/U4sFrxPHsS72Nx9JAU4jbuxOtkAp6nEjAV5Lssozw80pLxSEvG90g8ieuW42yesN/PjzbBoRQ0akJB4zAKGjUhv3ETMqzReB3PwxLcGEtAEJi0OW9FMJmEi9uF0r15ED/tOsmu08VfIpKz8nlpwSHaNenAg6M+Z/Xxn1iT8qvdA+zZ7LMszf6Gv5J/IDpgGH2DLkWpttpKsQ6gFY6mzmFVih0n01l04CwnS1E0wT4eXNW1GX1bBhV/kJhM5DdrSX6zloQNiWRN4eSx1YJn4hmGN8pn85+b8DqVgNfJY3idPFaugUJ5qKwsvLOy8D55rFj4sS+hbWEakwlLYAhxLZvTwuyPJbgRBcGNsAQ3Ji29Mz6n8rEEN6YgMBjlo63qABr7eXJn/1bsOJXOwgPnOJVWfH3V4XOZ/POHAzT178uojkPJNc1jQ9560i3Got98lcfW9D/Zmv4nS3/9kAkdJjCmzRhaB7WujeZo0ApHU4fILbCy/lgKf8Ulcc6FF0oAT5Nw78gORHiZ8faoRI/BZCY/LJyAIZGkeBR/4JiyMhjd0szqJZvxPHsSz7On8Dx7ipD0c+QdP243VjgfxGrFIzWJnNQknL2+HP8OHCWyenhwsHFjWnsHYAkIMj6BwVgCgkiKjyTgTL7t2AhTeS3PW766iojQMzyIf1wVzWPfbmZp7Lliw2wAZzLzmL0tj1Cfixna7lqGDDzJJ1s/52RekaVafFo8b215i7e2vEWnRp24tM2ljG49mvYh7XXPpwbRCkdT65xIy+GF+Xv4bt2RYhZKjgjQLyKYK7o0ZdqlnarsgM0VVr8AfKIiyUgu3rPoNySSuSti8Ug6i2fcJryyPegWkM+h7QfxSDqHZ9JZPJLPYcpz3QurKqaCAgrOnMGHMyXiTs+DFk5h+4AO3r5Y/Pyx+gdg8QvgWKtmNMsW+7HVP4DUc23xP55tHFsSsajGWHPCq1V2d+HrZWZspzAuah3C7/vPsu5oCs4zZ4k5MHdPIktifenT4gkGt0jiiOUvdqavIFcVrfM6kHyAA8kHeH/b+zTza8agFoMYFD6IgeEDCfUNrdmGXWBohaOpFTJyC9h6Mo31R1NcbkVTiAj0aRHE2I5hNAusBZ81ZjMFYc0p8OxMdkjH4sN0AEpxRbdGLF20GY+kc4ZySj6LR9I5mqssko+ewCM1GXNW5Y0ZKoMpNxtTbjYkG24AMg7swnlJ5InvwLkvtB/o4OGJ1c8fq48fVh9frL5+HGvRhOZZCquvLczHj6RDEQSdzLal88Pq60du0wI8kpJtaXyrtP9dZQj28WRyzxaMah/KkoPn2HwiDYvT7hJZeRZWxaewKt5ERNBlDI64hkH9z7Dm1DLWHF9DnrWo93w66zS/xv7Kr7G/AtA2qC0hKpJWPp1p5dOZZl5tMYtZr+OpJrTC0dQYydn57DiZxqzdp1h/OKnEG6ojZjF2GH75hp7sPliG/+naRgSPRo3Ibd2e3NbF1wUNHBLJNptykvw8zKnJjGrjw+qVuw1DhJRkzGnJRJhzOReXgDk1GXN6KqZ818OJ7sJUkI8pLQXSUuxhGfsN74eOnP61+LomgMOA4yYzVi9vDgT4E2nyxOrljfL2werlg9Xbm4Q5oTRLK3AI8yFxXzjBJ7OwevugvLyxevuQ5XUO7/hkI8zbB6uXN9acHLBa7YYXTQO8mdq7Ja9N6c0/v9/GpuOpJRQPQEJaDgl7cpi/14v+bW/kji73ENgolq1JK1h7Yi0Z+cVfBOLT4oF4tqUvB8BDPAnzjGCtNYoOIR3oENKB9iHtCfcPx8OkH5+VRZ8xjdvIKbCwbN9pftl9igPnMjmRVv7Qk7+XmaFtGjGkbSOCfTzp0DSwbiucCqI8vSho0gzfXpFkZhbvewwaEskWh16T5OZwWecg/ozZjTk9FXNGmvFJT6W9v+JYbEKxcI/MdONhXAcw5eViScrFleu09B2U6HWdgRJWf0eANk5h+4FOgNXDE+XphfLyMs5pcADT8yHZN4jFjTuxKDSaFI+SRhdWBevjklgflwR40sF3JCMbj6CgIJbcgDjiPOM4IsewUvw8Fqh8TubFseBw8SFcs5hp7t+cFgEtaBnQkpYBLQn3DyfUN5Qmvk0I9QmlkU8jrZSc0GdDUy1YleLA6XTWH0vhaEo2R88VkJC5HxcvnSUQYEiHJkQGetMjPBAv84VtPqy8ffBs2ZLctiV7OkNtC2EduWpQG+b/uRtTZgbmrExMWelc1MqfzVsO2Y4zMGdm0NofTh45ZRynJ2PKzcMjOxPyq2YuXhuYCvKhIB+yDRPovHOn8QHCgVvZyo0yh9UturOkdX+2Ne2ItZSdpWOzTcQeB+iM6VRH2qccZ0hqHCGmg1j9T5AYmkFsCzgX7NqgwKIsHM84zvGM42xko8s0oiCowJNGBV4EWb0JUF4E4EMA3gSYfAgQXwLMfgSafPEz++Jr9sXX7I2Phy8+Hj5YDx8jMTsTT09vTJ6eYPZAPDwQT+MbDw/Ew9N+LGYzOB7bPnh61hnDCK1wNJUi32Il9kwG20+mcSYjj9MZucYnPY/c+XsrVVaLIG96hQfRPyKE20ZXryHAhYSYTFj9ArD6BVDo2ixoSCRpAcXP56AhkWwqPMcpByGkI1cNbstvy/dhys7ClGP7ZGcxKDKIjVviMOVk28Kz6RDiQXzc6WLpgk0WMpNSjPy5OUgtL4L1VBZGHN/GiOPbOOcTxPKIPixv1Ye4YGdTiyKsYuJgo1YcbNQKGA6Ad0EebXedok9OAgHmI5i8T5Pnn0JycA4nQxUpAeU/wJVAqmc+qZ75QGb5wlttn0L9Hwac+R6TVeGdD1754JMPngXgaQEP+0fhYQWzQ1jxePCwCp6Y8FAmPDDjgQkPMeOJe+fcnNEKR4NVKbLyLBw6m8HhpCwy8yy2TwFbzmWy5XASyTn5pGTnk5FngYX7qlSPAG0a+XLjoDaYcwpo4u9VvQ3RVBoRQXn7YPH2wUJje3jgkEjSfYorrKFDIlnv9FLQZ0hk0YuC1Yrk5XJ5z6YsXnUAyc3BlJdrfOfm0r9tIFt2HjMUky2uY6g3h+PPYMrNsYc38RGSz6ZgyjPySW4OHgV5qEr2xJrkpHF9bAzXx8Zw0q8x68K7sTY8mt2hkaX2fArJ9fBif+PW7Kc1MLgoIgtCktJpmpdIkDqOj+k0Hh5JWH3SyPPOJtcnj2yffDJ8rWRUk1NZq0nI9oZsb0h1maKivRcFWGwfBz46H+kqh1sVjoiMA94CzMAnSqlXnOK9ga+AvkAiMEkpFW+L+xdwB8bZeVAp9UdZdeVZFEeSs9l6NJn45Cx7eOEL1+YjScQlZRWbqN4Yn8ShxCywhSpg/eFEYs9l2o8B1h5K5KBTmFKK1bHn2H82o1h4owNn2XemeFjw/jPsPZNh3wJFAUH7zrD7dLqRINOKyk0nYO9plIJdp9KLyem7+xQ7TqZhVYZysFgVuZuOsflIMharwqIUVqVIyLOwKz6pKMyq2HQ2k/0JKeRarOQVWMmzKHItVt5ae4TEjFzyLFZy8q1GfYsPlHWKq0S7MH9a+HvRqYk/HUL98fcyLH50b6YBYjKhfHzxaNKE/LD0EtHBQyJJCympxNY53Qv9hkSy3cVuz3NXHkIK8pG8PCQ/D1N+HpdEh7F8w2EkPx9T0mHEuykD2oewaWcCpvw8JC8Xyc+ne3M/vA+fYUT+CTJTE9grgRzxD2ODNYhjXpVzcZDiE0iKTyBFy3pt5Nk+9nXEFvxVIj4k4WlKx5NMTKYszKZsxJSNmHNQ5hysHnlYPPKxmixYzQVYzVYsHhYKzFYsZguqAY0wu03hiIgZeA8YDSQAG0VknlJqj0OyO4BkpVQHEZkMvApMEpEoYDLQDWPZwVIR6aSUclLNRZzOyGXmqjhmrnL9IHtzdXyJsLdchL2z5kiJsHfXlgwDeH/d0RJh/3MR9sH6kmEfbTjmFHKMj0uEGXyy0UX4thMlw/aUXLeBC1fL7qKRnyfN/b1oHeJLa89kWrdsz82XdNTKRVM9mEwoL2+Ul2EebwG8O0aSe8b2GEvxgpCOBA2JJD2w+D3nbM7eBnjQ9uKTnlvAkeRsjqZmk28ysTEukfTcUh81lcBMpjQlk6ZFb58uOhhlY+uVmPIRUz5IHmIqALGAFCBisf22IFJgpBWLQ3hBUZxjOrEWpWNXNbS1YrizhzMAiFVKHQYQke+BCYCjwpkAzLD9ngO8K8bs1gTge6VULhAnIrG28ta6UV5NBRCgebAPgZ5mmgV40TTAm2YBXjQL8OaWSzoyb028kTAlFXz0iK2m7hPo7UF080CimwcyYUgkv646TGpOAacycjmTkcfZzDyUh4ndCakkZ+eXac5f/QjgAVYPlNWwvqv++r+s9hJLw51PhJaA46t5AjCwtDRKqQIRSQVCbeHrnPKW2L9DRO4G7rYdZhx5dfz+6hG9xmkC1Bvb3/hSwqcVP6xXbaoAuj11n4bWpppqj7MVutuo16+gSqmPqNEpL/cgIpuUUv1qW47qpKG1Sben7tPQ2tTQ2gPgzumo40Arh+MIW5jLNCLigbEuLLGCeTUajUZTj3CnwtkIdBSRSBHxwjACmOeUZh5Q6J5vIrBMGaZc84DJIuItIpEYfrA2uFFWjUaj0bgZtw2p2eZkHgD+wDCL/kwptVtEngc2KaXmAZ8CX9uMApIwlBK2dD9gGBgUAPeXZaHWAKj3w4IuaGht0u2p+zS0NjW09iDaPa5Go9FoaoIGtKRIo9FoNHUZrXA0Go1GUyNohVPDiMhnInJGRHY5hDUWkSUictD23ag2ZawMItJKRJaLyB4R2S0iD9nC63ObfERkg4hst7XpOVt4pIisF5FYEZltM4apN4iIWUS2ish823G9bY+IxIvIThHZJiKbbGH1+Z4LEZE5IrJPRPaKyKD63J7S0Aqn5vkCGOcUNh34UynVEfjTdlxfKAAeU0pFARcB99u2JqrPbcoFRimlegK9gHEichHG1ktvKKU6AMkYWzPVJx4CHLf0ru/tGamU6uWwVqU+33NvAYuUUl2AnhjXqT63xzVKKf2p4Q/Grn+7HI73A+G23+HA/tqW8TzaNhdj/7wG0SbAD9iCsUvGOcDDFj4I+KO25atEOyIwHlqjgPkYe6bU5/bEA02cwurlPYex/jAOmxFXfW9PWR/dw6kbNFNKnbT9PkVJJ4j1AhFpC/QG1lPP22QbftqG4ZRyCXAISFFKFbqccbndUh3mTeCfYHdpGUr9bo8CFovIZtsWV1B/77lI4CzwuW3I8xMR8af+tqdUtMKpYyjjdabe2aqLSADwE/CwUirNMa4+tkkpZVFK9cLoGQwAutSuRFVHRMYDZ5RSm2tblmpkqFKqD3AZxjDucMfIenbPeQB9gP8ppXpjeGsrNnxWz9pTKlrh1A1Oi0g4gO3bhZ+BuouIeGIom2+VUj/bgut1mwpRSqUAyzGGnEJsWzBB/dpuaQhwlYjEA99jDKu9Rf1tD0qp47bvM8AvGC8F9fWeSwASlFLrbcdzMBRQfW1PqWiFUzdw3OLnVox5kHqBzZ3Ep8BepdRMh6j63KYwEQmx/fbFmJPai6F4JtqS1Zs2KaX+pZSKUEq1xdjNY5lSair1tD0i4i8igYW/gTEYTl3q5T2nlDoFHBORzragSzB2WamX7SkLvdNADSMis4ARGFuPnwaeBX4FfgBaA0eAG5RSNec57TwQkaHASmAnRfMDT2LM49TXNvXAcBJixngp+0Ep9byItMPoITQGtgI3KcNnU71BREYAjyulxtfX9tjk/sV26AF8p5R6SURCqb/3XC/gE8ALOAzchu3eox62pzS0wtFoNBpNjaCH1DQajUZTI2iFo9FoNJoaQSscjUaj0dQIWuFoNBqNpkbQCkej0Wg0NYJWOJoGiYhYbDsJ77bt+vyYiJhscf1E5G0313+1bRPT8y2nt4h8Wk0yjbd53NVoagVtFq1pkIhIhlIqwPa7KfAdsFop9WwN1f8FMF8pNacSeTwc9jYrDPsReFEptb0aZBKMjUiHKKWyzrc8jaay6B6OpsFj2/7kbuABMRjh4BNmgIistW2auKZwtbeITBORX21+SOJF5AERedSWbp2INLalay8ii2ybSK4UkS4iMhi4CnjN1stq7yqdLf8XIvKBiKwH/usot201fY9CZSMiM8TwpxQjIodF5EFbeFubH5UvROSAiHwrIpeKyGqbL5UBtvOggBhgvNtPukbjAo/yk2g09R+l1GERMQNNnaL2AcOUUgUicinwH+A6W1w0xu7XPkAs8IRSqreIvAHcgrED80fA35RSB0VkIPC+UmqUiMzDoYcjIn86p8PY0wyMfcwGK6UsTrL1w9iyxZEuwEggENgvIv+zhXcArgduBzYCNwJDMRTfk8DVtnSbgGEYK9g1mhpFKxzNhU4w8KWIdMTYjdfTIW65UiodSBeRVOA3W/hOoIdth+zBwI/GaBUA3s4VVCDdjy6UDRg+UM46hS2wbT+TKyJnKNqyPk4ptdNW324Mx11KRHZi+F8q5AzQwkVdGo3b0QpHc0Fg23/LgvHA7eoQ9QKGYrlGDH8+MQ5xjvuKWR2OrRj/HROGT5le5VRfXrrMUsKzMXpXjjjKZKHoP1yerIX42MrVaGocPYejafCISBjwAfCuKmklE0zRtvzTKlOuze9PnIhcb6tHRKSnLTodY9irvHRlsRdjqKw66UTJYTqNpkbQCkfTUPEtNIsGlgKLgedcpPsv8LKIbKVqPf6pwB0ish3YDUywhX8P/MNmZNC+jHSlopTaBwQXbsVfTYwEFlRjeRpNhdFm0RpNHUZEHgHSlVKfVENZzTC28r/k/CXTaCqP7uFoNHWb/1F8fuZ8aA08Vk1laTSVRvdwNBqNRlMj6B6ORqPRaGoErXA0Go1GUyNohaPRaDSaGkErHI1Go9HUCFrhaDQajaZG+H/Rduq4ug0usgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig = plt.figure()\n",
+    "ax = fig.add_subplot(111)\n",
+    "ax.set_title('PADC etch track diameter histogram unfolding', fontsize=16)\n",
+    "ax.set_xlabel('Diameter (nm)')\n",
+    "ax.set_ylabel('Density')\n",
+    "ax.set_xlim(xmin=1, xmax=65)\n",
+    "ax.bar(diameter, data['y'], color='lightsteelblue')\n",
+    "ax.plot(dh, lopt, '-', linewidth=4, color='tab:red')\n",
+    "ax.plot(dh, gopt, '-', linewidth=4, color='tab:blue')\n",
+    "ax.plot(dh, w, '-', linewidth=3, color='tab:green')\n",
+    "ax.grid()\n",
+    "glab = 'Unfolded Normal($\\\\mu=%1.2f$, $\\\\sigma=%1.2f, A=%1.2f$)' % (muopt, sigmaopt, Agopt)\n",
+    "llab = 'Unfolded log-Normal($a=%1.2f$, $b=%1.2f, A=%1.2f$)' % (aopt, bopt, Alopt)\n",
+    "ax.legend([llab, glab, 'Aggregated', 'Measured track diameter density'])\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Figure 4**: Aggregated model used for the fitting (green curve) and unfolded models (blue and red curves).\n",
+    "Optimal parameter values are ported in the legend."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Finally, clean up and destroy the handle"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Destroy the handle:\n",
+    "opt.handle_free(handle)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.10"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/local_optimization/DFO_noisy.ipynb b/local_optimization/DFO/DFO_noisy.ipynb
similarity index 88%
rename from local_optimization/DFO_noisy.ipynb
rename to local_optimization/DFO/DFO_noisy.ipynb
index b3df82f..83f36a2 100644
--- a/local_optimization/DFO_noisy.ipynb
+++ b/local_optimization/DFO/DFO_noisy.ipynb
@@ -1,5 +1,16 @@
 {
  "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": 1,
@@ -285,7 +296,7 @@
     "    data.noiselev = noiselevel\n",
     "    print(data.fun)\n",
     "    try:\n",
-    "        sln = opt.bounds_quasi_func_easy(ibound, objfun_bob, xl, xu, xstart, data=data)\n",
+    "        _ = opt.bounds_quasi_func_easy(ibound, objfun_bob, xl, xu, xstart, data=data)\n",
     "    except utils.NagValueError as e:\n",
     "        if e.errno == 2 and not data.ok:\n",
     "            print('Maximum number of evaluations exceeded:', 400*n)\n",
@@ -334,8 +345,8 @@
     "        opt.handle_opt_set(handle, optstr)\n",
     "    # Call the solver\n",
     "    try:\n",
-    "        x, rinfo, stats = opt.handle_solve_dfno(handle, objfun, xstart, data=data, io_manager=iom)\n",
-    "    except utils.NagCallbackTerminateWarning as e:\n",
+    "        _ = opt.handle_solve_dfno(handle, xstart, objfun=objfun, data=data, io_manager=iom)\n",
+    "    except utils.NagCallbackTerminateWarning as _e:\n",
     "        pass\n",
     "    # print results\n",
     "    print(pname)\n",
@@ -548,7 +559,7 @@
      "text": [
       "Help on function handle_solve_dfno in module naginterfaces.library.opt:\n",
       "\n",
-      "handle_solve_dfno(handle, objfun, x, monit=None, data=None, io_manager=None)\n",
+      "handle_solve_dfno(handle, x, objfun=None, monit=None, data=None, io_manager=None)\n",
       "    Direct communication derivative-free (DFO) solver for a nonlinear\n",
       "    objective function with bounded variables.\n",
       "    \n",
@@ -563,19 +574,32 @@
       "    For full information please refer to the NAG Library document for\n",
       "    e04jd\n",
       "    \n",
-      "    https://www.nag.com/numeric/nl/nagdoc_27/flhtml/e04/e04jdf.html\n",
+      "    https://www.nag.com/numeric/nl/nagdoc_27.1/flhtml/e04/e04jdf.html\n",
       "    \n",
       "    Parameters\n",
       "    ----------\n",
       "    handle : Handle\n",
-      "        The handle to the problem. It needs to be initialized by\n",
-      "        ``handle_init`` and **must not** be changed before the call to\n",
-      "        ``handle_solve_dfno``.\n",
+      "        The handle to the problem. It needs to be initialized (e.g., by\n",
+      "        ``handle_init``) and to hold a problem formulation compatible\n",
+      "        with ``handle_solve_dfno``. It **must not** be changed between\n",
+      "        calls to the NAG optimization modelling suite.\n",
+      "    \n",
+      "    x : float, array-like, shape (nvar)\n",
+      "        x_0, the initial estimates of the variables, x.\n",
+      "    \n",
+      "    objfun : None or callable (fx, inform) = objfun(x, inform,\n",
+      "        data=None), optional\n",
+      "        Note: if this argument is None then a NAG-supplied facility will\n",
+      "        be used.\n",
       "    \n",
-      "    objfun : callable (fx, inform) = objfun(x, inform, data=None)\n",
       "        `objfun` calculates the value of the objective function f(x) at\n",
       "        a specified point x.\n",
       "    \n",
+      "        If there is no nonlinear objective (e.g., ``handle_set_linobj``\n",
+      "        or ``handle_set_quadobj`` was called to define a linear or\n",
+      "        quadratic objective function), `objfun` will never be called by\n",
+      "        ``handle_solve_dfno`` and may be None.\n",
+      "    \n",
       "        Parameters\n",
       "        ~~~~~~~~~~\n",
       "        x : float, ndarray, shape (nvar)\n",
@@ -610,9 +634,6 @@
       "                return the best available point as well as the solve\n",
       "                statistics.\n",
       "    \n",
-      "    x : float, array-like, shape (nvar)\n",
-      "        x_0, the initial estimates of the variables x.\n",
-      "    \n",
       "    monit : None or callable monit(x, rinfo, stats, data=None), optional\n",
       "        Note: if this argument is None then a NAG-supplied facility will\n",
       "        be used.\n",
@@ -653,7 +674,7 @@
       "    Returns\n",
       "    -------\n",
       "    x : float, ndarray, shape (nvar)\n",
-      "        The final values of the variables x.\n",
+      "        The final values of the variables, x.\n",
       "    \n",
       "    rinfo : float, ndarray, shape (100)\n",
       "        Optimal objective value and various indicators at monitoring\n",
@@ -997,11 +1018,10 @@
       "            The problem is already being solved.\n",
       "    \n",
       "        (`errno` 4)\n",
-      "            The information supplied does not match with that previously\n",
-      "            stored.\n",
+      "            On entry, nvar = *<value>*, expected value = *<value>*.\n",
       "    \n",
-      "            On entry, nvar = *<value>* must match that given during\n",
-      "            initialization of the `handle`, i.e., *<value>*.\n",
+      "            Constraint: nvar must match the current number of variables\n",
+      "            of the model in the `handle`.\n",
       "    \n",
       "        (`errno` 5)\n",
       "            Inconsistent options 'DFO Trust Region Tolerance' rho_end\n",
@@ -1043,6 +1063,9 @@
       "            Growing the interpolation set is not supported for this\n",
       "            solver.\n",
       "    \n",
+      "        (`errno` 7)\n",
+      "            Please provide a proper `objfun` function.\n",
+      "    \n",
       "    Warns\n",
       "    -----\n",
       "    NagAlgorithmicWarning\n",
@@ -1106,6 +1129,74 @@
       "        (`errno` 20)\n",
       "            User requested termination during a monitoring step.\n",
       "    \n",
+      "    Notes\n",
+      "    -----\n",
+      "    ``handle_solve_dfno`` is aimed at minimizing a nonlinear objective\n",
+      "    function subject to bound constraints:\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    Here f is a smooth nonlinear function and l_x and u_x are\n",
+      "    n-dimensional vectors defining bounds on the variables.\n",
+      "    \n",
+      "    ``handle_solve_dfno`` serves as a solver for compatible problems\n",
+      "    stored as a handle.\n",
+      "    The handle points to an internal data structure which defines the\n",
+      "    problem and serves as a means of communication for functions in the\n",
+      "    NAG optimization modelling suite.\n",
+      "    To define a compatible problem handle, you must call ``handle_init``\n",
+      "    followed by ``handle_set_nlnobj`` to initialize it and optionally\n",
+      "    call ``handle_set_simplebounds`` to define bounds on the variables.\n",
+      "    If ``handle_set_simplebounds`` is not called, all the variables will\n",
+      "    be considered free by the solver.\n",
+      "    It should be noted that ``handle_solve_dfno`` always assumes that\n",
+      "    the gradient of the objective is dense, therefore, defining a sparse\n",
+      "    structure for the residuals in the call to ``handle_set_nlnobj``\n",
+      "    will have no effect.\n",
+      "    See [the E04 Introduction] for more details about the NAG\n",
+      "    optimization modelling suite.\n",
+      "    \n",
+      "    The solver allows fixing variables with the definition of the\n",
+      "    bounds.\n",
+      "    However, the following constraint must be met in order to be able to\n",
+      "    call the solver:\n",
+      "    \n",
+      "        for all non-fixed variable x_i, the value of u_x(i)-l_x(i) must\n",
+      "        be at least twice the starting trust region radius (see the\n",
+      "        consistency constraint of the option 'DFO Starting Trust\n",
+      "        Region').\n",
+      "    \n",
+      "    The solver is based on a derivative-free trust region framework.\n",
+      "    This type of method is well suited for small to medium-scale\n",
+      "    problems (around 100 variables) for which the derivatives are\n",
+      "    unavailable or not easy to compute, and/or for which the function\n",
+      "    evaluations are expensive or noisy.\n",
+      "    For a detailed description of the algorithm see [Algorithmic\n",
+      "    Details].\n",
+      "    \n",
+      "    The algorithm behaviour and solver strategy can be modified by\n",
+      "    various options (see [Other Parameters]) which can be set by\n",
+      "    ``handle_opt_set`` and ``handle_opt_set_file`` at any time between\n",
+      "    the initialization of the handle by ``handle_init`` and a call to\n",
+      "    the solver.\n",
+      "    The options' names specific for this solver start either with the\n",
+      "    prefix DFO (Derivative-free Optimization) or DFNO (Derivative-free\n",
+      "    Nonlinear Optimization).\n",
+      "    The default values for these options are chosen to work well in the\n",
+      "    general case, but it is recommended you tune them to your particular\n",
+      "    problem.\n",
+      "    In particular, if the objective function is known to be noisy, it is\n",
+      "    highly recommended to set the option 'DFO Noisy Problem' to 'YES'.\n",
+      "    Once the solver has finished, options may be modified for the next\n",
+      "    solve.\n",
+      "    The solver may be called repeatedly with various starting points\n",
+      "    and/or options.\n",
+      "    \n",
+      "    The underlying algorithm implemented for ``handle_solve_dfno`` is\n",
+      "    the same as the one used by ``handle_solve_dfno_rcomm``.\n",
+      "    ``handle_solve_dfno`` serves as a forward communication interface to\n",
+      "    the derivative-free solver for nonlinear objective functions.\n",
+      "    \n",
       "    References\n",
       "    ----------\n",
       "    Cartis, C, Fiala, J, Marteau, B and Roberts, L, 2018, `Improving the\n",
@@ -1159,7 +1250,7 @@
       "    For full information please refer to the NAG Library document for\n",
       "    e04jy\n",
       "    \n",
-      "    https://www.nag.com/numeric/nl/nagdoc_27/flhtml/e04/e04jyf.html\n",
+      "    https://www.nag.com/numeric/nl/nagdoc_27.1/flhtml/e04/e04jyf.html\n",
       "    \n",
       "    Parameters\n",
       "    ----------\n",
@@ -1358,6 +1449,72 @@
       "    No equivalent traditional C interface for this routine exists in the\n",
       "    NAG Library.\n",
       "    \n",
+      "    ``bounds_quasi_func_easy`` is applicable to problems of the form:\n",
+      "    \n",
+      "        MinimizeF(x_1,x_2,...,x_n) subject to l_j <= x_j <= u_j, j =\n",
+      "        1,2,...,n\n",
+      "    \n",
+      "    when derivatives of F(x) are unavailable.\n",
+      "    \n",
+      "    Special provision is made for problems which actually have no bounds\n",
+      "    on the x_j, problems which have only non-negativity bounds and\n",
+      "    problems in which l_1 = l_2 = ... = l_n and u_1 = u_2 = ... = u_n.\n",
+      "    You must supply a function to calculate the value of F(x) at any\n",
+      "    point x.\n",
+      "    \n",
+      "    From a starting point you supplied there is generated, on the basis\n",
+      "    of estimates of the gradient and the curvature of F(x), a sequence\n",
+      "    of feasible points which is intended to converge to a local minimum\n",
+      "    of the constrained function.\n",
+      "    An attempt is made to verify that the final point is a minimum.\n",
+      "    \n",
+      "    A typical iteration starts at the current point x where n_z (say)\n",
+      "    variables are free from both their bounds.\n",
+      "    The projected gradient vector g_z, whose elements are finite\n",
+      "    difference approximations to the derivatives of F(x) with respect to\n",
+      "    the free variables, is known.\n",
+      "    A unit lower triangular matrix L and a diagonal matrix D (both of\n",
+      "    dimension n_z), such that LDL^T is a positive definite approximation\n",
+      "    of the matrix of second derivatives with respect to the free\n",
+      "    variables (i.e., the projected Hessian) are also held.\n",
+      "    The equations\n",
+      "    \n",
+      "        LDL^Tp_z = -g_z\n",
+      "    \n",
+      "    are solved to give a search direction p_z, which is expanded to an\n",
+      "    n-vector p by an insertion of appropriate zero elements.\n",
+      "    Then alpha is found such that F(x+alpha p) is approximately a\n",
+      "    minimum (subject to the fixed bounds) with respect to alpha; x is\n",
+      "    replaced by x+alpha p, and the matrices L and D are updated so as to\n",
+      "    be consistent with the change produced in the estimated gradient by\n",
+      "    the step alpha p.\n",
+      "    If any variable actually reaches a bound during the search along p,\n",
+      "    it is fixed and n_z is reduced for the next iteration.\n",
+      "    Most iterations calculate g_z using forward differences, but central\n",
+      "    differences are used when they seem necessary.\n",
+      "    \n",
+      "    There are two sets of convergence criteria -- a weaker and a\n",
+      "    stronger.\n",
+      "    Whenever the weaker criteria are satisfied, the Lagrange multipliers\n",
+      "    are estimated for all the active constraints.\n",
+      "    If any Lagrange multiplier estimate is significantly negative, then\n",
+      "    one of the variables associated with a negative Lagrange multiplier\n",
+      "    estimate is released from its bound and the next search direction is\n",
+      "    computed in the extended subspace (i.e., n_z is increased).\n",
+      "    Otherwise minimization continues in the current subspace provided\n",
+      "    that this is practicable.\n",
+      "    When it is not, or when the stronger convergence criteria are\n",
+      "    already satisfied, then, if one or more Lagrange multiplier\n",
+      "    estimates are close to zero, a slight perturbation is made in the\n",
+      "    values of the corresponding variables in turn until a lower function\n",
+      "    value is obtained.\n",
+      "    The normal algorithm is then resumed from the perturbed point.\n",
+      "    \n",
+      "    If a saddle point is suspected, a local search is carried out with a\n",
+      "    view to moving away from the saddle point.\n",
+      "    A local search is also performed when a point is found which is\n",
+      "    thought to be a constrained minimum.\n",
+      "    \n",
       "    References\n",
       "    ----------\n",
       "    Gill, P E and Murray, W, 1976, `Minimization subject to bounds on\n",
@@ -1373,7 +1530,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -1387,7 +1544,25 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
   }
  },
  "nbformat": 4,
diff --git a/local_optimization/DFO/Readme.md b/local_optimization/DFO/Readme.md
new file mode 100644
index 0000000..9460b19
--- /dev/null
+++ b/local_optimization/DFO/Readme.md
@@ -0,0 +1,89 @@
+[![NAG Logo](../../nag_logo.png)](https://www.nag.com)
+
+# Derivative-Free Optimization ([DFO](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#derivatives))
+
+[DFO](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#derivatives) solvers are aimed at optimizing _black box_ models and can handle either [calibration (nonlinear least squares)](https://en.wikipedia.org/wiki/Non-linear_least_squares) problems (DFLS) 
+or [problems with a generic objective function](https://en.wikipedia.org/wiki/Nonlinear_programming) (DFNO).
+
+* Calibration: DFLS (Derivative Nonlinear least squares)
+[[`handle_solve_dfls`](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_dfls) | 
+[`e04fff`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04fff.html) | 
+[`e04ffc`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04ffc.html) ]
+
+ * DFNO (Derivative-Free Nonlinear Optimization) 
+ [[`handle_solve_dfno`](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_dfno) | 
+ [`e04jdf`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04jdf.html) | 
+[`e04jdc`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04jdc.html) ]
+
+
+Optimizing complex numerical models is one of the most common problems found in the industry (finance, multi-physics simulations, 
+engineering, etc.). To solve these optimization problems with a standard optimization algorithm such as 
+[Gauss–Newton](https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm) (for 
+problems with a nonlinear least squares structure) or 
+[CG](https://en.wikipedia.org/wiki/Conjugate_gradient_method) (for unstructured nonlinear objective) requires good estimates 
+of the model's derivatives. 
+If exact derivatives are easy to compute then using derivative-based methods is preferable. However, explicitly writing the derivatives 
+or applying [AD methods](https://www.nag.com/content/algorithmic-differentiation-software) might be impossible if the model is a black box. 
+The alternative, estimating derivatives via [finite differences](https://en.wikipedia.org/wiki/Finite_difference#Relation_with_derivatives), 
+can quickly become impractical or too computationally expensive. Under these circumstances, an attractive optimization solver that does not 
+require the user to provide any derivatives is the model-based DFO solver.
+
+NAG's model-based [DFO](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#derivatives) [solvers for DFLS and DFNO]() present a number of attractive features:
+
+ * Proved resilient to noise,
+ * The least-square solver is able to start making progress with as few as two objective evaluations,
+ * Integrated to the [NAG Optimization Modeling Suite (NOMS)](https://www.nag.com/numeric/nl/nagdoc_latest/clhtml/e04/e04intro.html#optsuite) with simple interfaces for the solvers and related routines,
+ * Optional reverse communication interface.
+
+![2 steps of DFO algorithm](animation.gif)
+
+**Figure 1.** Animation showing 2 iterations of a model-based DFO algorithm [`handle_solve_dfls`](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_dfls).
+
+
+## Poster
+<table><tr>
+<td valign="top">A 2019 poster discussing NAG's DFO/DFLS functionality 
+<a href="https://www.nag.com/market/posters/derivative_free_optimization_solver_calibration_problems.pdf">is available on the NAG website</a>.</td>
+<!--- td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td --->
+<td><a href="https://www.nag.com/market/posters/derivative_free_optimization_solver_calibration_problems.pdf">
+<img src="https://www.nag.com/sites/default/files/styles/paragraph_image_/public/2020-01/dfo-solver_1.png?itok=6_PijS2l" 
+width="500px" alt="DFO Poster thumbnail"/></a></td>
+</tr></table>
+
+## Example 
+
+The Jupyter notebook showcases the optimization of noisy problems where the objective function is not deterministic. 
+The example discuses and illustrates the advantages of using a DFO solver instead of a derivative-based solver using 
+finite difference estimations for the gradient.
+
+  * [Noisy problem notebook.](DFO_noisy.ipynb)
+
+## More information 
+
+ * [Informative Leaflet](https://www.nag.com/content/derivative-free-optimization-dfo)
+ 
+ * Blog post from the OptCorner [The price of derivatives - Derivative-free Optimization](https://www.nag.com/blog/optcorner-price-derivatives-derivative-free-optimization)
+ 
+ * [DFO/DFLS in the NAG Library for Python](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_dfls)
+
+ * Examples [ [Python example](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_dfls_ex.main) | [C example](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04ffc.html#example) | [Fortran 90 example](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04fff.html#example) ]
+
+ * [DFO/DFNO in the NAG Library for Python](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_dfno)
+ 
+ * Examples [ [Python example](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_dfno_ex.main) | [C example](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04jdc.html#example) | [Fortran 90 example](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04jdf.html#example) ]
+
+
+## References
+
+* C. Cartis, J. Fiala, B. Marteau, and L. Roberts (2019) _Improving the Flexibility and robustness of 
+  model-based derivative-free optimization solvers_. ACM Transactions On Numerical Software.
+* C. Cartis and L. Roberts (2017) _A derivative-free Gauss–Newton method_. Mathematical Programming Computation.
+* Powell M. J. D. (2009) _The BOBYQA algorithm for bound constrained optimization without derivatives_. Report DAMTP 2009/NA06 University of Cambridge.
+
+<!-- foot banner for commercial material -->
+
+# Obtaining the NAG Library for Python
+
+ * Instructions on [how to install the NAG Library for Python](../Readme.md#install)
+ * Instructions on [how to run the Jupyter notebooks in the Repository](../Readme.md#jupyter)
+
diff --git a/local_optimization/DFO/animation.gif b/local_optimization/DFO/animation.gif
new file mode 100644
index 0000000..80c75da
Binary files /dev/null and b/local_optimization/DFO/animation.gif differ
diff --git a/local_optimization/animation.mp4 b/local_optimization/DFO/animation.mp4
similarity index 100%
rename from local_optimization/animation.mp4
rename to local_optimization/DFO/animation.mp4
diff --git a/local_optimization/FOAS/README.md b/local_optimization/FOAS/README.md
index ed229aa..fbceeba 100644
--- a/local_optimization/FOAS/README.md
+++ b/local_optimization/FOAS/README.md
@@ -1 +1,74 @@
-# First-order active-set method
+[![NAG Logo](../../nag_logo.png)](https://www.nag.com)
+
+# First-order active-set method (FOAS)
+[[`handle_solve_bounds_foas`](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_bounds_foas) | [`e04kff`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04kff.html) | 
+[`e04kfc`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04kfc.html) ]
+
+Implementations of first-order methods not only are ubiquitous and have a widespread use, they have also demonstrated to endure the challenges of ever-growing problems sizes imposed by the industry. Most notable are applications in statistics, e.g. parameter calibration for log-linear models, conditional random fields (L2-regularisation) or logistic multi-class regression, amongs many other. First-order methods and the Conjugate Gradient method inparticular have been a research subject for well over 50 years and continue to be improved.
+
+FOAS is a [first-order nonlinear conjugate method](https://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method) for large-scale bound-constrained nonlinear optimization. The solver is ideal for very large problems (tens of thousands or more variables) where the first-order derivatives are available or are relatively _cheap_ to estimate.
+
+e04kf is also part of the [NAG Optimization Modelling Suite](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#optsuite) common handle interface. It offers clarity and consistency of the interface of the solvers within the suite, making it trivial to switch among compatible solvers.
+
+The following example illustrates the simple usage of FOAS to solve the bound-constrained 2D version of the [Rosenbrock function](https://en.wikipedia.org/wiki/Rosenbrock_function) which is a classical test function to measure and profile performance of solvers. Source of this example is avaible in [rosenbrock2d.ipynb](rosenbrock2d.ipynb).
+
+<table><tr>
+<td><img src="./images/Rosenbrock2dw.png" width="412px" alt="2D Rosenbrock example"/></td>
+ <td><img src="./images/handle_solve_bounds_foas_ex.png" width="412px" alt="2D Rosenbrock with bounds"/></td>
+</tr></table>
+
+**Figure 1.** 2D Rosenbrock function, (left) the minimum is shown as a yellow dot at x=(1,1). On the right a bound constrained version showing with a purple dotted line a path towards the constrained solution point on the border.
+
+## More information 
+ 1. [FOAS information page](https://www.nag.com/content/limited-memory-nonlinear-conjugate-gradient-solver)
+ 2. [FOAS in the NAG Library for Python](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_bounds_foas)
+ 3. [FOAS documentation page](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04kfc.html) [ [C](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04kfc.html) | [Fortran](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04kff.html) ]
+ 4. Examples [ [Python example](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_bounds_foas_ex.main) | [C example](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04kfc.html#example) | [Fortran example](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04kff.html#example) ]
+
+## A modern replacement for NAG solver [`uncon_conjgrd_comp` (`e04dg`)](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04dgf.html)
+One of the main design objectives for `handle_solve_bounds_foas` (`e04kf`) was to provide a modern and attractive replacement for the CG solver `e04dg` introduced in Mark 12. While this solver was targeted for unconstrained NLPs, `e04kf` has been extended with an active-set method in order to solve bound-constrained NLPs.
+
+More recent and modern methods have been incorporated into `e04kf` making it much faster than `e04dg`. The following Figure 2 reports performance profiles over 114 unconstrained NLP CUTEst problems for both solvers `e04kf` and `e04dg`. Contrasting the three plots, it is evident that the new solver is more efficient in time (40% faster) and in general terms is less expensive: requires less function and gradient evaluations.
+
+<table><tr>
+<td><img src="./images/KF_DG_unconst_tokyo_notriv-NT.png" width="275px" alt="Perf profile e04kf/e04dg time (s)"/></td>
+<td><img src="./images/KF_DG_unconst_tokyo_notriv-NF.png" width="275px" alt="Perf profile e04kf/e04dg function evaluations"/></td>
+<td><img src="./images/KF_DG_unconst_tokyo_notriv-NG.png" width="275px" alt="Perf profile e04kf/e04dg gradient evaluations"/></td>
+</tr></table>
+
+**Figure 2.** Performance profiles comparing solvers `e04kf` and `e04dg`. In the time plot on the left, higher line indicates faster solver. For the center and right plots higher line represent less functions (NF) or gradients (NG) calls. For all three plots it can be seen that `e04kf` is 40% faster in time and requires less function and gradient calls.
+
+## Migrating from Marks 25 and 26 to Mark 27
+
+Notes and comments on migrating your code from [`uncon_conjgrd_comp (e04dg)`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04dgf.html) to the new FOAS solver [`handle_solve_bounds_foas`](https://www.nag.co.uk/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.handle_solve_bounds_foas) ([`e04kff`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04kff.html), 
+[`e04kfc`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04kfc.html)):
+
+ * [Python](migration/migration_e04dg_e04kf.ipynb)
+ * [Fortran 90](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/genint/replace.html#e04dgf)
+ * [C](https://www.nag.com/numeric/nl/nagdoc_latest/clhtml/genint/replace.html#e04dgc)
+
+## Beale's function
+This example compares the steps taken by FOAS and L-BFGS-B 3.0 to find the solution point to [Beale's function](https://en.wikipedia.org/wiki/Test_functions_for_optimization). It is a classic nonconvex test function used to benchmark nonlinear optimization solvers.
+
+Both solvers are used to find a minimum to the function and are started at the same initial point (2, 2). The following figure shows an animation of the steps taken by each solver to find a minimum to the function. 
+It illustrates the agressive steps taken by the [Conjugate Gradient method](https://en.wikipedia.org/wiki/Conjugate_gradient_method) compared to the more conservative steps of BFGS.
+
+<img src="./images/animated.gif" width="400px" alt="Beale function solved using e04kf and L-BFGS-B"/>
+
+**Figure 3.** Contour plots for Beale's function (thin blue lines), and the steps taken by FOAS (red) and L-BFGS-B 3.0 (blue) to find the minimum of Beale's funtion at (3, 0.5) marked with a magenta star. It can be seen that FOAS by the 8th step provides a reasonable approximation to the solution point while L-BFGS-B is still relatively far from it. 
+
+## References
+
+ * Hager W W and Zhang H (2005) _A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search_. SIAM J. Optim. 16(1) 170–192
+ * Hager W W and Zhang H (2006a) _Algorithm 851: CG DESCENT, a Conjugate Gradient Method with Guaranteed Descent_. ACM Trans. Math. Software 32(1) 113–137
+ * Hager W W and Zhang H (2006b) _A New Active Set Algorithm for Box Constrained Optimization_. SIAM J. Optim. 17(2) 525–557
+ * Hager W W and Zhang H (2013) _The Limited Memory Conjugate Gradient Method_. SIAM J. Optim. 23(4) 2150–2168
+ * Nocedal J and Wright S J (2006) _Numerical Optimization_. (2nd Edition) Springer Series in Operations Research, Springer, New York 
+
+<!-- foot banner for commercial material -->
+
+# Obtaining the NAG Library for Python
+
+ * Instructions on [how to install the NAG Library for Python](../Readme.md#install)
+ * Instructions on [how to run the Jupyter notebooks in the Repository](../Readme.md#jupyter)
+
diff --git a/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NF.png b/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NF.png
new file mode 100644
index 0000000..ccce006
Binary files /dev/null and b/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NF.png differ
diff --git a/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NG.png b/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NG.png
new file mode 100644
index 0000000..5cf3b25
Binary files /dev/null and b/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NG.png differ
diff --git a/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NT.png b/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NT.png
new file mode 100644
index 0000000..4cf3ba3
Binary files /dev/null and b/local_optimization/FOAS/images/KF_DG_unconst_tokyo_notriv-NT.png differ
diff --git a/local_optimization/FOAS/Rosenbrock2dw.png b/local_optimization/FOAS/images/Rosenbrock2dw.png
similarity index 100%
rename from local_optimization/FOAS/Rosenbrock2dw.png
rename to local_optimization/FOAS/images/Rosenbrock2dw.png
diff --git a/local_optimization/FOAS/images/animated.gif b/local_optimization/FOAS/images/animated.gif
new file mode 100644
index 0000000..2f6cd8f
Binary files /dev/null and b/local_optimization/FOAS/images/animated.gif differ
diff --git a/local_optimization/FOAS/images/handle_solve_bounds_foas_ex.png b/local_optimization/FOAS/images/handle_solve_bounds_foas_ex.png
new file mode 100644
index 0000000..34b855f
Binary files /dev/null and b/local_optimization/FOAS/images/handle_solve_bounds_foas_ex.png differ
diff --git a/local_optimization/FOAS/migration/migration_e04dg_e04kf.ipynb b/local_optimization/FOAS/migration/migration_e04dg_e04kf.ipynb
new file mode 100644
index 0000000..ec88954
--- /dev/null
+++ b/local_optimization/FOAS/migration/migration_e04dg_e04kf.ipynb
@@ -0,0 +1,216 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Migrating from `uncon_conjgrd_comp` to `handle_solve_bounds_foas`\n",
+    "\n",
+    "This notebook illustrates the steps required to upgrade from the solver `uncon_conjgrd_comp` (`E04DG`) to `handle_solve_bounds_foas` (`E04KF`) introduced at Mark 27 of the NAG Library.\n",
+    "\n",
+    "From the usage perspective, the main difference between the solvers is the user call-backs,\n",
+    "`uncon_conjgrd_comp` has a single user call-back that can return *objective \n",
+    "function* and *gradient* evaluations, while `handle_solve_bounds_foas` has two separate user call-backs, \n",
+    "one for the *objective funtion* and one for the *objective gradient*.\n",
+    "\n",
+    "In this notebook the 2d Rosenbrock problem is solved with both solvers and illustrates the changes necessary for the migration to `handle_solve_bounds_foas`. The solution to the problem is (1, 1)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# NAG Copyright 2020.\n",
+    "from naginterfaces.base import utils\n",
+    "from naginterfaces.library import opt\n",
+    "import numpy as np"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Define E04DG user call-back\n",
+    "def objfun_e04dg(mode, x, _nstate, _data=None):\n",
+    "    objf = (1. - x[0])**2 + 100.*(x[1] - x[0]**2)**2\n",
+    "    if mode == 2:\n",
+    "        fdx = [\n",
+    "            2.*x[0] - 400.*x[0]*(x[1]-x[0]**2) - 2.,\n",
+    "            200.*(x[1]-x[0]**2),\n",
+    "        ]\n",
+    "        return objf, fdx\n",
+    "    return objf, np.zeros(len(x))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Define user call-backs for E04KF\n",
+    "def objfun_e04kf(x, inform, _data=None): \n",
+    "    \"\"\"Return the objective function value\"\"\"\n",
+    "    objf = (1. - x[0])**2 + 100.*(x[1] - x[0]**2)**2\n",
+    "    return objf, inform\n",
+    "\n",
+    "def objgrd_e04kf(x, fdx, inform, _data=None):\n",
+    "    \"\"\"The objective's gradient. Note that fdx has to be updated IN-PLACE\"\"\"\n",
+    "    fdx[:] = [\n",
+    "        2.*x[0] - 400.*x[0]*(x[1]-x[0]**2) - 2.,\n",
+    "        200.*(x[1]-x[0]**2),\n",
+    "    ]\n",
+    "    return inform"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# The initial guess\n",
+    "x = [-1.5, 1.9]\n",
+    "\n",
+    "# Use an explicit I/O manager for abbreviated iteration output\n",
+    "iom = utils.FileObjManager(locus_in_output=False)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Solve the problem with `uncon_conjgrd_comp`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "<ipython-input-5-a8bdc418615c>:2: NagDeprecatedWarning: (NAG Python function naginterfaces.library.opt.uncon_conjgrd_comp)\n",
+      "This function is deprecated.\n",
+      "The following advice is given for making a replacement:\n",
+      "Please use handle_solve_bounds_foas instead.\n",
+      "See also https://www.nag.com/numeric/py/nagdoc_latest/replace.html\n",
+      "  slv = opt.uncon_conjgrd_comp(objfun_e04dg, x, comm, io_manager=iom)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Solution: \n",
+      " [1.00000676 1.00001354]\n"
+     ]
+    }
+   ],
+   "source": [
+    "comm = opt.nlp1_init('uncon_conjgrd_comp')\n",
+    "slv = opt.uncon_conjgrd_comp(objfun_e04dg, x, comm, io_manager=iom)\n",
+    "print('Solution: \\n', slv.x)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Now solve with the new solver `handle_solve_bounds_foas`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04KF, First order method for bound-constrained problems\n",
+      "\n",
+      " Status: converged, an optimal solution was found\n",
+      " Value of the objective             2.12807E-15\n",
+      " Norm of gradient                   3.67342E-08\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1       -inf        1.00000E+00        inf\n",
+      "     2       -inf        1.00000E+00        inf\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Create an empty handle for the problem\n",
+    "nvar = len(x)\n",
+    "handle = opt.handle_init(nvar)\n",
+    "\n",
+    "# Define the nonlinear objective in the handle\n",
+    "# Setup a gradient vector of length nvar\n",
+    "opt.handle_set_nlnobj(handle, idxfd=list(range(1, nvar+1)))\n",
+    "\n",
+    "# Set some algorithmic options\n",
+    "for option in [\n",
+    "        'Print Options = No',      # print Options?\n",
+    "        'Print Solution = Yes',    # print on the screen the solution point X\n",
+    "        'Print Level = 1',         # print details of each iteration (screen)\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "    \n",
+    "# Solve the problem and print the solution\n",
+    "opt.handle_solve_bounds_foas(handle, x, objfun=objfun_e04kf, objgrd=objgrd_e04kf,\n",
+    "        io_manager=iom)\n",
+    "\n",
+    "# Destroy the handle and free allocated memory\n",
+    "opt.handle_free(handle)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.5"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/local_optimization/FOAS/rosenbrock2d.ipynb b/local_optimization/FOAS/rosenbrock2d.ipynb
new file mode 100644
index 0000000..ff28b88
--- /dev/null
+++ b/local_optimization/FOAS/rosenbrock2d.ipynb
@@ -0,0 +1,1437 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Rosenbrock function: Bound constrained optimization\n",
+    "First order active set bound-constrained nonlinear programming\n",
+    "\n",
+    "2d Rosenbrock example: This notebook illustrates the usage of FOAS to solve the bound-constrained 2d Rosenbrock function. It produces a plot showing the steps taken by the solver to find the solution point."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from naginterfaces.base import utils\n",
+    "from naginterfaces.library import opt\n",
+    "import numpy as np"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Add objective function, gradient and monitoring callback"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "objfun = lambda x, inform: ((1. - x[0])**2 + 100.*(x[1] - x[0]**2)**2, inform)\n",
+    "\n",
+    "def objgrd(x, fdx, inform):\n",
+    "    \"\"\"The objective's gradient.\"\"\"\n",
+    "    fdx[:] = [\n",
+    "        2.*x[0] - 400.*x[0]*(x[1]-x[0]**2) - 2.,\n",
+    "        200.*(x[1]-x[0]**2),\n",
+    "    ]\n",
+    "    return inform\n",
+    "\n",
+    "\n",
+    "steps = []\n",
+    "def monit(x, rinfo, _stats, _data=None):\n",
+    "    \"\"\"The monitor function.\"\"\"\n",
+    "    steps.append([x[0], x[1], rinfo[0]])\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Specify initial guess"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "x = [-1., -1.5]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Define the nonlinear objective (add to handle)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "nvar = len(x)\n",
+    "handle = opt.handle_init(nvar)\n",
+    "opt.handle_set_nlnobj(handle, idxfd=list(range(1, nvar+1)))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Add the box bounds on the variable x to the handle"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "bl = [-1., -2.]\n",
+    "bu = [0.8, 2.]\n",
+    "opt.handle_set_simplebounds(\n",
+    "    handle,\n",
+    "    bl=bl,\n",
+    "    bu=bu,\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Set some algorithmic options"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "for option in [\n",
+    "    'FOAS Print Frequency = 1',\n",
+    "    'Print Solution = yes',\n",
+    "    'FOAS Monitor Frequency = 1',\n",
+    "    'Print Level = 2',\n",
+    "    'Monitoring Level = 1',\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Use an explicit I/O manager for abbreviated iteration output"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "iom = utils.FileObjManager(locus_in_output=False)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Solve the problem"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      " ----------------------------------------------------------\n",
+      "  E04KF, First order method for bound-constrained problems\n",
+      " ----------------------------------------------------------\n",
+      "\n",
+      " Begin of Options\n",
+      "     Print File                    =                   9     * d\n",
+      "     Print Level                   =                   2     * U\n",
+      "     Print Options                 =                 Yes     * d\n",
+      "     Print Solution                =                 All     * U\n",
+      "     Monitoring File               =                  -1     * d\n",
+      "     Monitoring Level              =                   1     * U\n",
+      "     Foas Monitor Frequency        =                   1     * U\n",
+      "     Foas Print Frequency          =                   1     * U\n",
+      "\n",
+      "     Infinite Bound Size           =         1.00000E+20     * d\n",
+      "     Task                          =            Minimize     * d\n",
+      "     Stats Time                    =                  No     * d\n",
+      "     Time Limit                    =         1.00000E+06     * d\n",
+      "     Verify Derivatives            =                  No     * d\n",
+      "\n",
+      "     Foas Estimate Derivatives     =                  No     * d\n",
+      "     Foas Finite Diff Interval     =         1.05367E-08     * d\n",
+      "     Foas Iteration Limit          =            10000000     * d\n",
+      "     Foas Memory                   =                  11     * d\n",
+      "     Foas Progress Tolerance       =         1.08158E-12     * d\n",
+      "     Foas Rel Stop Tolerance       =         1.08158E-12     * d\n",
+      "     Foas Restart Factor           =         6.00000E+00     * d\n",
+      "     Foas Slow Tolerance           =         1.01316E-02     * d\n",
+      "     Foas Stop Tolerance           =         1.00000E-06     * d\n",
+      "     Foas Tolerance Norm           =            Infinity     * d\n",
+      " End of Options\n",
+      "\n",
+      " Problem Statistics\n",
+      "   No of variables                  2\n",
+      "     free (unconstrained)           0\n",
+      "     bounded                        2\n",
+      "   Objective function       Nonlinear\n",
+      "\n",
+      "\n",
+      " -------------------------------------------------------------------------------\n",
+      "   iters |  objective |  optim  |   dir\n",
+      " -------------------------------------------------------------------------------\n",
+      "        0  6.29000E+02  5.00E+02  3.50E+00\n",
+      "        1  6.29000E+02  5.00E+02  3.50E+00\n",
+      "        2  4.00000E+00  0.00E+00  1.80E+00\n",
+      "        3  4.00000E+00  0.00E+00  1.80E+00\n",
+      "        4  3.99156E+00  2.80E+00  2.80E+00\n",
+      "        5  3.99156E+00  2.80E+00  2.80E+00\n",
+      "        6  3.98433E+00  1.44E+00  1.44E+00\n",
+      "        7  3.97076E+00  5.76E+00  1.79E+00\n",
+      "        8  3.41157E+00  1.66E+01  1.60E+00\n",
+      "        9  3.15876E+00  2.07E+01  1.65E+00\n",
+      "       10  2.34744E+00  2.55E+00  2.29E+00\n",
+      "       11  2.06122E+00  5.09E+00  1.83E+00\n",
+      "       12  1.97065E+00  6.49E+00  1.88E+00\n",
+      "       13  1.77751E+00  9.58E+00  1.99E+00\n",
+      "       14  1.19453E+00  2.20E+00  8.93E-01\n",
+      "       15  1.12429E+00  2.33E+00  2.01E+00\n",
+      "       16  1.01998E+00  5.04E+00  2.02E+00\n",
+      "       17  8.94996E-01  8.97E+00  2.02E+00\n",
+      "       18  7.06235E-01  1.32E+00  1.11E+00\n",
+      "       19  5.06072E-01  5.09E+00  1.91E+00\n",
+      " -------------------------------------------------------------------------------\n",
+      "   iters |  objective |  optim  |   dir\n",
+      " -------------------------------------------------------------------------------\n",
+      "       20  3.18869E-01  9.51E-01  3.65E-01\n",
+      "       21  2.98131E-01  1.03E+00  1.03E+00\n",
+      "       22  2.48807E-01  2.90E+00  1.74E+00\n",
+      "       23  2.10033E-01  5.38E+00  1.65E+00\n",
+      "       24  1.19320E-01  1.40E+00  5.40E-01\n",
+      "       25  8.38051E-02  4.97E+00  1.77E+00\n",
+      "       26  6.45222E-02  8.65E-01  8.65E-01\n",
+      "       27  5.31881E-02  6.17E-01  6.17E-01\n",
+      "       28  4.20831E-02  7.71E-01  7.71E-01\n",
+      "       29  4.04842E-02  4.40E-01  4.40E-01\n",
+      "       30  4.04842E-02  4.40E-01  4.40E-01\n",
+      "       31  4.01532E-02  2.48E-01  2.48E-01\n",
+      "       32  4.01532E-02  2.48E-01  2.48E-01\n",
+      "       33  4.00000E-02  0.00E+00  0.00E+00\n",
+      " -------------------------------------------------------------------------------\n",
+      " Status: converged, an optimal solution was found\n",
+      " -------------------------------------------------------------------------------\n",
+      " Value of the objective             4.00000E-02\n",
+      " Norm of inactive gradient          0.00000E+00\n",
+      " Norm of projected direction        0.00000E+00\n",
+      " Iterations                                  33\n",
+      " Function evaluations                        80\n",
+      " FD func. evaluations                         0\n",
+      " Gradient evaluations                        40\n",
+      "   NPG function calls                        18\n",
+      "   NPG gradient calls                         3\n",
+      "   CG function calls                          9\n",
+      "   CG gradient calls                          5\n",
+      "   LCG function calls                        53\n",
+      "   LCG gradient calls                        32\n",
+      " -------------------------------------------------------------------------------\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1  -1.00000E+00    8.00000E-01    8.00000E-01\n",
+      "     2  -2.00000E+00    6.40000E-01    2.00000E+00\n",
+      "\n",
+      " Box bounds dual variables:\n",
+      "   idx   Lower bound       Value       Upper bound       Value\n",
+      "     1  -1.00000E+00    0.00000E+00    8.00000E-01    4.00000E-01\n",
+      "     2  -2.00000E+00    0.00000E+00    2.00000E+00    0.00000E+00\n"
+     ]
+    }
+   ],
+   "source": [
+    "ret = opt.handle_solve_bounds_foas(handle, x, objfun=objfun, objgrd=objgrd, monit=monit, io_manager=iom)\n",
+    "steps.append([ret.x[0], ret.x[1], ret.rinfo[0]]) # Add last step"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Retrieve Lagrange multipliers"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Lagrange multipliers:  [-0.4  0. ]\n"
+     ]
+    }
+   ],
+   "source": [
+    "from naginterfaces.base.opt import handle_set_get_real\n",
+    "mult = np.empty(2*nvar)\n",
+    "mult.fill(0.)\n",
+    "ret = handle_set_get_real(handle, \"Dual Variables\", 1, 2*nvar, mult)\n",
+    "print(\"Lagrange multipliers: \", mult[0:-1:2]-mult[1:ret+1:2])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Destroy the handle"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Evaluate the funtion over the domain"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "x_m = np.linspace(bl[0]-0.5, bu[0]+0.5, 101)\n",
+    "y_m = np.linspace(bl[1]-0.5, bu[1]+0.5, 101)\n",
+    "z_m = np.empty((101, 101))\n",
+    "j = y_m[0]\n",
+    "for i in range(0, 101):\n",
+    "    for j in range(0, 101):\n",
+    "        z_m[i, j], _inform = objfun([x_m[i], y_m[j]], 1)\n",
+    "nb = 25\n",
+    "x_box = np.linspace(bl[0], bu[0], nb)\n",
+    "y_box = np.linspace(bl[1], bu[1], nb)\n",
+    "box = np.array([np.concatenate([x_box, bu[0]*np.ones(nb), x_box[::-1], bl[0]*np.ones(nb)]),\n",
+    "      np.concatenate([bl[1]*np.ones(nb), y_box, bu[1]*np.ones(nb), y_box[::-1]])])\n",
+    "z_box = np.empty(box[0].shape)\n",
+    "for i in range(0, (box[0].size)):\n",
+    "    z_box[i], _inform = objfun([box[0][i], box[1][i]], 1)\n",
+    "\n",
+    "X, Y = np.meshgrid(x_m, y_m, indexing='ij')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Plot function and steps taken"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Select the display backend for Jupyter:\n",
+    "%matplotlib nbagg\n",
+    "steps = np.column_stack(steps)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
+       "\n",
+       "    parent_element.appendChild(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_device_pixel_ratio', {\n",
+       "                device_pixel_ratio: fig.ratio,\n",
+       "            });\n",
+       "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onunload = function () {\n",
+       "        fig.ws.close();\n",
+       "    };\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
+       "\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
+       "\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+       "\n",
+       "    this.context = canvas.getContext('2d');\n",
+       "\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
+       "\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
+       "\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
+       "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
+       "\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'dblclick',\n",
+       "        on_mouse_event_closure('dblclick')\n",
+       "    );\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
+       "\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
+       "\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
+       "\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus() {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
+       "\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
+       "    }\n",
+       "\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            var img = evt.data;\n",
+       "            if (img.type !== 'image/png') {\n",
+       "                /* FIXME: We get \"Resource interpreted as Image but\n",
+       "                 * transferred with MIME type text/plain:\" errors on\n",
+       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "                 * to be part of the websocket stream */\n",
+       "                img.type = 'image/png';\n",
+       "            }\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                img\n",
+       "            );\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig['handle_' + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "};\n",
+       "\n",
+       "// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e) {\n",
+       "        e = window.event;\n",
+       "    }\n",
+       "    if (e.target) {\n",
+       "        targ = e.target;\n",
+       "    } else if (e.srcElement) {\n",
+       "        targ = e.srcElement;\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "    }\n",
+       "\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+       "\n",
+       "    return { x: x, y: y };\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * https://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
+       "\n",
+       "    if (name === 'button_press') {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
+       "\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
+       "    // Prevent repeat events\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.key === this._key) {\n",
+       "            return;\n",
+       "        } else {\n",
+       "            this._key = event.key;\n",
+       "        }\n",
+       "    }\n",
+       "    if (name === 'key_release') {\n",
+       "        this._key = null;\n",
+       "    }\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.key !== 'Control') {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    else if (event.altKey && event.key !== 'Alt') {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
+       "\n",
+       "    value += 'k' + event.key;\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
+       "    ws.readyState = comm.kernel.ws.readyState;\n",
+       "    function updateReadyState(_event) {\n",
+       "        if (comm.kernel.ws) {\n",
+       "            ws.readyState = comm.kernel.ws.readyState;\n",
+       "        } else {\n",
+       "            ws.readyState = 3; // Closed state.\n",
+       "        }\n",
+       "    }\n",
+       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
+       "    };\n",
+       "    ws.send = function (m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function (msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        var data = msg['content']['data'];\n",
+       "        if (data['blob'] !== undefined) {\n",
+       "            data = {\n",
+       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
+       "            };\n",
+       "        }\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(data);\n",
+       "    });\n",
+       "    return ws;\n",
+       "};\n",
+       "\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
+       "\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element;\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "    fig.close_ws(fig, msg);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width / this.ratio;\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message('ack', {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
+       "    });\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.setAttribute('tabindex', 0);\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    } else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "};\n",
+       "\n",
+       "mpl.find_output_cell = function (html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] === html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"640\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "from matplotlib import cm\n",
+    "ax = plt.figure().add_subplot(projection='3d')\n",
+    "ax.grid(False)\n",
+    "ax.plot(box[0], box[1], z_box, 'k-', linewidth=1.5)\n",
+    "ax.plot([bl[0], bu[0], bu[0], bl[0], bl[0]], [bl[1], bl[1], bu[1], bu[1], bl[1]], -1.2*np.ones(5), 'k-')\n",
+    "ax.contour(X, Y, z_m, 15, offset=-1.2, cmap=cm.jet)\n",
+    "ax.plot_surface(X, Y, z_m, cmap=cm.jet, alpha=0.5)\n",
+    "ax.set_title('Rosenbrock Function')\n",
+    "ax.set_xlabel(r'$\\mathit{x}$')\n",
+    "ax.set_ylabel(r'$\\mathit{y}$')\n",
+    "ax.plot(steps[0], steps[1], steps[2], 'o-', color='red', markersize=3, linewidth=2)\n",
+    "ax.azim = 160\n",
+    "ax.elev = 35\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Obtaining the NAG Library for Python\n",
+    "\n",
+    "The [NAG Library for Python](https://www.nag.com/content/nag-library-python) is commercially licensed software but this notebook is licensed under the [BSD 3-Clause License](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/LICENSE)\n",
+    "* [Click here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples#nag-library-for-python-installation) for NAG Library for Python installation details\n",
+    "* [Click here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples#obtaining-a-license) for details on how to obtain a license for the NAG Library for Python"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.10"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/local_optimization/MILP/BESS_MILP.ipynb b/local_optimization/MILP/BESS_MILP.ipynb
new file mode 100644
index 0000000..ee528d4
--- /dev/null
+++ b/local_optimization/MILP/BESS_MILP.ipynb
@@ -0,0 +1,668 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Installing the NAG Library and running this notebook\n",
+    "The model in this notebook is solved by the NAG MILP solver featured in the NAG Optimization Modelling Suite. To run this notebook, you will need to install the NAG Library for Python (Mark 29.3 or newer) and a license key. You can find the software and obtain a license key (trials are available) from [Getting Started with the NAG Library](https://www.nag.com/content/getting-started-nag-library?lang=py&os=linuxto).\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## **Battery sizing problem in a Grid-connected Microgrid using MILP in the NAG Library**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Energy storage systems (ESS) are increasingly recognized as vital components of traditional power grids combined with renewable energy sources for several reasons. Firstly, the stability and reliability of the power grids can be enhanced by ESS, which provides fast-response ancillary services such as frequency regulation, voltage control, and grid balancing. These services help mitigate the impact of sudden fluctuations in electricity demand or supply, reducing the risk of blackouts and ensuring a more resilient grid infrastructure. Secondly, ESS allows utilities to shift electricity generation from times of low demand to times of peak demand, helping to manage load profiles more effectively. Moreover, ESS plays an important role in helping smooth out the variability and intermittency associated with renewable resources such as solar and wind power. This enables greater penetration of renewable energy into the grid without compromising reliability or stability.\n",
+    "\n",
+    "At Mark 29.3 the NAG Library features a new Mixed Integer Linear Programming (MILP) solver, which is a powerful tool for the design and operation of energy storage systems, including optimal sizing and configuration, energy management and dispatch, and risk management. In order to illustrate the usage of the MILP solver, we build the model and solve an optimal battery sizing problem for a microgrid that is connected to an external grid and consists of a battery energy storage system (BESS), several generators and loads. The model also provides optimal operation of the system, including generator scheduling and power dispatch, battery charging and discharging schedule and optimal grid power import. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### **Microgrid Modelling**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The microgrid of interest in this notebook is depicted in Figure 1. Loads demand can be fulfilled by generators, batteries and the external grid. Generators are assumed to be owned by a utility, therefore the energy management system will find an optimal schedule for all components to minimize the operation cost of generators and the battery. The planning horizon $N$ is set to 24 hours.\n",
+    "\n",
+    "<img src=\"Grid_Model.png\" alt=\"GRID\" width=\"500\" height=\"200\">\n",
+    "\n",
+    "Figure 1: Grid-connected microgrid model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### **Decision variables**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The decision variables controlling various components in the microgrid are listed below.\n",
+    "- Generators\n",
+    "  - $p_{ij}^g$: dispatched power from the $i$-th generator at the $j$-th hour.\n",
+    "  - $s_{ij}$: binary switch that is equal to 1 if the $i$-th generator is online and 0 otherwise at the $j$-th hour.\n",
+    "- BESS\n",
+    "  - $p^b_j$: power discharged or charged to the battery energy storage system at the $j$-th hour.\n",
+    "  - $c^b$: power rate of the battery energy system.\n",
+    "  - $e^b$: energy rate of the battery energy system.\n",
+    "- External grid\n",
+    "  - $p_j^{im}$: imported power at the $j$-th hour."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### **Model parameters and coefficients**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The model parameters are defined directly in the code cell below for building the model later. See the comments for the description of each parameter. Fuel cost of the generators are usually calculated using a quadratic function. Based on the property of the quadratic function, in practice it is reasonable to linearize it using piecewise functions and then make use of the powerful MILP solver. In this notebook, we'll simply adopt a linear approximation to the quadratic function for illustration purposes."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 65,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "             a         b    pl     pu   ut   dt\n",
+      "Gen1  0.010694  142.7348  30.0   70.0  8.0  6.0\n",
+      "Gen2  0.018761  168.9075  50.0  100.0  8.0  6.0\n",
+      "Gen3  0.007612  313.9102  30.0  120.0  8.0  6.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Import necessary libraries\n",
+    "import numpy as np\n",
+    "import pandas as pd\n",
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "# Generator parameters\n",
+    "# Number of generators\n",
+    "n_gen = 3\n",
+    "# Data frame for the specifications of the generators\n",
+    "df = pd.DataFrame(\n",
+    "    {\n",
+    "    'Gen1':[0.010694, 142.7348, 30, 70, 8, 6],\n",
+    "    'Gen2':[0.018761, 168.9075, 50, 100, 8, 6],\n",
+    "    'Gen3':[0.0076121, 313.9102, 30, 120, 8, 6],\n",
+    "    }\n",
+    ")\n",
+    "df.index=['a','b','pl','pu','ut','dt']\n",
+    "print(df.T.to_string())\n",
+    "spec_gen = df.T.to_numpy() "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The above DataFrame contains all the specification of the generators. The fuel cost is defined as the linear function\n",
+    "$$\n",
+    "cost_i(p_{ij}^g) = a_i * p_{ij}^g + b_i\n",
+    "$$\n",
+    "for generator $i$ at the $j$-th hour. $pl$ and $pu$ are the minimum and maximum power output of the $i$-th generator respectively. The rest of the parameters are\n",
+    "- $ut$: minimum up time of the generator\n",
+    "- $dt$: minimum down time of the generator"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 66,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAEWCAYAAAA3nWxMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxTklEQVR4nO3dd1xV9f/A8ddl7yUg4AAUF25x5N6omWmae2ZZmqRmmVm5WmqZX8vM0S8tw5WmpVmWORumCaLiHjhZIgICsu49vz8QEln3wr1exvv5ePAozj33fd73eA7nfT/nfD4flaIoCkIIIYQQQpSCibETEEIIIYQQ5Z8UlUIIIYQQotSkqBRCCCGEEKUmRaUQQgghhCg1KSqFEEIIIUSpSVEphBBCCCFKTYpKIYQQQghRalJUCiGEEEKIUpOiUgghhBBClJoUlUKIcunrr79GpVJx9erVx7rdAwcOoFKpOHDgwGPdbnF8fHwYN26cTu+5evUqKpWKr7/+2iA56VN5ylWIykqKSiFEgXKKtmPHjhX4epcuXWjUqNFjzspwxo0bh0qlKvDHysrqseVx5swZ5s2b99iL5Rw///wz8+bN03tcHx+fPPvU3d2djh07sn37dr1vSwhhHGbGTkAIIcoKS0tL/u///i/fclNT08eWw5kzZ5g/fz5dunTBx8dH6/edP38eExPd2gm8vb25f/8+5ubmuct+/vlnli9fbpDCslmzZrz22msAREZGsmrVKgYOHMiKFSuYOHGizrkKIcoWKSqFEOVKSkoKtra2BoltZmbGqFGjDBLbEBRFIS0tDWtraywtLXV+/+Nuha1WrVqe/TtmzBj8/Pz43//+V2hRmZWVhUajwcLC4rHmKoTQndz+FkLoTVZWFu+99x61a9fG0tISHx8f3nrrLdLT0/Osp1KpCmwJe/S5wJxb8AcPHuTll1/G3d2d6tWrF7jtsWPH4urqSmZmZr7XAgMDqVevXqk+W3GOHDlC7969cXR0xMbGhs6dO/PXX3/lW+/WrVs8//zzeHl5YWlpia+vL5MmTSIjI4Ovv/6awYMHA9C1a9fcW8U5z2/6+Pjw1FNP8euvv9KyZUusra1ZtWpV7muPPlOZkJDAq6++io+PD5aWllSvXp0xY8YQFxcH5H9Ocdy4cSxfvhwgz61qRVHw8fGhf//++T5PWloajo6OvPTSSzrvMw8PDxo0aEBERESefBYvXszSpUtzj6MzZ84U+kzluXPnGDJkCG5ublhbW1OvXj3efvvtfPt8/PjxVK1aFUtLSxo2bMiaNWvy5bNs2TIaNmyIjY0Nzs7OtGzZkg0bNuj8uYSorKSlUghRpMTExNwi5GEFFW8vvPAC33zzDc8++yyvvfYaR44cYcGCBZw9e7ZUz869/PLLuLm5MWfOHFJSUgpcZ/To0axbt45ff/2Vp556Knd5dHQ0+/btY+7cuVptq6DPamFhgYODQ6Hv2bdvH3369CEgIIC5c+diYmLC2rVr6datG3/88QetW7cGsm/5tm7dmoSEBF588UXq16/PrVu32Lp1K6mpqXTq1IkpU6bw2Wef8dZbb9GgQQOA3P9C9m3u4cOH89JLLzFhwoRCi+Xk5GQ6duzI2bNnGT9+PC1atCAuLo4dO3Zw8+ZNXF1d873npZdeIjIykj179vDtt9/mLlepVIwaNYqPPvqI+Ph4XFxccl/buXMnSUlJJWrhzczM5MaNG1SpUiXP8rVr15KWlsaLL76IpaUlLi4uaDSafO8/efIkHTt2xNzcnBdffBEfHx8uX77Mzp07+eCDDwCIiYnhiSeeQKVSERQUhJubG7/88gvPP/88SUlJTJs2DYAvv/ySKVOm8OyzzzJ16lTS0tI4efIkR44cYcSIETp/NiEqJUUIIQqwdu1aBSjyp2HDhrnrh4WFKYDywgsv5Inz+uuvK4Cyb9++3GWAMnfu3Hzb9Pb2VsaOHZsvhw4dOihZWVkF5hcREaEoiqKo1WqlevXqytChQ/Ost2TJEkWlUilXrlwp8vOOHTu20M/Zq1ev3PX279+vAMr+/fsVRVEUjUaj1KlTR+nVq5ei0Why10tNTVV8fX2Vnj175i4bM2aMYmJiovz777/5tp/z3i1btuSJ/+j+AZTdu3cX+NrD+27OnDkKoGzbtq3QbUVERCiAsnbt2tzXJk+erBR0aTh//rwCKCtWrMiz/Omnn1Z8fHzyfPaCeHt7K4GBgcrt27eV27dvKydOnFCGDRumAMorr7ySJx8HBwclNjY2z/sLyrVTp06Kvb29cu3atQI/n6IoyvPPP694enoqcXFxedYZNmyY4ujoqKSmpiqKoij9+/fPczwLIXQnLZVCiCItX76cunXr5lv+2muvoVarc3//+eefAZg+fXq+9RYvXsyuXbvo2rVriXKYMGFCsZ1lTExMGDlyJJ999hn37t3D3t4egPXr19OuXTt8fX2L3Y6VlRU7d+7Mt7ygVr0cYWFhXLx4kXfeeYc7d+7kea179+58++23ua1sP/zwA/369aNly5b54qhUqmLzA/D19aVXr17Frvf999/TtGlTnnnmmRJv62F169alTZs2rF+/Pvf5x/j4eH755RfeeOMNrWL+9ttvuLm55f5uamrK6NGjWbRoUZ71Bg0alGe9gty+fZtDhw4xdepUatasmee1nFwUReH7779nyJAhKIqSpxW6V69ebNq0idDQUNq3b4+TkxM3b97k33//pVWrVsV+FiFEflJUCiGK1Lp16wKLIGdn5zwX6WvXrmFiYoKfn1+e9Tw8PHBycuLatWslzkGbghCyO34sWrSI7du3M2bMGM6fP09ISAgrV67U6v2mpqb06NFDp9wuXrwIZD/TWZjExEQyMjJISkoq9TBM2u6Ly5cvM2jQoFJt61FjxowhKCiIa9eu4e3tzZYtW8jMzGT06NFavb9Nmza8//77qFQqbGxsaNCgAU5OTvnW0+YzXrlyBaDI/Xn79m0SEhJYvXo1q1evLnCd2NhYAGbOnMnvv/9O69at8fPzIzAwkBEjRtC+fXstPpkQAqSoFELoWUlawXI83PL5MGtra63e7+/vT0BAAMHBwYwZM4bg4GAsLCwYMmRIiXMqTk4r5Mcff0yzZs0KXMfOzo74+Hi9bE/bfWEIw4YN49VXX2X9+vW89dZbBAcH07JlS607Qbm6umpVtOvrM+b824waNarQor9JkyZA9nOr58+f56effmL37t18//33fPHFF8yZM4f58+frJR8hKjopKoUQeuHt7Y1Go+HixYt5OpbExMSQkJCAt7d37jJnZ2cSEhLyvD8jI4OoqKhS5zFmzBimT59OVFQUGzZsoG/fvjg7O5c6bmFq164NgIODQ5EFk5ubGw4ODoSHhxcZrzRF+aN5FbctXbfv4uJC3759Wb9+PSNHjuSvv/5i6dKlpciy5GrVqgVQ5Gd0c3PD3t4etVqtVTFra2vL0KFDGTp0KBkZGQwcOJAPPviAWbNmyXBGQmhBhhQSQujFk08+CZCvyFiyZAkAffv2zV1Wu3ZtDh06lGe91atXF9pSqYvhw4ejUqmYOnUqV65cMfi4kwEBAdSuXZvFixeTnJyc7/Xbt28D2c98DhgwgJ07dxY4S5GiKAC5Y3A+WnTratCgQZw4caLAXvc52ypIcdsfPXo0Z86cYcaMGZiamjJs2LBS5VlSbm5udOrUiTVr1nD9+vU8r+V8PlNTUwYNGsT3339fYPGZ828D5Hse1sLCAn9/fxRFKXCkAyFEftJSKYTQi6ZNmzJ27FhWr15NQkICnTt35ujRo3zzzTcMGDAgTyedF154gYkTJzJo0CB69uzJiRMn+PXXX4vsEKMtNzc3evfuzZYtW3BycspTzBYnKyuL4ODgAl975plnChx03cTEhP/7v/+jT58+NGzYkOeee45q1apx69Yt9u/fj4ODQ27nnw8//JDffvuNzp078+KLL9KgQQOioqLYsmULf/75J05OTjRr1gxTU1MWLVpEYmIilpaWdOvWDXd3d532w4wZM9i6dSuDBw9m/PjxBAQEEB8fz44dO1i5ciVNmzYt8H0BAQEATJkyhV69euUrHPv27UuVKlXYsmULffr00Tkvffrss8/o0KEDLVq04MUXX8TX15erV6+ya9cuwsLCAFi4cCH79++nTZs2TJgwAX9/f+Lj4wkNDeX333/PfSwhMDAQDw8P2rdvT9WqVTl79iyff/45ffv2ze30JYQohjG7ngshyq6cIXsKGv5GURSlc+fO+YZgyczMVObPn6/4+voq5ubmSo0aNZRZs2YpaWlpedZTq9XKzJkzFVdXV8XGxkbp1auXcunSpUKHFCooh0eHFHrYd999pwDKiy++qPXnLWpIoYe38+iQQjmOHz+uDBw4UKlSpYpiaWmpeHt7K0OGDFH27t2bZ71r164pY8aMUdzc3BRLS0ulVq1ayuTJk5X09PTcdb788kulVq1aiqmpaZ5teXt7K3379i0w/0f3naIoyp07d5SgoCClWrVqioWFhVK9enVl7NixucPrFDRMT1ZWlvLKK68obm5uikqlKnB4oZdfflkBlA0bNmixZ//Lr7Dcc+Tk8/HHHxf62sO5KoqihIeHK88884zi5OSkWFlZKfXq1VNmz56dZ52YmBhl8uTJSo0aNRRzc3PFw8ND6d69u7J69ercdVatWqV06tQp99+vdu3ayowZM5TExEStP6MQlZ1KUYq4DyKEEOXQjz/+yIABAzh06BAdO3Y0djoVzquvvspXX31FdHQ0NjY2xk5HCFFGSFEphKhwnnrqKc6ePculS5f01vFFZEtLS6NGjRo89dRTrF271tjpCCHKEHmmUghRYWzatImTJ0+ya9cuPv30Uyko9Sg2Npbff/+drVu3cufOHaZOnWrslIQQZYy0VAohKgyVSoWdnR1Dhw5l5cqVmJnJ92Z9OXDgAF27dsXd3Z3Zs2cTFBRk7JSEEGWMFJVCCCGEEKLUZJxKIYQQQghRalJUCiGEEEKIUpMHjgqg0WiIjIzE3t5eHvQXQgghRKWlKAr37t3Dy8sLE5Oi2yKlqCxAZGQkNWrUMHYaQgghhBBlwo0bN6hevXqR60hRWYCcKblu3LiBg4ODwbaTmZnJb7/9RmBgIObm5hJbYktsiS2xJbbElthGj/2wpKQkatSoodV0pVJUFiDnlreDg4PBi0obGxscHBwMcrBJbIktsSW2xJbYElti64M2jwNKRx0hhBBCCFFqJWqpvH79OteuXSM1NRU3NzcaNmyIpaWlvnMTQgghKhW1RuFIRDwhcSqqRMTT1s8dUxPpMCrKB61bKq9evcrMmTPx9vbG19eXzp0706dPH1q2bImjoyM9e/Zky5YtaDQanRJYvnw5Pj4+WFlZ0aZNG44ePVrouqdPn2bQoEH4+PigUqlYunRpkbEXLlyISqVi2rRpOuUkhBBCPG67w6PosGgfo9YcY91FU0atOUaHRfvYHR5l7NSE0IpWReWUKVNo2rQpERERvP/++5w5c4bExEQyMjKIjo7m559/pkOHDsyZM4cmTZrw77//arXxzZs3M336dObOnUtoaChNmzalV69exMbGFrh+amoqtWrVYuHChXh4eBQZ+99//2XVqlU0adJEq1yEEEIIY9kdHsWk4FCiEtPyLI9OTGNScKgUlqJc0KqotLW15cqVK3z33XeMHj2aevXqYW9vj5mZGe7u7nTr1o25c+dy9uxZFi9ezI0bN7Ta+JIlS5gwYQLPPfcc/v7+rFy5EhsbG9asWVPg+q1ateLjjz9m2LBhRd5uT05OZuTIkXz55Zc4OztrlYsQQghhDGqNwvydZyhozuScZfN3nkGtkVmVRdmm1TOVCxYs0Dpg7969tVovIyODkJAQZs2albvMxMSEHj16cPjwYa23V5DJkyfTt29fevTowfvvv1/s+unp6aSnp+f+npSUBGT3rMrMzCxVLkXJiW2IbUhsiS2xJbbELh+xj0TE52uhfJgCRCWmcfhSLG18XUq1rfKyTyS2cWMXtB1tqBRFMcpXn8jISKpVq8bff/9N27Ztc5e/8cYbHDx4kCNHjhT5fh8fH6ZNm5bveclNmzbxwQcf8O+//2JlZUWXLl1o1qxZkc9fzps3j/nz5+dbvmHDBmxsbHT6XEIIIYQuQuJUrLtoWux6Y+qoCXCV1krxeKWmpjJixAgSExOLHWZR597fMTExvP766+zdu5fY2FgerUnVarWuIfXmxo0bTJ06lT179mBlZaX1+2bNmsX06dNzf88Z6DMwMNDg41Tu2bOHnj17GmT8KoktsSW2xJbYZT92lYh41l08Vux6gR3b6KWlsjzsE4lt3NgPy7l7qw2di8px48Zx/fp1Zs+ejaenZ4nnxnZ1dcXU1JSYmJg8y2NiYorthFOYkJAQYmNjadGiRe4ytVrNoUOH+Pzzz0lPT8fUNP+3QUtLywKf0TQ3N38sA4oacjsSW2JLbIktsct27LZ+7jjZmJOQWvhtRk9HK70OL1TW94nELhuxc+JrS+ei8s8//+SPP/6gWbNmur41DwsLCwICAti7dy8DBgwAQKPRsHfvXoKCgkoUs3v37pw6dSrPsueee4769eszc+bMAgtKIYQQwpgi4lJIyyj6Lt+EjrVkvEpR5ulcVNaoUSPfLe+Smj59OmPHjqVly5a0bt2apUuXkpKSwnPPPQfAmDFjqFatWm5HoYyMDM6cOZP7/7du3SIsLAw7Ozv8/Pywt7enUaNGebZha2tLlSpV8i0XQgghjC05PYuJwSGkZWnwc7cjOS2L6KT/Ou1YmJqQodYQ/M81nm1ZHQcrw989E6KkdC4qly5dyptvvsmqVavw8fEp1caHDh3K7du3mTNnDtHR0TRr1ozdu3dTtWpVIHvmHhOT/0Y9ioyMpHnz5rm/L168mMWLF9O5c2cOHDhQqlyEEEKIx0lRFGZsOcGl2GSqOliyccITuNhacPhSLL/9cYTAjm2o6+HIgOV/cSUuhde+O8GqUQGYSIulKKO0KiqdnZ3zPDuZkpJC7dq1sbGxyXevPT4+XqcEgoKCCr3d/Wih6OPjo3MrqRSbQgghyqJVh67wS3g05qYqvhgZgJt99rP9bXxduHNWoY2vC+bm5qwYFcDglYfZcyaGFQcvM7mrn5EzF6JgWhWVxU2HKIQQQgjt/XUpjo92nwNgbr+GBHgXPlFH0xpOvDegITO/P8Xi387TqJojneu6Pa5UhdCaVkXl2LFjDZ2HEEIIUSncvJtK0IZQNAo8G1CdkW1qFvueoa1qEnYjgY1HbzB103F2BnWghouMoyzKFq2maQTo3Lkz7777Ln/88YfBR28XQgghKqK0TDWTgkO5m5pJo2oOvD+gkdZD8817uiFNaziRkJrJS9+GcL+YHuNCPG5aF5W+vr6sXbuWzp074+TkRI8ePfjggw84fPiwUQc8F0IIIcoDRVGY82M4p24l4mxjzspRAViZaz/UnaWZKStGtqCKrQVnopJ4+4dTehuNRQh90Lqo/Prrr4mIiODKlSssW7aMatWqsXr1atq3b4+zszN9+vTh448/NmSuQgghRLm18egNvjt2ExMVfDa8OdWddb997eVkzbIRzTFRwbbQWwT/c80AmQpRMloXlTl8fHwYP34833zzDdeuXePSpUtMmTKFv//+mzfffNMQOQohhBDl2vHrd5m34zQAr/eqR8c6Je9o0662K7P6NABg/s4zhFzTbdQVIQxF53EqAa5du8aBAwdyf2JjY3niiSfo3LmzvvMTQgghyrXb99KZFBxKhlpDr4ZVmdS5dqljvtDRl7CbCew6GcWk4FB+mtIBd3srPWQrRMlpXVSuW7cut4iMi4ujXbt2dO7cmQkTJtCqVavHMke2EEIIUZ5kqTW8sjGU6KQ0arvZsnhwU6075hRFpVLx0aAmXIy5x4WYZCavD2XDhCcwN9X5BqQQeqN1UTlu3Dhq1qzJm2++yfPPPy9FpBBCCFGMRbvP8c+VeGwtTFk1OgB7PU6zaGtpxspRAfT//C/+vXqXD3adZd7TDfUWXwhdaf2V5osvvuCJJ55g/vz5uLu7069fPz755BOOHTsmvc+EEEKIR+w8EcmXf0QAsHhwU/zc7fW+jVpudiwZ2gyAr/++yvbjN/W+DSG0pXVROXHiRDZt2kRUVBR//fUXTz75JEePHqVv3744OzvTt29fFi9ebMhchRBCiHLhfPQ93th6EoCJnWvTp7GnwbbV078qr3TLnrpx1rZTnIlMMti2hChKiR6+8Pf3Z9KkSWzevJnjx48TFBTEn3/+ycyZM/WdnxBCCFGuJN7PZGJwCPcz1XTwc+X1wLoG3+a0HnXpXNeNtEwNLwUfIyE1w+DbFOJROvf+jo2NZf/+/bmddi5cuIC5uTlPPPEEXbt2NUSOQgghRLmg0Si89l0YEXEpVHOy5rPhzTF7DJ1nTE1UfDqsGf0+/5Mb8feZtjmMNWNbYWJS+k5BQmhL66Ly5Zdf5sCBA5w/fx4zMzNat27Ns88+S9euXWnXrh1WVjKUgRBCiMpt+f5L/H42FgszE1aMaoGLrcVj27aTjQUrRwUw8Iu/OXD+Nkv3XmR6T8O3kgqRQ+ui8vjx4wwYMICuXbvSvn17bGxkInshhBAix/7zsSz5/QIA7w9oRJPqTo89h4Zejiwc1JhXN5/gs70XaVLNkR7+VR97HqJy0rqoPHz4MABJSUmFFpSXLl3Cz89PP5kJIYQQ5cT1O6lM3XgcRYERbWoypGUNo+XyTPPqhF1P4JvD13h1cxg7XumAr6ut0fIRlYfOD3r07duXtLS0fMvPnz9Ply5d9JGTEEIIUW7cz1DzUnAISWlZNKvhxNx+/sZOibf7+tPS25l76VlM/DaElPQsY6ckKgGdi0o7OzsGDhxIVtZ/B+jZs2fp0qULgwYN0mtyQojySa1ROBIRT0iciiMR8ag1MpatqDgePr7/uXKHN78/wdmoJFztLFgxqgWWZqbGThELMxO+GNkCN3tLzsfcY+b3J8lSa+S8FAalc+/vbdu20aNHD0aOHMmmTZs4ffo03bt3Z+TIkSxZssQQOQohypHd4VHM33mGqMQ0wJR1F4/h6WjF3H7+9G5kuLH6hHgc8h/fIQCYqODzES3wdLQ2boIPcXewYsXIFgxb/Q8/nYzi4IXb3EvLQs5LYSg6t1RaW1uza9cuzp8/z5AhQ+jevTtjxoyRglIIwe7wKCYFhz644P4nOjGNScGh7A6PMlJmQpReYcc3gEahTI4N2dLHhUEtqgM8KCj/I+el0DetisqkpKQ8PyYmJmzevJkjR44waNAgZs+enfuaEKJyUmsU5u88Q0E31HKWzd95Rm65iXKpqOMbQEXZPL7VGoWDF28X+Jqcl0LftCoqnZyccHZ2zvPj7+/PzZs3WblyJc7OzrnrCCEqp6MR8QW24ORQgKjENI5GxD++pITQk/J6fB+NiCe6HOYtyietnqncv3+/ofMQQpRzsfcKv3CVZD0hypLyenyX17xF+aRVUdm5c2fWrFlDv379cHNzM3ROQohyyN1eu1m1tF1PiLKkvB7f5TVvUT5p3VEnODiYGjVq0K5dOxYtWsTZs2cNmZcQopxp7euCp6MVRc007OloRWtfl8eWkxD60trXBVe7wqdcVFE2j285L8XjpHVRuW/fPqKionj55ZcJCQmhTZs21KlTh9dee41Dhw6h0WgMmacQoowzNVExt59/oR0ZAEa0rompSVGXNyHKpntpmSiFHNw5R/Tcfv5l7vjOOS+BQgvL6T3rlrm8Rfmk05BCzs7OjBo1iu+++464uDiWLVvG/fv3GTlyJO7u7owZM4atW7eSkpJiqHyFEGVY70aedPBzzbfcyjz7T803h68RkyTPbonyRa1RmLIpjDspGbjaWVDVwTLP6x6OVqwY1aLMjvfYu5EnK0a1wMMx7y3unELyh7BbZKmlYUiUns7jVOawsLCgd+/efPHFF9y4cYPdu3fj4+PDe++9J2NWClFJpaRncfz6XQDe6lOXMXXUBI9vyb9v96C+hz1xyem8vD6UjCy5gInyY+nvFzh04TZW5iasG9+Gv9/sTvD4lrnH958zu5XZgjJH70ae/DmzW568dwZ1wMbClL8u3WHxbxeMnaKoAEpcVD6qZcuWvPvuu5w4cYI333xTX2GFEOXITycjSclQ4+tqy7i23gS4KrTxdcHeypyVowKwtzIj5Npd3t91xtipCqGV305Hs2zfJQAWDmyCv5cDpiYq2vi65B7f5eXW8aN5+3s58NGzTQBYefAyv5ySQdBF6ehUVKakpDBnzhwaNWqEnZ0d9vb2NGnShHfffZfU1NTc9czNzfWeqBCi7Nv07w0AhraqgUqV90Lr42rLp8OaAbDu8DW+D7n5uNMTQidXbifz2ncnABjXzocBzasZOSP9e6qJFxM6+gLw+pYTXIq9Z+SMRHmmdVGZkZFB586d+eijj6hTpw6vvPIKkydPxtfXlw8++IDu3buTmZlpyFyFEGXY+eh7HL+egJmJKndauEd1q1+Vqd3rAPDW9lOE30p8nCkKobWU9Cxe+jaEe+lZtPZx4e2+DYydksHM7F2fJ2q5kJKh5sVvQ7iXJtdyUTJaF5UrVqzg5s2bnDhxgu3bt7NgwQIWLlzIjz/+yIkTJ4iIiGDlypWGzFUIUYZtPHodgB4NquJmb1noelO716FrPTfSszRMDA7hbkrZmy9ZVG6KovDG1pNcjE3G3d6Sz0c2x9xUb0+LlTlmpiZ8PqIFno5WXLmdwmvfnUAj0zaKEtD6LNm2bRuzZ8+mXr16+V6rX78+b7/9Nlu3btVrckKI8iEtU83247cAGNa6RpHrmpioWDq0Od5VbLh59z5TNh2XeYdFmfLlH1fYdSoKc1MVK0a1qBQDg7vaWbJiVAAWpib8diaGFQcvGzslUQ5pXVSeOXOGLl26FPp6165dOXNGHr4XojLaHR5N4v1MqjlZ07FO8bNuOdpkd9yxMjfhj4tx/G+P9DwVZcPfl+JY+Ms5AOY85U+Ad+UZFLxZDSfm928IwCe/nefQhdtGzkiUN1oXlQkJCVSpUqXQ16tUqUJiojwfJURllHPre0jLGlr3hG3g6cCiQdk9Tz/ff4lfT0cbLD8htBGZcJ+gjcfRKDCoRXVGPeFt7JQeu+GtazKsVQ00CkzZdJwb8anFv0mIB7QuKjUaDaampoUHMjFBrVbrJSkhRPlx5XYyRyLiMVHB4JYFd9ApTP9m1XiuvQ8Ar313gsu3kw2QoRDFS8tUMyk4hPiUDBp6OfDBM43yjWBQWcx7uiFNqjuSkJrJxOAQ0jLl2i60Y6btioqi0L17d8zMCn5LVlaW3pISQpQfm49lDyPUua4bXk7WOr//rScbcPpWEkevxjPx2xC2T26PnaXWf5qE0Iv5O09z4mYiTrmPZhTeiFLRWZmbsmJUAP2W/cnpyCTe3h7O4sFNKm2RLbSn9V/uuXPnFrvOoEGDSpWMEKJ8ycjS5I43Oax1zRLFMDc14fORzem37E8uxibzxtYTLB/RQi5g4rHZePQ6G4/eQKWCz4Y1p4aLjbFTMrpqTtZ8Prw5o746wvehN2lW04nRlfBxAKEbvRaVQojKZe/ZGOKSM3Czt6RbffcSx3G3t+KLkQEMW32Yn09Fs/rQFV7qXFuPmQpRsLAbCcz98TQArwfWo1Pd4juaVRbt/FyZ2bs+C345x7s7T+Pv6UCAt7Ox0xJlWKkH3jp48CA///wzd+/e1Uc+QohyZOODGXQGB1Qv9Th+Ad7OzOmX3fN00e5z/H0prtT5CVGUuOR0JgWHkKHWEOhflUnyRSafFzvV4snGHmSqFV5eH0LsvTRjpyTKMK2vAosWLWL27Nm5vyuKQu/evenatStPPfUUDRo04PTp0wZJUghR9ty8m8ofF7OHHBnaquixKbU1qk1Nng2ojkaBoI3HuZVwXy9xhXhUllrDKxuOE5WYRi1XWz4Z0hSTcjKH9+OkUqn46Nmm1HG3IyYpnaD1x8lUa4ydliijtC4qN2/eTKNGjXJ/37p1K4cOHeKPP/4gLi6Oli1bMn/+fIMkKYQoe747dhNFgXa1q+BdxVYvMVUqFe8PaESjag7Ep2QwSXqeCgP56NfzHL5yBxsLU1aNDsDeytzYKZVZdpZmrBwdgJ2lGUevxvPhz2eNnZIoo7QuKiMiImjSpEnu7z///DPPPvss7du3x8XFhXfeeYfDhw8bJEkhRNmi1ihsedDru6QddApjZW7KipEBONmYc/JmIvN2yB0QoV+7Tkax+tAVABYPbkqdqvZGzqjsq+1mxydDmgKw9q+r/Bh2y8gZibJI66IyKysLS8v/5vM9fPgw7dq1y/3dy8uLuDh5BkqIyuDghViiEtNwtjGnV8Oqeo9fw8WGZcObY6KCTf/eyB1cXYjSuhBzjxlbTwDwUudaPNnY08gZlR+9GnoQ1NUPgJnfn+RsVJKRMxJljdZFZe3atTl06BAA169f58KFC3Tq1Cn39Zs3bxY5444QouLYeDS7lXJgi+pYmhlmPL+Oddx4LbAeAHN/PE3YjQSDbEdUHklpmUz8NoTUDDXtaldhxoPjS2jv1Z516VTXjbRMDRODQ0hMzTR2SqIM0bqonDx5MkFBQTz//PP06dOHtm3b4u/vn/v6vn37aN68uUGSFEKUHbFJaew7FwvA8Nb66aBTmJe71KZXw6pkqDVMCg4hLjndoNsTFZdGo/Dadye4EpeCl6MVy4Y3x6yUIxZURqYmKj4d2ozqztZcu5PKtM3H0WgUY6clygitz6gJEybw2WefER8fT6dOnfj+++/zvB4ZGcn48eP1nqAQomzZEnITtUahpbczfu6GfRZNpVKxeHBTarnZEpWYRtCGUNIz1RyJiCckTsWRiHjUckETBVBrlDzHyef7L7LnTAwWpiasGBVAFTvL4oOIAjnbWrByVACWZibsP3+bT/dezLe/5bysnHT6mjZ+/Hi2b9/OihUr8PDwyPPaF198wTPPPKNzAsuXL8fHxwcrKyvatGnD0aNHC1339OnTDBo0CB8fH1QqFUuXLs23zoIFC2jVqhX29va4u7szYMAAzp8/r3NeQoj8NBqFzQ/GptTXMELFsbcyZ/XoAGwtTPnnSjwt3tvDqDXHWHfRlFFrjtFh0T52h0c9llxE+bA7PIoOi/blOU6W7LkIwHsDGtK0hpNxE6wAGlVz5INnGgPw6d6LtHxfzkuhQ1F58uTJAn+uXbuGopTsG8nmzZuZPn06c+fOJTQ0lKZNm9KrVy9iY2MLXD81NZVatWqxcOHCfEVtjoMHDzJ58mT++ecf9uzZQ2ZmJoGBgaSkpJQoRyHEfw5fucP1+FTsLc3o2+TxdXDwc7dnZJvsXuYpGXmHGIpOTGNScKhcwASQXVBOCg4lKrHgQbodrWXoIH15NqA6nR/MQHT3kWcr5bysnLSeprFZs2aoVKp8BaRKpcLKyopp06bx7rvvYmqq/UP7S5YsYcKECTz33HMArFy5kl27drFmzRrefPPNfOu3atWKVq1aART4OsDu3bvz/P7111/j7u5OSEhIno5FQgjd5fTC7t/cCxsLrf98lJpao7DzZMEXJwVQAfN3nqGnvwemMoB1paXWKMzfeYbCmjnkONEvtUbhfPS9Al+T87Jy0vqqEBERUeDyhIQEQkJCmD17Ns7Ozrz++utaxcvIyCAkJIRZs2blLjMxMaFHjx56He8yMTERABcXl0LXSU9PJz39vw4ASUnZwyRkZmaSmWm4nm05sQ2xDYktsfUdOz4lg19PRwPwbHOvYt+jz7yPRMQX2vIE2RewqMQ0Dl+KpY1v4ee6NsrK/pbYupPj5PHGPhIRT3SS7O+KGLug7WhDpZT03vUjtm7dyvz58zl16pRW60dGRlKtWjX+/vtv2rZtm7v8jTfe4ODBgxw5cqTI9/v4+DBt2jSmTZtW6DoajYann36ahIQE/vzzz0LXmzdvXoGzAW3YsAEbG5viP4wQlcD+SBU/XDOlhq3C600e7yw3IXEq1l0s/i7ImDpqAlylg0BlJcfJ4yX7u3JITU1lxIgRJCYm4uDgUOS6ert/FRAQUGhrprFMnjyZ8PDwIgtKgFmzZjF9+vTc35OSkqhRowaBgYHF7sDSyMzMZM+ePfTs2RNzc/0+5yOxJbY+YyuKwmfL/gZSeKGbP09qMZSQPvOuEhHPuovHil0vsGMbvbSIGHt/S+ySkePk8caW/V1xYz8s5+6tNvRWVEZHR+Pm5qb1+q6urpiamhITE5NneUxMTKGdcHQRFBTETz/9xKFDh6hevXqR61paWuaZLSiHubm5Qf+hHsd2JLbE1kfsY1fjuXw7BWtzUwYG1NApD33k3dbPHU9HK6IT0wp9Xs7T0Yq2fu56e3arov5bVuTYbf3ccbe3JPZeweOZqgAPOU70FlvOy4ofOye+tvQy8uvt27eZPXs2Xbt21fo9FhYWBAQEsHfv3txlGo2GvXv35rkdritFUQgKCmL79u3s27cPX1/fEscSQmTLmUHnqSae2Fs9/t6zpiYq5vbLnmyhsEvTy138pDNAJafWKNhbFdxWknNkzO3nL8eJnmhzXr71ZH3Z35WI1i2VzZs3R6XKf2AkJiZy8+ZN6tWrR3BwsE4bnz59OmPHjqVly5a0bt2apUuXkpKSktsbfMyYMVSrVo0FCxYA2Z17zpw5k/v/t27dIiwsDDs7O/z8sucjnTx5Mhs2bODHH3/E3t6e6OjsjgWOjo5YW1vrlJ8QAhLvZ7LrVCQAw1rXNFoevRt5smJUC+bvPJOnM4a5qYpMtcKGo9d5NqA61haGmTZSlH0f/nyWy7dTsDIzwd7KnNsPzcDk4WjF3H7+9G4kc33rU2HnpYrsjjr/XImnX9NqRstPPF5aF5UDBgwocLmDgwP16tWjV69eOg0nBDB06FBu377NnDlziI6OplmzZuzevZuqVasC2XOMm5j815gaGRmZZyrIxYsXs3jxYjp37syBAwcAWLFiBQBdunTJs621a9cybtw4nfITQsCOsFukZWqoW9WOFjWdjJpL70ae9PT34PClWH774wiBHdvg42ZP/8//4mxUEm9vP8UnQ5oW+AVYVGzbj9/k67+vArBsRAu61XfPc5zo8xasyKug8zJdDS+sO8b6I9dpWsOJIS0fz2QJwri0Lirnzp1rkASCgoIICgoq8LWcQjGHj49PsQOt66kzuxDigU0PZtAZ1qpmmSjWTE1UtPF14c5ZhTa+Lpibm/P5iBaM+uoI247fomkNJ8a28zF2muIxOh2ZyKxt2SOPTOnmR0//7IaJh48TKSgNq6Dz8tUedVmy5wLv/BBOAw8HGld3NHaawsC0eqZSCjUhKqdTNxM5HZmEhakJzzQvu7ew2tauwqw+9QF476czHLsab+SMxOOSkJrBxOAQ0jI1dK7rxtQedY2dknggqKsfPRq4k5GlYWJwCPEpGcZOSRiYVkVlw4YN2bRpExkZRR8QFy9eZNKkSSxcuFAvyQkhjGvjv9kz6PRu5IGzrYWRsyna8x18eaqJJ1kahUnrQ4ktYlBmUTGoNQpTN4VxI/4+NVys+XRYM2mRLENMTFR8MqQZPlVsuJVwnykbj6PWSCNVRaZVUbls2TIWL16Mh4cHQ4cO5eOPP2b9+vV8//33/N///R/Tp0+ndevWNGvWDAcHByZNmmTovIUQBpaSnsWOsJwOOmX/eSiVSsWiQU2oW9WO2/fSeXl9KBlZGmOnJQzo098vcPDCbazMTVg1qiVONmX7i09l5GhtzqrRLbE2N+XPS3Es/u28sVMSBqRVUdm9e3eOHTvGjh07cHd3Z/369QQFBTFy5EjmzZvHxYsXGTNmDDdv3mTRokU4OspzE0KUd7tORpGcnoVPFRva1qpi7HS0YmtpxqrRLbG3NOPYtbt8+PNZY6ckDGTPmRg+23cJgAUDG+PvZbiJKkTp1POw56NnmwCw4sBldodHGTkjYSg6DX7eoUMHOnToYKhchBBlSM6t76FlpIOOtnxdbfnf0Ga8sO4YX/99lSbVHRnYougJEET5EhGXwvTNYQCMa+fDM83l37es69fUixM3Evi/PyN47bsT+Lnb4+duZ+y0hJ7pZfBzIUTFcj76HsevJ2BmomJQQNntoFOYHv5VmdIte+zaWdtOcToy0cgZCX1JSc/ipW+PcS89i1Y+zrz1ZANjpyS09Gaf+jxRy4WUDHX2v2FaprFTEnomRaUQIp9ND1opuzdwx93eysjZlMzUHnXpUs+N9Ac9TxNSpedpeacoCm98f5ILMcm42VuyfEQLLMzkMlZemJma8PmIFng4WHH5dgoztpyU0WUqGDkbhRB5pGWq2X78FmDcGXRKy9RExdKhzajhYs2N+PtM3RQmPU/Lua/+jGDXySjMTFSsGNkCd4fy+YWnMnO1s2TFqBZYmJqw+3Q0Kw9eMXZKQo+kqBRC5PHr6WgSUjOp5mRNpzpuxk6nVJxsLFg1qiVW5iYcvHCbT3+/YOyURAn9fTmOBb+cA2BOP39a+rgYOSNRUs1rOjPv6YYAfPzrOf64eNvIGQl9kaJSCJHHxqPZt74Ht6xeIcb88/dyYMHAxgB8tu8Se87EGDkjoavIhPu8siF7jMOBzasx+glvY6ckSml46xoMaVkdjQJTNh7n5t1UY6ck9KBEReXly5d55513GD58OLGxsQD88ssvnD59Wq/JCSEer4i4FP65Eo9KBYMr0Fy9zzSvzrgHUzdO3xzGldvJxk1IaC09S82k9aHcScnA39OBD55pXK5GIxAFU6lUvNu/EU2qO3I3NfPBrEhqY6clSknnovLgwYM0btyYI0eOsG3bNpKTs/84nzhxwmDzgwshHo/ND+b57lzXjWpO1kbORr/eerIBrXycuZeexcTgEFLSs4ydktDCvB1nOHEj4cEg2gFYW5gaOyWhJ1bmpqwYFYCLrQXht5J454dw6bhTzulcVL755pu8//777NmzBwuL/2Yv6NatG//8849ekxNCPD6Zag1bQ24CMKxV+e2gUxgLMxOWj2iBu70lF2KSeeN76Xla1m3+9zobj15HpYLPhjenhouNsVMSelbNyZplw5tjooKtITdZf+S6sVMSpaBzUXnq1CmeeeaZfMvd3d2Ji4vTS1JCiMdv79kY4pLTcbWzpHsDd2OnYxDuDlasGNUCMxMVu05G8X9/RBg7JVGIEzcSmP1j9iNVr/WsS+e65bvTmChcez9X3uhdH4D5O08Tev2ukTMSJaVzUenk5ERUVP4plo4fP061auVvkGQhRLaNR7NvfQ9uWR1z04rbhy/A24U5/fwBWLj7HH9fli/DZc2d5HQmBYeQkaWhp39VXu7iZ+yUhIG91KkWfRp5kKlWmBQcwu176cZOSZSAzleOYcOGMXPmTKKjo1GpVGg0Gv766y9ef/11xowZY4gchRAGdivhPoceDOsxtAJ10CnM6Ce8Gdi8GmqNwisbjhOZcN/YKYkHstQaXtl4nMjENGq52vLJkKaYVIBRCETRVCoVHw9uip+7HTFJ6UzeEEqmWmPstISOdC4qP/zwQ+rXr0+NGjVITk7G39+fTp060a5dO9555x1D5CiEMLDvQ2+hKNC2VhV8XG2NnY7BqVQqPnimMf6eDtxJyWDS+lDSs6TnaVnw8W/n+fvyHWwsTFk5OgAHK3NjpyQeEztLM1aOCsDO0oyjEfEsfDAuqSg/dC4qLSws+PLLL7ly5Qo//fQTwcHBnDt3jm+//RZTU+mVJ0R5odYoHImI59htFesf3Poe1rrit1LmsLYwZdXoABytzTlxI4F5O87k7pOQOBVHIuJlBh4De3R/7wyLZNWDGVY+frYpdavaGzlD8bj5uduxeHBTIHsGpR/Dbsl5WY6YlfSNNWrUoEaNynMBEqIi2R0exfydZ4hKTANMgUxUKqhsNxlruNjw2fDmjFt7lI1Hr/PzqSgS72cCpqy7eAxPRyvm9vOndyNPY6da4Tx6DK67eCz3+HuxUy36NpF9Xln1buTBy11q88WBy8zYcpL3fjpDXHIGcl6WfTq3VA4aNIhFixblW/7RRx8xePBgvSQlhDCc3eFRTAoOfXAx/4+iwNRNYewOz98RryLrXNeNfg8KmOyC8j/RiWlMCg6tdPvE0Ao9Bh/8t2l1x8eflChTXgusRwNPezLUmgcF5X/kvCy7dC4qDx06xJNPPplveZ8+fTh06JBekhJCGIZaozB/5xmKunk0f+eZSnV7Sa1ROBpR8BAmOXuhsu0TQ9LmGHx/11nZ34L4R4rJHHJell06F5XJycl5Bj3PYW5uTlJSkl6SEkIYxtGI+HytQw9TgKjENI5GxD++pIzsaEQ80UmyTx6X4o5BkP0tso+TmCKGFZLzsmzSuahs3Lgxmzdvzrd806ZN+Pv76yUpIYRhxN4r+mKu63oVgeyTx0v2t9CGHCflk84ddWbPns3AgQO5fPky3bp1A2Dv3r1s3LiRLVu26D1BIYT+uNtb6XW9ikD2yeMl+1toQ46T8knnlsp+/frxww8/cOnSJV5++WVee+01bt68ye+//86AAQMMkKIQQl9a+7rg6WhVaC9vFeDpaEVrX5fHmZZRFbdPoPLtE0Nq7euCh4Nloa9XxmNQ5Cd/q8qnEs3F1rdvX/766y9SUlKIi4tj3759dO7cWd+5CSH0zNRExdx+BT+mkvPHe24/f0wr0QwmD++Twj71jF71KtU+MSQTFXhXKXiA/cp6DIr8ijsvFWDOU3KclDUVd4JfIUSBejfyZFCLavmWezhasWJUi0o59lvvRp6sGNUCD8e8t9Jyrle/hEejkV6mehH8zzWORMSjAlxs83b6rMzHoMivsPMyR3EdvsTjp9UzlS4uLly4cAFXV1ecnZ1RqQr/ZhAfLz2xhCjLFEXhxM1EAMa2rYkSF0Fgxza09XOv1N/6ezfypKe/B4cvxfLbH0cI7NgGG0sLhq3+hz1nYlhx8DKTu/oZO81yLeRaPO/+dAaAWU/W5/kOtfLs78p+DIr8Cjovz8Wk8P6us3z481kaejnQplYVY6cpHtCqqPzf//6HvX32dFlLly41ZD5CCAMLvX6Xi7HJWJubMrVbbf7Yd4U2vi5yMSf7llsbXxfunFVo4+uCubk57/ZvyJvbTrH4t/M0ruZIp7puxk6zXIq9lz1gdaZaoW9jTyZ0rIVKlXd/yzEoCvLoedm+jjunbiXyY1gkkzcc56dXOhTamikeL62KyrFjxwKQlZWFSqWiV69eVK1a1aCJCSEMY+ODeb77NvHE3srcyNmUfcNa1yTsRgKb/r3BlE3H2RnUgRouNsZOq1zJVGsIWn+c2Hvp1HG346NnmxR5x0uIoqhUKhYMbMz56Huci77HpPUhbH6xLRZm8kSfsen0L2BmZsbEiRNJS5PnGIQoj5LSMvnpZCQAw1vXMHI25ce8pxvStLojCamZvPRtCGmZamOnVK58+PNZjl6Nx97SjJWjA7C11Hk0OyHysLEwY9XoAByszDh+PYH3HjxWIYxL57K+devWHD9+3BC5CCEM7MewSNIyNdRxt6NFTWdjp1NuWJmbsmJUAFVsLTgTlcRb20+hKNJxRxs/HL/F2r+uAvDJkKbUdrMzbkKiwvCuYsvSYc0A+Pafa2wNuWnchITug58/PDZlQEAAtrZ5h4Zo0qSJ3pITQujX5n+vA9m3dOX2o268nKxZNrw5o746wrbQWzSv4cTotj7GTqtMOxOZxJvbTgIQ1NWPwIYeRs5IVDTd6ldlWo86LP39Im9vP0V9D3saVXM0dlqVls5F5bBhwwCYMmVK7jKVSoWiKKhUKtRquS0kRFkUfiuR8FtJWJia8Ezz/EMKieK183PlzT71+fDnc8zfeQZ/LwcCvGXw5YIkpmYyMTiEtEwNneq68WrPusZOSVRQU7rV4dTNRPaei+Wlb0P46ZUOOD8yXJV4PHS+/R0REZHv58qVK7n/FUKUTRuPZrdS9mrkkW98QKG9CR1r0bexJ1kahUnBoTL3cAE0GoVpm49zPT6V6s7WfDasmfTsFgZjYqJiydBmeFex4VbCfaZsOo5axpU1Cp2KyqSkJC5cuEB4eDg2NjZ4e3vn+xFClD2pGVn8GPagg04r6aBTGiqVio+ebUIddzti76UzeX0omWqNsdMqUz7de5H9529jaWbCylEBONnIlxhhWI7W5qwcFYC1uSl/XIxjyZ7zxk6pUtK6qAwLC6N+/fr07t2bfv364efnx6+//mrI3IQQevLTySiS07PwrmLDEzJQcKnZPujFbG9pxr9X7/LBrrPGTqnM2Hs2hk/3XgRgwcDG8nybeGwaeDqwcFBjAJbvv8zu8GgjZ1T5aF1Uzpw5E19fX/78809CQkLo3r07QUFBhsxNCKEnmx7c+h7aqgYmchtSL2q72fHJkKYAfP33VX44fsvIGRnf1bgUpm0OA2BMW28Gtqhu3IREpdO/WTXGt/cF4PUtJ7gUm2zkjCoXrYvKkJAQli1bRtu2bWnevDlr1qzh8uXLJCUlGTI/IUQpXYi5R+j1BExNVDwbIBd5fQps6EHQg6kb39x2kjORlffvYWpGFi99G8K9tCwCvJ15p6+/sVMSldSsJ+vT2teF5PQsJgaHkJyeZeyUKg2ti8r4+HiqV//vguTk5IStrS137twxSGJCCP3Y9GAGne713XG3l6nM9O3VnnXpVNeNtEwNE4NDSEzNNHZKj52iKMz8/hTnY+7hZm/JFyNbyOwmwmjMTU1YPqIFVR0suRSbzIwtJ2Rc2cdEp7P+zJkznDx5MvdHURTOnj2bZ5kQouxIy1Sz7Xj2gMDDW9c0cjYVk6mJis+GNaOGizXX41OZuvk4mkrW8/SrPyPYeSISMxMVX4xsQVUH+fIijMvN3pIVowIwN1XxS3g0qw/J6DSPg07jVHbv3j1ftf/UU0/JOJVClFG/no4mITUTL0crOtV1M3Y6FZaTjQUrRgYwaMXfHDh/m6V7LzK9kozL+M+VOyz45RwA7/RtQCsfGbdTlA0tajozt19D3vkhnEW7z9GomiPt/VyNnVaFpnVRGRERYcg8hBAGkHPre3DLGjJOoIE1qubIgoGNmf7dCT7be5Em1Rzp4V/V2GkZVFTifYI2hKLWKAxo5sXYdj7GTkmIPEa2qUnYjQS2htzklY3H2flKB6o5WRs7rQpL66JSxqAUony5GpfC4St3UKlgiIxN+VgMbFGdEzcS+ObwNV79LowdQR3wdbUt/o3lUHqWmknBocQlZ9DA04EFA5vI1J+izFGpVLw/oBHnopMIv5XEpOAQvnupLVbmpsZOrUKSJ6mFqKA2H8tupexc102+mT9Gb/f1J8DbmXtpWUz8NoSUCtrz9N2dZwi7kYCDlRmrRgVgbSEXaVE2WZmbsnJUAM425py8mcicH8Ol446BSFEpRAWUqdaw5Vh2B51h0kr5WFmYmfDFyBa42VtyPuYeM78/WeEuYN8du8H6I9dRqeDT4c2pWcXG2CkJUaTqzjZ8Nrw5Jir47thNNj54NEjolxSVQlRAe8/GEpecjqudJd0bVOzn+sqiqg5WfDGyBWYmKn46GcVXf1acZ9JP3UzknR/CAXi1R1261nM3ckZCaKdjHTde71UPgHk7TnP8+l0jZ1TxGL2oXL58OT4+PlhZWdGmTRuOHj1a6LqnT59m0KBB+Pj4oFKpWLp0aaljClERbfo3ewadZwOqY25q9NO8Umrl48I7fRsAsOCXc/x1MY4jEfGExKk4EhGPWo/DDqk1ymOJvedMDC99e4yMLA09GrjnDvwuRHkxqXNtejWsSoZaw6TgUGKS0gx27lRGOg0pBDB37lzGjx+vl447mzdvZvr06axcuZI2bdqwdOlSevXqxfnz53F3z//tNzU1lVq1ajF48GBeffVVvcQUoqK5lXCfgxduA3Lr29jGtvPhxM1Eth+/xeg1R8i+Xpmy7uIxPB2tmNvPn96NPEu1jd3hUczfeYaoxLTHEPsEAG52FnwypJlM+SnKHZVKxeLBTbkU+xeXb6fQcdE+MtQK+j53KiudmzB+/PFHateuTffu3dmwYQPp6ekl3viSJUuYMGECzz33HP7+/qxcuRIbGxvWrFlT4PqtWrXi448/ZtiwYVhaWuolphAVzZZjN1AUaFurCj4VtOdxeaFSqehSL3t80EcbQKIT05gUHMru8KgSx98dHsWk4NAHRd/jiQ1wOzmDw5fjShxbCGOytzJn1BPZDWPZBeV/9HHuVGY6t1SGhYVx/Phx1q5dy9SpU5k8eTLDhg1j/PjxtGrVSus4GRkZhISEMGvWrNxlJiYm9OjRg8OHD+ualsFiClGeqDUK3/2b/QD6sNbSSmlsao3CwgcDgz8q51I28/tT3E5Ox0TH4Xg0isLHu89T0M06Q8YGUAHzd56hp7+HjH8qyh21Ril0hh0FOb5LQ+eiEqB58+Y0b96cTz75hJ07d7J27Vrat29P/fr1ef755xk3bhyOjo5FxoiLi0OtVlO1at5OBFWrVuXcuYL/CBenpDHT09PztLgmJSUBkJmZSWam4ebxzYltiG1I7MoZ++CF20QmpuFkbU73ulWKfU9Zybuixj4SEV9gS9/DEu9nMvuH06Xe1uOMrQBRiWkcvhRLG9/SzaBTXv4tJXbFiV3ceSnHd8Hb0YZKKcVYFxkZGWzfvp01a9awb98+2rVrR2RkJDExMXz55ZcMHTq00PdGRkZSrVo1/v77b9q2bZu7/I033uDgwYMcOXKkyG37+Pgwbdo0pk2bVuqY8+bNY/78+fmWb9iwARsbGSpDlB9fnTfhZLwJnT00DPTVGDudSi8kTsW6i8WP31jDVoNzwU/0FOpuOtxIKf4JJkPGHlNHTYCrdGwQ5Yu256Uc39lSU1MZMWIEiYmJODg4FLluiVoqQ0JCWLt2LRs3bsTS0pIxY8awfPly/PyyewIuW7aMKVOmFFlUurq6YmpqSkxMTJ7lMTExeHh4lCStEsecNWsW06dPz/09KSmJGjVqEBgYWOwOLI3MzEz27NlDz549MTc3l9gSu1Sxb99L57UjhwCFmc92oE5VO73FLgmJDVUi4ll38Vix6y0Y2lrnFpEjEfGMWmPc2IEd2+ilJac8/FtK7IoTW9vzsjIf3w/LuXurDZ2LysaNG3Pu3DkCAwP56quv6NevH6ameSv+4cOHM3Xq1CLjWFhYEBAQwN69exkwYAAAGo2GvXv3EhQUpGtapYppaWlZYMcfc3Nzg/5DPY7tSOzKE/uHk9fI0ii0qOmEf3VnvcYujcocu62fO56OVkQnphX4fKIK8HC0oq2fu87PbpXX2IUp6/+WErvixC7u+AbwlOM7T3xt6dz7e8iQIVy9epVdu3YxYMCAfAUlZLcYajTF33qbPn06X375Jd988w1nz55l0qRJpKSk8NxzzwEwZsyYPJ1uMjIyCAsLIywsjIyMDG7dukVYWBiXLl3SOqYQFZGiKGzO7aBT08jZiBymJirm9vMHsguxh+X8Preff4kuXOU1thDGVtTxnWNgi2pyfJeAzkWloig4O+dvBbl//z7vvvuuTrGGDh3K4sWLmTNnDs2aNSMsLIzdu3fndrS5fv06UVH/deuPjIzM7SQUFRXF4sWLad68OS+88ILWMYWoiA5fucO1O6nYW5rxVBMZX60s6d3IkxWjWuDhaJVnuYejFStGtSjVeHjlNbYQxlbY8W3zYA774H+uc/1OqjFSK9d0vv09f/58Jk6cmK8DS2pqKvPnz2fOnDk6xQsKCir01vSBAwfy/O7j46PVHLpFxRSiItr0YB7bp5t5YWNRokelhQH1buRJT38PDl+K5bc/jhDYsY3ebq2V19hCGFtBx3cLnyqM+PIIYTcSeCk4hG2T2mFtUXynHpGtRC2VqgLGPDtx4gQuLqV7oFUIobu7KRnsDo8GYFgrufVdVpmaqGjj60KAq0IbXxe9FmblNbYQxvbo8W1jYcaKUS1wtbPgbFQSb20/pVVjlsimdZOGs7MzKpUKlUpF3bp18xSWarWa5ORkJk6caJAkhRCF23b8FhlqDQ29HGhcvejxYYUQQhTN09Gaz0e0YOT/HWH78Vs0q+HE2HY+xk6rXNC6qFy6dCmKojB+/Hjmz5+fZ3BzCwsLfHx88owNKYQwPEVR2HT0OiAddIQQQl+eqFWFWX3q8/6us7z30xn8vRxo5SN3Y4ujdVE5duxYAHx9fWnXrt1jGWpHCFG00OsJXIxNxtrclP7NvIydjhBCVBjPd/DlxM1Edp6I5OX1oex6pQPuDlbFv7ES0+qZyocHvmzevDn3798nKSmpwB8hxOOT00rZt4knDlbyRU8IIfRFpVKxaFBj6lW15/a9dF5eH0pGlsxUVhStikpnZ2diY2MBcHJywtnZOd9PznIhxONxLy2Tn05mD7k1vHUNI2cjhBAVj42FGatGB2BvZcaxa3f5YNcZY6dUpml1+3vfvn25Pbv37dtXYO9vIcTj9WNYJPcz1fi529GipnyhE0IIQ/BxtWXp0GY8/80xvjl8jaY1nBjYorqx0yqTtCoqO3funPv/Xbp0MVQuQggdbPr3QQedVjXki54QQhhQ9wZVmdq9Dp/uvcisbaeoW9WeRtVktI1H6TxO5dq1a9myZUu+5Vu2bOGbb77RS1JCiKKF30ok/FYSFqYm8o1ZCCEeg6nd69C1nhvpWRomrQ8hITXD2CmVOToXlQsWLMDV1TXfcnd3dz788EO9JCWEKFpOK2WvRh642FoYORshhKj4TExULB3anJouNtyIv8+UTWGoNTIw+sN0LiqvX7+Or69vvuXe3t5cv35dL0kJIQqXmpHFj8cjARjeSjroCCHE4+JoY86q0QFYmZtw6MJtlv5+wdgplSk6F5Xu7u6cPHky3/ITJ05QpUoVvSQlhCjcrpNR3EvPwruKDU/UknNOCCEepwaeDiwa1ASAZfsu8dvpaCNnVHboXFQOHz6cKVOmsH//ftRqNWq1mn379jF16lSGDRtmiByFEA/Z9O8NAIa0rIGJzMMshBCPXf9m1XiuvQ8Ar313giu3k42bUBmhc1H53nvv0aZNG7p37461tTXW1tYEBgbSrVs3eaZSCAO7EHOPkGt3MTVRMThAOugIIYSxvPVkA1r7uHAvPYuXvg0hJT3L2CkZnc5FpYWFBZs3b+bcuXOsX7+ebdu2cfnyZdasWYOFhXQYEMKQNj9opexe312mCxNCCCMyNzXh85HNqepgycXYZN7YehJFqdwdd7Se+/tRdevWpW7duvrMRQhRhPQsDdtCbwIwvHVNI2cjhBDC3d6KL0YGMGz1YXadiqLZH05M6FTL2GkZjVZF5fTp03nvvfewtbVl+vTpRa67ZMkSvSQmhMhrz5kY7qZm4uVoRae6bsZORwghBBDg7cycfg2Z/UM4C345S0MvB9r55R96sTLQqqg8fvw4mZmZAISGhhY6e4fM6iGE4XwXcguAwS1rYCoddIQQoswY1aYmYdcT+D70JkEbj/PTKx3wcrI2dlqPnVZF5f79+3P//8CBA4bKpVJRaxSORMQTEqeiSkQ8bf3cpVAQ+eQcJwciVRy+Fg/A4JbSQUcIIcoSlUrFB8804lx0Eqcjk5gUHMKGCU9w/JphrvNltYbQ6ZnKzMxMrK2tCQsLo1GjRobKqcLbHR7F/J1niEpMA0xZd/EYno5WzO3nT+9GnsZOT5QRjx4nABZmJoTfSqS6s41xkxNCCJGHlbkpK0cF0O/zPzlxM5GWH/zO/Qw1+r7Ol+UaQqfe3+bm5tSsWRO1Wm2ofCq83eFRTAoOfXAw/Cc6MY1JwaHsDo8yUmaiLCnsOMnI0shxIoQQZVQNFxvGtPUGeFBQ/kcf1/myXkPo3Pv77bff5q233uLbb7/FxcXFEDlVWGqNwvydZyhowAEFUAHzd56hp79HmWjGFsZR1HGSQ44TIYQoe9QahS3Hbhb4Ws7f9Le3h+NkY6Hz32+1RuHt7eFluobQuaj8/PPPuXTpEl5eXnh7e2Nra5vn9dDQUL0lV9EcjYjP9+3iYQoQlZjG0Yh42taW6fcqKzlOhBCifCru7zfAnZQMhq3+R+/bLgvXBp2Lyv79+0sv7xKKvVf0gabreqJikuNECCHKJ23/LrvbW2JnqVsJlpyeRey9dL3lYAg6F5Xz5s0zQBqVg7u9djOgaLueqJjkOBFCiPJJ27/Lnw5rrnNr4uHLdxj+ZfEtnMa8Nug8TWOtWrW4c+dOvuUJCQnUqlV5R5HXRmtfFzwdrSiqndfDwZLWvvKsamXW2tcFV7vCpzxVAZ6OVnKcCCFEGVPcdb40f78NGVtfdC4qr169WmDv7/T0dG7eLPjhVJHN1ETF3H7+AIUeFB6OVkjfi8ot6X4mGk3Br+UcGnP7+UsnHSGEKGOKus6X9u+3IWPri9a3v3fs2JH7/7/++iuOjo65v6vVavbu3Yuvr69+s6uAejfyZMWoFg+NMZXN1c6ChNRMwm4ksuLgZV7u4mfELIWxqDUKUzYdJz41Azc7C0xMVMQk/fcMjUcZGYtMCCFEwQq7zuvj77chY+uD1kXlgAEDgOxR48eOHZvnNXNzc3x8fPjkk0/0mlxF1buRJz39PTh8KZbf/jhCYMc2tPVz57tjN5i17RSLfz1PIy9Hmd+5Elqy5zx/XIzD2tyUdc+3oW5V+3zHibRQCiFE2VbYdV4ff78NGbu0tL79rdFo0Gg01KxZk9jY2NzfNRoN6enpnD9/nqeeesqQuVYopiYq2vi6EOCq0MbXBVMTFcNb12RoyxpoFJiy6Tg34lONnaZ4jH49Hc3y/ZcBWDioMQ08HQo8ToQQQpR9hvz7XVavDTo/UxkREYGrq6shchHA/P4NaVLdkYTUTCatDyEtU2Yvqgwu307mte9OADC+vS/9m1UzckZCCCGEbnQuKqdMmcJnn32Wb/nnn3/OtGnT9JFTpWZlbsqKUQG42FoQfispe/R8pai5VUR5l5yexUvfhpCcnkVrXxdmPVnf2CkJIYQQOtO5qPz+++9p3759vuXt2rVj69atekmqsqvmZM3nw5tjooLvQ28SfOS6sVMSBqIoCjO2nOBSbDJVHSxZPqIF5qY6n5ZCCCGE0el89bpz506ent85HBwciIuL00tSAtr5uTKzd3aL1bs7TxNy7a6RMxKGsPrQFX4Jj8bcVMWKUQG42VsaOyUhhBCiRHQuKv38/Ni9e3e+5b/88osMfq5nL3aqxZONPchUK7y8PkSm5atg/roUx6Ld5wCY268hLWo6GzkjIYQQouR0nqZx+vTpBAUFcfv2bbp16wbA3r17+eSTT1i6dKm+86vUVCoVHz3blAsxyVyKTSZo/XHWT2gjt0crgFsJ93ll43E0CjwbUJ2RbWoaOyUhhBCiVHSuTsaPH88nn3zCV199RdeuXenatSvBwcGsWLGCCRMmGCLHSs3O0oxVowOwszTj6NV4Fvx8ztgpiVJKy1QzKTiE+JQMGlVz4P0BjVCpysZwEEIIIURJlajJa9KkSdy8eZOYmBiSkpK4cuUKY8aM0Xdu4oHabnZ8MqQpAGv+iuDHsFtGzkiUlKIozPkxnJM3E3G2MWflqACszE2NnZYQQghRaiUqKrOysvj999/Ztm1b7nA3kZGRJCcn6zU58Z9eDT2Y3LU2ADO/P8nZqCQjZyRKYuPRG3x37CYmKvhseHOqO9sYOyUhhBBCL3QuKq9du0bjxo3p378/kydP5vbt2wAsWrSI119/Xe8Jiv9M71mPjnVcScvUMDE4hMTUTGOnJHRw/Ppd5u04DcDrverRsY5MwymEEKLi0LmonDp1Ki1btuTu3btYW1vnLn/mmWfYu3evXpMTeZmaqPhsWHOqO1tz7U4q0zYfR6ORgdHLg9v30pkUHEqGWkOvhlWZ1Lm2sVMSQggh9ErnovKPP/7gnXfewcLCIs9yHx8fbt2SZ/0MzdnWgpWjArA0M2H/+dt8uveisVMSxchSawjaEEp0Uhq13WxZPLipdMwRQghR4ehcVGo0GtTq/PNR37x5E3t7e70kJYrWqJojHzzTGIBP915k79kYI2ckirLwl3MciYjH1sKUVaMDsLcyN3ZKQgghhN7pXFQGBgbmGY9SpVKRnJzM3LlzefLJJ/WZmyjCswHVGdPWG4Bpm8O4Gpdi5IxEQXaeiOT//owA4JMhTfFzly9eQgghKiadi8pPPvmEv/76C39/f9LS0hgxYkTure9FixYZIkdRiHf6+hPg7cy9tCxe+jaE1IwsY6ckHnI++h5vbD0JwMTOtendyNPIGQkhhBCGo3NRWb16dU6cOMFbb73Fq6++SvPmzVm4cCHHjx/H3d3dEDmKQliYmfDFyBa42llyPuYeM78/lTvEkzCuxPuZvPTtMe5nqung58rrgXWNnZIQQghhUDpP0whgZmbGqFGj9J2LKIGqDlZ8MbIFI778h50nImlWw4nnO/gaO61KTaNReO27MK7eSaWakzWfDW+OmUytKYQQooLTqqjcsWOH1gGffvrpEicjSqa1rwtv923A/J1n+PDnszTwsEejURMSp6JKRDxt/dwxNdFPb2O1RuFIRLzELiL2seuJ/H42FgszE1aOCsDF1qL4IEIIIUQ5p1VROWDAAK2CqVSqAnuGF2X58uV8/PHHREdH07RpU5YtW0br1q0LXX/Lli3Mnj2bq1evUqdOHRYtWpSng1BycjJvvvkmP/zwA3fu3MHX15cpU6YwceJEnfIqb8a18+HEjQR+CItk1FdHyB6+0pR1F4/h6WjF3H7+pX6mb3d4FPN3niEqMU1iFxE7x/sDGtG4umOp4gshhBDlhVb35DQajVY/uhaUmzdvZvr06cydO5fQ0FCaNm1Kr169iI2NLXD9v//+m+HDh/P8889z/PhxBgwYwIABAwgPD89dZ/r06ezevZvg4GDOnj3LtGnTCAoK0qm1tTxSqVR0rZ/9TOuj46FHJ6YxKTiU3eFRJY6/OzyKScGhD4oniV1U7BwOViV6ukQIIYQol4x61VuyZAkTJkzgueeeA2DlypXs2rWLNWvW8Oabb+Zb/9NPP6V3797MmDEDgPfee489e/bw+eefs3LlSiC78Bw7dixdunQB4MUXX2TVqlUcPXq0Qt+aV2sUFv5yrsDXFEAFzN1xmlY+Ljrf9lVrFObuOE1BXYAkdsFUwPydZ+jp76G32+xCCCFEWaZ1Ufnkk0+yceNGHB2zb+ctXLiQiRMn4uTkBMCdO3fo2LEjZ86c0SpeRkYGISEhzJo1K3eZiYkJPXr04PDhwwW+5/Dhw0yfPj3Psl69evHDDz/k/t6uXTt27NjB+PHj8fLy4sCBA1y4cIH//e9/heaSnp5Oenp67u9JSUkAZGZmkplpuPm1c2LrYxtHIuILbTGD7CIqJimdgPd/L/W2JLZ2saMS0zh8KZY2vi6liqXP40RiS2yJLbEltsQuyXa0oVK0HIPG1NSUqKio3GGDHBwcCAsLo1atWgDExMTg5eWl9S3wyMhIqlWrxt9//03btm1zl7/xxhscPHiQI0eO5HuPhYUF33zzDcOHD89d9sUXXzB//nxiYrJnlUlPT+fFF19k3bp1mJmZYWJiwpdffsmYMWMKzWXevHnMnz8/3/INGzZgY2Oj1ecxtpA4Fesumho7DfGIMXXUBLjKME9CCCHKp9TUVEaMGEFiYiIODg5Frqt1S+WjtWdZHQ9x2bJl/PPPP+zYsQNvb28OHTrE5MmT8fLyokePHgW+Z9asWXlaQJOSkqhRowaBgYHF7sDSyMzMZM+ePfTs2RNz89JN3VclIj5PJ5HCfDO2Ba11bDk7GhHP2G9CJXYJYgd2bKOXlkp9HScSW2JLbIktsSW2LnLu3mrDaM9Uurq6YmpqmtvCmCMmJgYPD48C3+Ph4VHk+vfv3+ett95i+/bt9O3bF4AmTZoQFhbG4sWLCy0qLS0tsbS0zLfc3NzcoP9Q+txOWz93PB2tiE5MK/A5PxXg4WhFh3q6P+PXoZ6HxC5hbH0OXWTI41FiS2yJLbEltsQuLL62tB6RWaVSoVKp8i0rKQsLCwICAti7d2/uMo1Gw969e/PcDn9Y27Zt86wPsGfPntz1c56BNDHJ+7FMTU3RaDQlzrU8MDVRMbefP5Bd0Dws5/e5/fxLVOBI7McbWwghhCiPdLr9PW7cuNwWvbS0NCZOnIitrS1Ano4u2po+fTpjx46lZcuWtG7dmqVLl5KSkpLbG3zMmDFUq1aNBQsWADB16lQ6d+7MJ598Qt++fdm0aRPHjh1j9erVQPZznp07d2bGjBlYW1vj7e3NwYMHWbduHUuWLNE5v/KmdyNPVoxq8dC4idk89DAmo8R+vLGFEEKI8kbronLs2LF5fi9omsaiOsMUZOjQody+fZs5c+YQHR1Ns2bN2L17N1WrVgXg+vXreVod27Vrx4YNG3jnnXd46623qFOnDj/88AONGjXKXWfTpk3MmjWLkSNHEh8fj7e3Nx988EGFH/w8R+9GnvT09+DwpVh+++MIgR3b6O0WrMR+vLGFEEKI8kTronLt2rUGSSAoKIigoKACXztw4EC+ZYMHD2bw4MGFxvPw8DBYruWFqYmKNr4u3Dmr0MZX9zEYJXbZiS2EEEKUF1o/UymEEEIIIURhZB65AuQMl6RLN/qSyMzMJDU1laSkJIMMNSCxJbbEltgSW2JLbIldGjm1kDZDSUpRWYB79+4BUKNGDSNnIoQQQghhfPfu3cudVbEwWs+oU5loNBoiIyOxt7cv1bBJxckZZP3GjRt6H2RdYktsiS2xJbbEltgSu7QUReHevXt4eXnlG7LxUdJSWQATExOqV6/+2Lbn4OBgsANCYktsiS2xJbbEltgSuzSKa6HMIR11hBBCCCFEqUlRKYQQQgghSk2KSiOytLRk7ty5Bc47LrEltsSW2BJbYktsiW2M2CUlHXWEEEIIIUSpSUulEEIIIYQoNSkqhRBCCCFEqUlRKYQQQgghSk2KSiGEEEIIUWpSVBrR8uXL8fHxwcrKijZt2nD06FG9xD106BD9+vXDy8sLlUrFDz/8oJe4CxYsoFWrVtjb2+Pu7s6AAQM4f/68XmKvWLGCJk2a5A7i2rZtW3755Re9xH7UwoULUalUTJs2rdSx5s2bh0qlyvNTv3790if5wK1btxg1ahRVqlTB2tqaxo0bc+zYsVLH9fHxyZe3SqVi8uTJpY6tVquZPXs2vr6+WFtbU7t2bd577z2t5o3Vxr1795g2bRre3t5YW1vTrl07/v33X53jFHeeKIrCnDlz8PT0xNramh49enDx4kW9xN62bRuBgYFUqVIFlUpFWFiYXvLOzMxk5syZNG7cGFtbW7y8vBgzZgyRkZF6yXvevHnUr18fW1tbnJ2d6dGjB0eOHNFL7IdNnDgRlUrF0qVL9RJ73Lhx+Y713r176y3vs2fP8vTTT+Po6IitrS2tWrXi+vXrpY5d0DmqUqn4+OOPSx07OTmZoKAgqlevjrW1Nf7+/qxcubLYuNrEjomJYdy4cXh5eWFjY0Pv3r21One0ucakpaUxefJkqlSpgp2dHYMGDSImJkYvsVevXk2XLl1wcHBApVKRkJBQbFxtYsfHx/PKK69Qr149rK2tqVmzJlOmTCExMVEveb/00kvUrl0ba2tr3Nzc6N+/P+fOndMqd32TotJINm/ezPTp05k7dy6hoaE0bdqUXr16ERsbW+rYKSkpNG3alOXLl+sh0/8cPHiQyZMn888//7Bnzx4yMzMJDAwkJSWl1LGrV6/OwoULCQkJ4dixY3Tr1o3+/ftz+vRpPWT+n3///ZdVq1bRpEkTvcVs2LAhUVFRuT9//vmnXuLevXuX9u3bY25uzi+//MKZM2f45JNPcHZ2LnXsf//9N0/Oe/bsAWDw4MGljr1o0SJWrFjB559/ztmzZ1m0aBEfffQRy5YtK3VsgBdeeIE9e/bw7bffcurUKQIDA+nRowe3bt3SKU5x58lHH33EZ599xsqVKzly5Ai2trb06tWLtLS0UsdOSUmhQ4cOLFq0SKeci4udmppKaGgos2fPJjQ0lG3btnH+/HmefvrpUscGqFu3Lp9//jmnTp3izz//xMfHh8DAQG7fvl3q2Dm2b9/OP//8g5eXl1Y5axu7d+/eeY75jRs36iX25cuX6dChA/Xr1+fAgQOcPHmS2bNnY2VlVerYD+cbFRXFmjVrUKlUDBo0qNSxp0+fzu7duwkODubs2bNMmzaNoKAgduzYUarYiqIwYMAArly5wo8//sjx48fx9vamR48exV4rtLnGvPrqq+zcuZMtW7Zw8OBBIiMjGThwYLE5axM7NTWV3r1789ZbbxUbT5fYkZGRREZGsnjxYsLDw/n666/ZvXs3zz//vF7yDggIYO3atZw9e5Zff/0VRVEIDAxErVbr9Dn0QhFG0bp1a2Xy5Mm5v6vVasXLy0tZsGCBXrcDKNu3b9drzByxsbEKoBw8eNAg8Z2dnZX/+7//01u8e/fuKXXq1FH27NmjdO7cWZk6dWqpY86dO1dp2rRpqeMUZObMmUqHDh0MEvtRU6dOVWrXrq1oNJpSx+rbt68yfvz4PMsGDhyojBw5stSxU1NTFVNTU+Wnn37Ks7xFixbK22+/XeK4j54nGo1G8fDwUD7++OPcZQkJCYqlpaWycePGUsV+WEREhAIox48fL0HW2p3fR48eVQDl2rVreo+dmJioAMrvv/+ul9g3b95UqlWrpoSHhyve3t7K//73P53iFhZ77NixSv/+/XWOpU3soUOHKqNGjTJI7Ef1799f6datm15iN2zYUHn33XfzLCvJefRo7PPnzyuAEh4enrtMrVYrbm5uypdffqlT7EevMQkJCYq5ubmyZcuW3HXOnj2rAMrhw4dLFfth+/fvVwDl7t27OsXUJnaO7777TrGwsFAyMzP1HvvEiRMKoFy6dEmn2PogLZVGkJGRQUhICD169MhdZmJiQo8ePTh8+LARM9NNTtO9i4uLXuOq1Wo2bdpESkoKbdu21VvcyZMn07dv3zz7XR8uXryIl5cXtWrVYuTIkVrd9tLGjh07aNmyJYMHD8bd3Z3mzZvz5Zdf6iX2wzIyMggODmb8+PGoVKpSx2vXrh179+7lwoULAJw4cYI///yTPn36lDp2VlYWarU6XyuQtbW13lqIASIiIoiOjs5zrDg6OtKmTZtydY5C9nmqUqlwcnLSa9yMjAxWr16No6MjTZs2LXU8jUbD6NGjmTFjBg0bNtRDhnkdOHAAd3d36tWrx6RJk7hz506pY2o0Gnbt2kXdunXp1asX7u7utGnTRm+PHD0sJiaGXbt2adW6pY127dqxY8cObt26haIo7N+/nwsXLhAYGFiquOnp6QB5zlETExMsLS11PkcfvcaEhISQmZmZ57ysX78+NWvW1Pm8NNT1S9vYiYmJODg4YGZmptfYKSkprF27Fl9fX2rUqKFTbH2QotII4uLiUKvVVK1aNc/yqlWrEh0dbaSsdKPRaJg2bRrt27enUaNGeol56tQp7OzssLS0ZOLEiWzfvh1/f3+9xN60aROhoaEsWLBAL/FytGnTJvdWxooVK4iIiKBjx47cu3ev1LGvXLnCihUrqFOnDr/++iuTJk1iypQpfPPNN3rI/D8//PADCQkJjBs3Ti/x3nzzTYYNG0b9+vUxNzenefPmTJs2jZEjR5Y6tr29PW3btuW9994jMjIStVpNcHAwhw8fJioqSg/ZZ8s5D8vzOQrZz5/NnDmT4cOH4+DgoJeYP/30E3Z2dlhZWfG///2PPXv24OrqWuq4ixYtwszMjClTpughy7x69+7NunXr2Lt3L4sWLeLgwYP06dOn1LcHY2NjSU5OZuHChfTu3ZvffvuNZ555hoEDB3Lw4EE9ZZ/tm2++wd7eXqtbvdpYtmwZ/v7+VK9eHQsLC3r37s3y5cvp1KlTqeLmFHmzZs3i7t27ZGRksGjRIm7evKnTOVrQNSY6OhoLC4t8X5B0PS8Ncf3SJXZcXBzvvfceL774ot5if/HFF9jZ2WFnZ8cvv/zCnj17sLCwKPHnKCndSmQhHpg8eTLh4eF6bR2qV68eYWFhJCYmsnXrVsaOHcvBgwdLXVjeuHGDqVOnsmfPHq2ec9LFw61vTZo0oU2bNnh7e/Pdd9+VukVBo9HQsmVLPvzwQwCaN29OeHg4K1euZOzYsaWK/bCvvvqKPn366PQMW1G+++471q9fz4YNG2jYsCFhYWFMmzYNLy8vveT97bffMn78eKpVq4apqSktWrRg+PDhhISE6CH7iiMzM5MhQ4agKAorVqzQW9yuXbsSFhZGXFwcX375JUOGDOHIkSO4u7uXOGZISAiffvopoaGhemktf9SwYcNy/79x48Y0adKE2rVrc+DAAbp3717iuBqNBoD+/fvz6quvAtCsWTP+/vtvVq5cSefOnUuX+EPWrFnDyJEj9fY3bNmyZfzzzz/s2LEDb29vDh06xOTJk/Hy8irV3Rxzc3O2bdvG888/j4uLC6ampvTo0YM+ffro1FnPENeYshA7KSmJvn374u/vz7x58/QWe+TIkfTs2ZOoqCgWL17MkCFD+Ouvv/R+zSuOtFQagaurK6ampvl6rMXExODh4WGkrLQXFBTETz/9xP79+6levbre4lpYWODn50dAQAALFiygadOmfPrpp6WOGxISQmxsLC1atMDMzAwzMzMOHjzIZ599hpmZmV4fZnZycqJu3bpcunSp1LE8PT3zFdQNGjTQ2+11gGvXrvH777/zwgsv6C3mjBkzclsrGzduzOjRo3n11Vf11kpcu3ZtDh48SHJyMjdu3ODo0aNkZmZSq1YtvcQHcs/D8nqO5hSU165dY8+ePXprpQSwtbXFz8+PJ554gq+++gozMzO++uqrUsX8448/iI2NpWbNmrnn6LVr13jttdfw8fHRT+IPqVWrFq6urqU+T11dXTEzMzP4efrHH39w/vx5vZ2n9+/f56233mLJkiX069ePJk2aEBQUxNChQ1m8eHGp4wcEBBAWFkZCQgJRUVHs3r2bO3fuaH2OFnaN8fDwICMjI1+vbF3OS0Ndv7SJfe/ePXr37o29vT3bt2/H3Nxcb7EdHR2pU6cOnTp1YuvWrZw7d47t27eX6vOUhBSVRmBhYUFAQAB79+7NXabRaNi7d69enyHUN0VRCAoKYvv27ezbtw9fX1+Dbk+j0eQ+n1Ma3bt359SpU4SFheX+tGzZkpEjRxIWFoapqakess2WnJzM5cuX8fT0LHWs9u3b5xs64sKFC3h7e5c6do61a9fi7u5O37599RYzNTUVE5O8f1pMTU1zW3X0xdbWFk9PT+7evcuvv/5K//799Rbb19cXDw+PPOdoUlISR44cKdPnKPxXUF68eJHff/+dKlWqGHR7+jhPR48ezcmTJ/Oco15eXsyYMYNff/1VT5n+5+bNm9y5c6fU56mFhQWtWrUy+Hn61VdfERAQoJdnVyH7GMnMzDT4eero6IibmxsXL17k2LFjxZ6jxV1jAgICMDc3z3Nenj9/nuvXrxd7Xhry+qVN7KSkJAIDA7GwsGDHjh1atyCWJG9FUVAURS/XT13J7W8jmT59OmPHjqVly5a0bt2apUuXkpKSwnPPPVfq2MnJyXm+gUdERBAWFoaLiws1a9YscdzJkyezYcMGfvzxR+zt7XOfYXF0dMTa2rpUOc+aNYs+ffpQs2ZN7t27x4YNGzhw4IBeLij29vb5nj+xtbWlSpUqpX6e5vXXX6dfv354e3sTGRnJ3LlzMTU1Zfjw4aWKC9lDZ7Rr144PP/yQIUOGcPToUVavXs3q1atLHRuyi4G1a9cyduxYnR8WL0q/fv344IMPqFmzJg0bNuT48eMsWbKE8ePH6yV+zpAZ9erV49KlS8yYMYP69evrfO4Ud55MmzaN999/nzp16uDr68vs2bPx8vJiwIABpY4dHx/P9evXc8ePzClKPDw8im1xKSq2p6cnzz77LKGhofz000+o1erc89TFxaXYZ6yKil2lShU++OADnn76aTw9PYmLi2P58uXcunVLq6Goitsnjxa/5ubmeHh4UK9evVLFdnFxYf78+QwaNAgPDw8uX77MG2+8gZ+fH7169Sp13jNmzGDo0KF06tSJrl27snv3bnbu3MmBAwdKHRuyi5EtW7bwySefFBtPl9idO3dmxowZWFtb4+3tzcGDB1m3bh1LliwpdewtW7bg5uZGzZo1OXXqFFOnTmXAgAHFdgIq7hrj6OjI888/z/Tp03FxccHBwYFXXnmFtm3b8sQTT5QqNmQ/sxkdHZ372U6dOoW9vT01a9YsstNNcbFzCsrU1FSCg4NJSkoiKSkJADc3tyIbNoqLfeXKFTZv3kxgYCBubm7cvHmThQsXYm1tzZNPPlnkPjGIx97fXORatmyZUrNmTcXCwkJp3bq18s8//+glbs5wCI/+jB07tlRxC4oJKGvXri11zuPHj1e8vb0VCwsLxc3NTenevbvy22+/lTpuYfQ1pNDQoUMVT09PxcLCQqlWrZoydOhQvQ7jsHPnTqVRo0aKpaWlUr9+fWX16tV6i/3rr78qgHL+/Hm9xVQURUlKSlKmTp2q1KxZU7GyslJq1aqlvP3220p6erpe4m/evFmpVauWYmFhoXh4eCiTJ09WEhISdI5T3Hmi0WiU2bNnK1WrVlUsLS2V7t27a72viou9du3aAl+fO3duqWLnDFFU0M/+/ftLFfv+/fvKM888o3h5eSkWFhaKp6en8vTTTytHjx7Vyz55lC5DChUVOzU1VQkMDFTc3NwUc3NzxdvbW5kwYYISHR2tt7y/+uorxc/PT7GyslKaNm2q/PDDD3qLvWrVKsXa2lrnY7y42FFRUcq4ceMULy8vxcrKSqlXr57yySefaDWsWHGxP/30U6V69eqKubm5UrNmTeWdd97R6vzX5hpz//595eWXX1acnZ0VGxsb5ZlnnlGioqL0Envu3LklusYVF7uw/QUoERERpYp969YtpU+fPoq7u7tibm6uVK9eXRkxYoRy7ty5YveJIageJC2EEEIIIUSJyTOVQgghhBCi1KSoFEIIIYQQpSZFpRBCCCGEKDUpKoUQQgghRKlJUSmEEEIIIUpNikohhBBCCFFqUlQKIYQQQohSk6JSCCGEEEKUmhSVQghRiHHjxmk1LaOhjB49mg8//NBo2y/IypUr6devn7HTEEKUQTKjjhCiUlKpVEW+PnfuXF599VUURcHJyenxJPWQEydO0K1bN65du4adnR0AXbp0oVmzZixdujTPul9//TXTpk0jISHB4HllZGTg6+vLpk2b6Nixo8G3J4QoP8yMnYAQQhhDVFRU7v9v3ryZOXPmcP78+dxldnZ2ucWcMSxbtozBgwcbNYeHKYqCWq3GwsKCESNG8Nlnn0lRKYTIQ25/CyEqJQ8Pj9wfR0dHVCpVnmV2dnb5bn936dKFV155hWnTpuHs7EzVqlX58ssvSUlJ4bnnnsPe3h4/Pz9++eWXPNsKDw+nT58+2NnZUbVqVUaPHk1cXFyhuanVarZu3Vqq28wrVqygdu3aWFhYUK9ePb799tvc165evYpKpSIsLCx3WUJCAiqVigMHDgBw4MABVCoVv/zyCwEBAVhaWvLnn38C0K9fP3bs2MH9+/dLnJ8QouKRolIIIXTwzTff4OrqytGjR3nllVeYNGkSgwcPpl27doSGhhIYGMjo0aNJTU0Fsou1bt260bx5c44dO8bu3buJiYlhyJAhhW7j5MmTJCYm0rJlyxLluH37dqZOncprr71GeHg4L730Es899xz79+/XOdabb77JwoULOXv2LE2aNAGgZcuWZGVlceTIkRLlJ4SomKSoFEIIHTRt2pR33nmHOnXqMGvWLKysrHB1dWXChAnUqVOHOXPmcOfOHU6ePAnA559/TvPmzfnwww+pX78+zZs3Z82aNezfv58LFy4UuI1r165hamqKu7t7vte++OKL3FvzOT8TJ07Ms87ixYsZN24cL7/8MnXr1mX69OkMHDiQxYsX6/x53333XXr27Ent2rVxcXEBwMbGBkdHR65du6ZzPCFExSVFpRBC6CCntQ7A1NSUKlWq0Lhx49xlVatWBSA2NhbI7nCzf//+PEVg/fr1Abh8+XKB27h//z6WlpYFdiYaOXIkYWFheX7efffdPOucPXuW9u3b51nWvn17zp49q/PnLay11NraOrc1VgghQDrqCCGETszNzfP8rlKp8izLKQQ1Gg0AycnJ9OvXj0WLFuWL5enpWeA2XF1dSU1NJSMjAwsLizyvOTo64ufnl2dZQS2aRTExyW5PeHjwj8zMzALXtbW1LXB5fHw8bm5uOm1XCFGxSUulEEIYUIsWLTh9+jQ+Pj74+fnl+SmsYGvWrBkAZ86cKdE2GzRowF9//ZVn2V9//YW/vz9AbjH4cA/4hzvtFOfy5cukpaXRvHnzEuUnhKiYpKgUQggDmjx5MvHx8QwfPpx///2Xy5cv8+uvv/Lcc8+hVqsLfI+bmxstWrTI7W2tqxkzZvD111+zYsUKLl68yJIlS9i2bRuvv/46kH3r+oknnsjtgHPw4EHeeecdreP/8ccf1KpVi9q1a5coPyFExSRFpRBCGJCXlxd//fUXarWawMBAGjduzLRp03Bycsq9DV2QF154gfXr15domwMGDODTTz9l8eLFNGzYkFWrVrF27Vq6dOmSu86aNWvIysoiICCAadOm8f7772sdf+PGjUyYMKFEuQkhKi6ZUUcIIcqg+/fvU69ePTZv3kzbtm2NnU6u06dP061bNy5cuICjo6Ox0xFClCHSUimEEGWQtbU169atK3KQdGOIiopi3bp1UlAKIfKRlkohhBBCCFFq0lIphBBCCCFKTYpKIYQQQghRalJUCiGEEEKIUpOiUgghhBBClJoUlUIIIYQQotSkqBRCCCGEEKUmRaUQQgghhCg1KSqFEEIIIUSpSVEphBBCCCFK7f8B7DZYOghEiMgAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 750x250 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Battery parameters\n",
+    "cost_bat_power = 0.2\n",
+    "cost_bat_energy = 0.25\n",
+    "# External grid import price\n",
+    "cost_imp_energy = np.array([\n",
+    "    0.09, 0.08, 0.08, 0.08, 0.08, 0.08, 0.09,  # 12:00 AM - 6:00 AM\n",
+    "    0.11, 0.13, 0.12, 0.11, 0.10, 0.10, 0.10,  # 7:00 AM - 1:00 PM\n",
+    "    0.11, 0.12, 0.13, 0.14, 0.13, 0.12, 0.11,  # 2:00 PM - 7:00 PM\n",
+    "    0.10, 0.09, 0.09                         # 8:00 PM - 11:00 PM\n",
+    "])\n",
+    "\n",
+    "# Number of hours in the planning horizon\n",
+    "n_hours = 24\n",
+    "\n",
+    "# Plot import energy cost\n",
+    "plt.figure(figsize=(7.5, 2.5))\n",
+    "plt.plot(np.arange(n_hours), cost_imp_energy, marker='o')\n",
+    "plt.title('Hourly Electricity Prices')\n",
+    "plt.xlabel('Time (Hour)')\n",
+    "plt.ylabel('Electricity Price (USD/kWh)')\n",
+    "plt.xticks(np.arange(0, 24, step=1))\n",
+    "plt.grid(True)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 67,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAApAAAAEWCAYAAADRtKcIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrB0lEQVR4nO3deVhUZfvA8e+w7ygIAiKISyoKLqiIS5kLiuaeLZp79WZomb+s7M3cSrPMSjOrN7cyK5c09y2X1NwAFxB3EUVAVAQUZJs5vz+ISWQfBgbw/lwXV3HmzH1ujnPk9nmecx+VoigKQgghhBBClJCRoRMQQgghhBBVixSQQgghhBCiVKSAFEIIIYQQpSIFpBBCCCGEKBUpIIUQQgghRKlIASmEEEIIIUpFCkghhBBCCFEqUkAKIYQQQohSkQJSCCGEEEKUihSQQgihg3379qFSqdi3b5+hU6kSpk+fjkqlMnQaQgg9kQJSCFFlLF++HJVKRUhIiKFTKbHcnHO/LCwscHNzo2fPnixYsIB79+4ZOkUhhCg1E0MnIIQQj4OZM2fi5eVFVlYW8fHx7Nu3j4kTJzJ//nw2btyIr6+voVMUQogSkwJSCCEqQFBQEG3atNF+P2XKFPbs2cMzzzxDv379OHv2LJaWlgbMUAghSk6msIUQ1c6JEycICgrCzs4OGxsbunXrxpEjR/Lsk5iYyNtvv42Pjw82NjbY2dkRFBTEqVOn8sWLiYlhwIABWFtb4+zszFtvvUVGRkaZ8+zatStTp04lOjqalStX5nnt3LlzPPvsszg4OGBhYUGbNm3YuHFjnn1yp8cPHjzIG2+8gZOTEzVq1OA///kPmZmZJCUlMWLECGrWrEnNmjV55513UBQlT4x58+bRoUMHHB0dsbS0xM/Pj7Vr1+bLVaVSMX78eDZs2EDz5s0xNzenWbNmbN++Pd++Bw8epG3btlhYWNCgQQO+++67Mp8rIUTlIiOQQohq5cyZM3Tu3Bk7OzveeecdTE1N+e677+jSpQv79+/H398fgCtXrrBhwwaGDBmCl5cXN2/e5LvvvuOpp54iMjISNzc3AB48eEC3bt24du0ab7zxBm5ubvz000/s2bNHL/kOHz6c999/n507d/LKK69of4aOHTtSp04d3nvvPaytrVm9ejUDBgxg3bp1DBw4ME+MCRMm4OLiwowZMzhy5Ajff/89NWrU4O+//8bDw4PZs2ezdetWPvvsM5o3b86IESO07/3qq6/o168fw4YNIzMzk19//ZUhQ4awefNm+vTpk+c4Bw8e5Pfff+f111/H1taWBQsWMHjwYK5du4ajoyMA4eHhBAYG4uTkxPTp08nOzmbatGnUrl1bL+dLCFFJKEIIUUUsW7ZMAZTjx48Xus+AAQMUMzMz5fLly9ptsbGxiq2trfLkk09qt6WnpytqtTrPe6OiohRzc3Nl5syZ2m1ffvmlAiirV6/WbktNTVUaNmyoAMrevXvLnLO9vb3SqlUr7ffdunVTfHx8lPT0dO02jUajdOjQQWnUqFG+2D179lQ0Go12e0BAgKJSqZTXXntNuy07O1txd3dXnnrqqTzHTktLy/N9Zmam0rx5c6Vr1655tgOKmZmZcunSJe22U6dOKYCycOFC7bYBAwYoFhYWSnR0tHZbZGSkYmxsrMivHCGqD5nCFkJUG2q1mp07dzJgwADq16+v3e7q6srQoUM5ePAgKSkpAJibm2NkZKR93507d7CxsaFx48aEhYVp37t161ZcXV159tlntdusrKx49dVX9Za3jY2N9m7sxMRE9uzZw3PPPce9e/e4ffs2t2/f5s6dO/Ts2ZOLFy9y48aNPO8fO3ZsnhY5/v7+KIrC2LFjtduMjY1p06YNV65cyfPeh9dd3r17l+TkZDp37pznHOTq3r07DRo00H7v6+uLnZ2dNqZarWbHjh0MGDAADw8P7X5NmzalZ8+eupwaIUQlJQWkEKLauHXrFmlpaTRu3Djfa02bNkWj0XD9+nUANBoNX3zxBY0aNcLc3JxatWrh5OTE6dOnSU5O1r4vOjqahg0b5uthWNAxdHX//n1sbW0BuHTpEoqiMHXqVJycnPJ8TZs2DYCEhIQ873+4WAOwt7cHoG7duvm23717N8+2zZs30759eywsLHBwcMDJyYnFixfnOQeFHQegZs2a2pi3bt3iwYMHNGrUKN9++jxfQgjDkzWQQojH0uzZs5k6dSpjxoxh1qxZODg4YGRkxMSJE9FoNBWWR0xMDMnJyTRs2BBAe+y333670FG73H1zGRsbF7hfQduVh26iOXDgAP369ePJJ5/km2++wdXVFVNTU5YtW8aqVatKFO/RmEKIx4MUkEKIasPJyQkrKyvOnz+f77Vz585hZGSkHZVbu3YtTz/9NEuWLMmzX1JSErVq1dJ+7+npSUREBIqi5BmFLOgYuvjpp58AtMVi7tS7qakp3bt318sxCrNu3TosLCzYsWMH5ubm2u3Lli3TKZ6TkxOWlpZcvHgx32v6Ol9CiMpBprCFENWGsbExgYGB/PHHH1y9elW7/ebNm6xatYpOnTphZ2en3ffRkbM1a9bkW1/Yu3dvYmNj87S2SUtL4/vvvy9zvnv27GHWrFl4eXkxbNgwAJydnenSpQvfffcdcXFx+d5z69atMh83l7GxMSqVCrVard129epVNmzYoHO8nj17smHDBq5du6bdfvbsWXbs2FHWdIUQlYiMQAohqpylS5cW2H/wzTff5KOPPmLXrl106tSJ119/HRMTE7777jsyMjL49NNPtfs+88wzzJw5k9GjR9OhQwfCw8P5+eef89x8A/DKK6/w9ddfM2LECEJDQ3F1deWnn37CysqqVDlv27aNc+fOkZ2dzc2bN9mzZw+7du3C09OTjRs3YmFhod130aJFdOrUCR8fH1555RXq16/PzZs3OXz4MDExMQX2qtRFnz59mD9/Pr169WLo0KEkJCSwaNEiGjZsyOnTp3WKOWPGDLZv307nzp15/fXXyc7OZuHChTRr1kznmEKIykcKSCFElbN48eICt48aNYpmzZpx4MABpkyZwpw5c9BoNPj7+7Ny5UptD0iA999/n9TUVFatWsVvv/1G69at2bJlC++9916emFZWVvz5559MmDCBhQsXYmVlxbBhwwgKCqJXr14lzvnDDz8EwMzMDAcHB3x8fPjyyy8ZPXq09gaaXN7e3oSEhDBjxgyWL1/OnTt3cHZ2plWrVto4+tC1a1eWLFnCJ598wsSJE/Hy8mLu3LlcvXpV52LP19eXHTt2MGnSJD788EPc3d2ZMWMGcXFxUkAKUY2oFFn9LIQQQgghSkHWQAohhBBCiFKRAlIIIYQQQpSKFJBCCCGEEKJUpIAUQgghhBClIgWkEEIIIYQoFSkghRBCCCFEqUgfSHKePRsbG4utrW2eR5UJIYQQQjxOFEXh3r17uLm5YWRU+DijFJBAbGys9vm4QgghhBCPu+vXr+Pu7l7o61JAgvYpENevX9c+J7c8ZGVlsXPnTgIDAzE1NZXYEltiS2yJLbEltsQ2WNyCpKSkULdu3XxPyHqUFJCgnba2s7Mr9wLSysoKOzu7cvnQSmyJLbEltsSW2BK7+sUuz5wLU9ySPrmJRgghhBBClIoUkEIIIYSBqDUKR6MSCb2t4mhUImqNYuiUhCgRgxaQixcvxtfXVzt1HBAQwLZt27Svd+nSBZVKlefrtddeyxPj2rVr9OnTBysrK5ydnZk8eTLZ2dkV/aMIIYQQpbI9Io5Oc/fw0tIQfrxozEtLQ+g0dw/bI+IMnZoQxTLoGkh3d3c++eQTGjVqhKIorFixgv79+3PixAmaNWsGwCuvvMLMmTO177GystL+v1qtpk+fPri4uPD3338TFxfHiBEjMDU1Zfbs2RX+8wghhBAlsT0ijnErw3h0vDE+OZ1xK8NY/FJrejV3NUhuQpSEQUcg+/btS+/evWnUqBFPPPEEH3/8MTY2Nhw5ckS7j5WVFS4uLtqvh29y2blzJ5GRkaxcuZKWLVsSFBTErFmzWLRoEZmZmYb4kYQQQogiqTUKMzZF5iseAe22GZsiZTpbVGqV5i5stVrNmjVrSE1NJSAgQLv9559/ZuXKlbi4uNC3b1+mTp2qHYU8fPgwPj4+1K5dW7t/z549GTduHGfOnKFVq1YFHisjI4OMjAzt9ykpKUDOXU5ZWVnl8eNp4z/8X4ktsSW2xJbYj1/so1GJxCWnF/q6AsQlp3P4UgL+Xg5lOlZVOScS2zBxizpWcVSKohj0nzjh4eEEBASQnp6OjY0Nq1atonfv3gB8//33eHp64ubmxunTp3n33Xdp164dv//+OwCvvvoq0dHR7NixQxsvLS0Na2trtm7dSlBQUIHHnD59OjNmzMi3fdWqVXmmyIUQQgh9C72t4seLxsXu91JDNW2dZBRSVKy0tDSGDh1KcnJyka0NDT4C2bhxY06ePElycjJr165l5MiR7N+/H29vb1599VXtfj4+Pri6utKtWzcuX75MgwYNdD7mlClTmDRpkvb73KaZgYGB5d4HcteuXfTo0aNcek9JbIktsSW2xK78sR2jEvnxYkix+22+YYGVax0Gt6pDfSdrnY5VVc6JxDZM3ILkzsoWx+AFpJmZGQ0bNgTAz8+P48eP89VXX/Hdd9/l29ff3x+AS5cu0aBBA1xcXDh27FiefW7evAmAi4tLocc0NzfH3Nw833ZTU9MKadBZnseR2BJbYktsiV25YzeobYeRCopa4qhSQdKDLL4/cJXvD1zFz7Mmz7Vxp4+vGzbmpf/VXdnPicQ2bNxHj1ESla4PpEajybM+8WEnT54EwNU15860gIAAwsPDSUhI0O6za9cu7Ozs8Pb2LvdchRBCiNJIzcjmlR9DtMXjo8/6UP3zteCFVnz7Umu6NnHGSAWh0Xd5d104bT/azf+tPsXRK3cw8Ao08Zgz6AjklClTCAoKwsPDg3v37rFq1Sr27dvHjh07uHz5snY9pKOjI6dPn+att97iySefxNfXF4DAwEC8vb0ZPnw4n376KfHx8XzwwQcEBwcXOMIohBBCGEq2WsOEX04QcSMFB2szJnZrxOL9l/PcUONib8G0vt7aFj69mruSkJLO7ydusDrkOldupbIuLIZ1YTF4OloxxM+dQa3dcathme94Dzcpd4xKJKChM8ZGRT+eToiSMmgBmZCQwIgRI4iLi8Pe3h5fX1927NhBjx49uH79Ort37+bLL78kNTWVunXrMnjwYD744APt+42Njdm8eTPjxo0jICAAa2trRo4cmadvpBBCCGFoiqIwbeMZ9pxLwNzEiB9GtqG1R02Gtffk8KUEdh44SmBn/wKLPGc7C157qgH/ebI+YdeSWBNync2n44i+k8a8nRf4fNcFOjdyYoifOz28a2Nhasz2iDhmbIr8pzg15seLIbg+UpwKURYGLSCXLFlS6Gt169Zl//79xcbw9PRk69at+kxLCCGE0Ktv91/h56PXUKngqxda0dqjJgDGRir8vRy4c1bB38uhyBFClUqFn2dN/Dxr8mFfb7aFx7Mm9DpHriTy14Vb/HXhFvaWprSsW4P9F27le780KRf6ZPCbaIQQQojq7I+TN5i7/RwAHz7jTa/mhd/kWVJWZiYM9nNnsJ870XdSWRcaw9rQGGKT0wssHiGnv6SKnCblPbxdZDpblEmlu4lGCCGEqC6OXLnD5DWnARjbyYvRHb30fgxPR2smBTbmwLtdeb93kyL3zW1SfiwqUe95iMeLFJBCCCFEObiUcI9XfwwhU60hqLkL/+3dtFyPZ2ykoradRYn2jbiRXK65iOpPCkghhBBCzxLupTNy6XFS0rNp7VGDL55viVEFTBk725asgPx461kGL/6b345f435GdjlnJaojWQMphBBC6FFqRjZjlh/nRtID6jla8cPItliYFv/oQn1o5+WAq70F8cnpFNYl0tzEiCy1htDou4RG32X6xkh6+7gypI07/l4OqFSyNlIUT0YghRBCCD15tNfj8tHtcLA2q7DjGxupmNY350EahTUp/+qFlhyZ0o33gprQwMmaB1lq1oXF8ML3R+gybx8L/7xIbNKDIo/zcI/Jo1GJqIt6rI6olmQEUgghhNCDgno91qul2zOsy6JXc1cWv9T6oT6QOR5tUv5wb8m1odfZdCqnt+Tnuy4wf/cFOjWsxZA2dQn8p7dkLukxKUAKSCGEEEIvCuv1aAi9mrvSw9ul2CblD/eWnPqMN9sj4lkdktNb8sDF2xy4eBs7CxP6t6zDc23qEnM3jdd/Dss3PS49Jh8/UkAKIYQQZVQevR7LqjRNyiGnt+Sg1jmPRrx2J421ode1vSV/OhLNT0eiMTFSFbi2UnpMPn5kDaQQQghRBhXR67GieThaaXtL/jS2Hf1auGFipCK7iLWO0mPy8SIjkEIIIYSOKrrXY0UzNlLRuZETnRs50aGBI+/9Hl7sexLupRe7j6j6ZARSCCGE0IGhej0aiqdjyW4IiriRzL30rHLORhiaFJBCCCFEKRmy16Oh5PaYLK5E/t+BKNp9/CeTVp/k8OU7aKTFT7UkBaQQQghRCobu9WgoxfWYBBjUqo62t+TvYTd48X85vSUX/HmRG8X0lhRVi6yBFEKU2cNNhR2jEgtsFyJEVfXw59vhyh22nklgz7kELEwN1+vRUErSY1JRFE5cT2JNSE5vyWuJaczfdYEviugt+TD5+6RqkAJSCFEm0lRYVGf5P9+h2tcM3evRUIrrMalSqWjtUZPWHjX58JlmbIuIY01IDIev3Cmwt2TzOnbaxyfK3ydVR6kLyKSkJNavX8+BAweIjo4mLS0NJycnWrVqRc+ePenQoUN55CmEqIS2R8QxbqU0FRbVU2Gf71yK8viu7Stpj0lLM2Ntb8nriWmsCY1hXWgMN5IeaHtLNnGxZUibuthZmPDO2tPy90kVUeI1kLGxsbz88su4urry0Ucf8eDBA1q2bEm3bt1wd3dn79699OjRA29vb3777bfyzFkIUQmoNQozNkUW2lQYcpoKyzNyRVVU1Ocb/m2aLZ/vkqvrYMWkHk9w4J2nWTnWn/4t3TAzMeJc/D1mbY5kcgHFI8jfJ5VViUcgW7VqxciRIwkNDcXb27vAfR48eMCGDRv48ssvuX79Om+//bbeEhVCVC7HohLzrIF61MNNhQMaOFZcYkLogXy+y4+RkYpOjWrRqVEtZqZlsfF0LMsPRnH5dmqh75HzXfmUuICMjIzE0bHoPzRLS0tefPFFXnzxRe7cuVPm5IQQlVdJmwVLU2FRFcnnu2LYW5kyvL0ndhYmvPnryWL3l/NdeZR4CtvR0ZGMjIwSBy6u2BRCVG3OthZ63U+IysTavGTjK/L51g/5+6TqKVUfSHt7e55++mlmzpzJgQMHyMqSTvNCPK5ymwoXxdrMmJZ1a1RMQkLoScSNZGZsPFPkPirA1d6Cdl4OFZNUNVdck3I535VPqQrIb7/9Fk9PT5YuXcpTTz1FjRo16NGjB3PmzOHIkSOo1eryylMIUck83FS4MKmZaob+cIRYaSAsqgBFUVh19BqDFv/N9bsPcPynOXhhTbOn9fWW/oR6UlST8lxyviuXUhWQo0aNYvny5Vy9epVLly6xcOFC3Nzc+Pbbb+nYsSM1a9akT58+5ZWrEKKS6dnMBWdb83zbXe0tGPdUA+wsTDhxLYk+Cw6w73yCATIUomTSMrOZtPoU768PJzNbQ/emzuz5vy58+1JrXB4ZaXext5CWMuUgt0n5o+cboEMDRznflYzOjcTr169P/fr1GTNmDFFRUSxZsoSFCxeyfft2feYnhKjEwq7dJeFeBpamRix4vgUHjobkaSo81N+D138OI/xGMqOXH2f80w2Z2P0JGUUQlcqlhHuMWxnGxYT7GBupmNyzMa92ro+RkarYptlCvx49356NvJm19TyHLt/hwMVbdG7kZOgUxT90ehb2tWvXWLFiBaNHj8bLywtfX1+OHj3K22+/zd69e/WdoxCikloTEgNAbx83ujR2wq9W3qbCdR2sWDsugOHtPVEUWLjnEsOXHOXWvZLfkCdEefrj5A36fX2Iiwn3cbY1Z9XL/rz2VAOMHioQc5tmP/r5FuXj4fM9IsCTUR3qAfDeunDuZ2QbNjmhVaoRyDFjxrBv3z4SExPp2LEjnTt35tVXX6Vt27aYmMhTEYV4nDzIVLP5dBwAz/q5F7qfuYkxswY0p029mkz5PZy/L9+hz4IDLHyxFf71pVuDMIz0LDWzNkfy89FrQM4U6VcvtMKpgCUZwrDe6dWYP8/d5HriAz7dfo6Z/ZsbOiVBKUcgly9fjkaj4b///S+zZs3i3XffJSAgQIpHIR5DO87Ecz8jG/ealviX4M7I/i3rsHF8J56obUPCvQyG/nCUxfsuo5EnS4gKdu1OGs9++zc/H72GSgVvdG3IT2P9pXispKzMTPhkkC8APx6O5ugV6TNdGZSqgDx79izvvfceoaGh9O7dGwcHB/r27cu8efMICQlBo9GUV55CiEpmbWjO9PXg1u55pvuK0tDZhg3BHRnUqg5qjcLc7ed45ccQktIyyzNVIbR2nomnz8IDRNxIoaaVKctGtWVSYGOZlq7kOjasxYvtPAB4d91pHmRK1xdDK1UB2bhxY1577TV+/fVX4uPjOXToEL179+bYsWM888wzODg48Mwzz5RXrkKISuJG0gMOXb4NFD19XRArMxM+f64Fcwb5YGZixJ/nEuiz4CCnrieVQ6ZC5MhSa5i99Syv/hTKvfRsWnvUYMsbnenS2NnQqYkSmtK7Ca72Fly9k8bnO88bOp3Hnk430eTy9vZm0KBBDBo0iP79+6MoCtu2bdNXbkKISmp9WAyKAu3rO1DXwarU71epVLzYzoPfx3XA09GKG0kPePbbv1nx91UURaa0hX7FJ6fz4vdH+P6vKwCM7eTFr68G4FbD0sCZidKwszBl9kAfAJYciiLs2l0DZ/R4K3UBmZCQwOrVqxk3bhxNmzbFzc2N0aNHc+7cOd566y327NlTHnkKISoJRVG009fP+tUtU6zmdezZNKETPZvVJkutMG3jGSb8ckLutBR6c+DiLXovOEBI9F1szU1YPKw1U5/xxsykTOMnwkCebuLMoNZ1UBR4Z+1p0rNkKttQSnUFNW3aFFdXV4YPH054eDjPPvssO3fu5O7du+zfv5/p06fz1FNPlTje4sWL8fX1xc7ODjs7OwICAvKMYKanpxMcHIyjoyM2NjYMHjyYmzdv5olx7do1+vTpg5WVFc7OzkyePJnsbPnlI0R5CY2+y9U7aViZGRPU3KXM8ewsTPn2JT8+6NMUEyMVm0/H0W/hQc7FpwCg1igcjUok9LaKo1GJqOWmG1GARz8nmdkavtx9gRFLj5GYmklTVzs2TehEkI80o67qPnzGm1o25lxKuM/CPRcNnc5jq1S3Tw8YMICnn36aTp06YWVV+mmrR7m7u/PJJ5/QqFEjFEVhxYoV9O/fnxMnTtCsWTPeeusttmzZwpo1a7C3t2f8+PEMGjSIQ4cOAaBWq+nTpw8uLi78/fffxMXFMWLECExNTZk9e3aZ8xNC5Jc7+tjbxxVrc/10YFCpVLzcuT6tPGowftUJrtxOZcCiQzzfpi47I28Sl5wOGPPjxRBc7S2Y1tdbnkohtLZHxDFjU2Sez4mZiRGZ2Tk3dr7Qti7T+zXDwtTYsIkKvahhZcZHA5rz2spQvt1/haDmrjSvY2/otB47pRqBnDNnDoGBgVy5cqXQfTZs2FDieH379qV37940atSIJ554go8//hgbGxuOHDlCcnIyS5YsYf78+XTt2hU/Pz+WLVvG33//zZEjRwDYuXMnkZGRrFy5kpYtWxIUFMSsWbNYtGgRmZlyV6cQ+lbS3o+68vN0YMsbnXnyCSfSszSsOBz9T1Hwr/jkdMatDGN7RJzejy+qnu0RcYxbGZbvc5JbPI4M8OSTwb5SPFYzvZq78IyvK2qNwttrTmn/vEXF0WkRSM+ePYmKisq3fd26dQwbNkynRNRqNb/++iupqakEBAQQGhpKVlYW3bt31+7TpEkTPDw8OHz4MACHDx/Gx8eH2rVr58ktJSWFM2fO6JSHEKJwub0f6zpY0q5e8b0fdeFgbcaSEW2wKWR0M3cCe8amSJnOfsypNQozNkVS1KdgZ+RN+ZxUUzP6NcPB2oxz8ff4dv9lQ6fz2NFp/unll1+me/fuHDp0CBeXnDVQv/32G2PGjGH58uWlihUeHk5AQADp6enY2Niwfv16vL29OXnyJGZmZtSoUSPP/rVr1yY+Ph6A+Pj4PMVj7uu5rxUmIyODjIx/H6WWkpKz1iorK4usrKxS5V8aubHL4xgSW2JXROzVITlP7RjYwg21Ohv1Q+vX9Zn30ajEIm+kUYC45HQOX0ooURPzolTm8y2xi3Y0KjHfyOOj5HNSfWPbmRsxtXdj3loTzsI9F+nW2JEnatvqJbauyit2eeZc2LGKo1J07JkxYcIE9u7dy19//cX27dt5+eWX+emnnxg8eHCp4mRmZnLt2jWSk5NZu3YtP/zwA/v37+fkyZOMHj06T6EH0K5dO55++mnmzp3Lq6++SnR0NDt27NC+npaWhrW1NVu3biUoKKjAY06fPp0ZM2bk275q1Sq9rO0UojpKzICZYcYoqPiwVTaOFuV3rNDbKn68WPyU44hGavxqyejS4yY1K+czsjfOiMSM4huAy+ek+lIUWHLeiPC7RnhYK0z0UWMsPeHLJC0tjaFDh5KcnIydnV2h++m8An7hwoUMGzaM9u3bc+PGDX755Rf69+9f6jhmZmY0bNgQAD8/P44fP85XX33F888/T2ZmJklJSXlGIW/evKkd9XRxceHYsWN54uXepZ27T0GmTJnCpEmTtN+npKRQt25dAgMDizxZZZWVlcWuXbvo0aMHpqamEltiV6nY3+y7gsIl/L1qMnxQW73GfpRjVCI/Xgwpdr/Azv56GVmqjOdbYuel1ij8ffkOa8NusOtsAlnqkheE8jmp3rHbdE6n98K/uZaaTbx9U17p5KW32KVVXrHLM+dH5c7KFqfEBeTGjRvzbRs0aBAHDhzgxRdfRKVSaffp169fScPmo9FoyMjIwM/PD1NTU/7880/tqOb58+e5du0aAQEBAAQEBPDxxx+TkJCAs3PO0wR27dqFnZ0d3t7ehR7D3Nwcc/P8zzw1NTUt9z+Y8j6OxJbY5RFbURTWn4wFYEgbjyLfq4+8Axo642pvQXxyeqHr21QqyFCjt3NUmc63xP7X1duprA2NYV1YTJ7p6qaudjzrV4fv9l/h1r2MAj8nKsDF3oKAhs56e1RhZTgnEjsvd0dTpj7jzeS1p/nyz8v0bO5GAycbvcTWVXnFrog6paTxS1xADhgwoNDXli5dytKlS4Gcdhxqdckae06ZMoWgoCA8PDy4d+8eq1atYt++fezYsQN7e3vGjh3LpEmTcHBwwM7OjgkTJhAQEED79u0BCAwMxNvbm+HDh/Ppp58SHx/PBx98QHBwcIEFohBCN/ru/VgcYyMV0/p6M25lGCoosDhQFBi7IoTxTzdkYvdGmBhLY+jK7uFejY5RiYUWdqkZ2WwNj2NNaAzHohK12+0tTRnYqg7P+rlr27bUqWFZ4OckN+q0vt7ynOvHwLN+7mw6HcdfF27x7trTrP5PAEby516uSlxAajT6v0U+ISGBESNGEBcXh729Pb6+vuzYsYMePXoA8MUXX2BkZMTgwYPJyMigZ8+efPPNN9r3Gxsbs3nzZsaNG0dAQADW1taMHDmSmTNn6j1XIR5n5dH7sTi9mruy+KXWD/X3y+Fqb8H7vZtwLOouPx2J5uu9lwiJTmTBi61wti3HhZmiTArq1fhwT09FUQiNvsvqkOtsOR1HambOQIRKBU82cuK5NnXp7u2MuUnetbGFfU5cpF/oY0WlUjFnkA+B8/cTEn2XHw9fZVTHoqeyRdlUzG+CQixZsqTI1y0sLFi0aBGLFi0qdB9PT0+2bt2q79SEEP8o796PRenV3JUe3i4cvpTAzgNHCezsrx216tuiDm29HHhv3WmOXEmkz4KDLHyxFe3rO1ZojqJ4ub0aHx1Jjk9O57WVYQxo6cbpmGSu3E7VvlbP0YohbeoyqHUdXO2LfmZ1UZ8T8fioU8OSKb2b8sGGCOZuP0+3prWp6yA3xpaXEs/5/PrrryUOev36de3TYoQQVVtF9H4sirGRCn8vB/xqKfh7OeQpCvq1cGPj+E48UduGW/cyGPq/IyzaewmN9P2rNIrq1Zi7bcPJWK7cTsXKzJhn/dxZ/Z8A9r7dheCnGxZbPOYq6nMiHh9D23nQvr4DD7LUvLvuNDo2mhElUOICcvHixTRt2pRPP/2Us2fP5ns9OTmZrVu3MnToUFq3bs2dO3f0mqgQwjByp68Ht3avlGuKGjrbsCG4I4Na10GjwGc7zvPyjyEkpcnTqCqDYyXo1Qjwnyfrc+y/3Zk3pAXtvBxQqSrfZ01UfkZGKuYO9sXC1Ii/L9/h1+PXDZ1StVXiAnL//v3MnTuXXbt20bx5c+zs7GjUqBE+Pj64u7vj6OjImDFj8PDwICIiokx3YgshKocbSQ84dPk2kFNAVlZWZiZ8PqQFnwzywczEiD3nEuiz4CAnrycZOrXH3tU790u0n7ebXaFPHxKiNDwdrZncswkAH285S2zSAwNnVD2V6mrt168f/fr14/bt2xw8eJDo6GgePHhArVq1aNWqFa1atcLISO6EFKK6WB8Wg6JA+/oOlX4tkUql4oV2Hvi42/P6z2FE30ljyLd/80Efb0YEeMqIVgVSaxQOXrrN6pDr7Igo/KlgD5MboIQ+jepQjy2nYwm7lsT768NZNqqt/B2gZzr9c69WrVpFtvURQlR9iqJop6+f9atr4GxKrpmbPZsmdOKdNafZfiaeaRvPcOxqInMH+8oIVzkrrGejiZGK7ELWpeb2amxXxkbfQjzM2EjFp8+2oPeCA+w7f4vfw24wuIJvAqzuZLhQCFGgiu79qE92FqYsfqk1U5/xxsRIxZbTcfRbeJBz8SV7woIoudSMbNaEXOe57w7TZd4+vt57ibjkdGpYmTKqQz02T+jE10NboeLf3oy5pFejKE8NnW2Y2L0RADM2nSEhpfi1uKLkpIAUQhTIEL0f9UmlUjG2kxe//ScAV3sLrtxOZcCiQ6wJ+XdR/cONrY9GJaKWu7dLdE4URSHkaiLvrD1Fu493M3ntaY5FJWKkgqeecGLR0NYcfb8b0/s1o3kde22vRhf7vNPULvYWLH6ptfRqFOXm1c718aljT0p6Nh9siCBbrZFrXk+q3m8FIUS5M2TvR33z86zJljc6M/G3k/x14Za22OnUqBafbDtXaGPrx1Fxzb5vpqSzLiyGtSExpe7ZKL0ahSGYGBvx6bO+9F14kJ2RN2nz8W6S0rKQa77spIAUQuRj6N6P+uZgbcbyUW1ZtPcSX+y+wJrQGNb8M8L6sPjkdMatDHssR8WKa/bd3M2OyLgUcgdsrMyM6ePjypA2dWlbr2aJblDI7dV456z0ahQVp6mrHT2bubAlPO6f4vFfj/M1X1ZSQAoh8qnsvR91YWSkYkK3RrSqW4MRy45R0MyVQs66vBmbIunh7fLYFDglafYdEZuzfrRdPQeebeNOnyq6tEE8ftSanMdkFuRxveb1ocRX/6RJk0ocdP78+TolI4QwvKrS+1FXxsZGBRaPuRQgLjmdY1GJBDR4PB6LWNJm318814KB1fAzIaq3Y1GJxBdxA83jeM3rQ4kLyBMnTuT5PiwsjOzsbBo3bgzAhQsXMDY2xs/PT78ZCiEqVFXq/aiLhHsluxOzpPtVdWqNwv4LCSXat7qMRovHi1zz5aPEBeTevXu1/z9//nxsbW1ZsWIFNWvWBODu3buMHj2azp076z9LIUSFqKq9H0ujpA2rq3tj66u3U1kTep11oTeKHJ15WHU/J6J6kmu+fOi0gOXzzz9n586d2uIRoGbNmnz00UcEBgbyf//3f3pLUAhRcapy78eSauflgKu9BfHJ6QWu+QOwMTemtUeNikyrQqRmZLM1PI41ITEcu5qo3W5vaUKWWiEtU13g+6TZt6jKirvm5fOtG536QKakpHDr1q1822/dusW9e/fKnJQQwjCqeu/HkjA2UjGtrzeQv7F1rvsZakYuO1YtprQUReH4Pz0b2+b2bLya07OxS+Ocno3H/tud+c+1kGbfoloqyTUvn+/S06mAHDhwIKNHj+b3338nJiaGmJgY1q1bx9ixYxk0aJC+cxRCVIDq1PuxOIU1tna1t2BsJy+szYw5ciWRPgsOcvjyHQNlWbiSNPuOT05n0d5LdP18P0O+PczqkBjSMtV41bJmcs/G/P1eN5aPbkcfX1fMTYyl2beo1gr7fAN0fqKWfL51oNMQw7fffsvbb7/N0KFDycrK6alkYmLC2LFj+eyzz/SaoBCiYlS33o/FKaqx9VB/D15fGcb5m/cY9sMR/i+wMeOealApbiIpqtn3002c+fNsAqtDrvPXhVt5ejY+45vTs7GNZ+E9G6XZt6jOHv1812nQlDnbL/DXhdscvnxH7sAuJZ0KSCsrK7755hs+++wzLl++DECDBg2wtrbWa3JCiIpTHXs/FqewxtYNnGzYENyRDzZEsC4shs92nCfkaiLzn2tJTWszg+VbWLPvuH+afVuZGedZx6hLz0Zp9i2qs4c/37071iP6bjqrjl7j3XWn2T6xM1Zm1XPpTnko05mytrbG19dXX7kIIQykuvd+1IWlmTHzhvjSzqsmH/5xhr3nb/HMwoN8PbQVrTxqFh9Az4pq9p0rLVNNbVtznm3jzrN+dfGqJf+oF6IoU4KasPdcAtcS0/h85wWmPuNt6JSqDJ3WQKampjJ16lQ6dOhAw4YNqV+/fp4vIUTVktv7MaC+Y7Xs/agrlUrF8209WP96R+o5WnEj6QHPfXeYZYeiUJSiSjn9K2mz7/nPt2RyzyZSPApRArYWpswZ5APA0kNRhT6xRuSn0wjkyy+/zP79+xk+fDiurq4legaqEKJyytv7UUYfC+LtZsfGCZ14d+1ptkXEM2NTJCFX7/LJYB9sLUzL/fhRt1NZeuhKifa9fT+jnLMRonrp0tiZZ/3cWRsawztrT7Hljc5YmBobOq1KT6cCctu2bWzZsoWOHTvqOx8hRAXL7f1obWZMkE/17P2oD3YWpnwzrDXLDl1l9tazbAmPIzIuhW+Gtaapq53ej5eakc2W8DjWPtKzsTjSDFmI0pvax5v9F25x+VYqC/68yDu9mhg6pUpPpynsmjVr4uBQ/e/SFOJx8HDvR1lAXjSVSsWYTl6sfi0AN3sLom6nMmDRIVYfv66X+Lk9GyevyenZ+M5DPRufeqIWNaxMC+1jpyKnDZE0Qxai9OytTPl4QHMAvvvrCuExyQbOqPLTqYCcNWsWH374IWlpafrORwhRgR6n3o/61NqjJlve6EyXxk5kZGt4Z91p3l5zigeFPMmlOI/2bFwTmr9n44ox/nzyz1otafYthP4FNnOhbws31BqFyWtPkZmtMXRKlZrOjzK8fPkytWvXpl69epia5l0DFBYWppfkhBDlK7f3o4eDFW0fg96P+lTT2oylI9vyzb5LzN91gbWhMUTcSOabYa2p72STp9m3Y1Rivn6KGdlqdkcmsCa05D0bc5sh/9sHMofLP30gpRmyEGUzva83hy7d5lz8Pb7Zd4mJ3Z8wdEqVlk4F5IABA/SchhDCEB7H3o/6ZGSkYnzXRrT2rMkbv5zkXPw9+i48yIv+Hmw5HVdgs++6DlasCYlhw8kbJKVlaWO1q+fAkDbuxT5GUpp9C1F+HG3MmdGvGRN+OcHXey7Rs5lLuaxxrg50KiCnTZum7zyEEBXs4d6Pg1rXMXA2VVuHBrXY+kYnxv9ygmNRifxwICrfPrnNvh/mYmfBYL86pe7ZKM2+hSg/z/i6sulULDsjb/LO2tOsf70DJsY6rfir1uSMCPGYkt6P+uVsZ8FPY9phbV58+4/ePi6sGNOOQ+91lZ6NQlQyKpWKjwY0x87ChPAbyfyvgH8QCh0LSLVazbx582jXrh0uLi44ODjk+RJCVG7S+7F8hF1LIjWj+Btphrevx1NPOMnIoRCVlLOdBR/2bQbAF7svcCnhvoEzqnx0KiBnzJjB/Pnzef7550lOTmbSpEkMGjQIIyMjpk+frucUhRD6FnYtSXo/loOEe8U/KaY0+wkhDGdw6zo89YQTmdka3ll7CrWmYp8+VdnpVED+/PPP/O9//+P//u//MDEx4cUXX+SHH37gww8/5MiRI/rOUQihZ7+fiAWk96O+lbSJtzT7FqLyU6lUzB7kg425CWHXkljx91VDp1Sp6FRAxsfH4+OT04/MxsaG5OSchpvPPPMMW7Zs0V92Qgi9y1TDloh4QKav9a2dlwOu9hbS7FuIaqJODUum9M55Ks2nO84RfSfVwBlVHjoVkO7u7sTF5TQfbtCgATt37gTg+PHjmJub6y87IYTe5PYl/CPaiNQMNXVrWkrvRz0zNlIxra83IM2+haguXmzrQUB9R9KzNLy3LhyNTGUDOhaQAwcO5M8//wRgwoQJTJ06lUaNGjFixAjGjBlT4jhz5syhbdu22Nra4uzszIABAzh//nyefbp06YJKpcrz9dprr+XZ59q1a/Tp0wcrKyucnZ2ZPHky2dnZuvxoQlRL2yPi6DR3Dy8tDeHgzZzL/m5aFjsj4w2cWfWT2+zbxT7vNLWLvQWLX2otzb6FqGKMjFR8MtgHS1NjDl+5wy/Hrxk6pUpBp8VPn3zyifb/n3/+eTw8PDh8+DCNGjWib9++JY6zf/9+goODadu2LdnZ2bz//vsEBgYSGRmJtfW/bS1eeeUVZs6cqf3eyurfliNqtZo+ffrg4uLC33//TVxcHCNGjMDU1JTZs2fr8uMJUa1sj4hj3MowHv038/2MbMatDJOiphxIs28hqhdPx5zHis7cHMmcrefo0tiZOjUsDZ2WQell9XxAQAABAQGlft/27dvzfL98+XKcnZ0JDQ3lySef1G63srLCxaXgO0V37txJZGQku3fvpnbt2rRs2ZJZs2bx7rvvMn36dMzMzEqdlxDVhVqjMGNTZL7i8WEzNkXSw9tFihs9k2bfQlQvIzvUY0t4HKHRd3n/93CWj26b51GjjxudC8jY2FgOHjxIQkICGk3eB46/8cYbOsXMvRnn0V6SP//8MytXrsTFxYW+ffsydepU7Sjk4cOH8fHxoXbt2tr9e/bsybhx4zhz5gytWrXKd5yMjAwyMjK036ekpACQlZVFVlZWvv31JTd2eRxDYkvsghyNSszzzORHKeQ8IeXwpQT8y3hjR1U5JxJbYktsia1r7I/7e9Pvm8Psv3CL1cejGdQq71O8yivv8jwfhR2rOCpFUUq9GnT58uX85z//wczMDEdHxzwVuEql4sqVK6UNiUajoV+/fiQlJXHw4EHt9u+//x5PT0/c3Nw4ffo07777Lu3ateP3338H4NVXXyU6OpodO3Zo35OWloa1tTVbt24lKCgo37GmT5/OjBkz8m1ftWpVnulxIaq60NsqfrxY/JNRRjRS41dLFoYLIURxdt9QsemaMZbGClNaqrGvZhOdaWlpDB06lOTkZOzsCn8OuE4jkFOnTuXDDz9kypQpGBnp52mIwcHBRERE5CkeIadAzOXj44OrqyvdunXj8uXLNGjQQKdjTZkyhUmTJmm/T0lJoW7dugQGBhZ5ssoqKyuLXbt20aNHD0xNTSW2xC732I5Rifx4MaTY/QI7++tlBLIqnBOJLbEltsQuS+xAtYao748REZvCX6mufNO/pXYgrbzyLs/z8ajcWdni6FRApqWl8cILL+iteBw/fjybN2/mr7/+wt296L50/v7+AFy6dIkGDRrg4uLCsWPH8uxz8+ZNgELXTZqbmxfYbsjU1LTc/2DK+zgSW2I/LKChM672FsQnpxe4DlJFzt3B+rzBo7KfE4ktsSW2xC5LbFNTmPdcC/ouPMjuc7fYcfY2fVu46SV28ccu/zqlpPF1qgDHjh3LmjVrdHlrHoqiMH78eNavX8+ePXvw8vIq9j0nT54EwNU1567RgIAAwsPDSUhI0O6za9cu7Ozs8Pb2LnOOQlRluX0JCyseQfoSCiFEaTVxsSP46YYATNt4hjv3M4p5R/Wj0wjknDlzeOaZZ9i+fTs+Pj75qtX58+eXKE5wcDCrVq3ijz/+wNbWlvj4nJ509vb2WFpacvnyZVatWkXv3r1xdHTk9OnTvPXWWzz55JP4+voCEBgYiLe3N8OHD+fTTz8lPj6eDz74gODgYGlqLgQ5LWV6NqvNjjM382x3sbdgWl9vaeEjhBA6eL1LQ7ZHxHMu/h7TN0Xy5fMtORqVSOhtFY5RidW+dZfOBeSOHTto3LgxQL6baEpq8eLFQE6z8IctW7aMUaNGYWZmxu7du/nyyy9JTU2lbt26DB48mA8++EC7r7GxMZs3b2bcuHEEBARgbW3NyJEj8/SNFOJxpigK5+PvATC+S31SblyUvoRCCFFGZiZGfPZsCwZ8c4hNp2I5ePEWd9OyAGN+vBiCazX/R7pOBeTnn3/O0qVLGTVqVJkOXtwN4HXr1mX//v3FxvH09GTr1q1lykWI6ups3D2u3knD3MSIlzvVY/+fF6QvoRBC6IGPuz3dmzqz48zNf4rHf8Unp1frhzXotAbS3Nycjh076jsXIUQ52BaR89z6Lo2dsDbXy7MDhBBCkPOwhlPXkwp8LXeIbMamSNTV8PnZOhWQb775JgsXLtR3LkIIPVMUhS3hOQVkb5/q9y9gIYQwpGNRicSnFH4DTe7DGo5FJVZcUhVEp+GIY8eOsWfPHjZv3kyzZs3y3UST2+RbCGFYFxPuc+VWKmbGRnRt4mzodIQQolpJuFf4k7502a8q0amArFGjBoMGDdJ3LkIIPdv6z+jjk0/UwtbCtEIegyWEEI8LZ1sLve5XlehUQC5btkzfeQghysG28JzWWEHVcAG3EEIYWjsvhyIf1gDgYGVKuzI+6asy0vlRMtnZ2ezevZvvvvuOe/dyWoTExsZy//59vSUnhNDdpYT7nL95D1NjFd2b1jZ0OkIIUe3kPqwB/n04w6MS07KYt/M82WpNxSVWAXQqIKOjo/Hx8aF///4EBwdz69YtAObOncvbb7+t1wSFELrZ/s/d1x0b1sLeqvwf0SmEEI+jXs1dWfxSa1zs805Tu9hb0OUJJwAW77vMsB+OkpBSfdZC6jSF/eabb9KmTRtOnTqFo6OjdvvAgQN55ZVX9JacEEJ3W/+Zvu4t09dCCFGuejV3pYe3C4cvJbDzwNE8D2vYdCqW99ad5mhUIr0XHGTBiy3p0KCWoVMuM51GIA8cOMAHH3yAmZlZnu316tXjxo0beklMCKG7q7dTiYxLwdhIRQ9vmb4WQojyZmykwt/LAb9aSp6HNfRt4cbGCZ1oXNuW2/czeOmHo3y95yKaKt4bUqcCUqPRoFar822PiYnB1ta2zEkJIcpmW0TO6GOHBo7UtDYrZm8hhBDlqYGTDRuCO/KsnzsaBebtvMCYFce5m5pp6NR0plMBGRgYyJdffqn9XqVScf/+faZNm0bv3r31lZsQQke5T5+Ru6+FEKJysDQzZt6QFnw62BdzEyP2nb9FnwUHCLt219Cp6USnAvLzzz/n0KFDeHt7k56eztChQ7XT13PnztV3jkKIUriemMbpmGSMVBDYTKavhRCiMnmubV3Wv96Reo5WxCan8/x3h1l6MApFqVpT2jrdROPu7s6pU6f49ddfOX36NPfv32fs2LEMGzYMS0tLfecohCiF7f9MX/t7OVLLxtzA2QghhHiUt5sdmyZ04t11p9kaHs/MzZGERCcyd7AvthZVo2uGTgUkgImJCS+99JI+cxFC6MHWiNxnX7sYOBMhhBCFsbUwZdHQ1iz/+yofbznL1vB4ImNT+GaYH95udoZOr1g6FZB79uzh999/5+rVq6hUKurXr8/gwYN58skn9Z2fEKIUYpMecOJaEioV9GwmBaQQQlRmKpWK0R29aFG3BuN/DuPqnTQGfnOIWf2b81zbuoZOr0ilXgP52muv0b17d3755Rfu3LnDrVu3WLlyJU8//TQTJkwojxyFECWUO33d1tMBZ7vq9+xVIYSojlp71GTLG53p0tiJjGwN76w7zdtrTvEgU41ao3A0KpHQ2yqORiWiriTtf0o1Arl+/XqWLVvG0qVLGTlyJCpVTo8jjUbD8uXLGTduHD169KBfv37lkqwQomjau69l+loIIaqUmtZmLB3Zlm/2XWL+rgusDY3h8OXbZGZruHU/EzDmx4shuNpbMK2vN70M3GWjVCOQy5YtY9KkSYwaNUpbPAIYGRkxZswYJk6cyJIlS/SepBCieDdT0gmJzmkH0au5FJBCCFHVGBmpGN+1EStf9sfWwoQbSen/FI//ik9OZ9zKMO3jag2lVAVkWFgYAwcOLPT1QYMGERoaWuakhBClt+NMPIoCrT1q4Gov3RCEEKKq8vdyxNLUuMDXciewZ2yKNOh0dqkKyNu3b+Pu7l7o6+7u7ty5c6fMSQkhSm9reO7d19I8XAghqrJjUYkk3Mso9HUFiEtO51hUYsUl9YhSFZCZmZmYmhben8jExITMzKr7WB4hqqpb9zK0f5HI9LUQQlRtCffS9bpfeSh1G5+pU6diZWVV4GtpaWllTkgIUXo7I+PRKNDC3R73mgVfn0IIIaoGZ9uSddEo6X7loVQF5JNPPsn58+eL3UcIUbG2hee07wmS6WshhKjy2nk54GpvQXxyOgWtclQBLvYWtPNyqOjUtEpVQO7bt6+c0hBC6CoxNZPDV3LWHgfJ9LUQQlR5xkYqpvX1ZtzKMFSQp4jM7YEzra83xkaqAt5dMUrdSFwIUbnsioxHrVFo5maHp6O1odMRQgihB72au7L4pda42Oedpnaxt2DxS60N3gdS52dhCyEqh63/TF/L3ddCCFG99GruSg9vFw5fSmDngaMEdvYnoKGzQUcec0kBKUQVlpyWxaFLtwGZvhZCiOrI2EiFv5cDd84q+Hs5VIriEWQKW4gqbdfZm2RrFJq42FLfycbQ6QghhHhMSAEpRBW27Z/m4UEGXgsjhBDi8VLiKezTp0+XOKivr69OyQghSi4lPYsDF3Omr3v7yPS1EEKIilPiArJly5aoVCoURUGlKnr+Xa1WlzkxIUTR/jx7k0y1hobONjSqbWvodIQQQjxGSjyFHRUVxZUrV4iKimLdunV4eXnxzTffcOLECU6cOME333xDgwYNWLduXXnmK4T4h/bua7l5RgghRAUr8Qikp6en9v+HDBnCggUL6N27t3abr68vdevWZerUqQwYMECvSVYHao3C0ahEQm+rcIxKrDS34Yuq6X5GNvsv3ALk6TNCCCEqnk430YSHh+Pl5ZVvu5eXF5GRkSWOM2fOHNq2bYutrS3Ozs4MGDAg36MS09PTCQ4OxtHRERsbGwYPHszNmzfz7HPt2jX69OmDlZUVzs7OTJ48mezsbF1+tHKxPSKOTnP38NLSEH68aMxLS0PoNHcP2yPiDJ2aqKL2nEsgM1uDVy1rmrjI9LUQQoiKpVMB2bRpU+bMmUNmZqZ2W2ZmJnPmzKFp06YljrN//36Cg4M5cuQIu3btIisri8DAQFJTU7X7vPXWW2zatIk1a9awf/9+YmNjGTRokPZ1tVpNnz59yMzM5O+//2bFihUsX76cDz/8UJcfTe+2R8QxbmUYccnpebbHJ6czbmWYFJFCJ//efe1S7JpkIYQQQt90aiT+7bff0rdvX9zd3bV3XJ8+fRqVSsWmTZtKHGf79u15vl++fDnOzs6Ehoby5JNPkpyczJIlS1i1ahVdu3YFYNmyZTRt2pQjR47Qvn17du7cSWRkJLt376Z27dq0bNmSWbNm8e677zJ9+nTMzMx0+RH1Qq1RmLEpssAHoSvkPM9yxqZIeni7yHS2KLG0zGz2nk8A5OkzQgghDEOnArJdu3ZcuXKFn3/+mXPnzgHw/PPPM3ToUKytdX8Wb3JyMgAODg4AhIaGkpWVRffu3bX7NGnSBA8PDw4fPkz79u05fPgwPj4+1K5dW7tPz549GTduHGfOnKFVq1b5jpORkUFGRob2+5SUFACysrLIysrSOf9HHY1KzDfy+DAFiEtO5/ClBPy9HMp0rNy89Zm/xK6csXefiSc9S4N7TUuecLIsVQ7V9ZxIbIktsSV2dY5dnjkXdqziqBRFKWiArMJpNBr69etHUlISBw8eBGDVqlWMHj06T7EHOQXs008/zdy5c3n11VeJjo5mx44d2tfT0tKwtrZm69atBAUF5TvW9OnTmTFjRr7tq1atwsrKSm8/U+htFT9eNC52vxGN1PjVqhR/DKIKWH7BiBN3jOjqpqG/p8bQ6QghhKhG0tLSGDp0KMnJydjZ2RW6X5mehR0ZGcm1a9fyrIUE6NevX6ljBQcHExERoS0ey9OUKVOYNGmS9vuUlBTq1q1LYGBgkSertByjEvnxYkix+wV29tfLCOSuXbvo0aMHpqamZYolsStv7PQsNVNC9wFqXu8bQAt3e73FLiuJLbEltsSW2OUTuzxzflTurGxxdCogr1y5wsCBAwkPD9c2Fwe0i/lL20h8/PjxbN68mb/++gt3d3ftdhcXFzIzM0lKSqJGjRra7Tdv3sTFxUW7z7Fjx/LEy71LO3efR5mbm2Nubp5vu6mpqV7/YAIaOuNqb0F8cnqB6yABzE2MaOJaQ2/H1ffPILErV+w9F+6QlqnGzd4Cv3qOOt9AU53OicSW2BJbYj8uscsz54ePURI63YX95ptv4uXlRUJCAlZWVpw5c4a//vqLNm3asG/fvhLHURSF8ePHs379evbs2ZOvNZCfnx+mpqb8+eef2m3nz5/n2rVrBAQEABAQEEB4eDgJCQnafXbt2oWdnR3e3t66/Hh6Y2ykYlrfnBwK+zWfka2h39cHCbt2t+ISE1WW9u5rH1e5+1oIIYTB6FRAHj58mJkzZ1KrVi2MjIwwMjKiU6dOzJkzhzfeeKPEcYKDg1m5ciWrVq3C1taW+Ph44uPjefDgAQD29vaMHTuWSZMmsXfvXkJDQxk9ejQBAQG0b98egMDAQLy9vRk+fDinTp1ix44dfPDBBwQHBxc4yljRejV3ZfFLrXGxt8iz3dXegv/2bopXLWtik9N5/rvDLD0YRSVZkioqoYxsNbvP5t59LU+fEUIIYTg6TWGr1WpsbXOaF9eqVYvY2FgaN26Mp6dnvkbgRVm8eDEAXbp0ybN92bJljBo1CoAvvvgCIyMjBg8eTEZGBj179uSbb77R7mtsbMzmzZsZN24cAQEBWFtbM3LkSGbOnKnLj1YuejV3pYe3C4cvJbDzwFECO/trn0TzQru6vLvuNFvD45m5OZKQ6ETmDvbF1qJ8h6hF1XPw4m3uZ2RT286cVnVrGjodIYQQjzGdCsjmzZtz6tQpvLy88Pf359NPP8XMzIzvv/+e+vXrlzhOSUbbLCwsWLRoEYsWLSp0H09PT7Zu3Vri4xqCsZEKfy8H7pxV8Pdy0PZ9tLUwZdHQ1qz4+yofbz3L1vB4ImNT+GaYH95u+ruhR1R9uc++DmruipH0DRVCCGFAOk1hf/DBB2g0Oe1DZs6cSVRUFJ07d2br1q0sWLBArwk+DlQqFaM6erH6PwHUqWHJ1TtpDPzmEL8dvyZT2gKAzGwNuyJzC0iZvhZCCGFYOo1A9uzZU/v/DRs25Ny5cyQmJlKzZk1Z2F8GrTxqsnlCJyatPsne87d4d104x6Lu8tGA5liaFd9PUlRff1++TUp6NrVszGlTr2wtn4QQQoiy0mkE8mExMTHExMTg4OAgxaMe1LQ2Y8nItkzu2RgjFawLi2HAokNcvnXf0KkJA9r2z/R1r+a15bGXQgghDE6nAlKj0TBz5kzs7e3x9PTE09OTGjVqMGvWLO3UttCdkZGK4Kcb8vPL7allY875m/fot/Agm07FGjo1YQBZag07/pm+7t1cnn0thBDC8HQqIP/73//y9ddf88knn3DixAlOnDjB7NmzWbhwIVOnTtV3jo+tgAaObH2zE+3rO5CaqWbCLyf48I8IMrJL16hdVG1HrySSlJaFg7UZ7cr4xCIhhBBCH3RaA7lixQp++OGHPI8s9PX1pU6dOrz++ut8/PHHekvwcedsa8HKsf58sfsCi/Ze5sfD0Zy6nsTXQ1tT10F/z+0WldfWiJzm4T2b1cbEuMyrToQQQogy0+m3UWJiIk2aNMm3vUmTJiQmJpY5KZGXibERk3s2YdmottSwMuVUTDLPLDzIn2dzHtmo1igcjUok9LaKo1GJqDVy53Z1odYo7Ij4t32PEEIIURnoNALZokULvv7663wte77++mtatGihl8REfk83cWbzhE4ErzrBqetJjF0RQqB3bU7HJBOfkg4Y8+PFEFztLZjW15teUnBUeceiErmTmom9pSkBDRwNnY4QQggB6FhAfvrpp/Tp04fdu3drn0l9+PBhrl+/Xukbeld17jWtWPOfAGZvPcvyv6+yM/Jmvn3ik9MZtzKMxS+1liKyitv2z/R1oHdtTGX6WgghRCWh02+kp556igsXLjBw4ECSkpJISkpi0KBBnD9/ns6dO+s7R/EIMxMjpj7jTQ2rgh93mDuBPWNTpExnV2EajcK2f6ave/vIPwSEEEJUHjqNQAK4ubnlu1kmJiaGV199le+//77MiYmiHYvKuTO3MAoQl5zOsahEmfqsosKuJ3HrXga2FiZ0aCh/hkIIISoPvc6J3blzhyVLlugzpChEwr30Eu23O/ImmdnSm7Mq2n4mZ3lCj6a1MTeRJxEJIYSoPHQegRSG5WxrUaL9lhyKYv3JGwxsVYchbdxp4mJXzpkJfdAosOOf9a1BMn0thBCikpECsopq5+WAq70F8cnpFLbK0drcGEtTY27fz2TJwSiWHIzC192eIX7u9GtRB/tC1lAKw7t2H+JTMrAxN6Fzo1qGTkcIIYTIQ27rrKKMjVRM6+sNwKNPRlb98/X5kBYcmdKNpaPa0KuZC6bGKk7HJDP1jzO0nb2bCb+c4MDFW0XeaCM9JitW7vneEZNzaXZt4oSFqUxfCyGEqFxKNQI5aNCgIl9PSkoqSy6ilHo1d2XxS62ZsSmSuOR/10S6PNIHsmuT2nRtUps79zPYcDKWNSHXORd/j02nYtl0KhY3ewue9XPnWb+6eDj++3Sb7RFxD8WWHpPlLe/5zikg/7p4m+0RcXK+hRBCVCqlKiDt7e2LfX3EiBFlSkiUTq/mrvTwduHwpQR2HjhKYGd/Aho6Y2z06LgkONqYM7aTF2M61iPiRgprQq+z4cQNYpPTWbDnEgv2XKJ9fQeG+NXFxFjFxF9P5pselx6T5WN7RBzjVoblO9/JaVlyvoUQQlQ6pSogly1bVl55iDIwNlLh7+XAnbMK/l4OBRaPD1OpVPi42+Pjbs/7vZuyK/Imq0Ouc/DSbY5cSeTIlURUUODaSoWc6fEZmyLp4e1S7LFE8dQahRmbIuV8CyGEqDJkDeRjzsLUmL4t3PhprD+H3u3K//V4Amdb80JvzIG8PSZF2R2LSsyzBOFRcr6FEEJUNlJACi23GpZM6NaI93s3LdH+Je1FKYpW0vMo51sIIURlIQWkyKe2Xcl6TG6PiOdcfEo5Z1P9lbSnZ0n3E0IIIcqb9IEU+ZSkxyTAtoh4tkXE41PHnufaSG9JXWg0CiHRRU9Nq8i5s76dl0PFJCWEEEIUQ0YgRT4l6TEZ/HQDgprn9JYMv5G3t+RfF4ruLSly3E3NZOyK43y+84J2W0HnG2BaX2+5gUYIIUSlISOQokAl7TGZmJrJhhM3WF1Ab8nBfu486+eOp6N1gcd4uEm5Y1Rioe2HqqMT1+4yftUJbiQ9wNzEiFn9m2NnaVLs+RZCCCEqAykgRaFK0mPSwdqMMZ28GN2xHmdiU1gdcp0/TsYSm5zOwj2XWLjnEv5eDjzXpi5BPi5YmeV85B7XJuWKorD876vM3nqWLLVCPUcrvhnmh7dbzjPKS9rTUwghhDAkKSBFkUraY1KlUtG8jj3N6/zbW3JNaAwHLt7iaFQiR6MSmbbxDM/4ulLXwYp5O84/dk3K76Vn8d66cLaExwHQ28eFuYN9sbX4d91oaXt6CiGEEIYgBaTQu9zekn1buBGb9IDfw2JYExpD9J00fj1+vdD3Veem2WfjUnj95zCibqdiYqTiv32aMqpDPVSq6vMzCiGEeHzITTSiXLnVsGR810bse7sLv73anicb1Spy/+rYNHv18esMWHSIqNupuNlbsPq1AEZ39JLiUQghRJUlI5CiQqhUKvzrOxKfks5fF28Xu391aJr9IFPN1D8iWBsaA0CXxk588VxLalqbGTgzIYQQomykgBQVqqTNsL/cfZHkB1n0a+FGDauqV3BduXWf138O41z8PYxU8H+BjRn3VAOMqtG0vBBCiMeXFJCiQpW0SXnU7VQ+/OMMH205S6B3bZ5rU5eODWtViXWRm0/H8u7a06RmqqllY86CF1vSoUHRU/dCCCFEVSIFpKhQuU3Kx60MQwV5isjc0vDTZ325l56t7S25+XQcm0/H4WpvwbPF9JY0pIxsNbO3nGXF4WgA/L0cWPhiK5xL+GhIIYQQoqqQAlJUuJI2Kc/tLbkm5DobTsYS91BvyXb/9Jbs/VBvyYeVZ5PygmLHJT8g+OcwTsUkA/B6lwZM6vEEJsZyn5oQQojqx6AF5F9//cVnn31GaGgocXFxrF+/ngEDBmhfHzVqFCtWrMjznp49e7J9+3bt94mJiUyYMIFNmzZhZGTE4MGD+eqrr7CxsamoH0PooCRNyh/uLTmld1N2n73J6pCc3pLHohI5FpXItD8ieMbXjSFt3PHzrIlKpSrXJuUFxa5pZUpGtoa0TDX2lqZ88XwLujapXbYTJIQQQlRiBi0gU1NTadGiBWPGjGHQoEEF7tOrVy+WLVum/d7c3DzP68OGDSMuLo5du3aRlZXF6NGjefXVV1m1alW55i7KrjRNsy1MjXnG141nfPP3lvwt5Dq/hVynfi1rfN3t2XAyNt/79dGkfHtEHONWhuVbu3k3LQsAT0crfn7ZH/eaVjrFF0IIIaoKgxaQQUFBBAUFFbmPubk5Li4uBb529uxZtm/fzvHjx2nTpg0ACxcupHfv3sybNw83Nze95ywML7e3ZPDTDTl+9S6rQ66z5XQcV26ncuV2aoHvyW1SPm3jGdrWK/0TXtQahWkbzxR5409mtgZXe8tSxRVCCCGqokq/BnLfvn04OztTs2ZNunbtykcffYSjoyMAhw8fpkaNGtriEaB79+4YGRlx9OhRBg4cWGDMjIwMMjIytN+npKQAkJWVRVZWVrn9LLmxy+MYj2vsVu62tHL35r9BT7Bo7xV+OHS10H0V4GZKBn4f7dbpWMWJS07n8KUE/L0cyhSnMp9viS2xJbbEltgVH7s8cy7sWMVRKYpS1KBKhVGpVPnWQP76669YWVnh5eXF5cuXef/997GxseHw4cMYGxsze/ZsVqxYwfnz5/PEcnZ2ZsaMGYwbN67AY02fPp0ZM2bk275q1SqsrGT6saoKva3ix4vGBs1hRCM1frUqxSUlhBBClFpaWhpDhw4lOTkZOzu7Qver1COQL7zwgvb/fXx88PX1pUGDBuzbt49u3brpHHfKlClMmjRJ+31KSgp169YlMDCwyJNVVllZWezatYsePXpgamoqsfUc2zEqkR8vhhS734qRrWlXylHCY1GJjFwRVux+gZ399TICWRXOt8SW2BJbYkvsioldnjk/KndWtjiVuoB8VP369alVqxaXLl2iW7duuLi4kJCQkGef7OxsEhMTC103CTnrKh+9GQfA1NS03P9gyvs4j3PsgIbORTYpV5HTKqhTY5dSr4Hs1NilRLH12S6osp9viS2xJbbEltgVG7si6pSSxq9STepiYmK4c+cOrq45d9EGBASQlJREaGiodp89e/ag0Wjw9/c3VJrCQHKblMO/Tclz5X4/ra+3TgVeecYWQgghqhqDFpD379/n5MmTnDx5EoCoqChOnjzJtWvXuH//PpMnT+bIkSNcvXqVP//8k/79+9OwYUN69uwJQNOmTenVqxevvPIKx44d49ChQ4wfP54XXnhB7sB+TOU2KXexz/v0Fxd7izK18Cnv2EIIIURVYtAp7JCQEJ5++mnt97nrEkeOHMnixYs5ffo0K1asICkpCTc3NwIDA5k1a1ae6eeff/6Z8ePH061bN20j8QULFlT4zyIqj5I0Ka+MsYUQQoiqwqAFZJcuXSjqJvAdO3YUG8PBwUGahot8StOkvDLFFkIIIaqCKrUGUgghhBBCGF6Vugu7vOSOgpb01nVdZWVlkZaWRkpKSrm0DpDYEltiS2yJLbEldvWLXZ45Pyq3FiquTbgUkMC9e/cAqFu3roEzEUIIIYQwvHv37mFvb1/o65XmSTSGpNFoiI2NxdbWFpWq/Naz5TYsv379ut4blktsiS2xJbbEltgSu3rGLs+cH6UoCvfu3cPNzQ0jo8JXOsoIJGBkZIS7u3uFHc/Ozq7cPgASW2JLbIktsSW2xK6escsz54cVNfKYS26iEUIIIYQQpSIFpBBCCCGEKBUpICuQubk506ZNK/A53BJbYktsiS2xJbbEltgVGbcs5CYaIYQQQghRKjICKYQQQgghSkUKSCGEEEIIUSpSQAohhBBCiFKRAlIIIYQQQpSKFJAVaNGiRdSrVw8LCwv8/f05duxYmWP+9ddf9O3bFzc3N1QqFRs2bCh7ov+YM2cObdu2xdbWFmdnZwYMGMD58+f1Envx4sX4+vpqm6IGBASwbds2vcR+2CeffIJKpWLixIl6iTd9+nRUKlWeryZNmugl9o0bN3jppZdwdHTE0tISHx8fQkJC9BK7Xr16+fJWqVQEBweXKa5arWbq1Kl4eXlhaWlJgwYNmDVrVrHPUC2pe/fuMXHiRDw9PbG0tKRDhw4cP35cp1jFXSuKovDhhx/i6uqKpaUl3bt35+LFi2WO+/vvvxMYGIijoyMqlYqTJ0/qLe+srCzeffddfHx8sLa2xs3NjREjRhAbG1vmvKdPn06TJk2wtramZs2adO/enaNHj5Y550e99tprqFQqvvzyS73EHjVqVL7Pea9evfSW99mzZ+nXrx/29vZYW1vTtm1brl27VubYBV2fKpWKzz77rMyx79+/z/jx43F3d8fS0hJvb2++/fbbYuOWJPbNmzcZNWoUbm5uWFlZ0atXrxJdN1Cy3zHp6ekEBwfj6OiIjY0NgwcP5ubNm3qJ/f3339OlSxfs7OxQqVQkJSXpJe/ExEQmTJhA48aNsbS0xMPDgzfeeIPk5GS95P2f//yHBg0aYGlpiZOTE/379+fcuXMlyl2fpICsIL/99huTJk1i2rRphIWF0aJFC3r27ElCQkKZ4qamptKiRQsWLVqkp0z/tX//foKDgzly5Ai7du0iKyuLwMBAUlNTyxzb3d2dTz75hNDQUEJCQujatSv9+/fnzJkzesg8x/Hjx/nuu+/w9fXVW0yAZs2aERcXp/06ePBgmWPevXuXjh07YmpqyrZt24iMjOTzzz+nZs2aesg451w8nPOuXbsAGDJkSJnizp07l8WLF/P1119z9uxZ5s6dy6effsrChQv1kTYvv/wyu3bt4qeffiI8PJzAwEC6d+/OjRs3Sh2ruGvl008/ZcGCBXz77bccPXoUa2trevbsSXp6epnipqam0qlTJ+bOnVvqnIuLn5aWRlhYGFOnTiUsLIzff/+d8+fP069fvzLFBXjiiSf4+uuvCQ8P5+DBg9SrV4/AwEBu3bpV5ti51q9fz5EjR3Bzcys2Zmli9+rVK8/n/ZdfftFL7MuXL9OpUyeaNGnCvn37OH36NFOnTsXCwqLMsR/ONy4ujqVLl6JSqRg8eHCZY0+aNInt27ezcuVKzp49y8SJExk/fjwbN24sU2xFURgwYABXrlzhjz/+4MSJE3h6etK9e/cS/Z4oye+Yt956i02bNrFmzRr2799PbGwsgwYN0kvstLQ0evXqxfvvv19svNLEjo2NJTY2lnnz5hEREcHy5cvZvn07Y8eO1Uvefn5+LFu2jLNnz7Jjxw4URSEwMBC1Wl2qn6PMFFEh2rVrpwQHB2u/V6vVipubmzJnzhy9HQNQ1q9fr7d4j0pISFAAZf/+/eUSv2bNmsoPP/ygl1j37t1TGjVqpOzatUt56qmnlDfffFMvcadNm6a0aNFCL7Ee9u677yqdOnXSe9zCvPnmm0qDBg0UjUZTpjh9+vRRxowZk2fboEGDlGHDhpUprqIoSlpammJsbKxs3rw5z/bWrVsr//3vf8sU+9FrRaPRKC4uLspnn32m3ZaUlKSYm5srv/zyi85xHxYVFaUAyokTJ3TMumTX+LFjxxRAiY6O1mvc5ORkBVB2795d4rhFxY6JiVHq1KmjREREKJ6ensoXX3xRqriFxR45cqTSv3//UscqSeznn39eeemll8ol9qP69++vdO3aVS+xmzVrpsycOTPPNl2uo0djnz9/XgGUiIgI7Ta1Wq04OTkp//vf/0qd+6O/Y5KSkhRTU1NlzZo12n3Onj2rAMrhw4fLFPthe/fuVQDl7t27pc65uNi5Vq9erZiZmSlZWVl6j33q1CkFUC5dulSq2GUlI5AVIDMzk9DQULp3767dZmRkRPfu3Tl8+LABMyud3OF3BwcHvcZVq9X8+uuvpKamEhAQoJeYwcHB9OnTJ88515eLFy/i5uZG/fr1GTZsWImmr4qzceNG2rRpw5AhQ3B2dqZVq1b873//00O2+WVmZrJy5UrGjBmDSqUqU6wOHTrw559/cuHCBQBOnTrFwYMHCQoKKnOe2dnZqNXqfKM7lpaWehn1fVhUVBTx8fF5Pi/29vb4+/tXqWsUcq5TlUpFjRo19BYzMzOT77//Hnt7e1q0aFHmeBqNhuHDhzN58mSaNWumhwzz2rdvH87OzjRu3Jhx48Zx586dMsfUaDRs2bKFJ554gp49e+Ls7Iy/v79elw3lunnzJlu2bCnRiFVJdOjQgY0bN3Ljxg0URWHv3r1cuHCBwMDAMsXNyMgAyHONGhkZYW5urtM1+ujvmNDQULKysvJcl02aNMHDw6PU12V5/f4qaezk5GTs7OwwMTHRa+zU1FSWLVuGl5cXdevWLVXsspICsgLcvn0btVpN7dq182yvXbs28fHxBsqqdDQaDRMnTqRjx440b95cLzHDw8OxsbHB3Nyc1157jfXr1+Pt7V3muL/++ithYWHMmTNHD1nm5e/vr52OWLx4MVFRUXTu3Jl79+6VKe6VK1dYvHgxjRo1YseOHYwbN4433niDFStW6Cnzf23YsIGkpCRGjRpV5ljvvfceL7zwAk2aNMHU1JRWrVoxceJEhg0bVubYtra2BAQEMGvWLGJjY1Gr1axcuZLDhw8TFxdX5vgPy70Oq/I1Cjnrxd59911efPFF7Ozsyhxv8+bN2NjYYGFhwRdffMGuXbuoVatWmePOnTsXExMT3njjjTLHelSvXr348ccf+fPPP5k7dy779+8nKCiozNN7CQkJ3L9/n08++YRevXqxc+dOBg4cyKBBg9i/f7+ess+xYsUKbG1tSzRVWxILFy7E29sbd3d3zMzM6NWrF4sWLeLJJ58sU9zcYm7KlCncvXuXzMxM5s6dS0xMTKmv0YJ+x8THx2NmZpbvH0OlvS7L4/dXaWLfvn2bWbNm8eqrr+ot9jfffIONjQ02NjZs27aNXbt2YWZmpvPPoYvSlcLisRUcHExERIReR34aN27MyZMnSU5OZu3atYwcOZL9+/eXqYi8fv06b775Jrt27SrRuqTSenhkzdfXF39/fzw9PVm9enWZRgs0Gg1t2rRh9uzZALRq1YqIiAi+/fZbRo4cWea8H7ZkyRKCgoJKte6sMKtXr+bnn39m1apVNGvWjJMnTzJx4kTc3Nz0kvdPP/3EmDFjqFOnDsbGxrRu3ZoXX3yR0NDQMseubrKysnjuuedQFIXFixfrJebTTz/NyZMnuX37Nv/73/947rnnOHr0KM7OzjrHDA0N5auvviIsLKzMI+AFeeGFF7T/7+Pjg6+vLw0aNGDfvn1069ZN57gajQaA/v3789ZbbwHQsmVL/v77b7799lueeuqpsiX+kKVLlzJs2DC9/R22cOFCjhw5wsaNG/H09OSvv/4iODgYNze3Ms3SmJqa8vvvvzN27FgcHBwwNjame/fuBAUFlfpGuvL4HVMZYqekpNCnTx+8vb2ZPn263mIPGzaMHj16EBcXx7x583juuec4dOhQufzeK4yMQFaAWrVqYWxsnO/OsZs3b+Li4mKgrEpu/PjxbN68mb179+Lu7q63uGZmZjRs2BA/Pz/mzJlDixYt+Oqrr8oUMzQ0lISEBFq3bo2JiQkmJibs37+fBQsWYGJiovdFxjVq1OCJJ57g0qVLZYrj6uqar3Bu2rSpXqbHHxYdHc3u3bt5+eWX9RJv8uTJ2lFIHx8fhg8fzltvvaW30d8GDRqwf/9+7t+/z/Xr1zl27BhZWVnUr19fL/Fz5V6HVfUazS0eo6Oj2bVrl15GHwGsra1p2LAh7du3Z8mSJZiYmLBkyZIyxTxw4AAJCQl4eHhor9Ho6Gj+7//+j3r16ukl74fVr1+fWrVqlfkarVWrFiYmJuV+nR44cIDz58/r7Rp98OAB77//PvPnz6dv3774+voyfvx4nn/+eebNm1fm+H5+fpw8eZKkpCTi4uLYvn07d+7cKdU1WtjvGBcXFzIzM/PdHV2a67K8fn+VJPa9e/fo1asXtra2rF+/HlNTU73Ftre3p1GjRjz55JOsXbuWc+fOsX79+jL9PKUlBWQFMDMzw8/Pjz///FO7TaPR8Oeff+ptzV95UBSF8ePHs379evbs2YOXl1e5Hk+j0WjX1OiqW7duhIeHc/LkSe1XmzZtGDZsGCdPnsTY2FhP2ea4f/8+ly9fxtXVtUxxOnbsmK9Vw4ULF/D09CxT3EctW7YMZ2dn+vTpo5d4aWlpGBnl/WvE2NhYO1qjL9bW1ri6unL37l127NhB//799Rrfy8sLFxeXPNdoSkoKR48erdTXKPxbPF68eJHdu3fj6OhYbsfSxzU6fPhwTp8+necadXNzY/LkyezYsUNPmf4rJiaGO3fulPkaNTMzo23btuV+nS5ZsgQ/Pz+9rDWFnM9HVlZWuV+n9vb2ODk5cfHiRUJCQkp0jRb3O8bPzw9TU9M81+X58+e5du1asddlef7+KknslJQUAgMDMTMzY+PGjSUeGdQlb0VRUBSlzNdmackUdgWZNGkSI0eOpE2bNrRr144vv/yS1NRURo8eXaa49+/fz/Mv66ioKE6ePImDgwMeHh5lih0cHMyqVav4448/sLW11a45sbe3x9LSskyxp0yZQlBQEB4eHty7d49Vq1axb9++Mv8CsbW1zbdWxNraGkdHR72sfXn77bfp27cvnp6exMbGMm3aNIyNjXnxxRfLFPett96iQ4cOzJ49m+eee45jx47x/fff8/3335c551wajYZly5YxcuTIUi/kLkzfvn35+OOP8fDwoFmzZpw4cYL58+czZswYvcTPbVHRuHFjLl26xOTJk2nSpIlO101x18rEiRP56KOPaNSoEV5eXkydOhU3NzcGDBhQpriJiYlcu3ZN25sxtwBxcXEp0ShKUfFdXV159tlnCQsLY/PmzajVau116uDgUOSaqKLiOjo68vHHH9OvXz9cXV25ffs2ixYt4saNGyVq/VTcOXm0yDU1NcXFxYXGjRuXKbaDgwMzZsxg8ODBuLi4cPnyZd555x0aNmxIz549y5z35MmTef7553nyySd5+umn2b59O5s2bWLfvn1ljg05RceaNWv4/PPPi41XmthPPfUUkydPxtLSEk9PT/bv38+PP/7I/Pnzyxx7zZo1ODk54eHhQXh4OG+++SYDBgwo0Q06xf2Osbe3Z+zYsUyaNAkHBwfs7OyYMGECAQEBtG/fvkyxIWeNZXx8vPbnCw8Px9bWFg8PjyJviCkudm7xmJaWxsqVK0lJSSElJQUAJyenIgcyiot95coVfvvtNwIDA3FyciImJoZPPvkES0tLevfuXew516sKvef7Mbdw4ULFw8NDMTMzU9q1a6ccOXKkzDFz2w88+jVy5Mgyxy4oLqAsW7aszLHHjBmjeHp6KmZmZoqTk5PSrVs3ZefOnWWOWxB9tvF5/vnnFVdXV8XMzEypU6eO8vzzz+utdcKmTZuU5s2bK+bm5kqTJk2U77//Xi9xc+3YsUMBlPPnz+stZkpKivLmm28qHh4eioWFhVK/fn3lv//9r5KRkaGX+L/99ptSv359xczMTHFxcVGCg4OVpKQknWIVd61oNBpl6tSpSu3atRVzc3OlW7duJTpXxcVdtmxZga9PmzatzHnntgYq6Gvv3r06x33w4IEycOBAxc3NTTEzM1NcXV2Vfv36KceOHStzzgUpTRufomKnpaUpgYGBipOTk2Jqaqp4enoqr7zyihIfH6+3vJcsWaI0bNhQsbCwUFq0aKFs2LBBb7G/++47xdLSstSf8eJix8XFKaNGjVLc3NwUCwsLpXHjxsrnn39eojZexcX+6quvFHd3d8XU1FTx8PBQPvjggxJf/yX5HfPgwQPl9ddfV2rWrKlYWVkpAwcOVOLi4vQSe9q0aTr9jisudmHnDFCioqLKFPvGjRtKUFCQ4uzsrJiamiru7u7K0KFDlXPnzhV7TvRN9U/CQgghhBBClIisgRRCCCGEEKUiBaQQQgghhCgVKSCFEEIIIUSpSAEphBBCCCFKRQpIIYQQQghRKlJACiGEEEKIUpECUgghhBBClIoUkEIIIYQQolSkgBRCiH+MGjWq2EcXlqfhw4cze/Zsgx2/IN9++y19+/Y1dBpCiEpGnkQjhHgsqFSqIl+fNm0ab731FoqiUKNGjYpJ6iGnTp2ia9euREdHY2NjA0CXLl1o2bIlX375ZZ59ly9fzsSJE0lKSir3vDIzM/Hy8uLXX3+lc+fO5X48IUTVYGLoBIQQoiLExcVp//+3337jww8/5Pz589ptNjY22sLNEBYuXMiQIUMMmsPDFEVBrVZjZmbG0KFDWbBggRSQQggtmcIWQjwWXFxctF/29vaoVKo822xsbPJNYXfp0oUJEyYwceJEatasSe3atfnf//5Hamoqo0ePxtbWloYNG7Jt27Y8x4qIiCAoKAgbGxtq167N8OHDuX37dqG5qdVq1q5dW6ap4sWLF9OgQQPMzMxo3LgxP/30k/a1q1evolKpOHnypHZbUlISKpWKffv2AbBv3z5UKhXbtm3Dz88Pc3NzDh48CEDfvn3ZuHEjDx480Dk/IUT1IgWkEEIUYcWKFdSqVYtjx44xYcIExo0bx5AhQ+jQoQNhYWEEBgYyfPhw0tLSgJzCrGvXrrRq1YqQkBC2b9/OzZs3ee655wo9xunTp0lOTqZNmzY65bh+/XrefPNN/u///o+IiAj+85//MHr0aPbu3VvqWO+99x6ffPIJZ8+exdfXF4A2bdqQnZ3N0aNHdcpPCFH9SAEphBBFaNGiBR988AGNGjViypQpWFhYUKtWLV555RUaNWrEhx9+yJ07dzh9+jQAX3/9Na1atWL27Nk0adKEVq1asXTpUvbu3cuFCxcKPEZ0dDTGxsY4Ozvne+2bb77RTq/nfr322mt59pk3bx6jRo3i9ddf54knnmDSpEkMGjSIefPmlfrnnTlzJj169KBBgwY4ODgAYGVlhb29PdHR0aWOJ4SonqSAFEKIIuSOwgEYGxvj6OiIj4+Pdlvt2rUBSEhIAHJuhtm7d2+egq9JkyYAXL58ucBjPHjwAHNz8wJv9Bk2bBgnT57M8zVz5sw8+5w9e5aOHTvm2daxY0fOnj1b6p+3sFFQS0tL7SirEELITTRCCFEEU1PTPN+rVKo823KLPo1GA8D9+/fp27cvc+fOzRfL1dW1wGPUqlWLtLQ0MjMzMTMzy/Oavb09DRs2zLOtoJHKohgZ5YwVPNx0Iysrq8B9ra2tC9yemJiIk5NTqY4rhKi+ZARSCCH0qHXr1pw5c4Z69erRsGHDPF+FFWctW7YEIDIyUqdjNm3alEOHDuXZdujQIby9vQG0hd/Dd6I/fENNcS5fvkx6ejqtWrXSKT8hRPUjBaQQQuhRcHAwiYmJvPjiixw/fpzLly+zY8cORo8ejVqtLvA9Tk5OtG7dWnvXc2lNnjyZ5cuXs3jxYi5evMj8+fP5/fffefvtt4Gc6ef27dtrb47Zv38/H3zwQYnjHzhwgPr169OgQQOd8hNCVD9SQAohhB65ublx6NAh1Go1gYGB+Pj4MHHiRGrUqKGdSi7Iyy+/zM8//6zTMQcMGMBXX33FvHnzaNasGd999x3Lli2jS5cu2n2WLl1KdnY2fn5+TJw4kY8++qjE8X/55RdeeeUVnXITQlRP8iQaIYSoBB48eEDjxo357bffCAgIMHQ6WmfOnKFr165cuHABe3t7Q6cjhKgkZARSCCEqAUtLS3788cciG44bQlxcHD/++KMUj0KIPGQEUgghhBBClIqMQAohhBBCiFKRAlIIIYQQQpSKFJBCCCGEEKJUpIAUQgghhBClIgWkEEIIIYQoFSkghRBCCCFEqUgBKYQQQgghSkUKSCGEEEIIUSpSQAohhBBCiFL5f35Ia5NEJy42AAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 750x250 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Load demand to be fulfilled by the energy management system\n",
+    "load_demand = np.array([\n",
+    "    200, 180, 170, 160, 150, 150, 170, 250, 320, 300, 280, 260, 270, 280, 290, \n",
+    "    300, 320, 350, 340, 330, 320, 280, 240, 220\n",
+    "])\n",
+    "\n",
+    "# Plot load demand\n",
+    "plt.figure(figsize=(7.5, 2.5))\n",
+    "plt.plot(np.arange(n_hours), load_demand, marker='o')\n",
+    "plt.title('Load Demand')\n",
+    "plt.xlabel('Time (Hour)')\n",
+    "plt.ylabel('Load Demand (kW)')\n",
+    "plt.xticks(np.arange(0, 24, step=1))\n",
+    "plt.grid(True)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### **Mixed Integer Linear Programming using the NAG Library**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 68,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import the NAG Library for Python\n",
+    "from naginterfaces.base import utils\n",
+    "from naginterfaces.library import opt, mip\n",
+    "\n",
+    "# Total number of variables in the model\n",
+    "# generators: 3 * 24 * 2\n",
+    "# battery: 24 + 2\n",
+    "# power import: 24\n",
+    "#       pg  + pim + cb + eb + pb +  s   \n",
+    "nvar = 3*24 + 24  + 1  + 1  + 24 + 3*24 \n",
+    "\n",
+    "# Create a problem handle to hold model data\n",
+    "handle = opt.handle_init(nvar=nvar)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The objective function which is the total operation cost of the utility is defined as\n",
+    "$$\n",
+    "\\min \\sum_{j=1}^{n\\_hours} (\\sum_{i=1}^{n\\_gen} cost_i(p_{ij}^g) + cost\\_imp\\_energy_j*p_{j}^{im}) + cost\\_bat\\_power * c^b + cost\\_bat\\_energy * e^b\n",
+    "$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 69,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Set objective coefficient\n",
+    "idxc = list(range(1, 3*24 + 24  + 1  + 1 + 1))\n",
+    "c = np.tile(spec_gen[:,0], 24)\n",
+    "c = np.concatenate((c, cost_imp_energy, [cost_bat_power, cost_bat_energy]))\n",
+    "\n",
+    "# Set model objective\n",
+    "opt.handle_set_quadobj(handle=handle, idxc=idxc, c=c)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The load balance of every hour needs to be met, therefore we have the following power balance for $j$-th hour:\n",
+    "$$\n",
+    "\\sum_{i=1}^{n\\_gen} p^g_{ij} + p^b_j + p^{im}_j = load\\_demand_j.\n",
+    "$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 70,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Add power balance constraint for each hour\n",
+    "for hour in range(n_hours):\n",
+    "\tirowa = np.full(5, 1, dtype=int)\n",
+    "\ticola = np.array([3*hour+1, 3*hour+2, 3*hour+3, 3*24+hour+1, 3*24+24+1+1+hour+1], dtype=int)\n",
+    "\ta = np.full(5, 1.0, dtype=float)\n",
+    "\tbl = np.full(1, load_demand[hour], dtype=float)\n",
+    "\tbu = np.full(1, load_demand[hour], dtype=float)\n",
+    "\topt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The generators' power output should be within the limits given as $pl$ and $pu$ in the generators specification, when they are online. Therefore the generators limits constraint for the $i$-th generator at the $j$-th hour is defined as\n",
+    "$$\n",
+    "pl_i*s_{ij} \\leq p^g_{ij} \\leq pu_i*s_{ij}.\n",
+    "$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 71,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Add generator limits constraint\n",
+    "for generator in range(n_gen):\n",
+    "\tfor hour in range(n_hours):\n",
+    "\t\tirowa = [1, 1, 2, 2]\n",
+    "\t\ticola = np.tile([3*24+24+1+1+24+hour*3+generator+1, hour*3+generator+1],2)\n",
+    "\t\ta = np.array([spec_gen[generator, 2], -1.0, spec_gen[generator, 3], -1.0], dtype=float)\n",
+    "\t\tbl = np.array([-1.e20, 0.])\n",
+    "\t\tbu = np.array([0., 1.e20])\n",
+    "\t\topt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Each generator has a minimum up and down time constraint:\n",
+    "$$\n",
+    "\\sum_{t=j}^{j+ut-1} s_{it} \\geq ut*(s_{ij}-s_{ij-1}),\n",
+    "$$\n",
+    "$$\n",
+    "\\sum_{t=j}^{j+dt-1} (1 - s_{it}) \\geq dt*(s_{ij-1}-s_{ij}).\n",
+    "$$\n",
+    "Note we assume all generators have the same minimum up time and minimum down time for simplicity."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 72,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Add minimum up and down time constraints\n",
+    "ut = 8.0\n",
+    "dt = 6.0\n",
+    "s_start = 3*24 + 24  + 1  + 1  + 24\n",
+    "# minimum up time constraints\n",
+    "for generator in range(n_gen):\n",
+    "\tfor hour in range(1, n_hours):\n",
+    "\t\tirowa = np.array([],dtype=int)\n",
+    "\t\ticola = np.array([],dtype=int)\n",
+    "\t\ta = np.array([],dtype=float)\n",
+    "\t\tfor i in range(hour-1, min(hour+ 8, n_hours)):\n",
+    "\t\t\ticola = np.append(icola, s_start+i*3+generator+1)\n",
+    "\t\t\tirowa = np.append(irowa, 1)\n",
+    "\t\t\ta = np.append(a, 1.0)\n",
+    "\t\ta[0] = ut \n",
+    "\t\ta[1] = 1 - ut\n",
+    "\t\tbl = 0.0\n",
+    "\t\tbu = 1.e20\n",
+    "\t\topt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)\n",
+    "# minimum down time constraints\n",
+    "for generator in range(n_gen):\n",
+    "\tfor hour in range(1, n_hours):\n",
+    "\t\tirowa = np.array([],dtype=int)\n",
+    "\t\ticola = np.array([],dtype=int)\n",
+    "\t\ta = np.array([],dtype=float)\n",
+    "\t\tbu = -1.0\n",
+    "\t\tfor i in range(hour-1, min(hour+ 6, n_hours)):\n",
+    "\t\t\ticola = np.append(icola, s_start+i*3+generator+1)\n",
+    "\t\t\tirowa = np.append(irowa, 1)\n",
+    "\t\t\ta = np.append(a, 1.0)\n",
+    "\t\t\tbu += 1.0\n",
+    "\t\ta[0] = dt \n",
+    "\t\ta[1] = 1 - dt\n",
+    "\t\tbl = -1.e20\n",
+    "\t\topt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Battery power at any time cannot be off the limits. Therefore we define the following power rating limits constraint.\n",
+    "$$\n",
+    "-c^b \\leq p^b_j \\leq c^b.\n",
+    "$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 73,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Add battery power limits constraints\n",
+    "for hour in range(n_hours):\n",
+    "\tirowa = [1, 1, 2, 2]\n",
+    "\ticola = [3*24+24+1+1+hour+1, 3*24+24+1, 3*24+24+1+1+hour+1, 3*24+24+1]\n",
+    "\ta = [1.0, -1.0, 1.0, 1.0]\n",
+    "\tbl = [-1.e20, 0.]\n",
+    "\tbu = [0., 1.e20]\n",
+    "\topt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Energy rating of the battery storage system follows\n",
+    "$$\n",
+    "-e^b \\leq \\sum_{j=1}^t p^b_j \\leq 0, for ~t = 1, \\ldots, n\\_hours.\n",
+    "$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 74,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Add battery energy limits constraints\n",
+    "for hour in range(n_hours):\n",
+    "\t# rhs\n",
+    "\tirowa = np.array([],dtype=int)\n",
+    "\ticola = np.array([],dtype=int)\n",
+    "\ta = np.array([],dtype=float)\n",
+    "\tfor i in range(hour+1):\n",
+    "\t\ticola = np.append(icola, 3*24+24+1+1+i+1)\n",
+    "\t\tirowa = np.append(irowa, 1)\n",
+    "\t\ta = np.append(a, 1.0)\n",
+    "\tbl = -1.e20\n",
+    "\tbu = 0.\n",
+    "\topt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)\n",
+    "\t# lhs\n",
+    "\tirowa = np.array([1],dtype=int)\n",
+    "\ticola = np.array([3*24+24+1+1],dtype=int)\n",
+    "\ta = np.array([1.],dtype=float)\n",
+    "\tfor i in range(hour+1):\n",
+    "\t\ticola = np.append(icola, 3*24+24+1+1+i+1)\n",
+    "\t\tirowa = np.append(irowa, 1)\n",
+    "\t\ta = np.append(a, 1.0)\n",
+    "\tbl = 0.\n",
+    "\tbu = 1.e20\n",
+    "\topt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The imported power is limited to $15$ kW maximum.\n",
+    "$$\n",
+    "0 \\leq p^{im}_j \\leq 15.\n",
+    "$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 75,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Add limits to the imported power\n",
+    "for i in range(n_hours):\n",
+    "\topt.handle_set_bound(handle=handle, comp='Var', idx=3*24+i+1, bli=0., bui=15.)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 76,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Switches for the generators are binary\n",
+    "switches = np.arange(3*24+24+1+1+24+1, nvar+1)\n",
+    "opt.handle_set_property(handle=handle, ptype='Bin', idx=switches)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 77,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " H02BK, Solver for MILP problems\n",
+      " Status: converged, an optimal solution found\n",
+      " Final primal objective value  1.218345E+02\n",
+      " Final dual objective bound    1.218345E+02\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Set options\n",
+    "for option in [\n",
+    "        'Print Options = NO',\n",
+    "        'Print Level = 1',\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "\n",
+    "# Use an explicit I/O manager for abbreviated iteration output:\n",
+    "iom = utils.FileObjManager(locus_in_output=False)\n",
+    "\n",
+    "# Solve the problem.\n",
+    "x, _, _ = mip.handle_solve_milp(handle, io_manager=iom)\n",
+    "\n",
+    "# Destroy the handle:\n",
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now we can extract the optimal configuration from the solution."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 78,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "         Power Rate  Energy Rate\n",
+      "Battery        45.0        135.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Generator schedule for 24 hours\n",
+    "switch1 = np.array([x for i, x in enumerate(x[-3*24:]) if i % 3 ==0])\n",
+    "switch2 = np.array([x for i, x in enumerate(x[-3*24:]) if i % 3 ==1])\n",
+    "switch3 = np.array([x for i, x in enumerate(x[-3*24:]) if i % 3 ==2])\n",
+    "# Generator energy for 24 hours\n",
+    "generator1 = np.array([x for i, x in enumerate(x[:3*24]) if i % 3 ==0])\n",
+    "generator2 = np.array([x for i, x in enumerate(x[:3*24]) if i % 3 ==1])\n",
+    "generator3 = np.array([x for i, x in enumerate(x[:3*24]) if i % 3 ==2])\n",
+    "# Power import\n",
+    "power_import = x[3*24 : 3*24+24]\n",
+    "battery_power_rate = x[3*24+24]\n",
+    "battery_energy_rate = x[3*24+24+1]\n",
+    "battery_power = x[3*24+24+1+1 : 3*24+24+1+1+24]\n",
+    "\n",
+    "df = pd.DataFrame(\n",
+    "\t{\n",
+    "\t'Battery':[battery_power_rate, battery_energy_rate],\n",
+    "\t}\n",
+    ")\n",
+    "df.index=['Power Rate','Energy Rate']\n",
+    "print(df.T.to_string())"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The model gives the optimal battery power rate as $45$ kW and optimal energy rate as $135$ kWh. We can plot the battery discharging schedule and energy import schedule as below. It's shown that the battery charges itself during off-peak time and dispatches during peak hours to mitigate the need of importing external energy. The imported energy is kept well under $15$ kW and only happens during the second peak."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 79,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAApMAAAEWCAYAAAA6gxwLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8aklEQVR4nO3dd1RT5xsH8G8SQsLeG1mKIrhxoYIbUeuoe89q66y1tmptq/661FpH3dpqtWq1rtZRV91VRAUXDobiZINsgZC8vz8w0TBDBkng+ZyTc8zNzXOfXO41b97JYYwxEEIIIYQQogSuthMghBBCCCH6iwqThBBCCCFEaVSYJIQQQgghSqPCJCGEEEIIURoVJgkhhBBCiNKoMEkIIYQQQpRGhUlCCCGEEKI0KkwSQgghhBClUWGSEEIIIYQojQqThBC16NSpEzp16qTtNFRy/vx5cDgc7N+/v9J9x40bBw8PD80nVQslJSVh0KBBsLGxAYfDwapVq7SdEiGkAlSYJOSN3377DRwOR+5hb2+Pzp074/jx40rH/f777/HXX3+V2n7lyhUsWrQIGRkZyietIePGjZM7D6ampvDy8sKgQYNw4MABSCQSbadYrvXr1+O3337Tdhoa1alTJ7m/j7W1NVq1aoWtW7fq9N9GUZ988glOnjyJ+fPn4/fff0dISIjGjpWWloYff/wRQUFBsLOzg6WlJdq2bYu9e/dW+t7vvvsOHA4HjRo1UuhY48aNg6mpabmvczgcTJ8+XeHcCdEVBtpOgBBd87///Q+enp5gjCEpKQm//fYbevXqhSNHjuC9996rcrzvv/8egwYNQv/+/eW2X7lyBYsXL8a4ceNgaWmpnuTVSCAQ4JdffgEAvH79Gk+fPsWRI0cwaNAgdOrUCX///TfMzc1l+586dUpbqcpZv349bG1tMW7cOI0eZ8uWLVotuLm6uuKHH34AAKSkpGDHjh2YOHEioqOjsWTJEq3lpQ5nz55Fv379MGfOHI0fKzQ0FAsWLECvXr3w5ZdfwsDAAAcOHMCwYcNw//59LF68uMz3vXjxAt9//z1MTEw0niMhuo4Kk4SU0LNnT7Rs2VL2fOLEiXBwcMAff/yhVGGyuuXl5cHY2FjlOAYGBhg1apTctm+//RZLlizB/PnzMWnSJLnaG0NDQ5WPqU/4fL5Wj29hYSH39/nwww/RoEEDrF27Ft98843W86tIbm5uhYWw5ORktf7Ays/Ph6GhIbjc0o1xfn5+iImJgbu7u2zb1KlT0a1bNyxduhSff/55mbnOmTMHbdu2hVgsRmpqqtpy1YbK/h6EVIaauQmphKWlJYyMjGBgIP/ba/ny5WjXrh1sbGxgZGQEf3//Un3tOBwOcnNzsX37dlmT5Lhx47Bo0SJ89tlnAABPT0/Za0+ePJG9d+fOnfD394eRkRGsra0xbNgwPH/+XC5+p06d0KhRI4SHhyMoKAjGxsb44osvMHbsWNja2kIkEpX6PMHBwWjQoIHS52PevHkIDg7Gvn37EB0dLZdLyT6Ta9asgZ+fH4yNjWFlZYWWLVti9+7dstcXLVoEDoeDhw8fYsiQITA3N4eNjQ0+/vhj5Ofny8Xatm0bunTpAnt7ewgEAvj6+mLDhg1y+3h4eODevXu4cOGC7Jy+m1NGRgY++eQTeHh4QCAQwNXVFWPGjClVGJBIJPjuu+/g6uoKoVCIrl27IjY2Vm6fkn0mnzx5Ag6Hg+XLl2Pz5s2oW7cuBAIBWrVqhevXr5c6j/v27YOvry+EQiEaNWqEQ4cOqdQP09jYGG3btkVubi5SUlIAAI8fP8bgwYNhbW0te/3YsWOy9zDGYGtri9mzZ8t9dktLS/B4PLkuGEuXLoWBgQFycnJk2x4+fIhBgwbB2toaQqEQLVu2xOHDh+XyknYfuXDhAqZOnQp7e3u4urqW+Rmk+zLGsG7dOtnfUKqyzwO87fe6Z88efPnll3BxcYGxsTGysrLKPKanp6dcQRIovm/79++PgoICPH78uNR7Ll68iP3791dLX87k5GTZD1qhUIimTZti+/btcvtIP/P58+fltkuvyXe7fUib2h89eoRevXrBzMwMI0eOBADExMRg4MCBcHR0hFAohKurK4YNG4bMzExNf0yi56hmkpASMjMzkZqaCsYYkpOTsWbNGuTk5JSqpVu9ejX69u2LkSNHorCwEHv27MHgwYNx9OhR9O7dGwDw+++/44MPPkDr1q0xefJkAEDdunVhYmKC6Oho/PHHH1i5ciVsbW0BAHZ2dgCK+2J99dVXGDJkCD744AOkpKRgzZo1CAoKws2bN+VqbdLS0tCzZ08MGzYMo0aNgoODA0xMTLBjxw6cPHlSrjY1MTERZ8+excKFC1U6R6NHj8apU6dw+vRp1K9fv8x9tmzZgpkzZ2LQoEGywuGdO3cQFhaGESNGyO07ZMgQeHh44IcffsDVq1fx888/49WrV9ixY4dsnw0bNsDPzw99+/aFgYEBjhw5gqlTp0IikWDatGkAgFWrVmHGjBkwNTXFggULAAAODg4AgJycHAQGBuLBgweYMGECWrRogdTUVBw+fBgvXryQ/Q0AYMmSJeByuZgzZw4yMzOxbNkyjBw5EmFhYZWem927dyM7OxsffvghOBwOli1bhgEDBuDx48ey2sJjx45h6NChaNy4MX744Qe8evUKEydOhIuLSxX+CqU9fvwYPB4PlpaWSEpKQrt27ZCXl4eZM2fCxsYG27dvR9++fbF//368//774HA4aN++PS5evCiLcefOHWRmZoLL5eLy5cuya/nSpUto3ry5rM/fvXv30L59e7i4uGDevHkwMTHBn3/+if79++PAgQN4//335XKbOnUq7Ozs8PXXXyM3N7fM/IOCgvD7779j9OjR6N69O8aMGSN7TZHP865vvvkGhoaGmDNnDgoKCqpcc56YmAgActcFAIjFYsyYMQMffPABGjduXKWYUorWZL5+/RqdOnVCbGwspk+fDk9PT+zbtw/jxo1DRkYGPv74Y6WOX1RUhB49eqBDhw5Yvnw5jI2NUVhYiB49eqCgoAAzZsyAo6MjXr58iaNHjyIjIwMWFhZKHYvUEowQwhhjbNu2bQxAqYdAIGC//fZbqf3z8vLknhcWFrJGjRqxLl26yG03MTFhY8eOLfX+H3/8kQFgcXFxctufPHnCeDwe++677+S23717lxkYGMht79ixIwPANm7cKLevWCxmrq6ubOjQoXLbV6xYwTgcDnv8+HG554ExxsaOHctMTEzKff3mzZsMAPvkk0/kcunYsaPseb9+/Zifn1+Fx1m4cCEDwPr27Su3ferUqQwAu337tmxbyfPNGGM9evRgXl5ectv8/Pzk8pD6+uuvGQB28ODBUq9JJBLGGGPnzp1jAFjDhg1ZQUGB7PXVq1czAOzu3buybWPHjmXu7u6y53FxcQwAs7GxYenp6bLtf//9NwPAjhw5ItvWuHFj5urqyrKzs2Xbzp8/zwDIxSxPx44dmY+PD0tJSWEpKSnswYMHbObMmQwA69OnD2OMsVmzZjEA7NKlS7L3ZWdnM09PT+bh4cHEYjFjrPg65PF4LCsrizHG2M8//8zc3d1Z69at2dy5cxljxdeTpaWl3N+7a9eurHHjxiw/P1/uPLZr1455e3vLtknvqw4dOrCioqJKPxtjjAFg06ZNk9um6OeR/g29vLzKvGYUkZaWxuzt7VlgYGCp19auXcssLCxYcnIyY6z4b1HZdS41duzYMv+Peffx7udetWoVA8B27twp21ZYWMgCAgKYqamp7G8m/cznzp2TO570mty2bVupHObNmye3r/Se3rdvn0KfhZB3UTM3ISWsW7cOp0+fxunTp7Fz50507twZH3zwAQ4ePCi3n5GRkezfr169QmZmJgIDAxEREaHS8Q8ePAiJRIIhQ4YgNTVV9nB0dIS3tzfOnTsnt79AIMD48ePltnG5XIwcORKHDx9Gdna2bPuuXbvQrl07eHp6qpSjtHbq3dglWVpa4sWLF2U28ZYkrVmUmjFjBgDgn3/+kW1793xLa487duyIx48fK9QMd+DAATRt2rRUDRYAuaZUABg/frxcTVZgYCAAlNnkWdLQoUNhZWVV7nvj4+Nx9+5djBkzRm5kb8eOHatU0/Xw4UPY2dnBzs4ODRs2xJo1a9C7d29s3boVQPG5a926NTp06CB7j6mpKSZPnownT57g/v37svzEYjGuXLkCoLgGMjAwEIGBgbh06RIAIDIyEhkZGbLPkp6ejrNnz2LIkCHIzs6WXaNpaWno0aMHYmJi8PLlS7l8J02aBB6Pp/DnK0nRzyM1duxYuWtGURKJBCNHjkRGRgbWrFkj91paWhq+/vprfPXVV7JWhKoSCoWy/19KPkr6559/4OjoiOHDh8u28fl8zJw5Ezk5Obhw4YJSOQDAlClT5J5Lax5PnjyJvLw8peOS2omauQkpoXXr1nIDcIYPH47mzZtj+vTpeO+992SFjKNHj+Lbb7/FrVu3UFBQINu/ZMGkqmJiYsAYg7e3d5mvlxxY4eLiUmYT3pgxY7B06VIcOnQIY8aMQVRUFMLDw7Fx40aV8gMg6zdnZmZW7j5z587Fv//+i9atW6NevXoIDg7GiBEj0L59+1L7lvysdevWBZfLletDevnyZSxcuBChoaGlvuwyMzMrbYZ79OgRBg4cWNlHAwC4ubnJPZcWDl+9eqXye58+fQoAqFevXqn31qtXT+EfIx4eHtiyZQs4HA6EQiG8vb1hb28ve/3p06do06ZNqfc1bNhQ9nqjRo3QokULGBsb49KlS+jRowcuXbqExYsXw9HREWvWrEF+fr6sUCktyMXGxoIxhq+++gpfffVVmfklJyfLNdur+gNG0c+j6vFmzJiBEydOYMeOHWjatKnca19++SWsra1lP3aUwePx0K1bN4X2ffr0Kby9vUsNHHr3MyvDwMCgVL9VT09PzJ49GytWrMCuXbsQGBiIvn37YtSoUdTETSpFhUlCKsHlctG5c2esXr0aMTEx8PPzw6VLl9C3b18EBQVh/fr1cHJyAp/Px7Zt2+QGmChDIpGAw+Hg+PHjZdbklJynrrzaF19fX/j7+2Pnzp0YM2YMdu7cCUNDQwwZMkSl/IDimiqg7AKRVMOGDREVFYWjR4/ixIkTOHDgANavX4+vv/663OlWpEoWyB89eoSuXbvCx8cHK1asQJ06dWBoaIh//vkHK1euVPsUPeXVoDHGNPreqjAxMVG4UFIRPp+PNm3a4OLFi4iNjUViYiICAwPh4OAAkUiEsLAwXLp0CT4+PrLaOOn5njNnDnr06FFm3JLXhjK1hKpQ5niLFy/G+vXrsWTJEowePVrutZiYGGzevBmrVq1CfHy8bHt+fj5EIhGePHkCc3NzWFtbq5x7VZX3A1YsFpe5XSAQlDmy/aeffsK4cePw999/49SpU5g5c6asH3N5g6YIAagwSYhCioqKALytkTtw4ACEQiFOnjwJgUAg22/btm2l3lvef/Tlba9bty4YY/D09Cx3cIuixowZg9mzZyMhIQG7d+9G79695ZpglfX777+Dw+Gge/fuFe5nYmKCoUOHYujQoSgsLMSAAQPw3XffYf78+RAKhbL9YmJi5GqSYmNjIZFIZCObjxw5goKCAhw+fFiu5q9kkz9Q8XmVFoK1STpyuOTo8PK2qXKcqKioUtsfPnwolwdQ3NS9dOlS/Pvvv7C1tYWPjw84HI7sh9OlS5fkBnJ5eXkBKC6IqqNAq4iqfB5lrFu3DosWLcKsWbMwd+7cUq+/fPkSEokEM2fOxMyZM0u97unpiY8//litI7zd3d1x584dSCQSucJfyc8svadLLoCgTM1l48aN0bhxY3z55Ze4cuUK2rdvj40bN+Lbb79V8lOQ2oD6TBJSCZFIhFOnTsHQ0FDWvMTj8cDhcOR++T958qTMlW5MTEzKXOVGOq9bydcGDBgAHo+HxYsXl6rNYowhLS1N4dyHDx8ODoeDjz/+GI8fPy41Il0ZS5YswalTpzB06NBym+IBlMrT0NAQvr6+YIyVmrJo3bp1cs+lfdV69uwJ4G1t37vnIzMzs8zCe3nne+DAgbh9+zYOHTpU6jV11xpWxNnZGY0aNcKOHTvkptm5cOEC7t69q7bj9OrVC9euXUNoaKhsW25uLjZv3gwPDw/4+vrKtgcGBqKgoACrVq1Chw4dZAXywMBA/P7774iPj5f1lwQAe3t7dOrUCZs2bUJCQkKpY0unJlKnqnyeqtq7dy9mzpyJkSNHYsWKFWXuI52+qeTDz88Pbm5uOHToECZOnKh0DmXp1asXEhMT5eZzLSoqwpo1a2BqaoqOHTsCKC5U8ng8uVH5QPEE/orKysqS/WiWaty4Mbhcrlw3HkLKQjWThJRw/Phx2S//5ORk7N69GzExMZg3b55sxZfevXtjxYoVCAkJwYgRI5CcnIx169ahXr16uHPnjlw8f39//Pvvv1ixYgWcnZ3h6emJNm3awN/fHwCwYMECDBs2DHw+H3369EHdunXx7bffYv78+Xjy5An69+8PMzMzxMXF4dChQ5g8ebLCK4PY2dkhJCQE+/btg6WlpWyaF0UUFRVh586dAIqb8p4+fYrDhw/jzp076Ny5MzZv3lzh+4ODg+Ho6Ij27dvDwcEBDx48wNq1a9G7d+9SfS3j4uLQt29fhISEIDQ0FDt37sSIESNkfdaCg4NhaGiIPn364MMPP0ROTg62bNkCe3v7UoUZf39/bNiwAd9++y3q1asHe3t7dOnSBZ999hn279+PwYMHY8KECfD390d6ejoOHz6MjRs3luofp0nff/89+vXrh/bt22P8+PF49eoV1q5di0aNGskVMFUxb948/PHHH+jZsydmzpwJa2trbN++HXFxcThw4IBcTVdAQAAMDAwQFRUlm8IKKJ6qRzqX57uFSaD4B0CHDh3QuHFjTJo0CV5eXkhKSkJoaChevHiB27dvq+VzKPN5quLatWsYM2YMbGxs0LVrV+zatUvu9Xbt2sHLywu2tralVrECIKuJLOs1VU2ePBmbNm3CuHHjEB4eDg8PD+zfvx+XL1/GqlWrZPeRhYUFBg8ejDVr1oDD4aBu3bo4evQokpOTFT7W2bNnMX36dAwePBj169dHUVERfv/9d/B4PIX7GpNaTFvDyAnRNWVNDSQUClmzZs3Yhg0bZNPHSP3666/M29ubCQQC5uPjw7Zt2yab6uZdDx8+ZEFBQczIyIgBkJsm6JtvvmEuLi6My+WWmibowIEDrEOHDszExISZmJgwHx8fNm3aNBYVFSXbR5FpSf78808GgE2ePFnhc1FyChNjY2Pm4eHBBg4cyPbv3y+bhuVdJacG2rRpEwsKCmI2NjZMIBCwunXrss8++4xlZmbK9pGer/v377NBgwYxMzMzZmVlxaZPn85ev34tF//w4cOsSZMmTCgUMg8PD7Z06VK2devWUuctMTGR9e7dm5mZmTEAcjmlpaWx6dOnMxcXF2ZoaMhcXV3Z2LFjWWpqKmPs7RQrJadHKW+KlbKmBvrxxx9LnRsAbOHChXLb9uzZw3x8fJhAIGCNGjVihw8fZgMHDmQ+Pj6l3l+SotPRPHr0iA0aNIhZWloyoVDIWrduzY4ePVrmvq1atWIAWFhYmGzbixcvGABWp06dcuOPGTOGOTo6Mj6fz1xcXNh7773H9u/fL9tHel9dv3690nylUMbUQIp+nvL+huUpb0ow6ePdv3lZqjo1UEVTbpX1uZOSktj48eOZra0tMzQ0ZI0bNy4zp5SUFDZw4EBmbGzMrKys2IcffsgiIyPLvG7LyuHx48dswoQJrG7dukwoFDJra2vWuXNn9u+//yr02UjtxmGsGtt3CCHV7u+//0b//v1x8eLFUrVL2rZo0SIsXrwYKSkppSaHro2aNWsGOzu7MqeJIYQQXUV9Jgmp4bZs2QIvLy+5+fmIdolEolL9086fP4/bt2+XWpKSEEJ0HfWZJKSG2rNnD+7cuYNjx45h9erVKs9/SdTn5cuX6NatG0aNGgVnZ2c8fPgQGzduhKOjIz766CNtp0cIIVVChUlCaqjhw4fD1NQUEydOxNSpU7WdDnmHlZUV/P398csvvyAlJQUmJibo3bs3lixZAhsbG22nRwghVUJ9JgkhhBBCiNKozyQhhBBCCFEaFSYJIYQQQojSqM/kOyQSCeLj42FmZkaDFQghhBBSqzHGkJ2dDWdn5woXBqDC5Dvi4+NRp04dbadBCCGEEKIznj9/DldX13Jfp8LkO6RLUz1//hzm5uayNZmDg4PB5/PVeiyKTbEpNsXW9dj6mDPFptgUW32ysrJQp06dUkvglkSFyXdIm7bNzc1lhUljY2OYm5tr5GKg2BSbYlNsXY6tjzlTbIpNsdWvsq5/NACHEEIIIYQojQqThBBCiJaJJQxhcekIT+UgLC4dYglNAU30BzVzE0IIIVp0IjIBi4/cR0JmPgAedsTcgJOFEAv7+CKkkZO20yOkUlQzSQghhGjJicgETNkZ8aYg+VZiZj6m7IzAicgELWVGiOKoMEkIIYRogVjCsPjIfZTVoC3dtvjIfWryJjqPCpOEEEKIFlyLSy9VI/kuBiAhMx/X4tKrLylClECFSUIIIUQLkrPLL0gqsx8h2kKFSUIIIUQL7M2Eat2PEG2hwiQhhBCiBa09reFkIURF00ELDLjwdTavtpwIUQYVJgkhhBAt4HE5WNjHt8J9CookGPVLGFKyC6opK0KqjgqThBBCiJaENHLC0FZ1Sm13shBibogPrE0McfdlJgZuuIInqblayJCQytGk5YQQQogWPUjMBgCMbF0HvFdPEBzYBgH17MHjctDDzwFjt13Ds/Q8DNxwBdvGt0ITV0vtJkxICXpbM7lkyRJwOBzMmjVLti0/Px/Tpk2DjY0NTE1NMXDgQCQlJWkvSUIIIaQCsck5uP08AwZcDmZ09oK/LUMbT2vwuMU9Kb3sTHFgSjv4OZsjLbcQwzZfxfmoZC1nTYg8vSxMXr9+HZs2bUKTJk3ktn/yySc4cuQI9u3bhwsXLiA+Ph4DBgzQUpaEEEJIxQ5EvAAAdGpgBxtTQZn72JsJsffDAAR62yKvUIwPtt/AgfAX1ZkmIRXSu8JkTk4ORo4ciS1btsDKykq2PTMzE7/++itWrFiBLl26wN/fH9u2bcOVK1dw9epVLWZMCCGElCaWMByKeAkAGNjCtcJ9TQUG+HVsK/Rv5owiCcOn+25j/flYMEar4xDt07s+k9OmTUPv3r3RrVs3fPvtt7Lt4eHhEIlE6Natm2ybj48P3NzcEBoairZt25aKVVBQgIKCtyPksrKyAAAikUj2kD5XN4pNsSk2xdb12PqYsz7FvhSbisSsfFgYGSCwnnWlsTkAlr7vBxsTPn69/BTLTkQh4VUeFvTykTWLV0feFLvmxi7vWJXhMD36WbNnzx589913uH79OoRCITp16oRmzZph1apV2L17N8aPHy9XOASA1q1bo3Pnzli6dGmpeIsWLcLixYtLbd+9ezeMjY019jkIIYSQHTFchKdy0cFBgsFekiq993wCB4ee8AAAzawlGOUtAV/v2hqJrsvLy8OIESOQmZkJc/Py5zvVm5rJ58+f4+OPP8bp06chFKpnNYD58+dj9uzZsudZWVmoU6cOgoODYW5uDpFIhNOnT6N79+7g8/lqOaYUxabYFJti63psfcxZX2Jn5xdh7o3zACT4pH8AmrhaVCl2LwBBdxLw+cFI3ErnwjDJBhtGNIO5Udnv04dzQrG1H7skaYttZfSmMBkeHo7k5GS0aNFCtk0sFuPixYtYu3YtTp48icLCQmRkZMDS0lK2T1JSEhwdHcuMKRAIIBCU7vDM5/Pl/kAln6sTxabYFJti63psfcxZ12OfvpWAfJEE9exN0cLDBhzO22ZqRWO/7+8GBwtjTP49HNeevMKIX29g+4TWcLQov8JFl88Jxdad2O8eQxF6UynetWtX3L17F7du3ZI9WrZsiZEjR8r+zefzcebMGdl7oqKi8OzZMwQEBGgxc0IIIUTe/jejsQe2cJUrSFZVu3q2+PPDANibCRCVlI0B6y8jNjlbXWkSohC9qZk0MzNDo0aN5LaZmJjAxsZGtn3ixImYPXs2rK2tYW5ujhkzZiAgIKDMwTeEEEKINjxNy8X1J6/A5QDvN3dROZ6vszkOTGmHsduu4XFKLgZuCMWvY1uipYe1GrIlpHJ6UzOpiJUrV+K9997DwIEDERQUBEdHRxw8eFDbaRFCCCEyB95MB9TB267CJumqqGNtjP0ftUNzN0tkvhZh5C9hOHkvUS2xCamMXhcmz58/j1WrVsmeC4VCrFu3Dunp6cjNzcXBgwfL7S9JCCGEVDeJhOFghLSJW/VayXdZmxhi9wdt0dXHHgVFEkzZGY5dYU8hljCExaUjPJWDsLh0iCV6M4kL0RN608xNCCGE6LtrT9Lx4tVrmAkM0MNP/ZUdRoY8bBrtjy//isSe68+x4FAkfvjnAXIKxAB42BFzA04WQizs44uQRk5qPz6pnfS6ZpIQQgjRJ9KBN72bOEHI52nkGAY8Ln4Y0Bi9GhcXFosLkm8lZuZjys4InIhM0MjxSe1DhUlCCCGkGuQVFuH43eIC3ED/ipdPVJWEATefvSrzNWkj9+Ij96nJm6gFFSYJIYSQanAiMhG5hWK42xijpbuVRo91LS4dCZn55b7OACRk5uNaXLpG8yC1AxUmCSGEkGpwIEI9c0sqIjm7/IKkMvsRUhEqTBJCCCEa9jLjNa48SgOgnrklK2NvptiUQ4ruR0hFqDBJCCGEaNihiBdgDGjrZY061sYaP15rT2s4WQhRUf0nB4BYLNF4LqTmo8IkIYQQokGMMdlE5YP861TLMXlcDhb28QWAUgVK6XMGYPz26zh8O75aciI1FxUmCSGEEA2KeJaBuNRcGBvy0LNR9S2kEdLICRtGtSi1yo6jhRA/D2uG3o2dIBIzzPzjJn659Lja8iI1D01aTghRq3dX27CJS0dAPXvwuOoZbKDJ2IRoinTgTUgjR5gIqvdrN6SRE7r7OiI0NhmnLoUhOLCN7L55r4kz7MwE+O3KE3x77AGSsvIxv2dDcOmeIlVEhUlCiNqciEzA4iP330xJot7VNjQZmxBNyReJceRNM/KgFpqdW7I8PC4HbTytkfaAoY2ntewHGPdNU7ijhRBLjj/ElktxSM4uwI+DmsLQgBouieLoaiGEqMWJyARM2RlRam47day2ocnYhGjS6ftJyM4vgoulEdp62Wg7nVI4HA4+6lgXK4Y0hQGXg79vxWPCb9eRnS/SdmpEj1DNJCFEZWIJw+Ij91HWWhrSbV/+FQlnS6MqN0uLJQxf/hVZbmwOilfy6O7rSE3eROdIm7gHtHDR6ebjAS1cYWMqwJSd4fgvNhXDNl/FtvGtaOogohAqTBJCVFbZahsAkJpTiL5rL6v92O+u5BFQV/dqfkjtlZyVj4vRKQCKC2u6rmN9O+yZ3Bbjt13HvfgsDNxwBdvHt4aXnam2UyM6jgqThBCVKbqKhrmRAYz4vCrFfi0SI+t1kdpyIKS6HLr5EhIG+LtbwdPWRNvpKKSJqyUOTGmHsduu4WlaHgZtDMWvY1uiuZtml38k+o0Kk4QQlSnaFLZpVMsq1x6GPkrD8C1X1ZYDIdWheG7Jt8sn6hMPWxMcmNIOE367jjsvMjFiSxjWjWyOLj4O2k6N6CgagEMIUZl0tY3ycAA4WQjR2tNa6djl9TZTJTYhmhL5MgvRSTkQGHDRu4n+zTZgayrAH5PaIqi+HV6LxJi0Ixx/3niu7bSIjqLCJCFEZTwuB1+/51vma9JC4MI+vkoNkFFkJQ9lYxOiKdJayWA/R1gY8bWcjXJMBAb4dWxLDGjhArGE4fP9d7DmTAwYK2s4HKnNqDBJCFELe3MBgNIFPkcLITaMaqHSXJAVreShamxC1K2wSIK/bxUvnziwhYuWs1ENn8fFT4ObYkqnugCAn05H46u/IyGWUIGSvEV9JgkharE/vPjL8/3mLhjQ3KnUahuqkq7kcTk6CZN23ECBhIOfBjdFu3q2KscmRJ3OPkzGqzwR7M0ECPS203Y6KuNwOJgb4gMHMwEWH72PnVefISW7AKuHNQefx6VVqQgVJgkhqssXiXH0zptVPlq6opWbRanVNtSBx+UgoK4NGlsz3Ejl4L/YVCpMEp0jbeJ+v7lLjSpYjWvvCTszIT7Zewsn7yWh98+XkFNQhKSsAtCqVLUbNXMTQlQmt8qHp+bnevSxLG5iu/BmDj9CdEVaTgHOPUwGAAz0169R3Iro3cQJ2ye0hpDPxaOU3DcFybdoVaraiQqThBCV7Q+v3lU+pIXJe/FZSMkuqGRvQqrP4dvxKJIwNHG1QH0HM22noxGtPa1hKii7YVPak3LxkfvUr7IWocIkIUQlSVn5uBRTvat8mPEBP+fiL2rpsQnRBdIfVvo2t2RVXItLR2pOYbmvv7sqFakdqDBJCFHJX29W+WhZzat8BL7pK3mRmrqJjniYmIV78Vng8zjo29RZ2+lojKKrTdGqVLUHFSYJIUqTW+WjmvuHBXoX9828GJMKCTWnER1w4E2tZFcfB1iZGGo5G81RdLUpWpWq9qDCJCFEaXdfZmptlY/mdSxhKjBAem4h7sVnVeuxCSmpSCzBoZvFMxrUxIE376psVSoAMBXw0MqD1vOuLagwSQhRmrQmJtjPEebC6l3lg8/jytb5vkj9JomWXYpJRWpOAWxMDNGpgf7PLVmRilalksopEGPewbsQiSXVlxjRGipMEkKUUlgkweHbb2pitLTKR8f6xV/aF6KoMEm0Szrwpm8zZ/B5Nf+rtbxVqZwshBjVxg1cTvE5mbTjBvIKi7SUJakuNGk5IUQp0lU+HMy1t8qHtDAZ8ewVsvJF1V47SggAZOaJcPp+EoCaPYq7JOmqVKGxyaVWvOrUwB7T/4jA+agUDN98FVvHtYKNqUDbKRMN0ZufTz/88ANatWoFMzMz2Nvbo3///oiKipLbJz8/H9OmTYONjQ1MTU0xcOBAJCUlaSljQmo26cCb/lpc5aOOtTG8bE1QJGG4EpumlRwIOXInHoViCXwczeDnbK7tdKoVj8tBG09r+NvKr3jVzdcBuye1hZUxH7dfZGLghit4lpan5WyJpuhNYfLChQuYNm0arl69itOnT0MkEiE4OBi5ubmyfT755BMcOXIE+/btw4ULFxAfH48BAwZoMWtCaqZ3V/kYpOWamKA3tZPUb5Joi/SH1SB/V3A4NWf5RFW1cLPC/int4GJphCdpeRiw4TIiX2ZqOy2iAXpTmDxx4gTGjRsHPz8/NG3aFL/99huePXuG8PBwAEBmZiZ+/fVXrFixAl26dIG/vz+2bduGK1eu4OrVq1rOnpCa5e9bb1f58NbyKh9B9d/ON8kYTRFEqtejlBzcfJYBHpeDfs2003dYl9W1M8XBqe3Q0MkcqTmFGLoplBYaqIGq3GfywYMH2LNnDy5duoSnT58iLy8PdnZ2aN68OXr06IGBAwdCINB8v4jMzOJfN9bW1gCA8PBwiEQidOvWTbaPj48P3NzcEBoairZt25aKUVBQgIKCt0uxZWUVTy8iEolkD+lzdaPYFFufY+8Pfw4A6N/Uqcz3V2fe/nXMwedx8OLVa0QnZMLLTvmJ03X1fGsrtj7mXN2x911/BgAIrGcDSyFXpWPWlHNSkrURD7sm+GPaH7cR+jgd47ddx5IBjdCvaeXTidXUc6Krscs7VmU4TMGf8hEREfj888/x33//oX379mjdujWcnZ1hZGSE9PR0REZG4tKlS8jKysLnn3+OWbNmaaxQKZFI0LdvX2RkZOC///4DAOzevRvjx4+XKxwCQOvWrdG5c2csXbq0VJxFixZh8eLFpbbv3r0bxsbGGsmdEH33MhdYdscAPA7DN/5imOjAmJd197mIzuRigIcYHZ2odpJUDwkDFkfwkFHIwfj6YjSzoWuvIkUSYFcsFxFpxY2i/dzF6OzEQD0DdFdeXh5GjBiBzMxMmJuX3x9Y4ZrJgQMHYs6cOdi/fz8sLS3L3S80NBSrV6/GTz/9hC+++KJKSStq2rRpiIyMlBUklTV//nzMnj1b9jwrKwt16tRBcHAwzM3NIRKJcPr0aXTv3h18vnq/MSk2xdbX2D8cjwLwFF0bOmBwv2Zqja2IsmLHmz/B0pPRSOM7oFevFmqNrS76GFsfc67O2NeeZSHjajgsjAzw6fBuEBio1nOsJpyTymK/J2FYcjIa2648xd9PebBydsP8kAbgljOIT1fyri2xS5K22FZG4cJkdHS0QkkHBAQgICBAY9Wv06dPx9GjR3Hx4kW4ur7t+O/o6IjCwkJkZGTIFXaTkpLg6OhYZiyBQFBm7Smfz5f7rCWfqxPFptj6FLtILMHhO4kAgMEt3Sp9X3Xl3bmhA5aejEbYk3SIwYWQz1NbbHXTx9j6mHN1xP77dvG90KepM0yN1NcSp8/nRJHYC/s2grOlMb775wF+C32G1FwRfhrSFAKD8u9bXci7NsV+9xiKUPhnFJ/PR1xcnNoTUBRjDNOnT8ehQ4dw9uxZeHp6yr3u7+8PPp+PM2fOyLZFRUXh2bNnCAgIUGsuhNRWF2NSdHKVjwYOZnAwFyBfJMH1J+naTofUAtn5RTgemQCgds0tqS6Tgrywamgz8HkcHL2TgHFbryMrX/N9AIlmVKlOvm7duvD09MSECRPw+++/48WLF5rKq5Rp06Zh586d2L17N8zMzJCYmIjExES8fv0aAGBhYYGJEydi9uzZOHfuHMLDwzF+/HgEBASUOfiGEFJ1B8JfAtC9VT44HA6C3kycfjGaRooSzTtxLwn5Igm87EzQrI6lttPRS/2bu2DbuNYwMeQh9HEahmwMRVJWvrbTIkqo0rfB2bNnMXbsWDx+/BiTJ0+Gu7s7vL298eGHH2LPnj0anSB8w4YNyMzMRKdOneDk5CR77N27V7bPypUr8d5772HgwIEICgqCo6MjDh48qLGcCKlN3l3lY5C/7tXEyOabjE7VciakNjh0q3gpUZpbUjUdvG2x98MA2JoK8DAxGwPWX8GjlBxtp0WqqEpTA3Xq1AmdOnUCULzazJUrV3D+/HmcP38e27dvh0gkgo+PD+7du6f2RBUZdC4UCrFu3TqsW7dO7ccnpLY7LLfKh4W20ymlQz1bcDlAVFI2EjJfw8nCSNspkRpGLGEIi0vH+XgOrj99BQB4vznNLamqRi4WODilHcZuu4a41FwM3HAFv45thWZ1LBEWl47wVA5s4tJlSzUS3aP02txCoRBdunRBhw4d0LlzZxw/fhybNm3Cw4cP1ZkfIURHHAh/u8qHLrIyMUQTV0vcep6BS9GpGNKqjrZTIjXIicgELD5yHwmZ+QCKB4oYGnBx+3kG/XBRAzcbY+z/KAATfruO2y8yMWxzKEwFBniVJwLAw46YG3CyEGJhH1+ENKp8fkpSvarc6amwsBAXL17E4sWL0blzZ1haWuKjjz7Cq1evsHbt2ioN0iGE6IdHKTm49Vz3V/no+Kap+wL1myRqdCIyAVN2RrwpSL5VWCTBlJ0ROPFmIA5RjY2pAH9MbotGzuYQidmbguRbiZn5dL51VJVqJrt06YKwsDB4enqiY8eO+PDDD7F79244OdGvBEJqMmmtZMf6drAz0/wKV8oKqm+H1Wdi8F9sKsQSRk1iRGViCcPiI/dRUUerxUfuo7uvI11vaiAw4CE1p7DM1xgADuh866Iq1UxeunQJNjY26NKlC7p27Yru3btTQZKQGk4sYTgYUTyKW1ebuKWaulrAXGiAzNci3H6Roe10SA1wLS69VI3kuxiAhMx8XIujKanU4VpcOhIrGNFN51s3VakwmZGRgc2bN8PY2BhLly6Fs7MzGjdujOnTp2P//v1ISaGmJUJqmiuPUpGYlQ8LIz66NrTXdjoVMuBxEfhmiqALUfT/EVFdcrZiU9Uouh+pGJ1v/VSlwqSJiQlCQkKwZMkShIWFITU1FcuWLYOxsTGWLVsGV1dXNGrUSFO5EkK0QNrE3aepU4UrVOiKoPq2AIonWCdEVfZmQrXuRypG51s/qTTrsImJCaytrWFtbQ0rKysYGBjgwYMH6sqNEKJl2fkinLhXvGScvqzyIZ1v8vbzDGTkld33ihBFtfa0hoN5+f2EOQCcLIRo7WldfUnVYK09reFkIURFvSHpfOueKhUmJRIJrl27hmXLlqFnz56wtLREu3btsH79ejg6OmLdunV4/PixpnIlhFSz43cT9W6VDycLI9R3MIWEAf/F0gTmRDVcDuBgXnYtmLTAs7CPLw0GURMel4OFfXwBoNwCZacGdnS+dUyVRnNbWloiNzcXjo6O6Ny5M1auXIlOnTqhbt26msqPEKJF+9+ZW1KfVvnoWN8O0Uk5uBCVgveaOGs7HaLHtl1+gjsvMmHA5cDSmC830tiR5j3UiJBGTtgwqsU783oWMxcaICu/CAciXmJUW3edXDyhtqpSYfLHH39E586dUb9+fU3lQwjREc/S8nDtSTo4HP1b5SOovh22XIrDxZgUMMb0qiBMdMedFxn44Xhx162v3vPFqLbuCI1NxqlLYQgObEMrsmhQSCMndPd1lDvfbeva4cPfw3HmYTJm7L6JwzM6wFSg9NorRI2q1Mz94Ycfon79+jh37ly5+9BShoTUDAciimslO9Sz1bsVPlp5WEPI5yIpqwDRSbTOL6m6rHwRpu++CZGYIcTPEWMC3MHjctDG0xr+tgxtPK2pIKlhJc+3AY+L5YObwslCiMepufjy0F2FllommqfUAJwBAwYgPDy81PbVq1dj/vz5KidFCNEuiYTh4M3iwqS+DLx5l5DPQ1svGwDAhehkLWdD9A1jDPMP3MWz9Dy4Whlh6aAmVLutI6xMDPHz8ObgcTn461Y89t14oe2UCJQsTP7444/o2bOn3DrcP/30E77++mscO3ZMbckRQrTj2pN0PE9/DVOBAXr4OWo7HaUEvZlv8mI0DcIhVbMr7BmO3U2AAZeDtSNawMKIr+2UyDtaeVhjdvfi7nZfH45EdFK2ljMiShUmP/jgA8yZMwfdunXDkydPsHTpUvzvf//DP//8g8DAQHXnSAipZtK5JXs3doKRoe7PLVmWjg2KC5PX4tKRV1ik5WyIvrgXn4n/Hb0PAJjX00dvZjGobaZ0rItAb1vkiySYtiuC7nEtU3qeyc8//xwjR45Ey5YtsWTJEpw8eRLt27dXZ26EEC3IKyzCP3cTAAADdXz5xIp42ZrAxdIIhWIJwh7T0mukcjkFRZix+yYKiyTo6mOPiR08tZ0SKQeXy8HKoc1gZyZATHIOFh2+p+2UajWFh0H9/PPPpba5uLjA2NgYQUFBuHbtGq5duwYAmDlzpvoyJIRUq5P3EpFbKIabtTFaeVhpOx2lcTgcBNW3wx/XnuFCdAo6++j2UpBEuxhj+PLQXTxOzYWThRDLBzelfpI6ztZUgNXDmmHUL2H488YLBNS1wfvN9fcHsD5TuDC5cuXKMrfzeDxcvnwZly9fBlD8HzgVJgnRXwfCXwIABrRw0fsv045vCpMXo2lpRVKxfTde4K9b8eBxOVgzvDmsTAy1nRJRQLu6tpjZ1Rur/o3BgkORaOJqibp2ptpOq9ZRuDAZFxenyTwIITogPuM1Lj8qHrCij6O4S2pXzwY8LgePU3PxPD0PdayNtZ0S0UHRSdn4+nAkAODT4Ppo6UFL9emTGV28EfY4HaGP0zBtVwT+mtYeQr5+9vXWVyqtzU0IqVkO3XwJxoA2ntY1ouBlLuTD3624qf4C1U6SMuQVFmHargjkiyQIqm+Hj4JoRTd9w+NysHpYM9iYGOJhYja+eTOAilQfhQuTS5YsQV5enkL7hoWF0RRBhOgZxphsFLc+D7wpKai+LQBQUzcp08K/7yEmOQf2ZgKsGNIUXJqIXC/ZmwuxcmgzcDjFUzsdvROv7ZRqFYULk/fv34e7uzumTp2K48ePIyXl7X/MRUVFuHPnDtavX4927dph6NChMDMz00jChBDNuPk8A49Tc2HE56FX45qz1nDH+sUDb648SoNILNFyNkSXHIx4gX3hL8DlAKuHNYetqUDbKREVBNW3w9ROxTXL8w7cxdO0XC1nVHsoXJjcsWMH/v33X4hEIowYMQKOjo4wNDSEmZkZBAIBmjdvjq1bt2LMmDF4+PAhgoKCNJk3IUTN9r+plQxp5Fij1rv1czaHjYkhcgqKEPH0lbbTITriUUoOvvyruJ/kzK7eCKhro+WMiDp80q0+WnlYIaegCNN330RBkVjbKdUKVeoz2bRpU2zZsgVpaWkIDw/Hvn37sGXLFpw8eRJJSUm4ceMGPvroIwiFQk3lSwjRgHyRGEdvFzcLDapBTdxA8Xx0HbzfNHXHUFM3Kb7eiye6FiPAywYzunhrOyWiJgY8Ln4e3hxWxnzcfZmJH/55WPmbiMqUGoDD5XLRrFkz9OvXD8OGDUO3bt1ga2ur7twIIdXk3wdJyMovgrOFEAFeNa+GpmP94tVwaBAOAYBvjt7Hw8Rs2JoaYvWwZuBRP8kaxcnCCD8NaQoA+O3KE5y8l6jljGo+Gs1NCJENvHm/hUuNHIAQ+Gad7siXWUjNKdByNkSbjt6Jx66wZ+BwgJVDm8HenFrSaqIuPg6YFFi8gtFn+27jebpiA4iJcqgwSUgtl5xdgIsxxXNLDqgBc0uWxc5MAD9ncwDAJWrqrrWepuVi3oG7AICpnerKfmSQmumzHsVrq2flF2HGHzdpAJ4GUWGSkFru8O0EiCUMzd1q9soRQW+aui9Gp2o5E6INBUViTNsdgZyCIrTysMIn3eprOyWiYYYGXKwZ3hzmQgPcep6BH09GaTulGosKk4TUYowBh27WzIE3JQW9qYW6FJMCiYRpORtS3X745yEiX2bBypiPn4c3hwGPvv5qgzrWxlg2qLj/5OaLj3H2YZKWM6qZqnw3iUQiGBgYIDIyUhP5EEKq0YtcIDo5B4YGXLzXxFnb6WiUv7sVTAx5SM0pxP2ELG2nQ6rRichE/HblCQDgpyFN4WRhpN2ESLUKaeSIce08AACf/nkbCZmvtZtQDVTlwiSfz4ebmxvEYpq7iRB9dy2l+L+A7r4OsDDiazkbzTI04CKgbvGsEzSqu/Z4np6Hz/ffBgBMDvJCFx8HLWdEtGF+Lx80cjHHqzwRZv5xE0XUf1KtlKrnX7BgAb744gukp6erOx+1WLduHTw8PCAUCtGmTRtcu3ZN2ykRLRJLGMLi0hGeykFYXDrE1MQJsYThv9hUhCUXj9we0MxFyxlVj44NaIogRWnyvqmu2JdjUzF9dwSy8ovQrI4lPuvRQG3HIfpFYMDD2uEtYCowwPUnr7DidLTeX9+69H2m1DIXa9euRWxsLJydneHu7g4TExO51yMiItSSnDL27t2L2bNnY+PGjWjTpg1WrVqFHj16ICoqCvb29lrLi2jHicgELD5yHwmZ+QB42BFzA04WQizs44uQRjVnycCqkD8nxYXJBX9FQiSR1Phz0vFNv8mIp6+QnS+CmbBm18YqS5P3TfXGLv4uMuIXD8TgUz/JWs3D1gRLBjbG9N03sf78I6w/D+j39a0732dK3Vn9+/fHnDlzMH/+fIwYMQL9+vWTe2jTihUrMGnSJIwfPx6+vr7YuHEjjI2NsXXrVq3mRarficgETNkZ8ebGeysxMx9TdkbgRGSCljLTnvLOSVJW7TgnbjbG8LQ1QZGE4cqjNG2no5M0ed9oIzYAvBZJcC8+U+nYpOYwKGceXX29vnXl+0ypmsmFCxeqOw+1KCwsRHh4OObPny/bxuVy0a1bN4SGhmoxM1LdxBKGxUfuo6wGAIbi+rjFR+6ju69jrVn9gs5JsSBvW8Sl5uJidAp6+DlqOx2dUtk1AgCf77+DhMx8cDlVu0YkjGHl6ehqjw3UnmubVEx6fZdFX69vXfm/W6nCJABkZGRg//79ePToET777DNYW1sjIiICDg4OcHHRTv+r1NRUiMViODjId7B2cHDAw4el1+csKChAQcHb1TCysopHeIpEItlD+lzdKLZmY4fFpZdZQyHFACRk5iM0NhltPK1VOhadk9J0+Zy0q2uN7aFPcSEqGYWFheC88x+7LuddHbEru0YAICu/qNwvZFVpKnZtubYpdsXo+q46Rc87hzFW5d6bd+7cQbdu3WBhYYEnT54gKioKXl5e+PLLL/Hs2TPs2LGjygmrQ3x8PFxcXHDlyhUEBATItn/++ee4cOECwsLC5PZftGgRFi9eXCrO7t27YWxsrPF8ieaEp3KwI4ZX6X5jvMXwt9WNDsyaRuekWIEYmH+dBzHjYEGzItjTLDEyil4j7qYSWAuqFju9AHiaU3nPKk3GrunXNqkYXd9Vl5eXhxEjRiAzMxPm5ubl7qdUzeTs2bMxbtw4LFu2DGZmZrLtvXr1wogRI5QJqRa2trbg8XhISpKflDQpKQmOjqWbs+bPn4/Zs2fLnmdlZaFOnToIDg6Gubk5RCIRTp8+je7du4PPV29HfYqt2dg2cenYEXOj0v2CA9uopaaCzok8XT8nh1JvIPRxOrgujdCrrZtaY5dHH2Ireo18N6R1la+RsLh0jNqq3di14dqm2OWj67vqpC22lVGqMHn9+nVs2rSp1HYXFxckJiYqE1ItDA0N4e/vjzNnzqB///4AAIlEgjNnzmD69Oml9hcIBBAISv9E4PP5chdtyefqRLE1Ezugnj2cLITlNmlwADhaCBFQz15tfUz04ZzYmhoiNaewzNdr0znp1MAeoY/T8V9sGiYG1lVr7MrocmxN3jfS2ImZ+WX2/dLV2OXR5b8jxS6bvl6D2ri+pRQ950qN5hYIBGWWVqOjo2FnZ6dMSLWZPXs2tmzZgu3bt+PBgweYMmUKcnNzMX78eK3mRaoXj8vB1+/5lvma9FZb2Me3VnXG53E5sDcTlvlabTsn0nW6rz5OR0ERLcAgxeNy8EWvhmW+puo1wuNysLCPr1wsfYhNag59vQb14fpWqjDZt29f/O9//5N1zORwOHj27Bnmzp2LgQMHqjXBqho6dCiWL1+Or7/+Gs2aNcOtW7dw4sSJUoNySM3nbFl2ZzhbMwE2jGqh9Xm5qtuF6BTcT8gCjwvYmcrXyDtaCGvVOfFxNIO9mQCvRWLcePJK2+nolNSc4kGJJb+X1HGNhDRywoZRLeBoIf+jRtdjk5pDX69BXb++lWrm/umnnzBo0CDY29vj9evX6NixIxITExEQEIDvvvtO3TlW2fTp08ts1ia1y4GIFwCAvk2dMMTfBZ//cQ3xr7mYFOip9RuvuoklDN8fewAAGNfOE1/0aojQ2GScuhSG4MA2Gmke0WUcDgdB9e2wP/wFLkSnoH09W22npBMy80RYfSYGALC4nx88rY3Ufo2ENHJCd19HjVx/moxNag59vQZ1+fpWqjBpYWGB06dP47///sOdO3eQk5ODFi1aoFu3burOjxClFBSJ8feteADA4JZ10MbDEq3tGf56CvwXm4bJQaX7ydVkf954jqikbFgY8TGjSz3wuBy08bRG2gOGNp7WOvGfUXWTFiYvRqeU27Rb26w9F4OMPBG87U0xvJUbmESskWtEk9cfXdtEEfp6Derq9a1UYTI/Px9CoRAdOnRAhw4d1J0TISo7+yAZma9FcDQXol1dW0jERfCxZMBTIOxxGvJFYgj5lU8RURPkFhThp1PRAICZXb1haWyo5Yx0Q2A9W3A4wMPEbCRm5pdqPqptnqXlYfuVpwCAL3o3hAGPC5GE+pMSQiqnVJ9JS0tLBAUF4auvvsLZs2fx+vVrdedFiEqkTdzvt3CR/XJzNAIczQUoKJIgLC5dm+lVq00XHiE1pwDuNsYY3dZd2+noDCsTQzRxtQQAXIxJ0W4yOmDpiYcoFEsQ6G2LTvW1O5CSEKJflCpM/vvvvwgJCUFYWBj69u0LKysrdOjQAQsWLMDp06fVnSMhVZKaU4DzUcWFg4EtXGXbORwg0Lu4b9zF6NpReEjIfI3Nlx4DAOaF+MDQQKlbvsbq+OZ6uFBLrofyhD99hWN3E8DhAF/0aii3KhAhhFRGqW+WDh064IsvvsCpU6eQkZGBc+fOoV69eli2bBlCQkLUnSMhVfL3rXgUSRia1rFEPXtTudcC69kAqD2Fh+Uno5EvkqCVhxVCGtE61CV1bFBcA/dfTCrEktq5MgpjDN8eK17ibbC/Kxo6lb/KBSGElEXptbmjo6Nx/vx52aOgoADvvfceOnXqpMb0CKm6/eHFTdyD/F1Lvdaurg24HCA2OQcvM17DpZzpg2qCyJeZOHiz+Fws6O1LtU1laOpqCTOhATJfi3DnRQYaOZlW/qYa5tjdBNx8lgEjPg+fBjfQdjqEED2kVGHSxcUFr1+/RqdOndCpUyfMnTsXTZo0oS8ronX347PwICELhjwu+jQpPf2PhREfzd2sEP70FS5Gp2B4a7cyoug/xhi+O/YAjAF9mzqjWR1Lbaekkwx4XAR62+Kfu4m4EJ1S6wqTBUViLD3xEADwYUcvOJjX7kFIhBDlKNXMbWdnh7y8PCQmJiIxMRFJSUk0CIfoBOnAm26+9uWOWg7yLm7arMn9Js8+TEbo4zQYGnDxWQ+qbapIbbgeyrP9yhM8T38NB3MBJgd5aTsdQoieUqoweevWLSQmJmLevHkoKCjAF198AVtbW7Rr1w4LFixQd46EKEQkluDvWy8ByA+8KSmofvGgi/9iU1EkllRLbtVJJJbg+3+KJygf394DdayNtZyRbpMurXjreQYyX4u0nE31eZVbiDVnYwEAnwY3gLGh0r2eCCG1nNJDOy0tLdG3b1988cUXmD9/PgYNGoTr169jyZIl6syPVJFYwhAWl47wVA7C4tJr1aCCC1EpSM0phK2poayAUJYmrpawNOYjO78It55nVF+C1WTPtWd4lJILaxNDTOtcT9vp6DxnSyN425tCwoDtoU9rzb2z+kwMsvOL0NDJvMIfX4QQUhmlfooePHhQNvDm/v37sLa2RocOHfDTTz+hY8eO6s6RKOhEZAIWH7mPhMx8ADzsiLkBJwshFvbxrRXLB0qbuPs3cwGfV/7vJB6Xgw71bHH0TgIuRqegpYd1daWocVn5Iqz8t3g5vFndvGEu5Gs5I/3gZm2MmOQcrDn3GLXh3nmckoOdV4snKF/Qq6HOrKJBCNFPStVMfvTRR4iPj8fkyZNx8+ZNJCcn4+DBg5g5cyaaNm2q7hyJAk5EJmDKzog3Bcm3EjPzMWVnBE5EJmgps+qRkVeIMw+SAQADyxjFXVLHNzWXNW2KoPXnHiE9txBediY1dnCRup2ITMCZh8mlttfke2fJ8YcokjB0bmCHDt60LjkhRDVK1UwmJ5f+j5doj1jCsPjIfZTVKMcAcAAsPnIf3X0da2wNxJHb8SgUS+DrZK7QPHnSZvA7LzORnlsIaxP9X2LweXoetl6OAwB80bNhhbWzpJj03ilLTb13rj5Ow6n7SeBxObQmOSFELZTucS0Wi/HXX3/hwYPijv6+vr7o168feLzasd6xLrkWl16qRvJdDEBCZj6uxaUjoK5N9SVWjfZHvBl4o0CtJAA4mAvh42iGh4nZuBSTgn7NXDSZXrVYfioKhUUSBHjZoGtDe22noxdq270jkRRPGQUAw1rVgbeDmZYzIoTUBEpVXcTGxqJhw4YYM2YMDh48iIMHD2L06NHw8/PDo0eP1J0jqcTTtFyF9kvOLv9LU5/FJmfj9vMMGHA56NfMWeH3SZu6L0anaiq1anPreQb+vhUPDgdY0JuWw1OUovdETbl3Dt+Ox92XmTAVGOCT7vW1nQ4hpIZQqjA5c+ZM1K1bF8+fP0dERAQiIiLw7NkzeHp6YubMmerOkZTjeXoeFh+5h0WH7ym0v71ZzZyQeH94ca1kpwb2sDUVKPw+aVP3xZgUMKa/I3eLJygvbqp9v7kLGrlYaDkj/aHoPVET7p18kRjL3kxQPqVT3SrdK4QQUhGlmrkvXLiAq1evwtr67ShYGxsbLFmyBO3bt1dbcqRsEc9e4ZdLj3EiMhHS2UsMuBwUVTCViYO5AK09a86oZSmxhOHQTenyiVVrqm7pYQUjPg8p2QV4kJANX2f9XJP45L1EXH/yCkI+TVBeVa09reFkIURiZn6ZfY45ABwthDXi3vn1vzjEZ+bD2UKIiR08tZ0OIaQGUapmUiAQIDs7u9T2nJwcGBrq/0AGXSSWMBy/m4AB6y9jwPor+OducUEyqL4ddkxojTXDm4OD4i+/soiKGOJSFWsO1yeXY1ORlFUAS2M+OvtUrZ+gwIAn6wd3MUY/R3UXFkmw5HhxbdOkQC84WdTctcY1gcflYGEfXwDl3zsL+/jq/eCb1JwCbDhf3AXps5AGEPKpbzshRH2UKky+9957mDx5MsLCwsAYA2MMV69exUcffYS+ffuqO8daLbegCNsux6HT8nOYsisCEc8yYMjjYrC/K07OCsKOCa0RVN8OPRs7YcOoFnC0kG+OszcTwN5MgPS8QgzaeAXhT19p6ZNoxv7w4lrJvk2dITCo+hekbIqgKP0sTP5+9SmepOXB1lSADzvW1XY6eimkUdn3DgB89V7NmGdy5elo5BQUoYmrBfo11f/BZoQQ3aJUM/fPP/+MsWPHIiAgAHx+8aTIRUVF6Nu3L1avXq3WBGurxMx8/HblCXaHPUVWfhEAwNKYj9Ft3TE6wL3MPlwhjZzQ3dcRobHJOHUpDMGBbRBQzx6Zr0WY8Nt13HqegZG/XMWa4S3Q3dehuj+S2mXli3DyXiIAYJCCo7hLkvabvPE0HbkFRTAR6M+Scpl5Ivx8pniC8k+D68NUj3LXNSXvnfuFNrjxNAMXY1IwQc+bhGOSsrHn+nMAxROUc/W8lpUQonuU+vaxtLTE33//jdjYWNnUQA0bNkS9erR0myLeXfLQJi4dAfXsZc1o9+Iz8culOBy5HS/rA+lpa4IJHTwxqIUrjAwrrn3jcTlo42mNtAcMbTytweNyYG1iiN2T2mD67ps4+zAZH/5+A9+931jvJ7X+504CCook8LY3RWMlB5142BijjrURnqe/RuijNHTTo0L2mrMxyHwtQn0HUwxWsjBN3nr33hndxg89f76C81EpuBSTgkDv8pfn1HU/HH8IsYQh2NcBbbz0f3ojQojuqVJhUiKR4Mcff8Thw4dRWFiIrl27YuHChTAyon5aiipryUNHcyEG+rsg4mkGQh+nyfZt7WmNSYFe6Opjr3JtgrGhATaP9scXh+7izxsvMP/gXSRl5ePjrt56O42MdPnEgf6uSn8GDoeDjvXtsPPqM1yMSdGbwuTTtFxsD30CAPiiV0MY0ATlauVhY4LRAe7YdvkJvjv2AMdm2uplv8nLsak4+zAZBlwO5vX00XY6hJAaqkrfQN999x2++OILmJqawsXFBatXr8a0adM0lVuNU+6Sh1n5WHfuEUIfp4HH5aBvU2ccnt4ef34YgO6+DmprljLgcbF0YBPM7FJcg7zq3xh8ceguisQStcSvTk9Sc3H9yStwOcXT4agiyFv/llZceuIhRGKGQG9bdGpAE5RrwsddvWEuNMDDxGzsD3+u7XSqTCxh+PbNBOWj2rrDy85UyxkRQmqqKhUmd+zYgfXr1+PkyZP466+/cOTIEezatQsSif4VRqpbRUseSpkIeDg3pxN+Ht4cTVwtNZIHh8PB7OAG+LZ/I3A5wB/XnuOjnRF4XSjWyPE05eCbWslAbzs4mKs2B2C7erYw4HLwNC1P4QngtenGk3T8czcR3DcTlBPNsDQ2xMyu3gCAn05FI7egSMsZVc2BiBd4kJAFM6GB7HMQQogmVKkw+ezZM/Tq1Uv2vFu3buBwOIiPj1d7YjVNZcu2AUBugRgvX72ulnxGtXXHhlH+EBhw8e+DJIz85Spe5RZWy7FVJZEwHKji8okVMRUYwN/dCgBwUcdrJxl7W9s0pGUd+Djq59yY+mJ0gDvcrI2RnF2AzRcfazsdheUVFmH5ySgAwIwu9WrE2vOEEN1VpcJkUVERhEL5WiA+nw+RSKTWpGoiXVy2rYefI3Z+0AbmQgNEPMvAoI1X8OJVXrUdX1lhcel4mfEaZkIDBKupj6N0VLeuN3UfuZOAW88zYGzIw2xaDk/jBAY8WV/DzRcfIylLP5ZV3HIxDsnZBahjbYSx7Ty0nQ4hpIar0gAcxhjGjRsHgeDtMlz5+fn46KOPYGJiItt28OBB9WVYQ+jqsm2tPKxxYEo7jN16DY9ScjFg/RX8Nr61Tq8GIx14814TJ7VNvtyxvh1+PBmFK4/SUFgkgaGB7g1oyReJsfTNBOUfBtWFvYrN+0QxPRs5wt/dCuFPX2H5ySj8OLiptlOqUHJWPjZdLJ6gfG6Ij1LzrxJCSFVU6Rtz7NixsLe3h4WFhewxatQoODs7y20jpUmXbStvKA0HgJOWlm3zdjDDgant0MDBDMnZBRi6KRRXHqVWex6KyC0owj93EwAAA1uobzocXydz2JoaIq9QjBtP09UWV522X3mClxmv4WAuwKQg/Z77UJ9wOBxZ39T9ES9wLz5TyxlV7KdT0cgrFKO5myV6N9b/CdcJIbqvSjWT27Zt01QeNZ502bYpOyPAAeQG4kgLmNpcts3Jwgh/fhSASTtu4FpcOsZtvY4VQ5vivSbOWsmnPCciE5FXKIaHjbGsn6M6cLkcBHnb4eDNl7gYnYp2dW3VFlsd0nMLsfZcLABgTnADGBvSBOXVqYWbFd5r4oSjdxLw/T8PsHNiG52cUuthYjb+fDPy/MveDXUyR0JIzaN7bXk1WHnLtjlaCLFhVAutL9tmYcTHjgmt0bORIwrFEsz44ya2/hen1ZxKks0t2UL5uSXLo8v9Jteee4Ts/CL4OpmrtUaWKG5uiA8MeVxcjk3DeR1cfpMxYMmJaDAG9G7sBH/36m/lIITUTnpRmHzy5AkmTpwIT09PGBkZoW7duli4cCEKC+VHH9+5cweBgYEQCoWoU6cOli1bpqWMyxfSyAn/ze2CnRNaYoy3GDsntMR/c7tovSApJeTzsHZEC4wNcAdjwP+O3scP/zyARMLkVu4Ji0uHWFLRREfq9zLjtWxS9/dbqH994UBvW3A4wIOErGodCFUe6fk+G8/Brmtva5toOTztqGNtjPHtPQAA3/3zQGfmZ5VeJ0eecXH5URr4XA7mhtAE5YSQ6qMXbWUPHz6ERCLBpk2bUK9ePURGRmLSpEnIzc3F8uXLAQBZWVkIDg5Gt27dsHHjRty9excTJkyApaUlJk+erOVPIK+sJQ91CY/LwaK+fnCwEGLZiShsuvgYN59n4FlaHhKz3q7c42QhxMI+vtVWED4U8QKMAQFeNnC1MlZ7fBtTARo5W+Duy0xcik5Vy7RDyiq5UhIACAy4yMqnmRO0aWrnevjzxnPEJudgz/XnGNXWXav5yF8nxXUDhgZc3E/IhJuN+u8RQggpi17UTIaEhGDbtm0IDg6Gl5cX+vbtizlz5siNGt+1axcKCwuxdetW+Pn5YdiwYZg5cyZWrFihxcz1F4fDwdRO9bB8cFNwOcXzZCaWmBYlMTMfU3ZG4ERkgsbzYezt3JKDNFjIC6pf3FdSm03d5a2UVFAkqbbzTcpmYcTHrG7FUzKtPB2NbC0W7su7TvIKxXSdEEKqlV4UJsuSmZkJa+u3fYJCQ0MRFBQEQ8O3k/P26NEDUVFRePXqlTZSrBHeb+4CCyN+ma9JG7kXH7mv8SbviGevEJeaC2NDHkIaOWrsOB3rFy9NeCkmpdqb8QHFVkqqjvNNyjeijRu8bE2QlluIDecfaSWHiq6T6rwvCSEE0JNm7pJiY2OxZs0aWRM3ACQmJsLTU366FAcHB9lrVlalR/4WFBSgoKBA9jwrKwsAIBKJZA/pc3XTl9hhcel4lVd+HAYgITMfobHJaKPitEYV5f3n9eI+gz38HGDIZVX+bIqek0ZOJjAR8PAqT4RbT9PQxLXyqa7Ufb4rWimpus63qmp67M+CvTFl9y38+l8chvo7w9nSSG2xFVFd14kunGuKTbEpdvXFLu9YleEwxrT203XevHlYunRphfs8ePAAPj5vO5O/fPkSHTt2RKdOnfDLL7/ItgcHB8PT0xObNm2Sbbt//z78/Pxw//59NGxYeg3jRYsWYfHixaW27969G8bG1N8IAMJTOdgRU/mkx2O8xfC31cylVCgGvg7n4bWYg+m+YnhbaPaS/TWKizvpXPSqI0YP1+q9PXThfJPKMQasvc9DbBYH/rYSjPGu3sE4dJ0QQqpDXl4eRowYgczMTJibl7+YiVZrJj/99FOMGzeuwn28vLxk/46Pj0fnzp3Rrl07bN68WW4/R0dHJCUlyW2TPnd0LLtZdP78+Zg9e7bseVZWFurUqYPg4GCYm5tDJBLh9OnT6N69O/j8spt6laUvsW3i0rEj5kal+wUHtlFLTVlZeR+9k4DX1+7CxVKIGUMDlRrNXJVzkmn3HHcOP0ASxwa9erVWa+zK6ML5VofaENu9WRbe33gV4alcLBgUgMYuFddiqzNvdjcBO2LuVrqfqteJrpxrik2xKXb1xC5J2mJbGa0WJu3s7GBnZ6fQvi9fvkTnzp3h7++Pbdu2gcuV7+4ZEBCABQsWQCQSyU7u6dOn0aBBgzKbuAFAIBDILQ0pxefz5f5AJZ+rk67HDqhnDycLIRIz88vtx2dpxEdAPXu1jUovmfdftxMBFM8tKRAYlvc2pWKXpbOPI3D4AW69yMRrMWAuVOwcqut825sJkJxdUObrHBTPS6rJ861ONTl2cw8bDGjugoM3X2LJyRjsndxWoblPVc37YWIWvj8eVeE+6r5OtH2uKTbFptjVG/vdYyhCLwbgvHz5Ep06dYKbmxuWL1+OlJQUJCYmIjExUbbPiBEjYGhoiIkTJ+LevXvYu3cvVq9eLVfzSKpOunIPgHKXgsx4LcLGC4+giR4TSVn5uBRTPLJ6QDVN1l3H2hhediYQSxiuxFbvspI8LgcNHM3KfE0XVkoi8ub0aACBARfX4tJx6n5S5W9Q0dXHaRi8MRTJ2YVwerM2e8krga4TQkh104vC5OnTpxEbG4szZ87A1dUVTk5OsoeUhYUFTp06hbi4OPj7++PTTz/F119/rXNzTOqj8lbucbIQortv8SCnH09GYeHhe2ofPfrXzZeQMKCluxU8bE3UGrsiQd7aWQ0nOikbl98UYG1M5GthdWWlJPKWs6URJgUWd8VZcvwhCos013fy2J0EjPn1GrLzi9DawxonZgVhow6vqEUIqT30YjT3uHHjKu1bCQBNmjTBpUuXNJ9QLRTSyAndfR0RGpuMU5fCEBzYRtaEtvW/OHxz7D52hD5FSnYBVg5tBiG/8sEBlSmeW/LN8onVPIF4xwZ2+O3KE1yMTgVjrNrWOP7+nweQsOJR6+tH+pd5volu+ahTXey5/gxxqbnYFfYU49t7Vv6mKvrtchwWH70PxoAQP0esGlZ8j1V0XxJCSHXRi5pJohukK/f428qv3DOhgyfWDG8OQx4XxyMTMWbrNWS+Vn3KgrsvMxGdlAOBARe9m1RvLUtbTxsYGnDxMuM1HqXkVMsxL8Wk4HxUCgy4HMzr2bDc8010i6nAAJ90L57IfPWZGGRWMJVWVTHGsPTEQyw6UlyQHN3WHetGtpD7sUbXCSFE26gwSdTivSbO+G1CK5gJDHAtLh1DNoYiIfO1SjEPhBfXSvbwc1R4EIy6GBnyZKNgL0Rrvt+kWMLw3bEHAIDRAe7wrMYmfaK6oS3rwNveFBl5Iqw9F6OWmCKxBJ/uuy2bGH1OcH38r58fFRYJITqHCpNEbdrVtcWfHwXA3kyAqKRsDFh/BTFJ2UrFKiyS4PDteADV38QtVZ39Jg+Ev8DDxGyYCw0ws4u3xo9H1MuAx8UXvYvnst1+5SmepeWpFC+3oAgTt9/AwYiX4HE5WDaoCaZ38a627haEEFIVVJgkatXQyRwHp7aDl50JEjLzMWhjKK4/Sa9ynLMPk/EqTwQHcwE61LPVQKaVC6pfXJgMe5yGfJFYY8fJLSjC8lPFU73M6OINKxPVpj8i2tGpvh0CvW1RKJZg6cmHSsdJzSnA8C1XcTE6BUZ8Hn4Z0xJDWtZRY6aEEKJeVJgkaudqZYwDH7VDCzdLZL4WYdQvYTgRmVj5G9+x/00Td//mLlpr1qvvYApHcyEKiiS4Flf1ArGiNl98jOTsArhZG2NMO3eNHYdoFofDwRe9GoLDKR55Hf70VZVjPE3LxcANV3DnRSasTQzxx+S26Oxjr4FsCSFEfagwSTTCysQQuz5oi24N7VFQJMHUXeHYefWpQu9Nyy3E+ahkAMCgappbsiwcDgdB9YtrRTXV1J2UlY/NFx8DAOaG+EBgoPooeKI9DZ3MMcS/uBbx22P3qzT36t0XmRi44QqepuWhjrUR9n8UgGZ1LDWUKSGEqA8VJonGGBnysHGUP4a3rgMJA778KxI/nYqq9Av2yJ0EFEkYmrpawNuh7Am8q0vH+sW1Qhc1VJhcfjIKr0Vi+LtboVfjspf9JPpldnB9GPF5uPksA8fuJij0ngvRKRi6ORSpOYXwczbHgSnt4GVnquFMCSFEPagwSTTKgMfF9+83xqxuxYNK1pyNxdwDd1AkLn9y50M3tTvw5l0d6tmCywFiknMQn6Ha6PSS7sVnYv+beTQX9G5IgytqCAdzIT7sWDyR+dITD1FQVHF/24MRLzDxt+vIKxSjQz1b7JncFvZmwgrfQwghuoQKk0TjOBwOZnWrj+/fbwwuB/jzxgtM/j0ceYVFpfZ9mQvcT8gGn8dBnybOWshWnoUxH03fNDWqs3aSMYbv/3kAxoD3mjihhVvZ68cT/TQ5yAsO5gI8T3+NHVfK7t7BGMOG848w+8/bKJIw9GvmjK3jWsGsmqfBIoQQVVFhklSbEW3csGl0SwgMuDj7MBkjtoQhPbcQQPE8i2Fx6TjyrPiS7OpjrzOjmjvWV/8UQeejUnA5Ng2GPC7mhvioLS7RDcaGBvg0uAEAYM3ZGKRmFyAsLh3hqRyExaVDVCTB4iP3sfRE8ajvyUFeWDmkGQwN6L9kQoj+0YvlFEnN0d3XAbsntcHE7Tdw63kGBm24ggkdPLHuXCwSMvMh/X0TFpeOE5EJOrG+cFB9O6z6Nwb/xaaiSCyBAU+1L/wisQTf/VM8Qfm49h6oY22sjjSJjhnYwhXbLj/Bg4QsBP14DnmFYgA87Ii5ASGfi3xRcVePL3s3xAdv1vcmhBB9RD+DSbXzd7fG/o8C4GJphMepufjyr8g3Bcm3MvJEmLIzAiciFRvAoElNXS1hYcRHdn4Rbr/IUDnenuvPEZucAytjPqZ1rqd6gkQn8bgc9PB1AIA3Bcm3pAXJiR08qSBJCNF7VJgkWlHP3gz7PgqAQTlzSErHey8+ch9iieLTq2gCj8tBB+83UwRFqdbUnZ0vwsrT0QCAj7t6w8KI+sfVVGIJw94bzyvc55+7CVq/vgkhRFVUmCRa8zQtD0UVfJEyAAmZ+RqdMFxRsn6TMaqt073xwiOk5RbCy9YEI9vSBOU12bW49FI17iXpyvVNCCGqoMIk0Zrk7Iq/aKu6nyZJ1+m+8yJDNmioquIzXuOXS3EAgHk9fcBXse8l0W36dH0TQogq6NuMaI2ic+npwpx7jhZCNHAwA2PAf7HK1U7+eDIKBUUStPa0Rvc3felIzaVP1zchhKiCCpNEa1p7WsPJQojypurmAHCyEKK1p3V1plWujg3eNHUr0W/yzosMHLr5EkDx6F2aoLzm07frmxBClEWFSaI1PC4HC/v4AkCpL1zp84V9fMErZ5BOdZM2dV+KSanSmsuMMXx7rHgqoPebu6CJq6Um0iM6Rt+ub0IIURYVJolWhTRywoZRLeBoId/U52ghxIZRLXRinkmplh5WMOLzkJxdgIeJ2Qq/79T9JFyLS4fAgIvPejTQYIZE1+jT9U0IIcqiScuJ1oU0ckJ3X0eExibj1KUwBAe2QUA9e52rsRHyeWjrZY1zUSm4EJ2Chk7mlb5HJJZgyfHiVU4+CPSEs6WRptMkOkZfrm9CCFEW1UwSncDjctDG0xr+tgxtPK119otWOkWQout077r6FHGpubA1NcRHHetqMjWiw/Tl+iaEEGVQYZKQKgh6U5i8/iQduQVFFe6b+VqE1WdiAACzutWHmZAmKCeEEFLzUGGSkCrwtDWBq5URRGKGq4/TKtx33blYvMoTwdveFMNa1ammDAkhhJDqRYVJQqqAw+G8XQ2ngqbu5+l5+O3yEwDAF70awoAmKCeEEFJD0TccIVUUpEC/yaUnHqJQLEGHerbo9GZ+SkIIIaQmosIkIVXUrq4NDLgcPEnLw9O03FKvRzx7haN3EsDhFNdK0gTlhBBCajIqTBJSRWZCPlq4WwEoXTvJGMO3R+8DAAa1cIWvc+XTBxFCCCH6jAqThCjhbb9J+XW6/7mbiIhnGTDi8zCHJignhBBSC1BhkhAlSAuToY9SUVgkAQAUFEmw5ETxsomTg7zgYC4s9/2EEEJITUGFSUKU4OtkDhsTQ+QWinHzeQYAYGfYMzxPfw17MwE+7Oil3QQJIYSQakKFSUKUwOVyZKO691x/jiuJHPx8JhYAMCe4AYwNaaVSQgghtYPeFSYLCgrQrFkzcDgc3Lp1S+61O3fuIDAwEEKhEHXq1MGyZcu0kySpFSyNiwuMR+8mYW8cD3kiCQy4HJgKqCBJCCGk9tC7wuTnn38OZ2fnUtuzsrIQHBwMd3d3hIeH48cff8SiRYuwefNmLWRJaroTkQnYdvlpqe1FEoZpuyNwIjJBC1kRQggh1U+vCpPHjx/HqVOnsHz58lKv7dq1C4WFhdi6dSv8/PwwbNgwzJw5EytWrNBCpqQmE0sYFh+5X+E+i4/ch1jCqikjQgghRHv0pj0uKSkJkyZNwl9//QVjY+NSr4eGhiIoKAiGhoaybT169MDSpUvx6tUrWFlZlXpPQUEBCgoKZM+zsrIAACKRSPaQPlc3iq2/scPi0pGQmV/u6wxAQmY+QmOT0cbTWqVj6cs5odg1M7Y+5kyxKTbFVv+xKsNhjOl89QljDL169UL79u3x5Zdf4smTJ/D09MTNmzfRrFkzAEBwcDA8PT2xadMm2fvu378PPz8/3L9/Hw0bNiwVd9GiRVi8eHGp7bt37y6zwEoIAISncrAjhlfpfmO8xfC31fnbixBCCClTXl4eRowYgczMTJibl78Ih1ZrJufNm4elS5dWuM+DBw9w6tQpZGdnY/78+Wo9/vz58zF79mzZ86ysLNSpUwfBwcEwNzeHSCTC6dOn0b17d/D5fLUem2Lrb2ybuHTsiLlR6X7BgW3UUjOpD+eEYtfM2PqYM8Wm2BRbfaQttpXRamHy008/xbhx4yrcx8vLC2fPnkVoaCgEAoHcay1btsTIkSOxfft2ODo6IikpSe516XNHR8cyYwsEglIxAYDP58v9gUo+VyeKrX+xA+rZw8lCiMTMfJRV78gB4GghREA9e/C46lmXW9fPCcWu2bH1MWeKTbEptnqOoQitFibt7OxgZ2dX6X4///wzvv32W9nz+Ph49OjRA3v37kWbNm0AAAEBAViwYAFEIpHsw58+fRoNGjQos78kIcricTlY2McXU3ZGgAPIFSilRceFfXzVVpAkhBBCdJlejOZ2c3NDo0aNZI/69esDAOrWrQtXV1cAwIgRI2BoaIiJEyfi3r172Lt3L1avXi3XjE2IuoQ0csKGUS3gaCG/ZKKjhRAbRrVASCMnLWVGCCGEVC+9Gc1dGQsLC5w6dQrTpk2Dv78/bG1t8fXXX2Py5MnaTo3UUCGNnNDd1xGhsck4dSkMwYFt1Nq0TQghhOgDvSxMenh4oKxB6E2aNMGlS5e0kBGprXhcDtp4WiPtAUMbT2sqSBJCCKl19KKZmxBCCCGE6Ca9rJnUFGlt57uTl+fl5SErK0sjQ/spNsWm2BRbl2PrY84Um2JTbPWRlocqm5KcCpPvyM7OBgDUqVNHy5kQQgghhOiG7OxsWFhYlPu6XqyAU10kEgni4+NhZmYGDocjm8T8+fPnFc78rgyKTbEpNsXW9dj6mDPFptgUW30YY8jOzoazszO43PJ7RlLN5Du4XK5sqqF3mZuba+wPRrEpNsWm2LoeWx9zptgUm2KrR0U1klI0AIcQQgghhCiNCpOEEEIIIURpVJisgEAgwMKFC8tcv5tiU2yKTbFremx9zJliU2yKXf1oAA4hhBBCCFEa1UwSQgghhBClUWGSEEIIIYQojQqThBBCCCFEaVSYJIQQQgghSqPCZDnWrVsHDw8PCIVCtGnTBteuXVNL3IsXL6JPnz5wdnYGh8PBX3/9pZa4P/zwA1q1agUzMzPY29ujf//+iIqKUkvsDRs2oEmTJrIJUgMCAnD8+HG1xC5pyZIl4HA4mDVrlsqxFi1aBA6HI/fw8fFRPck3Xr58iVGjRsHGxgZGRkZo3Lgxbty4oXJcDw+PUnlzOBxMmzZN5dhisRhfffUVPD09YWRkhLp16+Kbb76pdN1VRWVnZ2PWrFlwd3eHkZER2rVrh+vXr1c5TmX3CWMMX3/9NZycnGBkZIRu3bohJiZGLbEPHjyI4OBg2NjYgMPh4NatW2rJWyQSYe7cuWjcuDFMTEzg7OyMMWPGID4+Xi15L1q0CD4+PjAxMYGVlRW6deuGsLAwtcR+10cffQQOh4NVq1apJfa4ceNKXeshISFqy/vBgwfo27cvLCwsYGJiglatWuHZs2cqxy7rHuVwOPjxxx9Vjp2Tk4Pp06fD1dUVRkZG8PX1xcaNGyuNq0jspKQkjBs3Ds7OzjA2NkZISIjC944i3zP5+fmYNm0abGxsYGpqioEDByIpKUnluJs3b0anTp1gbm4ODoeDjIwMhXJWJH56ejpmzJiBBg0awMjICG5ubpg5cyYyMzPVck4+/PBD1K1bF0ZGRrCzs0O/fv3w8OFDleNKMcbQs2dPtZYpqooKk2XYu3cvZs+ejYULFyIiIgJNmzZFjx49kJycrHLs3NxcNG3aFOvWrVNDpm9duHAB06ZNw9WrV3H69GmIRCIEBwcjNzdX5diurq5YsmQJwsPDcePGDXTp0gX9+vXDvXv31JD5W9evX8emTZvQpEkTtcX08/NDQkKC7PHff/+pJe6rV6/Qvn178Pl8HD9+HPfv38dPP/0EKysrlWNfv35dLufTp08DAAYPHqxy7KVLl2LDhg1Yu3YtHjx4gKVLl2LZsmVYs2aNyrEB4IMPPsDp06fx+++/4+7duwgODka3bt3w8uXLKsWp7D5ZtmwZfv75Z2zcuBFhYWEwMTFBjx49kJ+fr3Ls3NxcdOjQAUuXLq1SzpXFzsvLQ0REBL766itERETg4MGDiIqKQt++fVWODQD169fH2rVrcffuXfz333/w8PBAcHAwUlJSVI4tdejQIVy9ehXOzs4K5axo7JCQELlr/o8//lBL7EePHqFDhw7w8fHB+fPncefOHXz11VcQCoUqx34334SEBGzduhUcDgcDBw5UOfbs2bNx4sQJ7Ny5Ew8ePMCsWbMwffp0HD58WKXYjDH0798fjx8/xt9//42bN2/C3d0d3bp1U+i7QpHvmU8++QRHjhzBvn37cOHCBcTHx2PAgAEqx83Ly0NISAi++OKLSvOsavz4+HjEx8dj+fLliIyMxG+//YYTJ05g4sSJajkn/v7+2LZtGx48eICTJ0+CMYbg4GCIxWKV4kqtWrUKHA6nyudFrRgppXXr1mzatGmy52KxmDk7O7MffvhBrccBwA4dOqTWmFLJyckMALtw4YJG4ltZWbFffvlFbfGys7OZt7c3O336NOvYsSP7+OOPVY65cOFC1rRpU5XjlGXu3LmsQ4cOGold0scff8zq1q3LJBKJyrF69+7NJkyYILdtwIABbOTIkSrHzsvLYzwejx09elRue4sWLdiCBQuUjlvyPpFIJMzR0ZH9+OOPsm0ZGRlMIBCwP/74Q6XY74qLi2MA2M2bN5XIWrH7+9q1awwAe/r0qdpjZ2ZmMgDs33//VUvsFy9eMBcXFxYZGcnc3d3ZypUrqxS3vNhjx45l/fr1q3IsRWIPHTqUjRo1SiOxS+rXrx/r0qWLWmL7+fmx//3vf3LblLmPSsaOiopiAFhkZKRsm1gsZnZ2dmzLli1Vzr3k90xGRgbj8/ls3759sn0ePHjAALDQ0FCl477r3LlzDAB79epVlfNVJL7Un3/+yQwNDZlIJFJ77Nu3bzMALDY2VuW4N2/eZC4uLiwhIUGjZYrKUM1kCYWFhQgPD0e3bt1k27hcLrp164bQ0FAtZlY10up5a2trtcYVi8XYs2cPcnNzERAQoLa406ZNQ+/eveXOuzrExMTA2dkZXl5eGDlypELNW4o4fPgwWrZsicGDB8Pe3h7NmzfHli1b1BL7XYWFhdi5cycmTJigll+e7dq1w5kzZxAdHQ0AuH37Nv777z/07NlT5dhFRUUQi8Wlan2MjIzUViMMAHFxcUhMTJS7ViwsLNCmTRu9ukeB4vuUw+HA0tJSrXELCwuxefNmWFhYoGnTpirHk0gkGD16ND777DP4+fmpIUN558+fh729PRo0aIApU6YgLS1N5ZgSiQTHjh1D/fr10aNHD9jb26NNmzYaaQZMSkrCsWPHFKrJUkS7du1w+PBhvHz5EowxnDt3DtHR0QgODlYpbkFBAQDI3aNcLhcCgUCpe7Tk90x4eDhEIpHcvenj4wM3N7cq3Zua+v6qSvzMzEyYm5vDwMBArbFzc3Oxbds2eHp6ok6dOirFzcvLw4gRI7Bu3To4OjpWKU91o8JkCampqRCLxXBwcJDb7uDggMTERC1lVTUSiQSzZs1C+/bt0ahRI7XEvHv3LkxNTSEQCPDRRx/h0KFD8PX1VUvsPXv2ICIiAj/88INa4km1adNG1lyxYcMGxMXFITAwENnZ2SrHfvz4MTZs2ABvb2+cPHkSU6ZMwcyZM7F9+3Y1ZP7WX3/9hYyMDIwbN04t8ebNm4dhw4bBx8cHfD4fzZs3x6xZszBy5EiVY5uZmSEgIADffPMN4uPjIRaLsXPnToSGhiIhIUEN2ReT3of6fI8CxX3L5s6di+HDh8Pc3FwtMY8ePQpTU1MIhUKsXLkSp0+fhq2trcpxly5dCgMDA8ycOVMNWcoLCQnBjh07cObMGSxduhQXLlxAz549K2wCVERycjJycnKwZMkShISE4NSpU3j//fcxYMAAXLhwQU3ZF9u+fTvMzMwqbc5V1Jo1a+Dr6wtXV1cYGhoiJCQE69atQ1BQkEpxpQW7+fPn49WrVygsLMTSpUvx4sWLKt+jZX3PJCYmwtDQsNSPo6rcm5r4/qpq/NTUVHzzzTeYPHmy2mKvX78epqamMDU1xfHjx3H69GkYGhqqFPeTTz5Bu3bt0K9fvyrlqQlVK3ITvTBt2jRERkaqtTaoQYMGuHXrFjIzM7F//36MHTsWFy5cULlA+fz5c3z88cc4ffq0Qv2YquLd2rYmTZqgTZs2cHd3x59//qlyDYJEIkHLli3x/fffAwCaN2+OyMhIbNy4EWPHjlUp9rt+/fVX9OzZs0p91Cry559/YteuXdi9ezf8/Pxw69YtzJo1C87OzmrJ+/fff8eECRPg4uICHo+HFi1aYPjw4QgPD1dD9jWHSCTCkCFDwBjDhg0b1Ba3c+fOuHXrFlJTU7FlyxYMGTIEYWFhsLe3VzpmeHg4Vq9ejYiICI30yxo2bJjs340bN0aTJk1Qt25dnD9/Hl27dlU6rkQiAQD069cPn3zyCQCgWbNmuHLlCjZu3IiOHTuqlvg7tm7dipEjR6rt/7A1a9bg6tWrOHz4MNzd3XHx4kVMmzYNzs7OKrXe8Pl8HDx4EBMnToS1tTV4PB66deuGnj17VnkQnia+ZzQZV9H4WVlZ6N27N3x9fbFo0SK1xR45ciS6d++OhIQELF++HEOGDMHly5cVumbKinv48GGcPXsWN2/erFKOGqOVxnUdVlBQwHg8Xql+B2PGjGF9+/ZV67Gggf4N06ZNY66uruzx48dqjVtS165d2eTJk1WOc+jQIQaA8Xg82QMA43A4jMfjsaKiIjVk+1bLli3ZvHnzVI7j5ubGJk6cKLdt/fr1zNnZWeXYUk+ePGFcLpf99ddfaovp6urK1q5dK7ftm2++YQ0aNFDbMRhjLCcnh8XHxzPGGBsyZAjr1auX0rFK3iePHj0qsy9jUFAQmzlzpkqx36WpPpOFhYWsf//+rEmTJiw1NVWtsUuqV68e+/7771WKvXLlStn9+O49yuVymbu7u0bytrW1ZRs3blQpdkFBATMwMGDffPON3H6ff/45a9eunUqx33Xx4kUGgN26datKMcuLnZeXx/h8fqm+xxMnTmQ9evRQKfa7MjIyWHJyMmOseJzA1KlTFY5b3vfMmTNnyuzP6ObmxlasWKF03Hep0meysvhZWVksICCAde3alb1+/Vqtsd9VUFDAjI2N2e7du5WO+/HHH5d7X3bs2LFKuasDNXOXYGhoCH9/f5w5c0a2TSKR4MyZM2rtI6hujDFMnz4dhw4dwtmzZ+Hp6anR40kkEln/G1V07doVd+/exa1bt2SPli1bYuTIkbh16xZ4PJ4asi2Wk5ODR48ewcnJSeVY7du3LzVNQ3R0NNzd3VWOLbVt2zbY29ujd+/eaouZl5cHLlf+tufxeLJaHHUxMTGBk5MTXr16hZMnT6q1GcbT0xOOjo5y92hWVhbCwsJ0+h4F3tZIxsTE4N9//4WNjY1Gj6eO+3T06NG4c+eO3D3q7OyMzz77DCdPnlRTpm+9ePECaWlpKt+nhoaGaNWqlcbv019//RX+/v5q6ZsKFF8jIpFI4/ephYUF7OzsEBMTgxs3bih0j1b2PePv7w8+ny93b0ZFReHZs2cV3pua/v5SJH5WVhaCg4NhaGiIw4cPK1zLrEzujDEwxiq8NyuLO2/evFL3JQCsXLkS27ZtUyh3daJm7jLMnj0bY8eORcuWLdG6dWusWrUKubm5GD9+vMqxc3JyEBsbK3seFxeHW7duwdraGm5ubkrHnTZtGnbv3o2///4bZmZmsv4pFhYWMDIyUinn+fPno2fPnnBzc0N2djZ2796N8+fPq+WLxMzMrFTfEhMTE9jY2KjcX2bOnDno06cP3N3dER8fj4ULF4LH42H48OEqxQXe9lX5/vvvMWTIEFy7dg2bN2/G5s2bVY4NFBcCtm3bhrFjx1a5A3hF+vTpg++++w5ubm7w8/PDzZs3sWLFCkyYMEEt8aXTXjRo0ACxsbH47LPP4OPjU+V7p7L7ZNasWfj222/h7e0NT09PfPXVV3B2dkb//v1Vjp2eno5nz57J5n+UFkYcHR0r7eReUWwnJycMGjQIEREROHr0KMRisew+tba2rrT/VEWxbWxs8N1336Fv375wcnJCamoq1q1bh5cvXyo0pVRl56RkoZfP58PR0RENGjRQKba1tTUWL16MgQMHwtHREY8ePcLnn3+OevXqoUePHirn/dlnn2Ho0KEICgpC586dceLECRw5cgTnz59XOTZQXADZt28ffvrpp0rjVSV2x44d8dlnn8HIyAju7u64cOECduzYgRUrVqgce9++fbCzs4Obmxvu3r2Ljz/+GP3791docE9l3zMWFhaYOHEiZs+eDWtra5ibm2PGjBkICAhA27ZtlY4LFPfHTExMlH22u3fvwszMDG5ubpUO1KksvrQgmZeXh507dyIrKwtZWVkAADs7uworNSqL/fjxY+zduxfBwcGws7PDixcvsGTJEhgZGaFXr15Kxy3v/yM3NzeNVyaVqdrrQvXEmjVrmJubGzM0NGStW7dmV69eVUtcaRV9ycfYsWNViltWTABs27ZtKuc8YcIE5u7uzgwNDZmdnR3r2rUrO3XqlMpxy6OuqYGGDh3KnJycmKGhIXNxcWFDhw6t0lQMlTly5Ahr1KgREwgEzMfHh23evFltsU+ePMkAsKioKLXFZKy4Gefjjz9mbm5uTCgUMi8vL7ZgwQJWUFCglvh79+5lXl5ezNDQkDk6OrJp06axjIyMKsep7D6RSCTsq6++Yg4ODkwgELCuXbsqfK4qi71t27YyX1+4cKFKsaXN5mU9zp07p1Ls169fs/fff585OzszQ0ND5uTkxPr27cuuXbumlnNSUlWmBqoodl5eHgsODmZ2dnaMz+czd3d3NmnSJJaYmKi2vH/99VdWr149JhQKWdOmTRXuNqJI7E2bNjEjI6MqX+OVxU5ISGDjxo1jzs7OTCgUsgYNGrCffvpJoenBKou9evVq5urqyvh8PnNzc2Nffvmlwve/It8zr1+/ZlOnTmVWVlbM2NiYvf/++ywhIUHluAsXLlT6O66y+OWdMwAsLi5OpdgvX75kPXv2ZPb29ozP5zNXV1c2YsQI9vDhQ5XPSVnv0dbUQJw3CRBCCCGEEFJl1GeSEEIIIYQojQqThBBCCCFEaVSYJIQQQgghSqPCJCGEEEIIURoVJgkhhBBCiNKoMEkIIYQQQpRGhUlCCCGEEKI0KkwSQgghhBClUWGSEELeGDdunEJLMmrK6NGj8f3338uee3h4YNWqVVrLpzyFhYXw8PDAjRs3tJ0KIUQH0NrchJBagcPhVPj6woULsXr1amhrUbDbt2/jn3/+wYYNG7Ry/KowNDTEnDlzMHfuXJw5c0bb6RBCtIwKk4SQWiEhIUH277179+Lrr79GVFSUbJupqSlMTU21kRoAYM2aNRg8eLBWc5AqLCyEoaFhhfuMHDkSn376Ke7duwc/P79qyowQoouomZsQUis4OjrKHhYWFuBwOHLbTE1NSzVzd+rUCTNmzMCsWbNgZWUFBwcHbNmyBbm5uRg/fjzMzMxQr149HD9+XO5YkZGR6NmzJ0xNTeHg4IDRo0cjNTW13NzEYjH279+PPn36lHotLy8PEyZMgJmZGdzc3LB582a51+/evYsuXbrAyMgINjY2mDx5MnJycuQ+w6xZs+Te079/f4wbN0723MPDA9988w3GjBkDc3NzTJ48GYWFhZg+fTqcnJwgFArh7u6OH374QfYeKysrtG/fHnv27KnotBNCagEqTBJCSAW2b98OW1tbXLt2DTNmzMCUKVMwePBgtGvXDhEREQgODsbo0aORl5cHAMjIyECXLl3QvHlz3LhxAydOnEBSUhKGDBlS7jHu3LmDzMxMtGzZstRrP/30E1q2bImbN29i6tSpmDJliqxGNTc3Fz169ICVlRWuX7+Offv24d9//8X06dOr/DmXL1+Opk2b4ubNm/jqq6/w888/4/Dhw/jzzz8RFRWFXbt2wcPDQ+49rVu3xqVLl6p8LEJIzULN3IQQUoGmTZviyy+/BADMnz8fS5Ysga2tLSZNmgQA+Prrr7FhwwbcuXMHbdu2xdq1a9G8eXO5gTRbt25FnTp1EB0djfr165c6xtOnT8Hj8WBvb1/qtV69emHq1KkAgLlz52LlypU4d+4cGjRogN27dyM/Px87duyAiYkJAGDt2rXo06cPli5dCgcHB4U/Z5cuXfDpp5/Knj979gze3t7o0KEDOBwO3N3dS73H2dkZT58+VfgYhJCaiWomCSGkAk2aNJH9m8fjwcbGBo0bN5ZtkxbYkpOTARQPpDl37pysD6apqSl8fHwAAI8ePSrzGK9fv4ZAIChzkNC7x5c2zUuP9eDBAzRt2lRWkASA9u3bQyKRyPUHVUTJWtFx48bh1q1baNCgAWbOnIlTp06Veo+RkZGsRpYQUntRzSQhhFSAz+fLPedwOHLbpAVAiUQCAMjJyZHVDJbk5ORU5jFsbW2Rl5dX5sCXso4vPZYiuFxuqRHqIpGo1H7vFkgBoEWLFoiLi8Px48fx77//YsiQIejWrRv2798v2yc9PR12dnYK50IIqZmoZpIQQtSoRYsWuHfvHjw8PFCvXj25R8kCm1SzZs0AAPfv36/SsRo2bIjbt28jNzdXtu3y5cvgcrlo0KABAMDOzk5uJLtYLEZkZKRC8c3NzTF06FBs2bIFe/fuxYEDB5Ceni57PTIyEs2bN69SzoSQmocKk4QQokbTpk1Deno6hg8fjuvXr+PRo0c4efIkxo8fD7FYXOZ77Ozs0KJFC/z3339VOtbIkSMhFAoxduxYREZG4ty5c5gxYwZGjx4ta37v0qULjh07hmPHjuHhw4eYMmUKMjIyKo29YsUK/PHHH3j48CGio6Oxb98+ODo6wtLSUrbPpUuXEBwcXKWcCSE1DxUmCSFEjZydnXH58mWIxWIEBwejcePGmDVrFiwtLcHllv9f7gcffIBdu3ZV6VjGxsY4efIk0tPT0apVKwwaNAhdu3bF2rVrZftMmDABY8eOxZgxY9CxY0d4eXmhc+fOlcY2MzPDsmXL0LJlS7Rq1QpPnjzBP//8I/sMoaGhyMzMxKBBg6qUMyGk5uEwbS33QAghROb169do0KAB9u7di4CAAG2nU6mhQ4eiadOm+OKLL7SdCiFEy6hmkhBCdICRkRF27NhR4eTmuqKwsBCNGzfGJ598ou1UCCE6gGomCSGEEEKI0qhmkhBCCCGEKI0Kk4QQQgghRGlUmCSEEEIIIUqjwiQhhBBCCFEaFSYJIYQQQojSqDBJCCGEEEKURoVJQgghhBCiNCpMEkIIIYQQpVFhkhBCCCGEKO3/oKA7y3eziOcAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 750x250 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Plot dispatching from battery energy storage system\n",
+    "plt.figure(figsize=(7.5, 2.5))\n",
+    "plt.plot(np.arange(1, n_hours+1), battery_power, marker='o', linestyle='-')\n",
+    "plt.title('Battery Dispatching Power for 24 Hours')\n",
+    "plt.xlabel('Time (hours)')\n",
+    "plt.ylabel('Power (kW)')\n",
+    "plt.xticks(np.arange(0, 25, step=1))\n",
+    "plt.grid(True)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 80,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAogAAAEWCAYAAADlzWYUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOW0lEQVR4nO3deVhUZf8G8HsYtmHfN1nEDXPfScUdQTSXrDR307JMM/NttbfQLEvLbHFt0TQzLX+Z9poLGq4pLkiKu0aiAioi+z7z/P7AmRhBmWHOMDDcn+viuuQwc5/vjBzn63PO8xyZEEKAiIiIiOgeC1MXQERERES1CxtEIiIiItLCBpGIiIiItLBBJCIiIiItbBCJiIiISAsbRCIiIiLSwgaRiIiIiLSwQSQiIiIiLWwQiYiIiEgLG0Qiolri2LFj6NatG+zt7SGTyZCQkGDqkoionmKDSFRHfffdd5DJZDh+/LipS6m2ZcuW4bvvvtP58TKZTPNlYWEBPz8/REREYO/evUarsaaUlJTgqaeeQkZGBhYvXozvv/8eQUFBRtvf+fPn8frrr6Ndu3ZwdHSEr68vBg0apNPvU//+/SGTyTB9+nSd9tWwYUM89thjlf5s7969kMlk2LRpk171E5FxWZq6ACKqv5YtWwYPDw9MnDhR5+f0798f48ePhxACSUlJWLZsGfr27Ytt27YhKirKeMUa2ZUrV3D16lV8/fXXePbZZ42+v2+++QbffvstnnjiCbz44ovIysrCypUr8eijj2LHjh0IDw+v9Hm//PILDh8+bPT6iMi0OIJIRDUuPz+/2s9t1qwZxo4di3HjxuHdd99FTEwMhBD47LPPpCvQSPLy8h74s1u3bgEAXFxcamR/o0aNwrVr1/DNN99gypQpeO211xAXFwc3NzfMmTOn0ucUFhbiP//5D9544w3JajQVIQQKCgpMXQZRrcUGkciMTJw4EQ4ODkhOTsZjjz0GBwcHNGjQAEuXLgUAnD59Gn379oW9vT2CgoKwfv16reerT1vv378fzz//PNzd3eHk5ITx48fj7t27Ffa3bNkytGzZEjY2NvDz88O0adOQmZmp9ZjevXujVatWOHHiBHr27Ak7OzvMnj0bDRs2xJkzZ7Bv3z7NaePevXvr/Zpbt24NDw8PJCUlabb98ccf6NGjB+zt7eHi4oKhQ4fi3Llzmp+fOnUKMpkMW7du1Ww7ceIEZDIZOnTooJUfFRWF0NBQrW3bt2/X5Ds6OmLQoEE4c+aM1mPUfxdXrlzBwIED4ejoiDFjxlT6GiZOnIhevXoBAJ566qkK70VVrwcA5syZA5lMhrNnz2L06NFwdXVFWFjYA9+3jh07wsHBQWubu7s7evToUSFbbeHChVCpVHj11VcfmCuVkydPIioqCk5OTnBwcEC/fv1w5MgRrceoX/P91L/H//zzj2ab+jT3zp070alTJygUCqxcuRIAEBMTg7CwMLi4uMDBwQEhISGYPXu2UV8fUW3HU8xEZkapVCIqKgo9e/bEwoUL8cMPP2D69Omwt7fH22+/jTFjxmD48OFYsWIFxo8fj65duyI4OFgrY/r06XBxccGcOXNw4cIFLF++HFevXtVcLwaUfTjPnTsX4eHhmDp1quZxx44dw6FDh2BlZaXJu3PnDqKiovD0009j7Nix8Pb2Ru/evfHSSy/BwcEBb7/9NgDA29tb79d79+5d3L17F02aNAEA7N69G1FRUWjUqBHmzJmDgoICfPnll+jevTvi4+PRsGFDtGrVCi4uLti/fz+GDBkCADhw4AAsLCzw119/ITs7G05OTlCpVPjzzz8xZcoUzf6+//57TJgwAZGRkViwYAHy8/OxfPlyhIWF4eTJk2jYsKHmsaWlpYiMjERYWBg++eQT2NnZVfoann/+eTRo0ADz58/HjBkz0LlzZ817ocvrKe+pp55C06ZNMX/+fAgh9H4/09LS4OHhUWF7cnIyPvroI6xatQoKhULv3JKSEqSnp1fYnpWVVWHbmTNn0KNHDzg5OeH111+HlZUVVq5cid69e2Pfvn0VGnZdXbhwAaNGjcLzzz+P5557DiEhIThz5gwee+wxtGnTBu+99x5sbGxw+fJlHDp0qFr7IDIbgojqpNWrVwsA4tixY5ptEyZMEADE/PnzNdvu3r0rFAqFkMlkYsOGDZrt58+fFwBEdHR0hcyOHTuK4uJizfaFCxcKAGLLli1CCCFu3bolrK2tRUREhFAqlZrHLVmyRAAQq1at0mzr1auXACBWrFhR4TW0bNlS9OrVS+fXDEBMnjxZ3L59W9y6dUvExcWJfv36CQBi0aJFQggh2rVrJ7y8vMSdO3c0z/vrr7+EhYWFGD9+vGbboEGDRJcuXTTfDx8+XAwfPlzI5XKxfft2IYQQ8fHxWq87JydHuLi4iOeee06rrrS0NOHs7Ky1Xf138eabb+r02mJjYwUA8fPPP2tt1/X1REdHCwBi1KhROu2vMvv37xcymUy88847FX725JNPim7dumm+ByCmTZumU25QUJAA8NCv8q972LBhwtraWly5ckWzLSUlRTg6OoqePXtqtqlf8/3Uv8dJSUkVatixY4fWYxcvXiwAiNu3b+v0WojqC55iJjJD5Sc5uLi4ICQkBPb29hgxYoRme0hICFxcXPD3339XeP6UKVO0RgCnTp0KS0tL/P777wDKRrWKi4sxc+ZMWFj8+8/Ic889BycnJ2zbtk0rz8bGBs8884wkr+3bb7+Fp6cnvLy8EBoaikOHDmHWrFmYOXMmUlNTkZCQgIkTJ8LNzU3znDZt2qB///6a+gGgR48eiI+P11ynd/DgQQwcOBDt2rXDgQMHAJSNKspkMs2p2piYGGRmZmLUqFFIT0/XfMnlcoSGhiI2NrZCvVOnTq32a9Xn9ai98MIL1drXrVu3MHr0aAQHB+P111/X+llsbCz+7//+z6DrPENDQxETE1Ph65NPPtF6nFKpxK5duzBs2DA0atRIs93X1xejR4/GwYMHkZ2dXa0agoODERkZqbVNfc3nli1boFKpqpVLZI54ipnIzNja2sLT01Nrm7OzM/z9/Stcr+Xs7FzptYVNmzbV+t7BwQG+vr6aa7quXr0KoKzJLM/a2hqNGjXS/FytQYMGsLa2rtbrud/QoUMxffp0yGQyODo6omXLlrC3t39oXQDwyCOPYOfOncjLy4O9vT169OiB0tJSHD58GAEBAbh16xZ69OiBM2fOaDWILVq00DRnly5dAgD07du30tqcnJy0vre0tIS/v3+1X6s+r0ft/ssFdJGXl4fHHnsMOTk5OHjwoNa1iaWlpZgxYwbGjRuHzp07V+NVlPHw8Kh0ZrSlpfbH0O3bt5Gfn//A16xSqXDt2jW0bNlS7xoqe29GjhyJb775Bs8++yzefPNN9OvXD8OHD8eTTz6p9Z8fovqGDSKRmZHL5XptF9W4Tk1f1blm7UH8/f0fuASLPjp16gRbW1vs378fgYGB8PLyQrNmzdCjRw8sW7YMRUVFOHDgAB5//HHNc9QjTN9//z18fHwqZN7f7NjY2NR4k6Hve11cXIzhw4fj1KlT2LlzJ1q1aqX187Vr1+LChQtYuXKl1qQPAMjJycE///wDLy+vB15faUyVTVABykYhK1PZe6NQKLB//37ExsZi27Zt2LFjBzZu3Ii+ffti165dDzxuiMwd/3tERBWoR8rUcnNzkZqaqpkQoV7A+cKFC1qPKy4uRlJSks4LPD/oA766HlQXULYwtIeHh2a0zdraGl26dMGBAwdw4MAB9OjRA0DZqeeioiL88MMPuHnzJnr27KnJaNy4MQDAy8sL4eHhFb6qMwtbqtdTHSqVCuPHj8eePXuwfv16zUzq8pKTk1FSUoLu3bsjODhY8wWUNY/BwcHYtWtXtWu4n6enJ+zs7B74mi0sLBAQEAAAcHV1BYAKM+fvH8GuioWFBfr164dPP/0UZ8+exQcffIA//vij0ksGiOoLNohEVMFXX32FkpISzffLly9HaWmpZiHq8PBwWFtb44svvtAagfz222+RlZWFQYMG6bQfe3v7Ch/uhvD19UW7du2wZs0ardzExETs2rULAwcO1Hp8jx49EBcXh9jYWE2D6OHhgUceeQQLFizQPEYtMjISTk5OmD9/vtb7o3b79m3JXkt1Xo++XnrpJWzcuBHLli3D8OHDK33M008/jc2bN1f4AoCBAwdi8+bN1Z5VXBm5XI6IiAhs2bJFa8Ty5s2bWL9+PcLCwjSn8tUN+/79+zWPy8vLw5o1a3TeX0ZGRoVt7dq1AwAUFRVV4xUQmQeeYiaiCoqLi9GvXz+MGDECFy5cwLJlyxAWFqZZEsbT0xNvvfUW5s6diwEDBmDIkCGax3Xu3Bljx47VaT8dO3bE8uXL8f7776NJkybw8vJ64PV9uvr4448RFRWFrl27YvLkyZplYZydnSssAN2jRw988MEHuHbtmlYj2LNnT6xcuRINGzbUuobQyckJy5cvx7hx49ChQwc8/fTT8PT0RHJyMrZt24bu3btjyZIlBtVvyOvRx2effYZly5aha9eusLOzw7p167R+/vjjj8Pe3h7NmzdH8+bNK80IDg7GsGHDql3Dg7z//vuatQlffPFFWFpaYuXKlSgqKsLChQs1j4uIiEBgYCAmT56M1157DXK5HKtWrdL8nejivffew/79+zFo0CAEBQXh1q1bWLZsGfz9/R+6jiSR2TP1NGoiqp4HLXNjb29f4bG9evUSLVu2rLA9KChIDBo0qELmvn37xJQpU4Srq6twcHAQY8aM0VpmRW3JkiWiefPmwsrKSnh7e4upU6eKu3fv6rRvIcqWhxk0aJBwdHQUAKpc8gY6Lq2ye/du0b17d6FQKISTk5MYPHiwOHv2bIXHZWdnC7lcLhwdHUVpaalm+7p16wQAMW7cuErzY2NjRWRkpHB2dha2traicePGYuLEieL48eOaxzzo7+JBHrTMja6vR73ki67LtaiX4XnQV/klYiqj69+FEBV/z8p70OuOj48XkZGRwsHBQdjZ2Yk+ffqIP//8s8LzT5w4IUJDQ4W1tbUIDAwUn3766QOXuamshj179oihQ4cKPz8/YW1tLfz8/MSoUaPExYsXdXptROZKJkQNXKFORHXCd999h2eeeQbHjh1Dp06dTF0OERGZCK9BJCIiIiItbBCJiIiISAsbRCIiIiLSwmsQiYiIiEgLRxCJiIiISAsbRCIiIiLSYvYLZatUKqSkpMDR0VHy23oRERER1RVCCOTk5MDPz6/K+8SbfYOYkpKiuW8nERERUX137do1rbtEVcbsG0RHR0cAZW+GQqHArl27EBERASsrK0n3U1JSwmxmM5vZzGY2s5ldq7LLy87ORkBAgKY3ehizbxDVp5WdnJygUChgZ2cHJycno/zlMpvZzGY2s5nNbGbXpuzK6HLJHSepEBEREZEWNohERFRvKVUCcUkZOJEuQ1xSBpQq6ZYGZnbNZpO0THqKef/+/fj4449x4sQJpKamYvPmzRg2bJjm5xMnTsSaNWu0nhMZGYkdO3bUcKVERGRudiSmYu5vZ5GaVQhAjrWXjsPX2RbRg1tgQCtfZtehbJKeSUcQ8/Ly0LZtWyxduvSBjxkwYABSU1M1Xz/++GMNVkhEROZoR2Iqpq6Lv9es/CstqxBT18VjR2Iqs+tINhmHSUcQo6KiEBUV9dDH2NjYwMfHp4YqIiIic6dUCcz97SwqO7kpAMgARG89g84N3SC30G/9XKVKIHrrGWbrmT33t7Po38JH72wynlo/i3nv3r3w8vKCq6sr+vbti/fffx/u7u4PfHxRURGKioo032dnZwMomyFkaWmp+bPU1JnMZjazmc3s2p0dl5RRYSSrPAHgZnYROr6/2+B9MVu37NSsQhy+fAuhwW4GZdWV38GazK5sP7qQCSFqxRWiMpmswjWIGzZsgJ2dHYKDg3HlyhXMnj0bDg4OOHz4MORyeaU5c+bMwdy5cytsX79+Pezs7IxVPhER1REn0mVYe6nyzxAynfFNlejoUStaErOVn5+P0aNHIysrC05OTg99bK1uEO/3999/o3Hjxti9ezf69etX6WMqG0EMCAhAeno6FAoFYmJi0L9/f6OsYcRsZjOb2cyu/dlxSRkYu+p4lY9bM6EDuug5onU0KQMT1sQzuxrZ6yZ1kmQEsS78DtZkdnnZ2dnw8PDQqUGs9aeYy2vUqBE8PDxw+fLlBzaINjY2sLGxqbDdyspK86aX/7PUmM1sZjOb2bU7u2sTL/g62z7wNLMMgI+zLcJC9L8mLizEB77OtkjLKqz0mjtmPzi7axMvya5BrO2/g6bIVufrqk6tg3j9+nXcuXMHvr6cDk9ERNUjt5AhenCLSn+mbk+iB7eoVrNSPvv+ZzNb+mwyHpM2iLm5uUhISEBCQgIAICkpCQkJCUhOTkZubi5ee+01HDlyBP/88w/27NmDoUOHokmTJoiMjDRl2UREVMf1aOoJG8uKH4E+zrZYPraDQevyDWjli+VjO8DH2ZbZNZBNxmHSU8zHjx9Hnz59NN/PmjULADBhwgQsX74cp06dwpo1a5CZmQk/Pz9ERERg3rx5lZ5CJiIi0tVvf6WgqFSFhu52mDfkEcQcPIqIHqGSneYc0MoX/Vv44PDlW9h1II7Z5bJf2RCPrafS0K+5B74a34Ujh7WUSRvE3r1742FzZHbu3FmD1RARUX3x47FrAICnuwTi0UbuyDgvEBqs/xp/DyO3kCE02A13zjG7fPajjdyw9VQaiksFm8NarE5dg0hERGSoc6nZ+OtaJiwtZHiig7+py6l3/F0VAIDrdwtMXAk9DBtEIiKqVzbeGz3s38Ibno68ZKmmBbiWrUl8PbMAKlWtWGmPKsEGkYiI6o3CEiV+ib8OoOz0MtU8HycbWECgRClwM+fBd7Qh02KDSERE9cb2xFRkF5aigYsCYU08TF1OvWQpt4DrvYHb5Dv5pi2GHogNIhER1Rs/Hi07vTyiUwAnSJiQu23ZqeXkDDaItRUbRCIiqhf+vp2Lo0kZsJABIzpzcoopud8bQbzGiSq1FhtEIiKqF9STU3qHeMHXWWHiauo39QjiNY4g1lpsEImIyOwVl6qw6cS9ySmdA0xcDalHEHmKufZig0hERGZv97mbuJNXDC9HG/Rt7mXqcuo9jiDWfmwQiYjI7P14NBkA8GRHf1jK+dFnah73RhBv5RShsERp2mKoUjxKiIjIrF3LyMfBy+kAgJE8vVwr2FkC9jZyAMD1uxxFrI3YIBIRkVn7+fg1CAF0b+KOIHd7U5dDAGSyf++owusQayc2iEREZLZKlSr8dFw9OYV3TqlNAu7dk5mLZddObBCJiMhs7bt4G2nZhXC1s0JES29Tl0PlqBtEroVYO7FBJCIis6W+c8oTHfxhYyk3cTVUXoDbvRFEnmKuldggEhGRWbqZXYjYC7cAAE934eSU2sZfPYLIBrFWYoNIRERmadOJ61CqBDoFuaKJl6Opy6H7qCepXMvIhxDCxNXQ/dggEhGR2VGpBDYcK1v78OkunJxSG/m72AIA8oqVyMgrNnE1dD82iEREZHb+vHIH1zIK4GhriUGtfU1dDlXCxkoOb6eyFbM5UaX2YYNIRERm58d7o4fD2jWAwpqTU2qrQDeuhVhbsUEkIiKzcie3CLvOpAHg5JTarvx1iFS7sEEkIiKzsvnkDZQoBVo3cEZLP2dTl0MPEeDGBrG2YoNIRERmQwiBH4+qJ6dw9LC24ynm2osNIhERmY3jV+/iyu08KKzkGNLWz9TlUBU0I4h32SDWNmwQiYjIbKhHDwe39YWjrZWJq6GqqEcQUzILUapUmbgaKo8NIhERmYWsghL8fjoVANc+rCu8HG1gbWkBpUogNavQ1OVQOWwQiYjILGxNuIHCEhWaeTugfYCLqcshHVhYyDS33ON1iLULG0QiIqrzyianXAMAPN05EDKZzMQVka44UaV2YoNIRER13ukbWTibmg1rSwsM79DA1OWQHrgWYu3EBpGIiOo89ehhVCsfuNhZm7ga0gdHEGsnNohERFSn5RWVYmvCDQBlp5epbglwK7sGkSOItQsbRCIiqtP+dyoFecVKNHS3w6ON3ExdDunp37UQC0xcCZXHBpGIiOq0DcfKTi+P5OSUOkndIGbkFSO3qNTE1ZAaG0QiIqqzLqTl4GRyJiwtZHiyo7+py6FqcLK1gotd2aLmPM1ce7BBJCKiOkt955TwR7zh6Whj4mqoujhRpfZhg0hERHVSYYkSm0/em5zSJcDE1ZAhNNchskGsNdggEhFRnbQjMQ1ZBSVo4KJAj6aepi6HDMC1EGsfNohERFQnbThWdnp5RKcAyC04OaUu4ynm2ocNIhER1TlJ6Xk48ncGLGTAU504OaWu06yFyKVuag02iEREVOeoRw97NfOEn4vCxNWQoQLLXYOoUgkTV0MAG0QiIqpjiktV+L8T1wEAT3fhnVPMgZ+LAhYyoKhUhdu5RaYuh8AGkYiI6pg9524iPbcYno426Nvcy9TlkASs5BbwdeYt92oTNohERFSnqO+c8lRHf1jJ+TFmLjhRpXax1OfB586dw4YNG3DgwAFcvXoV+fn58PT0RPv27REZGYknnngCNjZcqJSIiIzjRmYB9l+6DQAY2ZlrH5qTADcFDv8NXMvgRJXaQKf/esXHxyM8PBzt27fHwYMHERoaipkzZ2LevHkYO3YshBB4++234efnhwULFqCoiNcPEBGR9DaduAEhgG6N3RHkbm/qckhCHEGsXXQaQXziiSfw6quvYtOmTXBxcXng4w4fPozPP/8cixYtwuzZs6WqkYiICCoBbIpX3zmFk1PMDe+mUrvo1CBevHgRVlZWVT6ua9eu6Nq1K0pKSgwujIiICACUKoG4pAz8lmyBtOwiuCgsEdnS29RlkcQ0DeJdNoi1gU6nmK2srJCUlKRzqC7NJADs378fgwcPhp+fH2QyGX799Vetnwsh8O6778LX1xcKhQLh4eG4dOmSznUQEVHdtiMxFWEL/sDYVcfxR0rZR1aJUiD2/C0TV0ZSU59iTssuRFGp0sTVkM7Tvxo3bozg4GBMmjQJ33//Pa5fv27wzvPy8tC2bVssXbq00p8vXLgQX3zxBVasWIG4uDjY29sjMjIShYWFBu+biIhqtx2JqZi6Lh6pWdr/5ucVKzF1XTx2JKaaqDIyBnd7ayis5BACuME7qpiczrOY//jjD+zduxd79+7Fjz/+iOLiYjRq1Ah9+/ZFnz590KdPH3h76zfkHxUVhaioqEp/JoTAZ599hv/+978YOnQoAGDt2rXw9vbGr7/+iqefflqvfRERUd2hVAnM/e0sHnZPjbm/nUX/Fj68D7OZkMlkCHSzw4WbOUjOyEcjTwdTl1Sv6dwg9u7dG7179wYAFBYW4s8//9Q0jGvWrEFJSQmaN2+OM2fOSFJYUlIS0tLSEB4ertnm7OyM0NBQHD58+IENYlFRkdYs6uzsbABASUkJLC0tNX+WmjqT2cxmNrOZbXh2XFJGhZHD8gSA1KxCHL58C6HBbgbtq668J/Uh29/VFhdu5uCf2zkoaeQqabah6mp2ZfvRhUwIUe2bHhYXF+PQoUPYvn07Vq5cidzcXCiV1btuQCaTYfPmzRg2bBgA4M8//0T37t2RkpICX19fzeNGjBgBmUyGjRs3VpozZ84czJ07t8L29evXw87Orlq1ERFRzTqRLsPaS/IqHze+qRIdPXjvXnPxS5IF9qVZoK+vCkMbqkxdjtnJz8/H6NGjkZWVBScnp4c+Vq+FsouLi3HkyBHExsZi7969iIuLQ0BAAHr27IklS5agV69eBhUuhbfeeguzZs3SfJ+dnY2AgABERERAoVAgJiYG/fv313kija5KSkqYzWxmM5vZEmW7J2Vg7aXjVT4uokeoJCOIdeE9qQ/Ztw9fxb7fL8DS1QcDB7aTNNtQdTW7PPVZVV3o3CD27dsXcXFxCA4ORq9evfD8889j/fr1WqN7UvLx8QEA3Lx5U2sfN2/eRLt27R74PBsbm0rv5mJlZaV508v/WWrMZjazmc1sw7O7NvGCr7Mt0rIKK70OUQbAx9kWXZt4SXYNYm1/T+pDdkMPRwDA9buFBu3XnN4TqfN1pfMs5gMHDsDd3R19+/ZFv3790L9/f6M1hwAQHBwMHx8f7NmzR7MtOzsbcXFx6Nq1q9H2S0REpie3kCF6cItKf6ZuB6MHt+AEFTMT6P7vYtkGXAFHEtC5QczMzMRXX30FOzs7LFiwAH5+fmjdujWmT5+OTZs24fbt23rvPDc3FwkJCUhISABQNjElISEBycnJkMlkmDlzJt5//31s3boVp0+fxvjx4+Hn56e5TpGIiMzXgFa+WDq6A+5vAX2cbbF8bAcMaGW8QQoyjQDXsgYxp6gUWQW86YYp6XyK2d7eHgMGDMCAAQMAADk5OTh48CBiY2OxcOFCjBkzBk2bNkViYqLOOz9+/Dj69Omj+V597eCECRPw3Xff4fXXX0deXh6mTJmCzMxMhIWFYceOHbC1tdV5H0REVHeF+DpCALCSyzAyuBQDeoZKelqZaheFtRweDjZIzy3CtYwCuNhZm7qkekuvSSrl2dvbw83NDW5ubnB1dYWlpSXOnTunV0bv3r0fOoQsk8nw3nvv4b333qtumUREVIcl3sgCALT0c0JnzzsIDXZjc2jmAt0USM8tQnJGPlr7O5u6nHpL5wZRpVLh+PHj2Lt3L2JjY3Ho0CHk5eWhQYMG6NOnD5YuXao1GkhERGSoMyllsy5b+joBuGPaYqhGBLrZIT45E8kZvCezKencILq4uCAvLw8+Pj7o06cPFi9ejN69e6Nx48bGrI+IiOqx09f/HUHETRMXQzUi4N49ma/dZYNoSjo3iB9//DH69OmDZs2aGbMeIiIiAGW3XE1MUTeIjviHDWK9oGkQOYJoUjrPYn7++efRrFkzxMbGPvAxS5culaQoIiKi5Ix85BSWwlpugaZevC9vfaGeycwG0bR0bhDVhg8fjhMnTlTY/vnnn+Ott96SpCgiIqLEG2XXHzb3dYSVXO+PK6qj1GshXr9bAKWKayGait5H3Mcff4yoqCicP39es23RokV49913sW3bNkmLIyKi+uu0ZgYzZ7LWJz5OtrCSy1CqEkjNKjB1OfWW3svcPPvss8jIyEB4eDgOHjyIjRs3Yv78+fj999/RvXt3Y9RIRET10Jl71x+2bsAGsT6RW8jQwEWBf+7k41pGAfzvnXKmmlWtdRBff/113LlzB506dYJSqcTOnTvx6KOPSl0bERHVU0IIzRqIrRo4mbgaqmkBbnb3GsR8dG3sbupy6iWdGsQvvviiwrYGDRrAzs4OPXv2xNGjR3H06FEAwIwZM6StkIiI6p0bmQW4m18CSwsZQnwcAaEydUlUg7jUjenp1CAuXry40u1yuRyHDh3CoUOHAJTd+YQNIhERGUo9QaWZtyNsLOUoKWGDWJ8E3msQuVi26ejUICYlJRm7DiIiIg2eXq7f2CCaHtcNICKiWieRE1TqtX/XQuQsZlPRqUH86KOPkJ+vWxcfFxfH5W6IiKjayk9QackGsV5SjyCm5xYhv7jUxNXUTzo1iGfPnkVQUBBefPFFbN++Hbdv39b8rLS0FKdOncKyZcvQrVs3jBw5Eo6OjkYrmIiIzNvN7CKk5xZDbiFDC1+eYq6PnO2s4GhbdhXc9bscRTQFnRrEtWvXYvfu3SgpKcHo0aPh4+MDa2trODo6wsbGBu3bt8eqVaswfvx4nD9/Hj179jR23UREZKbUo4dNPB1gayU3cTVkKprrEO/wOkRT0HkdxLZt2+Lrr7/GypUrcerUKVy9ehUFBQXw8PBAu3bt4OHhYcw6iYiontDcQYUTVOq1QDc7nEnJ5kQVE9F7oWwLCwu0a9cO7dq1M0I5RERU3/EOKgRwLURT4yxmIiKqVdRrILZig1ivaRpEjiCaBBtEIiKqNW7nFCEtuxAyGThBpZ4LcFUA4FqIpsIGkYiIag31+oeNPOxhb6P3VVBkRgLd/l0LUQhh4mrqHzaIRERUayRe5/WHVKaBqwIyGVBQokR6brGpy6l39GoQS0pKYGlpicTERGPVQ0RE9Zh6BJHXH5KNpRw+TrYAOFHFFPRqEK2srBAYGAilUmmseoiIqB5TT1Bp6ccGkThRxZT0PsX89ttvY/bs2cjIyDBGPUREVE9l5BXjRmbZXTO4BiIBXCzblPS+AnjJkiW4fPky/Pz8EBQUBHt7e62fx8fHS1YcERHVH+r1Dxu628HJ1srE1VBtEODKtRBNRe8GcdiwYUYog4iI6jv1HVR4/SGpBbpzqRtT0btBjI6ONkYdRERUz53hAtl0H80IYkaBiSupf6q1zE1mZia++eYbvPXWW5prEePj43Hjxg1JiyMiovpDM4LICSp0j/oaxNSsAhSXqkxcTf2i9wjiqVOnEB4eDmdnZ/zzzz947rnn4Obmhl9++QXJyclYu3atMeokIiIzlpVfojmN2IoTVOgeT0cb2FhaoKhUhZTMAjT0sK/6SSQJvUcQZ82ahYkTJ+LSpUuwtbXVbB84cCD2798vaXFERFQ/nEktGz30d1XAxc7axNVQbSGTyf5d6oYTVWqU3g3isWPH8Pzzz1fY3qBBA6SlpUlSFBER1S+JN3gHFaqcZqkbTlSpUXo3iDY2NsjOzq6w/eLFi/D09JSkKCIiql8SOUGFHiDAtWwmMyeq1Cy9G8QhQ4bgvffeQ0lJCYCy4d/k5GS88cYbeOKJJyQvkIiIzF8il7ihB+DdVExD7wZx0aJFyM3NhZeXFwoKCtCrVy80adIEjo6O+OCDD4xRIxERmbGcwhL8nZ4HAGjpxwkqpI2nmE1D71nMzs7OiImJwcGDB3Hq1Cnk5uaiQ4cOCA8PN0Z9RERk5s6mlJ1e9nW2hYeDjYmrodqGk1RMQ+8GsbCwELa2tggLC0NYWJgxaiIionokMYXXH9KDqRvEzPwSZBeW8DaMNUTvU8wuLi7o2bMn3nnnHfzxxx8oKOBFo0REVH1nuEA2PYSDjSXc7MuWPuJ1iDVH7wZx9+7dGDBgAOLi4jBkyBC4uroiLCwMb7/9NmJiYoxRIxERmTH1HVRa+/P6Q6ocJ6rUPL0bxLCwMMyePRu7du1CZmYmYmNj0aRJEyxcuBADBgwwRo1ERGSm8otLceV2LgCOINKDcaJKzdP7GkSgbM3DvXv3ar6Kiorw2GOPoXfv3hKXR0RE5uxcajZUouyWal5OtlU/geolroVY8/RuEBs0aICCggL07t0bvXv3xhtvvIE2bdpAJpMZoz4iIjJj6gWyeQcVehiOINY8vU8xe3p6Ij8/H2lpaUhLS8PNmzc5UYWIiKpFs0A21z+kh+BSNzVP7wYxISEBaWlpePPNN1FUVITZs2fDw8MD3bp1w9tvv22MGomIyEyd5h1USAfqEcTrGQVQqYSJq6kfqnUNoouLC4YMGYLu3bujW7du2LJlC3788UfExcXxbipERKSTwhIlLt26N0GFDSI9hK+zLeQWMhQrVbiZUwhfZ4WpSzJ7eo8g/vLLL5gxYwbatGkDb29vTJ06Fbm5uVi0aBHi4+ONUSMREZmh82k5UKoE3Oyt4evMCSr0YJZyC/i5lP2OcKJKzdB7BPGFF15Az549MWXKFPTq1QutW7c2Rl1ERGTmEsudXuZER6pKoJsdrmUUIDkjH12C3UxdjtnTu0G8deuWMeogIqJ65kwKJ6iQ7gJc7QDc4UzmGlKtaxCVSiV+/fVXnDt3DgDQokULDB06FHK5XNLi5syZg7lz52ptCwkJwfnz5yXdDxER1TzNHVR4/SHpIEAzUYUNYk3Qu0G8fPkyBg4ciBs3biAkJAQA8OGHHyIgIADbtm1D48aNJS2wZcuW2L17t+Z7S8tq9bRERFSLFJeqcCEtBwAnqJBuuBZizdJ7ksqMGTPQuHFjXLt2DfHx8YiPj0dycjKCg4MxY8YMyQu0tLSEj4+P5svDw0PyfRARUc26eDMHJUoBZ4UV/F05I5WqxrUQa5beDeK+ffuwcOFCuLn9e4Gou7s7PvroI+zbt0/S4gDg0qVL8PPzQ6NGjTBmzBgkJydLvg8iIqpZ/05QceIEFdKJegTxZnYRCkuUJq7G/Ol9vtbGxgY5OTkVtufm5sLa2lqSotRCQ0Px3XffISQkBKmpqZg7dy569OiBxMREODo6VvqcoqIiFBUVab7Pzi67jVNJSYnm9HRJSYmkdZbPZDazmc1sZled/de1uwCAR3wcdXp8bamb2abLdrAC7G3kyCtSIulWNpp4OUiWrYu6ml3ZfnQhE0LotST5+PHjER8fj2+//RZdunQBAMTFxeG5555Dx44d8d133+lVrD4yMzMRFBSETz/9FJMnT670MZVNbAGA9evXw87Ozmi1ERGR7j49LcfVXBkmNFWigwfvjEG6WfCXHCn5MkxprkRLV/7e6Cs/Px+jR49GVlYWnJwevnqA3g1iZmYmJkyYgN9++w1WVlYAgNLSUgwZMgTfffcdnJ2Ne7Fx586dER4ejg8//LDSn1c2ghgQEID09HQoFArExMSgf//+mtqlUlJSwmxmM5vZzNYhu0SpQrv3/0BxqQoxM7ujobu9ZNnVwey6k/3i+gTEnLuFdwc1x7hHAyXNrkpdzS4vOzsbHh4eOjWIep9idnFxwZYtW3D58mXNMjePPPIImjRpUr1q9ZCbm4srV65g3LhxD3yMjY0NbGxsKmy3srLSvOnl/yw1ZjOb2cxm9sOzL6dno7hUBUcbSzT2coaFhe7XIJrre8Js3QTe+89ESlbRQ59b2+quDdnqfF3p3CCqVCp8/PHH2Lp1K4qLi9GvXz9ER0dDoTDe7LNXX30VgwcPRlBQEFJSUhAdHQ25XI5Ro0YZbZ9ERGRc6gkqLfyc9GoOibjUTc3ReRbzBx98gNmzZ8PBwQENGjTA559/jmnTphmzNly/fh2jRo1CSEgIRowYAXd3dxw5cgSenp5G3S8RERlP+VvsEemDDWLN0XkEce3atVi2bBmef/55AMDu3bsxaNAgfPPNN7Cw0Hu1HJ1s2LDBKLlERGQ6iSllq0vwDiqkrwC3srOW1+8WQAjBJZKMSOfOLjk5GQMHDtR8Hx4eDplMhpSUFKMURkRE5kepEjh7r0Fs1YD3YCb9+LuWjSDmFpXibr5xl4Sp73RuEEtLS2Fra6u1zcrKyuhr9hARkfn4+3YuCkqUsLOWI9ij4jp2RA9jayWHl2PZRNRrPM1sVDqfYhZCYOLEiVozhAsLC/HCCy/A3v7fJQp++eUXaSskIiKzkZhyb4KKrxPknKBC1RDoZodbOUVIzshH2wAXU5djtnRuECdMmFBh29ixYyUthoiIzNvp6+rTy7z+kKon0M0Ox6/e5UQVI9O5QVy9erUx6yAionpAPYLIBpGqy//eTObrd9kgGpNxph8TERHdR8UJKiQBLnVTM9ggEhFRjfjnTh5yi0phY2mBJp6coELVE+BattTNtYwCE1di3tggEhFRjVCvf/iIrxMs5fz4oeoJdC8bQbyRWYBSpcrE1ZgvHqFERFQj1HdQ4QLZZAhvR1tYyy2gVAmkZhWauhyzxQaRiIhqxL+32OP1h1R9FhYy+GtOM/M6RGNhg0hEREYnhNA0iC39OIJIhgngRBWjY4NIRERGdy2jANmFpbCWW6CZt6Opy6E6Tn1PZjaIxsMGkYiIjE69/mGIjyOsLfnRQ4ZRL3Vz7S5nMhsLj1IiIjK60ze4QDZJh2shGh8bRCIiMjpOUCEp+bveu5sKG0SjYYNIRERGVX6CCpe4ISmo10K8k1eM3KJSE1djntggEhGRUaVkFeJufgksLWScoEKScLK1goudFQAudWMsbBCJiMio1KOHTb0dYWslN3E1ZC4C7p1mZoNoHGwQiYjIqP49vczrD0k6nKhiXGwQiYjIqBI5g5mMwP/eWojXudSNUbBBJCIioxFC4PSNbABsEElaHEE0LjaIRERkNLdyipCeWwQLGfCID08xk3TYIBoXG0QiIjIa9enlJl4OUFhzggpJp/wkFSGEiasxP2wQiYjIaHgHFTIWPxcFLGRAUakKt3OKTF2O2WGDSERERpOovv7Qjw0iScva0gK+zmUTVa7d5WlmqbFBJCIio9EscePPBpGkF3BvJjOvQ5QeG0QiIjKK2zlFSMsuhEwGPOLLCSokPc1ElTtc6kZqbBCJiMgoElPKRg+DPezhYGNp4mrIHGkmqvAUs+TYIBIRkVGc0dxBhaeXyTgC3bnUjbGwQSQiIqPgBBUyNv97I4jX2SBKjg0iEREZBZe4IWNTX4OYml2IolKliasxL2wQiYhIcnfzinEjs2ziQMsGnKBCxuHhYA2FlRxCADd4T2ZJsUEkIiLJqSeoNHS3g5OtlYmrIXMlk8k0S91cY4MoKTaIREQkOfX1hy15epmMjPdkNg42iEREJDn1CCInqJCx+Ze7JzNJhw0iERFJLpFL3FANUY8gskGUFhtEIiKSVHZBCa7eKfuwbunHCSpkXDzFbBxsEImISFJnU3MAAP6uCrjaW5u4GjJ3ARxBNAo2iEREJKkzqVwgm2qOehZzdmEpsgpKTFyN+WCDSEREktLcQYXrH1INsLO2hIeDDQDgWgaXupEKG0QiIpLUWfUIIieoUA35dy1EnmaWChtEIiKSTKESSLo3QYUNItUUzUxmLpYtGTaIREQkmRt5gBCAr7Ot5rQfkbEF3FsL8TobRMmwQSQiIslcy5MBAFpyggrVII4gSo8NIhERSeZ6blmDyAWyqSb9u9QNG0SpsEEkIiLJqEcQOYOZapJ6kkpKVgFUwsTFmAk2iEREJImCYiVu3hvA4QQVqkm+zgpYWshQohTILDZ1NeaBDaIElCqBuKQMnEiXIS4pA0oJ//vCbGYzm9l1Jfv/4m9AQAZnW0tOUKEaJbeQwc/FFgBw5GbdO3aMlW0IS1MXoIulS5fi448/RlpaGtq2bYsvv/wSXbp0MXVZAIAdiamY+9tZpGYVApBj7aXj8HW2RfTgFhjQypfZzGY2s+tZNpBVWIqwBX9Ikk2kix2JqUjLLgIA7Lwhx85VdfHYkTbbULV+BHHjxo2YNWsWoqOjER8fj7Zt2yIyMhK3bt0ydWnYkZiKqeviNf8oqqVlFWLqunjsSExlNrOZzWxmExmR+newuFSltb22/37X9mOn1o8gfvrpp3juuefwzDPPAABWrFiBbdu2YdWqVXjzzTdNVpdSJTD3t7OobCBYAJABiN56Bp0bukFuIdM7O3rrGWYzm9nMrvPZc387i/4tfPTOJtKFOX8Wm/rYkQkhasfJ7koUFxfDzs4OmzZtwrBhwzTbJ0yYgMzMTGzZsqXCc4qKilBUVKT5Pjs7GwEBAUhPT4dCoUBMTAz69+8PKysrg2qLS8rA2FXHDcogIqoP1k3qhNBgN4MySkpKJPv3m9nmk23un8VSHDvlZWdnw8PDA1lZWXByevhKA7V6BDE9PR1KpRLe3t5a2729vXH+/PlKn/Phhx9i7ty5Fbbv2rULdnZl6yTFxMQYXNuJdBkAucE5RETmbteBONw5J81YhBT/fjPbfLLN/bNYymMHAPLzdb9Xda1uEKvjrbfewqxZszTfq0cQIyIiJB1BdE/KwNpLVf+vZc2EDuiiZ/d/NCkDE9bEM5vZzGa2WWRH9AjlCCKzjZJt7p/FUhw75WVnZ+v82FrdIHp4eEAul+PmzZta22/evAkfH59Kn2NjYwMbm4rLK1hZWWl+Ecv/ubq6NvGCr7Mt0rIKK72GQAbAx9kWYSH6Xz8QFuLDbGYzm9lmk921iZdk11FJ8e83s80n29w/i6U8dgDo9X7X6lnM1tbW6NixI/bs2aPZplKpsGfPHnTt2tWElZWtuRQ9uAWAsr/I8tTfRw9uUa2/WGYzm9nMru/ZRLqoq7/fdeHYqdUNIgDMmjULX3/9NdasWYNz585h6tSpyMvL08xqNqUBrXyxfGwH+Djbam33cbbF8rEdDFrDiNnMZjaz63s2kS7q6u93rT92RB3w5ZdfisDAQGFtbS26dOkijhw5ovNzs7KyBACRlZUliouLxa+//iqKi4slra9UqRIHLqSJd77ZIg5cSBOlShWzmc1sZjNbQsb695vZ5pNdV3+/jX3slFe+J6pKrb4GUW369OmYPn26qct4ILmFDKHBbrhzTiA0WP/1kJjNbGYzm9lEhqmrv9+19dip9aeYiYiIiKhm1YkRREOIe+uAZ2dno6SkBPn5+cjOzjbKtH1mM5vZzGY2s5nN7NqUXZ56mRuhwz1SzL5BzMnJAQAEBASYuBIiIiIi08vJyYGzs/NDH1Orb7UnBZVKhZSUFDg6OiInJwcBAQG4du1albeY0Zd6QW5mM5vZzGY2s5nN7NqSXZ4QAjk5OfDz84OFxcOvMjT7EUQLCwv4+/sDAGSysgs/nZycjPYXwGxmM5vZzGY2s5ld27LVqho5VOMkFSIiIiLSwgaRiIiIiLTUqwbRxsYG0dHRld6rmdnMZjazmc1sZjPb3LKry+wnqRARERGRfurVCCIRERERVY0NIhERERFpYYNIRERERFrYIBIRERGRlnrVIC5duhQNGzaEra0tQkNDcfToUYMz9+/fj8GDB8PPzw8ymQy//vqr4YXe8+GHH6Jz585wdHSEl5cXhg0bhgsXLkiSvXz5crRp00azKGfXrl2xfft2SbLv99FHH0Emk2HmzJkGZ82ZMwcymUzrq3nz5oYXec+NGzcwduxYuLu7Q6FQoHXr1jh+/LjBuQ0bNqxQt0wmw7Rp0wzOViqVeOeddxAcHAyFQoHGjRtj3rx5Ot1rUxc5OTmYOXMmgoKCoFAo0K1bNxw7dkzvnKqOFSEE3n33Xfj6+kKhUCA8PByXLl2SJPuXX35BREQE3N3dIZPJkJCQIEndJSUleOONN9C6dWvY29vDz88P48ePR0pKiiR1z5kzB82bN4e9vT1cXV0RHh6OuLg4SbLLe+GFFyCTyfDZZ59Jkj1x4sQKv+sDBgyQrO5z585hyJAhcHZ2hr29PTp37ozk5GSDsys7RmUyGT7++GODs3NzczF9+nT4+/tDoVCgRYsWWLFiRZW5umTfvHkTEydOhJ+fH+zs7DBgwACdjh1dPmMKCwsxbdo0uLu7w8HBAU888QRu3rwpSfZXX32F3r17w8nJCTKZDJmZmVXm6pKdkZGBl156CSEhIVAoFAgMDMSMGTOQlZUlSd3PP/88GjduDIVCAU9PTwwdOhTnz5+XJFtNCIGoqCjJ+wp91JsGcePGjZg1axaio6MRHx+Ptm3bIjIyErdu3TIoNy8vD23btsXSpUslqvRf+/btw7Rp03DkyBHExMSgpKQEERERyMvLMzjb398fH330EU6cOIHjx4+jb9++GDp0KM6cOSNB5f86duwYVq5ciTZt2kiW2bJlS6Smpmq+Dh48KEnu3bt30b17d1hZWWH79u04e/YsFi1aBFdXV4Ozjx07plVzTEwMAOCpp54yOHvBggVYvnw5lixZgnPnzmHBggVYuHAhvvzyS4OzAeDZZ59FTEwMvv/+e5w+fRoREREIDw/HjRs39Mqp6lhZuHAhvvjiC6xYsQJxcXGwt7dHZGQkCgsLDc7Oy8tDWFgYFixYoFfNVWXn5+cjPj4e77zzDuLj4/HLL7/gwoULGDJkiMHZANCsWTMsWbIEp0+fxsGDB9GwYUNERETg9u3bBmerbd68GUeOHIGfn59ONeuaPWDAAK3f+R9//FGS7CtXriAsLAzNmzfH3r17cerUKbzzzjuwtbU1OLt8vampqVi1ahVkMhmeeOIJg7NnzZqFHTt2YN26dTh37hxmzpyJ6dOnY+vWrQZlCyEwbNgw/P3339iyZQtOnjyJoKAghIeHV/lZoctnzCuvvILffvsNP//8M/bt24eUlBQMHz68ypp1yc7Pz8eAAQMwe/bsKvP0yU5JSUFKSgo++eQTJCYm4rvvvsOOHTswefJkSeru2LEjVq9ejXPnzmHnzp0QQiAiIgJKpdLgbLXPPvtMc/c3kxH1RJcuXcS0adM03yuVSuHn5yc+/PBDyfYBQGzevFmyvPvdunVLABD79u0zSr6rq6v45ptvJMvLyckRTZs2FTExMaJXr17i5ZdfNjgzOjpatG3b1uCcyrzxxhsiLCzMKNn3e/nll0Xjxo2FSqUyOGvQoEFi0qRJWtuGDx8uxowZY3B2fn6+kMvl4n//+5/W9g4dOoi333672rn3HysqlUr4+PiIjz/+WLMtMzNT2NjYiB9//NGg7PKSkpIEAHHy5MlqVK3bMX706FEBQFy9elXy7KysLAFA7N69W5Ls69eviwYNGojExEQRFBQkFi9erFfug7InTJgghg4dqneWLtkjR44UY8eONUr2/YYOHSr69u0rSXbLli3Fe++9p7WtOsfR/dkXLlwQAERiYqJmm1KpFJ6enuLrr7/WK/v+z5jMzExhZWUlfv75Z81jzp07JwCIw4cPG5RdXmxsrAAg7t69q1emLtlqP/30k7C2thYlJSWSZ//1118CgLh8+bIk2SdPnhQNGjQQqampRu8rHqZejCAWFxfjxIkTCA8P12yzsLBAeHg4Dh8+bMLK9KMeHndzc5M0V6lUYsOGDcjLy0PXrl0ly502bRoGDRqk9b5L4dKlS/Dz80OjRo0wZswYnU4t6WLr1q3o1KkTnnrqKXh5eaF9+/b4+uuvJckur7i4GOvWrcOkSZMk+R9it27dsGfPHly8eBEA8Ndff+HgwYOIiooyOLu0tBRKpbLC6IxCoZBs5BYAkpKSkJaWpvW74uzsjNDQ0Dp1jAJlx6lMJoOLi4ukucXFxfjqq6/g7OyMtm3bGpynUqkwbtw4vPbaa2jZsqUEFWrbu3cvvLy8EBISgqlTp+LOnTsGZ6pUKmzbtg3NmjVDZGQkvLy8EBoaapRTcDdv3sS2bdt0GnXSRbdu3bB161bcuHEDQgjExsbi4sWLiIiIMCi3qKgIALSOUQsLC9jY2Oh9jN7/GXPixAmUlJRoHZfNmzdHYGCg3selsT6/dM3OysqCk5MTLC0tJc3Oy8vD6tWrERwcjICAAIOz8/PzMXr0aCxduhQ+Pj565UmtXjSI6enpUCqV8Pb21tru7e2NtLQ0E1WlH5VKhZkzZ6J79+5o1aqVJJmnT5+Gg4MDbGxs8MILL2Dz5s1o0aKFJNkbNmxAfHw8PvzwQ0ny1EJDQzWnC5YvX46kpCT06NEDOTk5Bmf//fffWL58OZo2bYqdO3di6tSpmDFjBtasWSNB5f/69ddfkZmZiYkTJ0qS9+abb+Lpp59G8+bNYWVlhfbt22PmzJkYM2aMwdmOjo7o2rUr5s2bh5SUFCiVSqxbtw6HDx9GamqqBNWXUR+HdfkYBcqu13rjjTcwatQoODk5SZL5v//9Dw4ODrC1tcXixYsRExMDDw8Pg3MXLFgAS0tLzJgxQ4IqtQ0YMABr167Fnj17sGDBAuzbtw9RUVFVnoKryq1bt5Cbm4uPPvoIAwYMwK5du/D4449j+PDh2Ldvn0TVl1mzZg0cHR11Op2qiy+//BItWrSAv78/rK2tMWDAACxduhQ9e/Y0KFfdsL311lu4e/cuiouLsWDBAly/fl2vY7Syz5i0tDRYW1tX+M+OvselMT6/9MlOT0/HvHnzMGXKFMmyly1bBgcHBzg4OGD79u2IiYmBtbW1wdmvvPIKunXrhqFDh+pVqzHo10qTyUybNg2JiYmSjtqEhIQgISEBWVlZ2LRpEyZMmIB9+/YZ3CReu3YNL7/8MmJiYnS6Lkgf5UfF2rRpg9DQUAQFBeGnn34y+H/6KpUKnTp1wvz58wEA7du3R2JiIlasWIEJEyYYlF3et99+i6ioKL2u+XqYn376CT/88APWr1+Pli1bIiEhATNnzoSfn58kdX///feYNGkSGjRoALlcjg4dOmDUqFE4ceKEBNWbj5KSEowYMQJCCCxfvlyy3D59+iAhIQHp6en4+uuvMWLECMTFxcHLy6vamSdOnMDnn3+O+Ph4o1zn9PTTT2v+3Lp1a7Rp0waNGzfG3r170a9fv2rnqlQqAMDQoUPxyiuvAADatWuHP//8EytWrECvXr0MK7ycVatWYcyYMZL9G/bll1/iyJEj2Lp1K4KCgrB//35MmzYNfn5+Bp1lsbKywi+//ILJkyfDzc0Ncrkc4eHhiIqK0muimjE+Y2pDdnZ2NgYNGoQWLVpgzpw5kmWPGTMG/fv3R2pqKj755BOMGDEChw4d0vn3pbLsrVu34o8//sDJkyf1qtNoTHJiu4YVFRUJuVxe4Tz++PHjxZAhQyTbD4x0rcC0adOEv7+/+PvvvyXPLq9fv35iypQpBuds3rxZABByuVzzBUDIZDIhl8tFaWmpBNX+q1OnTuLNN980OCcwMFBMnjxZa9uyZcuEn5+fwdlq//zzj7CwsBC//vqrZJn+/v5iyZIlWtvmzZsnQkJCJNuHEELk5uaKlJQUIYQQI0aMEAMHDqx21v3HypUrVyq9NrBnz55ixowZBmWXZ6xrEIuLi8WwYcNEmzZtRHp6uqTZ92vSpImYP3++QdmLFy/WHI/lj1ELCwsRFBRklLo9PDzEihUrDMouKioSlpaWYt68eVqPe/3110W3bt0Myi5v//79AoBISEjQK/NB2fn5+cLKyqrCtbyTJ08WkZGRBmWXl5mZKW7duiWEKLvu/sUXX9Qp80GfMXv27Kn02sDAwEDx6aefGpRdXnWvQawqOzs7W3Tt2lX069dPFBQUSJpdXlFRkbCzsxPr1683KPvll19+4HHZq1cvveqXQr04xWxtbY2OHTtiz549mm0qlQp79uyR9Jo7qQkhMH36dGzevBl//PEHgoODjbo/lUqluZ7FEP369cPp06eRkJCg+erUqRPGjBmDhIQEyOVyCaotk5ubiytXrsDX19fgrO7du1dYcuDixYsICgoyOFtt9erV8PLywqBBgyTLzM/Ph4WF9qEsl8s1oy1Ssbe3h6+vL+7evYudO3dKegokODgYPj4+WsdodnY24uLiavUxCvw7cnjp0iXs3r0b7u7uRt2fFMfpuHHjcOrUKa1j1M/PD6+99hp27twpUaX/un79Ou7cuWPwcWptbY3OnTsb/Tj99ttv0bFjR0mu9QTKfkdKSkqMfpw6OzvD09MTly5dwvHjx6s8Rqv6jOnYsSOsrKy0jssLFy4gOTm5yuPSmJ9fumRnZ2cjIiIC1tbW2Lp1q84je9WpWwgBIUSVx2VV2W+++WaF4xIAFi9ejNWrV+tUv5TqzSnmWbNmYcKECejUqRO6dOmCzz77DHl5eXjmmWcMys3NzcXly5c13yclJSEhIQFubm4IDAw0KHvatGlYv349tmzZAkdHR801H87OzlAoFAZlv/XWW4iKikJgYCBycnKwfv167N27V5IPB0dHxwrXa9jb28Pd3d3g609effVVDB48GEFBQUhJSUF0dDTkcjlGjRplUC7w77Uf8+fPx4gRI3D06FF89dVX+OqrrwzOBso+2FevXo0JEybofaH0wwwePBgffPABAgMD0bJlS5w8eRKffvopJk2aJEm+ehmHkJAQXL58Ga+99hqaN2+u97FT1bEyc+ZMvP/++2jatCmCg4PxzjvvwM/PD8OGDTM4OyMjA8nJyZr1CdUNho+PT5UXgj8s29fXF08++STi4+Pxv//9D0qlUnOcurm5VXlN0sOy3d3d8cEHH2DIkCHw9fVFeno6li5dihs3bui0PFJV78n9jayVlRV8fHwQEhJiULabmxvmzp2LJ554Aj4+Prhy5Qpef/11NGnSBJGRkQbX/dprr2HkyJHo2bMn+vTpgx07duC3337D3r17Dc4GyhqLn3/+GYsWLaoyT5/sXr164bXXXoNCoUBQUBD27duHtWvX4tNPPzU4++eff4anpycCAwNx+vRpvPzyyxg2bFiVE2Cq+oxxdnbG5MmTMWvWLLi5ucHJyQkvvfQSunbtikcffdSgbKDsGse0tDTNazt9+jQcHR0RGBj40AknVWWrm8P8/HysW7cO2dnZyM7OBgB4eno+dJCiquy///4bGzduREREBDw9PXH9+nV89NFHUCgUGDhwoEHvyYP+PQoMDDT6AFGlanzM0oS+/PJLERgYKKytrUWXLl3EkSNHDM5UD43f/zVhwgSDsyvLBSBWr15tcPakSZNEUFCQsLa2Fp6enqJfv35i165dBuc+iFTL3IwcOVL4+voKa2tr0aBBAzFy5Ei9lxZ4mN9++020atVK2NjYiObNm4uvvvpKsuydO3cKAOLChQuSZQpRdhrl5ZdfFoGBgcLW1lY0atRIvP3226KoqEiS/I0bN4pGjRoJa2tr4ePjI6ZNmyYyMzP1zqnqWFGpVOKdd94R3t7ewsbGRvTr10/n96qq7NWrV1f68+joaIOy1aesK/uKjY01KLugoEA8/vjjws/PT1hbWwtfX18xZMgQcfToUUnek/vps8zNw7Lz8/NFRESE8PT0FFZWViIoKEg899xzIi0tTbK6v/32W9GkSRNha2sr2rZtq/MlG7pkr1y5UigUCr1/x6vKTk1NFRMnThR+fn7C1tZWhISEiEWLFum01FVV2Z9//rnw9/cXVlZWIjAwUPz3v//V6fjX5TOmoKBAvPjii8LV1VXY2dmJxx9/XKSmpkqSHR0dXa3PuKqyH/R+ARBJSUkGZd+4cUNERUUJLy8vYWVlJfz9/cXo0aPF+fPnJXlPKnuOqZa5kd0rgIiIiIgIQD1Z5oaIiIiIdMcGkYiIiIi0sEEkIiIiIi1sEImIiIhICxtEIiIiItLCBpGIiIiItLBBJCIiIiItbBCJiIiISAsbRCIyWxMnTtTpVn3GMm7cOMyfP1/zfcOGDfHZZ5+ZrJ4HKS4uRsOGDXH8+HFTl0JEtUS9uRczEZkXmUz20J9HR0fj888/h6luFvXXX3/h999/x/Lly02yf31YW1vj1VdfxRtvvIE9e/aYuhwiqgXYIBJRnZSamqr588aNG/Huu+/iwoULmm0ODg5wcHAwRWkAgC+//BJPPfWUSWtQKy4uhrW19UMfM2bMGPznP//BmTNn0LJlyxqqjIhqK55iJqI6ycfHR/Pl7OwMmUymtc3BwaHCKebevXvjpZdewsyZM+Hq6gpvb298/fXXyMvLwzPPPANHR0c0adIE27dv19pXYmIioqKi4ODgAG9vb4wbNw7p6ekPrE2pVGLTpk0YPHhwhZ/l5+dj0qRJcHR0RGBgIL766iutn58+fRp9+/aFQqGAu7s7pkyZgtzcXK3XMHPmTK3nDBs2DBMnTtR837BhQ8ybNw/jx4+Hk5MTpkyZguLiYkyfPh2+vr6wtbVFUFAQPvzwQ81zXF1d0b17d2zYsOFhbzsR1RNsEImoXlmzZg08PDxw9OhRvPTSS5g6dSqeeuopdOvWDfHx8YiIiMC4ceOQn58PAMjMzETfvn3Rvn17HD9+HDt27MDNmzcxYsSIB+7j1KlTyMrKQqdOnSr8bNGiRejUqRNOnjyJF198EVOnTtWMfObl5SEyMhKurq44duwYfv75Z+zevRvTp0/X+3V+8sknaNu2LU6ePIl33nkHX3zxBbZu3YqffvoJFy5cwA8//ICGDRtqPadLly44cOCA3vsiIvPDU8xEVK+0bdsW//3vfwEAb731Fj766CN4eHjgueeeAwC8++67WL58OU6dOoVHH30US5YsQfv27bUmm6xatQoBAQG4ePEimjVrVmEfV69ehVwuh5eXV4WfDRw4EC+++CIA4I033sDixYsRGxuLkJAQrF+/HoWFhVi7di3s7e0BAEuWLMHgwYOxYMECeHt76/w6+/bti//85z+a75OTk9G0aVOEhYVBJpMhKCiownP8/Pxw9epVnfdBROaLI4hEVK+0adNG82e5XA53d3e0bt1as03dhN26dQtA2WST2NhYzTWNDg4OaN68OQDgypUrle6joKAANjY2lU6kKb9/9Wlx9b7OnTuHtm3bappDAOjevTtUKpXW9ZW6uH/0cuLEiUhISEBISAhmzJiBXbt2VXiOQqHQjJwSUf3GEUQiqlesrKy0vpfJZFrb1E2dSqUCAOTm5mpG8O7n6+tb6T48PDyQn59f6eSQyvav3pcuLCwsKszMLikpqfC48k0mAHTo0AFJSUnYvn07du/ejREjRiA8PBybNm3SPCYjIwOenp4610JE5osjiERED9GhQwecOXMGDRs2RJMmTbS+7m/C1Nq1awcAOHv2rF77euSRR/DXX38hLy9Ps+3QoUOwsLBASEgIAMDT01NrBrdSqURiYqJO+U5OThg5ciS+/vprbNy4Ef/3f/+HjIwMzc8TExPRvn17vWomIvPEBpGI6CGmTZuGjIwMjBo1CseOHcOVK1ewc+dOPPPMM1AqlZU+x9PTEx06dMDBgwf12teYMWNga2uLCRMmIDExEbGxsXjppZcwbtw4zanvvn37Ytu2bdi2bRvOnz+PqVOnIjMzs8rsTz/9FD/++CPOnz+Pixcv4ueff4aPjw9cXFw0jzlw4AAiIiL0qpmIzBMbRCKih/Dz88OhQ4egVCoRERGB1q1bY+bMmXBxcYGFxYP/CX322Wfxww8/6LUvOzs77Ny5ExkZGejcuTOefPJJ9OvXD0uWLNE8ZtKkSZgwYQLGjx+PXr16oVGjRujTp0+V2Y6Ojli4cCE6deqEzp07459//sHvv/+ueQ2HDx9GVlYWnnzySb1qJiLzJBOmus0AEZEZKygoQEhICDZu3IiuXbuaupwqjRw5Em3btsXs2bNNXQoR1QIcQSQiMgKFQoG1a9c+dEHt2qK4uBitW7fGK6+8YupSiKiW4AgiEREREWnhCCIRERERaWGDSERERERa2CASERERkRY2iERERESkhQ0iEREREWlhg0hEREREWtggEhEREZEWNohEREREpIUNIhERERFp+X9Q08BSUwd1iAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 750x250 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Plot power import from external grid\n",
+    "plt.figure(figsize=(7.5, 2.5))\n",
+    "plt.plot(np.arange(1, n_hours+1), power_import, marker='o', linestyle='-')\n",
+    "plt.title('Import Power for 24 Hours')\n",
+    "plt.xlabel('Time (hours)')\n",
+    "plt.ylabel('Power (kW)')\n",
+    "plt.xticks(np.arange(0, 25, step=1))\n",
+    "plt.grid(True)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### **Conclusion**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "In this notebook, we illustrated how to use the MILP solver featured in the NAG Optimization Modelling Suite from the NAG Library to model a microgrid and design it's battery energy storage system capacity. The model is also able to give operational schedules for various components in the microgrid. The model can be easily extended with additional components, such as additional power source from solar panels or wind farms and more switchable loads. The [NAG MILP solver](https://support.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.mip.handle_solve_milp.html) serves as a powerful tool for modelling and managing energy systems. Learn more about it [here](https://nag.com/mixed-integer-linear-programming/). "
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.17"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/local_optimization/MILP/Grid_Model.png b/local_optimization/MILP/Grid_Model.png
new file mode 100644
index 0000000..abe05d1
Binary files /dev/null and b/local_optimization/MILP/Grid_Model.png differ
diff --git a/local_optimization/MILP/portfolio_optimization_using_milp.ipynb b/local_optimization/MILP/portfolio_optimization_using_milp.ipynb
new file mode 100644
index 0000000..b2e596c
--- /dev/null
+++ b/local_optimization/MILP/portfolio_optimization_using_milp.ipynb
@@ -0,0 +1,580 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "cac8a62f-1a60-440e-a4db-616c55986648",
+   "metadata": {},
+   "source": [
+    "## Installing the NAG Library and running this notebook\n",
+    "To run this notebook, you will need to install the NAG Library for Python (Mark 29.3 or newer) and a license key. You can find the software and obtain a license key (trials are available) from [Getting Started with the NAG Library](https://www.nag.com/content/getting-started-nag-library?lang=py&os=linuxto).\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f120907d-0410-4d07-aec3-b0163e539031",
+   "metadata": {},
+   "source": [
+    "# Portfolio optimization with MILP using the NAG Library\n",
+    "\n",
+    "A mixed integer linear programming (MILP) model is an extension to a linear programming model where some or all of the variables are constrained to be integer. The ability to handle integer variables makes this an extremely powerful tool with applications in a huge number of industries. Here, we will consider a MILP model of an optimal mean/Value-at-Risk (VaR) portfolio optimization problem by [Benati and Rizzi (2007)](#References). This is an extension to a classic Markowitz model in which the aim is to maximize returns while minimizing risk. However, in this instance, the variance risk measure has been replaced by VaR.\n",
+    "\n",
+    "VaR is a widely used risk measure in portfolio management: it quantifies the maximum potential loss within a specified confidence level over a defined time frame. Specifically, VaR is simply the $\\alpha$-quantile of the return distribution function. Unlike other risk measures such as standard deviation or expected shortfall, VaR provides a clear and intuitive assessment of downside risk, making it a preferred choice for investors concerned with the probability of experiencing significant losses. While the mathematical properties of VaR are slightly unappealing (it is a piece-wise linear function and not convex), simplicity in its interpretation makes VaR a popular tool nonetheless.\n",
+    "\n",
+    "In this instance, VaR is calculated using a non-parametric method - this means that no assumptions are made about the distribution of portfolio returns. Instead of fitting a parametric model (e.g. normal or student-t distribution) to historical data, which can be restrictive, we use historical simulation. This method reorganizes historical return data, putting it in order of worst to best. The $\\alpha$-quantile is then estimated by the position of the observation that has the $\\alpha$-percent of data on the left.\n",
+    "\n",
+    "In this notebook, we solve the \"Min Risk/Fixed Return\" implementation of this problem. This problem contains VaR constraints, cardinality constraints, semicontinuous constraints, a minimum return constraint, a budget (full investment) constraint, and long-only constraints."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "6290f139-6198-4657-8407-0c134b3e7ff1",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import modules\n",
+    "from naginterfaces.base import utils\n",
+    "from naginterfaces.library import opt, mip\n",
+    "import numpy as np\n",
+    "import time"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "946f315c-92cb-4d53-a187-2123f45509b4",
+   "metadata": {},
+   "source": [
+    "For this model, we need to set some parameters. \n",
+    "\n",
+    "We have past observations $i \\in I=\\{1,\\dots,T\\}$ and assets $j \\in J=\\{1,\\dots,K\\}$.\n",
+    "\n",
+    "We set $r^*$ to be the minimum expected return that will be accepted and $r^{\\textrm{Min}}$ is the minimum return that can be observed in the market. We also choose $r^{\\textrm{VaR}}$: a parameter set by the decision maker to control risk. They will only accept portfolios for which the probability of a return less than $r^{\\textrm{VaR}}$ is less than or equal to $\\alpha^{\\textrm{VaR}}$. Further, we have probabilities $p_i$ associated with each observation $x_i$. These probabilities represent the occurrence of past realization $i$. For illustrative purposes, we set each observation to have equal probability and we synthetically generate returns data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "4dc120e8-9e78-45a6-846c-12a90658f69c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Set parameters\n",
+    "n_assets = 300 # K\n",
+    "n_periods = 20 # T\n",
+    "r_star = 0.05\n",
+    "r_min = -1\n",
+    "r_var = 0.05\n",
+    "prob = 1/n_periods\n",
+    "\n",
+    "# Synthetic data generation of expected returns for each asset\n",
+    "np.random.seed(0)\n",
+    "expected_returns = 0.25 * np.random.randn(n_periods, n_assets) "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "26a04836-73b7-4150-b510-3f6a1753afcc",
+   "metadata": {},
+   "source": [
+    "Next, we define the variables used in the model:\n",
+    "* Variables $\\lambda_j$ are the percentage of wealth that is allocated to asset $j$.\n",
+    "* Variables $x_i$ represent the portfolio observed return in time $i$.\n",
+    "* Variables $y_i$ are binary (associated with $x_i$) and used for modelling the VaR constraints.\n",
+    "* Variables $z_j$ are binary (associated with $\\lambda_j$) and used for modelling the cardinality and semicontinuous constraints.\n",
+    "* $\\alpha^{\\textrm{VaR}}$ is the probability associated with VaR."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "4b81e7b1-aac9-49a0-8c06-bef34f503409",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# There are asset_weights[n_assets] + binary_y[n_periods] + observed_return[n_periods] + binary_z[n_assets] + aVaR[1]\n",
+    "n_vars = n_assets + n_periods + n_periods + n_assets + 1\n",
+    "\n",
+    "# Create index sets for each set of variables:\n",
+    "idx_asset_w = np.arange(1, n_assets+1, dtype=int)\n",
+    "idx_bin_y = np.arange(n_assets+1, n_assets+n_periods+1, dtype=int)\n",
+    "idx_obs_ret = np.arange(n_assets+n_periods+1, n_assets+2*n_periods+1, dtype=int)\n",
+    "idx_bin_z = np.arange(n_assets+2*n_periods+1, 2*n_assets+2*n_periods+1, dtype=int)\n",
+    "idx_avar = [n_vars]\n",
+    "\n",
+    "# Initialize the problem handle:\n",
+    "handle = opt.handle_init(nvar=n_vars)\n",
+    "\n",
+    "# Set binary variables:\n",
+    "opt.handle_set_property(handle=handle, ptype='Bin', idx=idx_bin_y)\n",
+    "opt.handle_set_property(handle=handle, ptype='Bin', idx=idx_bin_z)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "10f71de2-da9b-4bf5-817d-576956196ead",
+   "metadata": {},
+   "source": [
+    "## Constraints:\n",
+    "Since this is a MILP model, we set all linear constraints using [***handle_set_linconstr()***](https://support.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_set_linconstr.html).\n",
+    "\n",
+    "The first constraint that we implement enforces that the optimal portfolio should be greater than the **minimum acceptable portfolio expected return**:\n",
+    "$$\\sum_{i=1}^{T} p_i x_i \\geq r^*.$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "0cc5b36d-0ed7-4925-acff-a07cda854dcf",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ones_periods = np.ones(n_periods, dtype=int)\n",
+    "opt.handle_set_linconstr(\n",
+    "    handle=handle,\n",
+    "    bl=r_star,\n",
+    "    bu=1.e20,\n",
+    "    irowb=ones_periods,\n",
+    "    icolb=idx_obs_ret,\n",
+    "    b=[prob]*n_periods\n",
+    ");"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3ea59af3-a465-4dae-a732-1878d401e892",
+   "metadata": {},
+   "source": [
+    "Next, we need to enforce that $x_i$ is the **result of the percentage of wealth allocated to each asset and the expected return of that asset** for each time period:\n",
+    "\n",
+    "$$\\sum_{j=1}^{K} \\lambda_j r_{ij} = x_i \\quad \\forall \\, i=1,\\dots,T.$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d2a523e8-9a71-4e24-979d-dd07243a1fbf",
+   "metadata": {},
+   "source": [
+    "This requires slight rearrangement to be input into the model - we stack the variables $\\lambda$ and $x$ and express the rearrangement in matrix notation:\n",
+    "\n",
+    "\\begin{equation*}\n",
+    "\\begin{bmatrix}\n",
+    "r_{i1}  &\n",
+    "\\dots &\n",
+    "r_{iK} &\n",
+    "-1\n",
+    "\\end{bmatrix}\n",
+    "\\begin{bmatrix}\n",
+    "\\lambda_1  \\\\\n",
+    "\\vdots \\\\\n",
+    "\\lambda_K \\\\\n",
+    "x_i\n",
+    "\\end{bmatrix}\n",
+    "= 0 \\quad \\forall \\, i = 1,\\dots,T.\n",
+    "\\end{equation*}\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "8dbfe45d-cd8d-4ac5-a923-2c62c4b0d296",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ones_assets_1 = np.ones(n_assets+1, dtype=int)\n",
+    "for i in range(n_periods):\n",
+    "    i_obs_ret = n_assets + n_periods + 1 + i\n",
+    "    returns = expected_returns[i, :]\n",
+    "    returns_x = np.append(returns, -1.)\n",
+    "    idx_col = np.append(idx_asset_w, i_obs_ret)\n",
+    "    opt.handle_set_linconstr(\n",
+    "        handle=handle,\n",
+    "        bl=0.,\n",
+    "        bu=0.,\n",
+    "        irowb=ones_assets_1,\n",
+    "        icolb=idx_col,\n",
+    "        b=returns_x\n",
+    "    )"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "09ef6f86-37f9-4c81-a4e9-9114d9560cee",
+   "metadata": {},
+   "source": [
+    "Next, we want to add constraints that **prevent the selection of portfolios with VaR below the threshold**. To do this, we introduce binary variables $y_i$ associated with each $x_i$. Then the VaR constraint can be modelled in the following way:\n",
+    "\n",
+    "$$r^{\\textrm{Min}} + (r^{\\textrm{VaR}} - r^{\\textrm{Min}})y_i \\leq x_i \\quad \\forall \\, i=1,\\dots,T,$$\n",
+    "$$\\sum_{i=1}^{T} p_i(1-y_i) \\leq \\alpha^{\\textrm{VaR}}.$$\n",
+    "\n",
+    "The first constraint enforces that $y_i$ is equal to $0$ for $x_i$ less than $r^{\\textrm{VaR}}$. In the second constraint, this corresponds to $1 - y_i = 1 - 0 = 1$, leading to the summation of probabilities of time periods $i$ with returns less than the VaR threshold. If this probability is greater than $\\alpha^{\\textrm{VaR}}$, it results in an infeasible portfolio.\n",
+    "\n",
+    "Rearranged into matrix notation, the first constraint becomes:\n",
+    "\n",
+    "\\begin{equation*}\n",
+    "\\begin{bmatrix}\n",
+    "(r^{\\textrm{Min}}-r^{\\textrm{VaR}})  &\n",
+    "1\n",
+    "\\end{bmatrix}\n",
+    "\\begin{bmatrix}\n",
+    "y_i  \\\\\n",
+    "x_i\n",
+    "\\end{bmatrix}\n",
+    "\\geq r^{\\textrm{Min}} \\quad \\forall \\, i = 1,\\dots,T,\n",
+    "\\end{equation*}\n",
+    "\n",
+    "and the second constraint becomes:\n",
+    "\n",
+    "\\begin{equation*}\n",
+    "\\begin{bmatrix}\n",
+    "p_{1}  &\n",
+    "\\dots &\n",
+    "p_{T} &\n",
+    "1\n",
+    "\\end{bmatrix}\n",
+    "\\begin{bmatrix}\n",
+    "y_1  \\\\\n",
+    "\\vdots \\\\\n",
+    "y_T \\\\\n",
+    "\\alpha^{\\textrm{VaR}}\n",
+    "\\end{bmatrix}\n",
+    "\\geq 1.\n",
+    "\\end{equation*}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "132124cd-faec-4f3a-9efa-3b8ec5e04b29",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "y_coef = r_min - r_var\n",
+    "for i in range(n_periods):\n",
+    "    y_i = n_assets + 1 + i\n",
+    "    x_i = n_assets + n_periods + 1 + i     \n",
+    "    opt.handle_set_linconstr(\n",
+    "        handle=handle,\n",
+    "        bl=r_min,\n",
+    "        bu=1.e20,\n",
+    "        irowb=[1, 1],\n",
+    "        icolb=[y_i, x_i],\n",
+    "        b=[y_coef, 1.]\n",
+    "    )\n",
+    "\n",
+    "ones_periods_1 = np.ones(n_periods+1, dtype=int)\n",
+    "idx_bin_avar = np.append(idx_bin_y, idx_avar)\n",
+    "opt.handle_set_linconstr(\n",
+    "    handle=handle,\n",
+    "    bl=1.0,\n",
+    "    bu=1.e20,\n",
+    "    irowb=ones_periods_1,\n",
+    "    icolb=idx_bin_avar,\n",
+    "    b=np.append([prob]*n_periods, 1.)\n",
+    ");"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e1a63193-f373-4d39-a32d-d371b832b27b",
+   "metadata": {},
+   "source": [
+    "**Full investment** constraint:\n",
+    "\n",
+    "$$\\sum_{j=1}^{K} \\lambda_j = 1.$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "0efec5b9-1b3a-4d83-9791-65942f7fa985",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ones_assets_float = np.ones(n_assets, dtype=float)\n",
+    "ones_assets = np.ones(n_assets, dtype=int)\n",
+    "opt.handle_set_linconstr(\n",
+    "    handle=handle,\n",
+    "    bl=1.0,\n",
+    "    bu=1.0,\n",
+    "    irowb=ones_assets,\n",
+    "    icolb=idx_asset_w,\n",
+    "    b=ones_assets_float\n",
+    ");"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a3577eb0-3492-4921-9c93-de327fb41b62",
+   "metadata": {},
+   "source": [
+    "Next, we want to add **semicontinuous constraints** to confine the optimal allocation of the assets to be between $5\\%$ and $70\\%$:\n",
+    "$$\\lambda_j \\in 0 \\cup [0.05, 0.7] \\quad \\forall \\, j = 1,\\dots, K.$$\n",
+    "\n",
+    "Using binary variables $z_j$, the semicontinuous constraint can be expressed as follows:\n",
+    "\n",
+    "$$0.05 \\cdot z_j \\leq \\lambda_j \\leq 0.7 \\cdot z_j \\quad \\forall \\, j=1,\\dots, K.$$\n",
+    "\n",
+    "These constraints enforce that if $z_j$ is equal to $1$, then $\\lambda_j$ can take any value in the interval between $0.05$ and $0.7$. When $z_j$ equals $0$, then $\\lambda_j$ must also equal $0$."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "cc09f5a8-b2da-443c-8026-2a88ad2c4ea8",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "for j in range(n_assets):\n",
+    "    lambda_j = 1 + j\n",
+    "    z_j = n_assets + 2*n_periods + 1 + j\n",
+    "    opt.handle_set_linconstr(\n",
+    "        handle=handle,\n",
+    "        bl=-1.e20,\n",
+    "        bu=0.0,\n",
+    "        irowb=[1, 1],\n",
+    "        icolb=[lambda_j, z_j],\n",
+    "        b=[1., -0.7]\n",
+    "    )\n",
+    "   \n",
+    "    opt.handle_set_linconstr(\n",
+    "        handle=handle,\n",
+    "        bl=0.0,\n",
+    "        bu=1.e20,\n",
+    "        irowb=[1, 1],\n",
+    "        icolb=[lambda_j, z_j],\n",
+    "        b=[1., -0.05]\n",
+    "    )"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "934646d5-57e8-43f2-adb6-828f17473105",
+   "metadata": {},
+   "source": [
+    "Next, we want $10\\%$ of the assets to be included in the optimal portfolio, so we add a **cardinality constraint**:\n",
+    "$$||\\lambda||_0 \\leq 0.1 \\cdot K.$$\n",
+    "\n",
+    "This can be modelled by adding a binary variable $z_j$ for each $\\lambda_j$. When $z_j$ is equal to $0$, this indicates that asset $\\lambda_j$ is not allocated; when $z_j$ is equal to $1$, asset $\\lambda_j$ has been allocated. Then the cardinality constraint can be modelled by summing the binary variables:\n",
+    "\n",
+    "$$\\sum_{j=1}^K z_j \\leq 0.1 \\cdot K.$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "bea9b819-077e-4075-a954-2fcf3357a197",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "opt.handle_set_linconstr(\n",
+    "    handle=handle,\n",
+    "    bl=-1.e20,\n",
+    "    bu=0.1*n_assets,\n",
+    "    irowb=ones_assets,\n",
+    "    icolb=idx_bin_z,\n",
+    "    b=ones_assets_float\n",
+    ");"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "810bba10-a1aa-4cd4-95d5-9b0d968495be",
+   "metadata": {},
+   "source": [
+    "Bound constraints to **prevent short-selling**:\n",
+    "\n",
+    "$$\\lambda_j \\geq 0 \\quad \\forall \\, j=1,\\dots,K.$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "afb2b374-e6c6-4f1d-af3e-b69ace80ae57",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Set bound constraints:\n",
+    "zeros_asset_w = np.zeros(n_assets)\n",
+    "neg_lrg_bnd = np.full((n_periods + n_periods + n_assets + 1), -1.e20, dtype=float).ravel()\n",
+    "bl = np.hstack([zeros_asset_w, neg_lrg_bnd])\n",
+    "opt.handle_set_simplebounds(\n",
+    "    handle,\n",
+    "    bl=bl,\n",
+    "    bu=[1.e20]*n_vars,\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "70f84e9d-b236-4342-9999-d3bf1b226488",
+   "metadata": {},
+   "source": [
+    "## Objective function:\n",
+    "We want to minimize risk:\n",
+    "\n",
+    "\\begin{equation*}\n",
+    "\\min_{\\alpha^{\\textrm{VaR}},\\lambda,x,y} \\alpha^{\\textrm{VaR}}\n",
+    "\\end{equation*}\n",
+    "\n",
+    "\n",
+    "Even though the objective function is linear, we use [***handle_set_quadobj()***](https://support.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_set_quadobj.html) because it is sparse."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "07fa779f-a9f6-4aa0-a187-3d088cad238b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Set the objective function:\n",
+    "opt.handle_set_quadobj(\n",
+    "        handle,\n",
+    "        idxc=idx_avar,\n",
+    "        c=[1.0],\n",
+    "    )"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3bfe7a7c-ad79-491f-918d-3d23a30172d5",
+   "metadata": {},
+   "source": [
+    "## Optimal mean/Value-at-Risk model\n",
+    "We can now specify the full model and solve it using the [**MILP solver**](https://support.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.mip.handle_solve_milp.html).\n",
+    "\n",
+    "\\begin{equation*}\n",
+    "    \\begin{aligned}\n",
+    "        &\\min_{\\alpha^{\\textrm{VaR}},\\lambda,x,y,z} &&\\alpha^{\\textrm{VaR}}\n",
+    "        \\\\\n",
+    "        &\\textrm{subject to } &&\\sum_{i=1}^{T} p_i x_i \\geq r^*,\n",
+    "        \\\\\n",
+    "        & &&\\sum_{j=1}^{K} \\lambda_j r_{ij} = x_i \\quad \\forall \\, i=1,\\dots,T,\n",
+    "        \\\\\n",
+    "        & &&r^{\\textrm{Min}} + (r^{\\textrm{VaR}} - r^{\\textrm{Min}})y_i \\leq x_i \\quad \\forall \\, i=1,\\dots,T,\n",
+    "        \\\\\n",
+    "        & &&\\sum_{i=1}^{T} p_i(1-y_i) \\leq \\alpha^{\\textrm{VaR}},\n",
+    "        \\\\\n",
+    "        & &&\\sum_{j=1}^{K} \\lambda_j = 1,\n",
+    "        \\\\\n",
+    "        & &&\\sum_{j=1}^K z_j \\leq 0.1 \\cdot K,\n",
+    "        \\\\\n",
+    "        & && 0.05 \\cdot z_j \\leq \\lambda_j \\leq 0.7 \\cdot z_j \\quad \\forall \\, j = 1,\\dots, K,\n",
+    "        \\\\\n",
+    "        & &&y_i \\in \\{0,1\\} \\quad \\forall \\, i=1,\\dots,T,\n",
+    "        \\\\\n",
+    "        & &&z_j \\in \\{0,1\\} \\quad \\forall \\, j=1,\\dots,K,\n",
+    "        \\\\\n",
+    "        & &&\\lambda_j \\geq 0 \\quad \\forall \\, j=1,\\dots,K.\n",
+    "    \\end{aligned}\n",
+    "\\end{equation*}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "2cbeef24-1946-4718-8d37-20c0adbecd51",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " H02BK, Solver for MILP problems\n",
+      " Begin of Options\n",
+      "     Print File                    =                   9     * d\n",
+      "     Print Level                   =                   1     * U\n",
+      "     Print Options                 =                 Yes     * d\n",
+      "     Print Solution                =                  No     * d\n",
+      "     Monitoring File               =                  -1     * d\n",
+      "     Monitoring Level              =                   4     * d\n",
+      "\n",
+      "     Infinite Bound Size           =         1.00000E+20     * d\n",
+      "     Task                          =            Minimize     * d\n",
+      "     Time Limit                    =         1.00000E+06     * d\n",
+      "\n",
+      "     Milp Presolve                 =                 Yes     * d\n",
+      "     Milp Random Seed              =                   0     * d\n",
+      "     Milp Feasibility Tol          =         1.00000E-06     * d\n",
+      "     Milp Rel Gap                  =         1.00000E-04     * d\n",
+      "     Milp Abs Gap                  =         1.00000E-06     * d\n",
+      "     Milp Small Matrix Value       =         1.00000E-09     * d\n",
+      "     Milp Detect Symmetry          =                 Yes     * d\n",
+      "     Milp Max Nodes                =          2147483647     * d\n",
+      " End of Options\n",
+      "\n",
+      " Status: converged, an optimal solution found\n",
+      " Final primal objective value -5.551115E-17\n",
+      " Final dual objective bound    0.000000E+00\n",
+      "\n",
+      " Computation time: 0.405 seconds\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Set some algorithmic options:\n",
+    "for option in [\n",
+    "        'Print Level = 1',\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "\n",
+    "# Use an explicit I/O manager for abbreviated iteration output:\n",
+    "iom = utils.FileObjManager(locus_in_output=False)\n",
+    "\n",
+    "# Start timer:\n",
+    "start_solve = time.time()\n",
+    "\n",
+    "# Call the MILP solver:\n",
+    "mip.handle_solve_milp(handle, io_manager=iom)\n",
+    "\n",
+    "# Print computation time:\n",
+    "end = time.time()\n",
+    "print(f\"\\n Computation time: {end-start_solve:.3f} seconds\")\n",
+    "\n",
+    "# Destroy the handle:\n",
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "93760299-5a24-44e0-8c4c-3472b207c25e",
+   "metadata": {},
+   "source": [
+    "In this instance, we solved a model with $641$ variables ($320$ of which were binary) and $644$ constraints. This was efficiently solved in $0.41$ seconds.\n",
+    "\n",
+    "Using MILP allows the modelling of complex constraints, adding flexibility and sophistication to your problem. The MILP solver used in this portfolio optimization example is available in the NAG Library Optimization Modelling Suite. Learn more about it [here](https://nag.com/mixed-integer-linear-programming/). "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "def14a4d-181f-4b62-a7c9-81a82f0dbc17",
+   "metadata": {},
+   "source": [
+    "## References\n",
+    "\n",
+    "Benati, S., & Rizzi, R. (2007). A mixed integer linear programming formulation of the optimal mean/value-at-risk portfolio problem. *European Journal of Operational Research*, *176*(1), 423-434."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.8"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/local_optimization/LP_demo.ipynb b/local_optimization/Modelling/LP_demo.ipynb
similarity index 77%
rename from local_optimization/LP_demo.ipynb
rename to local_optimization/Modelling/LP_demo.ipynb
index 7aec8b5..e0e6b4c 100644
--- a/local_optimization/LP_demo.ipynb
+++ b/local_optimization/Modelling/LP_demo.ipynb
@@ -1,5 +1,16 @@
 {
  "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -187,40 +198,39 @@
       "     Lpipm System Formulation      =                Auto     * d\n",
       " End of Options\n",
       "\n",
-      " Original Problem Statistics\n",
+      " Problem Statistics\n",
+      "   No of variables                  5\n",
+      "     free (unconstrained)           0\n",
+      "     bounded                        5\n",
+      "   No of lin. constraints           4\n",
+      "     nonzeroes                     12\n",
+      "   Objective function          Linear\n",
       "\n",
-      "   Number of variables          5\n",
-      "   Number of constraints        4\n",
-      "   Free variables               0\n",
-      "   Number of nonzeros          12\n",
-      "\n",
-      "\n",
-      " Presolved Problem Statistics\n",
-      "\n",
-      "   Number of variables          9\n",
-      "   Number of constraints        4\n",
-      "   Free variables               0\n",
-      "   Number of nonzeros          16\n",
+      " Presolved Problem Measures\n",
+      "   No of variables                  9\n",
+      "     free (unconstrained)           0\n",
+      "   No of lin. constraints           4\n",
+      "     nonzeroes                     16\n",
       "\n",
       "\n",
       " ------------------------------------------------------------------------------\n",
       "  it|    pobj    |    dobj    |  optim  |  feas   |  compl  |   mu   | mcc | I\n",
       " ------------------------------------------------------------------------------\n",
-      "   0  2.95739E-01 -2.29831E-17  2.38E+00  1.58E-01  2.38E-01  2.9E-01\n",
+      "   0  2.95739E-01 -1.53220E-17  2.38E+00  1.58E-01  2.38E-01  2.9E-01\n",
       "   1  3.82786E-02 -2.79688E-01  3.71E-02  6.98E-17  1.91E-02  2.0E-02   0\n",
       "   2  1.00015E-02 -5.05058E-03  1.88E-03  1.29E-14  9.30E-04  9.4E-04   0\n",
-      "   3  1.78344E-05 -2.39954E-05  1.86E-16  1.48E-15  2.19E-06  2.2E-06   0\n",
-      "   4  8.91734E-09 -1.19978E-08  8.80E-17  2.79E-16  1.09E-09  1.1E-09   0\n",
-      "   5  4.45867E-12 -5.99890E-12  8.35E-17  4.48E-16  5.46E-13  5.5E-13   0\n",
+      "   3  1.78344E-05 -2.39954E-05  1.83E-16  1.48E-15  2.19E-06  2.2E-06   0\n",
+      "   4  8.91734E-09 -1.19978E-08  9.23E-17  2.78E-16  1.09E-09  1.1E-09   0\n",
+      "   5  4.45867E-12 -5.99890E-12  9.02E-17  5.83E-17  5.46E-13  5.5E-13   0\n",
       " ------------------------------------------------------------------------------\n",
       " Status: converged, an optimal solution found\n",
       " ------------------------------------------------------------------------------\n",
       " Final primal objective value         4.458673E-12\n",
       " Final dual objective value          -5.998898E-12\n",
-      " Absolute primal infeasibility        2.355139E-16\n",
-      " Relative primal infeasibility        8.352537E-17\n",
-      " Absolute dual infeasibility          7.761642E-16\n",
-      " Relative dual infeasibility          4.476207E-16\n",
+      " Absolute primal infeasibility        2.543841E-16\n",
+      " Relative primal infeasibility        5.826594E-17\n",
+      " Absolute dual infeasibility          1.010318E-16\n",
+      " Relative dual infeasibility          9.021771E-17\n",
       " Absolute complementarity gap         2.464120E-12\n",
       " Relative complementarity gap         5.464522E-13\n",
       " Iterations                                      5\n"
@@ -254,7 +264,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -268,7 +278,25 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
   }
  },
  "nbformat": 4,
diff --git a/local_optimization/Modelling/Readme.md b/local_optimization/Modelling/Readme.md
new file mode 100644
index 0000000..0f04ca4
--- /dev/null
+++ b/local_optimization/Modelling/Readme.md
@@ -0,0 +1,58 @@
+[![NAG Logo](../../nag_logo.png)](https://www.nag.com)
+
+# Dense Problem Examples
+Python examples for dense problems 
+
+* [Linear Programming (LP)](dense_lp_solve_ex.py)
+* [Quadratic Programming (QP)](dense_qp_solve_ex.py)
+
+# Modelling Optimization Problems
+
+In this folder you will find notebook examples, tips and tricks related to modeling optimization problems.
+
+* **Christmas Special** [How to decorate your Christmas tree (Notebook)](christmas_demo.ipynb) 
+   or view the [Blog-post](https://www.nag.com/blog/optcorner-christmas-edition).
+<table><tr>
+
+<td><a href="christmas_demo.ipynb">
+<img src="../images/xmas_tree.png" 
+width="100" height="100px" alt="Xmas Tree Plot"/></a></td>
+
+<td valign="top">See how optimization can help to decorate a Christmas tree...</td>
+</tr></table>  
+   
+   
+* **Demo** [Linear Programming (LP)](LP_demo.ipynb).
+   
+   Tiny and Cute LP problem...
+* **Demo** [Nonlinear calibration (data fitting)](handle_disable_ex.ipynb). 
+<table><tr>
+<td><a href="handle_disable_ex.ipynb">
+<img src="../images/nlls.png" 
+width="100" height="80px" alt="Data fitting Plot"/></a></td>
+   
+<td valign="top">This demo shows useful features of the <a href="https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#optsuite">NAG Optimization Modelling Suite (NOMS)</a> in a Nonlinear Least-squares problem.</td>
+   
+</tr></table>  
+   
+   
+* **Demo** [Production Planning](production_planning.ipynb).
+ 
+   Optimal production planning showcasing features of the [NAG Optimization Modelling Suite (NOMS)](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#optsuite).
+ 
+# Useful Links
+* [Background to Optimization Methods](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#algorithms)
+* [NAG Insights](https://nag.com/insights/)
+
+<!-- When ready add links?
+* Blog-post: Introducing the NAG Optimization Modelling Suite (NOMS)
+* The right tool for the job I – matching problem with optimizer
+* Blog-post: The right tool for the job II - dense vs. sparse
+--->
+
+<!-- foot banner for commercial material -->
+
+# Obtaining the NAG Library for Python
+
+ * Instructions on [how to install the NAG Library for Python](../Readme.md#install)
+ * Instructions on [how to run the Jupyter notebooks in the Repository](../Readme.md#jupyter)
diff --git a/local_optimization/christmas_demo.ipynb b/local_optimization/Modelling/christmas_demo.ipynb
similarity index 98%
rename from local_optimization/christmas_demo.ipynb
rename to local_optimization/Modelling/christmas_demo.ipynb
index 7ca80a6..4ecae93 100644
--- a/local_optimization/christmas_demo.ipynb
+++ b/local_optimization/Modelling/christmas_demo.ipynb
@@ -1,5 +1,16 @@
 {
  "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -79,7 +90,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "def plot_domain(orig,lb,ub,cm, axis, ax):\n",
+    "def plot_domain(orig,lb,ub,_cm, axis, ax):\n",
     "    xmax = orig - lb\n",
     "    X, Y = np.meshgrid(np.arange(-xmax,xmax,0.01), np.arange(lb,orig,0.01))\n",
     "    Z = objf_plot(X,Y)\n",
@@ -218,12 +229,12 @@
    "outputs": [],
    "source": [
     "# main callback function for the SQP solver\n",
-    "def objfun_e04wd(mode, x, grad, ntsate, data):\n",
-    "    if mode == 0 or mode == 2:\n",
+    "def objfun_e04wd(mode, x, grad, _nstate, data):\n",
+    "    if mode in (0, 2):\n",
     "        objf = x[0]**2 + x[0] + np.cos(2*np.pi*x[1])**2 + 0.5*x[1]\n",
     "        data.npts += 1\n",
     "        data.pts.append((x[0], x[1]))\n",
-    "    if mode == 1 or mode == 2:\n",
+    "    if mode in (1, 2):\n",
     "        grad[0] = 2*x[0] + 1\n",
     "        grad[1] = -4*np.pi*np.sin(2*np.pi*x[1])*np.cos(2*np.pi*x[1]) + 0.5\n",
     "    return mode, objf, grad"
@@ -242,7 +253,7 @@
     "ncnln = 0\n",
     "a = [[1.,1.],[-1.,1.]]\n",
     "bl = [-bigbnd,5,-bigbnd,-bigbnd]\n",
-    "bu = [bigbnd,bigbnd,6,6];\n",
+    "bu = [bigbnd,bigbnd,6,6]\n",
     "\n",
     "# Initialize the rest of the solver variables: we don't need warm starting information or 2nd derivative information\n",
     "istate = [0,0,0,0]\n",
@@ -367,9 +378,9 @@
    "outputs": [],
    "source": [
     "# Main callback function for the MINLP solver\n",
-    "def objfun_h02da(mode, varcon, x, objgrd, nstate, data):\n",
-    "    objmip = x[0]**2 + x[0] + np.cos(2*np.pi*x[1])**2 + 0.5*x[1];\n",
-    "    data.npts = data.npts + 1;\n",
+    "def objfun_h02da(mode, _varcon, x, objgrd, _nstate, data):\n",
+    "    objmip = x[0]**2 + x[0] + np.cos(2*np.pi*x[1])**2 + 0.5*x[1]\n",
+    "    data.npts = data.npts + 1\n",
     "    data.pts.append((x[0], x[1]))\n",
     "    if x[1] <= 1.8 and data.present:\n",
     "        objmip = (x[0]+0.625)**2 + (x[1]-1.55)**2\n",
@@ -405,7 +416,7 @@
     "varcon = [0,0,1,1,4,4,4,4,4,4,4]\n",
     "\n",
     "# Choose a starting point and initialize the solver and user data\n",
-    "xstart = [0.5,4.5,0.,0.];\n",
+    "xstart = [0.5,4.5,0.,0.]\n",
     "x = xstart\n",
     "comm = {}\n",
     "data = usr_data()\n",
@@ -588,7 +599,25 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
   }
  },
  "nbformat": 4,
diff --git a/local_optimization/Modelling/dense_lp_solve_ex.py b/local_optimization/Modelling/dense_lp_solve_ex.py
new file mode 100644
index 0000000..049546f
--- /dev/null
+++ b/local_optimization/Modelling/dense_lp_solve_ex.py
@@ -0,0 +1,66 @@
+#!/usr/bin/env python
+
+# Example to solve dense LP problem using (e04mf/lp_solve)
+
+# Solve the problem
+#        min      cvec^T * x
+# subject to      bl <= A * x <= bu
+# and if present: blx <= x <= bux
+
+from naginterfaces.library import opt
+from naginterfaces.base import utils
+import numpy as np
+
+print('naginterfaces.library.opt.lp_solve Python Example Results.')
+print('Solve a small dense LP problem.')
+
+infty = 1.0E+25
+
+# Problem size
+n = 7
+
+# Number of linear constraints
+nclin = 7
+
+# Cost vector
+cvec = np.array([-0.02, -0.20, -0.20, -0.20, -0.20,  0.04,  0.04])
+
+# Block of linear constraints (Matrix A)
+a = np.array([
+[ 1.00,  1.00,  1.00,  1.00,  1.00,  1.00,  1.00,],
+[ 0.15,  0.04,  0.02,  0.04,  0.02,  0.01,  0.03,],
+[ 0.03,  0.05,  0.08,  0.02,  0.06,  0.01,  0.00,],
+[ 0.02,  0.04,  0.01,  0.02,  0.02,  0.00,  0.00,],
+[ 0.02,  0.03,  0.00,  0.00,  0.01,  0.00,  0.00,],
+[ 0.70,  0.75,  0.80,  0.75,  0.80,  0.97,  0.00,],
+[ 0.02,  0.06,  0.08,  0.12,  0.02,  0.01,  0.97 ] ])
+
+# Bounds on the linear constraints
+bl = np.array([-0.01, -0.10,-0.01,-0.04,-0.10, -0.01, -0.01, -0.13,  -infty,  -infty,  -infty,  -infty, -9.92E-2,-3.0E-3])
+bu = np.array([ 0.01,  0.15, 0.03, 0.02, 0.05, infty, infty, -0.13, -4.9E-3, -6.4E-3, -3.7E-3, -1.2E-3,    infty, 2.0E-3])
+
+# Initial Guess
+x = np.array([-0.01, -0.03,  0.00, -0.01, -0.10,  0.02,  0.01])
+
+# Init solver
+comm = opt.nlp1_init('lp_solve')
+
+# Increase printing verbosity
+opt.lp_option_string('Print Level = 2', comm)
+
+# Defile io manager
+iom = utils.FileObjManager(locus_in_output=False)
+
+# Solve the problem
+ret = opt.lp_solve(bl, bu, x, comm, a=a, cvec=cvec, istate=None, io_manager=iom)
+
+# Report the solution and Lagrange multipliers if solved correctly
+print('id  V      Value  Lagr Mult')
+for id in range(n):
+    print('{:5} {: 9.3e} {: 9.3e}'.format(id+1, ret.x[id], ret.clamda[id]))
+
+print('id LC      Value  Lagr Mult')
+for id in range(nclin):
+    print('{:5} {: 9.3e} {: 9.3e}'.format(n+id+1, ret.ax[id], ret.clamda[n+id]))
+
+print('Objective value at solution {:0.5f}'.format(ret.obj))
diff --git a/local_optimization/Modelling/dense_qp_solve_ex.py b/local_optimization/Modelling/dense_qp_solve_ex.py
new file mode 100644
index 0000000..6ec784f
--- /dev/null
+++ b/local_optimization/Modelling/dense_qp_solve_ex.py
@@ -0,0 +1,82 @@
+#!/usr/bin/env python
+
+# Example to solve dense QP problem using (e04nf/qp_solve)
+
+# Solve the dense QP problem defined in https://www.nag.com/numeric/nl/nagdoc_27.3/flhtml/e04/e04nff.html#example 
+
+from naginterfaces.library import opt
+from naginterfaces.base import utils
+import numpy as np
+
+print('naginterfaces.library.opt.qp_dense_solve Python Example Results.')
+print('Solve a small dense QP problem.')
+
+infty = 1.0E+25
+
+# Problem size
+n = 7
+
+# Number of linear constraints
+nclin = 7
+
+# Cost vector
+cvec = np.array([-0.02, -0.20, -0.20, -0.20, -0.20,  0.04,  0.04])
+
+h = np.array([
+[2.0, 0.0, 0.0, 0.0, 0.0,  0.0,  0.0,], 
+[0.0, 2.0, 0.0, 0.0, 0.0,  0.0,  0.0,],
+[0.0, 0.0, 2.0, 2.0, 0.0,  0.0,  0.0,], 
+[0.0, 0.0, 2.0, 2.0, 0.0,  0.0,  0.0,],
+[0.0, 0.0, 0.0, 0.0, 2.0,  0.0,  0.0,],
+[0.0, 0.0, 0.0, 0.0, 0.0, -2.0, -2.0,],
+[0.0, 0.0, 0.0, 0.0, 0.0, -2.0, -2.0 ] ])
+
+# Block of linear constraints (Matrix A)
+a = np.array([
+[ 1.00,  1.00,  1.00,  1.00,  1.00,  1.00,  1.00,],
+[ 0.15,  0.04,  0.02,  0.04,  0.02,  0.01,  0.03,],
+[ 0.03,  0.05,  0.08,  0.02,  0.06,  0.01,  0.00,],
+[ 0.02,  0.04,  0.01,  0.02,  0.02,  0.00,  0.00,],
+[ 0.02,  0.03,  0.00,  0.00,  0.01,  0.00,  0.00,],
+[ 0.70,  0.75,  0.80,  0.75,  0.80,  0.97,  0.00,],
+[ 0.02,  0.06,  0.08,  0.12,  0.02,  0.01,  0.97 ] ])
+
+# Bounds on the linear constraints
+bl = np.array([-0.01, -0.10,-0.01,-0.04,-0.10, -0.01, -0.01, -0.13,  -infty,  -infty,  -infty,  -infty, -9.92E-2,-3.0E-3])
+bu = np.array([ 0.01,  0.15, 0.03, 0.02, 0.05, infty, infty, -0.13, -4.9E-3, -6.4E-3, -3.7E-3, -1.2E-3,    infty, 2.0E-3])
+
+# Initial Guess
+x = np.array([-0.01, -0.03,  0.00, -0.01, -0.10,  0.02,  0.01])
+
+# Init solver
+comm = opt.nlp1_init('lp_solve')
+
+# Increase printing verbosity
+opt.lp_option_string('Print Level = 2', comm)
+
+# Defile io manager
+iom = utils.FileObjManager(locus_in_output=False)
+
+# Note for qphess:
+#     Note: if this argument is None then a NAG-supplied facility will be used.
+#     In general, you need not provide a version of qphess.
+#     However, the algorithm of qp_dense_solve requires only the product of H 
+#     or HTH and a vector x; and in some cases you may obtain increased efficiency 
+#     by providing a version of qphess that avoids the need to define the elements
+#     of the matrices H or HTH explicitly.
+
+# Solve the problem
+ret = opt.qp_dense_solve(bl, bu, h, x, comm, a=a, cvec=cvec, qphess=None, istate=None, data=None, io_manager=None)
+
+# Report the solution and Lagrange multipliers if solved correctly
+print('id  V      Value  Lagr Mult')
+for id in range(n):
+    print('{:5} {: 9.3e} {: 9.3e}'.format(id+1, ret.x[id], ret.clamda[id]))
+
+print('id LC      Value  Lagr Mult')
+for id in range(nclin):
+    print('{:5} {: 9.3e} {: 9.3e}'.format(n+id+1, ret.ax[id], ret.clamda[n+id]))
+
+print('Objective value at solution {:0.5f}'.format(ret.obj))
+
+print('Exit from problem afte {:6} iterations.'.format(ret.itera))
diff --git a/local_optimization/Modelling/dynamic_pricing_lp.ipynb b/local_optimization/Modelling/dynamic_pricing_lp.ipynb
new file mode 100644
index 0000000..61aa817
--- /dev/null
+++ b/local_optimization/Modelling/dynamic_pricing_lp.ipynb
@@ -0,0 +1,401 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG Library and running this notebook\n",
+    "To run this notebook, you will need to install the NAG Library for Python (Mark 26.1 or newer) and a license key. You can find the software and have a license key (trials are available) from our website here: [Getting Started with NAG Library](https://www.nag.com/content/getting-started-nag-library?lang=py&os=linux)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Dynamic pricing in revenue management using the NAG Library"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Disciplined pricing tactics are the key in revenue management in order to sell the right product to the right customer at the right time. Commonly implemented pricing strategies include cost-based pricing, market-based pricing, dynamic pricing, price skimming, etc. It depends on various factors such as the nature of the business and the target market to decide the most suitable strategy. During the pricing process, optimization plays an important role in demand forecasting and revenue maximization. In this notebook, we show how to use the NAG Optimization Modelling Suite (delivered with the NAG Library) by implementing a dynamic pricing strategy which achieves increased revenue over random pricing and price matching strategy. \n",
+    "\n",
+    "The models considered here do not assume that the demand as a function of price is known in advance, but rather assume parametric family of demand functions that are learned over time. During the learning process, the Linear Programming (LP) solver [handle_solve_lp_ipm](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_lp_ipm.html) in the NAG Library is used to build and solve the models. Included in the NAG Optimization Modelling Suite, the LP solver is well suited for this task, due to the great flexibility provided on building and modifying the problem."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import the optimization module from the NAG Library for Python, and necessary packages\n",
+    "from naginterfaces.library import opt\n",
+    "import numpy as np"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Introduction\n",
+    "We focus on a market with two companies competing for a single product in a dynamic environment, in which each company not only estimates its own demand, but also needs to predicts its competitor's demand and pricing strategy. For simplicity, we assume an uncapacitated setting, i.e., there is no limitation on the capacity that each company needs to allocate.\n",
+    "\n",
+    "Linear function is one of the most commonly used demand functions in theory and practice. Assuming the true demand parameters are time dependent, the demand function of company $k=1,2$ can be defined as\n",
+    "$$d_{k,t} = \\beta_{k,t}^0 + \\beta_{k,t}^1p_{1,t} + \\beta_{k,t}^2p_{2,t} + \\epsilon_{k,t},$$\n",
+    "where $p_{1,t}$ and $p_{2,t}$ are the prices of company 1 and 2 at time t, respectively. This model assumes that demand for each company $k = 1, 2$ depends on its own as well as its competitors current period prices $p_{1,t}$ and $p_{2,t}$. $\\beta_{k,t}^i$, $i = 0, 1, 2$ are unknown parameters and $\\epsilon_{k,t} \\sim N(0, \\sigma_{k,t}^2)$ is a random noise.\n",
+    "\n",
+    "In the beginning of each period t, company 1 knows the realizations of its own demand $d_{1,s}$, its own prices $p_{1,s}$ , as well as its competitor's prices $p_{2,s}$, for $s = 1, \\ldots, t-1$. It does not directly observe its competitor's demand. The objectives are to estimate its own demand, its competitor's reaction and finally, set its own prices dynamically to maximize the total expected revenue.\n",
+    "\n",
+    "In this exercise we define the true models of demand are as follows.\n",
+    "$$\n",
+    "d_{1,t} = 50 -0.05p_{1,t} + 0.03p_{2,t} + \\epsilon_{1,t},\n",
+    "$$\n",
+    "$$\n",
+    "d_{2,t} = 50 +0.02p_{1,t} - 0.06p_{2,t} + \\epsilon_{2,t},\n",
+    "$$\n",
+    "where the $\\epsilon_{1,t},~\\epsilon_{2,t}\\sim N(0, 16)$."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def demand_true(company, p1, p2):\n",
+    "    if company == 1:\n",
+    "        return 50 - 0.05*p1 + 0.03*p2 + np.random.normal(scale=4.0)\n",
+    "    elif company == 2:\n",
+    "        return 50 + 0.02*p1 - 0.06*p2 + np.random.normal(scale=4.0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Demand estimation\n",
+    "The following optimization problem is solved in order to estimate the demand of company 1.\n",
+    "$$\n",
+    "\\min_{\\hat{\\beta}_1}~~\\sum_{\\tau=1}^{t-1} |d_{1,\\tau} - (\\hat{\\beta}_{1,\\tau}^0+\\hat{\\beta}_{1,\\tau}^1p_{1,\\tau}+\\hat{\\beta}_{1,\\tau}^2p_{2,\\tau})|,\n",
+    "$$\n",
+    "$$\n",
+    "s.t. ~~ |\\hat{\\beta}_{1,\\tau}^i - \\hat{\\beta}_{1,\\tau+1}^i| \\leq \\delta_1(i), ~ i = 0, 1, 2, ~\\tau = 1,2,\\ldots, t-2,\n",
+    "$$\n",
+    "$$\n",
+    "~~ \\hat{\\beta}_{1,\\tau}^0\\geq0,~\\hat{\\beta}_{1,\\tau}^1 \\leq0,~\\hat{\\beta}_{1,\\tau}^2\\geq0,~\\tau = 1,2,\\ldots, t-1,\n",
+    "$$\n",
+    "where $\\hat{\\beta}_1$ is defined as an array of all the variables. Note the first set of constraints is to control the changes on the parameters.\n",
+    "\n",
+    "Once the optimal solution $(\\hat{\\beta}_{1, \\tau}^i)^*$, $i = 0, 1, 2$, $\\tau = 1, \\ldots, t-1$ is obtained, the new estimate is given by an average of the estimates of the N previous periods\n",
+    "$$\n",
+    "\\hat{\\beta}_{1, t}^i = \\frac{1}{N}\\sum_{l=t-N}^{t-1}(\\hat{\\beta}_{1, l}^i)^*,~ i = 0, 1, 2.\n",
+    "$$\n",
+    "\n",
+    "By introducing auxiliary variables $y_\\tau$, $\\tau = 1, \\ldots, t-1$, the above optimization problem can be reformulated as the following linear programming problem.\n",
+    "$$\n",
+    "\\min_{({\\hat{\\beta}_1}, y)}~~\\sum_{\\tau=1}^{t-1} y_{\\tau},\n",
+    "$$\n",
+    "$$\n",
+    "s.t. ~~-y_\\tau \\leq d_{1,\\tau} - (\\hat{\\beta}_{1,\\tau}^0+\\hat{\\beta}_{1,\\tau}^1p_{1,\\tau}+\\hat{\\beta}_{1,\\tau}^2p_{2,\\tau}) \\leq y_\\tau,~\\tau = 1,2,\\ldots, t-1,\n",
+    "$$\n",
+    "$$\n",
+    "~~ -\\delta_1(i)\\leq\\hat{\\beta}_{1,\\tau}^i - \\hat{\\beta}_{1,\\tau+1}^i \\leq \\delta_1(i), ~ i = 0, 1, 2, ~\\tau = 1,2,\\ldots, t-2,\n",
+    "$$\n",
+    "$$\n",
+    "~~ \\hat{\\beta}_{1,\\tau}^0\\geq0,~\\hat{\\beta}_{1,\\tau}^1 \\leq0,~\\hat{\\beta}_{1,\\tau}^2\\geq0,~\\tau = 1,2,\\ldots, t-1.\n",
+    "$$\n",
+    "Here we assume the prices for both companies range in the interval $[100, 900]$, the time horizon is $T = 150$. And the initial prices are $p_{1,1} = p_{2,1} = 500$."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Fix the random seed\n",
+    "np.random.seed(5)\n",
+    "\n",
+    "# Big bound to inform the solver on infinity\n",
+    "bigbnd = 1.e20\n",
+    "\n",
+    "# Optimization model parameters\n",
+    "delta = np.array([30, 0.05, 0.05])\n",
+    "T = 150\n",
+    "\n",
+    "# Initial prices\n",
+    "p1 = [500]\n",
+    "p2 = [500]\n",
+    "\n",
+    "# Array to store realised true demand of company 1\n",
+    "# For final revenue calculation\n",
+    "demand_1_true = []"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now we can go ahead and initialize an empty model. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Initialize an empty problem\n",
+    "nvar = 0\n",
+    "handle = opt.handle_init(nvar)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Observe that for $t = 2, \\ldots, T$, the model is getting bigger with more variables and constraints added. At each time period t, a new set of 4 new variables $[\\hat{\\beta}_{1,t-1}^0, \\hat{\\beta}_{1,t-1}^1, \\hat{\\beta}_{1,t-1}^2, y_{t-1}]$ is added, as well as the contraints involving them."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Pricing optimization\n",
+    "Company 1 can set its prices by maximizing its current period t revenues. That is to solve the following unconstrained quadratic programming problem\n",
+    "$$\n",
+    "\\max_{p_1,t}~~ p_{1,t} (\\hat{\\beta}_{1,t}^0+\\hat{\\beta}_{1,t}^1p_{1,t}+\\hat{\\beta}_{1,t}^2\\hat{p}_{2,t}),\n",
+    "$$\n",
+    "which has the optimal solution of the form\n",
+    "$$\n",
+    "p_{1,t}^* = \\frac{\\hat{\\beta}_{1,t}^0+\\hat{\\beta}_{1,t}^2\\hat{p}_{2,t}}{-2\\hat{\\beta}_{1,t}^1}.\n",
+    "$$\n",
+    "Note we've still got to estimate the price of company 2 at time t in order to use the pricing strategy above. For simplicity, we use an average of the prices company 2 sets in the N previous periods,\n",
+    "$$\n",
+    "\\hat{p}_{2,t} = \\frac{1}{N}\\sum_{l=t-N}^{t-1} p_{2, l}.\n",
+    "$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Pricing of company 2, estimated by company 1\n",
+    "p2_est = lambda p2 : sum(p2)/len(p2)\n",
+    "\n",
+    "# Optimal pricing for company 1\n",
+    "def optimize_p1(t, p1, beta_t, p2_est):\n",
+    "    \n",
+    "    # When t = 2, the data is insufficient\n",
+    "    # the linear programming problem has multiple optimal solutions\n",
+    "    # Heuristic to make sure price 1 is well-defined\n",
+    "    if (beta_t[1] == 0):\n",
+    "        p1_opt = p1[t-2]\n",
+    "    else:\n",
+    "        p1_opt = (beta_t[0] + beta_t[2]*p2_est)/(-2.0*beta_t[1])\n",
+    "\n",
+    "    # Project price if outside of interval\n",
+    "    p1_opt = max(100, min(900, p1_opt))\n",
+    "\n",
+    "    return p1_opt"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "With pricing functions prepared and empty model initialized, we are finally ready to build up the models and solve along the line for different time periods. With the NAG Optimization Modelling Suite, adding variables and constraints is very straight forward, which makes it very easy to learn the demand function coefficients with new data coming in after each time period, as demonstrated with the following code."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "for t in range(2, T+1):\n",
+    "    \n",
+    "    # In each demand estimation, 4 new variables  will be added to the model\n",
+    "    # [beta_0, beta_1, beta_2, y]\n",
+    "    opt.handle_add_vars(handle, 4)\n",
+    "    \n",
+    "    # Only the auxiliary variable y will oppear in the objective\n",
+    "    # Set y coefficient in the linear objective\n",
+    "    opt.handle_set_linobj_coeff(handle, nvar+4, 1.0)\n",
+    "\n",
+    "    # Set bound constraints for beta\n",
+    "    # Beta_0\n",
+    "    opt.handle_set_bound(handle, 'X', nvar+1, 0.0, bigbnd)\n",
+    "    # Beta_1\n",
+    "    opt.handle_set_bound(handle, 'X', nvar+2, -bigbnd, 0.0)\n",
+    "    # Beta_2\n",
+    "    opt.handle_set_bound(handle, 'X', nvar+3, 0.0, bigbnd)\n",
+    "\n",
+    "    # Get realised demand for the previous period for company 1\n",
+    "    d1_true = demand_true(1, p1[t-2], p2[t-2])\n",
+    "    # Save true demand for previous period\n",
+    "    demand_1_true.append(d1_true)\n",
+    "\n",
+    "    # Add first set of contraints\n",
+    "    opt.handle_set_linconstr(handle, -bigbnd, d1_true, [1, 1, 1, 1], \n",
+    "                             [nvar+1, nvar+2, nvar+3, nvar+4], [1, p1[t-2], p2[t-2], -1.0])\n",
+    "    opt.handle_set_linconstr(handle, d1_true, bigbnd, [1, 1, 1, 1], \n",
+    "                             [nvar+1, nvar+2, nvar+3, nvar+4], [1, p1[t-2], p2[t-2], 1.0])\n",
+    "\n",
+    "    # Add second set of constraints to control beta to vary slowly\n",
+    "    if (t >= 3):\n",
+    "        opt.handle_set_linconstr(handle, -delta, delta, [1, 1, 2, 2, 3, 3],\n",
+    "                                 [nvar+1, nvar+1-4, nvar+2, nvar+2-4, nvar+3, nvar+3-4],\n",
+    "                                 [1.0, -1.0, 1.0, -1.0, 1.0, -1.0])\n",
+    "\n",
+    "    # Call the linear programming solver\n",
+    "    # Choose the algorithm that will be used\n",
+    "    opt.handle_opt_set(handle, 'LPIPM Algorithm = SD')\n",
+    "    # Turn off printing of the log\n",
+    "    opt.handle_opt_set(handle, 'Print File = -1')\n",
+    "    sol = opt.handle_solve_lp_ipm(handle)\n",
+    "\n",
+    "    # Calculate beta for period t based on the estimates for previous periods\n",
+    "    beta_t = [0.0, 0.0, 0.0]\n",
+    "    for i in range(0, nvar+4, 4):\n",
+    "        beta_t+=sol.x[i:i+3]\n",
+    "    beta_t /= t-1\n",
+    "\n",
+    "    # Get optimal pricing for company 1 at time t\n",
+    "    p1_opt = optimize_p1(t, p1, beta_t, p2_est(p2))\n",
+    "\n",
+    "    # Save optimal pricing at time t\n",
+    "    p1.append(p1_opt)\n",
+    "\n",
+    "    # Assuming company 2 is implementing price match\n",
+    "    p2.append(p1[t-2])\n",
+    "\n",
+    "    # Update number of total variables in the model\n",
+    "    nvar += 4\n",
+    "\n",
+    "# Solving process finished, deallocate problem model\n",
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Results\n",
+    "After the pricing stage, we are ready to calculate the actual revenue for each strategy. For comparison, we implemented two other strategies: random and price matching. The random prices are generated under the uniform distribution from the price range. The price matching policy sets the price for the current period the company 1 set in the previous period."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx4AAAERCAYAAAD183HCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABPNUlEQVR4nO3dd3yV9fn/8deVAYEQ9goEZIPsEXAgyHDhALFqVepWvlRrta1t9dv+7PZbR91tFffeizqLAxFFkD1kQ5AwwyYhAZJcvz/uO3DAAAnk5CTh/Xw8zuPc53OPc507yblz3Z9l7o6IiIiIiEg0xcU6ABERERERqfqUeIiIiIiISNQp8RARERERkahT4iEiIiIiIlGnxENERERERKJOiYeIiIiIiESdEg8REZEIZvaUmW0ws3kl3P5iM/vOzOab2UvRjk9EpLIyzeMhIiKyj5kNBLKB59y962G2bQ+8Bgxx9y1m1tjdN5RHnCIilY1qPERERCK4+0Rgc2SZmbU1s4/MbLqZfWlmncJV1wP/dPct4b5KOkREDkKJh4iIyOGNBW5y9z7ArcC/wvIOQAcz+8rMvjGzs2IWoYhIBZcQ6wBEREQqMjOrBZwMvG5mRcXVw+cEoD0wCEgDJppZN3ffWs5hiohUeEo8REREDi0O2OruPYtZlwlMcfc9wAozW0yQiHxbjvGJiFQKamolIiJyCO6+nSCpuAjAAj3C1e8Q1HZgZg0Jml4tj0GYIiIVnhIPERGRCGb2MjAZ6GhmmWZ2LTAKuNbMZgPzgRHh5h8Dm8zsO+Bz4NfuvikWcYuIVHQaTldERERERKJONR4iIiIiIhJ1lbpzecOGDb1Vq1axDkNEpNKaPn36RndvFOs4KgpdV0REjs6hriuVOvFo1aoV06ZNi3UYIiKVlpmtjHUMFYmuKyIiR+dQ15WoNrUyswwzm2tms8xsWljWM5xkaZaZTTOzfmG5mdlDZrbUzOaYWe9oxiYiIiIiIuWnPGo8Brv7xojXdwN/cvcPzezs8PUgYBjB2OftgROAf4fPIiIiIiJSycWic7kDtcPlOsCacHkE8JwHvgHqmllqDOITEREREZEyFu0aDwf+a2YOPObuY4FbgI/N7F6CxOfkcNvmwKqIfTPDsrWRBzSz0cBogJYtW0Y1eBGJrj179pCZmUleXl6sQ6nykpKSSEtLIzExMdahiIjIMSraiccp7r7azBoD481sIXAh8At3f9PMLgaeBE4r6QHD5GUsQHp6uiYhEanEMjMzSUlJoVWrVphZrMOpstydTZs2kZmZSevWrWMdjoiIHKOi2tTK3VeHzxuAt4F+wJXAW+Emr4dlAKuBFhG7p4VlIlJF5eXl0aBBAyUdUWZmNGjQQDVLIiISU1FLPMws2cxSipaBM4B5BH06Tg03GwIsCZfHAVeEo1udCGxz97WISJWmpKN86DyLiEisRbOpVRPg7fBilwC85O4fmVk28KCZJQB5hP01gA+As4GlwE7g6ijGdlDjxkGfPjAv92PaN2hPm3ptYhGGiIiIiEiVErUaD3df7u49wkcXd/9bWD7J3fuE5Se4+/Sw3N39Rndv6+7d3L3cZ3AqLIQLLoBHHoFL37yUu7+6u7xDEJFytm7dOi655BLatm1Lnz59OPvss1m8eHGswyq1Rx55hHbt2mFmbNy48fA7iIiIlLNKPXN5WcvJgYICWLfe2VZjG+tz1sc6JBGJIndn5MiRXHnllbzyyisAzJ49m/Xr19OhQ4cYR1c6/fv359xzz2XQoEGxDuWY1eq292MdQpWW8fdzYh2CiBylWMzjUWHl5ATP6zfuotALycrJim1AIhJVn3/+OYmJiYwZM2ZvWY8ePRgwYADuzq9//Wu6du1Kt27dePXVVwGYMGECp556KiNGjKBNmzbcdtttvPjii/Tr149u3bqxbNkyAK666irGjBlDeno6HTp04L333gMgIyODAQMG0Lt3b3r37s3XX3+997iDBg3iwgsvpFOnTowaNQp357PPPuP888/fG9/48eMZOXLkDz5Lr169aNWqVZTOlIiIyNFTjUeE7Ozgef2WYCFrpxIPkfJyyy0wa1bZHrNnT3jggYOvnzdvHn369Cl23VtvvcWsWbOYPXs2GzdupG/fvgwcOBAIakUWLFhA/fr1adOmDddddx1Tp07lwQcf5OGHH+aB8E0zMjKYOnUqy5YtY/DgwSxdupTGjRszfvx4kpKSWLJkCZdeeinTpgUtS2fOnMn8+fNp1qwZ/fv356uvvmLw4MHccMMNZGVl0ahRI55++mmuueaaMjxLIiIi5UM1HhGKEo+sbWHioRoPkWPWpEmTuPTSS4mPj6dJkyaceuqpfPvttwD07duX1NRUqlevTtu2bTnjjDMA6NatGxkZGXuPcfHFFxMXF0f79u1p06YNCxcuZM+ePVx//fV069aNiy66iO+++27v9v369SMtLY24uDh69uxJRkYGZsbll1/OCy+8wNatW5k8eTLDhg0r13MhIiJSFlTjEaEo8di4I1jYkreFPQV7SIzXTL8i0Xaomolo6dKlC2+88Uap96tevfre5bi4uL2v4+LiyM/P37vuwCFszYz777+fJk2aMHv2bAoLC0lKSir2uPHx8XuPdfXVV3PeeeeRlJTERRddREKCvrpFRKTyUY1HhKI+Hrl7cvaWbdyp0WFEqqohQ4awa9cuxo4du7dszpw5fPnllwwYMIBXX32VgoICsrKymDhxIv369TvE0X7o9ddfp7CwkGXLlrF8+XI6duzItm3bSE1NJS4ujueff56CgoLDHqdZs2Y0a9aMv/71r1x9dUxGGhcRETlqSjwiFNV4UC17b5n6eYhUXWbG22+/zSeffELbtm3p0qULt99+O02bNmXkyJF0796dHj16MGTIEO6++26aNm1aquO3bNmSfv36MWzYMB599FGSkpK44YYbePbZZ+nRowcLFy4kOTm5RMcaNWoULVq04Pjjjy92/UMPPURaWhqZmZl0796d6667rlSxioiIRJu5e6xjOGLp6ele1CmzLDz7LFx1FdDxXbj0fAA+ufwThrYZWmbvISL7LFiw4KD/SFd2V111Feeeey4XXnhhmRzvZz/7Gb169eLaa6894mMUd77NbLq7px9tfFXF0VxXNJxudGk4XZHK4VDXFTUUjqAaDxGpiPr06UNycjL/+Mc/Yh2KiIjIEVPiEaGojwfV9vXx2JCzITbBiEil9swzz5TZsaZPn15mxxIREYkV9fGIUGyNh4bUFRERERE5ako8ImRnQ3IyxCUFiUe9pHpqaiUiIiIiUgbU1CpCdjakpAB1sskrTKJpraZKPEREREREyoASjwg5OVCrFuypncOeglo0Tm6splYiIiIiImVATa0iFDW1qpacjeUn0yi5kWo8RKq4devWcckll9C2bVv69OnD2WefzeLFi2MdVqmNGjWKjh070rVrV6655hr27NkT65BERET2o8QjQnZ2UOMRXzObwl21aFSzkUa1EqnC3J2RI0cyaNAgli1bxvTp0/m///s/1q9fH+vQSm3UqFEsXLiQuXPnkpubyxNPPBHrkERERPajxCNCUeIRl5RNYW6QeGzO3Ux+YX6sQxORKPj8889JTExkzJgxe8t69OjBgAEDcHd+/etf07VrV7p168arr74KwIQJEzj11FMZMWIEbdq04bbbbuPFF1+kX79+dOvWjWXLlgHBBIJjxowhPT2dDh068N577wGQkZHBgAED6N27N7179+brr7/ee9xBgwZx4YUX0qlTJ0aNGoW789lnn3H++efvjW/8+PGMHDnyB5/l7LPPxswwM/r160dmZma0TpuIiMgRUR+PCDk5kJYGJOZQkJtMveqNANi0cxNNajWJbXAiVdwtH93CrHWzyvSYPZv25IGzHjjo+nnz5tGnT59i17311lvMmjWL2bNns3HjRvr27cvAgQMBmD17NgsWLKB+/fq0adOG6667jqlTp/Lggw/y8MMP88ADwXtmZGQwdepUli1bxuDBg1m6dCmNGzdm/PjxJCUlsWTJEi699FKKZsqeOXMm8+fPp1mzZvTv35+vvvqKwYMHc8MNN5CVlUWjRo14+umnueaaaw76mfbs2cPzzz/Pgw8+eGQnTUREJEpU4xGhqMajMCEbdteien6QeKifh8ixZ9KkSVx66aXEx8fTpEkTTj31VL799lsA+vbtS2pqKtWrV6dt27acccYZAHTr1o2MjIy9x7j44ouJi4ujffv2tGnThoULF7Jnzx6uv/56unXrxkUXXcR33323d/t+/fqRlpZGXFwcPXv2JCMjAzPj8ssv54UXXmDr1q1MnjyZYcOGHTTuG264gYEDBzJgwIDonJgKwsxamNnnZvadmc03s5uL2WaQmW0zs1nh445YxCoiIoGo1niYWQawAygA8t09PSy/CbgxLH/f3X8Tlt8OXBuW/9zdP45mfAcqSjzy44LEI2FXY0CTCIqUh0PVTERLly5deOONN0q9X/Xq1fcux8XF7X0dFxdHfv6+pplmtt9+Zsb9999PkyZNmD17NoWFhSQlJRV73Pj4+L3HuvrqqznvvPNISkrioosuIiGh+K/uP/3pT2RlZfHYY4+V+jNVQvnAr9x9hpmlANPNbLy7f3fAdl+6+7kxiE9ERA5QHjUeg929Z0TSMRgYAfRw9y7AvWF5Z+ASoAtwFvAvM4svh/j2KhpOdzc5sLsWnhPUeKiDuUjVNGTIEHbt2sXYsWP3ls2ZM4cvv/ySAQMG8Oqrr1JQUEBWVhYTJ06kX79+pTr+66+/TmFhIcuWLWP58uV07NiRbdu2kZqaSlxcHM8//zwFBQWHPU6zZs1o1qwZf/3rX7n66quL3eaJJ57g448/5uWXXyYurupXZrv7WnefES7vABYAzWMblYiIHEosrk4/Bf7u7rsA3L3ov/oRwCvuvsvdVwBLgdJd5Y9Cfj7k5QXD6eYVZsOeZPK3qamVSFVmZrz99tt88skntG3bli5dunD77bfTtGlTRo4cSffu3enRowdDhgzh7rvvpmnTpqU6fsuWLenXrx/Dhg3j0UcfJSkpiRtuuIFnn32WHj16sHDhQpKTk0t0rFGjRtGiRQuOP/74YtePGTOG9evXc9JJJ9GzZ0/+/Oc/lyrWyszMWgG9gCnFrD7JzGab2Ydm1uUg+482s2lmNi0rS9/3IiLREu3O5Q7818wceMzdxwIdgAFm9jcgD7jV3b8luFP1TcS+mRRz98rMRgOjIbiol5WcnOC5ZnIhudlBjUfu5gaAmlqJVGXNmjXjtddeK3bdPffcwz333LNf2aBBgxg0aNDe1xMmTDjoutNOO41HH310v/3bt2/PnDlz9r6+6667it33kUce2W+/SZMmcf311x/0c0Q28TqWmFkt4E3gFnfffsDqGcBx7p5tZmcD7wDtDzxGeG0aC5Cenu7RjVhE5NgV7RqPU9y9NzAMuNHMBhIkO/WBE4FfA6/ZgQ2hD8Hdx7p7urunN2rUqMwCzc4Onqsn5+I4tqcWmzcmUL9GfdV4iEhM9enThzlz5vCTn/wk1qFUKGaWSJB0vOjubx243t23u3t2uPwBkGhmDcs5TBERCUW1xsPdV4fPG8zsbYKmU5nAW+7uwFQzKwQaAquBFhG7p4Vl5aKoxiOhZrBQO6kWa9dC0+ZNWZu9trzCEJEq4plnnimzY02fPr3MjlVVhDesngQWuPt9B9mmKbDe3d3M+hHcbNtUjmGKiEiEqNV4mFlyONIIZpYMnAHMI6jqHhyWdwCqARuBccAlZlbdzFoTVIdPjVZ8Byqq8YhLChbqpySTmQlptdPI3K6JuESiJbgHIdFWBc9zf+ByYEjEcLlnm9kYMyuaEfJCYJ6ZzQYeAi7xKngiREQqi2jWeDQB3g5bUSUAL7n7R2ZWDXjKzOYBu4ErwwvBfDN7DfiOYJjEG9398MO9lJEDE48mdWuxagH0r92C2etml1cYIseUpKQkNm3aRIMGDX4w9KyUHXdn06ZN+w3dW9m5+yTgkL807v4I8MihthERkfITtcTD3ZcDPYop3w0U21DZ3f8G/C1aMR1KUeJBtWChaYNazF0FabVbsD5nPbvyd1E9ofrBDyAipZaWlkZmZiYaSSj6kpKSSEtLi3UYIiJyDIv2qFaVRlEfD08MFpo3SiYnBxomBt1O1uxYQ+t6rWMVnkiVlJiYSOvW+rsSERE5FlT9WaZKqKjGwxOChZZNawGQmBvcIVy1fVVM4hIRERERqQqUeISKEo+CMPFo3TxIPHxbUOOxapsSDxERERGRI6XEI1SUeOTHBQttWwSJx+6sIPHQyFYiIiIiIkdOiUcoJwfi4mBXYdDHo01aMvHxkLW6FnWT6qqplYiIiIjIUVDiEcrOhlq1IGdPUOORklST1FRYtSqYy0OJh4iIiIjIkVPiESpKPLJ3Z1MzsSbxcfG0aBEkHi1qt1AfDxERERGRo6DEIxSZeNSqFvTvaNECMjODxEN9PEREREREjpwSj1BODiQnQ86eHJITkwH21nik1W5B1s4s8vLzYhyliIiIiEjlpMQjdLAaj9xcqB+vka1ERERERI6GEo9QcYlHWjB3IAlFkwiqn4eIiIiIyBFR4hHKyQlHtdqds1+NBwDbVOMhIiIiInI0lHiEsrODPh7Zu7NJrravjwdA3oawxkND6oqIiIiIHBElHqHimlo1aQIJCbA+syYNajRQUysRERERkSOkxCO0X+KRGCQecXFBrUdGBrSs05KMbRkxjVFEREREpLJS4gHs3g179kQMpxs2tQLo2hVmz4aujbsye93sGEYpIiIiIlJ5JcQ6gIogJyd4rlGzkJ07du6dxwOgVy94/324okEvnp/zPOuz19OkVpMYRSoiIiJlqdVt78c6hCot4+/nxDoEqUBU4wHkhfMCJtbYBUCNxBp71/XqBYWFkJLdC4BZ62aVd3giIiIiIpVeVBMPM8sws7lmNsvMph2w7ldm5mbWMHxtZvaQmS01szlm1juasUXKzQ2e46sHCzUS9k88APIyegIwc93M8gpLRERERKTKKI+mVoPdfWNkgZm1AM4Avo8oHga0Dx8nAP8On6PuB4lHRI1Hy5ZQrx4sml2X1p1bK/EQERERETkCsWpqdT/wG8AjykYAz3ngG6CumaWWRzBFiYdVCxaSEpL2rjODnj1h5kzoldqLmWuVeIiIiIiIlFa0Ew8H/mtm081sNICZjQBWu/uBQ0Q1ByInysgMy/ZjZqPNbJqZTcvKyiqTIPcmHok/bGoFQXOruXOhR+NeLNm8hB27dpTJ+4qIiIiIHCuinXic4u69CZpR3WhmA4H/Be440gO6+1h3T3f39EaNGpVJkEWdy61asBDZ1AqCxCMvDxruCTp8zF6vYXVFREREREojqomHu68OnzcAbwOnAq2B2WaWAaQBM8ysKbAaaBGxe1pYFnVFNR4kHLzGAyA/M1hQcysRERERkdKJWuJhZslmllK0TNCZ/Ft3b+zurdy9FUFzqt7uvg4YB1wRjm51IrDN3ddGK75IRYmHJ/ywczlAx46QlAQr5qbSOLmxOpiLiIiIiJRSNEe1agK8bWZF7/OSu390iO0/AM4GlgI7gaujGNt+ihKPwrgfdi4HSEiAzp1hwXdGt57d+C7ru/IKTURERESkSoha4uHuy4Eeh9mmVcSyAzdGK55D2Zt4xBff1AqgeXNYuRJ61m7OhIwJ5RidiIiIiEjlp5nL2de53OOK71wOkJoKa9dCaq1U1mWvI8iTREQkFsyshZl9bmbfmdl8M7u5mG1iNjGtiIj8kBIP9tV4FMQdvMYjNRWysqBRjabsLtjN5tzN5RmiiIjsLx/4lbt3Bk4kGDmx8wHbRE5MO5pgYloREYkRJR4EiYcZ7PbiO5cDNG0aPNcsCOY0XJe9rtziExGR/bn7WnefES7vABbww7mfYjYxrYiI/JASD4LEIykJ8vKL71wOQY0HQHxusLA2u1wG3BIRkcMws1ZAL2DKAatiNjGtiIj8kBIPgsSjRg3I3ZNLnMWRGJf4g22KEo/C7UHVx9odSjxERGLNzGoBbwK3uPv2IzlGNCamFRGRH1LiQUTikZ9LjYQahEMA76eoqdWezWpqJSJSEZhZIkHS8aK7v1XMJjGbmFZERH5IiQfBqFY1akBefl6x/TtgX+KxZX0KyYnJamolIhJDFtwhehJY4O73HWSzmE1MKyIiPxTNCQQrjQNrPIpTrRo0aBAMqdv0+KZKPEREYqs/cDkw18xmhWX/C7QEcPdHieHEtCIi8kNKPNi/j8fBajwgqPVYuxZS+6Wqj4eISAy5+yTgh+1i998mZhPTiojID6mpFftGtcrNzy12RKsiqamwbt2+SQRFRERERKRklHhwQI3HQZpawb7Zy5vWUlMrEREREZHSUOJByTqXw74aj6a1Utm+azs79+wsxyhFRERERCovJR6UrHM5BH08du+G2nEaUldEREREpDSUeFDyzuVFkwgm5mkSQRERERGR0lDiQek6lwOQHSyon4eIiIiISMko8aDkncuLJhHM36KmViIiIiIipXHMJx7uB3QuP8yoVgDZGxoSb/FqaiUiIiIiUkLHfOKxe3eQfOztXH6IPh4pKVCzJqxfF0eTWk3U1EpEREREpISO+cQjNzd4Tkryw9Z4mEXMXl4rVYmHiIiIiEgJRTXxMLMMM5trZrPMbFpYdo+ZLTSzOWb2tpnVjdj+djNbamaLzOzMaMZWpCjxiE/KAzhk53IImlutWRNMIrhmx5pohyciIiIiUiWUR43HYHfv6e7p4evxQFd37w4sBm4HMLPOwCVAF+As4F9mFh/t4PYmHtWDhUM1tQJo3RqWL4fWdVuzfMty3D3aIYqIiIiIVHrl3tTK3f/r7vnhy2+AtHB5BPCKu+9y9xXAUqBftOPJCyo6iK8eLByqqRVA+/aQmQnHpbQne3c263PWRztEEREREZFKL9qJhwP/NbPpZja6mPXXAB+Gy82BVRHrMsOy/ZjZaDObZmbTsrKyjjrAohqPuBLWeLRvHzwn7woWlm5eetQxiIiIiIhUddFOPE5x997AMOBGMxtYtMLMfgfkAy+W5oDuPtbd0909vVGjRkcdYFHiYYlh4lGCGg8A3xgsLNm05KhjEBERERGp6qKaeLj76vB5A/A2YdMpM7sKOBcY5fs6SawGWkTsnhaWRVVR4kGYeByuc3lR4rFtZSsS4hJYslmJh4iIiIjI4UQt8TCzZDNLKVoGzgDmmdlZwG+A4e6+M2KXccAlZlbdzFoD7YGp0YqvyN7EI6FkTa3q1IFGjWD50gRa122txENE5CiZWRMze9LMPgxfdzaza2Mdl4iIlK1o1ng0ASaZ2WyCBOJ9d/8IeARIAcaHw+w+CuDu84HXgO+Aj4Ab3b0givEBxSQeh2lqBUGtx5Il0L5BezW1EhE5es8AHwPNwteLgVtiFYyIiERHQrQO7O7LgR7FlLc7xD5/A/4WrZiKUzSqlSeEo1odpsYDgsRj/Hi4qH57vsj4AnfHzKIZpohIVdbQ3V8zs9sB3D3fzKJ+40lERMpX1BKPyqKoxqMwrnQ1Hs8+Cy1rtSdnTw5rs9fSLKXZYfcTEZFi5ZhZA4KREDGzE4FtsQ1JRCqyVre9H+sQqrSMv58TleMq8QgTj4K4knUuh30dzGvk7hvZSomHiMgR+yVBP7+2ZvYV0Ai4MLYhiYhIWVPiUZR4WMk6l8O+xKMwK0w8Ni/h1FanRiU+EZGqzt1nmNmpQEfAgEXuvifGYYmISBlT4pELZrCHkje1ahf2Utma0ZJq8dXUwVxE5CiY2RUHFPU2M9z9uZgEJCIiUXHMJx55eZCUBLvyS965PCUFmjaFZUvjadOnjYbUFRE5On0jlpOAocAMQImHiEgVcswnHrm5UKMG5ObnEmdxJMYllmi/vUPqnt5eiYeIyFFw95siX5tZXeCV2EQjIiLRUqJ5PMysg5l9ambzwtfdzez30Q2tfOTmBjUeuXtySUpIKvGwuN27w8yZ0LVRdxZkLSB7d3aUIxUROWbkAK1jHYSIiJStkk4g+DhwO7AHwN3nAJdEK6jyFFnjUZL+HUUGDoScHGi6ayAFXsDXq76OYpQiIlWXmf3HzMaFj/eARcDbsY5LRETKVkmbWtV096kH1AbkRyGecrdf4lGC/h1FBg4Mnrd/dxLxFs/ElRM5o+0ZUYpSRKRKuzdiOR9Y6e6ZsQpGRESio6SJx0Yza8u+yZ0uBNZGLapylJcXJB55+XmlqvFo2hQ6dICpX6bQZ3gfJq6cGMUoRUSqLnf/orT7mNlTwLnABnfvWsz6QcC7wIqw6C13//NRhCkiIkeppE2tbgQeAzqZ2WrgFuCn0QqqPO2t8dhTuhoPCGo9vvwSTmkxkCmrp5C7JzdKUYqIVF1mdoGZLTGzbWa23cx2mNn2w+z2DHDWYbb50t17hg8lHSIiMVaixMPdl7v7aQSzyXZy91PcPSOqkZWTvZ3L83NLNGt5pIEDYetWOM4HsrtgN1NXT41OkCIiVdvdwHB3r+Putd09xd1rH2oHd58IbC6f8EREpCyUdFSrO82srrvnuPsOM6tnZn+NdnDlYb8aj1I0tQI4NZysPHfRKRim5lYiIkdmvbsviMJxTzKz2Wb2oZl1OdhGZjbazKaZ2bSsrKwohCEiIlDyplbD3H1r0Qt33wKcHZWIytmRdi4HaNkSjjsOvv2yHt2bdOeLlaVupiwiIjDNzF41s0vDZlcXmNkFR3nMGcBx7t4DeBh452AbuvtYd0939/RGjRod5duKiMjBlDTxiDez6kUvzKwGUP0Q21caR1PjAUFzq4kTYcBxA/l61dfsLtgdhShFRKq02sBO4AzgvPBx7tEc0N23u3t2uPwBkGhmDY82UBEROXIlHdXqReBTM3s6fH018Gx0Qipf+41qVcoaDwiaWz3/PLRPOJXc/IeZsXYGJ6adGIVIRUSqJne/uqyPaWZNCZpwuZn1I7jRtqms30dEREquRImHu99lZnOAoWHRX9z94+iFVX6OdALBIkXzeexaMgCALzK+UOIhIlIKZtYB+DfQxN27mll3gs7mB+1LaGYvA4OAhmaWCfwBSARw90eBC4Gfmlk+kAtc4u4e3U8iIiKHUtIaD9z9Q+DDKMZS7twjRrXaU/pRrQDatQvm9Jj1VWM6ndyJid9P5Lf8NgrRiohUWY8DvyYYth13n2NmLwEHTTzc/dJDHdDdHwEeKcsgRUTk6Byyj4eZTQqfd4Rjqxc9SjLGOmaWYWZzzWyWmU0Ly+qb2fhwzPbxZlYvLDcze8jMlprZHDPrXRYf8FB27w6Sj6Op8TALmlt98QUMPO5UJn0/iYLCgihEKyJSZdV09wPHI8+PSSQiIhI1h0w83P2U8DklHFu96HHYMdYjDA4nb0oPX98GfOru7YFPw9cAw4D24WM0QbV7VOWG8/0lJfkR9/GAoLnV6tVwfI2BbN+1ndnrZ5dhlCIiVd5GM2sLOICZXQisjW1IIiJS1g7b1MrM4oH57t6pjN5zBEG7XAg6qE8AfhuWPxe2wf3GzOqaWaq7l/nFZ8aSNVz/9L3s2QOcCe8VBDUUR1LjAfv6eRSuCBYmrpxI79SoV9iIiFQVNwJjgU5mthpYAYyKbUgiIlLWDpt4uHuBmS0ys5bu/n0pj+/Af83MgcfcfSxB58GiZGId0CRcbg6sitg3MyzbL/Ews9EENSK0bNmylOEEVm7YzAyegESwPjB1N9RLqkev1F5HdLzOnaFBA5j3dRpterZh4sqJ3HLiLUd0LBGRY9BKdz/NzJKBOHffEeuARESk7JW0c3k9YL6ZTQVyigrdffhh9jvF3VebWWNgvJktjFwZDnNYqlFGwuRlLEB6evoRjVAysn9XvP9hu6iUWFwcDBgQ9vMYMZD/LPoP7o6Zldl7iIhUYSvM7CPgVeCzWAcjIiLRUdLE4/8dycHdfXX4vMHM3gb6AeuLmlCZWSqwIdx8NdAiYve0sKxS6NsX3nkHbqzfl2dyn2H1jtWk1U6LdVgiIpVBJ4IJA28EnjSz94BX3H1SbMMSEZGydLhRrZLM7BbgIoILw1fu/kXR4zD7JptZStEywYy084BxwJXhZlcC74bL44ArwtGtTgS2RaN/R7R07Bg819gZLCzauCiG0YiIVB7uvtPdX3P3C4BeBDOZH/IaIyIilc8hEw+Czt/pwFyCUaf+UYpjNwEmmdlsYCrwvrt/BPwdON3MlgCnha8BPgCWA0sJxnS/oRTvFXNFiUf+ujDx2KTEQ0SkpMzsVDP7FzAdSAIujnFIIiJSxg7X1Kqzu3cDMLMnCRKIEnH35UCPYso3sW8G9MhyJ6hmr5TatQv6emQtb05y9WTVeIiIlJCZZQAzgdeAX7t7zqH3EBGRyuhwiceeogV3z1dn6YNLSoJWrWDxIqPjkI6q8RARKbnu7l52I36IiEiFdLimVj0iZysHupdm5vJjTceOsGgRdGygxENEpBSamtmnZjYPwMy6m9nvYx2UiIiUrcPNXB5/wGzlCUcwc/kxo2NHWLwYOtTvyMqtK8ndkxvrkEREKoPHgdsJa9ndfQ5wSUwjEhGRMne4Gg8phY4dYedOaGgdcZwlm5fEOiQRkcqgprsf2IcwPyaRiIhI1CjxKENFI1vFb9GQuiIipbDRzNoCDmBmFwKVZjh1EREpmZJOICglUJR47MzsAGhIXRGREroRGAt0MrPVwApgVGxDEhGRsqbEowylpkJKCmQsTqZFmxZKPERESiAcfv20cLLZOGAnQR+PlTENTEREypSaWpUhs4iRrRp2VFMrEZFDMLPaZna7mT1iZqcTJBxXEkwkqwkERUSqGCUeZezAIXWDeRFFRKQYzwMdgbnA9cDnwEXASHcfEcvARESk7KmpVRnr0gVefBFaVO/C9l3bWbJ5CR0adIh1WCIiFVEbd+8GYGZPEHQob+nuebENS0REokE1HmVsRHiPbtfc8zCMV+a9EtuAREQqrj1FC+5eAGQq6RARqbqUeJSxzp2hZ094/+U0Tm11Ki/OfVHNrUREitfDzLaHjx1A96JlM9se6+BERKRsKfGIgssug6lT4bQml7F402JmrJ0R65BERCocd49399rhI8XdEyKWa8c6PhERKVtKPKLg0kuDEa6yp1xIYlwiL859MdYhiYiIiIjElBKPKEhLg4ED4e2X63F2+7N5Zd4rFBQWxDosEREREZGYUeIRJaNGBcPqnpQ8irXZa5mQMSHWIYmIiIiIxIwSjyj50Y8gMRFWf34uKdVS1NxKRERERI5pSjyipH59OPtseOOVGozsdAFvLniTvHyNEikiIiIixyYlHlF02WWwdi10LriM7bu28/7i92MdkoiIiIhITEQ98TCzeDObaWbvha+HmtkMM5tlZpPMrF1YXt3MXjWzpWY2xcxaRTu2aDvvPKhVCxZ+OIQmyU14ad5LsQ5JRKRKMLOnzGyDmc07yHozs4fCa8ocM+td3jGKiMj+yqPG42ZgQcTrfwOj3L0n8BLw+7D8WmCLu7cD7gfuKofYoqpGDbjgAnjrjQRGdvgx7y1+j6ycrFiHJSJSFTwDnHWI9cOA9uFjNMG1R0REYiiqiYeZpQHnAE9EFDtQNDFUHWBNuDwCeDZcfgMYamYWzfjKw5gxkJ0Nc56+HoCRr44kd09ujKMSEanc3H0isPkQm4wAnvPAN0BdM0stn+hERKQ40a7xeAD4DVAYUXYd8IGZZQKXA38Py5sDqwDcPR/YBjQ48IBmNtrMppnZtKysil97cNJJ8Nhj8PU7XTlx9Qt8veprLn3zUs3rISISXXuvKaHMsOwHKtt1RUSksopa4mFm5wIb3H36Aat+AZzt7mnA08B9pTmuu49193R3T2/UqFEZRRtd110Hd9wBEx+9iBva3se7i97lvcXvxTosERGhcl5XREQqo2jWePQHhptZBvAKMMTM3gd6uPuUcJtXgZPD5dVACwAzSyBohrUpivGVq1/+EuLioPaiG6iZWJNPln8S65BERKqyvdeUUFpYJiIiMRK1xMPdb3f3NHdvBVwCfEbQ5raOmXUINzudfR3PxwFXhssXAp+5u0crvvJWpw707QsTPq3GwOMG8umKT2MdkohIVTYOuCIc3epEYJu7r411UCIix7Jynccj7LtxPfCmmc0m6OPx63D1k0ADM1sK/BK4rTxjKw9Dh8LUqdA/dQgLNi5g7Q5dA0VEjoSZvQxMBjqaWaaZXWtmY8xsTLjJB8ByYCnwOHBDjEIVEZFQQnm8ibtPACaEy28DbxezTR5wUXnEEytDhsCdd0LKxqEAfLbiM0Z1HxXjqEREKh93v/Qw6x24sZzCERGREtDM5eXo5JOhenXI+KYn9ZLqqbmViIiIiBwzlHiUoxo1oH9/+PyzOAa3HsynKz6lCnVjERERERE5KCUe5WzoUJg9G/o1Gsr3275n+ZblsQ5JRERERCTqlHiUs9NPD54LFwcL7y56N4bRiIiIiIiUDyUe5Sw9HTp0gA9eaE+/5v14etbTam4lIiIiIlWeEo9yZgbXXAOTJsE5za5h3oZ5TF974OTuIiIiIiJVixKPGLj88mAW862TLiEpIYknZzzFY49Bi5bODY89T5sH2/DotEdjHaaIiIiISJlR4hEDzZrBsGHw6rN16FHtR4z95iXGPPoMmWeexL/XXcGq7au4/5v71QRLRERERKoMJR4xcvXVsGYNTPn3NRQmboPzr6ZBi43w7pPc0edfLN60mG/XfBvrMEVEREREykS5zFwuP3T++fDII9C792DmVhtLp4YdaZswgJZ/MrZP3kZS0s95bvZz9GveL9ahioiIiIgcNSUeMRIfDzfeCGCcxPV7y08/HV5/vg7D7xnBK/Ne4b4z76NafLWYxSkiIiIiUhbU1KqCufxyWLkSesdfwabcTXyw5INYhyQiIiIictSUeFQw558P9evD/T87g0bV0rh23LW8v/j9WIclIiIiInJUlHhUMMnJ8MUXULd2Ahv/8TnJ+S059+VzuW/yfbEOTURERETkiCnxqIC6doVvv4XT+7Rj7V8mM6Tpj7j1v7fy2YrPYh2aiIiIiMgRUeJRQaWkwMsvQ7PGSSy99xna1+vIZW9exrrsdbEOTURERESk1JR4VGD168Orr8KajFp0mPM623dtZ/R/Rsc6LBERERGRUlPiUcGdeCL86lfw/lNdGd3hD/xn8X/4cuWXsQ5LRERERKRUop54mFm8mc00s/fC12ZmfzOzxWa2wMx+HlH+kJktNbM5ZtY72rFVFr/9LdSpA4uev4nUWqnc/untuHuswxIRERERKbHyqPG4GVgQ8foqoAXQyd2PB14Jy4cB7cPHaODf5RBbpVCvHtx2G3z0n5qMav4Hvlr1Fe8v0RC7IiIiIlJ5RDXxMLM04BzgiYjinwJ/dvdCAHffEJaPAJ7zwDdAXTNLjWZ8lclNN0FqKrz3l2toXacdN314E2t2rIl1WCIiIiIiJRLtGo8HgN8AhRFlbYEfm9k0M/vQzNqH5c2BVRHbZYZl+zGz0eG+07KysqIUdsVTsya89BKsWJZIjQ9eZmPORs584Uw2526OdWgiIiIiIocVtcTDzM4FNrj79ANWVQfy3D0deBx4qjTHdfex7p7u7umNGjUqo2grh0GDglGuFn2WTrtp77J402KGvTiMbXnbYh2aiIiIiMghRbPGoz8w3MwyCPpxDDGzFwhqMt4Kt3kb6B4urybo+1EkLSyTCCNGwLPPwux3htBx9uvMWDuDM184k625QfKhTuciIiIiUhElROvA7n47cDuAmQ0CbnX3n5jZ34HBwArgVGBxuMs44Gdm9gpwArDN3ddGK77KbNQocIcrrhhO9aVvMOW8C6n3lzQsYQ9mznF1j6NPWg/uHHIn7Ru0P/wBRURERESiLGqJxyH8HXjRzH4BZAPXheUfAGcDS4GdwNUxiK3S+MlPgiF233tvBFv3fMjCuNfJ21yHFSvg+9orWbfjY/6z6D/8adCfuPXkW4mPi491yCIiIiJyDCuXxMPdJwATwuWtBCNdHbiNAzeWRzxVxXnnBQ84LXxARgaMGQMf37uG1Gt/xm2f3sYnKz7hxQtepHFy4xhGKyIiIiLHMs1cXsW0agUffggP/KUZGx55k/qTnuCLFZPo+WhPxk4fy+6C3bEOUURERESOQUo8qiAzuPlmmPSl0XLjtez51zdsyWjJ/7z3P3R4uAOPT39cCYiIVHpmdpaZLTKzpWZ2WzHrrzKzLDObFT6uK+44IiJSPpR4VGEnnggzZsDbj/agw5eT4YUPWbukKaPfG02dP7Qm/ZFBjHx1JJNXTY51qCIipWJm8cA/gWFAZ+BSM+tczKavunvP8PFEMetFRKScKPGo4szg/PNh5gzj7XvO4szMyXSZ+SGF35/AjJnO54u/YeAzA3ngmwc0FK+IVCb9gKXuvtzddxMM2z4ixjGJiMghKPE4RsTFBQnIuHeNee+cReY/3mLo91+w7c4F1Fl/Dr/4+Bec8MQJvLf4PSUgIlIZNAdWRbzODMsO9CMzm2Nmb5hZi2LWi4hIOVHicYxq1Ag++ggevqcu1d5+G959ktlLsjjv5fPo9EhnHvzmQbbkbol1mCIiR+M/QCt37w6MB54tbiMzG21m08xsWlZWVrkGKCJyLFHicQyLj4ef/QyWLzMeG3MNx3+yGN5+hqXz6nDLx7fQ9N5mXP7G1Xy45EO279oe63BFRCKtBiJrMNLCsr3cfZO77wpfPgH0Ke5A7j7W3dPdPb1Ro0ZRCVZERGIzgaBUMElJMHo0XH99It9+eyWPPnolLz09k13dHuOF3Bd5Yf4zmMfRuKA3fH8q1RKMhDaTSKqeQNr2H1GnoB0pnb6lQZNczu1wDqe0PEUTFopItH0LtDez1gQJxyXAZZEbmFmqu68NXw4HFpRviCIiEkmJh+xlBv36BY+Hsnvx1VeP8skX9/HBt5NZkPcFG1pNgFYPg4Mv6wfVd7Cg6S8gHlgaB0sSuHfyPaTVTuOhsx5i5PEjY/2RRKSKcvd8M/sZ8DHBt9BT7j7fzP4MTHP3ccDPzWw4kA9sBq6KWcAiIqLEQ4pXqxaceSaceWZN7mEoublDiY+Hwrg8DGPZ4ups3QrJLRezZtsG1szoyV13OUv8I7af+zcueO0CetY+jQHNh3JC624cn5ZKs5RmNEluwoYNxpw5MHPRRnbXm4PXX0TXVql0adyZ9vXbY2ax/vgiUgm4+wfABweU3RGxfDtwe3nHJSIixVPiISVSo0bRUhIAnfeOlt+BHmkdoAv85GK4666LePzJ89me9iCz+v6TWds/4eGIxg22szG+sT3UWw4pa2FTuGJqeLR6x3PjCWM4r+1FLJuVyu6C3WxI+orGqbtpVa8FHRp0ICFOv7YiIiIilY3+g5MyU7063HEH3HFHIhs33srChbeyfO0WpmUsYM6yDaza/j3xzWdR0HoJ7RueQb/jutOwsDtbl3TkhXfWsSRnOot7Ps3NW27mZm6GrE6QsgaS9nVs796kO+MuGcdxdY+L4ScVERERkdJS4iFR0bAhnHIKnEI9ruDkw27//25uwYwZffn44zG8P20OhW0+Ir/dBJrU7E+zHcN57rH61Gj5HcsG/Ya+j/fluZHPcWbbMw/ZLGvTJli5Etocv40lmxeT3ixdzbhEREREYkSJh1QIZtCnT/D4X7oD3YHf7F1/w1AYPvwUVs0eSP5Vwxn24jDa1+nKtb2voWuN07GtbZj//RpWbslka2EmS9dsZPp0yK+7kPheL1AQn8PQ1kN57NzHaFu/7d7jFhYGkysWeiFxptGlRURERKJFiYdUCj17wnffwfPPd+Lhf89mQcLLLOn3CLdt+2XxO9QDToMEquNzLyU+qzMTBv6VDg8dT8O8E0lYfwJb8jaSV3MZKS2XkxefxS9O/AV3Dr1TCYiIiIhIFCjxkEqjVi346U9hzJgaLF9+DZ99dg1Lslayte5nFCavpWNqGh2aptE8JY3m9RpSIymOpIQk1q5K4uGH4ePxl/Fd7YfY0uFT9rS8nxqFjamX25bNs06jRdsc7vrqLv47YyFNN/yExSt2EtdsFgWpU0ir25ihbYYy+PietKiTRss6LZWciIiIiJSSEg+pdMygbdvgAccBVx9y+9at4b77AJpTWHjXfk2r3OHOO+H3v3fo9wgzz7oFUt4NWnrlJ8Gy3ixPmcXErHf4w5TgeANaDuD9y94npXpKND+miIiISJWixEOOKXFhRUVRjYUZ/O53MGqUkZ19E1sKzie54VZSkpJoWec4VmVUY+lS+HhKBg88v5gOA2fxtf0vgx4/mwf6v0HtJptISHDa1m9LAkn8+c8w+ZtCetxwD9O3fcQDZz5Aj6Y9YviJRURERCoGJR4iQKtWRUstwkegXbvgcdZZreia1orrrjsDOrdmxoWXMnBc04gjGMk5XciZPoL41Ll8Mnsc1ahJvyf68edBf+amE26iZmLN8vtAIiIiIhVM1BMPM4sHpgGr3f3ciPKHgGvcvVb4ujrwHNCHYFq5H7t7RrTjEympa6+F5s1hzpyLyG7YiMU5U9iV1ZIF38GiTYvY2WoicQP/jpnRadlDLHzjUqpfdD23FdzG3V/dww19f8qN/W6kaa2mfP89LFsGbXqsYdm2hfRv0Z/qCdVj/RFFREREoqY8ajxuBhYAtYsKzCydYNyhSNcCW9y9nZldAtwF/Lgc4hMpsbPOCh4wKHwE1q8Pmm3F1drI7oLdpNZqxic/gX/c9xYfT/iSrf3v56+5f+NvX9xN9e/PIS8/BxougokrAejZtCcv/+hlOtTvxDffwEsvO29+PZ2kvi+T1+odWtdtxXlNfk6tnV1Zvn4d329ex+oda/Ga66ibto7WaTUZ1nEoA48bSL0aB/5piYiIiMReVBMPM0sDzgH+BvwyLIsH7gEuA0ZGbD4C+GO4/AbwiJmZu3s0YxQpC02aFC013Ft2+ulw+unG/PkDeeCBgbz3+lIK+z1IdvN3aZnUhMaJJzL3o5uxvHrMH3or3R7uQ8KaAeRtSMNafYEPXwoFiTBvKOsaz2fy+vP3vWEiUB8ojIflTWDNVh6b9TAANQtSaVmzEye07cRJrXswpOU57MhMY+bcPBZtWkTbk+axkw1c1u0ymtRqgoiIiEh5iHaNxwMEs8BFDv/zM2Ccu689YBbp5sAqAHfPN7NtQANgY+RGZjYaGA3QsmXLqAUuUla6dIHHHwdoBzwcPgIrLoY//AFmfHoGS1r8P6q1mkV8y2/pm9abn/S4jXPbXsCkT+qxIyef76t/QHytLXRITaV9alOa1W5KrbiGfP1VHJOn7mLSysl8t20K6woWsrDOQhZue4lnv/t38EbbWkDKaogrhP8GRf/vsz/w65N/y/BOZ9OpYSdqJNYAwB22bIG6dZ1tu7ZSJ6mOhg8WERGRoxa1xMPMzgU2uPt0MxsUljUDLiKyjUopuftYYCxAenq6akOkUmvdGp57DqAZ8GSx2/zoRxD8qQ4vdv1pp8Fpp1WnqPmXO8ybB++840xZtohdrd8lt8Usuqe1p2WNLox7oguTvzZyhv6OP+b/nj9O/D3mcdTZ1YOEdSewded28ussJr7xYgoSt9OraS8eOuthEtf157XXnW1Js9jd4VWaNIXhHc+hX/N+P+if4l40K7xT6IXEx8Uf8jzs2AFPPQXDf5TL+2ueZHjH4bSsoxsLIiIiVUk0azz6A8PN7GwgiaCPx3xgF7A0rO2oaWZL3b0dsJpgOKFMM0sA6hB0MheRUjCDbt2gWzcDOoWPfX57DixcCHPmvMPnc5bw5eLZLNkxh7xWX7En7UWSrQGN4juwZu7l5GY1ZXbfxxiw7hTIaQiJuyFxOyxNhKVw7+S7gGCG+LZ1O3J+q6tIWXs2zz7nrNg1jVqnPcCOmnMY2PwMLu72I6qt68/6xS3ZXmcyW2tMp21qI5LzW3LX/7Zk5ZocfrvicnbVm8O9X9/LhKsm0Kpuq3I/fyIiIhIdUUs83P124HaAsMbj1shRrcLy7DDpABgHXAlMBi4EPlP/DpGyZwbHHx88fvzj9kB7gj+5/W3bBg8+CKvW/YL5cQ+T1OR72rWN5/j6Xam16kJWLk9kTs5/+XbFItZt2cai4yZy19ZfAr+EM4Nj7NjSiYL51/H51vf5fPX7+w6+M3xeHj6PCJ527WxI4+kPsb73H+hx32DqfX8Vazdvo26n2eTVm86prQby1IinaFhzX1+alUH/fBLqrWZXwS7a1GtThmdLREREykpFmsfjSeB5M1sKbAYuiXE8Ise0OnXgjjsAkoHbDrJVkLDMmBE071rnc9mRPJPjOybSPKUZ/VsMYO6cOL6ZUsis1fOp0X4K8Q0y6Jh8Ig3zTmLJ91tZue17Op/0PbvjN9Eq+xKue7wZedP6s+snw9je+o/EH1eTDes7UWvdCD7a8yrd/tmTa467k8yvB/DZNxvIrPM6tH8fGi0E4Ph6PRjZ4WLy51zE7K8bsaL2c2xv+AlNW+wkrUkNrut9Hed1PE/9VkRERMpZuSQe7j4BmFBMea2I5TyC/h8iUsn07h08oFv42KdXL+jVK67YdcH4EW33Kxm+Acx647Yaw4iPi+frr+GSS2DV+FtYd9HF3LnzymBA7mEQTyJt4waTO+86Vq1MYEGX11iw5XfA76B7IsTvIX5LR9bNa8D8dYt5b8n5tKjRgYu6j+Cs9qdzSstT9nasFxERkeipSDUeIiIk7P1W2vf1dPLJwYSLs2f34utvFrCz1jyqt5tMw5RanNfxPOom1QVgxQp47bWbWbF5FSknvE5h8mpGdR9F1wa9efFFePzJfL7Jfo1VvcZyX/YD3DflHhI8idYJ/Unc0o3szJY07rIAbzKbM9udxq0n36p5UURERMqIEg8RqRQSEyE9HdLTE4Ce4WN/rVvDb38LwTgVv9xv3dVXw9VXJ7B9+2VMmHAZH3ySzccLv2RV4niWtJgADcdC5518v7MuCbM6Mn3dnTwy9Z/8NP1GhjW4kbxNjZm/dhl1W64muWEWnRp2okfTHgeNNyMDnn4a5q1cTf2hz5BTcz5X97ya09qcxu7dxsyZ8PhTu/nP1DnE9X6GHc3HkZjXFNvUiWp1NmN1V9GiThqntO1Demo6LRP6MGVSTcaN30zBcZ8R3/kdjmtSn5tPuJn0ZulldZpFRESiRomHiBxTateG4cNh+PBawDAKC4exaRM0aOBsyt3I8vkN+Muf43j/7TnsGPxn7tr1f9xVeDdgEL8HVuw71gkNT+eq3pfTq0UH2tVvR4OaDZg6Fe68E96dMhtOuRM6vwHLC4nbXZeX571M/La2FOyqDknboNkaGOlYYXWqrzybglrbyU/9nNycBuxa3IL1dTOYtuWjYP6VIr3D5wVt+CozixfmvECX+BHM+/075XcSRUREjoASDxE5psXFQaNGAEaj5EY06gfvvQcLF3bniSfeIGf3MlY1fpzataFzo+NZOuM43nmpPtsaf8CUEx9gysYr9h7L8urhO+tjHbdDryxqJaZwXc9fUWfpaKZ+0oINTV9gQ713SalTjYYpKZzc5Tg6N23LOR3OoX6N+vvFtWMHzJoF38zIYXX+bDZVm0nzFnvoeFwd2tTsxeS3ezBxyg6m+xN4o0JEREQqOiUeIiLF6NQJ7r0Xgs7vf9+34jzYdRssWdKdhUt+xZQlS5iTuZSsgqXsrrWUpKbb6NmpNsc3ace1va/d2/+EnwNcGz4OLyUFBgyAAQOSgZPDxz6n3ga3URv4JRp4XEREKgMlHiIipVS9OnTtCl27JnIhnYHOMY0nmI9VRESkYtNA9iIiIiIiEnVKPEREREREJOqUeIiIiIiISNQp8RARERERkahT4iEiIiIiIlGnxENERColMzvLzBaZ2VIzu62Y9dXN7NVw/RQzaxWDMEVEJKTEQ0REKh0ziwf+CQwjGM/4UjM7cFzja4Et7t4OuB+4q3yjFBGRSEo8RESkMuoHLHX35e6+G3gFGHHANiOAZ8PlN4ChZpr1REQkVir1BILTp0/faGYrj2DXhsDGso6njCnGslEZYoTKEadiLBsVLcbjYh3AEWoOrIp4nQmccLBt3D3fzLYBDTjg/JvZaGB0+DLbzBZFJeKKp6L9Lh6Sqb6qiH5uldOx9HM76HWlUice7t7oSPYzs2nunl7W8ZQlxVg2KkOMUDniVIxlozLEeKxx97HA2FjHUd70u1g56edWOennFlBTKxERqYxWAy0iXqeFZcVuY2YJQB1gU7lEJyIiP6DEQ0REKqNvgfZm1trMqgGXAOMO2GYccGW4fCHwmbt7OcYoIiIRKnVTq6NQGarUFWPZqAwxQuWIUzGWjcoQY4UX9tn4GfAxEA885e7zzezPwDR3Hwc8CTxvZkuBzQTJieyj38XKST+3ykk/N8B080dERERERKJNTa1ERERERCTqlHiIiIiIiEjUHVOJh5mdZWaLzGypmd0W63gAzKyFmX1uZt+Z2Xwzuzksr29m481sSfhcrwLEGm9mM83svfB1azObEp7PV8MOnrGOsa6ZvWFmC81sgZmdVNHOpZn9IvxZzzOzl80sqSKcSzN7ysw2mNm8iLJiz50FHgrjnWNmvWMY4z3hz3uOmb1tZnUj1t0exrjIzM6MVYwR635lZm5mDcPXMTmPcuwwszQzezf8G15mZg8e6vsl/A69oTxjrOjMrMDMZoXf2a+bWc2DbPd1ecdWTAxXmVmzEmzzyEHWfRD5HXosO+Dn/p+yOi+HOv/HgmMm8TCzeOCfwDCgM3CpmXWObVQA5AO/cvfOwInAjWFctwGfunt74NPwdazdDCyIeH0XcL+7twO2ANfGJKr9PQh85O6dgB4E8VaYc2lmzYGfA+nu3pWgU+wlVIxz+Qxw1gFlBzt3w4D24WM08O8Yxjge6Oru3YHFwO0A4d/RJUCXcJ9/hd8DsYgRM2sBnAF8H1Ecq/MoxwAzM+At4J3wb7gDUAv42yF2qwso8dhfrrv3DL+zdwNjIldaMFQz7n5yLII7wFXAIROPQ3H3s919a5lFU7lF/tw3AzfGOqCq4JhJPIB+wFJ3X+7uu4FXgBExjgl3X+vuM8LlHQT/KDcniO3ZcLNngfNjEmDIzNKAc4AnwtcGDAHeCDepCDHWAQYSjGSDu+8Ov0Ar1LkkGE2uRnixqgmspQKcS3efSPDlGulg524E8JwHvgHqmllqLGJ09/+6e3748huC+RyKYnzF3Xe5+wpgKcH3QLnHGLof+A0QOaJHTM6jHDOGAHnu/jSAuxcAvwCuMbMbwpqQCWFtyB/Cff4OtA3v9N4To7grsi+BdmY2yMy+NLNxwHcAZpZdtJGZ/dbM5prZbDP7e1jW1sw+MrPp4b6dDjy4mf3RzJ4N1680swvM7O7wWB+ZWWK43R1m9m14N35sWHt6IZAOvBj+/GqYWV8z+zqMY6qZpYRv1Sw83hIzuzvi/TPMrKGZtbKg1cDjFtTQ/9fMaoTb9A1raGdZUOP8g9rdKmgywf9mmFk/M5tsQQuQr82sY1h+lZm9dZDzerWZLTazqUD/iPJWZvZZeD4/NbOWYfkzZvZvM/vGzJaHv29PhT+TZ8r1k5exYynxaA6sinidGZZVGGbWCugFTAGauPvacNU6oEms4go9QPBPU2H4ugGwNeIfvopwPlsDWcDT4RfCE2aWTAU6l+6+GriX4K73WmAbMJ2Kdy6LHOzcVdS/p2uAD8PlChOjmY0AVrv77ANWVZgYpUrqQvD9spe7byf4/kkgSMR/BHQHLjKzdIJazWXhnd5fl3O8FVp4s2gYMDcs6g3c7O4dDthuGMFNhRPcvQdQ9A/oWOAmd+8D3Ar86yBv1ZYgaRwOvAB87u7dgFyCG4AAj7h73/BufA3gXHd/A5gGjHL3nkAB8GoYYw/gtPAYAD2BHwPdgB+HNbIHag/80927AFsJflcAngb+J+I9qrSwpnwo++YJWggMcPdewB3AnRGb9+SA8xreTPoTQcJxCkGrmyIPA8+GNfYvAg9FrKsHnERws2Acwc2rLkA3M+tZhh+xXB1LiUeFZma1gDeBW8ILw17hhFcxG/fYzM4FNrj79MNuHFsJBBeCf4dfCDkc0KyqApzLegQXpNYE1eHJFNMspyKK9bk7HDP7HUHTxRdjHUskC9qD/y/BBUqkIhnv7pvcPZegSdYpsQ6ogqphZrMI/qn/nrBWHZga1qYe6DTgaXffCeDum8Nr/MnA6+GxHgMOVrv5obvvIUhw4oGPwvK5QKtwebAF/QLnEiQpXYo5Tkdgrbt/G8axPeIG16fuvs3d8whqbI4rZv8V7j4rXJ4OtLKgn0OKu08Oy186yGeoCop+7kU33caH5XUIfo7z2JcMFCnuvJ4ATHD3rLDFzasR25/EvnP4PPv/Df4nvO7OBda7+1x3LwTms+/3oNI5liYQXA1EZvRpYVnMhVWnbwIvuvtbYfF6M0t197VhtrwhdhHSHxhuZmcDSUBtgr4Udc0sIfwiqwjnMxPIdPcp4es3CBKPinQuTyP4Ms8CMLO3CM5vRTuXRQ527irU35OZXQWcCwyNmJm6osTYliDRnG1mRXHMMLN+VJwYpWr6jmDG9r3MrDbQkiBJP/BGQoW9sRBjueHd/b3Cv+WcUhwjjqBmu+fhNgR2Abh7oZntifhOKwQSzCyJoLYk3d1XmdkfCa7NpbErYrmA4v8fPHCbGqV8j8ou1917hjePPibo4/EQ8BeCWqiRYUuVCRH7lOS8llTRsQoPOG7hUR43po6lGo9vgfYWjB5UjaDT6bjD7BN1Fnx7PQkscPf7IlaNA64Ml68E3i3v2Iq4++3unuburQjO22fuPgr4nH0XtZjGCODu64BVRe0tCapGv6MCnUuCu2UnmlnN8GdfFGOFOpcRDnbuxgFXhO2KTwS2RTTJKldmdhZBM8DhRXcYI2K8xMyqm1lrgmYDU8s7vvAuVWN3bxX+DWUCvcPf1wpzHqVK+hSoaWZXwN4mI/8gGABhJ3C6BSPX1SDov/UVsANIKfZoUlLjgavDf1gxs/phS4YVZnZRWGZm1uMIj1+UZGwMa1Iik8vIn98iINXM+obvmRI2FztiYb/JHWZ2Qlh0ydEcrzIIrys/B34Vnr867LtBdFUJDjEFONXMGoQ3mi+KWPc1+87hKII+RFXaMZN4hHeSf0aQtS4AXnP3+bGNCgjudl8ODAk7as0Kaxb+TnBRWEJwl/zvsQzyIH4L/NLMlhL0+XjyMNuXh5sIOtbNIWhreScV6FyGtTFvADMIqk/jCNr9xvxcmtnLBB3oOppZppldy8HP3QfAcoIO249TTqPgHCTGRwgutOPDv59HAcK/79cIEruPgBvDzrWxiPFgYnIe5dgQ3ikfSdB/YwnBqG95BE3/IEjE3wTmAG+6+zR33wR8ZUGnZXUuPwLu/hHBTYVpYVOdW8NVo4BrzWw2QXOZIxrgJvzn/3FgHsH/NN9GrH4GeDR833iC/gYPh+85ntLXjBTnWuDx8D2SCfoqVmnuPpPg7+RSgj47/2dmMylBzUN4M+mPBNeFr9h/dNCbCJLUOQT/C95ctpFXPLavBk9ERESOBWHzxHR3/1msY5HKxcxquXt2uHwbkOruVf4fZikblbaNmIiIiIiUu3PM7HaC/yFXUrLmRiKAajxERERERKQcHDN9PEREREREJHaUeIiIiIiISNQp8RARERERkahT4iHHjHAM7aIhi9eZ2epwOdvM/hXr+IpjZl+XcvtnzOzCw28pIiLlwcx+Z2bzzWxOeM05wcxuKZrno5THusrMmkUjTpHyoFGt5JgRjk/fEyCc6TXb3e+NZUwHUzSLubufHOtYRETkyJjZScC5BJOG7jKzhkA14FXgBYKJHA/cJ/4Qcw5dRTB/x5roRCwSXarxkGOemQ0ys/fC5T+a2bNm9qWZrTSzC8zsbjOba2YfhbOOYmZ9zOwLM5tuZh+bWWoxx33GzB41s2lmttjMzg3L483sHjP7NrwD9j8RcXxpZuMIJr3DzIrGSrdwn3lhLD+OKH/EzBaZ2SdA4/I4ZyIiUiKpwEZ33wXg7hsJZhpvBnxuZp9D8F1vZv8IJ/o7yczuCK8R88xsbPhdfyGQTjBJ7iwzq3Gwa5GZ9Y2oYbnHzOaF5RPNrGdRcGY2yY58BnWRUlPiIfJDbYEhwHCCO1Kfu3s3IJdg/PJE4GHgQnfvAzwF/O0gx2oF9APOIZhNNolg1tdt7t4X6Atcb2atw+17Aze7e4cDjnMBQW1ND4IZxO8JLzAjgY5AZ+AKQDUkIiIVx3+BFuHNp3+Z2anu/hBBjcVgdx8cbpcMTHH3Hu4+CXjE3fu6e1egBnCuu78BTANGuXtPIJ+DX4ueBv4n3C6y9uRJwnk3zKwDkOTus6P14UUOpKZWIj/0obvvMbO5QDzwUVg+lyCR6Ah0BcabGeE2aw9yrNfcvRBYYmbLgU7AGUD3iL4YdYD2wG5gqruvKOY4pwAvh9Xv683sC4KkZWBE+Roz++woPreIiJQhd882sz7AAGAw8Go42/eBCoA3I14PNrPfADWB+sB84D8H7FPstcjM6gIp7j453O4lguZeAK8D/8/Mfg1cAzxzVB9QpJSUeIj8UFGVeKGZ7fF9s2wWEvzNGDDf3U8qwbEOnKHTw/1vcvePI1eY2SAg5yjiFhGRCia8MTQBmBDe0LqymM3yivp1hDXj/wLS3X1V2CcxqZh9ir0WhYnHwWLZaWbjgRHAxUCfUn8gkaOgplYipbcIaBR2GsTMEs2sy0G2vcjM4sysLdAm3Pdj4KcR/UU6mFnyYd7zS+DHYf+QRgQ1HVOBiRHlqQR31EREpAIws45m1j6iqCewEtgBpBxkt6IkY6OZ1SLoE1Ikcr9ir0XuvhXYYWYnhNtdcsDxnwAeAr519y2l/1QiR041HiKl5O67w2ZSD5lZHYK/owcIqsIP9D1BglAbGOPueWb2BEGTrRkW1I9nAecf5m3fBk4CZhPUmvzG3deZ2dsE/VG+C99r8sEPISIi5awW8HBYC5EPLAVGA5cCH5nZmoh+HgC4+1Yze5xg9Kp1wLcRq58h6C+YS3BNONi16FrgcTMrBL4AtkUcf7qZbSfoByJSrmxfKxIRKUtm9gzwXtghUEREpFyYWS13LxoV8TYg1d1vDl83I2j61SnsgyhSbtTUSkRERKRqOSccSnceQcf2vwKY2RXAFOB3SjokFlTjISIiIiIiUacaDxERERERiTolHiIiIiIiEnVKPEREREREJOqUeIiIiIiISNQp8RARERERkaj7/40dAJu6tAOMAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 960x288 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Calculate revenue based on the pricing strategies\n",
+    "revenue_opt = 0.0\n",
+    "revenue_price_match= 0.0\n",
+    "revenue_random = 0.0\n",
+    "\n",
+    "# Get the true demand for period T for company 1\n",
+    "# since it was not used/generated during the pricing stage\n",
+    "demand_1_true.append(demand_true(1, p1[T-1], p2[T-1]))\n",
+    "\n",
+    "# Generate prices based on uniform distribution for comparison\n",
+    "p3 = np.random.uniform(100, 900, T)\n",
+    "\n",
+    "# Calculate revenues for each strategy\n",
+    "# revenue = price * demand\n",
+    "for i in range(T):\n",
+    "    revenue_opt += p1[i]*demand_1_true[i]\n",
+    "    revenue_price_match += p2[i]*demand_true(2, p1[i], p2[i])\n",
+    "    revenue_random += p3[i]*demand_true(2, p1[i], p3[i])\n",
+    "\n",
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "fig = plt.figure(figsize=plt.figaspect(0.3))\n",
+    "ax = fig.add_subplot(1, 2, 1)\n",
+    "\n",
+    "ax.plot(np.arange(1, T+1), p1, 'b', label='Company 1')\n",
+    "ax.plot(np.arange(1, T+1), p2, 'g', label='Company 2')\n",
+    "ax.set_xlabel('Time period')\n",
+    "ax.set_ylabel('Price')\n",
+    "ax.legend()\n",
+    "\n",
+    "ax = fig.add_subplot(1, 2, 2)\n",
+    "strategies = ['Opt', 'Price matching', 'Random']\n",
+    "ax.set_xlabel('Strategy')\n",
+    "ax.set_ylabel('Revenue')\n",
+    "ax.bar(strategies, [revenue_opt, revenue_price_match, revenue_random])\n",
+    "\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "By the plot above on the price history over time, we can see the price of company 1, by employing the optimization learning approach, converges to a stable status as time goes. Company 2 is always one period behind as it uses price matching. From the figure on the right, for this single simulation, we can see using the optimization approach achieves much higher renenue than price matching. And random pricing is the worst in this scenario. \n",
+    "\n",
+    "In this notebook, we have shown how to use the NAG Optimization Modelling Suite for pricing strategies under complex market conditions and demand. The flexibility provided makes it very efficient to conduct simulations in search for the most suitable pricing strategies.\n",
+    "\n",
+    "Learn more about the [NAG Library](https://www.nag.com/content/nag-library) and the [NAG Optimization Modelling Suite](https://www.nag.com/mathematical-optimization/)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.17"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/local_optimization/Modelling/handle_disable_ex.ipynb b/local_optimization/Modelling/handle_disable_ex.ipynb
new file mode 100644
index 0000000..eab610d
--- /dev/null
+++ b/local_optimization/Modelling/handle_disable_ex.ipynb
@@ -0,0 +1,374 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG Library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG Library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the NAG Library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Removing outliers from a calibration problem with the NAG Optimization Modelling Suite\n",
+    "\n",
+    "## Correct Rendering of this notebook\n",
+    "\n",
+    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html\n",
+    "\n",
+    "## Calibration problem\n",
+    "\n",
+    "Consider a simple calibration problem where we want to fit the 5 parameters of a model $f$ to some given data points. The model is of the form:\n",
+    "$$\n",
+    "\\min_{x\\in\\mathbb{R}^5} \\sum_{i=1}^{30}\\left( f(t_i, x) - y_i \\right)^2\n",
+    "$$\n",
+    "where $x=[a,b,c,d,\\omega]$ are the parameters to fit and $f(t, x) = at^2 + bt+ c + d\\sin(\\omega t)$ is the model.\n",
+    "\n",
+    "### Data\n",
+    "\n",
+    "The initial data points $\\{(t_i, y_i)\\}$ were simulated using \n",
+    "$$(a=0.3,b=1.0,c=0.01,d=0.2,\\omega =5.0)$$\n",
+    "with $t_i$ uniformly spread in $\\left[-1.0,1.0\\right]$ and $y_i=f(t_i,x)+\\epsilon_i$ where $\\epsilon_i$ is random noise.\n",
+    "\n",
+    "Two of those points ($y_{10}$ and $y_{20}$) were modified to emulate the presence of outilers."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoOUlEQVR4nO3deXhV5bn38e8dMqmAgIAyDxYnbEWNiFKtWBXUFpxqEUVwKE7Yc2odq+fUQ+mprae1+rZVqHVEQUBRrFgV0IoVkFgVREUCMookEmQQCITc7x9roduQeQ8rO/v3ua5c2ftZ083KZt9rPcN6zN0REZHMlRV1ACIiEi0lAhGRDKdEICKS4ZQIREQynBKBiEiGy446gIZo27atd+/ePeowRETSyttvv/25u7erXJ6WiaB79+4UFhZGHYaISFoxs5VVlatqSEQkwykRiIhkOCUCEZEMp0QgIpLhlAhERDKcEoGISBoo3ryDC8fNpXjLjoTvW4lARCQN3DdrKQtWlHLfzKUJ33dajiMQEckUh97xImXlFV+9nzB/FRPmryIvO4slY89MyDF0RyAi0ojNuXkAg/t0JD8n+LrOz8liSJ+OzLllQMKOoUQgItKItW+ZT4u8bMrKK8jLzqKsvIIWedm0b5GfsGOoakhEpJH7fGsZFx/fjWF9u/LkW6soSXCDsRKBiEiCFW/eweiJ7/CnYUcn5Mp93PAC2FYKc+9l7Nk3Qs4+CYjya6oaEhFJsIT38HGH538K/7oXPlevIRGRRitpPXzefgQ+fB5O/xV0+E78gVaiOwIRkQRJSg+fz96Hf9wKPQfACaMTFOk3KRGIiCRIQ3r41DhiuGwLTBkB+fvDeeMhKzlf2UoEIiIJtKeHz7Rr+3Px8d0o2VpW4/rVtie4w/P/AaXL4YKHoHn7pMVs7p60nSdLQUGBa4YyEUlnldsT9viqPWHB3+CFG+DU/4KTb0zIMc3sbXcvqFyuOwIRkQjU2J6wekHQLvCt0+C7NyQ9FiUCEZEIVNue4BvhqUugZUc4769JaxeIpe6jIiIRqTxieOPmzTD5Z0Ej8fBnYN82KYlDiUBEJCLjhn9dXT92SG+Yfj28swAufAwO7J2yOFQ1JCLSGLx5H7zzOJx0IxwxJKWHTkgiMLOHzKzYzN6vZrmZ2X1mVmRmC83smJhlI8xsafgzIhHxiIiklcXT4JX/ht7nwYDbU374RN0RPAIMqmH5mUCv8GcUcD+AmbUBfgkcD/QFfmlmrRMUk4hI47dqPjxzFXQ5Hs65PyWNw5Ul5Iju/jpQWsMqQ4DHPDAPaGVmHYCBwCvuXuruG4FXqDmhiIg0HSUfw6SLYP9OMHQi5CRujoH6SFXq6QSsjnm/JiyrrnwvZjbKzArNrLCkpCRpgYqIpMQXq+Hxc8Cy4OKpsN8BkYWSNo3F7j7e3QvcvaBdu3ZRhyMi0nBbS4IkULYVhk+DAw6ONJxUJYK1QJeY953DsurKRUQanRofEFdX20phwrmwaS1cPBkO+nbiAmygVCWC6cClYe+hfsAmd18HvAScYWatw0biM8IyEZFGJ+4JZ7aVwmNDoGQJDJ0AXfslNsAGSsiAMjObCJwCtDWzNQQ9gXIA3P0BYAZwFlAEbAMuC5eVmtmvgAXhrsa4e02NziIiKZeQCWe2lcJjg4MG4qETg+cINRJ6+qiISC2KN+9g7IwPeXnxZ+zYVUF+ThYDex/E7WcfXrc5ibcWw+PnwoYiGPpEZEmguqeP6hETIiK1aMiEM18p/SRIAlvXw0UT4eBTkx9wPSkRiIjUQeUHxJXUpcF43UKYcD5U7IJLp0OX45IfaAOoakhEJBmKZsKUyyCvZfAk0XaHRh2RJqYREUkJd5h3PzzxI2jVFa54qVEkgZqoakhEJFHKd8KMG+Hfj8JhP4Bzx0Fe86ijqpUSgYhIImxcCVNGwqf/hpN+DgPuiOQBcg2hRCAiEq+PXoBnrwEHfjwBDv9h1BHVixKBiEhDlW0N5hEo/Bt06AM/egTa9Ig6qnpTIhARaYiVc4O7gI0r4ITR8P3/huy8qKNqECUCEZH62LEJZv8a3hof9Aoa+QJ07x91VHFRIhARqQt3eP9peOkXwSMjjrsSTrszLXoF1UaJQESkNmvehpfvgFVvBm0BF02CTsfUulm6SI++TSIi9ZSQuQM2LIOpl8ODp8KGpfCDe+Ans5tUEgDdEYhIExU7d8DYc+s5+cv6xTDn97B4GjTLg5Nvhv4/hbwWyQk2YkoEItKkxDV3wOoFQQL4+EXIbQ4nXg/9roMWByY56mipakhE0kZdqnvm3DyAwX06kp8TfL3l52QxpE9H5twyoOoNdn4J/34Mxn0P/nYarJoLp9wG/7kITh/T5JMA6I5ARNJIXap76jR3gHtQ/fPvR+G9SVC2GdodDmf+DvoMa7JVQNVRIhCRRq++1T3Vzh1Q+gm8PxUWTYWSj6BZLhxxDhRcHswfbJaif1HjovkIRKTRa/BUke7w2SIoegU+mgFrw++NrifCt8+HI86lePd+jJ74Dn8adnTdZhxLY0mdqtLMBgH3As2AB939rkrL7wH2VNDtC7R391bhst3AonDZKncfnIiYRKTpqNdUkTs2w/LXYOnLweQwW9YF5R36wGn/A0eeD626fLX6fdMWNbx3URMRdyIws2bAn4HTgTXAAjOb7u4f7FnH3X8Ws/71wNExu9ju7n3ijUNEmrZqq3vcoWRJ8MW/9OWgsbeiHPL2h4MHQK8zgsniKzX6xtW7qImJu2rIzE4A7nT3geH72wDc/TfVrP8m8Et3fyV8v9Xd6zVGW1VDIhlu55fwyevhl/8rsGl1UN6+N/Q6Pfjy79IXmuVUu4sGVzelsWRWDXUCVse8XwMcX00Q3YAewOyY4nwzKwTKgbvc/dlqth0FjALo2rVr/FGLSHrZsOzrq/4Vb8DunZCzX3DVf/KNwVX//p3rvLt6VTc1canuNTQUmOruu2PKurn7WjPrCcw2s0Xuvqzyhu4+HhgPwR1BasIVkcjsLofV82DJi7BkBpQuD8rbHgJ9RwVX/l1PiOvRz9VWN2WYRCSCtUCXmPedw7KqDAWuiy1w97Xh7+Vm9hpB+8FeiUBEMkDZFiiaFXz5L30Jtm8Munj2OBn6XRtc9Sdw4pdxw7+uJRl7zpEJ22+6SUQiWAD0MrMeBAlgKDCs8kpmdhjQGpgbU9Ya2ObuZWbWFugP/C4BMYlIuti1PajuWTQFPn4ZdpfBPq2h10A47Cw4+NSMG+CVanEnAncvN7PRwEsE3UcfcvfFZjYGKHT36eGqQ4FJ/s3W6cOBcWZWQfC4i7tiexuJSPoq3ryj+v75FRWwYg4sfAo+fB7KNvNFVmtyjxrOvkedC136QTONd02VhJxpd58BzKhU9t+V3t9ZxXZvApnZcVekiavycRDbSuHdJ6DwYShdBnkt4YjBPLSpgF9/2JaLKroztru+ElJNI4tFJKEq988H6G2fMCrnRYbkLAiqfrqeAAWX8+3JeWwp3/t6NBP78qdCUkcWi4jsMefmAWH//HX02b2Y0TnT+a4tpCK3ORx1KRRcBgf2BmBW9+r78kvqKBGISEK1b5FHQdl8RtpfOSa3iM+9JS8fdBVnjLwd8vf/5rrqy98oKBGISOKEc/teuupNNuZ3YN1xYxm35UTWfemcUSkJ7KG+/NFTG4GIxG/jCpg1Bt5/GvZrF0zscsylNT7iQVJPbQQikng7t8Hrd8PcP4E1g5Nvgv7/oX7/aUaJQEQaZulMeOEG+GIlHDUMvv9f0LJj1FFJAygRiEj9bN8IM26GRZOD5/6MfAG6fzfqqCQOmrxeUqIuk45LGiiaCX85ARY/A9+7Fa5+Q0mgCVAikJSIHWUqaWjXDnjhRphwPuW5LbmlzT0UF/wsrid/SuOhqiFJKs0C1QRsWAZTRsJnC6HfdYz98jwmF64nJ4Ondmxq1H1UkioTZ4FqUhY/C8+NhmbZXLX1Sl7adfReqyippw91H5VIaORomqrYDbPHwht/gM594YKH+FVWO/L0OIgmSYlAkk4jR9PMjk3w9E+CiWGOHQln3g3ZubQHJfUmSolAkk6zQEWnxjkBqvLFaphwfvCI6LN/D8dd+Y3FSupNkxKBSBNW5ZwA1Vm/OEgCO7fB8GnB9JCVKKk3TUoEIk1QvXtrfTIHJg2D3P3g8he/eky0ZAaNIxBJM3UZnDfn5gEM7tOR/Jzgv3h+ThZD+nRkzi0D9l558TSYcB606ABXvKIkkIGUCETSTF0G59W5t1bhwzDlMuh4NFz+D2jVJcnRS2OUkKohMxsE3Eswef2D7n5XpeUjgbuBtWHRn9z9wXDZCOCOsHysuz+aiJhEmpr6VvfU2rC74EF44efQ6wy48DHI2SfZ/wRppOIeUGZmzYCPgdOBNcAC4CJ3/yBmnZFAgbuPrrRtG6AQKAAceBs41t031nRMDSiTTJTQwXlv/RVm3AiHDAqSgB4VkRGqG1CWiKqhvkCRuy93953AJGBIHbcdCLzi7qXhl/8rwKAExCTS5CRscN5XSeBMJQEBEpMIOgGrY96vCcsqO9/MFprZVDPbUxFZ120xs1FmVmhmhSUlJQkIWyT97KnumXZtfy4+vhslW8vqt4P544MkcOjZSgLylVR1H30emOjuZWZ2FfAocGp9duDu44HxEFQNJT5EkcYvrn787zwBL94Eh/0ALngYsnMTHJ2kq0TcEawFYrsadObrRmEA3H2Du++5dHkQOLau24pIAnw0A6ZfDz0HKAnIXhKRCBYAvcysh5nlAkOB6bErmFmHmLeDgQ/D1y8BZ5hZazNrDZwRlolIoqz4V/AY6Y594McTlARkL3FXDbl7uZmNJvgCbwY85O6LzWwMUOju04GfmtlgoBwoBUaG25aa2a8IkgnAGHcvjTcmEQmtWwgTh0LrbjBsCuQ1jzoiaYQ0H4FIU1W6HP42EJrlwhUvwf6do45IIqb5CEQyybZSmHABVJQHk8srCUgNlAhEmprynTD5Uti0GkY8D+0OiToiaeSUCESaEnd44WewYg6c91fo2i/qiCQN6KFzIk3Jv+6FdybAyTfDdy6MOhpJE0oEIk3Fh8/DzDuh93kw4BdRRyNpRIlApCn4bBE8Mwo6F8A5fwGzqCOSNKJEIJLutpXCpIshvxUMfVKPk5Z6U2OxSDqr2A1PXwFb1sFlL0Lz9lFHJGlIiUAknc0eC8tmww/vDaqFRBpAVUMi6eqD6fDGH+CYEXDsyKijkTSmRCCSjoo/gmevgU4FcNbdUUcjaU6JQCTdlG2FycODRmFNLiMJoDYCkXTiDi/cABuK4NLnYP8qJ/QTqRfdEYikk3cmwMKn4Hu3Qo+To45GmgglApF0sf4DmHFTkABOvjHqaKQJUSIQSQdlW2HKCMhrAec9CFnNoo5ImhC1EYg0du7wws/h86VBu0CLA6OOSJoY3RGINHbvTYSFk+CUW6Hn96KORpogJQKRxqx0edAu0K0/nHxT1NFIE6VEINJY7d4FT/8ErBmcO07tApI0CUkEZjbIzJaYWZGZ3VrF8hvM7AMzW2hms8ysW8yy3Wb2bvgzPRHxiDQJr98Nawvhh/dAqy5RRyNNWNyNxWbWDPgzcDqwBlhgZtPd/YOY1d4BCtx9m5ldA/wO+HG4bLu794k3DpEmZeXcIBEcNQyOPD/qaKSJS8QdQV+gyN2Xu/tOYBIwJHYFd3/V3beFb+cBnRNwXJGmacemYJKZVl3hzN9GHY1kgEQkgk7A6pj3a8Ky6lwBvBjzPt/MCs1snpmdU91GZjYqXK+wpKQkroBFGrUXboTNa4PJ5/NbRh2NZICUjiMws0uAAiC2D1w3d19rZj2B2Wa2yN2XVd7W3ccD4wEKCgo8JQGLpNrCybBoMpzyC+jSN+poJEMk4o5gLRDbktU5LPsGMzsNuB0Y7O5le8rdfW34eznwGnB0AmISST8bVwYDx7r0g5N+HnU0kkESkQgWAL3MrIeZ5QJDgW/0/jGzo4FxBEmgOKa8tZnlha/bAv2B2EZmkcxQUQHPXhuMIj5vHDTToH9Jnbg/be5ebmajgZeAZsBD7r7YzMYAhe4+HbgbaA5MMTOAVe4+GDgcGGdmFQRJ6a5KvY1EMsNb42HlGzD4/0Hr7lFHIxnG3NOvur2goMALCwujDkMkMT4vgge+Cz1OgmGTIbhYEkk4M3vb3fea3Foji0WiVLEbnrsWsnP5fMDdXDh+HsVbdkQdlWQYJQKRKM39M6yeD2fezR/nb2HBilLum7k06qgkw6hFSiQqxR/B7LHMrCjgyon7AasAmDB/FRPmryIvO4slY8+MNkbJCLojEInC7nJ49hrI3Y+jrnmYwX06kZ8T/HfMz8liSJ+OzLllQMRBSqZQIhCJwr/+CJ/+G87+Pe06dKVFXjZl5RXkZWdRVl5Bi7xs2rfIjzpKyRCqGhJJtc/eh9fugt7nwpHnAfD51jIuPr4bw/p25cm3VlGiBmNJIXUfFUml8p3w4Kmw5TO4dj7sd0DUEUkGqa77qO4IRFJpzv/BZ4vgx08oCUijoTYCkVT59F14/f/gOz+Gw38QdTQiX1EiEEmF8jKYdjXs105zDEijo6ohkVR47TdQ8iEMmwL7tI46GpFv0B2BSLKtXgD/uheOvgQOOSPqaET2okQgkky7tgcDx1p0hIH/G3U0IlVS1ZBIMs0eCxuWwvBnIX//qKMRqZLuCESSZeWbwUPlCi6Hg/W4CGm8lAhEkmHnl/DstezevwvDV/9Qj5aWRk2JQCQZZt4JGz/h4bY38caq7Xq0tDRqaiMQSbTl/4S3xvNQ+SDGLg5GD+vR0tKY6Y5AJJF2bIbnRlPeqieLj/hPPVpa0kJCEoGZDTKzJWZWZGa3VrE8z8yeCpfPN7PuMctuC8uXmNnARMQjEpmX74DNa8g+7wHy92muR0tLWog7EZhZM+DPwJnAEcBFZnZEpdWuADa6+7eAe4DfhtseAQwFegODgL+E+xNJP0Uz4d+PwgmjoevxXz1aetq1/bn4+G6UbC2LOkKRKiWijaAvUOTuywHMbBIwBPggZp0hwJ3h66nAn8zMwvJJ7l4GfGJmReH+5iYgLpHU2f4FPHc9tD0UBtwOwLjhXz/td+w5R0YUmEjtElE11AlYHfN+TVhW5TruXg5sAg6o47YAmNkoMys0s8KSkpIEhC2SQP+4Fbauh3PvhxxV/0h6SZvGYncf7+4F7l7Qrl27qMMR+dqHf4f3JsJJP4dOx0YdjUi9JSIRrAW6xLzvHJZVuY6ZZQP7AxvquK1Io1O8eQcXjptLyfo18Pf/hIO+AyffFHVYIg2SiESwAOhlZj3MLJeg8Xd6pXWmAyPC1xcAsz2YI3M6MDTsVdQD6AW8lYCYRJLqvllLWbBiA+ufvA52bIJzH4Ds3KjDEmmQuBuL3b3czEYDLwHNgIfcfbGZjQEK3X068Dfg8bAxuJQgWRCuN5mgYbkcuM7dd8cbk0iyHHrHi5SVVwAwOOtNjtz0GnftGsrD/28VS8b2jjg6kYbR5PUi9VC8eQdjZ3zIu4s/4PmsG1lOJx497AF+8YMjNUZAGr3qJq9Pm8Zikcagfct8WuQ2Y4yNI5dybth1Nc3z85QEJK3pWUMi9XTYummckvUe6078Ff239aNETxaVNKdEIFIfG1cwfNN46HEyHU4bzdgs3VRL+tOnWKSuKirg2esAgyF/ASUBaSJ0RyBSV/MfgJVvwJA/Q6suta8vkiZ0SSNSF8Ufwqz/gUPOhD4XRx2NSEIpEYjUZtcOePpKyGsBg+8Ds6gjEkkoVQ2J1GbWGFj/PgybAs3bRx2NSMLpjkCkJkWzYN6foe8oOOSMqKMRSQolApHqfPk5PHsNtDscTh8TdTQiSaOqIZGquMP062H7RrjkGcjZJ+qIRJJGiUCkKoUPwZIZMPA3cJBmF5OmTVVDIpWVLIGXboeDT4Xjr446GpGkUyIQiVVeFnQVzd0Xzrlfo4clI6hqSCTWy3fAZwvhoknQ4qCooxFJCV3uiOyxeBq8NR5OGA2Hnhl1NCIpo0QgArBhGTx3PXQqgO//MupoRFJKiUBk1w6YMhKymsGPHtbcw5Jx1EYg8vLtX7cLtOoadTQiKRfXHYGZtTGzV8xsafi7dRXr9DGzuWa22MwWmtmPY5Y9YmafmNm74U+feOIRqbf3n4EFD8KJ16tdQDJWvFVDtwKz3L0XMCt8X9k24FJ37w0MAv5oZq1ilt/k7n3Cn3fjjEek7tZ/AM+Nhs591S4gGS3eRDAEeDR8/ShwTuUV3P1jd18avv4UKAbaxXlckfhs3wiThkFec7jwMWiWE3VEIpGJNxEc6O7rwtefAQfWtLKZ9QVygWUxxb8Oq4zuMbO8OOMRqV3Fbnj6J7BpDVz4OLTsEHVEIpGqNRGY2Uwze7+KnyGx67m7A17DfjoAjwOXuXtFWHwbcBhwHNAGuKWG7UeZWaGZFZaUlNT+LxMJFW/ewYXj5lK8ZUdQ8OqvoegVOOt30PX4aIMTaQRq7TXk7qdVt8zM1ptZB3dfF37RF1ezXkvgBeB2d58Xs+89dxNlZvYwcGMNcYwHxgMUFBRUm3BEKrtv1lIWrCjlvplLGXvocpjzezhmBBRcHnVoIo1CvN1HpwMjgLvC389VXsHMcoFpwGPuPrXSsj1JxAjaF96PMx6Rrxx6x4uUlVd89b7wrTf48t1f8jG9OPqsuyOMTKRxibeN4C7gdDNbCpwWvsfMCszswXCdC4GTgZFVdBN9wswWAYuAtsDYOOMR+cqcmwcwuE9H8nOyaM9GHs79HbtyWtDl6qmQvXdz1F5VSCIZIq47AnffAHy/ivJC4Mrw9QRgQjXbnxrP8UVq0r5lPi3ysmlWvo2H8+6mBdt4pOf9jO7Qvcr1v1GFdO63UxusSIQ0sliatA1btvF0u79x6JZVPNbjdyzavffI4cpVSBPmr2LC/FXkZWexZKwGmUnTp0QgTZc7D7SdCsv/BWf/nhHHXcmIKlabc/MAxs74kJcXf8aOXRXk52QxsPdB3H724SkPWSQKeuicNF3z7v/6sdLHXVntanuqkMrKK8jLzqKsvIIWedm0b5GfwmBFoqM7Amma3nsKXroNDv8hnP6rWlf/fGsZFx/fjWF9u/LkW6soUYOxZBALxoGll4KCAi8sLIw6DGmslrwIky6G7v1h2BTI0ZW9CICZve3uBZXLVTUkTcsnc2DyCOjYB4Y+qSQgUgdKBNJ0rJoHE4dCmx5w8VTIaxF1RCJpQYkghTRgKYlWzYMJ5wcTzl/6HOzbJuqIRNKGEkGc6vPlHjtgSRIoNgmMfCH4LSJ1pl5DcarLaFQNWEqiZa8GDcMtOygJiDSQeg01UOUv9z2q+nIv3ryj2gFL6qseh8XPwtNXQttDYPgzSgIitVCvoQSLfaAZQH5OFkP6dGTOLQP2WlcDlpLg7UdgykjodCxcpjsBkXioaqiB6vvlrgFLCVJRAbPHwBv3wLdOD6aZzN036qhE0poSQRzq8+U+bvjXd2NjzzkyFeE1PTu/hGdGwUd/h2Mvg7Pu1lzDIgmgNgJJDxtXwuTh8NkiGPi/FB8+ktGT3uVPw45WFVsCFG/eweiJ7+h8NnFqI0im3eVQthW+3ACbP4WtJbD9C9i1A9Iw0TY6S16EcSdB6Qq4aBL0u4b7ZhepK24CqWtzZtMdQV1tWgvr3oXPP4bPi2DjCti6Hr4shh2bqt8uOx/2PSD4adUVWncPftr0gAO+Ba26gVlq/g3ppnwnvDoW/nUvHPQduPAxDv3DR3XurSW1q0/vN0l/1d0RZFQbQb1uf0uXQ9Es+OSfsKYQtqz7etl+7aFNTziwNzQfAPu2hZx9gi/9ZjlQUQ67d8Ku7bDjC9hWCl+WwIYiKJoJ5TFtCfn7B19yHY6CDn2gc0GQKCJMDo2immD9Yph2VVAVdOxIGPRbyMlnzs0dNHdAAmkuBoEMSwQ1Dv5yh3XvwftT4aMXgkQAwRV795OCL+iOx0DbXrBPq4YHUVER3Els/ARKPoJ1C+GzhfDWX2F3WbBOy07QrX/w9Mxu34UDDk5pYoh0ysbdu+DN++DV3wTneeiTcNjZXy1WV9zE0vkUyJBEUOPI3lsL4J3H4N0ngyv2rGzoOQD6XQsHnxp8CSdSVlYwCrZlB+h24tflu3cFiWHVPFjxBix/FRZNDpY1PxB6nAzfOi2IqXn7rzZL5NV75COgP3kdZtwUnIcjhsDZ98B+B+y1mrriJpbOp8TVRmBmbYCngO7ACuBCd99YxXq7gUXh21XuPjgs7wFMAg4A3gaGu/vO2o5b3zaCqkb2/qTnRq7b5xXyP34eKnYFV+DfuRAOH9w4HljmHiSmFW+EieE12PZ5sKxDnyApfOs0/vvtfB5f8CkX9+0a99V7ZCOgS5fDrDGweFpwBzboN3DoWWo7EUmwZLUR3ArMcve7zOzW8P0tVay33d37VFH+W+Aed59kZg8AVwD3xxnTXr6+/d3N93I+5Cc2je+uXAx5LeG4K6Dgcmh3aKIPGx+zoBqqbS8ouCyoUvrsvaCNoWgW5a//gew5/8eNvi/9so/kn4VH0W/+d9iY3a7BV+8pryb4YhW8fje880TQtnLKbdD/P4L2FhFJmXgTwRDglPD1o8BrVJ0I9mJmBpwKDIvZ/k6SkAgguP39e/tx9N70OluyD2Dq/ldxwaj/Sp9n1mdlQcejg5+Tb2Jj8XqmPzuRFmv+yUlZ73JWs7cgB8oPOBT+MQd6nhJUPeU1r9dhUlJNsPZtmD8e3n86SHjHXQkn3aDHRIhEJN6qoS/cvVX42oCNe95XWq8ceBcoB+5y92fNrC0wz92/Fa7TBXjR3ascdmtmo4BRAF27dj125cqV9Q/4nQlBj50+lzSJmatun7aIJ99aRW4zo1vFan7WbSVn7rMYVs4NGp6zcqBL36DNo+cpwaxdUY3E3VYKHzwH7z4BaxZAbnPoczH0/yns3zmamEQyTHVVQ7UmAjObCVR1qXY78GjsF7+ZbXT31lXso5O7rzWznsBs4PvAJuqRCGJpZHHgqscLadci/xtX7+OGFwTdVlfNCxqcl78W9EzC2WF5ZHU+ltzuJ0CX46HzcXG1h9TYUO0e9Ixa9ip8/A9YNjvoVtv2kOAO4KiLIL9lXP9+EamfBieCWna6BDjF3deZWQfgNXevsbLdzB4B/g48DZQAB7l7uZmdANzp7gNrO64SQT19uYFJkx9n+7I3Ob3FSjrvWAq+O1jWogO0PwIOPALa9w4HuXUJxkpk1Tzw/I5pi3jirVUMP64jY77fLmjcXvdekHjWLIAvwru2/btC73Pg2xcEYybUCCwSiWQlgruBDTGNxW3c/eZK67QGtrl7WVgdNBcY4u4fmNkU4OmYxuKF7v6X2o6bikQQ5aCqZHYJBdiHHRybvYIJg5pB8YdQvBhKlgSD4PZolht0W92nFeS3gtz9wJpBVhazFn/Kvr6d/Ww7bWwLB1FKtsUco2XnoBqq5ylBtVSKx0GISNWSlQgOACYDXYGVBN1HS82sALja3a80sxOBcUAFwbON/ujufwu370nQfbQN8A5wibuX1XbcVCSCPVe7ieiWGeWx69wldHc5lC6D0k9g0+rgZ2tJMDJ6+0bYtS3oueS72eXGqq1ZrN6WTWnFfhRbW1p1PJiB3+1H654FjaP7rYjsJSmJICrJTARRPnslWcf+ulE5i527KxKSYJKxTxFJLj19tI7qM/NYuhx7T5fQadf25+Lju1Gytdabrkj2KSLRyIhHTNRHlM9eSdaxkzEpTrIm2mkUD7wTyTC6I6hClFe7mX6lrefii6Se2gikUdBz8UWST20E0qhF2TYjkumUCKRR0HPxRaKjxmJpNPRcfJFoqI1ARCRDqI1ARESqpEQgIpLhlAhERDKcEoGISIZTIhARyXBKBCIiGS4tu4+aWQnB/AcN0Rb4PIHhJIriqh/FVT+Kq36aalzd3L1d5cK0TATxMLPCqvrRRk1x1Y/iqh/FVT+ZFpeqhkREMpwSgYhIhsvERDA+6gCqobjqR3HVj+Kqn4yKK+PaCERE5Jsy8Y5ARERiKBGIiGS4JpkIzOxHZrbYzCrMrNquVmY2yMyWmFmRmd0aU97DzOaH5U+ZWW6C4mpjZq+Y2dLwd+sq1hlgZu/G/Owws3PCZY+Y2Scxy/qkKq5wvd0xx54eUx7l+epjZnPDv/dCM/txzLKEnq/qPi8xy/PCf39ReD66xyy7LSxfYmYD44mjAXHdYGYfhOdnlpl1i1lW5d80RXGNNLOSmONfGbNsRPh3X2pmI1Ic1z0xMX1sZl/ELEvK+TKzh8ys2Mzer2a5mdl9YcwLzeyYmGXxnyt3b3I/wOHAocBrQEE16zQDlgE9gVzgPeCIcNlkYGj4+gHgmgTF9Tvg1vD1rcBva1m/DVAK7Bu+fwS4IAnnq05xAVurKY/sfAGHAL3C1x2BdUCrRJ+vmj4vMetcCzwQvh4KPBW+PiJcPw/oEe6nWQrjGhDzGbpmT1w1/U1TFNdI4E9VbNsGWB7+bh2+bp2quCqtfz3wUArO18nAMcD71Sw/C3gRMKAfMD+R56pJ3hG4+4fuvqSW1foCRe6+3N13ApOAIWZmwKnA1HC9R4FzEhTakHB/dd3vBcCL7r4tQcevTn3j+krU58vdP3b3peHrT4FiYK+RkwlQ5eelhninAt8Pz88QYJK7l7n7J0BRuL+UxOXur8Z8huYBnRN07LjiqsFA4BV3L3X3jcArwKCI4roImJigY1fL3V8nuOirzhDgMQ/MA1qZWQcSdK6aZCKoo07A6pj3a8KyA4Av3L28UnkiHOju68LXnwEH1rL+UPb+EP46vDW8x8zyUhxXvpkVmtm8PdVVNKLzZWZ9Ca7ylsUUJ+p8Vfd5qXKd8HxsIjg/ddk2mXHFuoLgynKPqv6mqYzr/PDvM9XMutRz22TGRViF1gOYHVOcrPNVm+riTsi5Sts5i81sJnBQFYtud/fnUh3PHjXFFfvG3d3Mqu27G2b7bwMvxRTfRvCFmEvQn/gWYEwK4+rm7mvNrCcw28wWEXzZNViCz9fjwAh3rwiLG3y+miIzuwQoAL4XU7zX39Tdl1W9h4R7Hpjo7mVmdhXB3dSpKTp2XQwFprr77piyKM9X0qRtInD30+LcxVqgS8z7zmHZBoLbruzwqm5Pedxxmdl6M+vg7uvCL67iGnZ1ITDN3XfF7HvP1XGZmT0M3JjKuNx9bfh7uZm9BhwNPE3E58vMWgIvEFwEzIvZd4PPVxWq+7xUtc4aM8sG9if4PNVl22TGhZmdRpBcv+fuZXvKq/mbJuKLrda43H1DzNsHCdqE9mx7SqVtX0tATHWKK8ZQ4LrYgiSer9pUF3dCzlUmVw0tAHpZ0OMll+CPPt2DFphXCernAUYAibrDmB7ury773atuMvwy3FMvfw5QZQ+DZMRlZq33VK2YWVugP/BB1Ocr/NtNI6g/nVppWSLPV5WflxrivQCYHZ6f6cBQC3oV9QB6AW/FEUu94jKzo4FxwGB3L44pr/JvmsK4OsS8HQx8GL5+CTgjjK81cAbfvDNOalxhbIcRNL7OjSlL5vmqzXTg0rD3UD9gU3ihk5hzlYwW8Kh/gHMJ6srKgPXAS2F5R2BGzHpnAR8TZPTbY8p7EvxHLQKmAHkJiusAYBawFJgJtAnLC4AHY9brTpDpsyptPxtYRPCFNgFonqq4gBPDY78X/r6iMZwv4BJgF/BuzE+fZJyvqj4vBFVNg8PX+eG/vyg8Hz1jtr093G4JcGaCP++1xTUz/H+w5/xMr+1vmqK4fgMsDo//KnBYzLaXh+exCLgslXGF7+8E7qq0XdLOF8FF37rws7yGoC3nauDqcLkBfw5jXkRMb8hEnCs9YkJEJMNlctWQiIigRCAikvGUCEREMpwSgYhIhlMiEBHJcEoEIiIZTolARCTD/X/SamHs7w6T/gAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "import pickle\n",
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "import math\n",
+    "\n",
+    "# load the simulated data containing 2 outliers\n",
+    "data = pickle.load(open('nlnlsq_data.pck', 'rb'))\n",
+    "nres = len(data['y'])\n",
+    "\n",
+    "# plot the data points and the true function used to generate them\n",
+    "f_true = lambda t : 0.3*t**2 + t + 0.01 + 0.2*math.sin(5.0*t)  \n",
+    "plt.plot(data['t'], data['y'], '*')\n",
+    "t = np.linspace(-1.0,1.0, num=200)\n",
+    "y = [f_true(x) for x in t]\n",
+    "plt.plot(t, y)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Set up the calibration problem\n",
+    "\n",
+    "Start by defining the callbacks that will be used by the solver to determine the quality of the fit with any given set of parameters $x$."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def lsqfun(x, nres, inform, data):\n",
+    "    \"\"\"\n",
+    "    Objective function callback passed to the least squares solver.\n",
+    "    \"\"\"\n",
+    "    rx = np.zeros(nres)\n",
+    "    t = data['t']\n",
+    "    y = data['y']\n",
+    "    for i in range(nres):\n",
+    "        rx[i] = (\n",
+    "            x[0]*t[i]**2 + x[1]*t[i] + x[2] + x[3]*np.sin(x[4]*t[i]) - y[i]\n",
+    "            )\n",
+    "    return rx, inform"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def lsqgrd(x, nres, rdx, inform, data):\n",
+    "    \"\"\"\n",
+    "    Computes the Jacobian of the least square residuals.\n",
+    "    \"\"\"\n",
+    "    n = len(x)\n",
+    "    t = data['t']\n",
+    "    for i in range(nres):\n",
+    "        rdx[i*n+0] = t[i]**2\n",
+    "        rdx[i*n+1] = t[i]\n",
+    "        rdx[i*n+2] = 1.0\n",
+    "        rdx[i*n+3] = np.sin(x[4]*t[i])\n",
+    "        rdx[i*n+4] = x[3]*t[i]*np.cos(x[4]*t[i])\n",
+    "    return inform"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Initialize the NAG 'handle' with the problem dimensions and some optional parameters."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from naginterfaces.library import opt\n",
+    "from naginterfaces.base import utils\n",
+    "\n",
+    "nvar = 5\n",
+    "# Initialize the Optimization model handle with the number of variables\n",
+    "handle = opt.handle_init(nvar)\n",
+    "\n",
+    "# Define a dense nonlinear least-squares objective function\n",
+    "opt.handle_set_nlnls(handle, nres)\n",
+    "\n",
+    "# Set some optional parameters to control the output of the solver\n",
+    "for option in [\n",
+    "        'Print Options = NO',\n",
+    "        'Print Level = 1',\n",
+    "        'Print Solution = X',\n",
+    "        'Bxnl Iteration Limit = 100',\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "    \n",
+    "# Use an explicit I/O manager for abbreviated iteration output:\n",
+    "iom = utils.FileObjManager(locus_in_output=False)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Solve the problem with outliers"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GG, Nonlinear least squares method for bound-constrained problems\n",
+      " Status: converged, an optimal solution was found\n",
+      " Value of the objective             1.05037E+00\n",
+      " Norm of gradient                   8.78014E-06\n",
+      " Norm of scaled gradient            6.05781E-06\n",
+      " Norm of step                       1.47886E-01\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1       -inf        3.61301E-01        inf\n",
+      "     2       -inf        9.10227E-01        inf\n",
+      "     3       -inf        3.42138E-03        inf\n",
+      "     4       -inf       -6.08965E+00        inf\n",
+      "     5       -inf        6.24881E-04        inf\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Call the solver\n",
+    "x = np.ones(nvar, dtype=float)\n",
+    "res = opt.handle_solve_bxnl(handle, lsqfun, lsqgrd, x, nres, data=data,\n",
+    "                  io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We can plot the model with the fitted parameters and see the influence of outliers:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAApEElEQVR4nO3deXxU9b3/8dcnJCQqoCCyy2ax4laoKVi1Km5gtaBVEUEFl9La2t5qe9VebLUUb7Xe+7O1WpWrFhVlEUWxapFFK25AqCgCZRVZRBIWWYQEknx+f5yTOoZMFmbNzPv5eMwjM+d8z5wPZ4bzmfPdjrk7IiKSvXJSHYCIiKSWEoGISJZTIhARyXJKBCIiWU6JQEQky+WmOoAD0bp1a+/atWuqwxARaVQWLFiw2d2PqL68USaCrl27UlRUlOowREQaFTP7pKblqhoSEclySgQiIllOiUBEJMspEYiIZDklAhGRLKdEICKS5ZQIRESyXFwSgZk9bmbFZvZRlPXDzOxDM1tkZu+Y2Tci1q0Jly80Mw0OEBGpya4SePU22Fca97eO1xXBOGBALes/Bs5w9xOA3wFjq63v5+693L0wTvGIiGSOvV/AhMthwTjYvDzubx+XkcXu/qaZda1l/TsRL98DOsVjvyIiGa+iHKZcB5++D5ePh/Ynxn0XqWgjuA54NeK1A6+Z2QIzGxltIzMbaWZFZlZUUlKS8CBFRFLOHV69BZa/Cuf/AY65ICG7SepcQ2bWjyARnBax+DR332BmbYAZZvYvd3+z+rbuPpawSqmwsFD31xSRzPfW/4Oix+DUn0OfHyRsN0m7IjCzE4FHgUHuvqVqubtvCP8WA1OBPsmKSUQkbb0/HmaNhhMGw9l3JHRXSUkEZtYZeB64yt2XRyw/xMyaVz0HzgNq7HkkIpI1lk+HaT+Do86CQQ9CTmJP1XGpGjKzCcCZQGszWw/cAeQBuPvDwG+Aw4G/mBlAedhDqC0wNVyWCzzj7n+PR0wiIo3SuvkweTi0OwEGPwm5TRO+y3j1GrqijvXXA9fXsHw18I39txARyUIly+GZy6B5Oxg2BfKbJ2W3GlksIpIOdmyE8ZdATi5c9Tw02+9GYgnTKO9QJiKSUfZ8HiSBPVthxMvQqntSd68rAhGRVNpXChOHBSOGL38KOvSqsVjxjlIGP/IuxTvTd4oJERFpqMoKmDoSPnkLLnoo6CUUxf2zVjB/zVbun7ki7mGoakhEJBXc4dVbYcmLcN5dcOJlNRb7+u2vUlZe+e/X4+euZfzcteTn5rBszPlxCUVXBCIiqTDnf2H+/8EpP4VTboxe7JZ+DOzVgYK84HRdkJfDoF4dmHNrv7iFokQgIpJs/3wKZv8uGDV8zuhai7ZpUUDz/FzKyivJz82hrLyS5vm5tGleELdwlAhEROKs1obdf70ML/1Hg0YNb95VxrC+XZj641MZ1rcLJbvK4hqvuTe++dsKCwu9qEj3sBGR9HT71EU8PW8tw/p0ZszFJ3y54uM5QTfRdsfD1S8mbcBYFTNbUNN9X9RYLCISJ7U27N7QFiZcAa26JXXUcH2oakhEJE6iNey+c33H4Erg4JZw1VQ4uFWKI/0qJQIRkTipqWG3k23m8OeHhFNHvAAtOnxlm0QOFKsvJQIRkTiKbNgd+c0WXLXy51C2K5g/6PCj9iufyIFi9aXGYhGRRCjdDuMuhM0r4OoXoPPJX1ldvT2hSjwHilUXrbFYVwQiIvG2b0/QMFy8JJg/qFoSgOQMFKsv9RoSEYmnin3w7Aj45B245FHocW6NxZIxUKy+lAhEROKlshJe/Aks/ztc8L9wwqW1Fq9qTxjapzPPzFtLSYoajNVGICISD+7w8i+g6DE469dw+i9THdF+EtpGYGaPm1mxmdV443kL3G9mK83sQzP7ZsS64Wa2InwMj0c8IiJJ5Q4zfh0kgVN+Bt/5RaojapB4NRaPAwbUsv58oEf4GAk8BGBmrQhudN8X6APcYWYt4xSTiEhy/OMeeOfP8K3r4dzRYJbqiBokLonA3d8EttZSZBDwpAfeAw4zs/ZAf2CGu291923ADGpPKCIi6eXt++GN30OvYXD+vY0uCUDyuo92BNZFvF4fLou2fD9mNtLMisysqKSkJGGBiojU2/xHgyqh4y6GgX+u10yi6ajRRO3uY9290N0LjzjiiFSHIyLZbuGEoHH46AFw8VjIaZLqiA5YshLBBuDIiNedwmXRlouIpJ2qeYG2L3gWXvwxdDsDLnsCcpumOrSYJCsRTAOuDnsPnQxsd/eNwHTgPDNrGTYSnxcuExFJO/fPWkGztbNo9tIPoVMfuGIC5CV/AFi8xWVAmZlNAM4EWpvZeoKeQHkA7v4w8ArwXWAlsBu4Jly31cx+B8wP32q0u9fW6CwiknRV8wJ9O2cx4/L+yOLKzgxbcT17R7+ZsHmBkkkDykRE6lC8o5Snp0xm5Ce/ZJ23YYT/hr7H9WDUBT1TMiXEgdKkcyIiB6jN9kXcsP5Wir0l11WOYlP5ISmbFygRNNeQiEhtNiyA8d9nR85hTD7+L/zfaSeldF6gRFAiEBGJ5tOF8NTFcFBL2lzzCrce2gmAMRcdn9q44kxVQyIiNdn4ITw5CPIPhRF/gzAJZCIlAhGR6jYtDpJA02YwfBoc1jnVESWUEoGISKTif8ETAyG3IEgCrbqlOqKEUyIQEalSshye+B7k5MLwl2q82XwmUiIQEQHYsipIAhAkgdZfS208SaReQyIiW1fDuAuhshxGvAxHHJ3qiJJKiUBEslvVlUB5adA7qM0xqY4o6ZQIRCR7bV4RJIGKvUF1UNvjUh1RSqiNQEQyUtWU0cXRRgCXLIdxFwTVQcP/Bu0ya5BYQygRiEhGun/WCuav2cr9M1fsv7J4aZAE3IMk0PbY5AeYRlQ1JCIZpWrK6Crj565l/Ny15OfmBFNGb1ocjBOo6iKaZQ3DNdEVgYg0GnVW9wBzbunHwF4dKMgLTm8FeTkM6tWBObf2g88WBb2DmuRlZe+gaJQIRKTRqLW6J9SmRQHN83MpK68kPzeHsvLKYMroXcuChuG8g4IkkEXjBOqiqiERSXt1VvdUs3lXGcP6dmFon848M28tB5d8AE/8CvJbBNVBWTBtREPoDmUikvaKd5Qy5pWlvLb4M0r3VVKQl0P/49rV7w5h6xeEU0kfGjQMt+yy33vfOOF9HhjaO2NuNBNNQu9QZmYDzGyZma00s9tqWH+fmS0MH8vN7POIdRUR66bFIx4RySxRq3vqOnF/8m4wi+hBhwXVQdWSANSvuinTxVw1ZGZNgAeBc4H1wHwzm+buS6rKuPtNEeV/CvSOeIs97t4r1jhEJLNVr+6p8w5hq2bDhKFwaEe4elrwN0JDq5syWTzaCPoAK919NYCZTQQGAUuilL8CuCMO+xWRLPLIVV/WaNR5h7Blr8Lkq+HwHnD1C9CszX5F5tzSL2p1U7aJR9VQR2BdxOv14bL9mFkXoBswO2JxgZkVmdl7ZnZRtJ2Y2ciwXFFJSUkcwhaRjPTR8zDpymC6iBF/qzEJQAzVTRko2b2GhgBT3L0iYlkXd99gZt2B2Wa2yN1XVd/Q3ccCYyFoLE5OuCLSqLz/NEy7EY7sC0MnQcGhtRZvcHVThopHItgAHBnxulO4rCZDgJ9ELnD3DeHf1Wb2BkH7wX6JQESkVvP+D175JXQ/E4Y8A00PqXOTBlU3ZbB4VA3NB3qYWTcza0pwst+v94+ZHQO0BN6NWNbSzPLD562BU4netiAijUh9RgEfSNkavf2nIAkcfT5cMaleSUC+FHMicPdy4EZgOrAUmOzui81stJkNjCg6BJjoXx240BMoMrMPgNeBuyN7G4lI49WQbpkH3IXTHV7/Pcz4DRx3MVz+FORlXx1/rDSgTETiqnq3zCo1dctsSNn9uMOMX8M7f4Zew2DgnyGnSUyxZ7qEDigTEalS66RvMZT9isoKmPbTIAl863oY+ICSQAw015CIxFVDumUeUBfO8jJ47jpY+hKc/p/QbxSYJfBflPmUCEQk7hrSLbNBXTjLdsLEYfDxP6D/f8O3fxK9rNSb2ghEpHHYvRWevhQ+XQiDHoBeQ1MdUaMTrY1AVwQikv62bwhmEN22Bi4fD8d8N9URZRQlAhFJb5tXwlMXwZ7P4crnoNt3Uh1RxlGvIUmKmAcMSXba+AE83h/27YYRLykJJIgSgSSF5nyXBlvzdnB/4byD4Nrp0KF33dvIAVHVkCSU5nzPPEm5o9fSvwVdRA/rDFdNhUM7JWY/AuiKQBLsgAcMSdpK+NXd/Mdg8lXBNNLX/F1JIAl0RSAJpTnfM0fCr+7c4fW74M17oUd/uOyvmjwuSXRFIAlXNWBo6o9PZVjfLpTsKkt1SHIAEnp1V1Ee3EfgzXuh95X1nkZa4kNXBJJwmvM9deJZn5+wq7u9X8Cz18CK6XD6LdDvvzRlRJLpikAkg8W7Pj/uV3dfbIYnvgcrZ8CF98FZmjcoFTTFhEgGiml652TZtgae+j7s2ACXPAY9L0x1RBlP01CLZIj6DM5L+95aGz+AR8+F3Vvg6heVBFJMiUCkkalPdU9a99ZaOQv++l3IzYfrXoPOJ6c6oqwXl8ZiMxsA/AloAjzq7ndXWz8CuJcvb2r/gLs/Gq4bDtweLh/j7k/EIyaRTNPQ7psNmt45WRaMg7/dDG2OhWHPQov2qY5IiEMbgZk1AZYD5wLrCW5mf0XkvYfDRFDo7jdW27YVUAQUAg4sAE5y92217VNtBJKNineUMuaVpby2+DNK91VSkJdD/+PaMeqCnunxS782lZUwezS8dR987Ry4bBzkN091VFknkW0EfYCV7r7a3fcCE4FB9dy2PzDD3beGJ/8ZwIA4xCSScdK6uqc2+0qD6SLeug8Kr4UrJikJpJl4VA11BNZFvF4P9K2h3CVmdjrB1cNN7r4uyrYda9qJmY0ERgJ07tw5DmGLND5pWd1Tmy+2wMQrYN1cOHc0nPIzdQ9NQ8kaUPYSMMHdy8zsh8ATwFkNeQN3HwuMhaBqKP4hiqS/RjU4b8uq4I5iOz6Fy56A4y5KdUQSRTyqhjYAR0a87sSXjcIAuPsWd68aefIocFJ9txWRRuiTd+HRs6F0Bwx/SUkgzcUjEcwHephZNzNrCgwBpkUWMLPIrgEDgaXh8+nAeWbW0sxaAueFy0SksVo0BZ4cCAe3hutnwpF9Uh2R1CHmqiF3LzezGwlO4E2Ax919sZmNBorcfRrwMzMbCJQDW4ER4bZbzex3BMkEYLS7b401JhFJAXd483/g9THQ5dTg3sIHt0p1VFIPmmJCRGK3bw+8eCN8NAVOHAID7w8GjElaidZ9VLOPikhsdn4GE4fChn/C2XfAaTepZ1Ajo0QgIgdu4wcw4QrYsy2oCtKcQY2SEoGIHJgl02DqD+GgVsHN5dufmOqI5ABp0jkRaRj34E5ik68K5gz6wWwlgUZOVwQiUn/7SoNbSi56Fk4YDAP/DHlpPsWF1EmJQETqZ+emsFG4CM76NXznF2oUzhBKBCJStw0LYOKVUPo5DH4Kjh2Y6ogkjpQIRKR27z8Nf7sJmrVVo3CGUiIQkZpV7IPpo2DeI9DtdLh0HBxyeKqjkgRQIhCR/X2xGSYPh0/egpN/Ekwh3USni0ylT1ZEvurThTDpSviiBC5+BL4xJNURSYIpEYjIlz6cDNN+Gswceu3foUPvVEckSaBEICJQUQ4z74B3HwhmDr3sCWh2RKqjkiRRIhDJdrtK4Llr4eM3oc9I6P/f0CQv1VFJEikRiGSzdfOCRuE9W2HQg9D7ylRHJCmgRCCSjdxh3liY/l9waCe47jVo/41URyUpokQgkm3KdsFLP4OPnoOjz4eLH4KDWqY6KkkhJQKRbFKyDCZdBVtWwNm/gVNvghxNQpzt4vINMLMBZrbMzFaa2W01rL/ZzJaY2YdmNsvMukSsqzCzheFjWvVtRSROPnoexvaD3VvgqheCSeOUBIQ4XBGYWRPgQeBcYD0w38ymufuSiGLvA4XuvtvMbgD+AFwertvj7r1ijUNEoijfCzN+A3Mfgk59YPAT0KJDqqOSNBKPnwN9gJXuvtrd9wITgUGRBdz9dXffHb58D+gUh/2KSF22r4cnLgySQN8bYMTLSgKyn3i0EXQE1kW8Xg/0raX8dcCrEa8LzKwIKAfudvcXatrIzEYCIwE6d+4cS7wi2WHZq/DCDcHkcZc+DsdfkuqIJE0ltbHYzK4ECoEzIhZ3cfcNZtYdmG1mi9x9VfVt3X0sMBagsLDQkxKwSGNUvhdm3gnvPQjtToTLxsHhR6U6Kklj8UgEG4AjI153Cpd9hZmdA4wCznD3sqrl7r4h/LvazN4AegP7JQIRqYetH8OUa+HTfwajhM/9nW4lKXWKRyKYD/Qws24ECWAIMDSygJn1Bh4BBrh7ccTylsBudy8zs9bAqQQNySLSUItfCCaMw3QXMWmQmBOBu5eb2Y3AdKAJ8Li7Lzaz0UCRu08D7gWaAc9acI/Tte4+EOgJPGJmlQQN13dX620kInXZVxqMEC56DDqeFLQHtOya6qikETH3xlfdXlhY6EVFRakOQyT1Nq+EZ0fApkXw7Rvh7Dsgt2mqo5I0ZWYL3L2w+nKNJhFJE8U7Shn8yLsU7yytu7A7LHwGxp4BO9bDFZOg/11KAnJAlAhE0sT9s1Ywf81W7p+5ovaCe7bBlGuCrqHtvwE/ehu+PiA5QUpG0lxDIin29dtfpay88t+vx89dy/i5a8nPzWHZmPO/WnjNW/D8SNi1KagGOvU/IKdJkiOWTKMrApEUm3NLPwb26kBBXvDfsSAvh0G9OjDn1n5fFirfCzN/C+MuhNyCYNro79ysJCBxoSsCkRRr06KA5vm5lJVXkp+bQ1l5Jc3zc2nTPOz/v3klPH89fPo+fPNq6P97yG+W2qAloygRiKSBzbvKGNa3C0P7dOaZeWsp2VkaNAi//xS8eis0aQqDn4RjB9X9ZiINpO6jIulo91Z46T9g6TTodjpc9DAc2jHVUUkjF637qK4IRNLN8unBCOHdW+Hc0fDtn+q+AZJQSgQi6aJ0B0z/Fbw/HtocB8OmQPsTUx2VZAElApF08PGb8MKPYccGOO1mOPM2yM1PdVSSJZQIRFJp726Y9VuY+zC0OgqunQ5H9kl1VJJllAhEUmXdfHjhR7BlJfT5IZxzJzQ9ONVRSRZSIhBJtvK98I+74a37oEVHuHoadD+j7u1EEkRdEUQSaL+J5DYsCCaKm/O/0Gso3PC2koCknK4IRBKoaiK5h15bxB3NX4R3H4Rm7YLZQjVRnKQJJQKRBIicSK6vLeXqD26CnE1MrDyHIT95HAoOTXGEIl9S1ZBIAsy5pR+DTziU3zd9nEn5vyPH4M9H3sdZ//m0koCknbgkAjMbYGbLzGylmd1Ww/p8M5sUrp9rZl0j1v0qXL7MzPrHIx6RVGvz2Zv815prGGyzeLzyAgbsvZtNrb715URyImkk5qohM2sCPAicC6wH5pvZtGr3Hr4O2ObuXzOzIcA9wOVmdizBze6PAzoAM83saHeviDUukZTYvTWYJG7RZL7I68rEox/h9H7nc0nVRHIiaSgebQR9gJXuvhrAzCYCg4DIRDAIuDN8PgV4wIK72A8CJrp7GfCxma0M3+/dOMQlkjzu8MEEeO12KN0OZ9xKx+/8gh+Fo4PHXHR8igMUiS4eiaAjsC7i9Xqgb7Qy7l5uZtuBw8Pl71XbtsYpFs1sJDASoHPnznEIWyROSpbDyzfDmjnQqQ9874/Q9rhURyVSb42m15C7jwXGQjANdYrDEYF9pcF4gLf/CHkHwYV/hG8O10yh0ujEIxFsAI6MeN0pXFZTmfVmlgscCmyp57YiaWfboumUvvBz2ld8CidcBv3/G5q1SXVYIgckHj9d5gM9zKybmTUlaPydVq3MNGB4+PxSYLYHd8SZBgwJexV1A3oA8+IQk0hi7CqG535Ay+cGU7qvgr92vw8ueVRJQBq1mK8Iwjr/G4HpQBPgcXdfbGajgSJ3nwY8BjwVNgZvJUgWhOUmEzQslwM/UY8hSUuVFfDPJ9n+0igKKOPhiu/zl/KBlC1pym9ve5n83ByWjTk/1VGKHBDdqlKkLuvmwyu/hI0L2dvpFP6Q90PGr8yndF8lBXk59D+uHaMu6KkxApL2ot2qUq1aItHs3ARTb4DHzoFdm+CSx2h63SvsaXEUZeWV5OfmUFZeSfP8XCUBadQaTa8hkaSp2AdzH4E37obyUjjtJvjOLyG/GQCbd5UxrG8XhvbpzDMaKCYZQFVDIpFWvR6MDN68DL52Lpx/Dxx+VKqjEomLaFVDuiIQAdj2Cbw2Cpa+BC27whUT4egBYJbqyEQSTolAslvZzuBOYe8+CJYDZ90O3/4p5KnOX7KHEoFkp4pyeP8peP0u+KIkGBR2zp1waKdURyaSdEoEkn1WzoTpt0PJUjjy5OBuYZ1OSnVUIimjRCDZY9OSYHbQVbOgZTcY/CT0HKh2AMl6SgSS+XZuCqqA3n8K8pvDeXdBnx9AOEW0SLZTIpDMVbYzaAR+58/BeIA+P4QzboGDW6U6MpG0okQgmWdfKRQ9DnP+B3ZvgZ7fg7PvhNZfS3VkImlJiUAyR0U5fDgRXv897FgP3c6As+9QQ7BIHZQIpPFzDwaCzR4TjAju0BsGPQBH9Ut1ZCKNghKBNG6r34BZo2HDAmh9NAx+KqgKUk8gkXpTIpDGac1bwaRwa+ZAi04w6EE4cQg00VdapKH0v0Yal4/nwD/uCRJAs7bQ//dQeK2mhBCJgRKBNA4fzwmuAD55K0gAA+6Gk0YEN40XkZgoEUj6cg9++b9xT5gA2sGAe+Ck4UoAInEUUyIws1bAJKArsAYY7O7bqpXpBTwEtAAqgLvcfVK4bhxwBrA9LD7C3RfGEpNkAPegEfjNe+GTt5UARBIs1iuC24BZ7n63md0Wvr61WpndwNXuvsLMOgALzGy6u38erv9Pd58SYxySCSorgm6gb90HGxcGCeD8P8A3r1YCEEmgWBPBIODM8PkTwBtUSwTuvjzi+admVgwcAXwe474lU5SXwYeT4O0/wZaV0Ko7fO9PQS8gNQKLJFysiaCtu28Mn38GtK2tsJn1AZoCqyIW32VmvwFmAbe5e1mUbUcCIwE6d+4cY9iSFsp2woJxwXxAOzdC+2/AZeOCGUFzmqQ6OpGsUWciMLOZQLsaVo2KfOHubmZRb4BsZu2Bp4Dh7l4ZLv4VQQJpCowluJoYXdP27j42LENhYWHju9GyfGlXCcx7BOaNhdLt0O10uOgv0L1fQgaCFe8o5cYJ7/PA0N60aa4rDJHq6kwE7n5OtHVmtsnM2rv7xvBEXxylXAvgZWCUu78X8d5VVxNlZvZX4JcNil4al02L4b2H4MPJULEXel4Ip96U8LmA7p+1gvlrtnL/zBWMufiEhO5LpDGKtWpoGjAcuDv8+2L1AmbWFJgKPFm9UTgiiRhwEfBRjPFIuqmshBWvwXt/gY//AbkHQe9h0PcGOOLohO7667e/Sll55b9fj5+7lvFz15Kfm8OyMefvV15XDpKtcmLc/m7gXDNbAZwTvsbMCs3s0bDMYOB0YISZLQwfvcJ1T5vZImAR0BoYE2M8ki7KdsHcsfBAIUy4HDavCO4JfPMSuPC+hCcBgDm39GNgrw4U5AVf84K8HAb16sCcW2uejC7yykEkm8R0ReDuW4Cza1heBFwfPh8PjI+y/Vmx7F/S0Odrg7r/BU9C2XboeBJc8hgcOwia5CU1lDYtCmien0tZeSX5uTmUlVfSPD93v1/7Db1yEMk0GlkssausgJWzgpvBrJgOWHDiP/nHcOS3Uhra5l1lDOvbhaF9OvPMvLWU7Czdr8ycW/ox5pWlvLb4M0r3VVKQl0P/49ox6oKeKYhYJPmUCOTA7SoO7gO8YFxwJXBIGzjt5mAOoMOOTHV0ADxyVeG/n4+56Pgay9T3ykEkUykRSMO4B1NAFz0GS/8GlfuC7p/njoavXwC5TVMd4QGpz5WDSKYy98bXJb+wsNCLiopSHUZ2+WJLMPq36HHYsgIKDoNew6DwGmjdI9XRiUg9mNkCdy+svlxXBBJdRTmsnAELn4Zlfw9+/Xf6Flz0EBx3seb/EckQSgSyv+Kl8P74YODXF8VwcGvoMxJ6DYV2Ndezi0jjpUSQRGk9YGnPNlg0BRY+A5/+E3Jy4egBwcm/x3lJ7/opIsmjRBCjhpzc026qg317YPnfgwSwYgZUlEHb44PbP55wGTQ7ItURikgSKBHEqD4n97QasFSxD1bNDk7+y16BvbuCWz8WXgu9rghmABWRrKJeQweo+sm9Sk0n9+IdpVEHLCWliqiyIrjT10fPwZIXg2qggsPg2IFw/KXQ9TRN+yySBdRrKM4aMho1JQOWKsph7bvBHb+WvAi7PoO8Q+CY78Lxl8BRZzfaPv8iEl9KBAeooSf3pAxY2lca3Ov3Xy/Bv16BPVshtyA46Z9wSdD42/SQ+O9XRBo1JYIYNOTkXp+pDg7Ins9h1axglO+K14I6//wWcHR/6Pk9+No5GXnyT+seWI2Qjmd2UyKIQcJO7rVxh5JlweRuy18Lqn+8Ag45Ak64FI75XjDlQ4ZX+6RdD6xGTsczu6mxuDHYVxrM77NietDd8/O1wfK2xwd9/I/uH4z4zYIG34Y00kvddDyzixqLaUSXv5WVsGlRUN+/6vXgV395aXB3r+5nwKk/DxJAgmb4TOfjpCmj40vHUyDLEkFaX/5+vi448a9+HVb/A3ZvDpYf0RNOuga+dnbQzTMJ8/uk83HSlNHxpeMpEGMiMLNWwCSgK7AGGOzu22ooV0FwO0qAte4+MFzeDZgIHA4sAK5y972xxFSTtBrQBUE9/7Y1Qd/+T94J/m5bE6xr1jZo4O1+ZvBo0b7Wt4rnr/e0O05RaMro+NLxlJjaCMzsD8BWd7/bzG4DWrr7rTWU2+XuzWpYPhl43t0nmtnDwAfu/lBd+21oG0HqB3RVwuZl4Uk/fOz8NFh3UCvocgp0OTU48bfpCWb1fuvbpy7i6XlrGdanc8y/3lN+nEQkoRLVRjAIODN8/gTwBrBfIogSkAFnAUMjtr8TqDMRNFTSL3+/2AIbimD9/OCx4Z9QtiNY16wddD31y5N/669DTk6Dd5GIX++qJhDJTrEmgrbuvjF8/hnQNkq5AjMrAsqBu939BYLqoM/dvTwssx7oGGM8USXs8rd0B3y2CD77EDYsgPVFsO3jYJ01gbbHBd06OxZCl29Dy24N+sUfTaIa+VRNIJJ96kwEZjYTaFfDqlGRL9zdzSxaPVMXd99gZt2B2Wa2CNjekEDNbCQwEqBz584N2RSIU5//XcWw8UPYuDA48W/88MuTPkDz9tCpMLhrV8dC6NArYYO5Gvrrvb5tCQ05Tuncu0hE6q/ORODu50RbZ2abzKy9u280s/ZAcZT32BD+XW1mbwC9geeAw8wsN7wq6ARsqCWOscBYCNoI6oo7JrtKoORfwaN4aTCAq2Qp7N7yZZmWXaHdidD7ymDGznYnQvNoF0SJ0ZBf74noCZTOvYtEpP5ibSy+F9gS0Vjcyt1vqVamJbDb3cvMrDXwLjDI3ZeY2bPAcxGNxR+6+1/q2m9cBpSV7YStH8PW1eFjFWxZHTTqRpzwK5s2J6dNT2hzTNCVs/2J0O4EKDg0tv3XIpE9garE0pagQUgijVO0xuJYE8HhwGSgM/AJQffRrWZWCPzI3a83s1OAR4BKIAf4o7s/Fm7fnaD7aCvgfeBKdy+ra78HnAjeuCeYi3/r6uAWjJEOaQOtusMRR8MRxzBuRQEPL23KOd/6BmO+f2LD9xWDdO8JpN5FIo1TQnoNufsW4OwalhcB14fP3wFqPJu5+2qgTywxNMjuzeEtGPsHJ/1/P7pBfnOght4489Yxft66pPzabSw9gdS7SCSzZNXIYr57b51FUjnkvjH1BFLvIpHMkV2JoB5S+Ws3UftOxCypiZp5VT2RRJKv4SOZskDVr92pPz6VYX27ULKrzmaLjNh3OojsiSQiyaFpqCUtqCeSSOJFayzWFYGkhTm39GNgrw4U5AVfyYK8HAb16sCcW/ulODKRzKdEIGlBPZFEUkeNxZI21BNJJDXURiAikiXURiAiIjVSIhARyXJKBCIiWU6JQEQkyykRiIhkOSUCEZEs1yi7j5pZCcH9Dw5Ea2BzHMOJF8XVMIqrYRRXw2RqXF3c/YjqCxtlIoiFmRXV1I821RRXwyiuhlFcDZNtcalqSEQkyykRiIhkuWxMBGNTHUAUiqthFFfDKK6Gyaq4sq6NQEREviobrwhERCSCEoGISJbLyERgZpeZ2WIzqzSzqF2tzGyAmS0zs5VmdlvE8m5mNjdcPsnMmsYprlZmNsPMVoR/W9ZQpp+ZLYx4lJrZReG6cWb2ccS6XsmKKyxXEbHvaRHLU3m8epnZu+Hn/aGZXR6xLq7HK9r3JWJ9fvjvXxkej64R634VLl9mZv1jieMA4rrZzJaEx2eWmXWJWFfjZ5qkuEaYWUnE/q+PWDc8/NxXmNnwJMd1X0RMy83s84h1CTleZva4mRWb2UdR1puZ3R/G/KGZfTNiXezHyt0z7gH0BL4OvAEURinTBFgFdAeaAh8Ax4brJgNDwucPAzfEKa4/ALeFz28D7qmjfCtgK3Bw+HoccGkCjle94gJ2RVmesuMFHA30CJ93ADYCh8X7eNX2fYko82Pg4fD5EGBS+PzYsHw+0C18nyZJjKtfxHfohqq4avtMkxTXCOCBGrZtBawO/7YMn7dMVlzVyv8UeDwJx+t04JvAR1HWfxd4FTDgZGBuPI9VRl4RuPtSd19WR7E+wEp3X+3ue4GJwCAzM+AsYEpY7gngojiFNih8v/q+76XAq+6+O077j6ahcf1bqo+Xuy939xXh80+BYmC/kZNxUOP3pZZ4pwBnh8dnEDDR3cvc/WNgZfh+SYnL3V+P+A69B3SK075jiqsW/YEZ7r7V3bcBM4ABKYrrCmBCnPYdlbu/SfCjL5pBwJMeeA84zMzaE6djlZGJoJ46AusiXq8Plx0OfO7u5dWWx0Nbd98YPv8MaFtH+SHs/yW8K7w0vM/M8pMcV4GZFZnZe1XVVaTR8TKzPgS/8lZFLI7X8Yr2famxTHg8thMcn/psm8i4Il1H8MuySk2faTLjuiT8fKaY2ZEN3DaRcRFWoXUDZkcsTtTxqku0uONyrBrtPYvNbCbQroZVo9z9xWTHU6W2uCJfuLubWdS+u2G2PwGYHrH4VwQnxKYE/YlvBUYnMa4u7r7BzLoDs81sEcHJ7oDF+Xg9BQx398pw8QEfr0xkZlcChcAZEYv3+0zdfVXN7xB3LwET3L3MzH5IcDV1VpL2XR9DgCnuXhGxLJXHK2EabSJw93NifIsNwJERrzuFy7YQXHblhr/qqpbHHJeZbTKz9u6+MTxxFdfyVoOBqe6+L+K9q34dl5nZX4FfJjMud98Q/l1tZm8AvYHnSPHxMrMWwMsEPwLei3jvAz5eNYj2fampzHozywUOJfg+1WfbRMaFmZ1DkFzPcPeyquVRPtN4nNjqjMvdt0S8fJSgTahq2zOrbftGHGKqV1wRhgA/iVyQwONVl2hxx+VYZXPV0HyghwU9XpoSfOjTPGiBeZ2gfh5gOBCvK4xp4fvV5333q5sMT4ZV9fIXATX2MEhEXGbWsqpqxcxaA6cCS1J9vMLPbipB/emUauviebxq/L7UEu+lwOzw+EwDhljQq6gb0AOYF0MsDYrLzHoDjwAD3b04YnmNn2kS42of8XIgsDR8Ph04L4yvJXAeX70yTmhcYWzHEDS+vhuxLJHHqy7TgKvD3kMnA9vDHzrxOVaJaAFP9QO4mKCurAzYBEwPl3cAXoko911gOUFGHxWxvDvBf9SVwLNAfpziOhyYBawAZgKtwuWFwKMR5boSZPqcatvPBhYRnNDGA82SFRdwSrjvD8K/16XD8QKuBPYBCyMevRJxvGr6vhBUNQ0MnxeE//6V4fHoHrHtqHC7ZcD5cf6+1xXXzPD/QdXxmVbXZ5qkuH4PLA73/zpwTMS214bHcSVwTTLjCl/fCdxdbbuEHS+CH30bw+/yeoK2nB8BPwrXG/BgGPMiInpDxuNYaYoJEZEsl81VQyIighKBiEjWUyIQEclySgQiIllOiUBEJMspEYiIZDklAhGRLPf/AWtI5E1iDVBdAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# plot the data points and the fitted function\n",
+    "x = res.x\n",
+    "f_out = lambda t : x[0]*t**2 + x[1]*t + x[2] + x[3]*math.sin(x[4]*t)  \n",
+    "plt.plot(data['t'], data['y'], '*')\n",
+    "y = [f_out(z) for z in t]\n",
+    "plt.plot(t, y)\n",
+    "plt.savefig(\"outlier_fit.png\")\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Remove the outliers and solve again"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GG, Nonlinear least squares method for bound-constrained problems\n",
+      " Status: converged, an optimal solution was found\n",
+      " Value of the objective             5.96811E-02\n",
+      " Norm of gradient                   1.19914E-06\n",
+      " Norm of scaled gradient            3.47087E-06\n",
+      " Norm of step                       3.49256E-06\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1       -inf        3.53888E-01        inf\n",
+      "     2       -inf        1.06575E+00        inf\n",
+      "     3       -inf        1.91383E-03        inf\n",
+      "     4       -inf        2.17299E-01        inf\n",
+      "     5       -inf        5.17660E+00        inf\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Disable the two outlier residuals\n",
+    "opt.handle_disable(handle, comp='NLS', idx=[10, 20])\n",
+    "\n",
+    "# Solve the problem again\n",
+    "x = np.ones(nvar, dtype=float)\n",
+    "res = opt.handle_solve_bxnl(handle, lsqfun, lsqgrd, x, nres, data=data,\n",
+    "                      io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The fitted function is much closer to the data!"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqkUlEQVR4nO3deXhU5fn/8fcdEhJRUFZZZFVEXEEiLrjhBqgFXIsI4lZs1X6/rbUuX7W2Fv1ZbetSNyhatVZRURRFRBRUqmzBBQREEDUsYsImIiSQzP374xxwCNkzmZlMPq/rypWZ52w3J8O551nOc8zdERGR+ist0QGIiEhiKRGIiNRzSgQiIvWcEoGISD2nRCAiUs+lJzqA6mjRooV36tQp0WGIiNQp8+bNW+vuLUuW18lE0KlTJ3JychIdhohInWJm35RWrqYhEZF6TolARKSeUyIQEannYpIIzOwJM8szs8/KWH6xmc03swVm9qGZHRG17Ouw/BMzU8O/iEicxapG8CTQv5zlXwEnufthwJ+BMSWW93X3Hu6eHaN4RESkkmIyasjd3zezTuUs/zDq7Sxgv1gcV0REai4RfQRXAJOj3jvwlpnNM7ORZW1kZiPNLMfMcvLz82s9SBGR+iKuicDM+hIkghujio939yOBAcA1ZnZiadu6+xh3z3b37JYtd7sfQkQktW3Ohym3QMH3Md913BKBmR0OjAUGufu6HeXuvir8nQdMAHrHKyYRkTpjys0wZwz8sCbmu45LIjCzDsDLwHB3/yKqfE8za7zjNXAGUOrIIxGRemvZ27DgRTj+OmjZLea7j0lnsZk9B5wMtDCzlcDtQAaAuz8G/AFoDjxiZgBF4QihfYEJYVk68Ky7vxmLmEREUsK2LfD6ddC8K5xwXa0cIlajhi6qYPmVwJWllC8Hjth9CxERAeC9u2HjN3DpJEjPrJVD6M5iEZFktWYBfPgQ9BwOnY6vtcMoEYiIJKPi7fDK1dCoGZx+B3mbCrhw9EzyfiiI+aGUCEREktGMv8Oa+XD2/dCoGQ++s5S5X6/nwbeXxvxQdfJ5BCIiKW3NAnj/HjjsArr9pwGFRZN2Lnpmdi7PzM4lMz2NJaMGxORwqhGIiCST4u3wyq9gj2Yw4B5m3NCXgT3akpURXK6zMtIY1KMtM27sG7NDqkYgIpJM3rsnqBEMeRYaNaMV0DgzncKiCJnpaRQWRWicmU6rxlkxO6QSgYhIssidBTP+CkdcBAedtbN47eZCLj66I0N7d+DZObnkx7jD2Nw9pjuMh+zsbNczi0UkWeVtKuDa5z7moaE9K//NveB7eOx4sDS4agZkNYl5XGY2r7Tp/tVHICISY9Ua4fPG7+H7VXDuP2slCZRHTUMiIjHS7dbJFBZFdr6v9Aif+S/A/Ofh5Juhffzn3VSNQEQkRqo1wid/Cbz2G2h/DJxwfXwCLUGJQEQkRlo1yaraCJ9tP1I0bjibitNZO+AxaJCYRholAhGRGNoxwmfC1X24+OiO5G8uLH1Fd5j0O9LWfcE1BVdz/+zN8Q00ikYNiYgkwG23/Y4/NxjL/UXncn/R+TvLY3nHcElljRpSZ7GISLx9M5M7Mp5i8R5HMWZTkASyMtLod0hrbjmre9zDUdOQiEg8bVwBLwzH9unA+E5/YmsRtXbHcGUpEYiIxMu2LTBuKBQVwkXjWFmQWbn+hFqmpiERkXiIFMOEq4J5hIa+AC0PZPTwnxaPGnxowkKLSY3AzJ4wszwzK/XB8xZ40MyWmdl8MzsyatkIM1sa/oyIRTwiIknFHab8HyyeCP3uggPPSHREu4hV09CTQP9ylg8AuoY/I4FHAcysGcGD7o8GegO3m1nTGMUkIpIcPvwHzH4Mjr0Wjr060dHsJiaJwN3fB9aXs8og4GkPzAL2MbM2QD9gqruvd/cNwFTKTygiInXL/Bdg6m1wyLlw+p8THU2p4tVZ3A5YEfV+ZVhWVvluzGykmeWYWU5+fn6tBSoiEjOLX4MJv4ROJ8A5j0Faco7PSc6oSuHuY9w9292zW7ZsmehwRETK98Vb8OJl0K4XXPQcpGcmOqIyxSsRrALaR73fLywrq1xEJOnkbSrgwtEzyavowTBfTofnh8G+h8DFL0Jm4/gEWE3xSgQTgUvC0UPHAN+7+7fAFOAMM2sadhKfEZaJiCSdSj1nYMlkePbn0KIrDJ8Ae+wTt/iqKyb3EZjZc8DJQAszW0kwEigDwN0fA94AzgSWAVuAy8Jl683sz8DccFd3uHt5nc4iInFX6ecMLBgf3CvQ+jAY9jI0apaAaKtOk86JiFQgb1MBo95YzFsL11CwPbLLvEA7p4TI+Re8/lvoeBxcNC7uTxmrDE06JyJSTeU+ZyASgXf+BB/cD13PgAuegoaNEh1ylSgRiIhUwo7nDAzt3YFn5+SS/0NBMHfQhKuCO4azL4cB9ybs4TI1oaYhEZHq2JgLL1wCqz+BfnfCMVeDWaKjKpeahkREYmXpVHj5F8FEckOehYPOTHRENaJEICJSWcXb4b2/wPt/De4RuPBpaL5/oqOqMSUCEZHKyP8i6A9Y/RH0uBjO/Gud6xQuixKBiEh5IsUw55/w9u2QsUcwKuiQwYmOKqaUCEREyrL6Y3j9uqAW0PUMGPgPaNw60VHFnBKBiEhJP66D9+6GuWNhz5Zw3uNw6HlJPyqoupQIRER22LYFZj8K/70ftm2G7Cvg1Nsga+9ER1arlAhERLZtgY+eDu4O/uFbOHAAnPZHaHVQoiOLCyUCEUlJeZsKuPa5j3loaM+f5gMqact6mPckzHwYtqyFDscFzUCd+sQ11kRTIhCRlBQ9ZfSocw7bdeGaz2DOmOAxkkVbYf9T4cTrgwnj6iElAhFJKWVNGd06fTOzzt4Anz4H334C6XvA4RdA76ug9aGJCzgJKBGISEqZcUPfnVNGp2/fzOkN53N5kxwO3TIH3iwKnhXQ7y444qI687yA2qZEICJ1RmXa/VvZ95yyeRLn8BZ9MhfS0IrYVNAcO+ZqOGJIMDWE7EKJQETqjFLb/bcXQO5MWP4uLJ8O385nMM76PdryQ7fLeHlrD+ZFuvLYGUcnNPZkpmmoRSTpRbf7GxG6Wy7Hpy3gxAafcXzDpVBUAGnpsF9v2P+UYDbQVgdX6gawSo0uShG1Og21mfUHHgAaAGPd/e4Sy+8D+oZvGwGt3H2fcFkxsCBcluvuA2MRk4ikjg9+1Y0pr41j79UzOMY+o4VtAqCoeTc44DLYvy907AOZe1V53+WOLqonalwjMLMGwBfA6cBKggfRX+Tui8pY/9dAT3e/PHy/2d2r9NdTjUAkxRVuhm8+gC+nwZfTYe0SAPJ9b2b6YbxXfCitjujHjReeUu1DlBxdtMNuD6RPIbVZI+gNLHP35eGBxgGDgFITAXARcHsMjisiqcId8hbBksnBhX/FbIhsh/Ss4Jv+kcO5Y1ErtjU/mKFHd2TOnFyW/1BQo0NGjy4q+UD6+iYWiaAdsCLq/Uqg1F4ZM+sIdAamRRVnmVkOUATc7e6vlLHtSGAkQIcOHWoetYgkVqQ4uOB/Pgk+fx02fB2Utz4cjr06aOtvfwxkBO32f4i612vU4JqP+y/3gfT1TLxHDQ0Bxrt7cVRZR3dfZWZdgGlmtsDdvyy5obuPAcZA0DQUn3BFJKbcYc18+PR5WPAi/JgHDRpC55Ogz2+g24C4TvNc6gPp66FYJIJVQPuo9/uFZaUZAlwTXeDuq8Lfy83sXaAnsFsiEJE6bHMefPIsfDoO8hdDWgYc2C+Y2rnr6ZDZOCFhjR7+U3N5LGoZdVUsEsFcoKuZdSZIAEOAoSVXMrODgKbAzKiypsAWdy80sxZAH+CeGMQkIslg9Scw+zH47CUo3hYM7zzrb3DIubqrN4nUOBG4e5GZXQtMIRg++oS7LzSzO4Acd58YrjoEGOe7DlPqDow2swiQRtBHUFYns4jUBZEIfP462z54iIarZhPJaETakSOg90hoeWCpm9SnsfzJSDeUiUhsRCKw6BV47x7IX8z6hm14eMup0GMYt51/bLmb3jphAf+Zk8vFvTvU27H88VDW8FElAhGpGXdYOjV4uHveIpZ5Ox7Yfg6TIscQIW3naqWNz6+PY/kTqaxEkFbayiIilbJmAfx7MDx7ARQVwvlP0OS3c7HDz6dhRtDynJWRxqAebZlxY9/dNp9xQ18G9mhLVkZahetK7dGkcyJSdQWbYNoomPvP4Hm+/f8C2ZdDekNaQaXH52ssf3JQIhCRqlk0ESbfAD+sgaOugFNuhT2a7rJKVcbnayx/4qmPQEQqZ8t6mPQ7WPhy8HCXsx+A/XolOiqpglqdfVREUtzSt+HVa4IHvJ9yK/T5LTTQ5SNV6C8pImUr3g5v/xFmPgQtu8PFL0CbIxIdlcSYRg1JXORtKuDC0TPJU/tv3fH9SvjXmUESOOpKGPmukkCKUiKQuIh++IfUAV+9D6NPDKaGPv+JYFqIDI3kSVVqGpJaVfKGoWdm5/LM7FzdMJTMcp6AN34PzfaHIf+BFl13WazpIFKPagRSq3TDUB1SXARv3ACv/zZ4FsCVb++WBEC1u1SkGoHUKt0wVEds2wLjL4Mv3oRjr4XT74C0Brusotpd6lKNQGrdjhuGJlzdh4uP7kj+5sJEhyTRtqwPpon4Ygqc+Vfod+duSQBUu0tlqhFIrdPDPxKnwvb8Tavh3+fA+uVwwZNwyOAy96XaXepSjUAkhZXbnr8xF/41AL5fBcNeKjcJ7KDaXWrSFBMiKajC6Z03fA1P/gwKvofhEzRVRD2haahFUkRlbs4rtz1//XL411lQuAlGvKokIEoEInVNZYZvltmeH1kLTw2E7VtgxGvQtmccI5dkFZPOYjPrDzxA8Mzise5+d4nllwL3EjzcHuAhdx8bLhsB3BqWj3L3p2IRk0iqqerwzZLTOxduWA1PjQiag0a8Bm0Oj2f4ksRq3EdgZg2AL4DTgZXAXOCi6IfQh4kg292vLbFtMyAHyAYcmAf0cvcN5R1TfQRSH+VtKmDUG4t5a+EaCrZHyMpIo98hrbnlrO4Vj9zZsh6ePBs2fBX0CXQ4Jj5BS1KpzT6C3sAyd1/u7tuAccCgSm7bD5jq7uvDi/9UoH8MYhJJOdUevrl9Kzw3BNYthSHPKgnIbmKRCNoBK6LerwzLSjrPzOab2Xgza1/FbTGzkWaWY2Y5+fn5MQhbpO6p8vDNSDG8PBJWzIFz/wn76+Yv2V28bih7DXjO3QvN7CrgKeCUquzA3ccAYyBoGop9iCLJr8o35711KyyeCGfcWan7BKR+ikWNYBXQPur9fvzUKQyAu69z9x1fXcYCvSq7rYhU08xHYNYjcPQv4dhrEh2NJLFYJIK5QFcz62xmDYEhwMToFcysTdTbgcDi8PUU4Awza2pmTYEzwjIRqYlFr8KU/4ODzoZ+d4FZoiOSJFbjpiF3LzKzawku4A2AJ9x9oZndAeS4+0Tgf8xsIFAErAcuDbddb2Z/JkgmAHe4+/qaxiRSr636KOgX2C8bzhtb6gRyItE0xYRIKtmcB2NOBmsAI6fDni0SHZEkkbKGj2r2UZFUUbQNXrgkuGfgiilKAlJpSgQiqeLNmyB3Jpz3uB4yL1WiuYZEUsG8JyHncejzv3DY+YmORuoYJQKRui53Nky6HvY/FU69PdHRSB2kRCBSl/24Fl4cAXvvB+c/rhFCUi3qIxCpqyKRYJjolvVw5duwR9NERyR1lBKBSF3137/Dl+/A2fdpSmmpETUNidRFX38A0++EQ8+HXpclOhqp45QIROqazfkw/nJo1gV+dr+mj5AaU9OQSF0SicDLv4CCjTDsJchsnOiIJAUoEYjUJR8+AMunw88egNaVmIZapBLUNCRSV6z+GKbdCQcPgiNHJDoaSSFKBCJ1wbYt8NIvYM+WcPb96heQmFLTkEhd8NYtsG4ZXPIqNGqW6GgkxahGIJLsPn8Dcp6A466FLiclOhpJQUoEIsnsh+9g4rXQ+jA45bZERyMpSolAJFm5w6vXwLYfg6ml0zMTHZGkKPURiCSrj56GZVNhwD3Qsluio5EUphqBSDLamAtTboFOJ8BRv0h0NJLiYpIIzKy/mS0xs2VmdlMpy68zs0VmNt/M3jGzjlHLis3sk/BnYiziEanTIpGgSQiHQQ9Dmr6vSe2qcdOQmTUAHgZOB1YCc81sorsvilrtYyDb3beY2a+Ae4Cfh8u2unuPmsYhkjLmPQFfvR/cL9C0Y4Wri9RULL5q9AaWuftyd98GjAMGRa/g7tPdfUv4dhawXwyOK5J61n8Fb/0BuvSFXpcmOhqpJ2KRCNoBK6LerwzLynIFMDnqfZaZ5ZjZLDMbXNZGZjYyXC8nPz+/RgGLJKVIBF69NnjK2KCHdPewxE1cRw2Z2TAgG4i+K6aju68ysy7ANDNb4O5fltzW3ccAYwCys7M9LgGLxNOcMfDNf2HgQ8GjJ0XiJBY1glVA+6j3+4VluzCz04BbgIHuXrij3N1Xhb+XA+8CPWMQk0jdsu5LePuP0PUM6Dks0dFIPROLRDAX6Gpmnc2sITAE2GX0j5n1BEYTJIG8qPKmZpYZvm4B9AGiO5lFUl8kAq9cDekNg+ml1SQkcVbjpiF3LzKza4EpQAPgCXdfaGZ3ADnuPhG4F9gLeNGCD3muuw8EugOjzSxCkJTuLjHaSCT1zR0LK2bB4EehSdtERyP1kLnXveb27Oxsz8nJSXQYIjW3cQU8cgy07w3DXlZtQGqVmc1z9+yS5bpTRSRR3GHSdcHvs+8n74dCLhw9k7wfChIdmdQzSgQiibJgPCx9C069DZp25MF3ljL36/U8+PbSREcm9YyahkQS4cd18PBR0LQz3b+5jq1Fu6+SmZ7GklED4h+bpCw1DYkkkyk3Q8H3MPAfvHfDqQzs0ZasjOC/Y1ZGGoN6tGXGjX0THKTUF5qGWiTelr4N85+HE2+AfQ+mFdA4M53CogiZ6WkUFkVonJlOq8ZZiY5U6gklApF4KtwMr/8GWnSDE6/fWbx2cyEXH92Rob078OycXPLVYSxxpEQgEk/T/gzfr4TLp+zyxLHRw39qth01+NBERCb1mPoIROJlxVyYPRqOuhI6HJ3oaER2UiIQiYeibTDx18Gdw6fdnuhoRHahpiGRePjvfZC/GIa+AJmNEx2NyC5UIxCpbXmfw/v3wqHnw4H9Eh2NyG6UCERqU6Q4aBLKbAwD/pLoaERKpaYhkdo093FYOQfOGQ17tkh0NCKlUo1ApLZsXAHv/An2PxUO/3mioxEpkxKBSG0IZxaNeISrN11C3ubCircRSRAlApHa8NlLsPQtJre8kskrMzSjqCQ19RGIxNqP61g//jfk+v78enlvHHhmdi7PzM7VjKKSlFQjEIm1t26haYOtTO5yCw0zgu9amlFUkllMEoGZ9TezJWa2zMxuKmV5ppk9Hy6fbWadopbdHJYvMTMNspa6bdk78Olz2PG/ZfPeB2pGUakTapwIzKwB8DAwADgYuMjMDi6x2hXABnc/ALgP+Eu47cHAEOAQoD/wSLg/kbpn24/BzKLNu8IJ1++cUXTC1X24+OiO5KvDWJJULPoIegPL3H05gJmNAwYBi6LWGQT8MXw9HnjIzCwsH+fuhcBXZrYs3N/MGMQlEl/T74KNuXDZZMjI0oyiUmfEommoHbAi6v3KsKzUddy9CPgeaF7JbQEws5FmlmNmOfn5+TEIWySGVs2DWY9Ar8ug43GJjkakSupMZ7G7j3H3bHfPbtmyZaLDkXoub1MBF46eSd4PBVC8HSb+L+zZCk7/U6JDE6myWCSCVUD7qPf7hWWlrmNm6cDewLpKbiuSdB58Zylzv14f3B/w4T/guwVw1t8ga+9EhyZSZbHoI5gLdDWzzgQX8SHA0BLrTARGELT9nw9Mc3c3s4nAs2b2d6At0BWYE4OYRGpFt1snU1gU2fn+v3NmU9jwLqZ7b/p3PzuBkYlUX41rBGGb/7XAFGAx8IK7LzSzO8xsYLja40DzsDP4OuCmcNuFwAsEHctvAte4e3FNYxKpLTNu6MvAHm3JykjDiHBPw7EUN2hI9q/GJjo0kWqLyZ3F7v4G8EaJsj9EvS4ALihj2zuBO2MRh0hta9Uki8aZ6RQWRRia8T69bTET2t7IOW06Jjo0kWqrM53FIsli7eZCrjpyT+7YYxzL9+rJmw1PT3RIIjWiuYZEqmj08Gx4fhgUF9LlsscZ3Xz/RIckUiOqEYhU1cIJsPg1OPkmUBKQFKBEIFIVP66FSb+Dtj3huP9JdDQiMaFEIFIVb1wPhT/AoEeggVpWJTUoEYhU1sJXgmahk26EfUvOqyhSdykRiFTGj+uCJqE2PaDPbxIdjUhMqW4rUhmTfw8F38OIiWoSkpSjGoFIRRZNDJ5BfNINsO8hiY5GJOaUCETKs2U9TLoOWh8Gx/820dGI1ArVcUXKM/kG2LoBhk+ABhmJjkakVqhGIFKWhRNgwYtw4u+DGoFIilIiECnNptXw2m+g7ZFwwu8SHY1IrVIiECkpEoFXr4GiQjj3n2oSkpSnPgKRkuaOhS+nBU8ca3FAoqMRqXWqEYhEy18CU2+DA06H7CsSHY1IXCgRiOxQtA1e/gVkNIJBD4FZoiMSiQs1DYns8N7d8O2ncOG/oXHrREcjEjc1qhGYWTMzm2pmS8PfTUtZp4eZzTSzhWY238x+HrXsSTP7ysw+CX961CQekWr7cjrM+Dv0HAYHD6x4fZEUUtOmoZuAd9y9K/BO+L6kLcAl7n4I0B+438z2iVr+e3fvEf58UsN4RKpucx68PBJaHAgD7kl0NCJxV9NEMAh4Knz9FDC45Aru/oW7Lw1frwbygJY1PK5IbEQiQRIo3AQXPAkN90x0RCJxV9NEsK+7fxu+XgPsW97KZtYbaAh8GVV8Z9hkdJ+ZZZaz7UgzyzGznPz8/BqGLRL64D5YPh36361nDEi9VWEiMLO3zeyzUn4GRa/n7g54OftpA/wbuMzdI2HxzcBBwFFAM+DGsrZ39zHunu3u2S1bqkIhlZe3qYALR88k74eCXRfkzoJpd8Ih50CvSxMSm0gyqDARuPtp7n5oKT+vAt+FF/gdF/q80vZhZk2AScAt7j4rat/feqAQ+BfQOxb/KJFoD76zlLlfr+fBt5f+VLhlPbx0JezTHn72gIaKSr1W0+GjE4ERwN3h71dLrmBmDYEJwNPuPr7Esjbu/q2ZGUH/wmc1jEdkp263TqawKLLz/TOzc3lmdi57pMPiA/8Jm7+Dy9+ErL2BoOZw7XMf89DQnrRqnJWosEXirqZ9BHcDp5vZUuC08D1mlm1mY8N1LgROBC4tZZjof8xsAbAAaAGMqmE8IjvNuKEvA3u0JSsj+JhnZaQxqEdbco79MOgXOOtv0K7XzvVLrTmI1AM1qhG4+zrg1FLKc4Arw9fPAM+Usf0pNTm+SHlaNcmicWY6hUURMtPTKCyKcMzW99nz84eg12Vw5CVA2TWHzPQ0lowakKjwReJGU0xISlu7uZCLj+7IhKv78NvDizkn9y7YrzcM+MvOdcqqOcy4sW+iwhaJK00xISlt9PDs4MXWjRycfzvsuTdc+DSk/zRSubSaQ+PMdPUTSL2hRCCpr7gomExuYy5cOgmatNltlR01h6G9O/DsnFzySw41FUlhSgSS+qbcDEvfgrPvhw7HlLrKzpoDMGrwoXEKTCQ5qI9AUtusx2DOGDj2Wsi+LNHRiCQlJQJJXUsmw5s3wUFnw+l3JDoakaSlRBBHZU51ILGXOxtevAzaHAHnjoG0BomOSCRpKRHUUFUu7rphKU6+WwTPXhB0Cl/8omYUFamAOotrKPriPuqcw0pdRzcsxdGGb+CZcyF9Dxj+CuzVKtERiSQ9CyYNrVuys7M9JycnoTGUvLjvUNrFPW9TAaPeWMxbC9dQsD1CVkYa/Q5pzS1ndddY9VjatBqePAu2rIPL3tS00iIlmNk8d88uWa6moWqqyt2oumEpDjathifPhs35cPFLSgIiVaCmoWqq6sVdNyzVok3fhkngOxg+AdofleiIROoUJYIaqMrFXTcs1ZKNufD04CAJDHsZ2uuRFtWhKbjrN/URSJ2Ut6mAu5+ewL0Ff6JB0RYY+iJ0ODrRYdVZt05YwH/m5HJx7w5lDnqQuq+sPgLVCKrDHTZ8BWuXBj8bvoLNeUEn5Zb1ENkOkSLwCGQ0CoYvZjaGvfaFJu2gSVtofgC0PAgat9bTsarh5YkT+EP+7/gxI4smV74BrVXLqg6NaBNQIqicSAS+/Ri+nAYr5sDKubB1w0/Ls/YJLvJ7toDm+wczW1oDsDTYvgW2/QiFm+CbmfDD6iBJ7JC5N7Q9AtofHfzslw17NI37P7Gu6HbrZE6JzOTvGY/ynTdl2I83s/L+b8hMX6ELVzXMuKFvmSPapP6oV4mgSu2gkWL46j347OVgwrLN3wXlLQ+C7j+DdtnB6xZdoVGzygcRiQT7WrcU8pdA3iJYNQ9m/B28+Kdj7H8qHHAqdOwDGfFts03a9uJIhHknzGOvmQ/wsXflF9uuY3NGUwbpwlVtGtEmUM8SQWVu/mL9V/DR0/DpuODbe2aT4IJ84AA44DTYs3nNgkhLC+54bdIGOp/4U3nhZlj9UVDj+Pq/MHcszHo4uDGq8wlwYH/oPhD2arnL7mrjol2p8xRvBZtg4rXstehVPmo6gIvWDIH0TLbpwlVjGtEmNeosNrNmwPNAJ+Br4EJ331DKesUEzyUGyHX3gWF5Z2Ac0ByYBwx3920VHbeqncUV3vzlDitmw8yH4PNJgAUX/R5DoduAXR5iEjfbfoSvP4BlU4MayYavg6amjn3g4EFBUmi8b0w7+apyk1xcrfoIxl8OG7+B0/7EVV8eS8sme+xy4YoelSUipSurs7imieAeYL27321mNwFN3f3GUtbb7O57lVL+AvCyu48zs8eAT9390YqOW9VEUO6dvetyYNooyJ0ZtM1nXw5H/aLUh5ckjDt8txAWvQqLXoG1XxBxY653Y1Lx0bxRfAxr2Ruo2UU76e6AjkRg9qMw9fagD+a8sdDx2PjHIZIiamvU0CDg5PD1U8C7wG6JoIyADDgFGBq1/R+BChNBVZXWDnpQ8VJavXx70A/QuA0MuBd6XpycE5SZBaNiWh8Kff8P8j9n60fj6fDReO7Y9hS3pz/NLA4lt01/TjvvymofJqnai/OXwMT/gRWzgmmkB/6jan0xIlJpNU0E+7r7t+HrNcC+ZayXZWY5QBFwt7u/QtActNHddwyhWQm0K+tAZjYSGAnQoUOHKge6ox10+KFZbH7jD/RaOgkatYB+dwW1gIw9qrzPhDCDVt3Zs/9t3LV1MDlzP2BQ+izOtA/ps+ZeePT+oFnr0POCZq3M3Spi5Up4e/H2rfDBgzDjr8HQ28GPwhEXaYitSC2qsGnIzN4GWpey6BbgKXffJ2rdDe6+29hHM2vn7qvMrAswDTgV+B6Y5e4HhOu0Bya7e4UDwqt9Q9nMh2H6/4OiAjj2ajjheshqUvX9JImr/p1Dy8ZZwUV79jc0Wjuf/+uwKBjp9MPqoKO5W3849Hzy9j2ea19cHNNO5Zh2VEcisOAFeOfPsGklHHIuDPiLZg8ViaHa6iNYApzs7t+aWRvgXXfvVsE2TwKvAy8B+UBrdy8ys2OBP7p7v4qOW+1E8Nr/BvPS9LsLWhxQ9e3rikgkaFJZMD7oU9iyjoK0PXl9ey82HzCIS4eNgAYZNT5MTDqqI8WweCLM+BusWQBtegRPE+tyUo3jE5Fd1VYiuBdYF9VZ3MzdbyixTlNgi7sXmlkLYCYwyN0XmdmLwEtRncXz3f2Rio5b7URQvL3SF8BEjqWP5bEPvvV1ekUWMDDtQ/o1mEsT28o6b8x078X5Qy6HLn2rXCuKyeiirRth/gvBSK2N30CzLtD3lqAmkKZJcUVqQ20lgubAC0AH4BuC4aPrzSwb+KW7X2lmxwGjgQjBtNf3u/vj4fZdCIaPNgM+Boa5e2FFx43HXEOJnHsllseOHgnk2ws4NeMzrtjnI3puyyGtcBOkpUOHY6Hr6dDhuODRjukNK73PKo0u2r4VvpwO88fBkjehuDC4m/q4X0O3M/U4SZFaViujhtx9HUF7f8nyHODK8PWHQKlXM3dfDiTVdJGJnHulNo4dPRKoYXoWk4uOpFmXwfQa2B1WzoEvpsDSqTD1D8EG6VnQrldwgW53JLTsDs0673KRrvToooLvg2GvK+cGCeCbD4OLf6MW0OtSOGJIcAwRSSjNPlpCIsfS19axd+lULusGrB/WBDfV5c4O7qlYM/+nOZEaZAbJYMeEeXu25JVFG8nYozFHdmrBx1/lUViwhXMObhLsZ9Pq4Aa4jd/8tP+W3WH/U+CAU6DzSTHpoxCRqtHso5WUyLH0tXXsSj0LoXHr4I7lgwcF77dtgfzFkBf+bPg6uMB/txB+zGfwjnmRVsHOW+8+TIe9Wgc347XrBUdeAq0PhzaHB/uvhKSd50gkhSkRlCKRY+kTPo5/h4aNgot5u16lLy/aBtt/DDrg0zODWkODhjXu6E3KeY5EUpyahiQpJO08RyIpRA+vl6Q244a+DOzRlqyM4COZlZHGoB5tmXFj3wRHJpL6lAgkKSTVPEci9Yz6CCRpJE3/iEg9oz4CEZF6Qn0EIiJSKiUCEZF6TolARKSeUyIQEannlAhEROo5JQIRkXquTg4fNbN8gucfVEcLYG0Mw4kVxVU1iqtqFFfVpGpcHd29ZcnCOpkIasLMckobR5toiqtqFFfVKK6qqW9xqWlIRKSeUyIQEann6mMiGJPoAMqguKpGcVWN4qqaehVXvesjEBGRXdXHGoGIiERRIhARqedSMhGY2QVmttDMImZW5lArM+tvZkvMbJmZ3RRV3tnMZoflz5tZwxjF1czMpprZ0vB301LW6Wtmn0T9FJjZ4HDZk2b2VdSyHvGKK1yvOOrYE6PKE3m+epjZzPDvPd/Mfh61LKbnq6zPS9TyzPDfvyw8H52ilt0cli8xs341iaMacV1nZovC8/OOmXWMWlbq3zROcV1qZvlRx78yatmI8O++1MxGxDmu+6Ji+sLMNkYtq5XzZWZPmFmemX1WxnIzswfDmOeb2ZFRy2p+rtw95X6A7kA34F0gu4x1GgBfAl2AhsCnwMHhsheAIeHrx4BfxSiue4Cbwtc3AX+pYP1mwHqgUfj+SeD8WjhflYoL2FxGecLOF3Ag0DV83Rb4Ftgn1uervM9L1DpXA4+Fr4cAz4evDw7XzwQ6h/tpEMe4+kZ9hn61I67y/qZxiutS4KFStm0GLA9/Nw1fN41XXCXW/zXwRBzO14nAkcBnZSw/E5gMGHAMMDuW5yolawTuvtjdl1SwWm9gmbsvd/dtwDhgkJkZcAowPlzvKWBwjEIbFO6vsvs9H5js7ltidPyyVDWunRJ9vtz9C3dfGr5eDeQBu905GQOlfl7KiXc8cGp4fgYB49y90N2/ApaF+4tLXO4+PeozNAvYL0bHrlFc5egHTHX39e6+AZgK9E9QXBcBz8Xo2GVy9/cJvvSVZRDwtAdmAfuYWRtidK5SMhFUUjtgRdT7lWFZc2CjuxeVKI+Ffd392/D1GmDfCtYfwu4fwjvDquF9ZpYZ57iyzCzHzGbtaK4iic6XmfUm+Jb3ZVRxrM5XWZ+XUtcJz8f3BOenMtvWZlzRriD4ZrlDaX/TeMZ1Xvj3GW9m7au4bW3GRdiE1hmYFlVcW+erImXFHZNzVWefWWxmbwOtS1l0i7u/Gu94digvrug37u5mVubY3TDbHwZMiSq+meCC2JBgPPGNwB1xjKuju68ysy7ANDNbQHCxq7YYn69/AyPcPRIWV/t8pSIzGwZkAydFFe/2N3X3L0vfQ8y9Bjzn7oVmdhVBbeqUOB27MoYA4929OKoskeer1tTZRODup9VwF6uA9lHv9wvL1hFUu9LDb3U7ymscl5l9Z2Zt3P3b8MKVV86uLgQmuPv2qH3v+HZcaGb/Aq6PZ1zuvir8vdzM3gV6Ai+R4PNlZk2ASQRfAmZF7bva56sUZX1eSltnpZmlA3sTfJ4qs21txoWZnUaQXE9y98Id5WX8TWNxYaswLndfF/V2LEGf0I5tTy6x7bsxiKlScUUZAlwTXVCL56siZcUdk3NVn5uG5gJdLRjx0pDgjz7Rgx6Y6QTt8wAjgFjVMCaG+6vMfndrmwwvhjva5QcDpY4wqI24zKzpjqYVM2sB9AEWJfp8hX+7CQTtp+NLLIvl+Sr181JOvOcD08LzMxEYYsGoos5AV2BODWKpUlxm1hMYDQx097yo8lL/pnGMq03U24HA4vD1FOCMML6mwBnsWjOu1bjC2A4i6HydGVVWm+erIhOBS8LRQ8cA34dfdGJzrmqjBzzRP8A5BG1lhcB3wJSwvC3wRtR6ZwJfEGT0W6LKuxD8R10GvAhkxiiu5sA7wFLgbaBZWJ4NjI1arxNBpk8rsf00YAHBBe0ZYK94xQUcFx770/D3FclwvoBhwHbgk6ifHrVxvkr7vBA0NQ0MX2eF//5l4fnoErXtLeF2S4ABMf68VxTX2+H/gx3nZ2JFf9M4xfX/gIXh8acDB0Vte3l4HpcBl8UzrvD9H4G7S2xXa+eL4Evft+FneSVBX84vgV+Gyw14OIx5AVGjIWNxrjTFhIhIPVefm4ZERAQlAhGRek+JQESknlMiEBGp55QIRETqOSUCEZF6TolARKSe+//l+/VEtnTmfwAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# plot the data points and the fitted function\n",
+    "x = res.x\n",
+    "f_fit = lambda t : x[0]*t**2 + x[1]*t + x[2] + x[3]*math.sin(x[4]*t)  \n",
+    "plt.plot(data['t'], data['y'], '*')\n",
+    "y = [f_fit(z) for z in t]\n",
+    "plt.plot(t, y)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The solver featured in this notebook is accessed via the Optimization Modelling Suite (delivered with the NAG Library). Learn more about the [Optimization Modelling Suite](https://www.nag.com/content/nag-optimization-modelling-suite) or complete the [form](https://www.nag.com/form/optimization-solutions-enquiry) and we’ll get back to you as soon as we can."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.8"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/local_optimization/Modelling/nlnlsq_data.pck b/local_optimization/Modelling/nlnlsq_data.pck
new file mode 100644
index 0000000..353830b
Binary files /dev/null and b/local_optimization/Modelling/nlnlsq_data.pck differ
diff --git a/local_optimization/Modelling/production_planning.ipynb b/local_optimization/Modelling/production_planning.ipynb
new file mode 100644
index 0000000..5ead7d4
--- /dev/null
+++ b/local_optimization/Modelling/production_planning.ipynb
@@ -0,0 +1,304 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG Library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG Library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the NAG Library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Edit and solve different variants of a production-planning problem\n",
+    "\n",
+    "## Correct Rendering of this notebook\n",
+    "\n",
+    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html\n",
+    "\n",
+    "## Problem description\n",
+    "We consider a situation where a factory can manufacture two different chemicals $A_1$ and $A_2$. The goal for the factory is to determine the quantities $x_1$ and $x_2$ of each chemical to maximize profit under the following circumstances:\n",
+    "- a unit of $A_1$ weighs 40kg and a unit of $A_2$ weighs 80kg;\n",
+    "- the total daily production cannot exceed 16000kg to match the transport capabilities;\n",
+    "- the factory generates \\\\$2 profit for each unit of $A_1$ and \\\\$4.5 profit for each unit of $A_2$;\n",
+    "- both products need to use the same machine as part of their respective processes; a unit of A1 requires 1.2 minutes of machine time while a unit of $A_2$ requires 3 minutes; the machine can only function for 1500 minutes daily;\n",
+    "- a unit of $A_1$ uses 6 square metres of packing material while a unit of $A_2$ uses 10 square metres; 6000 square metres of packing materials are available each day;\n",
+    "- production of $A_2$ is limited to 100 units per day.\n",
+    "\n",
+    "Note that since the chemicals are considered fluid, the quantities $x_1$ and $x_2$ are not limited to integer values.\n",
+    "\n",
+    "The problem can be formulated as a linear program:\n",
+    "\n",
+    "\\begin{equation*}\n",
+    "\\begin{array}{lll}\n",
+    "\\underset{x\\in\\Re^n}{\\mbox{maximize}} & 2x_1+4.5x_2&\\\\[0.6ex]\n",
+    "\\mbox{subject to} & 1.2x_1 + 3x_2 \\leq 1500, &\\text{ (machine time constraint)} \\\\[0.6ex]\n",
+    "     & 6x_1+10x_2 \\leq 6000, & \\text{ (packaging material constraint)} \\\\[0.6ex]\n",
+    "     & 40x_1+80x_2 \\leq 16000, & \\text{ (transport constraint)} \\\\[0.6ex]\n",
+    "     & 0 \\leq x_1, & \\text{ (capacity constraint)} \\\\[0.6ex]\n",
+    "     & 0 \\leq x_2 \\leq 100 & \\text{ (capacity constraint)} \\\\[0.6ex]\n",
+    "\\end{array}\n",
+    "\\end{equation*}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04MT, Interior point method for LP problems\n",
+      " Status: converged, an optimal solution found\n",
+      " Final primal objective value  8.500000E+02\n",
+      " Final dual objective value    8.500000E+02\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1   0.00000E+00    2.00000E+02         inf\n",
+      "     2   0.00000E+00    1.00000E+02    1.00000E+02\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Define and solve the linear program with the NAG optimization modelling suite\n",
+    "\n",
+    "from naginterfaces.library import opt\n",
+    "from naginterfaces.base import utils\n",
+    "\n",
+    "infbnd = 1.0e20\n",
+    "    \n",
+    "# Initialize the Optimization model handle with the number of variables\n",
+    "handle = opt.handle_init(2)\n",
+    "\n",
+    "# Define a linear objective function\n",
+    "opt.handle_set_linobj(handle, cvec=[2.0, 4.5])\n",
+    "\n",
+    "# Box constraints\n",
+    "opt.handle_set_simplebounds(\n",
+    "    handle,\n",
+    "    bl=[0.0, 0.0],\n",
+    "    bu=[infbnd, 100])\n",
+    "\n",
+    "# Set the linear constraints\n",
+    "opt.handle_set_linconstr(\n",
+    "    handle,\n",
+    "    bl=[-infbnd, -infbnd, -infbnd],\n",
+    "    bu=[1500.0, 6000.0, 16000.0],\n",
+    "    irowb=[1, 1, 2, 2, 3, 3],\n",
+    "    icolb=[1, 2, 1, 2, 1, 2],\n",
+    "    b=[1.2, 3.0, 6.0, 10.0, 40.0, 80.0]\n",
+    ")\n",
+    "\n",
+    "# Set some alogorithmic options\n",
+    "for option in [\n",
+    "        'Print Options = NO',\n",
+    "        'Print Level = 1',\n",
+    "        'Task = Max',\n",
+    "        'Print Solution = X',\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "\n",
+    "# Use an explicit I/O manager for abbreviated iteration output:\n",
+    "iom = utils.FileObjManager(locus_in_output=False)\n",
+    "\n",
+    "# Solve the problem\n",
+    "res = opt.handle_solve_lp_ipm(handle, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The optimal repartition is to produce 200 units of $A_1$ and 100 units of $A_2$ for a total profit of 850\\\\$.\n",
+    "\n",
+    "### Plant expansion: a new chemical $A_3$ can be produced \n",
+    "\n",
+    "The following data is available for $A_3$:\n",
+    "- a unit of $A_3$ takes 5 minutes on the common machine;\n",
+    "- a unit of $A_3$ takes 12 square metres of packaging material;\n",
+    "- a unit of $A_3$ weighs 120kg;\n",
+    "- a unit of $A_3$ generates \\\\$7 profit;\n",
+    "- production of $A_3$ is limited to 50 units per day.\n",
+    "\n",
+    "The problem becomes:\n",
+    "\n",
+    "\\begin{equation*}\n",
+    "\\begin{array}{lll}\n",
+    "\\underset{x\\in\\Re^n}{\\mbox{maximize}} & 2x_1+4.5x_2+7x_3&\\\\[0.6ex]\n",
+    "\\mbox{subject to} & 1.2x_1 + 3x_2 + 5x_3 \\leq 1500, &\\text{ (machine time constraint)} \\\\[0.6ex]\n",
+    "     & 6x_1+10x_2+12x_3 \\leq 6000, & \\text{ (packaging material constraint)} \\\\[0.6ex]\n",
+    "     & 40x_1+80x_2+120x_3 \\leq 16000, & \\text{ (transport constraint)} \\\\[0.6ex]\n",
+    "     & 0 \\leq x_1, & \\text{ (capacity constraint)} \\\\[0.6ex]\n",
+    "     & 0 \\leq x_1 \\leq 100 & \\text{ (capacity constraint)} \\\\[0.6ex]\n",
+    "     & 0 \\leq x_3 \\leq 50 & \\text{ (capacity constraint)} \\\\[0.6ex]\n",
+    "\\end{array}\n",
+    "\\end{equation*}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04MT, Interior point method for LP problems\n",
+      " Status: converged, an optimal solution found\n",
+      " Final primal objective value  9.000000E+02\n",
+      " Final dual objective value    9.000000E+02\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1   0.00000E+00    5.00000E+01         inf\n",
+      "     2   0.00000E+00    1.00000E+02    1.00000E+02\n",
+      "     3   0.00000E+00    5.00000E+01    5.00000E+01\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Edit the problem to account for the new plant capacity\n",
+    "# add a variable\n",
+    "opt.handle_add_vars(handle, nadd=1)\n",
+    "\n",
+    "# Box Constraint on the new variable\n",
+    "opt.handle_set_bound(handle, comp='X', idx=3, bli=0.0, bui=50.0)\n",
+    "\n",
+    "# Add the linear objective component\n",
+    "opt.handle_set_linobj_coeff(handle, idxci=3, ci=7.0)\n",
+    "\n",
+    "# Add linear constraints coefficients\n",
+    "opt.handle_set_linconstr_coeff(handle, idlc=1, icolbj=3, bij=5.0)\n",
+    "opt.handle_set_linconstr_coeff(handle, idlc=2, icolbj=3, bij=12.0)\n",
+    "opt.handle_set_linconstr_coeff(handle, idlc=3, icolbj=3, bij=120.0)\n",
+    "\n",
+    "# Solve the problem again\n",
+    "res = opt.handle_solve_lp_ipm(handle, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The new optimum is to produce 50 units of $A_1$, 100 units of $A_2$ and 50 units of $A_3$ for a total profit of 900\\\\$.\n",
+    "\n",
+    "### New regulation: additional constraint\n",
+    "\n",
+    "At a later date, regulation changes require that products $A_2$ and $A_3$ follow a rigorous quality assurance test before being sent to market. Now the factory is only able to process a total of 100 units per day which amounts to adding the following constraint to our linear program:\n",
+    "\\begin{equation*}\n",
+    "\\begin{array}{ll}\n",
+    "     x_2+x_3 \\leq 100 & \\text{ (regulation constraint)} \\\\[0.6ex]\n",
+    "\\end{array}\n",
+    "\\end{equation*}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04MT, Interior point method for LP problems\n",
+      " Status: converged, an optimal solution found\n",
+      " Final primal objective value  8.750000E+02\n",
+      " Final dual objective value    8.750000E+02\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1   0.00000E+00    1.50000E+02         inf\n",
+      "     2   0.00000E+00    5.00000E+01    1.00000E+02\n",
+      "     3   0.00000E+00    5.00000E+01    5.00000E+01\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Add a linear constraint\n",
+    "opt.handle_set_linconstr(\n",
+    "    handle,\n",
+    "    bl=[-infbnd],\n",
+    "    bu=[100.0],\n",
+    "    irowb=[1, 1],\n",
+    "    icolb=[2, 3],\n",
+    "    b=[1.0, 1.0]\n",
+    ")\n",
+    "\n",
+    "# Solve the problem again\n",
+    "res = opt.handle_solve_lp_ipm(handle, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "With the new regulation, maximum profit of 875\\\\$ can be achived by producing 150 units of $A_1$, 50 units of $A_2$ and 50 units of $A_3$."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The solver featured in this notebook is accessed via the Optimization Modelling Suite (delivered with the NAG Library). Learn more about the [Optimization Modelling Suite](https://www.nag.com/content/nag-optimization-modelling-suite) or complete the [form](https://www.nag.com/form/optimization-solutions-enquiry) and we’ll get back to you as soon as we can."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.8"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/local_optimization/NLDF/Readme.md b/local_optimization/NLDF/Readme.md
new file mode 100644
index 0000000..3551ef4
--- /dev/null
+++ b/local_optimization/NLDF/Readme.md
@@ -0,0 +1,22 @@
+[![NAG Logo](../../nag_logo.png)](https://www.nag.com)
+
+# General Nonlinear Data-Fitting (NLDF)
+[[`handle_solve_nldf`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_nldf.html) | [`e04gnf`](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04gnf.html) | [`e04gnc`](https://www.nag.com/numeric/nl/nagdoc_latest/clhtml/e04/e04gnc.html) ]
+
+Data fitting/calibration is widespread. Commonly used in by those needing to fit a mathematical model to an experimental data set. Application use is found, but not limited to, econometrics and finance, image processing, civil engineering, mechanical engineering, and astronomy. Widely used methods, such as the [least squares (LSQ) method](../BXNL/Readme.md), don’t always capture the underlying data distribution. When the assumptions are unrealistic or the data set contains various level of outliers, the need for robustness appears.
+
+Figure 1 shows the shapes of different loss functions and their performance in dealing with a data set that has outliers. Clearly in this case, the Cauchy loss function provides the best fit, and the model using infinity norm is heavily influenced by the outliers.
+<table>
+  <tr>
+ <td width=45%><img src="./images/nldf_lossf.png" width="100%" alt="Optimal orbit from data orbit measurements."/>
+ <td width=55%><img src="./images/nldf_comp.png" width="100%" alt="Weighted optimal orbit from data orbit measurements."/></td>
+</tr>
+</table>
+
+**Figure 1.** Left: plot of various loss functions. Right: fitting results via various loss functions 
+
+Within the [NAG<sup>&reg;</sup> Library](https://www.nag.co.uk/content/nag-library) is a [nonlinear data fitting solver](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_nldf.html), which encapsulates a selection of calibration models (the loss function and regularization types), such as Least Absolute Value and Cauchy, making it a great starting point for the journey of exploring the nonlinear nature of your experimental data. In addition, the models can include general constraints such as bound, linear, quadratic, and nonlinear constraints. The switching between different types of models and regularizations is very easy.
+
+See the notebook below for the usage of [`handle_solve_nldf`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_nldf.html) and a further discussion on the performance of loss functions regarding robustness.
+
+* [Loss functions and robustness in data-fitting](data_fitting_robustness.ipynb)
diff --git a/local_optimization/NLDF/data_fitting_robustness.ipynb b/local_optimization/NLDF/data_fitting_robustness.ipynb
new file mode 100644
index 0000000..6302b19
--- /dev/null
+++ b/local_optimization/NLDF/data_fitting_robustness.ipynb
@@ -0,0 +1,599 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "c17c4002",
+   "metadata": {},
+   "source": [
+    "# Loss Function and Robustness in Data-Fitting"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a2ef8975",
+   "metadata": {},
+   "source": [
+    "## Technical Setup\n",
+    "\n",
+    "### NAG Library install\n",
+    "To run this notebook, you will need to install the NAG Library for Python (Mark 28.5 or newer) and a license key. You can find the software and request a license key from our website here: [Getting Started with NAG Library](https://www.nag.com/content/getting-started-nag-library?lang=py&os=linux)\n",
+    "\n",
+    "### Correct rendering of this notebook\n",
+    "\n",
+    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter, it may be because you have not installed this extension.  See at [nbextensions - LATEX for Jupyter notebooks](https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html) for further information."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d7c29645",
+   "metadata": {},
+   "source": [
+    "## Introduction\n",
+    "Fitting a non-linear model to data is typically modelled as a minimisation problem, where the objective function serves as a measurement of the quality of the model’s fit to data, depending on our parameters. A general model involves summing over our data points,\n",
+    "\n",
+    "$$\n",
+    "\\underset{x \\in \\mathbb{R}^{n_{\\text{var}}}}{\\text{minimize}} ~f(x) =\\sum_{i=1}^{n_{\\text{res}}} \\chi(r_i(x)),\n",
+    "$$\n",
+    "\n",
+    "where $x$ is a vector holding our model parameters, of which there are $n_\\text{var}$. We have $n_\\text{res}$ data points, and $r_i(x)= y_i - \\varphi(t_i;x), \\quad i = 1,...,n_\\text{res}$ is the $i^{th}$ residual, equal to the difference between the observed and predicted values of the independent variable at time $t_i$, denoted $y_i$ and $\\varphi(t_i;x)$ respectively. The loss function $\\chi$ has desirable properties such as being bounded from below, and increasing with $|r_i\\left(x\\right)|$. Summing over all data points then, the objective function will be small when the model fits the whole dataset well, which is what we want.\n",
+    "\n",
+    "There are plenty of choices for function $\\chi$, so how does our choice of loss function affect the fit we end up with? One important consideration is robustness. If some of the observed data points are far from the fitted model, how can we control the influence of those outliers? A robust loss function is one which doesn’t get thrown off easily by outliers in the data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "475d193d",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# import all packages necessary for notebook\n",
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "from naginterfaces.base import utils\n",
+    "from naginterfaces.library import opt"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "edeb12b1",
+   "metadata": {},
+   "source": [
+    "## Single-outlier example\n",
+    "\n",
+    "To investigate the robustness aspect, here’s a toy dataset which is generated from $\\sin(t)$ and has an outlier at $t=1.5$, which is generated by $5\\sin(t)$."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "f4114a11",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# create data set\n",
+    "t = np.linspace(0.5, 2.5, num=21)\n",
+    "y = np.sin(t)\n",
+    "y[10] = 5*np.sin(t[10])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "1f2e8656",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPBElEQVR4nO3dbYxc5XnG8esydrteghuQt7WFKRukSlFTlQAr1BIECVJbx3mhTr+4dqvQUhlDWxGpadUqUtWaD+2HqI2qOlYsipqoKaRKDGpRqWIJUOSiJVpTg3lJE1iTNrDgTUgKVgJN8d0P5zgMy+zumTkvc+/u/yeNZua8zN7zzHOueeaZM7YjQgCAvNaNugAAwNIIagBIjqAGgOQIagBIjqAGgOTWt/GgmzdvjsnJyTYeGgBWpWPHjn07Iib6rWslqCcnJzUzM9PGQwPAqmT7m4utY+oDAJIjqAEgOYIaAJIjqAEgOYIaAJKrFNS2n7V9wvZx25zOgRVpbk669lrphRdGXQkwmEFG1O+LiHdHxFRr1QAtuu026ehRaf/+UVcCDIapD6x6GzdKtnTwoHTmTHFtF8uBlaBqUIekL9s+Zntvvw1s77U9Y3tmfn6+uQqBmmZnpd27pfHx4v74uLRnj3Ty5GjrAqqqGtRXR8Tlkt4v6XdtX7Nwg4g4FBFTETE1MdH3V5DASGzdKm3aJL36qjQ2Vlxv2iRt2TLqyoBqKgV1RDxXXp+SdLekK9ssCmjaiy9K+/ZJ09PFNV8oYiVZ9t/6sH2upHUR8Up5+5cl8XUMVpTDh9+4feDA6OoAhlHlH2X6KUl32z67/T9GxL+1WhUA4EeWDeqImJV0aQe1AAD64PQ8AEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5CoHte1zbP+H7XvbLAgA8GaDjKhvlfRUW4UAAPqrFNS2t0n6gKTb2y0HALBQ1RH1pyT9kaQz7ZUCAOhn2aC2/UFJpyLi2DLb7bU9Y3tmfn6+sQIBYK2rMqJ+j6QP235W0l2SrrP9Dws3iohDETEVEVMTExMNlwkAa9eyQR0RfxIR2yJiUtIuSfdHxG+0XhkAQBLnUQNAeusH2TgiHpT0YCuVAAD6YkQNAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMkR1ACQHEENAMktG9S2x2x/1fajtp+w/eddFAYAKKyvsM1rkq6LiNO2N0g6avu+iJhuuTYAgCoEdUSEpNPl3Q3lJdosCgDwhkpz1LbPsX1c0ilJRyLi4T7b7LU9Y3tmfn6+4TIBYO2qFNQR8XpEvFvSNklX2v65PtscioipiJiamJhouEwAWLsGOusjIr4n6QFJ21upBgDwFlXO+piw/fby9kZJvyTpay3XBQAoVTnrY6ukz9o+R0Ww/1NE3NtuWQCAs6qc9fGYpMs6qAUA0Ae/TASA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5AhqAEiOoAaA5JYNatsX2X7A9pO2n7B9axeFAQAK6yts83+S/iAiHrF9nqRjto9ExJMt1wYAUIURdUTMRcQj5e1XJD0l6cK2CwMAFAaao7Y9KekySQ/3WbfX9oztmfn5+YbKAwBUDmrbb5P0JUkfi4iXF66PiEMRMRURUxMTE03WCABrWqWgtr1BRUh/PiIOt1sSAKBXlbM+LOnvJD0VEX/VfkkAgF5VRtTvkfSbkq6zfby87Gi5LgBAadnT8yLiqCR3UAsAoA9+mQgAyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJAcQQ0AyS0b1LbvsH3K9uNdFARkNDcnXXut9MIL3e4LSNVG1H8vaXvLdQCVjCr0brtNOnpU2r+/230lgh4VgjoiviLppQ5qwRpRJ3jqht6gNm6UbOngQenMmeLaLpa3uW+vOs+ZkF8dGpujtr3X9oztmfn5+aYeFgnVPfiHCZ6mQm9Qs7PS7t3S+Hhxf3xc2rNHOnmy3X2lZp5z129saEdjQR0RhyJiKiKmJiYmmnpYJDTswV8neOqG3rC2bpU2bZJefVUaGyuuN22Stmxpd1+p3nNuIuQZjefBWR9r1DAHYd2Dv07w1A29Ol58Udq3T5qeLq4HabM6+9Z5zk28sTEaz4OgXqOGOQjrHvx1w7ZO6NVx+LB04IB06aXF9eHD3ewrDf+c67Q1o/GEImLJi6Q7Jc1J+qGkb0m6cbl9rrjiikD7nn8+4pprIubmqu8zNhYhvfUyNlZt/337ItatK7Zfty7i5psHq3nnzohbbok4fry43rlzsP1R3bBt/fzzEbt3R4yPF31jfDxiz57B+tnNNw/XP9YySTOxWA4vtqLOhaDuxjAHQ92DkKBdG4Z9Q647EDhrmEHISrdUUDP1sQLV+Whad/qh7kd5rAzDTrk09aUv8+NvRlCP2DBzeXUPhlHN9WLlGPYNue5AYFSnYWZHUI/YMCMHRsXIrM5AoIkR+Wr8IpOgrmnYTlF35MCoGFnVGQg0cRrmapw2cTGH3aypqamYmZlp/HEzuuUW6TOfkW66Sfr0p6vvNzcnffzj0j33SN//fjFy2LlT+uQnuzk3GMjqIx8pAnvvXunQoeJYqRL2GzcWwb7Q2Jj0gx80X2fTbB+LiKl+6xhRD6nuiHiUP+AAMht2RL6ap00I6iE10SmYvgCas5qnTdaPuoAM5uakXbukL3yh+ovaRKfoHSkcODBYzQDe6uzgp3fapIqF0yYHDxaXLNMmjKg1/LsoI2Igl1FOm7RpTY+o676LMiIGVocmPiEP88m8qlUzoh7FD0cArB51PyG3Ob+9akbUvY1U9TQ5zrwAcNawn5C7mN9e8SNqfjgCYJS6+GS+4kfUs7OL/3CkCuaZAdTRxSfzVCPqYeaZmb4AMGptfzJPNaIeZp5ZGv7cSQBoQtufzFP8Wx8r/Tf6AFBX+n/rg9PkAGBxKYKaeWYAWFyKoJY4TQ4AFpPmy0ROkwOA/tKMqAEA/RHUAJAcQQ0AyRHUAJAcQQ0AyRHUAJBcKz8htz0v6ZtD7r5Z0rcbLKcp1DUY6hoMdQ1mNdZ1cURM9FvRSlDXYXtmsd+7jxJ1DYa6BkNdg1lrdTH1AQDJEdQAkFzGoD406gIWQV2Doa7BUNdg1lRd6eaoAQBvlnFEDQDoQVADQHKdBbXt7bb/0/bTtv+4z/obbM/bPl5efqdn3Udtf6O8fLTjuv66p6av2/5ez7rXe9b9c8N13WH7lO3HF1lv239T1v2Y7ct71rXZXsvVtaes54Tth2xf2rPu2XL5cdvV/6+2Zup6r+3/6Xm9/rRn3ZJ9oOW6/rCnpsfLPnVBua7N9rrI9gO2n7T9hO1b+2zTeR+rWFfnfaxiXe31sYho/SLpHEnPSLpE0o9JelTSzy7Y5gZJf9tn3wskzZbX55e3z++qrgXb/76kO3run26xza6RdLmkxxdZv0PSfZIs6RckPdx2e1Ws66qzf0/S+8/WVd5/VtLmEbXXeyXdW7cPNF3Xgm0/JOn+jtprq6TLy9vnSfp6n2Oy8z5Wsa7O+1jFulrrY12NqK+U9HREzEbE/0q6S9L1Fff9FUlHIuKliPiupCOSto+orl+XdGdDf3tJEfEVSS8tscn1kj4XhWlJb7e9Ve2217J1RcRD5d+VpGlJ25r623XqWkKdvtl0XV32r7mIeKS8/YqkpyRduGCzzvtYlbpG0ccqttdiavexroL6Qkn/3XP/W+r/JH+t/EjzRdsXDbhvm3XJ9sWS3iHp/p7FY7ZnbE/b/tWGaqpqsdrbbK9B3ahiRHZWSPqy7WO2946gnl+0/ajt+2y/q1yWor1sj6sIuy/1LO6kvWxPSrpM0sMLVo20jy1RV6/O+9gydbXSx9L8V1yS/kXSnRHxmu2bJH1W0nUjrqnXLklfjIjXe5ZdHBHP2b5E0v22T0TEMyOqLxXb71NxEF3ds/jqsr1+UtIR218rR5xdeETF63Xa9g5J90j6mY7+dhUfkvTvEdE7+m69vWy/TcWbw8ci4uUmH7uOKnWNoo8tU1drfayrEfVzki7qub+tXPYjEfGdiHitvHu7pCuq7ttmXT12acHH0oh4rryelfSginfZrixWe5vtVYntn1fxGl4fEd85u7ynvU5JulvFR8JORMTLEXG6vP2vkjbY3qwE7VVaqn+10l62N6gInc9HxOE+m4ykj1WoayR9bLm6Wu1jTU+6LzIRv17FFw7v0BuT6e9asM3Wnts7JU3HG19cnFTxpcX55e0Luqqr3O6dKr6kcM+y8yX9eHl7s6RvqMEvocrHndTiX459QG/+ouerbbdXxbp+WtLTkq5asPxcSef13H5I0vYO69py9vVTcfD+V9l2lfpAW3WV639CxTz2uV21V/ncPyfpU0ts03kfq1hX532sYl2t9bHGOmOFJ7pDxTelz0j6RLlsv6QPl7f/QtIT5ZN4QNI7e/b97fKFeVrSb3VZV3n/zyT95YL9rpJ0oqz3hKQbG67rTklzkn6oYk7rRkn7JO3r6TgHyrpPSJrqqL2Wq+t2Sd+VdLy8zJTLLynb6tHydf5Ex3X9Xk//mu49yPv1ga7qKre5QdJdC/Zru72uVjGf+1jPa7Vj1H2sYl2d97GKdbXWx/gJOQAkxy8TASA5ghoAkiOoASA5ghoAkiOoASA5ghoAkiOoASC5/wcTTGKQrpwqUQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig1 = plt.plot(t,y,'*b')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2fbc076c",
+   "metadata": {},
+   "source": [
+    "We will fit it with a model \n",
+    "\n",
+    "$$\n",
+    "\\varphi(t;x)\\ =x_1\\sin(x_2t)\n",
+    "$$\n",
+    "\n",
+    "using a variety of loss functions provided by NAG’s data-fitting solver **handle_solve_nldf** (`e04gn`), which constructs the appropriate objective function for us."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "693292f1",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# create a handle for the model\n",
+    "nvar = 2\n",
+    "handle = opt.handle_init(nvar=nvar)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "b7e8db17",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# register residuals structure\n",
+    "nres = 21\n",
+    "opt.handle_set_nlnls(handle, nres)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "685b0186",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# define the residual callback function and its gradient\n",
+    "def lsqfun(x, nres, inform, data):\n",
+    "    rx = np.zeros(nres,dtype=float)\n",
+    "    t = data[\"t\"]\n",
+    "    y = data[\"y\"]\n",
+    "    for i in range(nres):\n",
+    "        rx[i] = (y[i] - x[0]*np.sin(x[1]*t[i]))\n",
+    "        \n",
+    "    return rx, inform\n",
+    "\n",
+    "def lsqgrd(x, nres, rdx, inform, data):\n",
+    "    t = data[\"t\"]\n",
+    "    nvar = len(x)\n",
+    "    for i in range(nres):\n",
+    "        rdx[i*nvar] = (-np.sin(x[1]*t[i]))\n",
+    "        rdx[i*nvar + 1] = (-t[i]*x[0]*np.cos(x[1]*t[i]))\n",
+    "\n",
+    "    return inform"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "296aeb8e",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# create the data structure to be passed to the solver\n",
+    "data = {}\n",
+    "data[\"t\"] = t\n",
+    "data[\"y\"] = y"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ab256fc3",
+   "metadata": {},
+   "source": [
+    "### Start with $l_2$-norm loss function - Example 1\n",
+    "Starting with one of the most common loss functions, the $l_2$-norm, we form the problem\n",
+    "\n",
+    "$$\n",
+    "\\underset{x \\in \\mathbb{R}^{2}}{\\text{minimize}}~f(x) =\\sum_{i=1}^{21} r_i(x)^2\n",
+    "$$\n",
+    "\n",
+    "which is just least squares regression. $l_2$-norm loss has low robustness against outliers, so we should expect that the solution will be affected heavily by this one outlier. Let’s solve from a starting point at\n",
+    "\n",
+    "$$\n",
+    "x\\ =\\ (2.1,1.4)\n",
+    "$$\n",
+    "\n",
+    "to see what this outlier does to the minimum."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "dca06b31",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# set loss function to l2-norm and printing options\n",
+    "for option in [\n",
+    "    'NLDF Loss Function Type = L2',\n",
+    "    'Print Level = 1',\n",
+    "    'Print Options = No',\n",
+    "    'Print solution = Yes'\n",
+    "]:\n",
+    "    opt.handle_opt_set (handle, option)\n",
+    "\n",
+    "# use an explicit I/O manager for abbreviated iteration output:\n",
+    "iom = utils.FileObjManager(locus_in_output=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "1dd02a32",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GN, Nonlinear Data-Fitting\n",
+      " Status: converged, an optimal solution found\n",
+      " Final objective value  1.470963E+01\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1       -inf       1.30111E+00         inf\n",
+      "     2       -inf       1.06956E+00         inf\n"
+     ]
+    }
+   ],
+   "source": [
+    "# set initial guess and solve\n",
+    "x = [2.1, 1.4]\n",
+    "soln1 = opt.handle_solve_nldf(\n",
+    "    handle, lsqfun, lsqgrd, x, nres, data=data, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "fbd3f796",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# calculate fitted data using the optimal parameters\n",
+    "y_l2_fitted = soln1.x[0]*np.sin(soln1.x[1]*t)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "fbef37c2",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfaElEQVR4nO3deZScdZ3v8fe39/SWXtOdvQmQhBAWIRgULkQQZBHR8YwyMF7x6iB6naN3Rr3OOIuiM86ZRWc8omfickfUQZ0REUSUKJsBEwyYGEgCZCUk6U53ujtJd6f37/3jebpTaXqp6u6q/nXn8zqnTlU967eeeupTv/o9T1WZuyMiIuHKmuoCRERkdApqEZHAKahFRAKnoBYRCZyCWkQkcApqEZHAKainOTNrM7MlaVz+Z8zsuxNcxm1m9sgo49eY2asTWYekxsweNrP3TnUdkhwF9TRhZnvN7EQczAOXee5e7O6742n+w8w+P8x8b56aqiPu/j13vzahJjezs8a7PDN73Mw+MMzwpWb2EzNrNLNmM/uFmS0bZTmv2V6ZYGa3m1nfkOfyK2lc32vebN39enf/drrWKZNLQT293BQH88Dl4FQXFJgy4AFgGVADPAP8ZCoLGsVvhjyXH5nqgiRcCuppbqB1amZ3ALcBn4xbaA+a2XeARcCD8bBPxvNcamZPm1mrmW0xszUJyzvDzJ4ws+Nmtg6oGmXdT5jZO+Pbl8W13Bjfv9rMNse3bzez9fHtJ+PZt8Q1vTtheX9uZofN7JCZvS/VbeHuz7j7N9292d17gC8By8ysMtVlmdmfmNnOuGX+gJnNi4ebmX0prvOYmW01s5XxuBvMbFu87Q6Y2cdTXOfgdkoYNvjpI/4EcLeZPRSvY6OZnZkw7blmti6uucHM/tLMrgP+Enh3vL23xNMOfioxsywz+ysz2xc/rnvMbHY8ri6u4b1m9oqZNZnZp1PdnjIxCuoZwt3XAt8D/jFuod3k7u8BXuFkS/wfzWw+8BDweaAC+DjwIzOrjhf1n8CzRAH9OWC0fswngDXx7SuB3cAVCfefGKbOgfEXxDX9IL5fC8wG5gPvB+42s/JUtsEwrgDq3f1IKjOZ2VXAF4B3AXOBfcD349HXxstdGtf7LmBg+d8EPujuJcBK4NEJ1j+cW4DPAuXATuDv4ppLgF8CPwfmAWcBv3L3nwN/D/wg3t4XDLPM2+PLm4AlQDEwtCvmcqJPKlcDf2Nm50zqo5JRKainl/vjVnCrmd0/zmX8MfAzd/+Zu/e7+zpgE3CDmS0CLgH+2t273P1J4MFRlvUEUSBDFF5fSLg/bFCPoge4y9173P1nQBtRMIyLmS0A7gb+bByz3wZ8y92fc/cu4C+AN5hZXVxnCbAcMHff7u6HEh7DCjMrdfcWd39ulHVcmvBctprZpUnW9uP4k0Mv0RvzhfHwtxK9Kf2Lu3e6+3F335jC4/2iu+9297b48d5iZjkJ03zW3U+4+xZgCzBc4EuaKKinl7e7e1l8efs4l7EY+MPEkCBqLc0laom1uHt7wvT7RlnWb4ClZlZDFBj3AAvNrAp4PfDkKPMOdSQOnwEdRC27lMWfDh4Bvuru945jEfNIeNxxeB0B5rv7o0StzbuBw2a21sxK40nfCdwA7Iu7hd4wyjo2JDyXZe6+Icna6hNuJ26jhcCuJJcx1CmPN76dQ9TPP9Z6JQMU1DPLcD+FOHTYfuA7Q0KiyN3/ATgElJtZUcL0i0ZcmXsHUTfJR4Hn3b0beJqoFbvL3Zsm8mDGI+4ueQR4wN3/bpyLOUj0hjawzCKgEjgA4O5fdveLgRVEXSCfiIf/1t1vBuYA9wM/THG97UBhwnprU5h3P1G3xXDG+onMUx4v0XPeCzSksH5JIwX1zNLAa1+sQ4d9F7jJzN5iZtlmVmDRecwL3H0fUTfIZ80sz8wuB24aY51PAB/hZDfH40PuJ1tnqnLi2gcuuXHL9hfAU+7+qSSXkz1kOXnAvcD7zOxCM8sn6uPd6O57zewSM1ttZrlEwdoJ9Mfb6zYzmx0fyDwG9Kf4mLYA58brLQA+k8K8PwXmmtnHzCzfzErMbHU8rgGoM7ORXu/3Av/HogPJxZzs0+4dYXrJMAX1zPJNoj7SxD7sLwB/FQ/7uLvvB24mOhOgkagl9glO7gu3AquBZuBvibozRvMEUZ/tkyPcH85ngG/HNb0r+Yd3iq8BJxIu/w94B1Ef+/vs1HOUR/xUAHxqyHIedfdfAn8N/IjoU8aZRAfxAEqBrwMtRF0ER4B/ise9B9hrZseAO4n6fpPm7i8BdxEdFHwZWD/6HKfMexy4huiNtT6e/03x6P+Kr4+Y2XD95t8CvkP0nO0hevP501Rql/Qy/XGAiEjY1KIWEQmcglpEJHAKahGRwCmoRUQClzP2JKmrqqryurq6dCxaRGRGevbZZ5vcvXq4cWkJ6rq6OjZt2pSORYuIzEhmNuK3gNX1ISISOAW1iEjgFNQiIoFTUIuIBE5BLSISuKSC2qI/SN1qZpvNTKdzyLR06BBceSXU1489rUhIUmlRv8ndL3T3VWmrRiSNPvc5WL8e7rprqisRSY26PmTGmzULzOBrX4P+/ujaLBouMh0kG9QOPGJmz1r0b9evYWZ3mNkmM9vU2Ng4eRWKTNDu3XDrrVAY/3dKYSHcdhvs2TO1dYkkK9mgvtzdLwKuB/63mV0xdAJ3X+vuq9x9VXX1sN+CFJkSc+dCaSl0dkJBQXRdWgq1qfzRlcgUSiqo3X3gv+IOAz8m+uNSkWmjoQHuvBM2bIiudUBRppMxf+sj/mPPLHc/Ht++lujvgkSmjfvuO3n77runrg6R8UjmR5lqgB+b2cD0/+nuP09rVSIiMmjMoHb33cAFGahFRESGodPzREQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQlc0kFtZtlm9jsz+2k6CxIRkVOl0qL+KLA9XYWIiMjwkgpqM1sA3Ah8I73liIjIUMm2qP8V+CTQn75SRERkOGMGtZm9FTjs7s+OMd0dZrbJzDY1NjZOWoEiIqe7ZFrUlwFvM7O9wPeBq8zsu0Mncve17r7K3VdVV1dPcpkiIqevMYPa3f/C3Re4ex1wC/Cou/9x2isTERFA51GLiAQvJ5WJ3f1x4PG0VCIiIsNSi1pEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCN2ZQm1mBmT1jZlvM7AUz+2wmChMRkUhOEtN0AVe5e5uZ5QLrzexhd9+Q5tpERIQkgtrdHWiL7+bGF09nUSIiclJSfdRmlm1mm4HDwDp33zjMNHeY2SYz29TY2DjJZYqInL6SCmp373P3C4EFwOvNbOUw06x191Xuvqq6unqSyxQROX2ldNaHu7cCjwHXpaUaERF5jWTO+qg2s7L49izgGmBHmusSEZFYMmd9zAW+bWbZRMH+Q3f/aXrLEhGRAcmc9fF74HUZqEVERIahbyaKiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4MYMajNbaGaPmdk2M3vBzD6aicJERCSSk8Q0vcCfu/tzZlYCPGtm69x9W5prExERkmhRu/shd38uvn0c2A7MT3dhIiISSamP2szqgNcBG4cZd4eZbTKzTY2NjZNUnoiIJB3UZlYM/Aj4mLsfGzre3de6+yp3X1VdXT2ZNYqInNaSCmozyyUK6e+5+33pLUlERBIlc9aHAd8Etrv7F9NfkoiIJEqmRX0Z8B7gKjPbHF9uSHNdIiISG/P0PHdfD1gGahERkWHom4kiIoFTUIuIBE5BLSISOAW1iEjgFNQiIoFTUIuIBE5BLSISOAW1iEjgFNQiIoFTUIuIBE5BLSISOAW1iEjgFNQiIoFTUIuIBE5BLSISOAW1iEjgFNQiIoFTUIuIBE5BLSISOAW1iEjgFNQiIoFTUIuIBE5BLSISOAW1iEjgcqa6ADk9uTsnevpo6+qlvauP9q7e+HbvsMPau3tp6+qjo6uXnn7H3el3p78f+t1xj66jC/F4Trnf1+9kZxkFudnk52RRkJtNQW58nXPydv7A8JzswWnyc7Ipys+mvDCPiqI8yovyKMrLxsymelPKaUBBLZOmp6+fI23dNB7voqmti8bjXTQOXMe3m+Lr9q5e+j255RbmZVOYl0NxfjZF+TnkZmeRZZBlRpYZZpCdZeRmDdy3hPGccr+33+ns6aOrp5+Wjm46e/ro7Omnqze67uzpo6u3P6m68rKzKC/KpbwwLyHAc6kojIK8PL6uKMyjojiPOSX55GbrQ6ykTkEtSens6ePVlhPsb+7gleYOXm3pSAjfbhrbumhu7x523pKCHKpL8qkuzueceaVcUZxPSUEORfnRpTg/m6K8HIrzE4flUJQfBXR2VmZbrf39Tndf/2CId/b00dkbtfBb2nto7uimpb2b5o5uWhPub68/RmtHDy0d3fgwb0JZBrWlBcwrm8W8slnML4+vywqYX1bIvLICSgpyM/pYZXpQUAsQdQ00t3ezr7kjCuMjHeyLQ3l/cwf1xzpPCZ/8nKwofEvyWVxZyKq68sH71cX5VMXX1SX5FORmT90DG4esLKMgK3vcdff1O8dORAHe2tFNc3sPTW1dHGo9wYHWTg60drB5fysPP3+Inr5TE720ICcO75NBPq9sFkuqilhSXURhnl6ypyM966eZtq5eXqw/zksNx9nd2Ma+IyfDuL2775Rpa0rzWVRRyBvOrGRxRRGLKmexqKKQhRWFVBfnq392BNlZFnV9FOWNOl1fv9PU1sWrLSc42BpdDsTXr7ac4Ld7mznW2XvKPPPLZnHWnGLOrC7mrDknLxVjrEumNwX1DNXV28fuxnZerD/Oiw3Ho+v64xxoPTE4TX5OFosqCllcGYXxoorCwfsLygunXUt4usnOMmpKC6gpLeDixeXDTnO8s4dXW06wp6mdnYfbBi8b9xyhs+dkX3p5Ye5gaJ9ZXcyZc4o5q7qY+WWzyMpw15FMPgX1NNfX7+xv7jgZxvH1nqZ2+uKjdbnZxpnVxVy8uJxbVy9iWU0Jy2pL9CKeBkoKcjlnbi7nzC09ZXh/v3Og9QQ7G9vYdbiNXY1RgP/ihQaa2/cPTleQm8WymhJWzp/NefNns3L+bJbWlJCXo4Oa04n5cEc9JmjVqlW+adOmSV/u6a6/39l7pJ0tr7ayZf9RNu9vZUf9sVNaVosqCllWW8KymhKW1pawvLaEusoivTBPI83t3eyMw/vlhja2HTrKCweOcbwr6kbJzTaW1ZZw3vzZnDsvCvBltSX6BDXFzOxZd1817DgFdbgOH+9ky/6jbNnfGodz62CfZWFe9uALbXltFMpnzymmKF8fkuS1+vudV5o7eP7gUbYeiIJ764GjHD3RA0BOlnF2TQkr55Vy3oJov1oxt5RZeQrvTFFQTwNtXb1sffXoYCBv2d/KwaOdQNSXuby2hAsWlnHhgjIuWFjGWXOKM37amsws7s6rLSd4/kAU3s8fPMbzB44OnmaZZbC0poRL6ipYVVfOqroK5pfNmuKqZy4FdYD2N3ewcU8zz+w5wub9rbx8uG3w9LfFlYVcEAfyhQtns2LubLVsJCPcnUNHO6PgPhB1rz23r2XwjKB5swtYVVfBJXXlXLy4gmW1JWowTJLRgnrMz8lm9i3grcBhd1852cWdDtydfUc62LjnCBt3N7NxT/Pg2RdlhblctKicG8+bxwULZ3P+gjKdahWgQ4fgllvgBz+A2trMzZtpZjZ47vZbzo2K7e3rZ0f9cX67t5lN+1rYsPsID2w5CEBJfg4XLS7nkrjFfcGCMjUq0mDMFrWZXQG0AfckG9Sne4va3dnV2D4YzM/saab+WNSNUVmUx+olFaw+o5LVSypYOqdEZ16kYKpC78Mfhn//d/jgB+GrX83cvBBe0A90mQwE96a9zbzU0AZEfd0r58/mkrpyLqmrYPWSSmbP0rctkzHhrg8zqwN+qqAenrvz8uE2Nu4+woY9zWzc3UxTWxcAc0ryWb2kktVnVHDpkgrOrC4+7b8oMpHgmWjopWrWLOjsfO3wggI4ceK1wydr3kQTecyZCvnWjm6ee6WF3+6NgnvL/qN09/WTZXD+gjL+x9lVXHZWFRctKtcZSCPISFCb2R3AHQCLFi26eN++feOrdpo4fKyTJ15q5MmXm3hqZ9PgAZh5swsGg3n1kkrqKgtnXDBP9MU/nuCZrNBL1aFD8PGPw/33Q0cHFBbCO94B//zPYz/2icwLk/OYM/3GNqCrt4/fvdLK0zub+PXOJrbsb6XfYVZuNquXVHD5WVFwL68tmXGvj/GaUB91stx9LbAWohb1ZC03FF29fWza28KTLzXyxEuN7Kg/DkB1ST5rllZz6ZmVvGFJJQvKZ834He9zn4P16+Guu1J78Q8Nnq99LbokEzy7d48ceuk0dy6UlkZ1FxRE16WlyQXtROaFiT3miWzrARN5Q87PyebSJZVcuqSSP7t2Gcc6e9iw6wjrdzaxfmcTn39oOwBVxXlcFof25WdVMU9nlQxLJ92OwN3Z09TOk3Gr+Te7jnCip4/cbGPV4gr+73XLuXJpNefMnZ4tgvG8CCf64p9I8Ew09CaioQHuvBPuuAPWro22XSbmnchjnow3tvG+IQ+ntCCXa8+t5dr4AOXB1hOs3xl9Gn1qZxM/2RwdnFxSXTTY2r7srCqK9b0AQEF9iuOdPTy960gczo3sb47Sp66ykD9ctYArl1Zz6ZLKGfGlkvG8CCf64p9o2E4k9CbivvtO3r777szNC+N/zBPZ1plojc8rm8W7Vi3kXasW4u7sqD/OU3Fr+782vco9v9lHXnYWq5dUcPXyOVx9Tg0LKwqTW/kMlMxZH/cCa4AqoAH4W3f/5mjzTKeDibsa21i3rYFHdxzmuX0t9PY7hXnZvPHMKq5cWsUVS6tZXFk01WUOazJaxQOSfRF+6ENRYOTlQXd36n2ff/AHUYgkBk9imMnkGe+2nmjfOkysb7y7t59N+5p5bMdhfrXjMLsb2wE4e04xV59Tw9XnzOF1C8vImWF/wqAvvCTo63d+90oL67Y1sG5bA7ubop3gnLmlrFlWzRVnV3Px4ulxZHo8L4aJvggVtKeH8b4hT9ZB38RGyImcdn61PWpMPbOnmd5+p6wwlzVLq7nqnBquPLua2YXT/xTA0z6oT3T3sX5nE+u21fOr7Yc50t5NTpZx6ZJKrllRw5tX1Eyrr8ZOdatYZr6pbI3DyI2QY509/PqlJn61o4HHX2ykub2b7Czjkrpyrl5ew1XnzGFJVdG0PG50WgZ1U1sXj24/zCPbGli/s5HOnn5K8nNYs3wO16yoYc2yakoD+Nuj8XRfqFUsIZtIQyCVRkhfv7N5f+tga3vgTKy6ykKuWVHD9efN5cIFZdPmC2UZOT0vBLsa2/hl3KXx7CstuEfnNb971ULevKKG1WdUBtelMZ6DehM9KDfRA1wio5nIQd9UDlhnZxkXLy7n4sXlfPK65bza0sFjOw7z0ObDfP2JvXz913uoLS3gupW1XLeylkvqKqbt75JM+xb1Sw3Heej3h3ho6yF2Ho6+xrpibinXrKjhmhU1nDuvNK0fg8Z7rulEuy/UKpaZaqJdcx/+MKz9jx5u/JMG5lxcz5MvNdLV209VcR7XrKjl+pW1vOHMyuD+EX7GdX0MDWczeH1dBdevrOXNK2pYUJ6503jGe3R7svryRGaa8TZCRmr8zCrp5YfrD/Pz5+t5bMdh2rv7mD0rlzefU8P1K2u5/OyqIP40YUYE9UjhfOP5c7nu3FrmlBZM6vrGMhlHt3VQT2TyJNP46ezp49cvN/Hw1kOs297A8c5eivKyuSoO7eWzq3nfe3Km5Aewpm0f9Ujh/D9vPndKwjnRZHzza6q+wCEyEyVz7KYgN3uwW7S7t5+ndzXx8+freWRbAw9uOUiWZ9FWMYcP/f087v2XOUG0tCHAoJ6KcB5PP/NkfKVZB/VEJlcqjZ+8nCzWLJvDmmVz+Lf39ONVLRQuO0TRsnp+V1jP0k/m0LWrhh/80zwuO6tqSvu0g+n66Oju5eavPMXLU9CtMd5+Zh3QE5kZTuk2OdHP7KXNLLvmAO3l9bR191JRlMcN59Vy0/nzuKSuIi2n/E2bPuq/un8rS2tKMtatMVU/nSki4RnumNGXvtzHEy828sCWg/xyewOdPf3MnV3AW8+fy9sumM/K+SfPKpvoz/9Om6CeiKn44oiIzBxjfUJu7+rll9sbeGDzQZ54qZHefueMqiJuumAeb7tgHl/8TPGEfvv7tAjq8XZf6MwLEUlVa0c3Dz9fzwObD/L0riOYQXdDKe3b5nFs0xnQn5XyJ/PRgjqsM77HYdYsMIt+hrG/P7o2i4YnY+Dgw4YN0XV9fXrrFZHpr6wwjz96/SLuveNSHvzA1ZzRsgLzLIrP309hgXHbbbBnz+StL7izPlI10dPkdOaFiEzE+WcXsDzrDJ78zhnkF/XS1WmT/qcWQbWoDx2CK69MrVU7lf/8ISICJz+Z/+bXOWn5ZB5Ui3q8f/2jL46IyFRK9yfzIA4m6jQ5ETndBX8wcfduuPXWqH8ZouvJ7owXEZmugghq9TOLiIwsiKAGnSYnIjKSYA4m6jQ5EZHhBdOiFhGR4SmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCl5avkJtZI7BvnLNXAU2TWM5kUV2pUV2pUV2pmYl1LXb36uFGpCWoJ8LMNo30ffeppLpSo7pSo7pSc7rVpa4PEZHAKahFRAIXYlCvneoCRqC6UqO6UqO6UnNa1RVcH7WIiJwqxBa1iIgkUFCLiAQuY0FtZteZ2YtmttPMPjXM+NvNrNHMNseXDySMe6+ZvRxf3pvhur6UUNNLZtaaMK4vYdwDk1zXt8zssJk9P8J4M7Mvx3X/3swuShiXzu01Vl23xfVsNbOnzeyChHF74+GbzSz5/2qbnLrWmNnRhOfrbxLGjboPpLmuTyTU9Hy8T1XE49K5vRaa2WNmts3MXjCzjw4zTcb3sSTryvg+lmRd6dvH3D3tFyAb2AUsAfKALcCKIdPcDnxlmHkrgN3xdXl8uzxTdQ2Z/k+BbyXcb0vjNrsCuAh4foTxNwAPAwZcCmxM9/ZKsq43DqwPuH6grvj+XqBqirbXGuCnE90HJruuIdPeBDyaoe01F7govl0CvDTMazLj+1iSdWV8H0uyrrTtY5lqUb8e2Onuu929G/g+cHOS874FWOfuze7eAqwDrpuiuv4IuHeS1j0qd38SaB5lkpuBezyyASgzs7mkd3uNWZe7Px2vF2ADsGCy1j2RukYxkX1zsuvK5P51yN2fi28fB7YD84dMlvF9LJm6pmIfS3J7jWTC+1imgno+sD/h/qsM/yDfGX+k+W8zW5jivOmsCzNbDJwBPJowuMDMNpnZBjN7+yTVlKyRak/n9krV+4laZAMceMTMnjWzO6agnjeY2RYze9jMzo2HBbG9zKyQKOx+lDA4I9vLzOqA1wEbh4ya0n1slLoSZXwfG6OutOxjwfwVF/AgcK+7d5nZB4FvA1dNcU2JbgH+2937EoYtdvcDZrYEeNTMtrr7rimqLyhm9iaiF9HlCYMvj7fXHGCdme2IW5yZ8BzR89VmZjcA9wNnZ2jdybgJeMrdE1vfad9eZlZM9ObwMXc/NpnLnohk6pqKfWyMutK2j2WqRX0AWJhwf0E8bJC7H3H3rvjuN4CLk503nXUluIUhH0vd/UB8vRt4nOhdNlNGqj2d2yspZnY+0XN4s7sfGRiesL0OAz8m+kiYEe5+zN3b4ts/A3LNrIoAtldstP0rLdvLzHKJQud77n7fMJNMyT6WRF1Tso+NVVda97HJ7nQfoSM+h+iAwxmc7Ew/d8g0cxNuvwPY4CcPXOwhOmhRHt+uyFRd8XTLiQ5SWMKwciA/vl0FvMwkHoSKl1vHyAfHbuTUAz3PpHt7JVnXImAn8MYhw4uAkoTbTwPXZbCu2oHnj+jF+0q87ZLaB9JVVzx+NlE/dlGmtlf82O8B/nWUaTK+jyVZV8b3sSTrSts+Nmk7YxIP9AaiI6W7gE/Hw+4C3hbf/gLwQvwgHgOWJ8z7v+InZifwvkzWFd//DPAPQ+Z7I7A1rncr8P5Jrute4BDQQ9Sn9X7gTuDOhB3n7rjurcCqDG2vser6BtACbI4vm+LhS+JttSV+nj+d4bo+krB/bUh8kQ+3D2Sqrnia24HvD5kv3dvrcqL+3N8nPFc3TPU+lmRdGd/HkqwrbfuYvkIuIhI4fTNRRCRwCmoRkcApqEVEAqegFhEJnIJaRCRwCmoRkcApqEVEAvf/AblYtEDfnuEYAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# plot the fitted curve\n",
+    "plt.title(\"Fitted with L2 Loss Function\")\n",
+    "plt.plot(t,y,'*b')\n",
+    "plt.plot(t,y_l2_fitted)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "32da7f42",
+   "metadata": {},
+   "source": [
+    "The single outlier was able to disrupt the fit, since $l_2$-norm loss makes outliers contribute heavily to the objective function and search direction."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6241b78c",
+   "metadata": {},
+   "source": [
+    "### Try $l_1$-norm loss function - Example 2\n",
+    "Using $l_1$-norm loss gives us the problem\n",
+    "\n",
+    "$$\n",
+    "\\underset{x \\in \\mathbb{R}^{2}}{\\text{minimize}}~f(x) =\\sum_{i=1}^{21} |r_i(x)|,\n",
+    "$$\n",
+    "\n",
+    "which is more robust against outliers. This means if some large portion of the data is well-fitted by some solution $x^\\ast$, there is likely to be a local minimum very close to $x^\\ast$ which is relatively undisturbed by the remaining data that is outlying to the solution $x^\\ast$. Here’s the solution, again starting at $x=(2.1,1.4)$, using $l_1$ loss."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "07e8bf50",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GN, Nonlinear Data-Fitting\n",
+      " Status: converged, an optimal solution found\n",
+      " Final objective value  3.989980E+00\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1       -inf       1.00000E+00         inf\n",
+      "     2       -inf       1.00000E+00         inf\n"
+     ]
+    }
+   ],
+   "source": [
+    "# change loss function to l1-norm and solve\n",
+    "opt.handle_opt_set(handle, 'NLDF Loss Function Type = L1')\n",
+    "soln2 = opt.handle_solve_nldf(\n",
+    "    handle, lsqfun, lsqgrd, x, nres, data=data, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "id": "93472886",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# calculate fitted data using the optimal parameters\n",
+    "y_l1_fitted = soln2.x[0]*np.sin(soln2.x[1]*t)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "id": "a1af726a",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAduElEQVR4nO3deZScdZ3v8fe3unrfO90knR1QLpssIYAoVxBHBZRR9I4yoAOIEzYRddTjjCuo13HGqx7PMB6jMOMKqCxHGfUYReGik3CTSICAkpAFknSSTtL7Wsv3/vE8SSqdXqqTrupfks/rnDr11LN+66mnPvWrXz1VZe6OiIiEKzHdBYiIyPgU1CIigVNQi4gETkEtIhI4BbWISOAU1CIigVNQH+HMrNfMTijg+j9nZj84zHVcY2a/Hmf6xWa25XC2IZNjZr80s2unuw7Jj4L6CGFmm8xsIA7mvZfZ7l7j7hvief7TzL4wynJ/NT1VR9z9h+7+ppya3MxecajrM7Pfm9n7x5i21Mz+YmZZM7tugvUctL+KwcyuM7PMiMfy3wq4vYNebN39Mnf/bqG2KVMrOd0FyKRc4e6/me4iArcGuB/48nQXMoH/dvcLp7sIOTKoRX2E29s6NbMlwDXAx+MW2s/N7PvAfODn8biPx8u82sz+aGadZrbGzC7OWd/xZvaYmfWY2TKgeZxtP2Zm74yHXxvX8pb49hvM7Kl4+DozeyIefjxefE1c07tz1vcPZrbTzNrM7PpD2R/ufpe7/xYYPJTlc2r5ezNbb2Z7zOxnZjY7Hm9m9rW4zm4ze8bMTo+nXW5mz8X7bquZfXSS29y3n3LG7Xv3Eb8DuMvM/ivexgozOzFn3tPMbFlc8w4z+yczuxT4J+Dd8f5eE8+7712JmSXM7FNmtjm+X98zs/p42sK4hmvN7CUz22Vmnzz0PSuHQkF9lHD3pcAPgX+Ju0OucPf3Ai8RtcRr3P1fzGwO8F/AF4Am4KPAA2bWEq/qR8AqooD+PDBeP+ZjwMXx8EXABuB1ObcfG6XOvdPPjGu6P749C6gH5gA3AHeZWeNk9sFUMbNLgC8B7wJagc3AffHkNxHdx5OI6n0XsDuedjdwo7vXAqcDjxagvKuAO4BGYD3wxbjmWuA3wK+A2cArgN+6+6+A/w3cH+/vM0dZ53Xx5fXACUANMLIr5kLgfwBvAD5jZqdM6b2ScSmojywPx63gTjN7+BDX8R7gF+7+C3fPuvsyYCVwuZnNB84FPu3uQ+7+OPDzcdb1GFEgQxReX8q5PWpQjyMF3OnuKXf/BdBLFAzT4RrgHndf7e5DwD8CF5jZwrjOWuBkwNz9eXdvi5dLAaeaWZ27d7j76nG28eqcx7LTzF6dZ20PufuT7p4memE+Kx7/VmC7u/8fdx909x53XzGJ+/tVd9/g7r3x/b3KzHK7Ru9w9wF3X0PUvTRa4EuBKKiPLG9394b48vZDXMcC4G9yQ4KotdRK1BLrcPe+nPk3j7Ou/wZOMrOZRIHxPWCemTUD5wGPj7PsSLvj8Nmrn6hlNx1mk3O/4/DaDcxx90eJWpt3ATvjDy/r4lnfCVwObI67hS4YZxvLcx7LBndfnmdt23OGc/fRPODFPNcx0gH3Nx5OAjPz2K4UgYL66DLaTyGOHPcy8P0RIVHt7v8MtAGNZladM//8MTfm3k/UTXI78Ky7DwN/BD4CvOjuuw7nzkyjbUQvaADE+2MGsBXA3b/h7ucApxJ1gXwsHv//3P1twHHAw8CPJ7ndPqAqZ7uzJrHsy0TdFqOZ6CcyD7i/RI95Gtgxie1LASmojy47OPjJOnLcD4ArzOzNZlZiZhUWncc81903E3WD3GFmZWZ2IXDFBNt8DPgA+7s5fj/idr51TlYyrn3vpRQgrrsCMKA0njbecV4yYj1lwL3A9WZ2lpmVE/XxrnD3TWZ2rpmdH2+vj+hDy2y83WvMrN7dU0A3kJ3kfVoDnBZvtwL43CSWfQRoNbMPmVm5mdWa2fnxtB3AwnH2w73Ahy36ILmG/X3a6THmlyJTUB9d7ibqI83tw/4S8Kl43Efd/WXgbURnArQTtcQ+xv5j4WrgfGAP8Fmi7ozxPEbUZ/v4GLdH8zngu3FN78r/7h3gm8BAzuU/4vG/jm+/BlgaD79utBXEPjFiPY/Gp0B+GniA6F3GiUQf4gHUAd8GOoi6CHYD/xpPey+wycy6gZuI+n7z5u4vAHcSfSi4Dnhi/CUOWLYHeCPRC+v2ePnXx5N/El/vNrPR+s3vAb5P9JhtJHrxuW0ytUthmf44QEQkbGpRi4gETkEtIhI4BbWISOAU1CIigSvIjzI1Nzf7woULC7FqEZGj0qpVq3a5e8to0woS1AsXLmTlypWFWLWIyFHJzMb8FrC6PkREAqegFhEJnIJaRCRwCmoRkcApqEVEApdXUFv0B6nPmNlTZqbTOeSI1NYGF10E27dPPK9ISCbTon69u5/l7osLVo1IAX3+8/DEE3DnndNdicjkqOtDjnqVlWAG3/wmZLPRtVk0XuRIkG9QO/BrM1tl0b9dH8TMlpjZSjNb2d7ePnUVihymDRvg6quhKv7vlKoquOYa2LhxeusSyVe+QX2huy8CLgNuNbODfojd3Ze6+2J3X9zSMuq3IEWmRWsr1NXB4CBUVETXdXUwazJ/dCUyjfIKanff+19xO4GHiP64VOSIsWMH3HQTLF8eXesDRTmSTPhbH/EfeybcvScefhPR3wWJHDEefHD/8F13TV8dIocinx9lmgk8ZGZ75/+Ru/+qoFWJiMg+Ewa1u28AzixCLSIiMgqdniciEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4PIOajMrMbM/mdkjhSxIREQONJkW9e3A84UqRERERpdXUJvZXOAtwHcKW46IiIyUb4v668DHgWzhShERkdFMGNRm9lZgp7uvmmC+JWa20sxWtre3T1mBIiLHunxa1K8F/trMNgH3AZeY2Q9GzuTuS919sbsvbmlpmeIyRUSOXRMGtbv/o7vPdfeFwFXAo+7+noJXJiIigM6jFhEJXnIyM7v774HfF6QSEREZlVrUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iErgJg9rMKszsSTNbY2ZrzeyOYhQmIiKRZB7zDAGXuHuvmZUCT5jZL919eYFrExER8ghqd3egN75ZGl+8kEWJiMh+efVRm1mJmT0F7ASWufuKUeZZYmYrzWxle3v7FJcpInLsyiuo3T3j7mcBc4HzzOz0UeZZ6u6L3X1xS0vLFJcpInLsmtRZH+7eCfwOuLQg1YiIyEHyOeujxcwa4uFK4I3Anwtcl4iIxPI566MV+K6ZlRAF+4/d/ZHCliUiInvlc9bH08DZRahFRERGoW8miogETkEtIhI4BbWISOAU1CIigVNQi4gETkEtIhI4BbWISOAU1CIigVNQi4gETkEtIhI4BbWISOAU1CIigVNQi4gETkEtIhI4BbWISOAU1CIigVNQi4gETkEtIhI4BbWISOAU1CIigVNQi4gETkEtIhI4BbWISOAU1CIigVNQi4gETkEtIhI4BbWISOAU1CIigVNQi4gETkEtIhI4BbWISOAU1CIigVNQi4gETkEtIhI4BbWISOAmDGozm2dmvzOz58xsrZndXozCREQkksxjnjTwD+6+2sxqgVVmtszdnytwbSIiQh4tandvc/fV8XAP8Dwwp9CFiYhIZFJ91Ga2EDgbWDHKtCVmttLMVra3t09ReSIikndQm1kN8ADwIXfvHjnd3Ze6+2J3X9zS0jKVNYqIHNPyCmozKyUK6R+6+4OFLUlERHLlc9aHAXcDz7v7VwtfkoiI5MqnRf1a4L3AJWb2VHy5vMB1iYhIbMLT89z9CcCKUIuIiIxC30wUEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwCmoRUQCp6AWEQmcglpEJHAKahGRwE0Y1GZ2j5ntNLNni1GQSIja2uCii2D79uIuKwL5taj/E7i0wHWI5GW6Qu/zn4cnnoA77yzusqCgFzB3n3gms4XAI+5+ej4rXbx4sa9cufIwS5OjVVsbXHUV3H8/zJo1uWVvvsX59j0Zrr0hwx1fyDCYyjKYyjCUzjCUyjKY3j9u33U8biiVIZVxHMcd3J2sgxNfx+PcIeuOA9//vpPJAubgBlnDMwlKSPCh2xMkE0ZpSYKyZILSkmg4uhg3LUkwPJjAM/FluITscJIyS7JxXZLaiiTlyQRmNu59vuUW+Na34MYb4d//vXj7WorLzFa5++JRp01VUJvZEmAJwPz588/ZvHnzoVUrwTucJ7+7s+TWNN+9N8W7rklx64fTdA+m6BpI0T2QonswHV+n6B7YP7x2XQorS5MoTx9y3eXJKETNwIBEwqJrs2icHXg7YUYmAx0d0N9nZN1JlDgVVVkqqrKks046myWVmfg5NJaShFFdVkJNeZLq+BINl/DwT5KkBpL4cJLMQBnZgTIy/WUkM2WsXVVGU00Z1WUl4wb94YS8FFdRgjqXWtRHt5FPfneneyBNe+8Qu3qHaO+Jrnf1DrGrZzga1zvEn54fIlE5jCWz466/tiJJfWUpdRWl1FUmqasopdRLWf1kKeufSzLcX0LSSjj7jBL+7uoEM1tKqCgtoSKZoKK0hPLSBBXJeFxpNK6sJEEiMX7LdSw33wxLl0JZGQwPHxx67k4q46Qy2fiyf/hTn8nykwec0oosGUtz6RVp3nNdmr6hNL1Dmfg6uvTlXPcNZejqT7OrM02KNFYy+vO0rCRBY3UpTdXlNFWX0lhVxozqMu76WhlD3XG495aT6a0g3VNBRWkJAwP53W+1xotrvKBOFrsYCUO+T8JUJsuO7kG2dQ7y5isHyFYOkKwbYMaVgzzUN8TPbhmipGr08C1JGDOqy2iuKae5tpy3nlfD0yvK+cvT5Qx2R+H72vOSfPz2Uo6fW0pdZSk15UlKxgjUm5fDk49Hgdk7DCctgr+7eIp2yDh27ICbboIlS6LAbms7cLqZUZY0ypIHf+TT1wY3vDNn2S3wjkX5bzt6kXDKa9Kkk8P8r6uHef+tw+zuHaajf5g9fSn29A2xpy9FR/8wa7d1s6dvmJpXp6gZZX31FaVc+vUKZtVXMKtu//XM+Lq1voL6ylLM7IC+dbXGp5da1MeoqFXsvO/GNB/59ADbOqPL1s7BnOEBdnQPkh1xiGQHSkl3V8JgOXOby3nT68pYOKucltryKJRrymmuKaOxquygVuxErdPxvOMd0Np6YGA++OAU7ZBAHep9TmeyLLktxY8eGKa8YZBs+SAXXDLIuRcNsqN7kO3dg2zvit71jOTpBOmeCjI9FaS7K0l3VZHurCLRX8ULq6s4rrZ8wncnao1P3mF1fZjZvcDFQDOwA/isu9893jIK6uLI58ng7rT3DLFxVx+bd/dz6yf6oK6P0oZ+kg39B/X5lpYYrfWVzGmoZHZDJXMaKpgdD89uqOTLn63gnqXJQwpaODbDdrrks6+H01l29kTh3dY1yPauQV5sG2TZE4O0dQ5i1YOU1A2Q2w1elkwwr7GS+U1VzG+qYl58PX9GFfMaq6guT6pv/BAcdh/1ZCmoi2Pvk2HJjc4dXx5i065+Nu3uY9OuPjbt7mPjrn427+6jfzizb5mShFE6VEXXlmqGdleRGKxk8SmVfPSWCs44sZLmmvFbSwraY8MB73wyGd6zZJD3fbCfl/b08/Ke6Lh6ac8AL+/pp3fowBf7TF8Z6c4qUp1VpHfXkNpTg/XUsHtzFeXJkry2fyy2yBXUR4l0Jsum3f0sfkMP1PVS2txDaVMfyYY+EuX7wziZMOY1VbFwRhULm6tZOKOahc3VHD+jmtkNFdz2gcQhdz/IsSHfF2R3p6M/xUt7ohBfu6mfh5b1s6Wjn0R9H8m6wX3zliSM+U1VnNhSzYktNZx4XA0nttTwipYa6qtKD1jvsdgiV1AHbLSWQzqTZfOeftbt6GHdjl5e2NnLuh09bGjvYzgTf2jnkOmuYnhXNd5TzekLqrnt+ioWvbKaOQ2VJEvG/i6TWsVSSLmt8ZSneff7+/ibG3p5sT26rN/Zy6Zd/fuPZaC5ppwTW6r53c9qGNwRtcJTO2vJ9JUDRkUFeZ+tcqRSUAcqm3Wuv62fB37Tw2su6+Hk83t5YUcPG3b1MZzefxDPbazkpJm1vHJmDScdV8tJM2v5xherD6uvWKRQ8mkIpDNZtnQMsH7ngQG+bkcvPTldKdmBMhqtlssuqOOcE2s5pbWOVxxXQ0Xp2F0oR2q3iYK6gPI9KIbSGdbt6GXtti6e29bNtx/oJjmj+4Aui3RXJZk9NXzw2lpeObOWk2bW8IrjaqgqO/gsSrWK5Wjk7txw6zD3/aKXilndJJp6mHNaN0MVPQymosZLScI4obmak1vrOKW1llNm1XFKax0z68oxsyO220RBXUCjHRTdgyme29bNc9u6Wbutm7Xbuli/s5d0fJ5bdVkJJ86oo/2FOl54so7erXWU9tfw9rcm+cpXjqxWgMhUG60R8pOfOpt29/Hnth6eb+vmz9u7eb6th62d+/tDsgOlDO+sZbi9juEd9Qxvrye1u4aKcjsiuk0U1AVQWQmDg5CoGqJ8VidlM7spndlN+cxukg39++ZrrinntNl1nDa7jlNn13Ha7HoWNFWRSNhhnVMsItA1kOIv23v48/ZuVr3Yw29XddOT6MFKo3eqiWwJr5pbxznHN3DG3HpOn1PPCc3VY57ZNJ3dJgrqKdI3lOaZrV08vaWT5eu6+MPznQwl979UV6SqeO2p9Sw6YW8o13FcbcWY61P3hcjUuvlmWPptp/K4XmxGF+f8VRczTupi7baufV0nNeVJTptdxxlz63nV3AZeNWd/42k6u00U1BMY7VU0lcnyl+09rNnSyZqXO1nzchfrdvbs+5bevKZK0tsbeP4PDWR31dO/rY4l15eqRSwyjcZq/KQzWda39/LMlq64sdXFc23d+z60zw4lGWqLukuGtzcwtLWRTG9FUc82UVBP4OZbnLvv7+fyazpZ9MYu1mzp5NmtXQzFD2JjVSlnzmvgzLkNnDUvegs1o6ZcLWKRI1gqk+WFHT08s6WLFeu6WLaqi56S7n0/gFWeruDCUxq54KQGFi1o5LTZdXl/YedQKKhHGEpneHZrF2+6uoOSmR2Uz+mgpHoYgGwqQbq9npvf1cCZ8xo4a24D85oqJ/zNYBE5st18Myy9O0PV7G4SLZ2c+roOEi2d+z6wLCtJcPqcOs6e38ii+Y0sWtBAa33lvuUPt3/7mAjq8XbS7t4hVm7uYPXmDlZu7uCZLV37TravSFXRub6Jvs0NWEcDb/2ftXz1KwmdeSFyjBnrHfKO7kFWb+7gTy93snpzB09v7drXZdJaX8Gi+Y2cPb+B3/64kR9/q44b319ySF2gx0RQ5/7uxUc+28vKzR2sii8bd/UB+18RFy9s4pwFjZyzoJFPf6xcZ16ISN6G01mea+vmTy91sPqlTh7+vx2U1EWt7sxAKVu+8UYO5duUR3VQV1Zn8cZOyufuoXzeHspnd1JSmQKgqbpsXyAvXtDI6XPqD/pGk/qZReRwtLXBBz8+yG+e6iSdHCL7wgKuvJJJfyfiqPrjgMFUhjUvd7Ji4x5WbNzN/A937PvQL7W7muENszijtZEvfriRc0+unrBvOTeU77qrkJWLyNGotRWaayrofm7WvnfmdXVTex52UEE9Wj/zwHCG1S91sGLDbpZv3MNTL3cynM5iBifPquNvz5vPmmVNPPIfTSQz5QwPwytvhPNOmd77IiLHjon+BehwBdX1ccstsPSeNFf+fQfnvmU3Kzbu4ektnaQyTsLgtNn1nH98E+efMINzFzbSUFUGqPtCRI58wfdRV1ZGXRqzrl5O2awuLOF4xkjtrOeDV83g/OObOGdhI3UVpROvTETkCBR8H/WGDfDRj5bw2+4qujc14zubuOzcRr72r0mdJicix7wggrq1Nep8b7/v7H2d8Y2X6FfkREQAxv4bkCLb2xm/fHl0vX37dFckIhKGIFrUoNPkRETGEkyLWkRERqegFhEJnIJaRCRwCmoRkcApqEVEAqegFhEJXEG+Qm5m7cDmQ1y8Gdg1heVMFdU1OaprclTX5ByNdS1w95bRJhQkqA+Hma0c6/vu00l1TY7qmhzVNTnHWl3q+hARCZyCWkQkcCEG9dLpLmAMqmtyVNfkqK7JOabqCq6PWkREDhRii1pERHIoqEVEAle0oDazS83sL2a23sw+Mcr068ys3cyeii/vz5l2rZmtiy/XFrmur+XU9IKZdeZMy+RM+9kU13WPme00s2fHmG5m9o247qfNbFHOtELur4nquiau5xkz+6OZnZkzbVM8/ikzm/yfah5eXRebWVfO4/WZnGnjHgMFrutjOTU9Gx9TTfG0Qu6veWb2OzN7zszWmtnto8xT9GMsz7qKfozlWVfhjjF3L/gFKAFeBE4AyoA1wKkj5rkO+LdRlm0CNsTXjfFwY7HqGjH/bcA9Obd7C7jPXgcsAp4dY/rlwC8BA14NrCj0/sqzrtfs3R5w2d664tubgOZp2l8XA48c7jEw1XWNmPcK4NEi7a9WYFE8XAu8MMpzsujHWJ51Ff0Yy7Ough1jxWpRnwesd/cN7j4M3Ae8Lc9l3wwsc/c97t4BLAMunaa6/ha4d4q2PS53fxzYM84sbwO+55HlQIOZtVLY/TVhXe7+x3i7AMuBuVO17cOpaxyHc2xOdV3FPL7a3H11PNwDPA/MGTFb0Y+xfOqajmMsz/01lsM+xooV1HOAl3Nub2H0O/nO+C3NT81s3iSXLWRdmNkC4Hjg0ZzRFWa20syWm9nbp6imfI1VeyH312TdQNQi28uBX5vZKjNbMg31XGBma8zsl2Z2WjwuiP1lZlVEYfdAzuii7C8zWwicDawYMWlaj7Fx6spV9GNsgroKcowF81dcwM+Be919yMxuBL4LXDLNNeW6Cvipu2dyxi1w961mdgLwqJk94+4vTlN9QTGz1xM9iS7MGX1hvL+OA5aZ2Z/jFmcxrCZ6vHrN7HLgYeCVRdp2Pq4A/uDuua3vgu8vM6shenH4kLt3T+W6D0c+dU3HMTZBXQU7xorVot4KzMu5PTcet4+773b3ofjmd4Bz8l22kHXluIoRb0vdfWt8vQH4PdGrbLGMVXsh91dezOwMosfwbe6+e+/4nP21E3iI6C1hUbh7t7v3xsO/AErNrJkA9ldsvOOrIPvLzEqJQueH7v7gKLNMyzGWR13TcoxNVFdBj7Gp7nQfoyM+SfSBw/Hs70w/bcQ8rTnDVwLLff8HFxuJPrRojIebilVXPN/JRB9SWM64RqA8Hm4G1jGFH0LF613I2B+OvYUDP+h5stD7K8+65gPrgdeMGF8N1OYM/xG4tIh1zdr7+BE9eV+K911ex0Ch6oqn1xP1Y1cXa3/F9/17wNfHmafox1iedRX9GMuzroIdY1N2MOZxRy8n+qT0ReCT8bg7gb+Oh78ErI3vxO+Ak3OWfV/8wKwHri9mXfHtzwH/PGK51wDPxPU+A9wwxXXdC7QBKaI+rRuAm4Cbcg6cu+K6nwEWF2l/TVTXd4AO4Kn4sjIef0K8r9bEj/Mni1zXB3KOr+W5T/LRjoFi1RXPcx1w34jlCr2/LiTqz30657G6fLqPsTzrKvoxlmddBTvG9BVyEZHA6ZuJIiKBU1CLiAROQS0iEjgFtYhI4BTUIiKBU1CLiAROQS0iErj/D5tPNEH96NqPAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# plot the fitted curve\n",
+    "plt.title(\"Fitted with L1 Loss Function\")\n",
+    "plt.plot(t,y,'*b')\n",
+    "plt.plot(t,y_l1_fitted)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5e02e4f9",
+   "metadata": {},
+   "source": [
+    "Clearly, this is a much better fit for most of the data, and the outlier hasn’t dragged the model off most of the data."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "23ae855a",
+   "metadata": {},
+   "source": [
+    "## The trade-off of a loss function\n",
+    "\n",
+    "We can reuse the handle, the residual function (and gradient). Just changing the data and options, we can demonstrate more principles to consider regarding loss functions.\n",
+    "\n",
+    "There is a danger in choosing a very robust loss function. During an iterative optimization process, a loss function which is robust against outliers will usually prefer the data which is close to the current model. This means that if the algorithm finds local minima of the objective function, the search can fall into a local minimum when the model fits some subset of the data very well but fits the majority of the data very badly.\n",
+    "\n",
+    "To illustrate this, here’s a new dataset which we will try to fit with the same model, again starting at $x= (2.1,1.4)$. Most of the data was generated by $5\\sin(t)$, with the 3 data points at either end being generated by $\\sin(t)$."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "id": "76ff9fcb",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# create the data set\n",
+    "y_new = y\n",
+    "for i in range(3,18):\n",
+    "    y_new[i] = 5*np.sin(t[i])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "a7b7c87e",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPNklEQVR4nO3df4wc5X3H8c+n4PbOBDcgX2sLKA5S1aip6kBPqCUoEKS2jvODOP2HYFWhpbpa/SEi1a0qRapa80f7B2qjqsaSRVETNYVEyWG1qESxBChy6RGdqcEG0gTOpA0y+BKSEgtDW/ztHzMH4+ve3eztzOz3bt8vabU/Znbve3PPffbZZ56ZdUQIAJDXjwy7AADA8ghqAEiOoAaA5AhqAEiOoAaA5C5s40U3b94c27Zta+OlAWBdOnr06HcjYqLXslaCetu2bZqdnW3jpQFgXbL97aWWMfQBAMkR1ACQHEENAMkR1ACQHEENAMnVCmrbL9g+bvuYbaZzYOScOiXdcIP00kvDrgSjqJ8e9Qci4r0RMdlaNUCLBgnbO++UjhyR9u1rvi5gJQx9YGSsJmzHxyVbOnBAOneuuLaLx+uiN45B1Q3qkPRV20dtT/VawfaU7Vnbs/Pz881VCFSsJvQGCdu5OenWW6WNG4v7GzdKu3dLJ0/W//n0xjGoukF9fURcI+mDkn7X9vsXrxARByNiMiImJyZ6HgUJDGw1oTdI2G7dKm3aJL3+ujQ2Vlxv2iRt2bLyc5vojQNSzaCOiBfL69OSHpB0bZtFAYsNEnqDhK0kvfyytGePNDNTXNftzTfRGwekGkFt+yLbFy/clvQrkk60XRhQNWjorTZsJWl6Wtq/X9q+vbienq73vEHfIBYwxo06J2X6SUkP2F5Y/x8i4iutVgUsMmjoVcN1//52auxl4Q1iako6eLAI3X5Vh3vuvrv5GpGf2/hy28nJyeDseVjKqVPSLbdIX/hCf73Lj3+8COxq6NXt3a5F4+PFG9JiY2PS2bPd14N22T661PRnpuehc6udBbHaIYi1ijFuLCCo0RlmQfSnqTFurH0ENTpDD7F/g+wExfrRyje8AL3QQ+zfoDtBV7s/ALnQo0an6CF2i6Mi1wdmfQDrEDNG1h5mfaBRHICRH/sD1heCGn3j43R+7A9YXwhq1Mb0urWF/QHrB7M+UNvcnLR3r3TokPTaa8XH6V27pLvuGnZl6GVYh82jefSoURsfp4HhIKjRFz5Ojw52GufB0Af6wsfp0cFZ+/KgRw3gPOw0zoegBnAe5mDnQ1CPKMYfsRR2GudDUI8oDlrBcthpnAvn+hgxnAMCyIlzfeAtjD8Caw9BPWIYfwTWHoJ6BDH+CKwtHPAygjhoBW3jm2WaRY8aQOOYVdQsghpAYziqsR0ENYDGMKuoHQQ1gMYwq6gdBPUaxmHgyIhZRc1j1scaxmkokRGzippHj3oNYocNMFoI6jWIHTbAaCGo1yB22ACjhaBeo9hhA4wOdiauUeywAUYHPWoA6TD19HwENYB0OFfI+WoHte0LbP+b7QfbLAjA6GLqaW/99KjvkPRsW4UAAFNPe6sV1LYvl/QhSfe0Ww6AUcbU097q9qg/I+mPJJ1bagXbU7Znbc/Oz883URuAEcTU0/9vxW8ht/1hSTsj4nds3yhpb0R8eLnn8C3k9fFNGACkwb+F/H2SPmr7BUn3S7rJ9t83WN9IY+82gJWs2KM+b2V61I0ZHy/G3xYbG5POnu2+HgDDNWiPGi1g7zaAuvo6hDwiHpX0aCuVjBj2bgOoix71ELF3G0AdnJRpiDixEoA66FEDQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIE9YD4bjcAbSOoB8TZ7wC0jaBeJb7bDUBXCOpV4ux3ALpCUK8SZ78D0BWCegCc/Q5AFzh73gA4+x2ALtCjBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASG7FoLY9Zvvrtp+0/bTtP+uiMABAoc53Jr4h6aaIOGN7g6Qjth+KiJmWawMAqEZQR0RIOlPe3VBeos2iAABvqzVGbfsC28cknZZ0OCIeb7UqAMBbagV1RLwZEe+VdLmka23/3OJ1bE/ZnrU9Oz8/33CZADC6+pr1ERE/kPSIpB09lh2MiMmImJyYmGioPABAnVkfE7bfWd4el/TLkr7Rcl0AgFKdWR9bJX3W9gUqgv2LEfFgu2UBABbUmfXxlKSrO6gFANADRyYCQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIENQAkR1ADQHIrBrXtK2w/YvsZ20/bvqOLwgAAhQtrrPO/kv4gIp6wfbGko7YPR8QzLdcGAFCNHnVEnIqIJ8rbP5T0rKTL2i4MAFDoa4za9jZJV0t6vMeyKduztmfn5+cbKg8AUDuobb9D0pclfSoiXl28PCIORsRkRExOTEw0WSMAjLRaQW17g4qQ/nxETLdbEgCgqs6sD0v6W0nPRsRftl8SAKCqTo/6fZJ+XdJNto+Vl50t1wUAKK04PS8ijkhyB7UAAHrgyEQASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASI6gBoDkCGoASG7FoLZ9r+3Ttk90URAA4Hx1etR/J2lHy3UAAJawYlBHxNckvdJBLQCAHhobo7Y9ZXvW9uz8/HxTLwsAI6+xoI6IgxExGRGTExMTTb0sAIw8Zn0AQHIENQAkV2d63n2S/lXSz9j+ju3b2y8LALDgwpVWiIhPdFEIAKA3hj4AIDmCGgCSI6gBrCunTkk33CC99NKwK2kOQQ1gXbnzTunIEWnfvmFX0hyCGsC6MD4u2dKBA9K5c8W1XTy+1hHUANaFuTnp1luljRuL+xs3Srt3SydP1n+NrMMmBDWAdWHrVmnTJun116WxseJ60yZpy5b6r5F12ISgVt53UQD9efllac8eaWamuK77P5192ISgVt53UQD9mZ6W9u+Xtm8vrqen6z2viWGTNo10UGd/FwXQjSaGTdr8ZL5ugno1Gyn7uyiA7qx22GRBm5/MVzzXx1pR3Uh3313vOU28iwJYH6rDJPv313/e+HiRHQsOHCguY2PS2bPN1Lbme9SDDl8M+i4KYLR18cl8zfeo5+akvXulQ4ek114rNtKuXdJdd9V7/mrfRQFA6uaTeaoe9WrGmRm+ADBsbX8yT9WjXs04s/T2Rpqakg4eLAIfALrS9idzR0TjLzo5ORmzs7O11188GL+gycF4AMjM9tGImOy1LMXQB9PkAGBpKYKacWYAWFqKoJaYJgcAS0mzM5FpcgDQW5oeNQCgN4IaAJIjqAEgOYIaAJIjqAEgOYIaAJJr5RBy2/OSvr3Kp2+W9N0Gy2kKdfWHuvpDXf1Zj3VdGRETvRa0EtSDsD271PHuw0Rd/aGu/lBXf0atLoY+ACA5ghoAkssY1AeHXcASqKs/1NUf6urPSNWVbowaAHC+jD1qAEAFQQ0AyXUW1LZ32P5328/Z/uMey2+zPW/7WHn5rcqyT9r+Vnn5ZMd1/VWlpm/a/kFl2ZuVZf/YcF332j5t+8QSy237r8u6n7J9TWVZm9trpbp2l/Uct/2Y7e2VZS+Ujx+zXf+72pqp60bb/1X5e/1JZdmybaDluv6wUtOJsk1dWi5rc3tdYfsR28/Yftr2HT3W6byN1ayr8zZWs6722lhEtH6RdIGk5yVdJelHJT0p6WcXrXObpL/p8dxLJc2V15eUty/pqq5F6/++pHsr98+0uM3eL+kaSSeWWL5T0kOSLOkXJT3e9vaqWdd1Cz9P0gcX6irvvyBp85C2142SHhy0DTRd16J1PyLp4Y6211ZJ15S3L5b0zR7/k523sZp1dd7GatbVWhvrqkd9raTnImIuIv5b0v2Sbq753F+VdDgiXomI70s6LGnHkOr6hKT7GvrZy4qIr0l6ZZlVbpb0uSjMSHqn7a1qd3utWFdEPFb+XEmakXR5Uz97kLqWMUjbbLquLtvXqYh4orz9Q0nPSrps0Wqdt7E6dQ2jjdXcXksZuI11FdSXSfrPyv3vqPcv+WvlR5ov2b6iz+e2WZdsXynpXZIerjw8ZnvW9oztjzVUU11L1d7m9urX7Sp6ZAtC0ldtH7U9NYR6fsn2k7Yfsv2e8rEU28v2RhVh9+XKw51sL9vbJF0t6fFFi4baxpapq6rzNrZCXa20sTRfxSXpnyTdFxFv2P5tSZ+VdNOQa6q6RdKXIuLNymNXRsSLtq+S9LDt4xHx/JDqS8X2B1T8E11fefj6cnv9hKTDtr9R9ji78ISKv9cZ2zslHZL00x397Do+IulfIqLa+259e9l+h4o3h09FxKtNvvYg6tQ1jDa2Ql2ttbGuetQvSrqicv/y8rG3RMT3IuKN8u49kn6h7nPbrKviFi36WBoRL5bXc5IeVfEu25Wlam9ze9Vi++dV/A1vjojvLTxe2V6nJT2g4iNhJyLi1Yg4U97+Z0kbbG9Wgu1VWq59tbK9bG9QETqfj4jpHqsMpY3VqGsobWylulptY00Pui8xEH+hih0O79Lbg+nvWbTO1srtXZJm4u0dFydV7LS4pLx9aVd1leu9W8VOClceu0TSj5W3N0v6lhrcCVW+7jYtvXPsQzp/R8/X295eNev6KUnPSbpu0eMXSbq4cvsxSTs6rGvLwt9PxT/vf5TbrlYbaKuucvmPqxjHvqir7VX+7p+T9Jll1um8jdWsq/M2VrOu1tpYY42xxi+6U8We0uclfbp8bJ+kj5a3/1zS0+Uv8Yikd1ee+5vlH+Y5Sb/RZV3l/T+V9BeLnnedpONlvccl3d5wXfdJOiXpf1SMad0uaY+kPZWGs7+s+7ikyY6210p13SPp+5KOlZfZ8vGrym31ZPl3/nTHdf1epX3NVP/Je7WBruoq17lN0v2Lntf29rpexXjuU5W/1c5ht7GadXXexmrW1Vob4xByAEiOIxMBIDmCGgCSI6gBIDmCGgCSI6gBIDmCGgCSI6gBILn/A4RgDmxmXGPFAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.plot(t,y_new,'*b')\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "id": "9cc534b7",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# recreate the data structure to be passed to the solver\n",
+    "data_new = {}\n",
+    "data_new[\"t\"] = t\n",
+    "data_new[\"y\"] = y_new"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7e721f62",
+   "metadata": {},
+   "source": [
+    "We will fit this data set using 3 different loss functions with the same model $\\varphi(t;x)$ each time and discuss the results under the plots all at once below."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "0caf334e",
+   "metadata": {},
+   "source": [
+    "### Fit model with the $l_2$-norm, $l_1$-norm and Arctan loss function"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "fa815c5c",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABFh0lEQVR4nO3dd3hUVfrA8e9JJmVSIY1USOhFeu+gqyJiAURprpVib+juqquruMuqrPuzgaJYEIgoIgqKbamht9B7CCSQkBAgJCSTNuf3xx1CQp1AkplJ3s/zzDPt3rnvvXPnnXPPPfccpbVGCCGE83JzdABCCCEuTxK1EEI4OUnUQgjh5CRRCyGEk5NELYQQTk4StRBCODlJ1A6glMpVSjWsws//h1Jq5jV+xiil1G+Xeb+fUir1WpZxLZRSO5RS/Ry1/NpEKfWiUupTR8dRm0mirkJKqWSlVL4tMZ+9RWqt/bTWSbZpvlBKvXGR+f7kmKgNWutZWuubysSklVKNr+azlFIfKaVmXOT1tkqpAqVU0FXE10prvfRq4rkaSqn7lVIJ1bW8MsuNtW37svvQlipc3gV/wFrrf2mtH66qZYork0Rd9W6zJeazt6OODsgBvgSGKKV8z3v9XmCh1vqEvR+klDJVamSuo06Zfaito4MR1UsStQOcLZ0qpcYCo4AXbCWlBUqpr4D6wALbay/Y5ummlFqllDqllNpS9rBfKRWnlFqmlMpRSv0OhFxm2cuUUkNtj3vaYrnV9vwGpVSi7XFpCVIptdw2+xZbTPeU+bznlFIZSqk0pdQDF1um1no1cAQYWmY+d2AkMEMp1UgptVgplaWUOq6UmqWUqlNm2mSl1F+UUluBM0opU9mjDqWUl1Lq/5RSR223/1NKeZ2/Hudvf9vjgUqpnbZtd0QpNeFS2+4y27SHUmq9Uirbdt+jzHv3K6WSbJ9/UCk1yvZ6Y9t3kW1b5zkVXObZkrapzGtLlVIPl11vpdRkpdRJ27JvKTNtkFLqc9v2OqmUmm/7I10ERJY9AlTnVaUppW5XRtXTKdsyW5R5L1kpNUEptdW2bnOUUt6290KUUgtt851QSq1QSkkOsoNsJAfSWk8DZgFv2UpKt2mt7wUOc64k/pZSKgr4CXgDCAImAN8ppUJtHzUb2IiRoCcC911mscuAfrbHfYEkoE+Z58suEufZ99vaYjqbVMKBQCAKeAj4UClV9xLLnQH8uczzPwEewM+AAiYBkUALIAb4x3nzjwBuxShZFp/33ktAN6Ad0BboArx8iTjONx0Yp7X2B64DFts5H2AkPIzv5j0gGHgH+EkpFWxLfO8Bt9g+vweQaJt1IvAbUBeIBt6vyHLt1BXYg7FfvAVMV0op23tfAT5AKyAM+K/W+gxwC3D0UkeASqmmQDzwNBCK8f0tUEp5lpnsbmAAEAe0Ae63vf4ckGqbrx7wIiB9WNhBEnXVm28rQZxSSs2/ys8YDfystf5Za23VWv8ObAAGKqXqA52Bv2utC7TWy4EFl/msZRgJGYwEPanM84sm6ssoAl7XWhdprX8GcoFml5j2K6CvUira9vzPwGzbvPu11r/b4s/ESHZ9z5v/Pa11itY6/yKfPcoWR4Zt/tcwqlXsXYeWSqkArfVJrfUmO+c761Zgn9b6K611sdY6HtgN3GZ73wpcp5Qya63TtNY7yiy3ARCptbZora9U/328zH5kb6n/kNb6E611CUb1UwRQTykVgZGQx9vWuUhrbe/3fg/wk+37KgImA2aMP6Gz3tNaH7VVaS3A+AMFY50jgAa2Za7Q0tmQXSRRV707tdZ1bLc7r/IzGgDDyvxQTwG9MHb6SOCkrTR01qHLfNZqoKlSqh7GD2gGEKOUCsEoiS6/zLznyzqvdJsH+F1sQq31Ydtnj1ZK+QF32paNUqqeUuprW9XDaWAmF1bfpFwmjkjKr/Mh22v2GAoMBA7ZqiK62znfpZZ9dvlRtu/kHmA8kKaU+kkp1dw2zQsYRxLrbNUID15hOSFl9qPJdsaWfvaB1jrP9tAP44jlhNb6pJ2fU1a59dVaWzG+m6iLLZfy+8TbwH7gN1t10F+vYvm1kiRqx7tYieL811KAr8r8UOtorX211v8G0oC6qvyJuvqXXJjxg90IPAVs11oXAquAZ4EDWuvj17IyV/AlRkl3KHBQa73R9vq/MNa5tdY6AOMIQp037+VKXkcx/szOqm97DeAMxiE+AEqp8HIfqvV6rfUdGIf/84FvKrA+F1v22eUfsX3+r1rrGzH+VHcDn9heT9daj9FaRwLjgCmqYq1qzv4x+5R5LfxiE15EChBU9jxAGVcq4ZZbX1tVSgy29b0crXWO1vo5rXVD4HbgWaXUDXbGXKtJona8Y8D5barPf20mcJtS6mallLtSylsZzaiitdaHMKpBXlNKeSqlenHusPtSlgGPc66aY+l5z+2Ns6K+w0hir2Ek7bP8MapNsm318c9X8HPjgZeVUqG2I4NXMLYZwBaglVKqne2k1j/OzmTbXqOUUoG2w/jTGFUVl6Js2770hlFH21QpNVIZJznvAVoCC21HCnfY/kQLbOtotX3QsDLVQCcxEuTlll2OrYrnCMYRirutRN7IznnTME4aTlFK1VVKeSilzp6HOAYEK6UCLzH7N8Ctyjjx7IFR71yA8Wd/WUqpQco4iaqAbKCECqxzbSaJ2vGmY9SRlq3DnoSReE4ppSZorVOAOzBOvmRilIie59z3NxLjxNEJ4FVsVQqXsQwjOS6/xPOL+QfwpS2mu+1fvXNsVQHfYZw8m1XmrdeADhg/3p+AeRX86Dcw/qy2AtuATbbX0FrvBV4H/gD2AefXBd8LJNuqXMZj1HdfSg8g/7xbNjAII2FlYVRpDLIdmbhhHKkcxfhu+gKP2D6rM7BWKZUL/Ag8dbZtfQWMwdgPsjBOCl4xWZZxL0ad8W4gA+PkIFrr3Rh/fEm277pcFZLWeg/GEc/7wHGMQsFttiOzK2mC8T3kYlTBTdFaL6lAzLWWkrp8IYRwblKiFkIIJyeJWgghnJwkaiGEcHKSqIUQwslVSQc3ISEhOjY2tio+WgghaqSNGzce11qHXuy9KknUsbGxbNiwoSo+WgghaiSl1CWvKJaqDyGEcHKSqIUQwslJohZCCCdXbaNlFBUVkZqaisViqa5FOpS3tzfR0dF4eHg4OhQhhIurtkSdmpqKv78/sbGxnOu7vGbSWpOVlUVqaipxcXGODkcI4eLsqvqwDa+zTSmVqJS6quYcFouF4ODgGp+kAZRSBAcH15qjh9ogLQ369oX09CtPK0Rlq0gddX+tdTutdaerXVhtSNJn1aZ1dRXXkmwnToSEBHj99cqPS4grqa0jOotaaOLrVhISFK+/nMeUtzOhuACKLVBcaLsvgJKCc4+LCzD3vBdL4bmfydSpxs3by0p+bhGYvK643LQ0GD4c5syBcHu79heiDHsTtcYYPkcDH9sGZS1HGSNqjwWoX/+SA4w4lJ+fH7m5ueVee+edd/j0008xmUyEhoby2Wef0aDB+QN2CGdhV9LTGrJTIWMXZOzEfP2jWIo8OXsAOXW6L1On++JtspD/Ur3LLi/p8UlM+O0N5u8eRF6xDz6mPAa3WMDkm16GNzLANxQCoiAw2nYfVf65fwQTJ5pKS+NTplTu9hC1g72JupfW+ohSKgz4XSm12zaIailb8p4G0KlTJ5fp5Lp9+/Zs2LABHx8fpk6dygsvvMCcOXOuPKNwiLJVEFOmAGeyIGNnmdsu41ZwunSepBfnGcl2UzfyCjzx8Spm8A0pTH5+B9SbBSZvMHna7r3A3cu4N3kRYfImIMcfy04T3t4aS6GZgDa9CB/1Dzh9xPhDyE6FrP2QtAwKc0qXa/7nMSzFFymNe2vy86VqTNjPrkSttT47/luGUup7Kj4IqtPq379/6eNu3boxc+bMy0wtHMVshrLnZkuTnsmX/JcG2SaqC2GtoM09ENYC6rWC0OZEmOsQcAwsa8HbGyyFJgIaxBHez74WOceOw/jxMHYsTJsGaWlR0P4SA8FYsiH7CJw+QlK3+Ux4uxXzE5qSV+iFj0ceg5svYPLNr8FnDSCuj3GL7mRXFYqova6YqG3jvblprXNsj2/CGNroqr22YAc7j56+8oQV0DIygFdva3VNnzF9+nRuueWWSopIVIpTh2H3TyRNWsWE6bedq4LwtDC421YmT9gOLb+HsJbgVw8ucRL32LHzk639IcwrMzDYhx9eYWLvQONWryURTSDgB7AsPfsHYSbguh6E3zgUDi6HZW/Csn+DyQz1u0Jsb4jrC5Htwf3cT1PquIU9Jep6wPe2VgwmYLbW+pcqjcoBZs6cyYYNG1i27HLju4oqp7VRdbF7oXFL2wJARGgLAuIaYtlhtlVBeBPQqgvht3Wx62MrlGwrUfk/CEVaWgzcNNF4M/8kHFoFB1cYiXvxRGAiePpBgx62xN2HiRPbkJDgJnXctViVjJnYqVMnfX7vebt27aJFixaVvqyKuNjJRIA//viDJ554gmXLlhEWFlZpy3OGdXZGF5QQrVZIXWck5l0L4eRBQEF0Z2gxCJoPguBGDBkCERHlS8XzKjoMrjM7cxySbUn74ArMzyZgKfa+YDJvb8jPd0B8okoppTZeqvlzrW+et3nzZsaNG8cvv/xSqUlaXJpxQlDz+rOpTBn+NuxZBGcywM0DGvaFnk9Cs4HgX/4431Gl4mrjGwKtBhs3IOnmY0x4+hjz/xdu1HGb8hjcPoHJrx0HyyDwDnBwwKK61KpEnZeXR3R0dOnzZ599lp9//pnc3FyGDRsGGE0Lf/zxR0eFWKOZzRqL5WwdsmJqfAxT49/D26OQ/I0/QpMbjfpdAUBE03oENABLsdFSxFJgJsA7l/C1j8Cm56DVEOh4v3EyUi6wqtFqVaK2Wq0XvPbss886IJJaxloCuxaQ9PosJswYxvw9g8gr8sHHu4TBgzWT3/GE8LscHaVTOlfHrWzVPYPh4Qaw6QvY9h0kzjROpHa8H9rcbbR8ETVOrUrUopoVnoHNs2DNh3AymYi6cQQ0vQ7LTrOtFYQ7AXWkJcPlXFjdo4COEN0Rbv4XbJsLm76ERS/A769Ayzuh431QvzsoJS1GaghJ1KLy5RyDddNg/adgOWWcFLxxIjS/lWPL3K+6mZw4j5c/dHrAuKVtgY1fwrZvYevXENIUOtzHxM8fJiHBW1qMuLha1eqjutW6dc7YDas/gK1zoKQImt8KPZ402giL6lF4BnZ8j7nrMCxFF15EIy1GnNflWn3ICC+iwsr1Qqe10Q541t0wpatRomt/LzyxEYbPkiRd3Tx9of1okg55MXLIKXy8CgHw8chj1PWJHNxx0sEBiqshVR+iwkqb1z2VxJTrH4S0RPAJgf4vQaeHwDfY0SHWehEREBBWB0uR0dOfpdCbgNMbCJ9zm9H8sdujRlIXLkEStbBb+f42FFO/acTUb5bh7VlsdPnpYXZkeOI851qMuBnnAw7eDbGLYfEbsHYa9H0BOtxndEglnFqtqvrw8/O74LXly5fToUMHTCYTc+fOdUBUriNp5RZGdvkDH1MeAD7exYwaqTl4yCRJ2gnNm2e0FGnb1rif93MAjJgND/0OIU3g5wnwYWfY+q1xdahwWrUqUV9M/fr1+eKLLxg5cqSjQ3FeuRnww2NE/NiHALcMLCVn+9swERCopNmXq4npAvf/BKPmgqc/zHsYPu4De38zzjkIp1PrE3VsbCxt2rTBza3Wb4oLlRTB6inwfkfYMgd6PMmxesMY/4hizRrF+PEyhqDLUsq4EnTcchg63ehHe/Yw+HwgHF4LyDiRzsQxddSL/grp2yr3M8Nbwy3/rtzPrM0OLIFFf4Hje6Dxn2DAvyGkCfNuOjdJVfe3UWLVZOUWkJZtsd3yOXa6AKXAz8uEr6c7vl4m47HtZjx2L33Nw13+gC/LzQ1a3wUtbofNM2DZW/DZTdBsIBN//ZCEhCBpg+0E5GSiKO9kMvz6ktGTXd1YGPE1NB1Q6X1JFJdYycgxknC6LQmnZ1tIO208T8+2cOy0hWJr+UNxT3c3NJqiEvsO0T1NbqXJ29fTRHRdH9rFBNI2pg5touoQ6ONRqevlskye0PlhaDsCs7/XxceJlDbYDuOYRC0lX+dTmAcr/w9WvgvKDW54Bbo9Bh4XdrN5NY6dtrBi33ES9mWyPvkkadn5nJeD8fZwIzLQTHigN10bBhER6E14oJmIAG8i6ngTEWimro8HSikKikvItRRzpqCE3IJizhQWG/e2W25BSZnH5+4PHs/lj13HSpfZMMSXtjF1aBttJO8WEQF4e7hXyjq7JE9fkpJhwtMFzP9BGUOXeeQzeMBJJk+LdHR0tZaUqGup0j4gvtaEn5gPv74Mp1PhurvgxteNQVqvwZmCYtYezLIl5+PsyzD6AQ/x86Rbw2CGhkQRUcdIyhGB3kQEmAkwm1B2lty9TO54+bkTfGFDnivKzi9i+5FsElNOkZhyioT9x/l+8xEAPNwVLSICaBtdh7YxdWgXU4eGIb64udWe3ukiIiAgyKtMG2wvAtJ+JnzVehgwCXyCHB1irVOrLiF3c3MjMvJcqeDZZ5+ld+/eDB48mJMnT+Lt7U14eDg7duyolOU5wzpfyqOPwscfacb1+5kpfUZCvdYw8C1jZJGrUFxiZeuRbBL2HSdh/3E2Hz5JUYnGy+RGl7ggejcJoVfjUJqH+ztd0tNak37awpaUUySmZLMl5RRbU09xprAEAH8vE21iAukcG8Qd7aKIC6n5F4qUG6ThoxLStu9j3o09wScYBv3X6B5AVKrLXUJeqxJ1dXPGdT5/kNizKjoyttaaQ1l5rNhvVGesOpBFjqUYpaBVZAC9GofSu0kIHRvUdcmqhBKrJikzl8SUU2xJNUreO46eRmvo2KAuQzpEMah1ZO2q407bCvMfhWPbjCOvW96Sq1ArkSRqB3HGdU7bfoAJDx5g/uZexiCxZs3gIYrJk+3rBjM928LMNYf4YcsRUk4YZ5ai6pjp1TiEXk1C6Nk4hCDfmnmlW3q2hfmJR/huYyr7MnLxNLlxY4t6DOkQRZ+mobWjhUlJEax4B5a/DeY6cOs70PJ2R0dVI8hQXMK4kGHj50T88iIBbpNtF62ApUAREHD5JK21Zn3ySb5clcwvO9Kxak3fpqGM6d2Q3k1CiQ32sbtu2ZWFB3ozvm8jxvVpyPYjp/luUyo/bjnKT9vSCPHz5Pa2UQzpEEWryICauz3cPaDfX4yqjx8ehW/uNYYOGzjZGEpMVAlJ1LXBmSz48QnY8xM07M+xsLsY/4i6Yp/QlqISfkg8wherDrEr7TQB3iYe7BnLvd1iqR/sU73r4ESUUrSODqR1dCAv3dqCpXsymbcplZlrDvHZyoM0q+fP0I5R3NkuirCAymk143TCr4OH/2e0Elr2pjEg763/KR3vUVQuqfqoQk6xzgeWwPfjIf8E3PCq0WvaFa7CTD2Zx1drDjFnfQqn8opoVs+f+3rEcmf7SHw85b/9Uk7lFbJgaxrzNqWy+fAp3BT0bhLKkA5R3NQyHLOn69XV2yVjl1F3fXSTceHMrf8hLSdMRpapIKn6qI2KC2Hx67DqfWO0j1HfQkSbS06utWb1gSy+WJVc2s745lbh3Ncjlq5xQTX3UL4S1fHx5N5uDbi3WwMOZOby/aYjfL/5CE99nYi/t4kxvRvyYK84/Lxq2M8urIXR0dPq92HJvyA5gYmb/iAhoSGvv67kqsZKICXqKuSwdc7cC989BOlbodODcNM/wfPiVRVnCor5fvMRZqxOZu+xXOr6eDCiS31GdWtAVB3pEe9aWa2aNQez+GJlMr/tPEaQryeP9mvE6G4NXLI1zJWYva1YCi48YpOrGq9MRngpY/78+Sil2L17N127dqVdu3bUr1+f0NBQ2rVrR7t27UhOTqa4uJjQ0FD++te/lpu/X79+dOp0bltu2LCBfv36VfNaXILWsOFzoye07FQYPtto83qRJJ16Mo+JC3fSbdL/eHn+djxNbrx9VxtW/+0GXhjQXJJ0JXFzU/RoFMK0P3di/mM9aRUZwBs/7aLf20uZtfYQRSU1q3vRpINujBxhxcerCAAfj3xGDTnJwYMODszF1bBjsCuLj4+nV69exMfHs3at0UvYF198wYYNG/jggw9Kp1u0aBFNmzbl22+/ZdKkSeUO/TMyMli0aBG33HJLtcd/SXknjBOGuxdCw35w50cQEHHBZGcKipm69ADTViRhtWpuaR3B/T0a0KF+XaneqGLtYurw1UNdWX0gi8m/7eGl77fz8bIknrmxCbe3jcLdyS4EuhoRERAQ6IalyO3cVY0pXxOe4Qvhdzs6PJdVq0rUubm5JCQkMH36dL7++uvLThsfH89TTz1F/fr1Wb16dbn3nn/+ef75z39WZah2Ke2Gcu0qmNoD9v4KN70Bo7+/IElbrZp5m1K5/j9L+WDJfm65LpxlL/Tn/RHt6dhA6qCrU/dGwcwd353P7u+En5eJZ+Zs4ZZ3l/PL9nSqoiqyup0dWWbNWjfGP2QhvaQpzBtj9MZYUuTo8FySQ0rUb657k90ndlfqZzYPas5fuvzlstP88MMPDBgwgKZNmxIcHMzGjRvp2LHjBdNZLBb++OMPPv74Y06dOkV8fDw9epy7tLp79+58//33LFmyBH9//0pdj4qY+FoJCSsUrz++kyn3+cPIORDR9oLpNh8+yWsLdpKYcoo20YFMGdWBjg2kvwZHUkpxffN69Gsaxs/b03jnt72Mn7mRttGBPHdTM3o3CXHZP8958849/vATHyjpAr8/Bms+hLQtMOwL8JemIBVRq0rU8fHxDB8+HIDhw4cTHx9/0ekWLlxI//79MZvNDB06lPnz51NSUlJumpdffpk33nijymO+GLPZ6HV06sfuWLUbUzc8jHpiPeaG5ZN0eraFZ+YkMnjKKo6cymfysLbMf7SnJGkn4uamGNQmkt+e6cNbd7XheG4hf/5sHcOnrWFD8glHh1c53D1gwL+MAQrStsDHfeHwGkdH5VIcUqK+Usm3Kpw4cYLFixezbds2lFKUlJSglOLtt9++YNr4+HgSEhKIjY0FICsri8WLF3PjjTeWTnP99dfz8ssvs2ZN9e9wSau2MeGhZOZvv4G8Ih98fGDwYJg82XjfUlTCJ8uTmLL0ACVWzaP9GvFo/8Y1r1lYDWJyd+PuTjHc0S6Sr9el8P7i/dz10Wr6NwvluZuacV1UoKNDvHat7zKa8s0ZDV/cCjdPgi5jKr2v85qo1pSo586dy7333suhQ4dITk4mJSWFuLg4VqxYUW6606dPs2LFCg4fPkxycjLJycl8+OGHFy19v/zyy7z11lvVtQqGHd8T8dONBJjzsBTbLgO3QEAA1Kun+XlbGjf8Zxn/+X0vfZuG8sezfXlhQHNJ0i7Cy+TOfT1iWf5CP14Y0IxNh08x6P0EXvp+G7kFxY4O79rVawVjlkDjG2HR8/D9OKMvdHFZtSZRx8fHM3hw+ctbhw4dekEC/v7777n++uvx8vIqfe2OO+5gwYIFFBQUlJt24MCBhIaGVl3QZWltDJP07f0Q0YZjwXfaxi40TtzsTS7knmlreHTWJvy9Tcwe05WP7u1Yqy/1dmU+niYe7deY5S/056Feccxed5ib/7ucVfuPOzq0a2euYzQd7f8SbP0Gpt8EJ6T93uXIBS9VqNLWuSgffngMtn8HbYbDbe+WjrxyPLeA//y2h6/Xp1DH7MFzNzVjeOcYTLWhJ7daZEPyCZ6fu5WDx88wult9/nZLC3xrwlHSvt/hu4eNx0M/NQbcraXkghdXlpNu1Odtnwd/+gcM/gg8vLFaNZ+vPEj/t5fy7YZUHugRx9IJ/RndrYEk6RqoU2wQPz/Zm4d6xTFr7WFu/r/lrDpQA0rXTW6EsUshMAZmDYOlb4LVKiOgn0d+0c4sbQt8cj1k7IZ7ZkKvZ0ApMnIs3Pf5Ol5bsJP2Deryy9N9eOW2lrWrE/tayOzpzt8HteSbcd0xuSlGfrKWv8/fzhlXr7sOioOHfoM298DSf8HXI5j4agEJCfD6644OzjnYXfWhlHIHNgBHtNaDLjftpao+mjdv7rJtQytKa83u3buvvupj54/GiRZzEIyIL+1QafHuYzz/7VbOFBbzyqBWjOgSU2u2qTgnv7CEt3/dw+erDhJd18xbQ9vSvZGLj7aiNWbvknIjoJ9VG/oKqayqj6eAXVcbhLe3N1lZWTXiyqsr0VqTlZWFt/dV9EWsNSyfbHTIHtYSxiyGiDZYikr4x487ePCLDYT6e7Hg8V6M7FpfknQtZfZ055XbWjJnbHfclWLEJ2t49Yft5BW6cOlaKZKSTYy8IxMfDyMr+3iXMGoUtb6vELvORiilooFbgX8Cz17NgqKjo0lNTSUzM/NqZnc53t7eREdHV2ymIovRX8e2b6D1MLj9A/DwZt+xHJ6I38zu9Bwe7BnHCwOa1cie10TFdYkLYtFTfXjr1918sSqZJXsyeeuuNnRr6Jql64gICIgIxVKi8TZZsBR4EGBNITw8xtGhOZRdVR9KqbnAJMAfmHCxqg+l1FhgLED9+vU7Hjp0qJJDreFyM+DrkZC6Hq5/GXpPQAOz1h5m4sKd+HmZmDysLf2bhzk6UuGk1iZl8fzcrRw+kcf9PWJ5YUAzlxzooXQE9NEnmPa3ZaQdMzEvPhfajXB0aFXqmga3VUoNAgZqrR9VSvXjEom6rIvVUYuLS0uD4UNymXPzrYSb9sCQj6HlHZw8U8hfvtvKbzuP0btJCP+5uy1h/jV0WCdRafIKi3nrlz18sSqZBsE+vDW0DV1dtHQNQEEOfD0KDi6DP70GPZ+qsVcyXmsddU/gdqVUMvA1cL1SamYlxlerTXz2EAlrzbz+23h48BdoeQerDhxnwLvLWbIng5dvbcGXD3SRJC3s4uNp4h+3t+Lrsd3QGoZ/soZ/L9pNidVFzw15+RujE103FP54FX59Eaw1qw9ve1ToghcpUVces9m49Pt8Jg8r0c8tIi7El/eGt68ZfTwIh8grLGbiwl3ErztMn6ahvD+8ves24bRajSS9dipcdxfcORVMno6OqlLJBS9OKOmbzxl53Tf4eBqXpXubNVGdMggfu5jhnWNY+EQvSdLimvh4mpg0pDWThrRm9YHj3P5hAnuP5Tg6rKvj5gYDJhkXfW2fC7OHGdUitUSFErXWeumVStPiCrSGpW8SsfFpAsKDsRR74uGpsVggHwsfj2vFpCFtXPIkkHBOI7rUJ35MN84UlDD4w5X8usNFL/dTyrjo686pcHCFccVuboajo6oWUqKuTlrD7383rr5qO5Kjvv247objhIxaQaM+x+gaHsXA1hcOnyXEteoUG8TCJ3rROMyPcV9t5L+/78XqqvXW7UbCiK/h+D5bh05Jjo6oykmiri5WKyx8Bla9D53HkHHDf+BPqzndcR1/HRXBnsX1+HmBtI0WVSc80Js547oztEM07/5vH+NmbiTH4qJDYzW9Ce5bAJZsI1kfTXR0RFVKEnV1KCk2Lgff+Dn0eobdHf7O4Clr2JeRyyf3duLJG5rUiIFNhfPz9nBn8rA2vHpbSxbvzmDwlFUkZeY6OqyrE93J6CPEZDaqQQ4scXREVUYSdVUrLoBv7zOuNrzhFZbGPMpdH62h2Grlm3Hd+VPLeo6OUNQySike6BnHVw91ISu3gDs+XMmSPS5a1xvSxEjWdRoYve9tm+voiKqEJOqqVJgH8cNh90K45S2+8riLh77cQP0gH+Y/1lNadQiH6tEohB8f70V0XR8e/GI9U5bud82+eAIi4IGfIaYLfPcQrJ7i6IgqnSTqqmLJhplDIGkp1ts/YGJmb/4+fzv9moby7fjuRASaHR2hEMQE+fDdI925tXUEb/2yhyfiN7tmx07mOjB6HrS4DX79Gyz5l6MjqlTSBqwq5J2ArwbDse0U3PkpjyU24I9dB7m/Ryx/H9RS6qOFU/HxNPH+iPa0igzkrV93cyDzDNPu7UhMkIsN4+bhDcO+hAVPwrI3QblBv786OqpKISXqypaTDp8PhMzdnLz9S4YuD2Px7mO8dnsr/nF7K0nSwikppXikXyM+v78zqSfzuP2DBNccn9HNHW57H9qNgqWTjHFGawBJ1JXp1GH4bABkp5A8YAYDF5k5mHmGT+/rxH09Yh0dnRBX1K9ZGD8+3otgPy/u/WwdX65KdnRIFefmBre/D21HwJJ/Gv27uzhJ1NeodGy3HQeNJJ1/go19P+fWH42TMt+O78H1zaVlh3AdcSG+zH+sJ/2bhfHqjzt45/e9rneS0c0d7vjQGN5r8URY8Y6jI7omkqiv0cSJkLBC8/rDK6G4gB/bf8KwhUXEhRo7e8vIAEeHKESF+XmZ+Gh0B4Z1jOa9/+3jtQU7Xe9KRjd343Lz1sPgf6/ByncdHdFVk5OJV6l873eKqWtGM3XNaJR7CQ99tpl3h7eT/jqESzO5u/Hm0DYEmD2YnnCQHEsxbw5t7Vqj3Lu5w50fgbbC768YJxh7POHoqCpMMslVSkqCCY9nM3+BJ3lFZkyexXg1Tuexv57hX6M6yklDUSO4uSlevrUFgWYP3vl9LzmWIt4b0d61hoJzN8HgaWAtgd9eNpJ198ccHVWFuNBfo3OJ8DxAwNGfsBR74W4qobjIna7NAnjz3maSpEWNopTiyRua8OptLflt5zEe+nI9ZwpcrK21uwmGfgotbjf6tV7zkaMjqhBJ1FfjVArMuIP0nCCadN1LgwfWcMcIC4FIfbSouR7oGcd/hrVlTdIJRk9fy6m8QkeHVDHuHnDXZ9B8EPzyF1g7zdER2U2qPioq5xjMuANrfjbBo1Mx5StmPdiZjg3kSkNR8w3tGI2ft4knZm9m+LQ1zHjIxYaJc/eAuz6HuQ/AoueNPq67jHF0VFckJeqKyDsBX92JNSeNR/kbay0xzHy4Kx0bBDk6MiGqzc2twvns/s4cPpHHsI9Wk3Iiz9EhVYzJ00jWzQbCzxNgw2eOjuiKJFHby3IaZg5BZx3gKV5gdVFjZj/cjXYxdRwdmRDVrleTEGY+3JWTZwoZ9tFq9me42LBYJk8Y9gU0HWD0E7/xC0dHdFmSqO1RmAez70Gnb2OCeo6EklbMHtOV1tHS+52ovTrUr8s347tTojXDPlrN1tRTjg6pYkxecPcMaHITLHgKNs1wdESXJIn6SooLYM4odMoaXlJPslR3IH5sN1pFSpIWonl4AN+O646Pp4mRn6xlTVKWo0OqGJMX3P0VNP4T/PgkbJ7p6IguShL15ZQUwdwH4cBiXlfj+U315Oux3WgeLq07hDgrNsSX7x7pQXigN/d9to7Fu485OqSK8fCGe2ZBo/7ww+Ow5WtHR3QBSdSXYi2B+Y/A7oW8qR7kZ9MNzBnXjSb1/B0dmRBOJzzQm2/GdadpPX/GztjID4lHHB1SxXh4w/DZENcH5j8Ke391dETlSKK+GK2NEwzbvuU9NZL5noOYM7Y7jUL9HB2ZEE4ryNeT2WO60qFBXZ6ek8jMNYccHVLFeJhh+CwIbw3f3Acp6xwdUSlJ1OfTGn59CTZ9yScMZo7XMOaM7U5siK+jIxPC6fl7ezDjwS70bxbGy/O3E7/usKNDqhgvfxg11xjea/bdkLnH0REBkqgvtHQSrPmQmfoWZpjvZc64btQPdrGRLoRwIG8Pdz4a3ZF+zUJ58fttrlcN4hdqDOvl5gFfDYHTRx0dkSTqcla+C8ve5Dvdn+m+Y/hmfA+i60qSFqKiPE1ufDS6I11ig3j2my38uiPd0SFVTFAcjJ5rG/t0KOSfdGg4kqjPWv8p/P4KP+vuTPV/gq/H95QBaIW4Bt4e7ky/vzOtowJ5YvZmVuzLdHRIFRPR1qizztoP8SOgKN9hoUiiBtj6Lfz0HIt1R94LeJ7Z43pSL8CF+i8Qwkn5eZn48oEuNAz1ZcyMDaxPPuHokCqmYV8Y/DEcXgPfPQwljuk1UBL1weVY5z/CWmtL/lvnRWaO6+VancwI4eQCfTz46qGuRAaaefDz9WxLzXZ0SBVz3RC45U3YvRB+fs5ocFDNaneizthFcfxIkkrq8Vadv/Pl2D6E+Hk5OiohapxQfy9mPtyVALMH9362lj3pLtY3SNdx0Ps5o0+QpZOqffG1N1GfTqNoxhBOFrrzN/MrTB1zPUG+no6OSogaK7KOmdljuuLp7sbo6Ws5ePyMo0OqmOv/Du1Hw7I3Yf30al107UzUBTkUfjWMotwTPO3+EpPHDJLqDiGqQYNgX2Y93JUSq2b0p2s5cspxJ+gqTCkY9K7R495Pz8HOH6pt0bUvUZcUU/T1n3HP3MFz+hlefOgeGgTLxSxCVJcm9fyZ8WAXTucXMfrTtWTkWK48k7NwNxl9WUd3Nk4uJidUy2JrV6LWmqIfn8bj4GL+UfIg9903RnrBE8IBrosK5IsHO5OebeHeT9dx8owLDevl6QMj50DdOKPZXvr2Kl/kFRO1UspbKbVOKbVFKbVDKfValUdVRYqXTcZjy1d8WHwHvYc/T7eGwY4OSYhaq2ODID69rxMHs85w3+fryLEUOTok+/kEwb3zwNPPuCDmZNX2a2JPiboAuF5r3RZoBwxQSnWr0qiqgHXLHExL32B+SQ9Cb3+Dm1qFOzokIWq9no1DmDKyAzuPnuahLzaQX1ji6JDsFxhtJOvifJg5BM5UXV/cV0zU2pBre+phu1V/Q8JroJOWYZ3/KKtLWpJx/Tvc3aW+o0MSQtj8qWU93rmnHesPnWDczI0UFLtQsg5rASO/gexUmD0MCqumJYtdddRKKXelVCKQAfyutV5bJdFUhYxdFM4aycGSeqzq9F/G9Gvu6IiEEOe5vW0k/x7SmuV7M3kyfjPFJVZHh2S/+t2ME4xHNxvdo5ZUfhWOXYlaa12itW4HRANdlFLXnT+NUmqsUmqDUmpDZqaTXNOfk07uZ4PJLjYxp+l/eea2riilHB2VEOIi7ulcn1cGteTXHcd4fu5WrFYXOnBvPhAG/Z9xotFa+UcEpopMrLU+pZRaAgwAtp/33jRgGkCnTp0cv4ULcsn+dDCm/BN8FPlf/jbiRtzcJEkL4cwe7BVHXmExk3/bS6i/Fy8ObOHokOzX8T7o8GejvXUls6fVR6hSqo7tsRm4Edhd6ZFUppJiTnw5Er9Tu3g36EWef2A4Hu61qyWiEK7qsf6N+XP3BkxbnsRXrjZKTBUdsdtToo4AvlRKuWMk9m+01gurJJrKoDVZ3zxO8NFlvOvzGI+NeQyzp7ujoxJC2EkpxSuDWpJ6Mp9Xf9hOdB0z/ZuHOTosh7Kn1cdWrXV7rXUbrfV1WuvXqyOwq5X1678J3hPPDNNQhj/yCoE+Ho4OSQhRQSZ3N94f0Z4WEQE8PnsTO466WI97laxG1QecXDuL4DX/5hfVi97j3pU+pYVwYb5eJj67vzOBZg8e/GI9adku1C9IJasxiTpn9xJ8Fz3Jet2SmAc+Jy7U39EhCSGuUb0Abz57oDNnCkp44PP1rnX1YiWqEYm6IGM/zBlNig5D3zOLVvVrd32WEDVJ8/AApozqwL6MXB6f7WJtrCuJyydqbTnNiel3UWLVHLr5c7q0bOjokIQQlaxP01DeuPM6lu3N5JUfd6AdMMqKI1WoHbXTsVo5+Mlo6lsOsaD1+wzu4XJdkAgh7DSiS30On8hj6tIDNAjyYVzfRo4Oqdq4dKLe/+1LNM5axnf1HmfI0FGODkcIUcWev6kZKSfymLRoN9F1fbi1TYSjQ6oWLpuoD6+YReNdU/jD+0Zuffg1uTRciFrAzU0xeVhb0rItPPNNIuGB3nRsUNfRYVU5l6yjztq/gdD/PcM21Yw246bj7emy/zdCiAry9nDnkz93IjLQmzEzNnAoy8XGXrwKLpeo808eo3j2CLK1L16jZxNWV0ZoEaK2CfL15PMHumDVmge+WM+pPBcaIeYquFSithYVkDrtLgJLTnLoxk9o2qixo0MSQjhIXIgvn/y5E6kn8hn7lYv1Y11BLpWot01/hCb5W1nZ6h907fUnR4cjhHCwzrFBTL67LesOnuCFuVtrbLM9l6nc3fL9f2ib/h2LQ0Zy/bDHHB2OEMJJ3N42kpQTebz96x4aBPnw7E3NHB1SpXOJRL137SJaJv6Tjd5d6DX2PWnhIYQo59F+jTiclcd7i/cTE+TDsE4xjg6pUjl9ok4/tIfQRWM56hZBw3HxeHpKb3hCiPKUUrwx+DqOnMrnb/O2EVXXTI9GIY4Oq9I4dR31mZxs8r68G3ddjB4+m7pBNWfDCyEql4e7G1NGdyAuxJfHZm0i5USeo0OqNE6bqEtKrOyaOpoGJYdI7v8Bsc3aOjokIYSTC/D2YNqfO1Fs1Yz7aiP5hTWjJYjTJuqVn/2FTnnL2dTsGdr0G+rocIQQLiIuxJf3RrRnV/pp/jqvZrQEccpEnbDwC/ocmUZi3QF0HvGKo8MRQriY/s3CmHBTM35IPMqnKw46Opxr5nSJesvGVbRb/xf2ezTjuvGfV9lgkUKImu3Rfo0Y2DqcSYt2kbDvuKPDuSZOlahTUlMIXnAfFjczYWPmYvLycXRIQggXpZTi7bva0iTMn8fjXfvkotMk6pwzeWR+PpJQTlI49CsCwuo7OiQhhIvz9TIx7c8dsVo1Y2ZsIK+w2NEhXRWnSdTeFFDHx5PDPSYReV1vR4cjhKghGgQbJxf3HMtx2cvMneaCFw/fujR85ndwc5r/DiFEDdGvWRgv3NycN3/ZTeuoQJcbHca5sqIkaSFEFRnftyG3tongzV92s3xvpqPDqRDJjEKIWsE4udiGpvX8eSJ+s0sNOCCJWghRa/h4mph2bycAxn210WVOLkqiFkLUKvWDfXh/RHv2Hsvh+W9d4+SiJGohRK3Tp2kofxnQnJ+2pTF12QFHh3NFkqiFELXS2D4Nua1tJG//uoelezIcHc5lSaIWQtRKSineHNqaZvX8eTJ+M8nHnffkoiRqIUSt5eNp4pM/d8LNTTH2qw3kFjjnyUVJ1EKIWi0myIcPRnRgf0Yuz3+7xSlPLkqiFkLUer2ahPC3W1qwaHs6U5Y638lFSdRCCAE83DuO29tG8p/f9rD6QJajwylHErUQQmCcXJw0pDWxIb48+fVmMnIsjg6p1BUTtVIqRim1RCm1Uym1Qyn1VHUEJoQQ1c3Xy8SUUR3IsRTxVHwiJVbnqK+2p0RdDDyntW4JdAMeU0q1rNqwhBDCMZqHBzDxjutYnZTFu3/sdXQ4gB2JWmudprXeZHucA+wCoqo6MCGEcJRhnWK4q2M07y/Z7xQ97VWojlopFQu0B9Ze5L2xSqkNSqkNmZmOXzEhhLgWE++4jqZh/jw9J5H0bMfWV9udqJVSfsB3wNNa69Pnv6+1nqa17qS17hQaGlqZMQohRLUze7rz4agOWIpKeCJ+E8UlVofFYleiVkp5YCTpWVrreVUbkhBCOIfGYX5MGtKa9cknmfyb4+qr7Wn1oYDpwC6t9TtVH5IQQjiPO9pFMbJrfT5adoD/7TrmkBjsKVH3BO4FrldKJdpuA6s4LiGEcBqvDGpJy4gAnv1mC6kn86p9+fa0+kjQWiutdRutdTvb7efqCE4IIZyBt4c7U0Z1wGrVPD57M4XF1VtfLVcmCiGEHWJDfHnrrjYkppzi34t2V+uyJVELIYSdbmkdwf09Yvls5UF+2Z5WbcuVRC2EEBXw4sAWtI2pw/Nzt1bbSOaSqIUQogI8TW58MKI9Cnhs9iYsRSVVvkxJ1EIIUUExQT785+52bD9ymjd+2lnly5NELYQQV+HGlvUY16chM9cc5ofEI1W6LEnUQghxlSbc3IyODery4rxtHMjMrbLlSKIWQoir5OHuxgcj2+NpcuOxWZvIL6ya+mpJ1EIIcQ0iAs3895527DmWw6s/bq+SZUiiFkKIa9SvWRiP9WvMrrQczhQUV/rnmyr9E4UQohZ6+k9NeOKGxniZ3Cv9syVRCyFEJTC5u1VZQpWqDyGEcHKSqIUQwslJohZCCCcniVoIIZycJGohhHBykqiFEMLJSaIWQggnJ4laCCGcnCRqIYRwcpKohRDCyUmiFkIIJyeJWgghnJwkaiGEcHKSqIUQwslJohZCCCcniVoIIZycDBwgnE6JtYTcolzjVphLTmEOuUXn7gtLCimyFhm3kiKKdbFxby2myHr5ewB3N3dMyoS7mzvuyh2Tm+nC524m3JV7uWk93Tzx9fDFz9MPXw9f47GHX+m9j4cPvh6+mNzkZyUql+xRosporcktyuV4/vHSW2ZeJlmWLCPpFuZyuug0uYW2hFxkvJZXnGf3MhQKDzcPPNw9MLmZ8HA7d1/28dnkq1AUlhSSb82nWBdTbC2mxFpCiS6h2FpMsS7/vPTeWkKxtm8sPLPJXC55+3n44efhR5A5iBBzCMHewQSbgwn2Djaem4PxMfmglLraTS1qOEnUosKs2kpWfhaZ+ZkXJOHSx/mZZOVnYSmxXDC/yc1EgGcA/p7+RhLz9CPUHIqfp5HQzr7u7+mPn6dx7+/hX1qS9Xb3NhKzraRbXYqtxeQV53Gm8Axnis6QW5Rb7r70caFxn1eUV/re4ZzDJGYmctJyEo2+4LO93b2N5G1L4MHm4NKkHmIOIcI3gki/SOp41ZGEXgtJohYXlVOYw5HcI6TmpHIk9wgpOSmk5qZyJOcIR3OPUmgtvGCeAM8AQs2hhJhDaBfWjhDvEELMIYT4GPdn3wvwDHDJZHP2DybAM+CqP6PYWsypglNk5WdxPP84WZasCx6n5KSwJXPLRZO6j8mHSL9Iov2iifSLJMovyrj5RxHpF3lNsQnnJYm6liq2FpOWm0ZqbqpxsyXk1BzjeXZBdrnpAzwDiPKLokndJvSv359I30hCfUJLk2+IOQRPd08HrY3rMLmZSrdXM5pddtpiazEnLSc5nn+co2eOcjT3KEdyj3Ak1/izXH9sPWeKzpSbx9/TvzR5n03kDQIa0DCwIeG+4bgpaT/giiRR13BF1iJSclI4cOrAuVv2AZKzkymyFpVOZ3IzEeUXRbRfNK2CWxHtH020f3Tpjz7QK9CBa1E7mdxMxp+hTygtgltc8L7WmtOFp0nNTTWSeM6R0kSenJ3MqqOryC/OL53ebDITFxhHw8CGNKrTqPRxjH+MnAB1cvLt1BBF1iJSTqew/9R+DmSfS8rJp5NLWzsARPlF0ahOI3pF9SIuII5o/2hi/GMINYdWa32vuHZKKQK9Agn0CqRVcKsL3tdak2XJ4tDpQxw4dYCD2QdJyk5iffp6FiYtLJ3O5GYiNiCWuMA4GtVpRMPAhjQMbEhsYCxe7l7VuUriEq6YqJVSnwGDgAyt9XVVH5K4kuP5x9mZtZOdWTvZd3IfSdlJ5RKyQpUm5D7RfWhUp5FRggqIw8fDx8HRi+qilCqtZulYr2O5984UneFg9kEOnDpAUnYSSdlJ7Dmxh/8d/h9WbTXmR9EgoAHNg5rTIrgFLYKMWx3vOg5Ym9pNaX3hGehyEyjVB8gFZtibqDt16qQ3bNhQCeGJzLzM0qR89paRnwGcS8iN6zQuTcZnD2nNJrODIxeuqKCkgEOnD5F0ykjee0/uZVfWLo6eOVo6TYRvhJG0zybv4BaEmkNd8gSxM1FKbdRad7rYe1csUWutlyulYis9KlGO1pqMvAwjGZ84l5SP5x8HjKQcGxhL54jOtAxqScvgljQPao6fp5+DIxc1iZe7F03rNqVp3ablXs8uyGbXiV3syrLdTuxiScqS0lYpwd7B5RJ3i6AWRPlFSfKuJJVWR62UGguMBahfv35lfWyNlVOYw5bMLSRmJJYm5SxLFgBuyo24gDi6R3SnZbCRlJsFNcPXw9fBUYvaKtArkG4R3egW0a30tTNFZ9hzYs+5BH5iF6uPrqZElwBGS6G2oW1pG9qWdmHtaB3SWqrertIVqz4AbCXqhVL1cXW01qTmpJKYmcjmjM1sztjMgVMH0GjclBsNAxuWJuSWwS1pVreZ7NDCJRWUFLDv5D52ndjF9uPb2ZKxhQPZBwCjANK0btNyyTvaL1pK3TaXq/qQRF0FikqK2HliJ4kZiSRmGMn5bGnZz8OPNqFtaBfWjvZh7Wkd0lpKyqJGyy7IZtvxbSRmJLIlcwtbM7eWdhMQ7B1cmrTbhralZXBLvE3eDo7YMa6pjlpc2SnLqdLScmJGIjuydlBQUgAYzeG6R3anfVh72oa2pXGdxtIMTtQqgV6B9IrqRa+oXoDR6db+U/tLq/62ZG5hccpiwGgq2DKoJW3D2tKpXic61usobfixr9VHPNAPCAGOAa9qradfbp6aXqI+XXiajekbWZe+jrXpa9l3ch9QfidrH9aedqHtCPUJdXC0Qji/rPwstmRuKU3eZws7CkXzoOZ0Du9Ml/AudKjXAX9Pf0eHWyWuueqjompaos4rymNTxibWpa9jXdo6dp3YhVVb8Xb3pl1Yu9IdqFVwq1p72CZEZSosKWRr5lbWp69nXfo6tmRuochahJtyo2VQSzpH2BJ3WIcacz5HEnUFFZQUsDVzK2vT1rIufR3bMrdRrIsxuZloE9KGrhFd6RLehTahbaR/CyGqgaXYwpbMLaxPX8/69PVsPb6VYmsxJmWiVUgruoR3oXN4Z9qFtXPZawgkUV9BsbWY7ce3l5aYEzMTKSgpwE250SrY2Am6RHShXWi7GvPvLYQryyvKIzEzsbTEveP4Dkp0SWlhqltkN3pF9qJlcEuXOSckJxMvIv1MOiuPrGTl0ZWsObqGnKIcAJrVbcbdze6ma3jXGl0fJoQr8/HwoUdkD3pE9gCMNt2bjm1i/bH1LNuxlwlPdybm0ScIqVdM94ju9IzqSY/IHoT5hDk48qtTaxJ1YUkhmzM2k3AkgYQjCew/tR+AMJ8wboq9ie6R3ekS3oW63nUdHKkQoqJ8PXzpHd2b3tG92T8dLPs1jdZ/Sbvx01h1dBW/JP8CQNO6TekZ2ZOeUT1pH9beZaoua3TVR2pOKglHElh5ZCVr09eSX5yPyc1Ex3od6RXZi55RPWlcp7E0uBeiBjCbwXLhgEJ4e2sSj+wl4UgCq46uYlPGJoqtxZhNZjqHdy5N3PX96zs0F9SaOmpLsYX16etZeXQlK4+sJPl0MmC0ZT7bjrNLeBepZxaiBkpLgwkTYP58yMsDHx8YPBgmT4bw8HPT5RXlsS59XWnVZ0pOCgDRftG08bqZX964n/lzvYiLrt6TkjW6jjr9TDrLU5ezJGUJ69PXU1BSgJe7F53DOzO8+XB6RfVy+D+lEKLqRURAQIBRqvb2Nu4DAsonaTDqt/vF9KNfTD8ADp8+zMqjK1l1ZBWfT4omc10AXe/7jnteXE7fmL70je7r8OshXK5ErbVm94ndLE1ZypKUJew6sQuAGP8Y+kb3pXdUbzrU61Ch9sxpaTB8OMyZc+GXKoRwHUOGGAl77FiYNs34bc+bd+X5LlVtojwKaPVJJ1oFt6JvTF/6RfejeVDzKin4uXzVR2FJIevT17MkZQlLU5ZyLO8YCkW7sHb0je5L/5j+xAXGXfXGe/RR+PhjGDcOpkyptLCFEC7iYtUmd96pefTvSewsXMzS1KVsy9yGRhPuG07faKOk3SWiS6WNguOSifqU5RQrjqxgScoSVh5ZSV5xHmaTmR6RPegX04/eUb0JNgdf0zIuffIB8vMvfF0IUXM98ohRCvf0hMLCCwtux/OPsyJ1BUtTlrI6bTX5xfmYTWa6R3SnX0w/mrj34bEHgq/6yNxlEnVydnJplUZiZiJWbSXMHGYccsT0o2tE10v+e11N9YW9Jx+EEDVfRapNCkoKWJe2jmWpy0qP8o9++TInlg5j3Dj4aGrFR3t3iUSdX5xPr/heFFoLaR7UvLRKo0VwC7uGuL/a6osr/YsKIcTlmM0ai+XCateKHpm7RKsPs8nM5L6TaRbUjEi/SPvnO6/6YupU42bvRjp2DMaPL/8vKoQQ9kpKUpc8Mq8sTpOoAfrX71/heZKSLl19YY+yhzYffljhxQshajl7mwVei4pXpFShtDTo2xfS0+2fpzo2khBCXM7ZI/M1a4z7iuQwezhViXriREhIgNdfr1g9sVRfCCEcqaqPzJ3iZKI0kxNC1HaXO5noFFUfSUkwcqRRvwzG/ahRcPCgY+MSQghn4BSJWuqZhRDi0pwiUUPVV8YLIYSrcpqTidJMTgghLs5pStRCCCEuThK1EEI4OUnUQgjh5CRRCyGEk5NELYQQTk4StRBCOLkquYRcKZUJHLrK2UOA45UYTmWRuCpG4qoYiatiamJcDbTWFx1Ft0oS9bVQSm241PXujiRxVYzEVTESV8XUtrik6kMIIZycJGohhHByzpiopzk6gEuQuCpG4qoYiatialVcTldHLYQQojxnLFELIYQoQxK1EEI4uWpL1EqpAUqpPUqp/Uqpv17k/fuVUplKqUTb7eEy792nlNpnu91XzXH9t0xMe5VSp8q8V1LmvR8rOa7PlFIZSqntl3hfKaXes8W9VSnVocx7Vbm9rhTXKFs825RSq5RSbcu8l2x7PVEpZf9YbZUTVz+lVHaZ7+uVMu9ddh+o4rieLxPTdts+FWR7ryq3V4xSaolSaqdSaodS6qmLTFPt+5idcVX7PmZnXFW3j2mtq/wGuAMHgIaAJ7AFaHneNPcDH1xk3iAgyXZf1/a4bnXFdd70TwCflXmeW4XbrA/QAdh+ifcHAosABXQD1lb19rIzrh5nlwfccjYu2/NkIMRB26sfsPBa94HKjuu8aW8DFlfT9ooAOtge+wN7L/KbrPZ9zM64qn0fszOuKtvHqqtE3QXYr7VO0loXAl8Dd9g5783A71rrE1rrk8DvwAAHxTUCiK+kZV+W1no5cOIyk9wBzNCGNUAdpVQEVbu9rhiX1nqVbbkAa4Doylr2tcR1Gdeyb1Z2XNW5f6VprTfZHucAu4Co8yar9n3MnrgcsY/Zub0u5Zr3sepK1FFASpnnqVx8JYfaDmnmKqViKjhvVcaFUqoBEAcsLvOyt1Jqg1JqjVLqzkqKyV6Xir0qt1dFPYRRIjtLA78ppTYqpcY6IJ7uSqktSqlFSqlWttecYnsppXwwkt13ZV6ulu2llIoF2gNrz3vLofvYZeIqq9r3sSvEVSX7mNMMxQUsAOK11gVKqXHAl8D1Do6prOHAXK11SZnXGmitjyilGgKLlVLbtNYHHBSfU1FK9cf4EfUq83Iv2/YKA35XSu22lTirwyaM7ytXKTUQmA80qaZl2+M2YKXWumzpu8q3l1LKD+PP4Wmt9enK/OxrYU9cjtjHrhBXle1j1VWiPgLElHkebXutlNY6S2tdYHv6KdDR3nmrMq4yhnPeYanW+ojtPglYivEvW10uFXtVbi+7KKXaYHyHd2its86+XmZ7ZQDfYxwSVgut9Wmtda7t8c+Ah1IqBCfYXjaX27+qZHsppTwwks4srfW8i0zikH3Mjrgcso9dKa4q3ccqu9L9EhXxJowTDnGcq0xvdd40EWUeDwbW6HMnLg5inLSoa3scVF1x2aZrjnGSQpV5rS7gZXscAuyjEk9C2T43lkufHLuV8id61lX19rIzrvrAfqDHea/7Av5lHq8CBlRjXOFnvz+MH+9h27azax+oqrhs7wdi1GP7Vtf2sq37DOD/LjNNte9jdsZV7fuYnXFV2T5WaTujHSs6EONM6QHgJdtrrwO32x5PAnbYVmIJ0LzMvA/avpj9wAPVGZft+T+Af583Xw9gmy3ebcBDlRxXPJAGFGHUaT0EjAfGl9lxPrTFvQ3oVE3b60pxfQqcBBJttw221xvattUW2/f8UjXH9XiZ/WtN2R/5xfaB6orLNs39wNfnzVfV26sXRn3u1jLf1UBH72N2xlXt+5idcVXZPiaXkAshhJOTKxOFEMLJSaIWQggnJ4laCCGcnCRqIYRwcpKohRDCyUmiFkIIJyeJWgghnNz/A0wv72sNSH0zAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "loss_functions = ['L2', 'L1', 'ATAN']\n",
+    "\n",
+    "# turn off printing of solver log\n",
+    "opt.handle_opt_set(handle, 'print file = -1')\n",
+    "\n",
+    "# solve using 3 different loss functions\n",
+    "for lfunc in loss_functions:\n",
+    "    \n",
+    "    # set option for loss function and solve\n",
+    "    opt.handle_opt_set(handle, 'NLDF Loss Function Type =' + lfunc)\n",
+    "    soln = opt.handle_solve_nldf(\n",
+    "        handle, lsqfun, lsqgrd, x, nres, data=data_new, io_manager=iom)\n",
+    "    # plot fitted curve\n",
+    "    plt.plot(t, soln.x[0]*np.sin(soln.x[1]*t), label=lfunc)\n",
+    "\n",
+    "# plot data points   \n",
+    "plt.plot(t,y_new,'*b')\n",
+    "plt.title(\"Fitted with Various Loss Functions\")\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "eed845f1",
+   "metadata": {},
+   "source": [
+    "### Fitted Models and Contour Plots"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "49260d6b",
+   "metadata": {},
+   "source": [
+    "In the first row of plots, the data is fitted using $l_2$-norm loss, $l_1$-norm loss, and $\\arctan$ loss. Shown below each is the contour plot of the objective function value, where the black circles represent the parameters used to generate the data, the cyan circles represents the starting point for the solver, and the cyan wedges represent the optimized solution found by the solver.\n",
+    "\n",
+    "![Contour](nldf_contour.png)\n",
+    "\n",
+    "In the $l_2$-norm case in the left column, the outliers generated by $\\sin(t)$ have pulled the optimal solution away from $x = (5,1)$. The contour plot for $l_2$-norm loss indicates that we don’t have to worry too much about what starting point to use, since there are no local minima in the region displayed, other than global best solution.\n",
+    "\n",
+    "The behaviour of the solver is quite different when using an extremely robust loss function like $\\arctan$ loss, which looks like\n",
+    "\n",
+    "$$\n",
+    "\\underset{x \\in \\mathbb{R}^{2}}{\\text{minimize}} ~ f(x) =\\sum_{i=1}^{21} \\text{arctan}(r_i(x)^2)\n",
+    "$$\n",
+    "\n",
+    "The fitted model and corresponding contour plot for the $\\arctan$ case are in the middle. Here, there are eight local minima in the contour plot for $\\arctan$ loss, with seven of them being substantially worse solutions than the global minimum, and it is one of these we’ve converged to. Therefore, in this case the selection of initial estimation of the parameters is much more important.\n",
+    "\n",
+    "The model fitted with $l_1$-norm loss and the corresponding contour plot are in the right column. Looking at the contour plot, there are still a few local minima that do not correspond to the optimal solution, but the starting point of $x = (2.1,1.4)$ still converges to the global minimum, which lies at\n",
+    "$x = (5,1)$, meaning the part of the dataset generated from $\\sin(t)$ is effectively being ignoring. From the plots of the loss functions, we can see that $l_1$-norm loss is more robust than $l_2$-norm loss but less so than $\\arctan$ loss. \n",
+    "\n",
+    "So, what has happened in each case is: using $l_2$-norm loss, we move to the global minimum which is affected by the whole dataset. Using $l_1$-norm loss, we move to the global minimum which fits most of the data very well and ignores a small portion, treating them as outliers. Using $\\arctan$ loss we move to a local minimum which ignores a large portion of the data (treating them as outliers) and fits a small amount of data very well.\n",
+    "\n",
+    "## Conclusion\n",
+    "\n",
+    "The lesson here is that the same thing that makes a loss function robust – ignoring data that lies far from the current model to some degree – can populate the search space with local minima where the model predicts some of the data well and ignores most of it. In extreme cases like arctan loss, if the starting point fits some of the data very well, the model will likely just be optimized for that portion of the data, even if it is a small portion of the whole dataset. It is therefore important to try a variety of loss functions and stating points when setting up a data-fitting problem, since these will affect both the optimal solution, as well as how easily an optimal solution is found.\n",
+    "\n",
+    "[Learn more about the NAG Library](https://www.nag.com/content/nag-library)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d00b4ddf",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  },
+  "vscode": {
+   "interpreter": {
+    "hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/local_optimization/NLDF/dose_resp.dat b/local_optimization/NLDF/dose_resp.dat
new file mode 100644
index 0000000..44658fc
--- /dev/null
+++ b/local_optimization/NLDF/dose_resp.dat
@@ -0,0 +1,42 @@
+0.0005874,7.327
+0.0005874,-6.043
+0.0005874,-0.428
+0.002937,3.110
+0.002937,-2.340
+0.002937,3.103
+0.01468,-11.981
+0.01468,-4.885
+0.01468,-0.566
+0.03283,-4.475
+0.03283,-5.747
+0.03283,-1.660
+0.07341,-4.922
+0.07341,-4.183
+0.07341,-0.981
+0.1642,6.090
+0.1642,-10.287
+0.1642,-1.919
+0.3670,-11.767
+0.3670,-5.345
+0.3670,-7.134
+0.8207,-3.393
+0.8207,-2.099
+0.8207,-4.490
+1.835,-6.812
+1.835,-5.808
+1.835,-9.666
+4.103,-0.600
+4.103,-5.707
+4.103,-4.203
+9.175,4.313
+9.175,-8.110
+9.175,0.388
+20.52,-10.838
+20.52,-22.657
+20.52,3.820
+45.87,-34.218
+45.87,-30.895
+45.87,-23.929
+91.74,-30.911
+91.74,-44.233
+91.74,-36.776
\ No newline at end of file
diff --git a/local_optimization/NLDF/dose_resp.ipynb b/local_optimization/NLDF/dose_resp.ipynb
new file mode 100644
index 0000000..6bc07cb
--- /dev/null
+++ b/local_optimization/NLDF/dose_resp.ipynb
@@ -0,0 +1,371 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "bf21964c",
+   "metadata": {},
+   "source": [
+    "# Modelling dose–response relationships using data fitting\n",
+    "\n",
+    "The following is the Python code used to fit a nonlinear regression model to dose–response data of a chemical taken from the US National Toxicology Program library."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "793e1544",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "import warnings\n",
+    "from naginterfaces.library import opt\n",
+    "from naginterfaces.base import utils"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "bacb5e9b",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEaCAYAAAD65pvjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAixUlEQVR4nO3de7hcVX3/8ffH3ICEmwSCQC6QBCkBRDxBUPsTlRZQKtoikmNIqlVEuVnxWChaTRAL0gdUrLSpIFK5JSkqArUgreANyQn3RIKRW4KA4RauhoR8f3+sNWQ4cy5zkjOz55z9eT3PPLP32rfvzJkz31lr7b22IgIzM7Nqrys6ADMzaz1ODmZmVsPJwczMajg5mJlZDScHMzOr4eRgZmY1nBzMSkrSzyR9vOg4rDU5OVhTSXpQ0kuSnpP0jKRfSTpOkj+LLSz/3Q4uOg5rHv9DWhH+KiK2BCYCZwH/AFxYbEiJpGFFx2DWCpwcrDARsToirgY+DMyWtBeApK0lXSJplaSHJH2hUrOQNEXSTZJWS3pC0pWV/UnaQ9INkp6StEzSUX3FIOliSRdIuk7SC8C7JO0k6b/y8R+QdFLV+vtL6pT0rKTHJZ2byydJCknHSvqDpEclfa5qu1GSvp6X/SFPj8rLDpK0UtIpkv6Yt/1o1bbvlbQ017Ye6bLfwyXdUVUL26eX1/oXku7N7923AFUtmyzpfyU9md/XSyVtk5f9JzAB+LGk5yV9PpcvkPRY3t/Nkqb19X7bIBIRfvjRtAfwIHBwN+UPA5/K05cAPwK2BCYB9wF/l5ddDpxO+mGzGfCOXD4aWAF8FBgOvBl4Atizj3guBlYDb8/73AJYDPwTMBLYDbgfOCSv/2vgmDw9BjggT08CIsc3GtgbWFV5rcBc4BZgB2B74FfAGXnZQcC6vM4I4L3Ai8C2efmjwJ/n6W2B/fL0m4E/Am8FhgGz8/s7qpvXORZ4DjgyH+Pv8zE/npdPAf4CGJXjuxn4em9/N+Bj+W80Cvg6cEfRny8/Bu5ReAB+lOvRS3K4JX/pDwNerv5SBz4J/CxPXwLMA3bpsv2HgZ93Kft34Et9xHMxcEnV/FuBh7uscxrw3Tx9MzAHGNtlnUpy2KOq7GvAhXn698B7q5YdAjyYpw8CXgKGVy3/Y1XieTi/B1t1OeYFlQRTVbYMeGc3r3MWcEvVvICVleTQzfofAG7v6+9WtXyb/Pq3Lvoz5sfAPNysZK1iZ+Ap0i/cEcBDVcseyssBPk/6YrtV0hJJH8vlE4G35uaVZyQ9A3wE2FHS7rk5pPrxn1X7X1E1PRHYqct+/hEYl5f/HbA7cK+kRZIO7/I6qvf1ELBTnt6pm9e0U9X8kxGxrmr+RVLNBOBvSLWJh3KT2oFVsZ7SJdbxXfZbsVN1bJG+0V+dlzRO0hW52epZ4Pukv0W3JA2TdJak3+f1H8yLetzGBpfhRQdgJmk66cv/F6SmoLWkL76leZUJwCMAEfEY8Im83TuAn0q6mfRFd1NE/EUPhxnTQzmkX7wVK4AHImJqtytG/A6YkftA/hpYKGm7qlXGA/dWxf2HPP2H/JqWdLOsVxGxCDhC0gjgBGB+Ps4K4MyIOLOO3TyatwFAkqrnga+S3oe9I+IpSR8AvlUdRpf9tQNHAAeTEsPWwNNU9WPY4OaagxVG0lb5l/cVwPcj4u6IeIX05XempC0lTQQ+S/oli6QPSdol7+Jp0pfWeuAaYHdJx0gakR/TJf1ZP8O6FXhO0j9I2jz/Qt4rJzAkzZS0fUSsB57J26yv2v6LkrbInbMfBSod5pcDX5C0vaSxpD6N79fxHo2U9BFJW0fEWuDZquP9B3CcpLcqGS3pfZK27GZX1wLTJP21pOHAScCOVcu3BJ4HVkvaGejosv3jpP6X6vXXAE+S+mm+2tdrscHFycGK8GNJz5F++Z4OnEv6Iq04EXiB1BH8C+Ay4KK8bDrwG0nPA1cDJ0fE/RHxHPCXwNGkX+SPAWeTOkvrlpPT4cC+wAOkmsx3SL+MAQ4FluTjfwM4OiJeqtrFTcBy4EbgXyLi+lz+FaATuAu4G7gtl9XjGODB3HxzHKm5jIjoJNWivkVKlMuBv+3hdT0BfIh06vCTwFTgl1WrzAH2I3XOXwtc1WUX/0xKbs/ks6UuITWNPUKq4d1S52uxQUKp6dHMNoWkSaRkMqJL34HZoOSag5mZ1XByMDOzGm5WMjOzGq45mJlZjSFxncPYsWNj0qRJRYdhZjaoLF68+ImI2L67ZUMiOUyaNInOzs6iwzAzG1QkPdTTMjcrmZlZDScHMzOr4eRgZmY1nBzMzKyGk4OZmdUodXJYvRqmTUvPZma2QamTw7XXwtKlcN11RUdiZtZaSpkc2tthzBiYPTvNz5qV5tvbi43LzKxVlDI5zJ0LEybAiBFpfsQImDgRzjij2LjMzFpFKZPDlCkpQaxdC6NHp+c5c2Dy5KIjMzNrDaVMDgDz56fEcOqpsH49XHpp0RGZmbWO0iaHjg5Ytgx22y0lh7a2oiMyM2sdpU0O552XmpEqndJf/rI7pc3MKkqbHNwpbWbWs9ImB3dKm5n1rLTJATZ0Ss+Zk54XLCg6IjOz1jAkbvazsTo64PzzYdw4mDkTVqwoOiIzs9ZQ6prD9OkpMUB6buYZSx7XycxaWamTQ5E8rpOZtTInhyZr5XGdXJsxswonhyZr5VNoXZsxs4pSJ4eHH4ZRo9Jzs7TiKbStXJsxs2KUOjmcfTa8/DKcc05zj9tqp9C2cm3GzIqhiCg6hk3W1tYWnZ2dda8/aRI89FBt+cSJ8OCDAxZWjxYtSl/G48bB44+nU2iLHttp4UKYMSPVpNasgcsvhyOPLDYmM2ssSYsjottvn1LWHC68EEaOfG3ZyJFw0UXNOX6Rp9D2pNVqM2ZWrFImh/e8B0444bVlJ5wA7353MfG0gsootaeckp47OoqOyMyKVMrkAOmXMsDhh792vqxasTZjZsUp7fAZX/kKvOUtsNdecM89cNttRUdkZtY6SpscKqdtQkoQe+1VXCxmZq2mtM1KZmbWMycHMzOr4eRgZmY1nBwK4kHuzKyVtWxykHSopGWSlks6teh4BpoHuTOzVtaSyUHSMOBfgcOAPYEZkvYsNqqB4UHuzGwwaMnkAOwPLI+I+yPiZeAK4IiBPkgRTTse5M7MBoNWTQ47A9V3dF6Zy14l6VhJnZI6V61atVEHWbAgNe0sXNi/7TYlqbTikN1mZl21anLoU0TMi4i2iGjbfvvt+7VtpWnnk59M8x//ePqirrdpZ1P7CzzInZm1ulZNDo8A46vmd8llA+K55+DFF2H9+g1lL76YynszUP0FHuTOzFpdqyaHRcBUSbtKGgkcDVw9UDs/7zzYbLPa8htv7P2LfqD6CzzInZm1upZMDhGxDjgB+B/gt8D8iFgyUPufMgXe+MbXlkmw6669f9G7v8DMyqIlkwNARFwXEbtHxOSIOHOg97/ddq+tPUTAs8/C2LG9b+f+AjMrg5ZNDo02bFi6f3S1lSvhsMN63879BWZWBqVNDiNHvrZDuuKWW3rvZHZ/gZmVQSmTQ3t76nzuzqhRvijNzKyUyWHuXJg0KXVCV3vd62DdOncym5mVMjlUzjqKeG358OGwxRbuZDYzK2VygA1nHX3pS+l5771TB/XZZ7uT2cystMmhowN+/3u4775Ug1i6NJWfeCIcdJBHSTWzcittcqicddTRkfoZRo5M5fVc9ewb9ZjZUFfa5FCxeHFqTlqzpv6rnn2jHjMb6kqbHCqD6B13XJpfvx5eeCFN99Qh7Rv1mFlZlDY5VEZmfeWV15bvsUfPHdK+UY+ZlUVpk8N558E229SW33tvzx3SHnjPzMqilMmhvT3VEJ5+unZZRO+1AQ+8Z2ZlUMrkULlCujtS77WBjg5YtAguuig9+5oIMxuKSpkcpkyBs86qLZfSaa2nnNLz6arTp6eksHQpdHZ64D0zG5pKmRwAPvvZ2rKIdPbRN77R/emqPlvJzMqitMnh619PN/zp6o1vhJkzu08APlvJzMqilMmhvT196XftkB42DHbYoecE4LOVzKwsSpkcKjWAimHD0nDd73xnWjZ3brpiGtLV09UJwGcrmVkZKLqOWz0ItbW1RWdnZ7+2WbgQjj463dxnzZpUY7jsMpg3LyWA6ovjhg2Do45KyxctSoll3Dh4/HFYscKd0mY2OElaHBHdfoOVsuYAKQGMGZNqCSNHwqOPpsfcuTB+PGy2WVpvs81SMqj0K/g2oWZWBsOLDqAoHR2pz+BLX0rPkPohRo2CffeFlStTs9GaNfC1r7lfwczKpbQ1h+nT4Zxzuu983mqrxvcreNhvM2tlpa05wIazj2bM2FBLmDMnJYhKv8LMmalfYaBVX0cxY8bA79/MbFOUtuZQ0d3ZR43sV/CFdGY2GJT2bKWKZp99tHw5vP/98OCD8NJLsPnmsOuucPXV7tcws+by2Uq9aPbZR76QzswGg9InhyL4Qjoza3V9JgdJ3YxANPQ18myijg5YtiyN/rpsmYf9NrPWU0/N4RZJCyS9V5IaHlGL6G5U1oHiC+nMrNXVkxx2B+YBxwC/k/RVSbtvykElfUjSEknrJbV1WXaapOWSlkk6ZFOOszF8NpGZWR3JIZIbImIG8AlgNnCrpJskHbiRx70H+Gvg5upCSXsCRwPTgEOBb0satpHHqEvX5iMPy21mVmefg6STJXUCnwNOBMYCpwCXbcxBI+K3EbGsm0VHAFdExJqIeABYDuy/MceoV9fmI59NZGZWX7PSr4GtgA9ExPsi4qqIWBcRncC/DXA8OwPV1yOvzGU1JB0rqVNS56pVq/p9oN6aj8p6NpGH9DCzinqGz/hCRMyvLpD0oYhYEBFn97SRpJ8CO3az6PSI+FE/46wREfNIfSG0tbX1+0q+uXPhjjvSxWjr1r22+eipp+D88xs7fEYr8pAeZlZRT83h1G7KTutro4g4OCL26ubRW2J4BBhfNb9LLhtwvTUfle1sInfCm1lXPSYHSYdJOh/YWdI3qx4XA+saFM/VwNGSRknaFZgK3NqgY73afHTqqbB+PVx6aaOO1NrcCW9mXfVWc/gD0An8CVhc9bga2KRTTCV9UNJK4EDgWkn/AxARS4D5wFLgJ8DxEfFKz3vaNJ/6VKoZ7LhjSg5DvYbQE3fCm1lXfQ68J2l4RDSqpjAgNnbgvbe9DX7963Qb0FdegeHD081+3v/+dEvQMjnqKLj+evjiF1ON4ZBD4Mori47KzBqpt4H3euyQljQ/Io4CbpdUk0EiYp8BjLGp2tvTKKh/+lOar9wvOqK8zSkdHeXshDez7vV2ttLJ+fnwZgTSTNVnKr30UiqT0qOszSnTp2+YHjduQ4e8mZVTj30OEfFonvwbYG1EPFT9aE54jVHdxj4sX399zDHluqbBzKw39VznsCVwg6SngCuBBRHxeGPDarzKmUqzZ8N3v5uamJYtc3OKmRn0405wkvYBPkyqSayMiIMbGVh/bEyHdLPvAGdm1mo2qkO6G38EHgOeBHYYiMCK5DZ2M7Oe1TPw3qcl/Qy4EdgO+MRgPlPJzMz6Vk/NYTzwmYi4o8GxmJlZi+jtOoetIuJZ4Jw8//rq5RHxVINjMzOzgvRWc7iMdI3DYiCA6luEBrBbA+MyM7MC9ZgcIuLw/Lxr88IxM7NWUE+H9I31lJmZ2dDRW5/DZsAWwFhJ27KhWWkrerg7m5mZDQ299Tl8EvgMsBOp36GSHJ4FvtXYsMzMrEi99Tl8A/iGpBMj4vwmxmRmZgWr5zah6yVtU5mRtK2kTzcuJDMzK1o9yeETEfFMZSYingY+0bCIzMyscPUkh2GSXr3GQdIwYGTjQjIzs6LVM3zGT4ArJf17nv9kLjMzsyGqnuTwD6SE8Kk8fwPwnYZFZGZmheszOUTEeuCC/DAzsxLoMzlImgr8M7AnsFmlPCI8tpKZ2RBVT4f0d0m1hnXAu4BLgO83MigzMytWPclh84i4kXRL0Yci4svA+xoblpmZFameDuk1kl4H/E7SCcAjwJjGhmVmZkWqp+ZwMmkAvpOAtwAzgdmNDMrMzIpVz9lKi/Lk88BHGxuOmZm1gnpqDmZmVjJODmZmVqOeO8G9vZ6y/pB0jqR7Jd0l6QddRn09TdJyScskHbIpxzEzs41TT82hu3s5bOr9HW4A9oqIfYD7gNMAJO0JHA1MAw4Fvp0H+jMzsybq7TahBwJvA7aX9NmqRVsBm/SFHRHXV83eAhyZp48AroiINcADkpYD+wO/3pTjmZlZ//RWcxhJup5hOLBl1eNZNnyZD4SPAf+dp3cGVlQtW0kP96uWdKykTkmdq1atGsBwzMyst9uE3gTcJOniiHiovzuW9FNgx24WnR4RP8rrnE4aluPS/u4/IuYB8wDa2tqiv9ubmVnP6rlCepSkecCk6vUj4t29bRQRB/e2XNLfAocD74mIypf7I8D4qtV2yWVmZtZE9SSHBcC/ke7h8MpAHFTSocDngXdGxItVi64GLpN0LrATMBW4dSCOaWZm9asnOayLiIG+l8O3gFHADfkOpLdExHERsUTSfGApqbnp+IgYkIRkZmb1qyc5/FjSp4EfAGsqhRHx1MYeNCKm9LLsTODMjd23mZltunqSQ2WQvY6qsgB8sx8zsyGqnoH3dm1GIFa81avhbW+DX/0Ktt666GjMrEj1DJ+xhaQv5DOWkDRV0uGND82a7dprYelSuO66oiMxs6LVe5vQl0lXS0M6tfQrDYvImq69HcaMgdm5AXHWrDTf3l5sXGZWnHqSw+SI+BqwFiCfeqqGRmVNNXcuTJgAI0ak+REjYOJEOOOMYuMys+LUkxxelrQ5qRMaSZOpOmvJBr8pU1KCWLsWRo9Oz3PmwOTJRUdmZkWpJzl8CfgJMF7SpcCNpAvYbAiZPz8lhjlz0vOCBUVHNDSsXg3TpqVns8GknrOVbpB0G3AAqTnp5Ih4ouGRWVN1dMD558O4cTBzJqxY0fc21rfqTv4ZM4qOxqx+9Zyt9EHSVdLXRsQ1wDpJH2h4ZNZU06enxADpua2t2HgGO3fy22BXV7NSRLxaKY6IZ0hNTWbWA3fy22BXT3Lobp16rqw2Ky138ttgV09y6JR0rqTJ+XEusLjRgZkNdu7kt8GsnhrAicAXgStJp7PeABzfyKDMhgJ38ttg1mtykDQMuCYi3tWkeMyGjOnTN0yPG7ehw99sMOi1WSnfS2G9JA/DZmZWIvU0Kz0P3C3pBuCFSmFEnNSwqMzMrFD1JIer8sPMzEqiniukv5fHVpoQEcuaEJOZmRWsniuk/wq4gzS+EpL2lXR1g+MyM7MC1XOdw5eB/YFnACLiDnyLUDOzIa2e5LC2eviMbH0jgjEzs9ZQT4f0EkntwDBJU4GTgF81NiwzMytSPTWHE4FppBv8XAasBj7TwJjMzKxgPdYcJG0GHAdMAe4GDoyIdc0KzMzMitNbzeF7QBspMRwG/EtTIjIzs8L11uewZ0TsDSDpQuDW5oRkZmZF663msLYy4eYkM7Ny6a3m8CZJz+ZpAZvneQEREVs1PDozMytEj8khIoY1MxAzM2sd9ZzKOuAknSHpLkl3SLpe0k65XJK+KWl5Xr5fEfGZmZVdIckBOCci9omIfYFrgH/K5YcBU/PjWOCCYsIzMyu3QpJDRDxbNTuadPtRgCOASyK5BdhG0huaHqCZWcnVM3xGQ0g6E5hFuuK6chvSnYHqO+2uzGWPdrP9saTaBRMmTGhorGZmZdOwmoOkn0q6p5vHEQARcXpEjAcuBU7o7/4jYl5EtEVE2/bbbz/Q4ZsNiNWrYdq09Gw20Br5+WpYcoiIgyNir24eP+qy6qXA3+TpR4DxVct2yWVmg9K118LSpXDddUVHYkNRIz9fRZ2tNLVq9gjg3jx9NTArn7V0ALA6ImqalMxaXXs7jBkDs2en+Vmz0nx7e7Fx2dDQjM9XUWcrnZWbmO4C/hI4OZdfB9wPLAf+A/h0QfGZbZK5c2HCBBgxIs2PGAETJ8IZZxQblw0Nzfh8KSL6XqvFtbW1RWdnZ9FhmL3GwoUwYwaMGgVr1sDll8ORRxYdlQ0VA/H5krQ4Itq6W1ZUzcFsyJs/H0aPhjlz0vOCBUVHZENJoz9frjmYNciiRanqP24cPP44rFgBbd3+RjPrv4H4fPVWcyjsOgezoW769A3T48alh9lAafTny81KZmZWw8nBzMxqODmYmVkNJwczM6vh5GBmZjWcHMwayAPv2WDl5GDWQB54zwYrJwezBvDAezbYOTmYNYAH3rPBzsnBrAGmTEkJYu3aNO7N2rVpDJzJk4uOzKw+Tg5mDeKB92ww89hKZg3S0QHnn5/GvJk5Mw2MZjZYODmYNYgH3rPBzM1KZmZWw8nBzGyQauRFlk4OZmaDVCMvsnRyMDMbZJpxkaWTg5nZINOMiyydHMzMBplmXGTp5GBmNgg1+iJLX+dgZjYINfoiSycHM7NBqNEXWbpZyczMajg5mJlZDScHMzOr4eRgZmY1nBzMzKxGoclB0imSQtLYPC9J35S0XNJdkvYrMj4zs7IqLDlIGg/8JfBwVfFhwNT8OBa4oIDQzMxKr8iaw3nA54GoKjsCuCSSW4BtJL2hkOjMzEqskOQg6QjgkYi4s8uinYHq6/xW5rLu9nGspE5JnatWrWpQpGZm5dSwK6Ql/RTYsZtFpwP/SGpS2mgRMQ+YB9DW1hZ9rG5mZv3QsOQQEQd3Vy5pb2BX4E5JALsAt0naH3gEGF+1+i65zMzMmqjpzUoRcXdE7BARkyJiEqnpaL+IeAy4GpiVz1o6AFgdEY82O0Yzs7JrtYH3rgPeCywHXgQ+Wmw4ZmblVHhyyLWHynQAxxcXjZmZga+QNjOzbjg5mJlZDScHMzOr4eRgZmY1nBzMzKyGk4OZmdVwcjAzsxpODmZmg9Tq1TBtWnoeaE4OZmaD1LXXwtKlcN11A79vJwczs0GmvR3GjIHZs9P8rFlpvr194I7h5GBmNsjMnQsTJsCIEWl+xAiYOBHOOGPgjuHkYGY2yEyZkhLE2rUwenR6njMHJk8euGM4OZiZDULz56fEMGdOel6wYGD3X/iorGZm1n8dHXD++TBuHMycCStW9L1Nfzg5mJkNQtOnb5geNy49BpKblczMrIaTg5mZ1XByMDOzGk4OZmZWw8nBzMxqKCKKjmGTSVoFPLSRm48FnhjAcAYzvxeJ34fE78MGQ/W9mBgR23e3YEgkh00hqTMi2oqOoxX4vUj8PiR+HzYo43vhZiUzM6vh5GBmZjWcHGBe0QG0EL8Xid+HxO/DBqV7L0rf52BmZrVcczAzsxpODmZmVqPUyUHSoZKWSVou6dSi42kWSeMl/Z+kpZKWSDo5l79e0g2Sfpefty061maQNEzS7ZKuyfO7SvpN/lxcKWlk0TE2g6RtJC2UdK+k30o6sIyfCUl/n/8v7pF0uaTNyviZKG1ykDQM+FfgMGBPYIakPYuNqmnWAadExJ7AAcDx+bWfCtwYEVOBG/N8GZwM/LZq/mzgvIiYAjwN/F0hUTXfN4CfRMQewJtI70mpPhOSdgZOAtoiYi9gGHA0JfxMlDY5APsDyyPi/oh4GbgCOKLgmJoiIh6NiNvy9HOkL4GdSa//e3m17wEfKCTAJpK0C/A+4Dt5XsC7gYV5lbK8D1sD/w+4ECAiXo6IZyjhZ4J0n5vNJQ0HtgAepYSfiTInh52B6nsnrcxlpSJpEvBm4DfAuIh4NC96DBjg24e0pK8DnwfW5/ntgGciYl2eL8vnYldgFfDd3MT2HUmjKdlnIiIeAf4FeJiUFFYDiynhZ6LMyaH0JI0B/gv4TEQ8W70s0jnOQ/o8Z0mHA3+MiMVFx9IChgP7ARdExJuBF+jShFSSz8S2pNrSrsBOwGjg0EKDKkiZk8MjwPiq+V1yWSlIGkFKDJdGxFW5+HFJb8jL3wD8saj4muTtwPslPUhqVnw3qd19m9ykAOX5XKwEVkbEb/L8QlKyKNtn4mDggYhYFRFrgatIn5PSfSbKnBwWAVPzWQgjSZ1OVxccU1PkdvULgd9GxLlVi64GZufp2cCPmh1bM0XEaRGxS0RMIv39/zciPgL8H3BkXm3Ivw8AEfEYsELSG3PRe4CllOwzQWpOOkDSFvn/pPI+lO4zUeorpCW9l9TmPAy4KCLOLDai5pD0DuDnwN1saGv/R1K/w3xgAmkI9KMi4qlCgmwySQcBn4uIwyXtRqpJvB64HZgZEWsKDK8pJO1L6pgfCdwPfJT0A7JUnwlJc4APk87qux34OKmPoVSfiVInBzMz616Zm5XMzKwHTg5mZlbDycHMzGo4OZiZWQ0nBzMzq+HkYGZmNZwczMyshpODbRRJO0q6QtLvJS2WdJ2k3YuOq78kfVnS54qOoy/5XgufHojtJP1qgGLaXNJNefj7vtb9pKTIFxtWyo7PZYdIurlqeAprAU4O1m95WIEfAD+LiMkR8RbgNIb4iJ0F2wboNjko6el/uWa7iHjbAMX0MeCqiHiljnX3Bu4E9gCQtAXpyuNVwB2ke0V8eIDisgHg5GAb413A2oj4t0pBRNwZET+X9Nl8B617JH2mslzSpHyHsYsl3SfpUkkHS/plvsvY/lXrXJrvRLYwf4lU9lGz77zNPVXrfC7XBiblffxHvqvX9ZI2z+ucnmP4BVAZS6iGpFmS7pJ0p6T/rCOOno5Xsx9JMyXdKukOSf9e+fXdy37OAibn9c/J6y2TdAlwDzBe0g9zLW6JpGNzuK/ZLh/j+Y19LV18hKoxhiT9TFLly3+76r8LsA9p+Ik98vxJwAJgfUQ8Dvww789aRUT44Ue/HqR/7PO6KX8Labym0cAYYAnw5rxsEmmsmr1JP0oWAxcBIg2R/MO8TgBvz9tcRBrvqMd9523uqYrhc8CXq463by6fD8ys2s8WwFbA8soxuryWacB9wNg8//o64ujueDX7Af4M+DEwIpd9G5jV5X3qup+ur3MSaVysA6rKKjFuTkoY23XdLi9/fmNeS5d9jAQe61K2Enhdnn4XcHnVslXAbsBPSLWZ24GDgJ/m5cOAVUV/tv3Y8HDNwQbSO4AfRMQLEfE8abjjP69a/kBE3B0R60lfRDdG+ma4m/SFBLAiIn6Zp7+f91nPvrvzQETckacX52P8ed7Pi5HuYdHTSLzvBhZExBMAsWGwud7i6O543e3nPaQv5kWS7sjzu/URd3ceiohbquZPknQncAtpOPqpPWxX0d/XUm0s8ExlRtJE4JH8t4VUU7grLxsPPBkR9wM7AB3A+cDupL89kZqmXpa0ZR8xW5O4A8g2xhI2DF/cH9WjWK6vml/Phs9i15Eg+xoZch2vbR7drIfjvUL6Rd1I9R5PwPci4rRN3M8Lr+4wdfQeDBwYES9K+hmvfS/6q68YXuqy/zeRk0H2FuDKPL03OQkAz5FunrM/aUTk26q2GQX8aRNitgHkmoNtjP8FRlW1ayNpH1LH4geUxsIfDXyQNDR4f0yQdGCebgd+kad/3sO+Hwd2yG3co4DD+9j/zXk/m+dfqX/Vy2v8kKTt8ut7fR9x9KS7/dwIHClph0pZ/uXdm+eA3n5Vbw08nRPDHsABdWzX39fyqoh4GhgmqZIg9iUnC0lTSU2FlYSwT9X0OcAJuabwatLI788TkW6wYy3AycH6LTcFfRA4WOlU1iXAPwN/AC4GbiXdG+I7EXF7P3e/DDhe0m+BbYEL8jFv627f+ctkbi6/Abi3j9hvI/2ivRP4b9JNn7pbbwlwJnBTbqo5t7c4ejlezX4iYinwBeB6SXfluN/QR9xPAr/MHcfndLPKT4Dh+X07i9S01Ot2/X0t3bieDc1+bwJel1/jP5FukFO5SdDepD4QIuKaiPh1Lt+TVAuF1EdxbT+ObQ3m+zlYy5A0CbgmIvYqOhbrm6T9gL+PiGMk/Q7YLyKe28h9XQWcGhH3DWiQttFcczCzjZJrHv8naes0u9GJYSTwQyeG1uKag5mZ1XDNwczMajg5mJlZDScHMzOr4eRgZmY1nBzMzKyGk4OZmdVwcjAzsxr/H7/sPieDOW4AAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# read in the data\n",
+    "df = pd.read_csv('dose_resp.dat', header=None) \n",
+    "data = df.values\n",
+    "t, y = data[:, 0], data[:, 1]\n",
+    "\n",
+    "# plot input vs output\n",
+    "plt.scatter(t, y, marker='*', color='b')\n",
+    "plt.xlabel(r\"Compound concentration ($\\mu M$)\")\n",
+    "plt.ylabel(\"Percent activity\")\n",
+    "plt.title(\"Dose–response data\")\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "82510304",
+   "metadata": {},
+   "source": [
+    "## Fit the model with the good starting point:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "061e8555",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GN, Nonlinear Data-Fitting\n",
+      " Status: converged, an optimal solution found\n",
+      " Final objective value  1.219791E+03\n",
+      "\n",
+      " Primal variables:\n",
+      "   idx   Lower bound       Value       Upper bound\n",
+      "     1       -inf      -3.81844E+01         inf\n",
+      "     2       -inf      -3.36193E+00         inf\n",
+      "     3       -inf       3.25418E+01         inf\n",
+      "     4       -inf      -3.39512E+00         inf\n"
+     ]
+    }
+   ],
+   "source": [
+    "# create a handle for the model\n",
+    "nvar = 4\n",
+    "handle = opt.handle_init(nvar=nvar)\n",
+    "\n",
+    "# register residual structure\n",
+    "nres = len(t)\n",
+    "opt.handle_set_nlnls(handle, nres)\n",
+    "\n",
+    "# define the residual callback function\n",
+    "def lsqfun(x, nres, inform, data):\n",
+    "    rx = np.zeros(nres, dtype=float)\n",
+    "    t = data[\"t\"]\n",
+    "    y = data[\"y\"]\n",
+    "    \n",
+    "    # fit the hill function to the data\n",
+    "    for i in range(nres):\n",
+    "        rx[i] = (y[i] - (x[0] + ((x[1] - x[0]) / (1 + (x[2] / t[i])**x[3]))))\n",
+    "    \n",
+    "    return rx, inform\n",
+    "\n",
+    "# define the residual gradient\n",
+    "def lsqgrd(x, nres, rdx, inform, data):\n",
+    "    t = data[\"t\"]\n",
+    "    nvar = len(x)\n",
+    "\n",
+    "    for i in range(nres):\n",
+    "        rdx[i*nvar] = -1 + (1 / (1 + (x[2] / t[i])**x[3]))\n",
+    "        rdx[i*nvar + 1] = -(1 /  (1 + (x[2] / t[i])**x[3]))\n",
+    "        rdx[i*nvar + 2] = (x[1] - x[0]) * ((x[3] * x[2]**(x[3] - 1)) / (t[i]**x[3] * (1 + (x[2]**x[3] / t[i]**x[3]))**2))\n",
+    "        rdx[i*nvar + 3] = (x[1] - x[0]) * np.log((x[2] / t[i])) * (x[2] / t[i])**x[3] * (1 / (1 + (x[2] / t[i])**x[3])**2)\n",
+    "        \n",
+    "    return inform\n",
+    "\n",
+    "# create the data structure to be passed to the solver\n",
+    "data = {}\n",
+    "data[\"t\"] = t\n",
+    "data[\"y\"] = y\n",
+    "\n",
+    "# set loss function to l2-norm and printing options\n",
+    "for option in [\n",
+    "    'NLDF Loss Function Type = L2',\n",
+    "    'Print Level = 1',\n",
+    "    'Print Options = No',\n",
+    "    'Print solution = Yes',\n",
+    "    ]:\n",
+    "    opt.handle_opt_set (handle, option)\n",
+    "\n",
+    "# mute warnings\n",
+    "warnings.filterwarnings(\"ignore\")\n",
+    "# use an explicit I/O manager for abbreviated iteration output:\n",
+    "iom = utils.FileObjManager(locus_in_output=False)\n",
+    "\n",
+    "# set initial guess and solve\n",
+    "x = [-40., -5., 30., -5.]\n",
+    "\n",
+    "sol = opt.handle_solve_nldf(handle, lsqfun, lsqgrd, x, nres,data=data, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "92bc7d4d",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEaCAYAAAD65pvjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABdO0lEQVR4nO3dd3gUxRvA8e97dymXXiGBAKFLj3RUFFBQEVRUFEUFLICKioq9o9h/dkQQFBQFBWlioyhIR3ovAgklCSWQ3q7M74+9hIQECJDkEjKf59nnts7OXi733szszohSCk3TNE0ryOTuDGiapmkVjw4OmqZpWhE6OGiapmlF6OCgaZqmFaGDg6ZpmlaEDg6apmlaETo4aJqmaUXo4KCVCRGJFZEsEUkTkWQRWS4iQ0VEf+Y0rRLQ/6haWeqtlPIH6gDvAM8CE9ybJYOImN2dh4pMRCzuzoPmXjo4aGVOKZWilJoD3AEMEJHmACISKCLfishREYkTkZfyShYi0kBEFotIiogcE5Ef89ITkUtEZL6IHBeRnSJy+9nyICITRWSMiPwmIhlAVxGpISI/u86/T0QeK7B/exFZIyKpInJYRD50rY8WESUig0UkXkQSRGREgeO8RORj17Z417yXa1sXETkoIk+JyBHXsYMKHNtTRLa5SluHTkm3l4hsKFAKa3mGa21W4P05LCIvFHgP3iywXxcROVhgOVZEnhWRTUCGa376KWl/IiKfFvj7TXBdxyEReTMv6J7p76dVEkopPemp1CcgFrimmPX7gYdc898CswF/IBrYBdzv2jYFeBHjB4w3cIVrvS9wABgEWIBLgWNA07PkZyKQAlzuStMHWAu8AngC9YC9wLWu/VcA97jm/YCOrvloQLny5wu0AI7mXSswElgJVAPCgeXAG65tXQC7ax8PoCeQCQS7ticAnV3zwUBr1/ylwBGgA2AGBrjeX69irtPflc5TrvfNH+hQ4D14s8C+XYCDp/zNNgC1ACtGiS8T8HdtN7vSznsvZgJjXe9DNWA1MORMfz89VZ5Jlxy08hYPhLh+YfYDnldKpSmlYoH/Afe49rNhfDnVUEplK6WWutb3AmKVUt8opexKqfXAz0DfEpx7tlJqmVLKifGlHq6UGqmUylVK7QW+cuUp7/wNRCRMKZWulFp5SlqvK6UylFKbgW+AO13r+wMjlVJHlFJHgdcLXFNeuiOVUjal1G9AOtC4wLamIhKglDqhlFrnWj8YGKuUWqWUciilJgE5QMdirrEXkKiU+p/rfUtTSq0qwXuT51Ol1AGlVJZSKg5YB/RxbesGZCqlVopIdYzgNtz1PhwBPjrl/Svu76dVEjo4aOWtJnAcCMP49RxXYFucazvAM4AAq0Vkq4jc51pfB+jgql5JFpFkjC/kCBFpJCLpp0zfFUj/QIH5OkCNU9J5Aaju2n4/0AjYISL/ikivU66jYFpxQA3XfI1irqlGgeUkpZS9wHImRskE4FaML9w4V5VMpwJ5feqUvNY6Jd08tYA9xawvqQOnLP/AycB3l2s5L08eQEKBPI3FKEHA6f9+WiWhG520ciMi7TC+/JdiVAXl/brc5tqlNnAIQCmVCDzoOu4KYIGI/IPx5bVYKdX9NKfxO816MKqD8hwA9imlGha7o1K7gTtdbSC3ANNFJLTALrWAHQXyHe+aj3dd09Zitp2RUupf4CYR8QCGAT+5znMAGKWUGlWCZA5w8tf7qTIwqtPyRBSXjVOWpwH/E5EojBJEXsA6gFF6CTsl2OVdS7F/P6XUfyW4Bq0C0CUHrcyJSIDrl/dUYLJSarNSyoHx5TdKRPxFpA7wJDDZdUxf1xcSwAmMLy0nMBdoJCL3iIiHa2onIk3OMVurgTRXo6tVRMwi0twVwBCRu0Uk3FUFlew6xlng+JdFxEdEmmG0f+Q1uE4BXhKRcBEJw2jTmFyC98hTRPqLSKBSygakFjjfV8BQEekgBl8RuUFE/ItJai4QKSLDXY3j/iLSwbVtA9BTREJEJAIYfrZ8uarGFmFUne1TSm13rU8A5mEEjgARMYlIfRG5ynU9p/v7aZWEDg5aWfpFRNIwfmW+CHyI8UWa51GMX7N7MUoTPwBfu7a1A1aJSDowB3hcKbVXKZUG9MD4dRwPJALvAl7nkjFXcOoFxAD7MEoy44FA1y7XAVtd5/8E6KeUyiqQxGLgP2Ah8IFSap5r/ZvAGmATsBmjzv5NSuYeIFZEUoGhGNVlKKXWYPwK/xzji/Y/YOBprisN6A70xnhvdgNdXZu/AzZiNDzP42RAO5sfgGs4WaWU516MxvxtrnxNByJd24r9+5XwfFoFIErpwX40raREJBojmHgUV52iaRcLXXLQNE3TitDBQdM0TStCVytpmqZpReiSg6ZpmlbERfGcQ1hYmIqOjnZ3NjRN0yqVtWvXHlNKhRe37aIIDtHR0axZs8bd2dA0TatURCTudNt0tZKmaZpWhA4OmqZpWhE6OGiapmlFXBRtDpqmVT42m42DBw+SnZ3t7qxc9Ly9vYmKisLDw6PEx+jgoGmaWxw8eBB/f3+io6MREXdn56KllCIpKYmDBw9St27dEh9XpauVEhLgqqsgMdHdOdG0qic7O5vQ0FAdGMqYiBAaGnrOJbQqHRzeeAOWLoWRI92dE02rmnRgKB/n8z5XyeBgtYIIjBkDTqfxKmKs1zRN06pocNi7F+66C3xcY2L5+ED//rBvn3vzpWla+fLzKzpw4IcffkjTpk1p2bIlV199NXFxp31O7KJWJYNDZCQEBEB2Nnh7G68BARBR3KCJmqZVKZdeeilr1qxh06ZN3HbbbTzzzDPuzpJbVMngAHD4MAwdCr/8AtWrQ2ysu3OkaVpF0LVrV3xc1QodO3bk4MGDbs6Re1TZW1lnzDBeH37YCBS63z5Nc5/Xf9nKtvjUUk2zaY0AXu3d7ILSmDBhAtdff30p5ahyqbLBwWo1qpPyjBljTN7ekJV1+uM0TasaJk+ezJo1a1i8eLG7s+IWVTY47N0LI0bArFmQmWk0SvfpAx984O6caVrVc6G/8EvbggULGDVqFIsXL8bLy8vd2XGLKhscdKO0pmnFWb9+PUOGDOGPP/6gWrVq7s6O21TZ4AAnG6UHD4Zx44wnpjVNqzoyMzOJiorKX37yySf57bffSE9Pp2/fvgDUrl2bOXPmuCuLblOlg0NeozTA6NHuy4emae7hdDqLrHvyySfdkJOKp8reyupuul8nTdMqMh0c3ET366RpWkWmg0M5q8j9OunSjKZpeXRwKGcVuV8nXZrRNC1PlQ4OGzZAUBBs2lR+56yIt9BW5NKMpmnuUaWDw913Q0qK8Uu+POXdQrtypfHq7mqcilya0TTNPapkcBAxpq1bjeWtW0+uKw8zZhi3zrZqZbwWvKXWHSpiaUbTysusWbMQEXbs2EGHDh2IiYmhdu3ahIeHExMTQ0xMDLGxsdjtdsLDw3nuuecKHd+lSxfatm2bv7xmzRq6dOlSzldR+qpkcFi/HurUKbwuOho2bnRLdiqEilaa0bTyMmXKFK644gqmTJnCqlWr2LBhAyNHjuSOO+5gw4YNbNiwgejoaObPn0+jRo2YNm0aSqlCaRw5coTff//dTVdQNqpkcIiJAV/fwut8faFlS7dkp0KoaKUZTSsP6enpLF26lAkTJjB16tQz7jtlyhQef/xxateuzYoVKwpte/rppxk1alRZZrXcVdknpE+cgGbN4JVXjLtzjh93d440rQr7/TlI3Fy6aUa0gOvfOeMus2fP5rrrrqNRo0aEhoaydu1a2rRpU2S/7OxsFixYwNixY0lOTmbKlClcdtll+ds7derEzJkz+fvvv/H39y/d63CTKllyAIiPhy1b4Pbbjdf4eHfnSNO08jZlyhT69esHQL9+/ZgyZUqx+82dO5euXbtitVq59dZbmTVrFg6Ho9A+L730Em+++WaZ57m8VNmSg6ZpFchZfuGXhePHj/PXX3+xefNmRASHw4GI8P777xfZd8qUKSxdupRo16hgSUlJ/PXXX3Tv3j1/n27duvHSSy+xcuXK8rqEMlVlSw6aplVt06dP55577iEuLo7Y2FgOHDhA3bp1WbJkSaH9UlNTWbJkCfv37yc2NpbY2FhGjx5dbCnjpZde4r333iuvSyhTOjhomlYlTZkyhT59+hRad+uttxb50p85cybdunUrNOjPTTfdxC+//EJOTk6hfXv27El4eHjZZbocyam3ZFVGbdu2VWvWrHF3NjRNOwfbt2+nSZMm7s5GlVHc+y0ia5VSbYvbX5cc3ER3cqdpWkVWYYODiFwnIjtF5D8Ree7sR1QuupM7TdMqsgoZHETEDIwGrgeaAneKSFP35qp06E7uNE2rDCpkcADaA/8ppfYqpXKBqcBNpX0Sd1Tt6E7uNE2rDCpqcKgJHCiwfNC1Lp+IDBaRNSKy5ujRo+d1kueeg3/+MV7PxYUEFd3JnaZplUFFDQ5npZQap5Rqq5Rqe663juVV7Xz7rbE8adK5Ve1caHuB7uRO07SKrqIGh0NArQLLUa51peJ0d++e7a7e0mov0J3caVrFcfDgQW666SYaNmxIvXr1GDZsGDk5OUycOJFhw4YV2rdLly4UvG1+w4YNiAh//PFHof1EhKeeeip/+YMPPuC1115j1KhR+d2Am83m/PlPP/2U1157jQ8++ACAgQMHMn369EJpxsbGYrVa84+JiYnh27xfuGWgogaHf4GGIlJXRDyBfsCc0kp8377ix27IyTnzF71uL9C0i4tSiltuuYWbb76Z3bt3s3v3brKysnjmmWdKdHzB7r4L8vLyYsaMGRw7dqzQ+hdffDG/G3Cr1Zo//9hjj5XofPXr188/ZsOGDdx7770lu9DzUCGDg1LKDgwD/gS2Az8ppbaWVvqRkVCzZuF1Imf/otftBZp2cfnrr7/w9vZm0KBBAJjNZj766CO+/fZb0tPTz3isUopp06YxceJE5s+fT3Z2dv42i8XC4MGD+eijj8o0/2Wpwna8p5T6DfitrNJv1w4CA0+OBqcU/PXX2Y/Lay8YPBjGjTMapzVNuzDvrn6XHcd3lGqal4RcwrPtnz3jPlu3bi3SRXdAQADR0dHY7fYzHrt8+XLq1q1L/fr16dKlC7/++iu33npr/vZHHnmEli1blrgUUhJ79uwhJiYmf/mzzz6jc+fOpZZ+QRU2OJS13383fvkXlJAAUVFwps9EwfaB0aPLJm+aprlfSkpKsevFVSd9anff3377baHgEBAQwL333sunn36KtZQeZMqrVioPVTY4nK7x2eEwqpi8vSErq3zzpGlV1dl+4ZeVpk2bFmn4TU1NJTExkdatWxcZHe748eOEhYXhcDj4+eefmT17NqNGjUIpRVJSEmlpaYUG+xk+fDitW7fOr7aqTCpkm0NZs1qNxufTbdONzJpWNVx99dVkZmbm3/XjcDh46qmnGDZsGO3bt2fZsmUkuu41X7NmDTk5OdSqVYuFCxfSsmVLDhw4QGxsLHFxcdx6663MnDmzUPohISHcfvvtTJgwodyv7UJVyeCQd9dRcXJydCOzplUVIsLMmTOZPn06DRs2JDQ0FJPJxIsvvkj16tX55JNP6NmzJzExMQwfPpwpU6ZgMplK3N03wFNPPVXkrqWSGDJkCFFRUURFRdGpUyfgZJtDwVtgy0qV7bL7oYfgyy/BbDaqkgIDjfU33wypqfrZA00raxWxy+7ly5dz5513MnPmTFq3bu3u7JQq3WV3CR0+DA8/DGvXGq8hIZCWZjy7oAODplVNl112GXFxcRddYDgfVbZBesYM2JGYSuf+8dhtoKIE/5rCD5vgh8sFixlef10wiWASMIkgrlezSbB6mPHxMuPjacbqYcHXy4yPp4UQX0+CrB6YTMU8ZadpmlZJVNngALDvaAaBHfZhsytAIaeUo97/8/zStZiEEF9Pwvy8CPf3onaID3VCfagT6kt0qA/RYb54mKtsoU3TtEqgSgeH61tEcvkHkfkd8Hl7Q26uYvAQ+PQzhVMplAKnUjhdr8oJTz7t5LsfHNzR38FTzzrIzLGTmesgI9dOUnoux9JzOJaeQ1J6LofTslm3/wRp2ScfnvA0m7gk0p9mNQJpXjOAtnVCaFTdL//+aU3TNHersg3SViv06vwPl7VdDwpAUAgosJgFb2/jTgYBEEEQkpNBKQEEh8OM3eZBbq4ntlwvuvew4uPji2+AL/4hgfiHBRIQHoTFywOlFMmZNuKOZ7LvWDo7EtLYEp/ClkOppGTZAAjz86RjvVAubxDG1U2qUc3fu3TfJE2rYCpig/TF7FwbpKtsyUEpiIg4gsnswBUdUCgU4BBFui1vzclXZS2wnzhROBFx4Aks3lX8ebyUBR/xxt/Lj7DgUKJqRNI2ugaR17TB7GHhwPEsVu5LYsWeJJbvOcbcTQmIQJvawVzXPIKeLSKpEaSHidM0rXxV2eCwbx90v6Ixx2P3ooziAYgyXgGTWbjpZqOUkFe2UsDGjRAbBxYPB5iEGrWEenXN4DThtJlQNhPisGByml0pOck1Z5HkTGZ/diIkboV1YFYmgkx+RARXo1HjhvTq0QxrUCt2Hk7jzy2H+WNrIm/+up1Rv23nyobh9GtXi6ubVMfTotsqNK20+Pn5Felg77XXXsPPz48RI0YwcOBA5s+fz969e/Hy8uLYsWO0bduW2NhYYmNjadKkCY0bN84/dvXq1Xh6epb3ZZSJKhkcrFajX6VWUclcErIeESegEDEmD4vCw+Lk0EqFUgrldJJX/RYKhIYUSOw4pB0v/jwe3lZ8AgPx9rbi4WnFR6woewAeDl/MJjNZHunsTNrL1hX/Ict/J8QUQP0a0dx2eWsev6YzsccymLH+ENPWHOCh79cR5ufJvZ2iuadjHYJ9L44PoKZVdGazma+//pqHHnqoyLby7OuovFXJ4LB3LzzyCFh2HuXlmJJ3/KqUUXpQCEqBXZnJdZqwOc3YnBZsykyu00KWw4MMpzeZTisZ9mNkJHuQnG0hO8f41Z+Dq/8mfx/8vEPw8qiHh0cQmZ7p/HtwE6t/2kQgvjSp1ZB7r+nE41c35J/dR/l2eSwfzt/FmEV7uKNdLQZfWU9XOWlaGRs+fDgfffQRDz74oLuzUq6qZHCIjITq1WH+olYM++19o8SAwiRORBQmUbz6iuL7yU7u7q/w91egFKKcCIo5c2DNGkX7tk563WCECyNyOE/OO3LBlgm2LMjNAFsmtuwskpMzOJGcydFkG4czfUhMSibTcRAAswWC/Org69eULGsuKw9sYNXXG6jlXZ2OnTox4d627D6awbh/9vL9qjh+WL2fAZ3q8HCXBrokoVVqiW+9Rc720u2y26vJJUS88MIFp1O7dm2uuOIKvvvuO3r37l1oW8EutC+//HJGX0RdNVfJ4ADGWAxRZgsndvsWKA2YQIR33xO+GwOL/xHs6SbuuUdAhAcHC7m2k/uuWyeMGSdYPOC77wRMJoy2CzGaLrwE8bFgsnojXt6YrN4EeHkTZPWmnpcXJrMdyU0mNXYb+zevIW7XPvYfiiMlOQ4EQvzr4RPciMMc56dFswhY9CdXxHTivT6X80T3hny8YDcTlu5j6uoDDO1Snwc618XLYnbzO6tpF5/nn3+em266iRtuuKHQel2tdBE6eBBeuGobz5jeLLIt83/QDehWHdgBCS8a60eGnT69Q0+eXz7ExwdLUBB+QUG0DA4mpnoNUgL8OJB1griEg6TE7cXL7ElYeCfSA+C3DX+xZP0yrmjSgvf69mTwlfV474+dvP/nTn5ee5CRNzXnioZnyKimVUCl8Qu/LDVs2JCYmBh++uknd2el3FTJ4JDXIO0hVzPbtMz1hIMxXd1NERSo+OMPRU62wuqtuP46xQsvKMLDFK+8rJg6VeHpoXDYFP3uULzySl61kkI5C1YzKZTdgcrJxpmVXeTVmZGBIzkZx4kTOJKTsSefIDc2FlNiInUcDmoDJ3y9ORAWRIJ9MY5EqBnWjowQC7/vWMOqkVu5vm0jxt97M4t2HeXVOVu5e8IqbmgZyes3NiPMz8vdb7WmXTRefPHFIiWHi1mVDA5798KIETB1qicnHCF4e0OtWtCgAUz9zeixNS7v7rZ0UOFQ81JjcVcq3HD/yWFCtyeAV/3SzZ+y27EfPkzuwUPUOHiQBnv2kLp9G7vj49hrW4H9mIWoau05Huzk+7Ubif53Bzf3bMWfj/dg7D/7GP33f6zYk8RbfZpzXfPI0s2cpl1EMjMziYqKyl9+8snTVwE0a9aM1q1bs27duvLImttV2SekH3rI+HL39DTGcIiIgHXroG7dosOHQsUYGU4pRfaheDZOn8K6f5eT41T41+xEgm82ZoSOaal06tuNA/Wu4MmfNrDlUCo3x9Tg9RubE+jj4d7Ma9op9BPS5Ut32V1Chw/D0KGwciU0bWqMHz1y5MmBgHx8jP18fCrOyHAigjWqJh2Hj2DIpJ/oMvB+Mo7+S0hcLP4Ob/4J8GXSnA3kPjKASdUO8uRVdZi7KYEbPlvCxgPJ7s6+pmmVSJUtOcDJtodTmc1Gk4GnJ+TmwpAh8MUXpZDRMpCdns7yn6ew7vdfCKp+KYeDLAjQYftBah3cSPYtdzM8qx4HsuGlG5pyb6c6uoM/rULQJYfypUsO5+B0pYQePU6WKoYOBdcQsqUqIQGuuurC0/b286PbgAcZ9MFoxDOJwLg9+Dq8WNI0krWdrkcmjeeLX17nqaRVvDlzA8N+WE9Gjv3sCWuaVqVV6eAQGWmMF52dbbQpZGcby7/9BqNHQ6tWxmtZjAz3xhuwdKlRlVUaQqNqMejdT2jf9yYce1dRM92Tnf6Kv/vcgapbnasW/cRPyz4i44/fuG3Mcg4lu7kBRdO0Cq1KBwco3PZQVqWEgqxW4xm5MWPA6TReRYz1F8pkMtP+hj7c//FobLmx1DicRprYmX1Je5y3diQwzJ9n//2ee2d9yP3vzGZt3IkLP6mmaRelKh8cZswo+1JCQeXR4B1YLYIhH35BZEw0Qftj8VBmpluiiW/TkOpPDCYm5QBvz32H7559n9nrD5beiTVNu2hU+eBQ3k5XlRURUbrnMVss9B7yKFc/8iCm2K2E2bxZoAJZFp9EvfHvENC+LUM2zCTpieF8/fuG0j25plUSfn5+Rdb9888/tG7dGovFwvTp092Qq4pBBwc3KM+qrEvadmTQ+x+Qe3QbNbK8WCsWps9eSe0X7yf02Wdpf2QH9V94iDGjZ+J0Vv471zTtQtWuXZuJEydy1113uTsrbnXW4CAioeWRkYqmtO4mKk55V2UFVY9g2OdjsXOEmmlmdpscTJy0iIArW1Jv6hR8rF5cPvplvnzpc2wOZ9lmRtMquOjoaFq2bInJVLV/O5ek+4yVIrIB+Ab4XV0MD0aUQMG7iSrqMw7nwsPLm4fe+ZAfPn6fqH2pHAqG8ZPmcd+gXlz660xWDRhC1xlfMDnhAP2+HIXVSz9RrZWfJT/t4tiB9LPveA7CavnR+fZGpZpmVVKS0NgIGAfcA+wWkbdE5ILecRHpKyJbRcQpIm1P2fa8iPwnIjtF5NoLOc/5KMu7idxNROj/xDPU6NCAyKOZHJccJnwzl5y0JC77+XuOdrmejit+YW6/wWRlFvN0oKZpVcZZSw6uksJ8YL6IdAUmAw+LyEbgOaXUivM47xbgFmBswZUi0hToBzQDagALRKSRUspxHucokYQE6NcPfvzRaBTO65Rv1izIzDTuJurTBz74oKxyUP569h/I4pA58MtSEsNhwvjpDBo6gM5j/seiVyNp/tPXzLttEFdP/Qq/gKINdppW2vQv/IqnRG0OIvK4iKwBRgCPAmHAU8AP53NSpdR2pdTOYjbdBExVSuUopfYB/wHtz+ccJXXqw2jldTeRu111/Y3E3NWT6kfSSZEcJoydRNrhE3Qd+TSJ9z1Gg70b+eeWe0g9kerurGqa5gYlqVZaAQQANyulblBKzVBK2ZVSa4AvSzk/NYEDBZYPutYVISKDRWSNiKw5evToOZ/oTNVH5f1gnLu0v6ILHe67lWpH0kkjl6/HfEWvHqk0ufchjjz6PLUP7uSfvgNISyndumBNqyjyuuzOmz788EP+/fdfoqKimDZtGkOGDKFZs2buzqZblKRB+iWlVKHhj0Skr1JqmlLq3dMdJCILgOJ+b7+olJp9jvksQik1DqMthLZt255zI/mZqo8KlhIuoiFhixXTriMenhaWfvkjh6sprm4/jnfeeIiPR9/DYhR1P3uHv++4j+4/T8LqexE0vGhaAU5n8XfnHTyoHw4tScnhuWLWPX+2g5RS1yilmhcznSkwHAJqFViOcq0rdVWl+qgk2nZsy0fz+hJxLJtUcwZ1Asfh65XLdSPu5egDj9MwdjN/3vkg2dk57s6qpmnl5LTBQUSuF5HPgJoi8mmBaSJQVt16zgH6iYiXiNQFGgKry+hc+dVHv/wC1atDbGxZnali27sX2nRsz+SV3ahxwkGKRwpvjxjL7l02uowYwqH+Q2m8ay2z73sKm73M7g3QNK0COVPJIR5YA2QDawtMc4ALusVURPqIyEGgE/CriPwJoJTaCvwEbAP+AB4pyzuVRo+GLVtg8mQjUERHl9WZKra8UtSyDd1ZuLkONZPhuEcS878bj9Ph5JqXH+fQ9X1puW4hk4ePwqGfpNa0i95ZB/sREYtSqkIPAHC+g/1YLOAoJvRUhCFBy9sttxhBYvBgWDHxBSxi5WCAg6aBdbn9iQEop5PF9wyl+tolLOo3nKGvDtaDBmkXRA/2U75KbbAfEclrhF4vIptOnUovy+Uv706l4gJDRRkStLwV7NJj6P/eoHbIVmpkerEtZR+/j5+BmExc+fVnJNVrwmU/fc74cXPcnWVN08rQmaqVHne99gJ6FzNVWqd2mw3G0KAiVbdRuhCTmR7D3iNEllM9x8qqg5tYPuNvTF5edJw8gZzAEC4Z8xaTf1vr7pxqmlZGThsclFIJrtlbAZtSKq7gVD7ZKxsF71TK61vrllvgoYcu3mcazllQbW67ewDW7H8JsVtZsPEfti5ejyUkmOYTviTQno3XqJeZs7ZSfxQ0jcTERPr160f9+vVp06YNPXv2ZNeuXQB8/PHHeHt7k5KSkr//xIkTGTZsWKE0unTpQl7Vdnp6OkOGDMlPr0uXLqxatQoo2kV4Xlrz58+nU6dO5FXzOxwOLr30UpYvX15m1302JbmV1R+j64wlIjJMRKqXdabKQ96dSuvWwcMPg91ePj2kViotbmPgFcF4pu7Ez+nJrL/msn/zHnyaNqHGqDdpnrSPna+8wZLd5/4QoqZVBEop+vTpQ5cuXdizZw9r167l7bff5vDhwwBMmTKFdu3aMeMcvhgeeOABQkJC2L17N2vXruWbb77h2LFjZzyme/fu1KlThwkTJgDw2Wef0bZtWy677LLzv7gLVJK+lV4HXheRlsAdwGIROaiUuqbMc1eGCv6tL/YH3S7IDR8wNK4Tn+8LwBYcztTpPzI4dChhN/Umc8sWen33LZ++8SWBbz1Ky6ggd+dW087J33//jYeHB0OHDs1f16pVKwD27NlDeno6X3zxBaNGjWLQoEFnTW/Pnj2sWrWK77//Pr/L77p161K3bt2zHvvRRx9xxRVX0KlTJz7//HNWry6zu/hLpCRPSOc5AiQCSUC1ssmOVuF4B0Kvj3locl/GJj/C8WBvJo2dwNBnHqXWs0/z37ZtDFk3nec/rstnz95MvXDdUZ927v6eOI4jcXtLNc1qderRdeDgM+6zZcsW2rRpU+y2qVOn0q9fPzp37szOnTs5fPgw1aufueJk69atxMTEYDabi92elZVFTExM/vLx48e58cYbAYiMjGT48OF06tSJTz/9lJCQkDOeq6yVpOO9h0VkEbAQCAUeVEq1LOuMaRVIox6YL72TgcHjCT+hOEEGkz4YixIT0R/+Dy9fHx5dNpH7xi3jSJru6lu7OEyZMoV+/fphMpm49dZbmTZtGsBpb+Euya3dVquVDRs25E8j83r8dHnkkUdwOBwMHDjwgvN/oUpScqgFDFdKbSjjvGgV2bVv4bPnL3qH/MNv+6/moP8JfvzoG+4ccT9R774NQx+i94rp3B/gy9TBHfH1OpdCqVbVne0Xfllp1qxZseNEb968md27d9O9e3cAcnNzqVu3LsOGDSM0NJQTJ04U2v/48eOEhYURFBTExo0bcTgcpy09nInJZKowzw+d6TmHANfs+8B+EQkpOJVP9rQKwycEbviQGifW0LZNLjWyrOxMP8C8SbPx79KFkAED6PnfUvzXLOPRKeux6+FGtUqgW7du5OTkMG7cuPx1mzZt4rHHHuO1114jNjaW2NhY4uPjiY+PJy4ujnbt2rFs2TISXbc2rlmzhpycHGrVqkX9+vVp27Ytr776av6dR7Gxsfz6669uub4LcaZqpbyxGtZidKNRsAuNc38cWav8mvSCZrcQ89/n1G4bQZjNysq9G9i4cBXhTz2Jd7NmPL9lOpvW7+KVOVs529P3muZuIsLMmTNZsGAB9evXp1mzZjz//PMsWrSIPn36FNq3T58+TJ06lerVq/PJJ5/Qs2dPYmJiGD58OFOmTMlvgB4/fjyHDx+mQYMGNG/enIEDB1KtWuVrpj1r9xmVwfl2n6Gdh4xj8HlbCG/C97m3kHjoGDkmBwPuvIdwK+ztcwuHoxoyoMndPHP9JTzcpYG7c6xVULr7jPJVat1nFDh4YUnWaVWEbxh0Hwn7l9O/vTd+Fg8EmPrDFHL9g6n+zNNU27WR523beO+PnczeUCY9rmuaVsbO1Obg7WpbCBOR4ALtDdGcZnQ2rYqIuRtqd4L5L/Pgk/cSkiFkSA4TP/4Kvz634Hv55Vz191SuD7YxYtpGVuxJcneONU07R2cqOQzBaF+4hMLtDbOBz8s+a1qFZTJBr48gJw3TglcZMOpJItM8OGZKY/J7X1H9jZGIxcKI9T8RHWxl8Hdr2HU4zd251jTtHJypb6VPlFJ1gRFKqXpKqbquqZVSSgeHqq5aE7jsUdj4A97xa7jxufuomWklznGUudMXEvHyS+RuWM+XXjvw9jAz6Jt/OZKqn4HQtMqiJH0rOUUkKG/BVcX0cNllSas0rnwGgurA3CeoHhJMx7uvpVquD1uS9rAh2wv/7t2xjRvDN11COZGZy6CJ/5KeU6GHBtE0zaUkweFBpVRy3oJS6gTwYJnlSKs8PH3ghv9B0m5Y9iktWsZQ/7KmBDq9Wbp1NWl97sTk64vfp+8yul8rdiSm8cj36/QzEJpWCZQkOJilwCN7ImIGPMsuS1ql0rA7NL0Z/nkfkvZwba9eVIsIw6JMzF20CO/HniJr40ZarVnAmzc3Z/Guo7w0a4t+BkKrMEaNGkWzZs1o2bIlMTExrFq1ii5dulC7du1Cn9Obb765UJfbW7dupVu3bjRu3JiGDRvyxhtvFNp/1qxZtGzZkiZNmtCiRQtmzZoFGF1kxMTE0LRpU6xWKzExMcTExDB9+nQGDhxY5IntvHPGxsbSvHnzIvmfNm0azZo1w2QyUZq39JckOPwB/CgiV4vI1cAU1zpNM1z3Dpg94benQSnueuQBQsWbbLExa/s+vK+8iiMff8xtNc0M69qAqf8eYPTf/7k715rGihUrmDt3LuvWrWPTpk0sWLCAWrVqARAUFMSyZcsASE5OJiEhIf+4rKwsbrzxRp577jl27tzJxo0bWb58OV988QUAGzduZMSIEcyePZvt27czZ84cRowYwaZNmxg9ejQbNmzgt99+o379+vn9LN12223ndQ3NmzdnxowZXHnllRf4bhRWkuDwLPA38JBrWgg8U6q50Cq3gEjo9hLsWQjbZgFw36tPEJHpyXFzBvMjGqOAhFdf48nuDelzaU0+mLeL6WsPujXbmpaQkEBYWBheXl4AhIWFUaNGDQD69evH1KlTAZgxYwa33HJL/nE//PADl19+OT169ADAx8eHzz//nHfeeQeADz74gBdeeCG/q+66devy/PPP8/7775f6NTRp0oTGjRuXerolGc/BCYxxTZpWvHYPwIbv4ffnoP7VmLwDuPvNx5j80mcc8k1hfc97uHT6WNJ++YV3b+3NkbRsnvt5E+H+XlzVKNzdudfcLPmXPeTGZ5Rqmp41fAnqXf+M+/To0YORI0fSqFEjrrnmGu644w6uuuoqAK6++moefPBBHA4HU6dOZdy4cbzxxhuAUaV0alff9evXJz09ndTUVLZu3cqIESMKbW/bti2jSzB4zNNPP82bb755LpdaJkryhHRDEZkuIttEZG/eVB6Z0yoRswV6fQzph+HvtwCwevnQ84m7iMjxYZclmf+69eXwW29jSjnBl3e3oWF1fx6avJbNB1POnLamlRE/Pz/Wrl3LuHHjCA8P54477mDixIkAmM1mrrjiCqZOnUpWVhbR0dHlkqf333+/ULfe7lKSfpW/AV4FPgK6AoMoWXWUVtVEtYG298HqsRBzJ0S2omaNWrS/tStLZv3FhvAc/Ko1xHfUW9T88H9MHNSOW75YzqCJq5nx0OXUDvVx9xVobnK2X/hlyWw206VLF7p06UKLFi2YNGlS/rZ+/frRp08fXnvttULHNG3alH/++afQur179+Ln50dAQABNmzZl7dq1+aPKAaxdu5ZmzZqV6bWUppJ8yVuVUgsxOumLU0q9BtxQttnSKq2rXwGfUJj7BDgdALRu246GrRrhpSysvvQSDq3aSPrixVQP8GbSfe2xOxUDvlnN8YxcN2deq2p27tzJ7t2785c3bNhAnTp18pc7d+7M888/z5133lnouP79+7N06VIWLFgAGA3Ujz32GM88YzTHjhgxgrfffpvY2FjAuNPorbfe4qmnnirjKyo9JQkOOSJiAnaLyDAR6QPosSC14lmDoMcoOLQW1k7MX92zbx9qBIdiEycrunZn/9vv4czKokE1PyYMaEt8chb3TfyXzFz9kJxWftLT0xkwYABNmzalZcuWbNu2rVApQUQYMWIEYWFhhY6zWq3Mnj2bN998k8aNG9OiRQvatWvHsGHDAIiJieHdd9+ld+/eXHLJJfTu3Zv33nuv0BCh52Pnzp1ERUXlT9OmTWPmzJlERUWxYsUKbrjhBq699toLOkees3bZLSLtgO1AEPAGEAC8r5RaWSo5KAW6y+4KRimY1BsSN8GwNeB3si/7r1/+H/tNaUTm+HJTmJmIEU8C8OfWRB6avJaujasx9p42WMy65vJip7vsLl+l3mW3UupfpVS6UuqgUmqQUurWihQYtApIBG74EHIzYd7LhTYNeG04Udk+JHhnMO9QDjmuIv21zSIYeVNzFu44wsuz9UNymuZu+ueZVjbCG8Hlj8OmqbDvZMOd2Wym3ysPEZnty97AHH75bCrKaXSncXfHOgzr2oApqw/w6UL9kJymuZMODlrZuXIEBEfDr0+B/WRjs5+vP9cPvY1Qu5VtwU7mv3vyEZqnejTi1tZRfLRgF1NX73dDpjVNg5I953B5SdadCxF5X0R2iMgmEZl5Sq+vz4vIfyKyU0RKp2VFcw8PK/T8AI7tguWfFtpUO7ou7a/uhI/yZG32CTb/ZXRTICK8c2sLrmoUzgszN/PHloTiUtY0rYyVpOTwWQnXnYv5QHOlVEtgF/A8gIg0BfoBzYDrgC9cHf1plVXD7tDkRqNjvuP7Cm3q0PVKGlcLR6GY//cSEg8ZgcDDbGLM3a25tHYwj03ZwJLdR92Rc02r0s40TGgnEXkKCBeRJwtMrwEX9IWtlJqnlMq7Z3ElEOWavwmYqpTKUUrtA/4D2l/IubQK4Lp3wGSB358x7mQqoPewB6ifZiLNlMP0MZNJT00FwMfTwtcD2lEv3JfB365lbdwJd+Rc06qsM5UcPDGeZ7AA/gWmVOD8ug8s3n3A7675msCBAtsOcprxqkVksIisEZE1R4/qX5YVWmBN6PoC7J4H238psrnvqCepfwyOWTKY/O5X2G3G74ZAHw++u78D1QO8GPTNarYnpJZ3zrWLXMEuuAEmTpyY/6zC2brPzutuu1WrVlx22WXs3LkTgEWLFhEYGJjfFXdMTEz+w3Jms5mYmBiaN29O7969SU5OLuMrPH9nGiZ0sVLqdaCjUur1AtOHSqndpzsuj4gsEJEtxUw3FdjnRcAOfH+uGVdKjVNKtVVKtQ0P1x23VXjth0D1FvDHc5BTeDxpk9XKTX2vou4JDxI90vjm9ZOj0Ib7ezH5gQ74eFq4Z8Jq9h0r3c7ZNO185XW3vXHjRgYMGMBbb72Vv61z586F+ke65pprAOPhuQ0bNrBlyxZCQkJK1BGfu5SkzcFLRMaJyDwR+StvOttBSqlrlFLNi5lmA4jIQKAX0F+dvKn9EFCrQDJRrnVaZWe2QK+PIDUeFr1TZLN/ly5c5ThMVIaVQ5ZkvnntZLNWVLAPkx9oj1Mp7h6/ioSUrPLMuaadVWpqKsHBwed0TKdOnTh0qOJ+vZWk471pwJfAeMBRGicVkeswxoS4SimVWWDTHOAHEfkQqAE0BFaXxjm1CqBWO2gzAFaOgVZ3QkThUa1qvvwiHXr2wt6jL3FeSXz39ljueX4IAA2q+TNpUHvu/Gold49fxdTBnQj393LHVWhl4PfffycxMbFU04yIiOD6668/4z5ZWVmFurQ4fvw4N954Y4nS37NnDzExMaSlpZGZmcmqVavyty1ZsqRQuj///DP165/sXNDhcLBw4ULuv//+kl2MG5Sk5GBXSo1RSq1WSq3Nmy7wvJ9jtF/MF5ENIvIlgFJqK/ATsA1jtLlHlFKlEpC0CuLqV8Ea7OqYr/BY0h7Vq1Pz8Udp99tPhNp92JedyE+fnewhs0VUIF8PbEd8cjZ3fbWSY+k55Z177SKTV82TN40cOTJ/W4HRkYtdl1ettGfPHj7++GMGDx6cv+3UaqW8wJAXjCIiIjh8+DDdu3cvw6u7MCUpOfwiIg8DM4H8/0al1PHzPalSqsEZto0CRp1v2loF5xMCPd6AWQ/B+u+MkkQBwf37kzJ7Du1XL2V5h8vYdWw/Myf8SJ/77wCgfd0Qvh7YjkETV9P/q1X88GAHQv10CaKyO9svfHcIDQ3lxImTd8kdP368SAd8eW688UYGDRp01jTzglFmZibXXnsto0eP5rHHHiu1PJemkpQcBgBPA8uBta5J93Knnb9Wd0KdK2D+K5BWuCpBzGYiRr5OwME9dMrJxEuZ2b5/F3O/n5m/T6f6oUwY0I7YpAz6j1/FCd3Vt1YGunTpwo8//khurvH5mjhxIl27di1236VLlxaqNjobHx8fPv30U/73v/9ht1fMnohL0vFe3WKmeuWROa18JSTAVVdBKVf9FiUCvT8Ge7ZRvXTKsw/WZs0IueceAudM4/K60ViUmc27tvLnz7/m73N5gzDGD2jL3mNGgEjO1AFCK129evWic+fOtGnThpiYGJYtW8a7776bvz2vzaFVq1a88MILjB8/Pn9bXptD3nTqLbEAl156KS1btmTKlCnlcj3nqiRddvsATwK1lVKDRaQh0FgpNbc8MlgSusvu0vHwwzB2LAwZAl98UQ4nXP4ZzHsJbhkPLfsW2uTMyGBPr96Y/fw4NGgoyzauRxS079CBrjdck7/f4l1HeXDSGhpF+PH9/R0J9PEoh4xrpUF32V2+Sr3LboxhQnOBy1zLhwD3j36tlRqr1fgxP2aM0UY8ZoyxbLWW8Yk7PgxR7eD3pyHtcKFNJl9fIl5+mZzdu2ly7BDtm7bAIYo1q/5l6YIl+ftd1Sicsfe0YVdiOv10I7WmlZqSBIf6Sqn3ABuA69bTos34WqW1dy/cdRf4uIZw9vGB/v1h374zH3fBTGa46Qtj3IdfnyxSveTfrSv+3btzbPRorugUQ+t6jckRO6sWL2PpomX5+3W9pBpfDWjLvmPp3DF2BYkp2WWccU27+JUkOOSKiBVQACJSnwJ3LWmVX2QkBARAdjZ4exuvAQEQEVEOJw9vBN1ehB1zYcvPRTZXf+lFxGIh8fWRXHvvbcRE1SPLlMuqhUtYNH9x/n5XNQpn0qD2HE7Noe/Y5Rw4nlkkLa3i0YM6lY/zeZ9LEhxexXjmoJaIfA8sxHiATbuIHD4MQ4fCypXGa5k3ShfUaRjUbAu/jShSveRRvTrhTzxBxrJlpP76G70e7M+lUQ3IMuWydslyFv6+MH/fDvVC+f6BDqRm2en75Qr2HE0vx4soXrk18ldC3t7eJCUl6QBRxpRSJCUl4e3tfU7HnbVBGkBEQoGOGNVJK5VSx84rl2VEN0hfBI7uhLFXQp3Lof90MJ383aIcDmL73YktPp76v87FHBTEH1//yNq4XXgpCy3btaZH75NDf2xPSOWeCcbTqt/e14GmNQLK/XLylHsjfyVis9k4ePAg2dm6GrCseXt7ExUVhYdH4Rs2ztQgXZK7lfoAfymlUlzLQUAXpdSs0sh0adDB4SLx73hj1Lhr34ZODxfalL19O/tu60vQLbcQ+YbxFOv8b6ezes92PJWFZq1a0PPWXvn77z2aTv/xq0jPtjP23jZcVr/4h5fKitVqVM+dytsbsnTXUFoFcaF3K72aFxgAlFLJGFVNmla62t4Pja6HBa9C4uZCm7ybNCFkwACSp00jc63Re0v3e2+jU+Pm2MTOlo2bmD7p5L3k9cL9+Pmhy4gM8mbg1/8yZ2N8uV6K2xr5Na2UlCQ4FLdPSbrd0LRzIwI3fW70vfTzA2Ar/BM7fNgjWGpEkvDKqzhdT612u6sPnZu3xiFOdu/dwXcF+mKqEWRl2pDLiKkdxGNT1jN+yd5yuxS3NvJrWikoSXBYIyIfikh91/QhRhcamlb6fMPg5jFwdAfMe7nQJpOPD5GvvUbunj0cG32yAr9z3xu49rIrsCgT+4/t5+u3xuJ0deoX6OPBt/e1p2eLCN78dTtvzN2G01k+DaBubeTXtAtUkjYHX+Bl4BqM21nnA6OUUhVm1BXd5nAR+uMFWDkabv8OmhbuQjn+uedJ+eUXon/8EWvzZvnrd/+7gV/m/EG6KYdIFcrAV4biYTEKuU6nYuTcbUxcHst1zSL48I5W+HjqArBWtZ13g7SImIEFSqnie5uqIHRwuAjZc+Cb6+HoLhi8CMJOduTrSElhb6/emIODqTt9GuLpmb8tYdcepn07nePmLGrmhnD7i4MI9PMHjFv6Jizdx1u/beeSiADGD2hLjaCyfgxc0yqu826Qdo2l4BSRwDLJmaadjsUL+k4Cswf8dA/kniyomgMDiXj9NXJ27eLY2HGFDotsVJ8Bj95HNYcvh7yO8+ObE9jtagUWER7oXI8JA9tx4HgmN36+jHX7T6BpWlElaXNIBzaLyAQR+TRvKuuMaRpBteDW8XBke5HeW/27dSOgVy+OjR1L9o4dhQ4LrB7Ofc89TJTdn3jvZOaN/5nFy1bkb+/auBozHr4MH08z/catZMa6g+V2SZpWWZQkOMzAaHP4h5PjOegGaa18NLgaur4Am340noMooPqLL2AODCT+hRdQNluhbd5+vtw/8gkaW8I4Zslg3R//8NPkGfnbG1b3Z/Yjl9O6dhBP/rSRN+Zuw+YoPDKdplVlJX1C2orRZffOss/SudNtDhc5pxOm3AF7/oJ7ZkLdK/M3pf45j0OPP0748McJGzq02MN/GzOZ9Yn7sCgTwV7VGPjMQDxdT4raHE7enLuNSSviaFsnmM/vak1E4Ll1M6BpldUFPQQnIr2BDRj9KyEiMSIyp1RzqGlnYjIZ1UuhDeDHeyBpT/6mgGt74H/ddRwb/QXZO4v/7dLzobu5vsMVmBASc+OZ+PKXHEg0HorzMJt4/abmfHrnpWxLSKXXZ0tYvqdC9Q6jaW5Rkmql14D2QDKAUmoDoEeC08qXdyDcOdXo5vuH2yHrZENyxCsvYwoMJP7pZ3DmFN9hcOueXbnnnn6EOazEeyfx6yc/FmqHuLFVDWY/cjlBPp7cPX4Vo//+r9yeh9C0iqgkwcFWsPsMF105q5W/kLpwx2Q4EQc/DQC78ZS0JSSEGqPeJGfXLo5+9PFpD49oWI/7X3yUuiqIRM8U1v3xD998/h0OhwM42Q5xQ8savP/nTu79ejWHU3WncFrVVJLgsFVE7gLMItJQRD4DlpdxvjSteHUugxs/hX2LYfbDRnsE4HfVVQTfdSfHJ04kY8WK0x7uZbVy72uP0z6iPlkmG/FHY5nw0lgOHkkAwNfLwqf9Ynj7lhasjTvBtR//w59b9aPNWtVT0jGkXwR6uFb9CbyplKowP6l0g3QVtOR/sHAkdBgK170DIjizsth3y604MzOpN2c25sAzP56zY8lq5v35N8ctWUTmBFLzyhb0uv7k+NR7jqYzfOoGNh9K4c72tXm5VxP9VLV2UTmvJ6RFxBsYCjQANgMTlFL2MsvlBdDBoQpSCv580ehio+tLcNXTAGRt2Upsv374d7+Gmh9+iMiZR7TNTE1l2gcTiJUUfJUX/p5h3PXknfj7+AGQa3fy0YJdfLl4D3VDfXm/b0va1Akp88vTtPJwvncrTQLaYgSG64EPyiBvmnZ+RKDHm9CyH/z9JqwynpS2Nm9G+LBhpP3+BymzZp81GZ+AAO59fThX1muGE0WiLZ6pr3/DgmXGGNWeFhPPXncJPzzQkRy7k9u+XMFrc7aSmVshfydpWqk5U8lhs1KqhWveAqxWSrUuz8yVlC45VGEOm9E4vfNXuP596DAY5XCwf9B9ZG3eTN3p0/CqX79ESSXu3MPsb2eQ4JFBoMOK1RrKnY/dkd83U0aOnff+2MGkFXHUCrHyzi0tubxB+Q4ipGml6XxLDvmPnFbU6iRNw+wBfSdC4xvg96dh1VjEbKbG++9jslo5NHw4zhIOvRbRuD4PjnySdqF1yBU7h3MO8dMb3/DbwkWA0Vj9+k3N+WlIJywmE/3Hr+K5nzdxIiO37K5P09zkTCUHB5DX25kAViDTNa+UUu4bmPcUuuSgYc+F6YNgx9z8YUbTly7jwIMPEnhLH2qMGnVOyR3avotfJ88h3iMdf4c3PgRz/UM3EF0jCoBsm4OP5u9i/NJ9BHhbePa6S7i9bS1MpjO3cWhaRXJBY0hXBjo4aIBRxTT9Ptg+BzqPgG4vceTTT0ka8yWR77xN0M03n1Nyyunkz3E/sDl+PxmmXCJyA/GoU52777sVLw8vAHYkpvLKrK2sjj1Oq1pBvHlTc1pE6U6MtcqhwgUHEXkDuAnjYbojwEClVLwYt5Z8AvTEKKUMVEqtO1t6Ojho+Rx2+PVJWDcJLr0bdd3/2H//g2Rt3UrdaT/h1aDB2dM4RdKBQ/z61U/ESSqCierZwUT2aE7PrldiMplQSjFrwyFG/bqDpIwc+rWrzRPdG1LNX/fRpFVsFTE4BCilUl3zjwFNlVJDRaQn8ChGcOgAfKKU6nC29HRw0ApRCha9DYvfhUbXYev8Dvv63YPZz4/oaT9hDji/GtGNfy5i2T+rOeKRib/TGz9bEK3vuox2LVoCkJpt46P5u/huRRyeFhNDrqzPA53r4uuln43QKqYKFxwKZUDkeYweXx8SkbHAIqXUFNe2nUAXpVTCmdLQwUEr1r8T4LcREN6EzKYvEPfoC/h26kitMWMQs/m8kszNyWHBuKlsPxJPmjmHELsvHh5BXPvAddSrWQuAvUfTef/Pnfy+JZFwfy+euKYRt7eNwmIuSYcEmlZ+KmRwEJFRwL1ACtBVKXVUROYC7yillrr2WQg8q5Qq8s0vIoOBwQC1a9duExcXV36Z1yqPPX/BtEEgJk743kfi5z8QOngw1Z584oKSTTt+nN+/nMK+7GSyTDaq5wagAoK5YUAP6kTWBGBt3HFG/bqddfuTqR/uy/BrGtGzRSRm3WitVRBuCQ4isgCIKGbTi0qp2QX2ex7wVkq9ei7BoSBdctDOKGkPTL0Lju0mIb4ryYu3UfOjDwm4/voLTvrw3n3MmzSb/aRhw0F1WyAEBHHDwGupHVGD+HjFjY8k4tdpF7HH02lYzY/Hrm6og4RWKhISoF8/+PFHiCju2/YsKmTJIT8DIrWB35RSzXW1klZmctJg5lDU1rnErWhA9jEn0VN+wLtJk1JJft/ajSyetZBDpgxs4qB6bgD4B7ExsStffV6XwUMUPYck8OnC3ew+kk6Dan482q0BN7SI1NVN2nl7+GEYOxaGDIEvvjj34ytccBCRhkqp3a75R4GrlFK3icgNwDBONkh/qpRqf7b0dHDQSkQp+Hc89lkvse/PYPAOInr6TDwiI0vtFHEbt7Bo+jwOuoJEuM2fjAx/xi9qw+6NbfD2VkxblcAnC4wgUSvEyv2X16Vv21q64VorMasVsovp+tTbG0r4zCdQMYPDz0BjjFtZ44ChSqlDrltZPweuw7iVddDZqpRABwftHCVuJvvLAcT9nIFHWCB1ps3GHFZ6AQJg/aKtrPxlHim+mWSbbAQ4rFhzAgjo0JC+N16FxWxh3rZEvlqyj7VxJwi0etC/Q20GXhZNtQB9C6x2ZgkJMGIEzJoFmZng4wN9+sAHH5xb9VKFCw6lTQcH7ZzlZpAx5nH2f7kU35pCrc8/Ri65tlRP8dBD8MtPB3j4xl+wRqWSYs7GW3kQmh2Iigrm2tu6UCeyJmvjTjB+yV7+2JqIxST0blmD/h3r0Lp20Fl7ldWqrocegnHjwNMTcnPPr2pJBwdNO43k8f8j4YPxBNbNJPL+a5DuIyGwZqmkfcstEBkJgwfD+C9TqemYQ0B4PEctmSgg3O6PxeRHrW6XcO2VV3AwOZuvl+7j53WHSM+xc0mEP/071qHPpTXx01VO2ikKfr7GjTNKEzNmnFsaOjho2hkc/eRjjo0ZS0iTLKq1yUGufBI6PQoepV+943Q42LzwHzYsWc9hySLTZMPb6UFIbgAqNJCON7ajQXRDZm+IZ/LKOLYlpOLraebGmJr0bRvFpbV0aUIrPTo4aNoZKKU4POotTkyeTFjXGoRXXwNBdaDrC9CiL5jO74G5szmRmMiyH39l/5EkjlqyUKIIdFjxs/liqRfG1TdeyXGbD5NXxjF3UzzZNid1w3y55dKa3HxpTWqF+JRJvrSqQwcHTTsL5XSS8MKLpMyaRfXBfQnx+QsSN0NYI+jyHDTtA6ayueXU6XCwa8Uq1v/1L0dzszluMW43CbX74eXwwbN+GO2ubsfWJAsz1h1k5d7jAHSoG8ItrWvSo2kEwb6eZZI37eKmg4OmlYCy2zn05FOkzZtHxMjXCW7uBX+/DUe3Q7VmcPlj0OwWsJTdF7EtJ5tN8xazZfUWksgl1ZwDQJDDB1+7D5aaIURf3pItSR7M3JDA3mMZmE3CZfVDub55JD2aVSfMz6vM8qddXHRw0LQScubmcvCRYWQsWULEq68QfMftsHUm/PM+HN0B/jWgw2BoMwisQWWal+z0dDb9uYgdG3dxwpnLCYtxY7uf05sAmw/4+ODRtAYJXjWYt/0EsUmZmATa1w3h+uaRdLukmq560s5IBwdNOwfOnBwOPT6c9EWLqP7C84Tcey84nbBnISz/DPYtBg9faN4HWg+EqLbGmNZlyJaTzfZ/VrB5+UaSc3M4bsnBIU7MSgi2++GpvHBWDyIxLJx/EjzYe8yommpYzY9ul1Sj6yXVaFMnGA/9NLZWgA4OmnaOVG4uh54aQdr8+VR7egSh999/cmPCJlg9FrbMAFsmhDeB1vdCi9vAr1qZ583pdHBo+042/7WShIQkUsz2/OonL+VBkM0Hs3iSGuDLZu8Alh/2wuYEf28LVzYMp3PDMC6rH0atEKu+86mK08FB086DstmIf/ZZUn/7ndAhQwgf/njhL9PsVNg6A9Z9C4fWgpggujM06wNNbgTf0AvuGK0kcjIz2PHPSrb9u5XUrGxSLXYyTMa41p7KQpDdill5keLlxSrlwabsQGx4UjPIymX1Q7msQSid6oUREaifzK5qdHDQtPOk7HYSXx9J8rRpBN58M5FvjEQ8PIrueHibESi2zIDje0DMULcz0zZex4uTenDN7fXPq2O085GRfIJdy/9l1/qdpGRkkWpxkG4yShaiIMBpxerwwo6FPSYPljusHHEGU7eaP+2jQ2hdJ5jWtYOpH+6rSxYXOR0cNO0CKKU49sUXHPvsc3yvuIKoTz7G5Ot7up0hcRPvD5xJ74ZzuSRsNwC7kurz2+4e/LX/Guas7wBe/uWW/+z0dPb8u57d67dzPCmFLJykWGzkih0AszIR4PTGy+GBzWnhoJhZjw/HvMOIqVOdNnWCubR2EK2ignTngBcZHRw0rRScmDaNxNdex7txY6K+GI3HGeqJ8jpG27hoL11qLqD3JfPoGr0ET1O2UaqIbAXRl0Ody6F2R7AGl9t1KKU4kRDPf6s3snfLf6RlZJNtUqQVCBgAvk5PfBxeiNNCujKx3+zBEb8gqteuR6vaYTSrEUizmgEEeBdTktIqBR0cNK2UpC1aRPxTIxCrlahPP8GndevT7ntqx2jDhmTyyVOrIG4ZxC6DQ2vAYbQNENoAalwKNVpDzdYQ0RI8y+82VOV0cuJwIgc2bmfPlt2knEgnRznJMBtVUqpA7ZKP0xOr0xOLw0yOMpHi4UV2cDChDevQom4dmkQGEhVsxaQHM6rwdHDQtFKU899/HHjkEWzxCUS88jLBffsWu99ZO0azZRsBYv9KiF8Ph9ZBWryxTUwQ1hiqXQLVmkK46zWkbpl151EcW3Y2iXv3sG/DDuL3xZOZkUOucpJjdpJutmETR/6+ogQf5Ym30wOL04wTE3YPDwgNJqJhHTq0bkrt8EAdNCoQHRw0rZQ5UlI49ORTZCxbRtDtt1P9hecxeZfC3T5piScDxeEtcGQbnIgDXP+nZi+jS4+Quq6pHgS75gNqllvgcDodJB8+zIEtO9m7ZTdpJ9LItTmwCeSanGSZHWSLrdAxFmXC6vTEU5mxOM2ImMDDA09/X8KiqtG4eX3qNayHh6eupiovOjhoWhlQDgdHP/6EpK++wqtRI2p+/BFe9eqV/olyM+DoTuMJ7SPbjPnj+yA57mS1FIDZE4JqQ2AtI1AE1HBNBeatwWX+wJ5yOslISebw3jj2bN7B0YNHyc7Iwa4UTgGbWZFtcpAlNpQU/v4xKcGqTgYQMybMJjMeXh5Y/X0ICA8monZN6jSIJqhaMKYy6u+qqtDBQdPKUPqSJcQ/+xzOrCwiXn6ZwD43l88toE4HpB4yAsWJfSdfUw5BajykJ4JyFj7G4g1+1cE3HHzDjMnH9eobfnLeJ9ToHsTTr9SDiVKKnMwMjsUnsGXDDhJiD5KTnAl2O4LgNIHDpMg1KXJNDrKxQTFZMCnBW3kYgUSZjEAiZswmMxYPC55WL3wCfAkMC6F6rUgiomoQEBqI2aP8quUqOh0cNK2M2Q4fIf7pp8lcvRr/7t2JeO1VLKGh7s2Uww7ph41AkXoI0hIg5SCkH4HMY5BxFDKSjFenrfg0xAzegUUna9DJea9A8PR1TX6uV5+T8x4+xus5VHkppTiams2++KPsiz3AkT2x5CQdx5Sdg4fdgQWMtgsBhxnsorCZnNjEQS72Qg3op/JQZjyVBYsyYcGEWQkmTJjFhNlkwmyx4OFpwdPbC6ufD35BAYRWCycsIhzf4ACsAT5YKkjV14U+ZKmDg6aVA+VwkPT11xz79DNMfn5EvPIyAddf7+5snZ1SkJMKGcdc01HITILsFMhOdr26pqxTlu3nMJq9xeoKGr5G31Qe3kZJxuJVzKv1NOuNY5TFk0y7iRM5cDxbcTxLcTTDzuETmRw9nkp2ehamrFy87AofBE8ED5MJM4KYwGkCp4DTpLCLwi5O7OLEhgOnnP070aQECwVKLEowY8KkBJMIJgRTXrAxm7FYzFg8PPD08sTq4423ry9+AX74+fvj4++Lp48PXr5eeHp74WH1xOLliakE/WA9/DCMHXt+Q4SCDg6aVq5y/vuP+OdfIHvzZvyvvZbqL76AR7Wy73PJLew5RjciuelGP1O5GcZ8boH5062354A9++yvlP53lEJwiAU7ZuxYyHKYOO704YgjgBRnAOnOMHKVPzb8cOIFeAEeKDEa0pUICgGT4MRoS3GKwiHgECcOUTjEiR0nDnGeLTvFyi/RKCOomfJLOYIo4+4wUUJakjfPjxsGgLc3ZJ1DvD5TcNCPO2paKfNq0IDoKT+Q9PU3HPvsMzKWLiX8sUcJ7t8fsVxk/3IWL/ALB8LLJn2lwGErJmhkGesdNqNKzGEDp921LvfkfN62U/YThw2LIxeLaz8/p41wh436Djs5uTZyc3PJtWVgt6dgt9twOOzY7XacDgcOh/HqdNpRDgfK6UBwYMaJGYVSTnKcFjLwIFN5k+XwJBd/cp1+OJQVJ1acygg2YMaJBcEEmFBivCKgRABBCfmTE1CijEBkcuIEgv0z8PGBPn3ggw9K762/yD6pmlYxiMVC2OAHCbi2B4mjRnH47XdInv4zEa+8jE+7du7OXuUhYgyuVIYDLBVkcU2n6RylWEopsmwOUrJsJGfaSMm0kZ5jJz3HRnq2nbQcO+nZdmPdqcs5J9dn2RynpowJhQknosCknIhrnadJYbE7UVkOkrfXJzsbAgJKt3NHHRw0rQx51qlDrbFjSV+4kMS33iLunnvx734N4U88UTa3vWrlTkTw8bTg42khMtB63unYHU4ychyk5RjBJTPXQWaOg8xcI3BkuOYzcx1k5jr4ebYdb18Hgx4LZ3tjo3G6NOk2B00rJ86sLJK++YbjE77GmZVF0K23EDZsGB7Vq7s7a1oVdaY2B/0EiaaVE5PVSvjDD1N//jyC7+5P8qzZ7OlxLYfffhvb4cPuzp6mFaJLDprmJrkHD3Fs9GhS5sxBTCYC+/Qh9IH78axd291Z06oIfSurplVguQcPkTRhPCk/z0DZ7fhf24OQu+/G2rq1HmxHK1M6OGhaJWA7coTjkyaRPG06ztRUvJo0IaT/XQTccAMm6/k3dGra6ejgoGmViDMzk5Rf5nJi8mRydu/GFBhI4A03ENjnZrybN9elCa3U6OCgaZWQUorMf/8leepU0hYsROXm4tmgPkE330xA7xvxqH6RPnWtlZsKGxxE5CngAyBcKXVMjJ9EnwA9gUxgoFJq3dnS0cFBu9g5UlNJ/f0PUmbNImv9ehDB2qY1Ad2749+9Ox41arg7i1olVCGDg4jUAsYDlwBtXMGhJ/AoRnDoAHyilOpwtrR0cNCqktzYWFLm/kravHnk7NoFgHeLFvj36I7fVVfh1bChrnrSSqSiBofpwBvAbKCtKziMBRYppaa49tkJdFFKnfHZPx0ctKoqZ98+0uYvIG3ePLK3bAHAUr06vp2vwO+Kzvhe1glzQICbc6lVVBWu4z0RuQk4pJTaeMovnJrAgQLLB13rigQHERkMDAaore8L16oor7p18Rr8IGGDH8SWmEjG0qWkL1lK2p/zSJn+M5jNWJs3x9q2DT5t2+LTujXmwEB3Z1urBMqs5CAiC4DiuoF6EXgB6KGUShGRWE6WHOYC7yillrrSWAg8q5Q6Y7FAlxw0rTBlt5O1aRPpS5aQuWo1WZs3g80GIng1aoRP27ZYY2Lwbt4Mzzp1ED3cZpXklpKDUuqa02SmBVAXyCs1RAHrRKQ9cAioVWD3KNc6TdPOgVgs+LRujU/r1gA4s7PJ2rSJzDVryFqzhuSZMznx/fcAmPz98W7WDGvzZng3b4F3s6Z41KypA0YVV+7VSkqpzUD+PXinlBzmAMNEZCpGg3TK2dobNE07O5O3N77t2+Pbvj1glCxy9uwhe8sWsjZvJnvLVpImfWuULgDx8cGrQQO8GjbAq2HD/MkSHq4bu6uIitZl928Ydyr9h3Er6yD3ZkfTLk5iseDduDHejRsTdOutADhzc8nZuYvs7dvI+e8/cnbvJn3xP6T8PCP/OFNAAJ516uBZu7bxWqc2HrVr4xkdjTkoSAeOi4h+CE7TtDOyHz9Ozm4jWOTs+Q9b3H5y9+/HFh8PzpNDYJr8/fGIisIjMhKPiAg8akRiiYzEI7KGMR8ejpjNbrwS7VQV7m4lTdMqD0tICJYO7fHt0L7QemduLraDh8jdH4ctLo7cuDhsh+KxHTpE5po1OFNTCydkNmOpVg1LeDiWsDAsoaFYwsMwh4UZywUmk49POV6hVhwdHDRNOy8mT0+86tXFq17dYrc70tOxJyRgS0jAFp+ALTEBe0Ii9mPHsB06RNamTTiSkoxxok8hVivmwEDMQUEnXwvOBwZiDna9BgZi8vfH5OuHyceqG9JLiQ4OmqaVCbOfH2ZXQ/bpKLsdx4kT2I8dw34syfV6FEfScRwpKTiSk3GkpJCze3f+PI5Tx1ouQASTnx8mPz/Mfr5GwPDLm3wx+/kb876+mKxWTFZvxGo15r29EasPJqu3Me/jY7x6eVXJgKODg6ZpbiMWi1HNFB5eov2VUjjT041AkXwyeDgzMnCmp+FIT8eZnoEzPd2YMtJxpKZii48/uS4z89zzmR88vDF5WxFvL0wenkbg8PTMn0xernkP16uXF+LpYWzLW/Y4ub94eSIeHojFA/GwuOYtiMUClsLLxroC+5VxwNLBQdO0SkNEMPv7Y/b3h1q1zn5AMZTDgTMzE2dWFiorC2d2tvGalYUzKxuVfcp8prGPMysTlZWdv7+y5eLMzcWZmorKzT055eSgcnNx2myo3Fyw20v5XXAxmRCLhZD776Pa44+XevI6OGiaVqWI2XwywJQD5XAUDh65RlDJX7bZUDa78Wq3gd2OstuNdXY7ypaLstuN9Xnr7DaUzdjX59JLyyTfOjhomqaVITGbEasVKtloflWvlUXTNO0ikZAAV10FiYmln7YODpqmaZXUG2/A0qUwcmTpp62Dg6ZpWiVjtYIIjBljPKQ+ZoyxXJo1Vzo4aJqmVTJ798Jdd0Heg+Q+PtC/P+zbV3rn0MFB0zStkomMhIAAyM4Gb2/jNSAAIoobQec86eCgaZpWCR0+DEOHwsqVxmtpN0rrW1k1TdMqoRkne1Jn9OjST1+XHDRN07QidHDQNE3TitDBQdM0TStCBwdN0zStCB0cNE3TtCJ0cNA0TdOKEFXMEH2VjYgcBeLO8/Aw4FgpZqcy0++FQb8PBv0+nHSxvhd1lFLFjrR0UQSHCyEia5RSbd2dj4pAvxcG/T4Y9PtwUlV8L3S1kqZpmlaEDg6apmlaETo4wDh3Z6AC0e+FQb8PBv0+nFTl3osq3+agaZqmFaVLDpqmaVoROjhomqZpRVTp4CAi14nIThH5T0Sec3d+youI1BKRv0Vkm4hsFZHHXetDRGS+iOx2vQa7O6/lQUTMIrJeROa6luuKyCrX5+JHEfF0dx7Lg4gEich0EdkhIttFpFNV/EyIyBOu/4stIjJFRLyr4meiygYHETEDo4HrgabAnSLS1L25Kjd24CmlVFOgI/CI69qfAxYqpRoCC13LVcHjwPYCy+8CHymlGgAngPvdkqvy9wnwh1LqEqAVxntSpT4TIlITeAxoq5RqDpiBflTBz0SVDQ5Ae+A/pdRepVQuMBW4yc15KhdKqQSl1DrXfBrGl0BNjOuf5NptEnCzWzJYjkQkCrgBGO9aFqAbMN21S1V5HwKBK4EJAEqpXKVUMlXwM4ExCJpVRCyAD5BAFfxMVOXgUBM4UGD5oGtdlSIi0cClwCqgulIqwbUpEajurnyVo4+BZwCnazkUSFZK2V3LVeVzURc4CnzjqmIbLyK+VLHPhFLqEPABsB8jKKQAa6mCn4mqHByqPBHxA34GhiulUgtuU8Y9zhf1fc4i0gs4opRa6+68VAAWoDUwRil1KZDBKVVIVeQzEYxRWqoL1AB8gevcmik3qcrB4RBQq8BylGtdlSAiHhiB4XulVN5otIdFJNK1PRI44q78lZPLgRtFJBajWrEbRr17kKtKAarO5+IgcFAptcq1PB0jWFS1z8Q1wD6l1FGllA2YgfE5qXKfiaocHP4FGrruQvDEaHSa4+Y8lQtXvfoEYLtS6sMCm+YAA1zzA4DZ5Z238qSUel4pFaWUisb4+/+llOoP/A3c5trton8fAJRSicABEWnsWnU1sI0q9pnAqE7qKCI+rv+TvPehyn0mqvQT0iLSE6PO2Qx8rZQa5d4clQ8RuQJYAmzmZF37CxjtDj8BtTG6QL9dKXXcLZksZyLSBRihlOolIvUwShIhwHrgbqVUjhuzVy5EJAajYd4T2AsMwvgBWaU+EyLyOnAHxl1964EHMNoYqtRnokoHB03TNK14VblaSdM0TTsNHRw0TdO0InRw0DRN04rQwUHTNE0rQgcHTdM0rQgdHDRN07QidHDQNE3TitDBQTsvIhIhIlNFZI+IrBWR30Skkbvzda5E5DURGeHufJyNa6yFh0vjOBFZXkp5sorIYlf392fbd4iIKNfDhnnrHnGtu1ZE/inQPYVWAejgoJ0zV7cCM4FFSqn6Sqk2wPNc5D12ulkQUGxwEMPp/peLHKeUuqyU8nQfMEMp5SjBvi2AjcAlACLig/Hk8VFgA8ZYEXeUUr60UqCDg3Y+ugI2pdSXeSuUUhuVUktE5EnXCFpbRGR43nYRiXaNMDZRRHaJyPcico2ILHONMta+wD7fu0Yim+76EslLo0jarmO2FNhnhKs0EO1K4yvXqF7zRMTq2udFVx6WAnl9CRUhIveKyCYR2Sgi35UgH6c7X5F0RORuEVktIhtEZGzer+8zpPMOUN+1//uu/XaKyLfAFqCWiMxyleK2ishgV3YLHec6R/r5Xssp+lOgjyERWSQieV/+oQX/LkBLjO4nLnEtPwZMA5xKqcPALFd6WkWhlNKTns5pwvjH/qiY9W0w+mvyBfyArcClrm3RGH3VtMD4UbIW+BoQjC6SZ7n2UcDlrmO+xujv6LRpu47ZUiAPI4DXCpwvxrX+J+DuAun4AAHAf3nnOOVamgG7gDDXckgJ8lHc+YqkAzQBfgE8XOu+AO495X06NZ1TrzMao1+sjgXW5eXRihEwQk89zrU9/Xyu5ZQ0PIHEU9YdBEyu+a7AlALbjgL1gD8wSjPrgS7AAtd2M3DU3Z9tPZ2cdMlBK01XADOVUhlKqXSM7o47F9i+Tym1WSnlxPgiWqiMb4bNGF9IAAeUUstc85NdaZYk7eLsU0ptcM2vdZ2jsyudTGWMYXG6nni7AdOUUscA1MnO5s6Uj+LOV1w6V2N8Mf8rIhtcy/XOku/ixCmlVhZYfkxENgIrMbqjb3ia4/Kc67UUFAYk5y2ISB3gkOtvC0ZJYZNrWy0gSSm1F6gGPA18BjTC+NujjKqpXBHxP0uetXKiG4C087GVk90Xn4uCvVg6Cyw7OflZPLUnyLP1DGmncPWo92nO58D4RV2WSno+ASYppZ6/wHQy8hM0GnqvAToppTJFZBGF34tzdbY8ZJ2SfitcwcClDfCja74FriAApGEMntMeo0fkdQWO8QKyLyDPWinSJQftfPwFeBWo10ZEWmI0LN4sRl/4vkAfjK7Bz0VtEenkmr8LWOqaX3KatA8D1Vx13F5Ar7Ok/48rHavrV2rvM1xjXxEJdV1fyFnycTrFpbMQuE1EquWtc/3yPpM04Ey/qgOBE67AcAnQsQTHneu15FNKnQDMIpIXIGJwBQsRaYhRVZgXEFoWmH8fGOYqKeQHDdf7c0wZA+xoFYAODto5c1UF9QGuEeNW1q3A20A8MBFYjTE2xHil1PpzTH4n8IiIbAeCgTGuc64rLm3Xl8lI1/r5wI6z5H0dxi/ajcDvGIM+FbffVmAUsNhVVfPhmfJxhvMVSUcptQ14CZgnIptc+Y48S76TgGWuhuP3i9nlD8Diet/ewahaOuNx53otxZjHyWq/VoDJdY2vYAyQkzdIUAuMNhCUUnOVUitc65tilELBaKP49RzOrZUxPZ6DVmGISDQwVynV3N150c5ORFoDTyil7hGR3UBrpVTaeaY1A3hOKbWrVDOpnTddctA07by4Sh5/i0igsXjegcETmKUDQ8WiSw6apmlaEbrkoGmaphWhg4OmaZpWhA4OmqZpWhE6OGiapmlF6OCgaZqmFaGDg6ZpmlaEDg6apmlaEf8HDtax1OeLwfEAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# plot result from NLS\n",
+    "plt.title(\"Dose–response curves\")\n",
+    "plt.plot(t, y, '*b')\n",
+    "dose = np.linspace(0.0005874, 91.74, 1000)\n",
+    "resp = sol.x[0] + ((sol.x[1] - sol.x[0]) / (1 + (sol.x[2] / dose)**sol.x[3]))\n",
+    "plt.plot(dose, resp, label='L2')\n",
+    "\n",
+    "# fit all loss functions and plot results\n",
+    "# loss function types\n",
+    "lossfuns = {'HUBER', 'L1', 'LINF', 'CAUCHY', 'ATAN', 'SMOOTHL1', 'QUANTILE'}\n",
+    "\n",
+    "# turn off log printing\n",
+    "opt.handle_opt_set(handle, 'Print File = -1')\n",
+    "\n",
+    "for lossfun in lossfuns:\n",
+    "    \n",
+    "    # set option for the loss function\n",
+    "    opt.handle_opt_set(handle, 'NLDF Loss Function Type = ' + lossfun)\n",
+    "    \n",
+    "    # call the solver\n",
+    "    sol = opt.handle_solve_nldf(handle, lsqfun, lsqgrd, x, nres, data=data, io_manager=iom)\n",
+    "    \n",
+    "    # calculate response using fitted parameters\n",
+    "    resp = sol.x[0] + ((sol.x[1] - sol.x[0]) / (1 + (sol.x[2] / dose)**sol.x[3]))\n",
+    "    \n",
+    "    # plot curve\n",
+    "    plt.plot(dose, resp, label=lossfun)\n",
+    "\n",
+    "# show the plot\n",
+    "plt.xlabel(r\"Compound concentration ($\\mu M$)\")\n",
+    "plt.ylabel(\"Percent activity\")\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "937d3904",
+   "metadata": {},
+   "source": [
+    "## Fit the model with the naive starting point and different regularisation functions:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "839d5752",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEaCAYAAAD65pvjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA340lEQVR4nO3deXxU5fX48c+ZyTKZhIQtJECAgCCIgMgmaNW6fMG1ilWrYN3FrXWlLrXfulV/Wv1qN6VSi0txV9ypIu7aIoZFBFFBQAmGfQ0h65zfH/dOGDIhmYTMksx5v5jXnbufGSZz5j7PfZ5HVBVjjDEmlCfeARhjjEk8lhyMMcaEseRgjDEmjCUHY4wxYSw5GGOMCWPJwRhjTBhLDqbVEpGfikhxFI9/voh8Eq3j13O+8SKyWkRKReTgGJ53oojMitX5TOtgycHEjYisEpFj6yyL6Rdygrkf+JWqZqnqgmicQEQKRURFJCW4TFWfUtWx0Tifab0sORgDhH5ZxlEvYEm8gzAGLDmYBOf+yu0bMv+4iPyhzja/FZGN7pXIxJDl6SJyv4j8ICLrROTvIpLhrvupiBSLyI0ishZ4LIJYDhWRz0Vkmzs9NGTd+SKyQkR2iMjKYBwi0ldEPnT32Sgiz9Vz3HQRKQW8wBci8l1jrz0k/utFZL2IlIjIBSHbZojI/4nI9+65P3Ff+0fuJlvd4qsxda/WGnmdH4jInSLyqftaZ4lI58beO9P6WHIwrV0+0BnoDpwHTBWR/u66e4D9gaFAX3eb39fZtyPOL/ZJDZ1ERDoCbwJ/AToBDwBvikgnEcl0lx+vqu2AQ4GF7q53ArOADkAB8Ne6x1bVClXNcmcPUtX9mvDac9zXdRHwkIh0cNfdDwx3Y+kI3AAEgCPc9e3d4qv/Rvo6QzabAFwAdAHSgMkRxmtaEUsOJt5eEZGtwQfwcDOO8b/uF+yHOF9sZ4qI4HzhX6uqm1V1B3A3cFbIfgHgVnffXY2c40Rgmar+S1WrVfUZ4Gvg5JBjDRKRDFUtUdVg8VAVTvLppqrlqtqS9SlVwB2qWqWqM4FSoL+IeIALgatVdY2q1qjqf1S1IoJjNvY6AR5T1W/d9+x5nORr2hhLDibeTlXV9sEHcEUT99+iqjtD5r8HugG5gB+YF5J43nKXB21Q1fIIz9PNPXao74Hu7vl/AVwGlIjImyIywN3mBkCAuSKyREQubMJra8wmVa0OmS8DsnCupHzAd8045l5fZ8j82nrOadoYSw4m0ZXhfMkH5ddZ38Et1gnqCfwIbAR2AQeGJJ+ckOIbgKZ0SfwjzhVAqJ7AGgBVfVtV/wfoivNL+x/u8rWqeomqdgMuBR4OrUdoRGOvfW82AuVAfcVTjb3mBl+nSR6WHEyiWwhMEBGviBwHHFnPNreLSJqIHA6cBLygqgGcL+gHRaQLgIh0F5FxzYxjJrC/iEwQkRQR+QUwEHhDRPJE5BQ3SVXgFO8E3HOeISIF7jG24Hw5ByI850Iaf+1h3Nc+DXhARLq5+48RkXRgg3v+Pk19nRHGbNoISw4m0V2NU969FZgIvFJn/VqcL90fgaeAy1T1a3fdjcByYI6IbAdmA/1pBlXdhJN4rgc24RQXnaSqG3H+jq5zY9iM8yV+ubvrSOAz926k13DqAVZEeNrGXntDJgNfAp+7Md0LeFS1DLgL+NQtbhvdhNdpkojYYD/GGGPqsisHY4wxYSw5GGOMCWPJwRhjTBhLDsYYY8IkQmdj+6xz585aWFgY7zCMMaZVmTdv3kZVza1vXZtIDoWFhRQVFcU7DGOMaVVEpG5r+FpWrGSMMSaMJQdjjDFhLDkYY4wJ0ybqHIwxbUdVVRXFxcWUl0faYa5pjM/no6CggNTU1Ij3seRgjEkoxcXFtGvXjsLCQpxhOcy+UFU2bdpEcXExvXv3jni/pC5WKimBI4+EtWsb39YYExvl5eV06tTJEkMLERE6derU5CuxpE4Od94Jn3wCd9wR70iMMaEsMbSs5ryfSZkcMjJABKZMgUDAmYo4y40xxiRpclixAiZMAL87xpbfDxMnwsqV8Y3LGGOyssJHXf3oo48YNmwYKSkpvPjiizGJIymTQ9eukJ0N5eXg8znT7GzIj3QQRmNMUlBVAoFIB+6Lnp49e/L4448zYcKEmJ0zKZMDwLp1cNll8PrrkJcHq1bFOyJjTCJYtWoV/fv359xzz2XQoEGsXr2a++67j5EjRzJkyBBuvfXW2m3vvPNO+vfvz09+8hPOPvts7r///qjEVFhYyJAhQ/B4YveVnbS3ss6Y4UyvuMJJFNZvnzGJ5/bXl/DVj9tb9JgDu2Vz68kHNrjNsmXLeOKJJxg9ejSzZs1i2bJlzJ07F1XlZz/7GR999BEZGRm89NJLfPHFF1RVVTFs2DCGDx8edqynnnqK++67L2x53759Y1ZE1BxJmxwyMpzipKApU5yHzwe7dsUvLmNM/PXq1YvRo53htWfNmsWsWbM4+OCDASgtLWXZsmXs2LGDU045BZ/Ph8/n4+STT673WBMnTmTixIkxi72lJG1yWLECJk+GV16BsjKnUnr8eIjSVaExphka+4UfLZmZmbXPVZWbb76ZSy+9dI9t/vSnP0V0rNZ65ZC0dQ5WKW2MicS4ceOYNm0apaWlAKxZs4b169dz2GGH8frrr1NeXk5paSlvvPFGvftPnDiRhQsXhj0SOTFAEl85wO5K6UmTYOpUp8W0McaEGjt2LEuXLmXMmDGAc6vp9OnTGTlyJD/72c8YMmQIeXl5DB48mJycnH0+X1lZGQUFBbXz1113HYcffjjjx49ny5YtvP7669x6660sWbJkn8/VEFHVqJ4gFkaMGKE22I8xbcPSpUs54IAD4h1GREpLS8nKyqKsrIwjjjiCqVOnMmzYsHiHVa/63lcRmaeqI+rbPmmLleLN+nUypvWbNGkSQ4cOZdiwYfz85z9P2MTQHEldrBRPof06PfxwvKMxxjTH008/He8QosauHGIskft1sqsZY0yQJYcYS+R+nayXWmNMUFInh4ULoX17WLQodudMxFtoE/lqxhgTH0mdHM45B7Ztc37Jx1LwFto5c5xpvItxEvlqxhgTH0lZIV133IslS3Yvi8WdvcF+nQAeeij652tMIl7NGJOssrKyahvcBT3wwAM8+uijpKSkkJuby7Rp0+jVq1dU40jKK4cFC6Du+1pYCF98EZdwEkKiXc0YkwgSpcvugw8+mKKiIhYtWsTpp5/ODTfcEPVzJuWVw9ChENJ1CuDMDxkSl3ASQqJdzRgTL6tWrWLcuHEccsghzJs3j5kzZ/L888/z/PPPU1FRwfjx47n99tsBp8vu6dOnk5ubS48ePRg+fDiTJ09u8ZiOOuqo2uejR49m+vTpLX6OupIyOQBs2QIHHgi//71zd87mzfGOyBgT5t83wdovW/aY+YPh+Hsa3CSRu+z+5z//yfHHH9/k/ZoqaZPDjz/ufn7mmfGLwxiTeBK1y+7p06dTVFTEhx9+2CLHa0jSJgdjTCvQyC/8aEnELrtnz57NXXfdxYcffkh6enrE+zVXUlZIG2NMpBKhy+4FCxZw6aWX8tprr9GlS5cWeV2NsSsHY4xpQCJ02T1z5kxKS0s544wzAOjZsyevvfbaPp+rIdZltzEmoViX3dFhXXa3EtbJnTGtn3XZHQcichzwZ8ALPKqq8amZihLrstuY1s+67I4xEfECDwHHAwOBs0VkYHyjahnWyZ0xpjVIyOQAjAKWq+oKVa0EngVOaemTxKNoxzq5M8a0BomaHLoDq0Pmi91ltURkkogUiUjRhg0bmnWSm67fyUcfKTf9prJJ++1LUrFO7owxrUGiJodGqepUVR2hqiNyc3ObtG+waOfJZzIB4YnpaU0q2tnXQXGskztjTKJL1OSwBugRMl/gLmsRe7t7t7G7eluqvmDGDKdzu4MOcqahnd4ZY5JbcXExp5xyCv369WO//fbj6quvprLSKd344IMPyMnJYejQoQwdOpRjjz0WgNtuu43u3bvXLr/pppv2OY5ETQ6fA/1EpLeIpAFnAS3W4mPlyvAxHQAqKhr+orf6AmOSS6y77FZVTjvtNE499VSWLVvGt99+S2lpKbfcckvtNocffnhtK+vZs2fXLr/22mtrl99zz77f3JmQyUFVq4FfAW8DS4HnVXVJSx2/a1fo3h1A3YeTLBr7orf6AmPavlWrVtG/f3/OPfdcBg0axOrVq7nvvvsYOXIkQ4YM4dZbb63d9s4776R///785Cc/4eyzz+b+++/fp3O/9957+Hw+LrjgAgC8Xi8PPvgg06ZNo6ysbJ+O3VQJ285BVWcCM6N1/JEjISdjJ0uWZQKKqvDee43vF6wvmDQJpk51KqeNMdFx79x7+Xrz1y16zAEdB3DjqBsb3CZeXXYvWbIk7BjZ2dn07NmT5cuXA/Dxxx8zdOhQAM4444zaq4oHH3ywdpyHe++9l3HjxkX2huxFwiaHaPv3v6G8PGuPZSUlUFAA1dV7388GxTGm7UvULrvBKVaqr5O/a6+9tkUHGkra5LC3yueaGqeIyeeDXbtiG5MxZk+N/cKPlnh12T1w4MCwZdu3b+eHH36gb9++zJ07N8JXsO8Sss4h2jIynMrnva2zSmZjTFAsu+w+5phjKCsr48knnwSgpqaG66+/nvPPPx9/8E6YGEnK5BC86yhYGb176iQNq2Q2xgSNHTuWCRMmMGbMGAYPHszpp5/Ojh079uiy+/jjj2+RLrtFhJdffpkXXniBfv36sf/+++Pz+bj77rtb6NU0IZZk7bL78svh739XvFJDjXrJyXHubT31VNi+3doeGBMv1mV3dFiX3RFatw6uuHA78yYdyRVnLqNjR9ixw2m7YInBGBMJ67K7DZoxA9i6nYzcdymv9tUunzLFeViFtDGmMdZld1vlTeW/Fx5Dboey2pbRkbR6toF6jImutlDcnUia834m7ZUDwPziUv485wo2bMkAFG+qUrZLmPfjev531moE57ZWQfB4nCkCH03rweKPOzP2lxs5+qJiRKR2O2cKHhFSU4TMtBT8aSn407z4071kpqXQITONvOx0urTz0cGfitTXl4cxScrn87Fp0yY6depkfxstQFXZtGkTPp+v8Y1DJG1yyMiA8vK+QN/aZTVVAtRQsvU75lfdC+zZHmLhFS+gVWm181/OzuXL2blIaiVDHvpFyE1PgrqtrmsCSiDspqjdH3gRSE/xuknES2Z6KtkZTkJxthR3O9lzPniM2smey30pPjr6OtLR15E+OX0YnDuYLv4uzXqvjImlgoICiouLaW5X/Cacz+ejoKCgSfskbXLY61WWwBl/mALkgIiznTg7DJh2PZ89ejbfzxlOTUU63vQKeo4pYuRFT5PRwWk0o3Vuj1V1ntUEAgRUqQko1QGlqibgPpTKmioqqmrYXh6o3d/rETLTvbTzpZKVnoLXE5Jb3OCD22rIuYLKqsvYUrGVndW7+2M5qNMgLhgwgaO7H2G/yFqzNv5/lwr07tY53mG0Ht40SElv8cMmbXJYuRIGDIDt24Pf/i718uiJ/8KXUs6uW/LC9ru8dChTKw/Bl7KLyso0jitdysPLp8cu8CbaJcK3aakU+dJ5pXIB12xazHGlO7lj42YyrFzXmNbvsGvgf25v8cMmZXJwipSCc3V/hSkTj1/J/Vd/Dh0fAN2zu951HxzNZad9zaRTlzL1lQMo2XgMHP/H8JOEffHW80XcyDYBVUq27mLp2u0sXrONHeXV5PhSGb1fJ4b1bE+Kp/H7CTKAg9zHeRrgsS0L+SufsyvvAP7UdRwpktz3JLQ+ltBNHd2ic/tsUiaHFSvgyivh5ZfD14kI2YV9yB/Xp959Z3zg3K101lkH8txzwZbUl9a77b7y4IyN2h34aU2A2UvXM+3TlTywaDNdv/dx7f/sz+nDCvB4IitmSAEuAdp9/Sx3fXYXj2f7uXjwxVGJ3RjTuiXlz8auXSEvvMQIcH7MP/JIw7er7uswoc2R4vVw3KB8nps0mqcuPoT8HB83vLiIs6bOYdm6HU061lkDzuLYnsfy9y/+zprSFhtgzxjThiRlcgBnLIb6eDywZk39CaClhgndFyLCYX07M+PyQ/nj6UP4dv0OTvjLxzz68Yom3ct846gbqdEaHl/8ePSCNca0WkmbHIqLoV+/8OUizpVFfQkgkYYJFRHOHNGDd687kqP6d+EPby7lkieL2FZWFdH++Zn5nNznZF5e/jJby7dGN1hjTKuTlMkhIwO6dYNly8LXjR3rJIDg1UBoF96JOExop6x0HvnlcG49eSAffruB06Z8yurNkQ0nOOGACVTUVDDr+1lRjtIY09okZXIIXgEEb/bx+ZyriOOPh5kznS/8YL9Ku3btmQCCw4TOmeNME6ELDRHhgsN686+LDmFjaSWnPvQpi4q3Nrpf/w796Z3Tm3+v/Hf0gzTGtCpJ3WX31KmQluaM4ZCfD/PnQ+/eobe57tZaOuL7bkMp5z82l607q3jiolEM69mhwe2nLJzClC+m8N6Z79E5wxoeGZNMrMvueoReAQwc6NyddMcdiVWv0Bz75Wbx3KQxdMxK49x/zmXe91sa3P7wgsNRlLklsRt+0BiT+JI2OcyYAdOmwdChsGSJs2zKFKcu4rnnEqteoam6tc/guUlj6JyVxoWPf97gra4HdDyAdmntmFMyJ4YRGmMSXdImB9j7VcLYsdGvV4h2t9/5OT7+ddEhpKV4OG/aXNZuq6esDPB6vBySf4glB2PMHpI6Oezt7qOZM+Ghh+Cgg5xpNEaGi0VDuh4d/Tx2/ki27ari/MfmsrOiut7thucNp2RnCevL1kcvGGNMq5LUyQFif/dRrBvSDeqew5RzhvPtuh3c8OKiehvKDeo8CIDFGxdHJwhjTKuT9MlhxozoXyWEikeF9xH753LjcQN488sSpn60Imx9/4798YrXkoMxplbSJ4dYi1dDuklH9OGEwfnc+9bX/Gf5xj3WZaRk0Ld9X0sOxphalhziIB4N6USE+04/iN6dM7n2+YVs2Vm5x/oDOx/I0s1LbexeYwwQQXIQkU6xCCTRRPNuolgXZQVlpqfw57MOZvPOSm6e8eUeiaBv+75srdjKpvJNsQnGGJPQIrlymCMiL4jICZJEY0vGo1vuWBjUPYfJY/vz1pK1vFBUXLt8v/b7AbBia3idhDEm+USSHPYHpgK/BJaJyN0isv++nFREzhCRJSISEJERddbdLCLLReQbERm3L+dpjkToljvaLjm8D2P6dOK215fw/aadgHPlALB86/J4hmaMSRCNJgd1vKOqZ+MMJHYeMFdEPhSRMc0872LgNOCj0IUiMhA4CzgQOA54WES8zTxHROoWH7X27jMi4fEI/3fmQXhFaouXcjNyaZfaju+2fhfv8IwxCSCiOgcRuVpEioDJwK+BzsD1wNPNOamqLlXVb+pZdQrwrKpWqOpKYDkwqjnniFTd4qNE7JY7Grq1z+CmEwbwn+828XzRakSE/drvZ1cOxhggsmKl/wLZwKmqeqKqzlDValUtAv7ewvF0B1aHzBe7y8KIyCQRKRKRog0bNjT5RA0VHyVit9zRcPbInozq3ZE/vLmU9dvL6VQ1iFevv67Nvl5jTOQiSQ6/U9U7VbW29lJEzgBQ1Xv3tpOIzBaRxfU8TmmBuFHVqao6QlVH5ObmNnn/hoqP4nU3Uax5PMI9pw2mojrA719dwoKnTmLb14P5/W31d7NhjEkeKRFscxPwfJ1lNwMvNLSTqh7bjHjWAD1C5gvcZS0uWYqPGtMnN4uV943jkcrdvxP+8YiHfzzSesawMMa0vL1eOYjI8SLyV6C7iPwl5PE4EK2flq8BZ4lIuoj0BvoBURtoIFh89PrrkJcHq1ZF60yJbfly6HLwOjypzn9ruq+mzVXCG2OapqFipR+BIqAcmBfyeA3Yp1tMRWS8iBQDY4A3ReRtAFVdgnOV8hXwFnClqtbsy7ka8tBDsHgxTJ/uJIrCwmidKbH16uFhdP9sAtVeJLWcygpPUl5FGWN2a3SYUBFJUdWELoRuzjChACkpUFNP6knG4pTTToNvtq2n4ohryFlwLb08I9tsXYsxxtGsYUJFJFjPsEBEFtV9RCXSGAneqVRfYkjW4pQZM+DtF7Pw5W8i87Q/WWIwJsk1VCF9tTs9KRaBxNKKFTB5MrzyCpSVOcu8XueW1mQuTino4KdPh158t3UZny7fyGF9O8c7JGNMnOz1ykFVS9ynPweqVPX70EdswouO0DuVPO47cNppcPnlbbdNQ6QOL+yPJ20Ld765hJqA9dBqTLKKpJ1DO+AdEflYRH4lInnRDioWgncqzZ8PV1wB1dVtu01DpHpmF4DU8M2GH3lpfnHjOxhj2qRG2zmo6u3A7SIyBPgF8KGIFDezHUPCCE0CDz0UvzgSTX6mU6Y2oKCG+9/+hhMHdyUzPZLmMMaYtqQpg/2sB9YCm4Au0QnHxFswOZwy3M/6HRX1DitqjGn7Iul47woR+QB4F+gEXKKqQ6IdmImPYHLw+0s5cXBXpn60grXbyuMclTEm1iK5cugBXKOqB6rqbar6VbSDMvGTnZZNRkoGJTtLuPG4AdQElPtn1deBrjGmLWuonUO2+/Q+4AcR6Rj6iE14JtZEhDx/HuvK1tGzk5/zDyvkpfnFLPlxW7xDM8bEUENXDsGxGubhdKMR2oVG05sjm1YjPzOftTude3qvPKov7TNSuevNpTTWmt4Y03Y01M7hJHfaW1X7uNPgo0/sQjSxFpoccjJSufqYfvznu028/836OEdmjImVSCqk341kmWk78jPz2bhrI1U1VQBMOKQXvTtncvfMr6muCcQ5OmNMLDRU5+Bz6xY6i0iHkPqGQvYyOptpG/L9+SjK+l3OlUJaiocbjxvA8vWlPFe0upG9jTFtQUNXDpfi1C8MYM/6hleBv0U/NBMvwdtZg0VLAOMOzGNkYQcefOdbSisSupNeY0wLaKjO4c+q2huYXKfO4SBVteTQhtWXHESE355wABtLK3nkw+/iFZoxJkYiaecQEJH2wRm3iOmK6IVk4q2+5ABwcM8OnHxQN/7x8QpKtiXZgBfGJJlIksMlqro1OKOqW4BLohaRibvM1EzapbULSw4AN4zrTyAA/zfr2zhEZoyJlUiSg1dEJDgjIl4gLXohmUSQ589jfVn4ras9Ovq5wBrGGdPmRZIc3gKeE5FjROQY4Bl3mWnD8jKdVtL1ueKovuRkpHL3TGsYZ0xbFUlyuBF4H7jcfbwL3BDNoEz85fvz95ocgg3jPl2+iQ++3RDjyIwxsdBoclDVgKpOUdXT3ccjqlrP6MumLeni78KmXZtqG8LVNfGQXhR28nP3m0utYZwxbVAkLaT7iciLIvKViKwIPmIRnImfPH8eirJhV/1XBmkpHm46fgDL1pfyfJGNGGdMWxNJsdJjwBSgGjgKeBKYHs2gTPzlZTqjwe6taAlg3IH5jOjVgQesYZwxbU4kySFDVd8FRFW/V9XbgBOjG5aJtzy/mxx27j05iAi3nHgAG0srmGoN44xpUyJJDhUi4gGWicivRGQ8kBXluEycRXLlAE7DuJOGdGXqxzZinDFtSSTJ4WrAD1wFDAfOAc6LZlAm/tqltiMjJaPR5ABw43ED3IZxNmKcMW1FJHcrfa6qpaparKoXqOrPVXVOLIIz8VM7IlwDxUpBPTr6Oe/QXrxoDeOMaTMiuXIwSaqhhnB1/eqofnTwp3Hrq0usYZwxbYAlB7NXwbGkI5HjT+Wm4wZQ9P0WZsxfE+XIjDHRFkk7h8MiWdYUInKfiHwtIotE5OU6vb7eLCLLReQbERm3L+cx+ybPn8eGsg3UBCJr83j68AKG9mjP//v3Urbtqr/xnDGmdYjkyuGvES5rineAQao6BPgWuBlARAYCZwEHAscBD7sd/Zk4yPPnUaM1bCrfFNH2Ho/wh1MHsWlnJQ++Y722GtOapexthYiMAQ4FckXkupBV2cA+fWGr6qyQ2TnA6e7zU4BnVbUCWCkiy4FRwH/35XymeWpvZ925ji7+LhHtM6h7Ducc0osn/7uKM0f0YGC37GiGaIyJkoauHNJw2jOkAO1CHtvZ/WXeEi4E/u0+7w6EDlJczF7GqxaRSSJSJCJFGzZY52/RUNsQLsJ6h6DJY/vT3p/G/766mEDAKqeNaY32euWgqh8CH4rI46r6fVMPLCKzgfx6Vt2iqq+629yC0y3HU009vqpOBaYCjBgxwr6BoiDShnB15fhTufn4AfzmxUU8NfcHfjm6VzTCM8ZE0V6TQ4h0EZkKFIZur6pHN7STqh7b0HoROR84CThGd9/7uAboEbJZgbvMxEGH9A6kelKbnBzAqZx+7YsfuWfmUo4e0IXu7TOiEKExJloiqZB+AVgA/A74Tcij2UTkOJwxIX6mqmUhq14DzhKRdBHpDfQD5u7LuUzzNaUhXH373j1+MArc8vKX1vbBmFYmkiuHalWd0sLn/RuQDrzjjkA6R1UvU9UlIvI88BVOcdOVNnZEfDWlIVxdPTr6+c24/tz++le8snAN4w8uaOHojDHREklyeF1ErgBeBiqCC1V1c3NPqqp9G1h3F3BXc49tWlaeP49FGxY1e/9zxxTy+hc/cvvrX/GTvrnktktvweiMMdESSbHSeTjFSP8B5rmPomgGZRJH8MqhucVCXo/wx9OHUFZZw00vLbLiJWNaiUg63utdz6NPLIIzsVVSAkceCWvX7l6W58+jKlDFlootzT5u3y7tuOm4Abz79Xqe+uyHFojUGBNtkXSf4ReR37l3LAWHDT0p+qGZWLvzTvjkE7jjjt3LIhn0JxLnH1rI4f0684c3v2L5+tJ9OpYxJvoiHSa0Eqe1NDi3lv4hahGZmMvIABGYMgUCAWcq4ixvbkO4ujwe4f/OOIiMVC/XPLeAyupAS4RujImSSJLDfqr6R6AKwL31VKIalYmpFStgwgTw+515vx8mToSVK/fsQmNfdcn2cc/Ph7B4zXb+37+X7vPxjDHRE0lyqBSRDEABRGQ/Qu5aMq1f166QnQ3l5eDzOdPsbMjPh06+TnjFu89XDkHjDszn/EMLeezTVbz2xY8tckxjTMuLJDncCrwF9BCRp4B3cRqwmTZk3Tq47DKYM8eZBiulvR4vuf7cFksOAL894QCG9+rATS8tYtm6HS123ERUXyW/Ma2BRHJroYh0AkbjFCfNUdWN0Q6sKUaMGKFFRXZ3bbScM/McfCk+Hh37aIsdc932ck78yydkZ6Tw6pWH0c6X2mLHTiRXXAGPPAKXXgoPPxzvaIzZk4jMU9UR9a2L5G6l8TitpN9U1TeAahE5tYVjNAmsuV1oNHjMbB9/m3Aw328q46pnFlBd07YqqBuq5DemNYioWElVa0eNV9WtOEVNJkl0zexKyc4SAtqyX+Cj+3Ti9p8dyPvfbOD2179qUw3kGqrkN6Y1iKT7jPoSSCT7mTaiR7seVNRUsKFsQ+3dSy3lnNG9WL25jEc+WkGvTn4uPrxttK9sqJLfmNYgkiuHIhF5QET2cx8P4HShYZJEj3ZOL+qrd6xuZMvmufG4AZwwOJ+7Zi7lzUUlUTlHPOytkt+Y1iCSK4BfA/8LPIdzO+s7wJXRDMokltDkMCK/3rqrfeLxCA+cOZT12z/j6mcXkJHm4egBLXuFEg8zZux+/tBD8YvDmOZo8MpBRLzAG6p6k6qOUNWRqvpbVd0Zo/hMAsjPyscr3qhdOQD4Ur1Mu2AkA7tlc9n0+XyyLKFuiDMm6TSYHNyxFAIikhOjeEwCSvWkkp+ZT/GO4qieJ9uXypMXjqJP50wufvJzSxDGxFEkdQ6lwJci8k8R+UvwEe3ATGLp0a4HxaXRTQ4A7f1pTL/4EAo7ZXLh45/z1uK2UwdhTGsSSXKYgVPn8BG7x3OwCukk06Ndj6gWK4XqnJXOc5PGMKh7Nlc8NZ/ni2JzXmPMbo1WSKvqE27fSj1V9ZsYxGQSUEG7ArZWbGV75Xay07Kjfr4cfyrTLz6ES/81jxteXMSPW3dx1dH98Hisz0djYiGSFtInAwtx+ldCRIaKyGtRjsskmMLsQgBWbVsVs3P601J49LwR/HxYAX+avYxfPTOfssrqmJ3fmGQWSbHSbcAoYCuAqi4E2kZLJROxvu2dYb+Xb10e0/Omp3i5/4wh3HLCAby1eC2nT/kvqzeXxTQGY5JRJMmhKrT7DFfb6gjHNKp7Vnd8Xl/MkwOAiHDJEX345/kjWb2ljBP+/LF1921MlEWSHJaIyATA6w4R+lfgP1GOyyQYr8dL75zefLf1u7jFcFT/Lsy86nD65WVx1TML+M0LX1BaYcVMxkRDJMnh18CBOAP8PA1sA66JYkwmQfVt3zcuVw6henT08/ylY/j10X15cX4xYx/4kPe+btkeY40xDSQHEfGJyDXAH4EfgDFuC+nfqWp5rAI0iaNvh76sL1vP9srtcY0jxevh+rH9efGyQ8nypXDh40X8+pkFrN9uH0tjWkpDVw5PACOAL4HjgftjEpFJWMFK6XgWLYUa3qsDb/z6cK77n/15e/Fafnr/B/xp9rd2R5MxLaCh5DBQVc9R1UeA04EjYhSTSVD7d9gfgKWblsY5kt3SUjxcdUw/3rnuCH7aP5c/zV7GT+/7gKc/+4HKartvwpjmaig5VAWfqKr9FDPk+fPonNGZLzd+Ge9QwvTqlMnDE4fz0uVj6N4hg9++/CVH3vc+j3+6kvKqmniHZ0yr01ByOEhEtruPHcCQ4HMRiW+hs4kLEWFw58EJmRyChvfqyIzLD+WJC0fRo4Of217/isPueY/73v6aNVt3xTs8Y1qNvXafoareWAZiWochuUN4f/X7bKvYRk56YnbWKyIcuX8uR+6fy9yVm5n60QqmfPAdUz74jqMH5DHhkB4c3i+XVG8kN+sZk5ziMtyniNwJnILTmG49cL6q/igiAvwZOAEoc5fPj0eMpn5DOg8BYOH6hRzZ48g4R9O4Ub07Mqp3R4q3lPHM3B94du5qZi9dRwd/KicO6copQ7szvGcH67PJmDokHoO6i0i2qm53n1+FU/l9mYicgNOu4gTgEODPqnpIY8cbMWKEFhUVRTVm46ioqeCwZw7jjP3P4MZRN8Y7nCarrA7w0bcbeGXhGmYvXUd5VYAu7dI5ekAXjhrQhZ/07Uxmug2RbpKDiMxT1XqHd4zLX0EwMbgycYYfBedq4kl1MtYcEWkvIl1V1Tr1TxDp3nSGdRnGnJI58Q6lWdJSPBw7MI9jB+ZRWlHNO1+t5Z2v1vHmohKe/Xw1aV4Po3p3ZHSfjhzSpxNDCnJIT7ESVpN84vYTSUTuAs7FaXF9lLu4OxDaeX+xuywsOYjIJGASQM+ePaMaq9nT6G6jeXDeg6zbuY68zNY71nNWegrjDy5g/MEFVFYHKPp+M+8tXc/HyzZy/6xvAUhP8XBwz/Yc3LMDg7vnMLh7DgUdMnBKQI1pu6JWrCQis4H8elbdoqqvhmx3M+BT1VtF5A3gHlX9xF33LnCjqjZYZmTFSrH13dbvOPXVU7lp1E1MPGBivMOJii07K5m7ajNzV27ms5Wb+LpkB9UB52+lvT+VQd1yOKBrO/p2yWK/3Cz6dsmivT8t7DglJXDWWfDcc5Bf31+DMftgXz9fcSlWUtVjI9z0KWAmcCuwBugRsq7AXWYSyH7t96Nv+77MWjWrzSaHDplpjDswn3EHOn9x5VU1fLN2B4t/3MbiNdv4cs02nvjv93s0tOuclUaf3CwKO/np3t5PQYcMnn6wMx9/ks5tt8Hf/25XG6Zl3XknfPIJ3HEHPPxwyx47XhXS/VR1mfv818CRqnq6iJwI/IrdFdJ/UdVRjR3Prhxib+qiqfx1wV+ZOX4mPbJ7NL5DG1QTUNZs2cXyDTtYvr6U79bvZPmGUlZvLqPo1qPQmvC6Ck9KgIunzSe3XTq5WT46t0sjNyud3HbpdM5KJ8efSlZait09ZRqUkQHl9XQl5vPBriY052noyiFeyeEloD/OrazfA5ep6hr3Vta/Acfh3Mp6QWNFSmDJIR7Wl61n3IvjOGvAWa3yrqVoW/lDDddcG+DtmSlUlAup6QH6jNjKwPErKfWUsrG0ks07K+vd1yOQk5HqPPxp5GSk0t6dz85IITM9hcy0FPxpXrLSU/Cnp5CZ5sWflkJmujPNSk/Bl+qxupE2qqQEJk+GV16BsjLw+2H8eLj//qYVLyXi3Uo/38tyBa6McTimGbr4uzC2cCwvL3+ZS4ZcQkdfx3iHlFB69/TSrYuXqkrn11xlpYejh3Tk4et3v09VNQE2lVayYUcFG0rL2VhayfZdVWwtq2Lbriq27nKm23ZV8cOmnbXPAxH+nhNxKtTTU7zONNV5nuYNPg9d505TPKSleEjzekjxCikeDykeIcXrIdUreIPP3amzLnQ7IbXOcq9H8Ijg8eBMRfAIIcud+brrRMTdpv51yaxrV8jOdq4efD5nmp3dsvVadkO3abZJQybx9qq3eXjhw/xu9O/iHU7CWbcOLrsMJk2CqVOdX3uhUr0e8nN85Of4gMham6sqFdUBdlZUU1ZZw87KanZW1LjzzvOyymp2VjrLKqsDVFQHqKiuoaIq5Hl1gIqqAFvLKqmoDuyxXXlVgKqaANUBpSbSTBQH9SUOjwg4/xARJPQ5TsKE0OUg7LkdweX1rHN3DztmcDvqLq9zDPbYJ+SYtbE527tPQieE5kNB+HjO/vQ5vJKLLlZW/7dr2OdrX8WlWKmlWbFS/Nz92d08+/Wz/GPsPzika6PtFU0ro6pUB5TqGqUqEKDGnVbXOIkjmESqagLuvFIdfB7Y/TygzrFq1HkeCCgBdY6hiru84XWquMdSd5v61wW/0lQVBVRBUXeKu96dr2ed4sxo2DF2zxO6X0PH38sxCD1X7T4h07rL9/hP2XObU4Z255zRvZr1/5twxUqm7bhm2DXMKZnD5A8n8+jYR+nfsX+8QzItSERI9QqpXsjAGgMmE+t5zOwTf6qfvx39N9K8aVw06yLe++G9eIdkjGkBlhzMPuuZ3ZPHxz1Ot8xuXP3+1Vwy6xLe/f5dyqtt2E5jWiurczAtpqqmiqe/fprHFj/GpvJNpHnS6N+xP/069CPfn09eZh5ZqVn4U/1kpmaSkZKBV7x4xYtHPM7U48GDB484j5a4K2V3lV8D20RwnkiOY0yspXvT8af6m7VvwrVzaGmWHBJLdaCaz9d+zn9+/A+LNy5m5baVbCrfFO+wjGmTLhx0IdcOv7ZZ+1qFtImpFE8KY7qNYUy3MbXLqmqq2LBrAzurdrKzaidl1WXsqt5FTaCGgAao0fBpYz9cIvlho7TQNm3gR5RpmwZ2GhiV41pyMDGR6k2lW1a3eIcRc9bxnmmtrELamCgK7RjNmNbEkoMxUZCR4bRonTIFAgFnKuIsN6Y1sORgTBSsWAETJjgdooEznTgRVq6Mb1zGRMqSgzFREIuO0YyJJksOxkRJsOO9OXOc6dq18Y7ImMjZ3UrGRMmMGbufP/RQ/OIwpjnsysEYY0wYSw7GGGPCWHIwxphWqqQEjjwyOvVZlhyMMaaVimYjS0sOxhjTysSikaUlB2OMaWVi0cjSkoMxxrQysWhkacnBGGNaoWg3srRGcMYY0wpFu5GlXTkYY4wJY8nBGGNMGEsOxhhjwlhyMMYYE8aSgzHGmDCWHIwxxoSJa3IQketFREWkszsvIvIXEVkuIotEZFg84zPGmGQVt+QgIj2AscAPIYuPB/q5j0nAlDiEZowxSS+eVw4PAjcAGrLsFOBJdcwB2otI17hEZ4wxSSwuyUFETgHWqOoXdVZ1B1aHzBe7y+o7xiQRKRKRog0bNkQpUmOMSU5R6z5DRGYD9XUDdQvwW5wipWZT1anAVIARI0ZoI5sbY4xpgqglB1U9tr7lIjIY6A18ISIABcB8ERkFrAF6hGxe4C4zxhgTQzEvVlLVL1W1i6oWqmohTtHRMFVdC7wGnOvetTQa2KaqJbGO0Rhjkl2i9co6EzgBWA6UARfENxxjjElOcU8O7tVD8LkCV8YvGmOMMWAtpI0xxtTDkoMxxpgwlhyMMcaEseRgjDEmjCUHY4wxYSw5GGOMCWPJwRhjTBhLDsYY00qVlMCRR8LatS1/bEsOxhjTSt15J3zyCdxxR8sf25KDMca0MhkZIAJTpkAg4ExFnOUtxZKDMca0MitWwIQJ4Pc7834/TJwIK1e23DksORhjTCvTtStkZ0N5Ofh8zjQ7G/LrG0GnmSw5GGNMK7RuHVx2GcyZ40xbulI67r2yGmOMaboZM3Y/f+ihlj++XTkYY4wJY8nBGGNMGEsOxhhjwlhyMMYYE8aSgzHGmDCWHIwxxoQRVY13DPtMRDYA3zdz987AxhYMpzWz98Jh74PD3ofd2up70UtVc+tb0SaSw74QkSJVHRHvOBKBvRcOex8c9j7slozvhRUrGWOMCWPJwRhjTBhLDjA13gEkEHsvHPY+OOx92C3p3oukr3MwxhgTzq4cjDHGhLHkYIwxJkxSJwcROU5EvhGR5SJyU7zjiRUR6SEi74vIVyKyRESudpd3FJF3RGSZO+0Q71hjQUS8IrJARN5w53uLyGfu5+I5EUmLd4yxICLtReRFEflaRJaKyJhk/EyIyLXu38ViEXlGRHzJ+JlI2uQgIl7gIeB4YCBwtogMjG9UMVMNXK+qA4HRwJXua78JeFdV+wHvuvPJ4Gpgacj8vcCDqtoX2AJcFJeoYu/PwFuqOgA4COc9SarPhIh0B64CRqjqIMALnEUSfiaSNjkAo4DlqrpCVSuBZ4FT4hxTTKhqiarOd5/vwPkS6I7z+p9wN3sCODUuAcaQiBQAJwKPuvMCHA286G6SLO9DDnAE8E8AVa1U1a0k4WcCZxC0DBFJAfxACUn4mUjm5NAdWB0yX+wuSyoiUggcDHwG5KlqibtqLZAXr7hi6E/ADUDAne8EbFXVanc+WT4XvYENwGNuEdujIpJJkn0mVHUNcD/wA05S2AbMIwk/E8mcHJKeiGQBLwHXqOr20HXq3OPcpu9zFpGTgPWqOi/esSSAFGAYMEVVDwZ2UqcIKUk+Ex1wrpZ6A92ATOC4uAYVJ8mcHNYAPULmC9xlSUFEUnESw1OqGhyNdp2IdHXXdwXWxyu+GDkM+JmIrMIpVjwap9y9vVukAMnzuSgGilX1M3f+RZxkkWyfiWOBlaq6QVWrgBk4n5Ok+0wkc3L4HOjn3oWQhlPp9FqcY4oJt1z9n8BSVX0gZNVrwHnu8/OAV2MdWyyp6s2qWqCqhTj//++p6kTgfeB0d7M2/z4AqOpaYLWI9HcXHQN8RZJ9JnCKk0aLiN/9Owm+D0n3mUjqFtIicgJOmbMXmKaqd8U3otgQkZ8AHwNfsrus/bc49Q7PAz1xukA/U1U3xyXIGBORnwKTVfUkEemDcyXREVgAnKOqFXEMLyZEZChOxXwasAK4AOcHZFJ9JkTkduAXOHf1LQAuxqljSKrPRFInB2OMMfVL5mIlY4wxe2HJwRhjTBhLDsYYY8JYcjDGGBPGkoMxxpgwlhyMMcaEseRgjDEmjCUH0ywiki8iz4rIdyIyT0Rmisj+8Y6rqUTkNhGZHO84GuOOtXBFS+wnIv9poZgyRORDt/v7xra9VETUbWwYXHalu2yciHwU0j2FSQCWHEyTud0KvAx8oKr7qepw4GbaeI+dcdYeqDc5iGNvf8th+6nqoS0U04XADFWtiWDbwcAXwAAAEfHjtDzeACzEGSviFy0Ul2kBlhxMcxwFVKnq34MLVPULVf1YRK5zR9BaLCLXBNeLSKE7wtjjIvKtiDwlIseKyKfuKGOjQrZ5yh2J7EX3SyR4jLBju/ssDtlmsns1UOge4x/uqF6zRCTD3eYWN4ZPgGBfQmFE5FwRWSQiX4jIvyKIY2/nCzuOiJwjInNFZKGIPBL89d3Ace4B9nO3v8/d7hsReRJYDPQQkVfcq7glIjLJDXeP/dxzlDb3tdQxkZA+hkTkAxEJfvl3Cv1/AYbgdD8xwJ2/CngBCKjqOuAV93gmUaiqPezRpAfOH/aD9SwfjtNfUyaQBSwBDnbXFeL0VTMY50fJPGAaIDhdJL/ibqPAYe4+03D6O9rrsd19FofEMBm4LeR8Q93lzwPnhBzHD2QDy4PnqPNaDgS+BTq78x0jiKO+84UdBzgAeB1IdZc9DJxb532qe5y6r7MQp1+s0SHLgjFm4CSMTnX3c9eXNue11DlGGrC2zrJiwOM+Pwp4JmTdBqAP8BbO1cwC4KfAbHe9F9gQ78+2PXY/7MrBtKSfAC+r6k5VLcXp7vjwkPUrVfVLVQ3gfBG9q843w5c4X0gAq1X1U/f5dPeYkRy7PitVdaH7fJ57jsPd45SpM4bF3nriPRp4QVU3AujuzuYaiqO+89V3nGNwvpg/F5GF7nyfRuKuz/eqOidk/ioR+QKYg9Mdfb+97BfU1NcSqjOwNTgjIr2ANe7/LThXCovcdT2ATaq6AugC/Ab4K7A/zv896hRNVYpIu0ZiNjFiFUCmOZawu/vipgjtxTIQMh9g92exbk+QjfUMWc2exaO+vZyvBucXdTRFej4BnlDVm/fxODtrD+hU9B4LjFHVMhH5gD3fi6ZqLIZddY5/EG4ycA0HnnOfD8ZNAsAOnMFzRuH0iDw/ZJ90oHwfYjYtyK4cTHO8B6SHlGsjIkNwKhZPFacv/ExgPE7X4E3RU0TGuM8nAJ+4zz/ey7HXAV3cMu504KRGjv+Re5wM91fqyQ28xjNEpJP7+jo2Esfe1Hecd4HTRaRLcJn7y7shO4CGflXnAFvcxDAAGB3Bfk19LbVUdQvgFZFgghiKmyxEpB9OUWEwIQwJeX4f8Cv3SqE2abjvz0Z1BtgxCcCSg2kytyhoPHCsOLeyLgH+H/Aj8DgwF2dsiEdVdUETD/8NcKWILAU6AFPcc86v79jul8kd7vJ3gK8biX0+zi/aL4B/4wz6VN92S4C7gA/dopoHGoqjgfOFHUdVvwJ+B8wSkUVu3F0biXsT8KlbcXxfPZu8BaS479s9OEVLDe7X1NdSj1nsLvY7CPC4r/H3OAPkBAcJGoxTB4KqvqGq/3WXD8S5CgWnjuLNJpzbRJmN52AShogUAm+o6qB4x2IaJyLDgGtV9ZcisgwYpqo7mnmsGcBNqvptiwZpms2uHIwxzeJeebwvIjnObLMTQxrwiiWGxGJXDsYYY8LYlYMxxpgwlhyMMcaEseRgjDEmjCUHY4wxYSw5GGOMCWPJwRhjTBhLDsYYY8L8fyhTTbfPFkuZAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# set loss function to huber\n",
+    "opt.handle_opt_set (handle, 'NLDF Loss Function Type = HUBER')\n",
+    "\n",
+    "# set initial guess and solve\n",
+    "x = [30., 30., 30., 30.]\n",
+    "\n",
+    "# regularisation types\n",
+    "regs = {'OFF', 'L1', 'L2'}\n",
+    "\n",
+    "# solve huber loss function with various regularisations\n",
+    "for reg in regs:\n",
+    "    # set reg type\n",
+    "    opt.handle_opt_set(handle, 'Reg Term Type =' + reg)\n",
+    "    # call the solver\n",
+    "    sol = opt.handle_solve_nldf(handle, lsqfun, lsqgrd, x, nres,data=data, io_manager=iom)\n",
+    "    # calculate response\n",
+    "    resp = sol.x[0] + ((sol.x[1] - sol.x[0]) / (1 + (sol.x[2] / dose)**sol.x[3]))\n",
+    "    # plot curve\n",
+    "    plt.plot(dose, resp, label='reg = '+reg)\n",
+    "\n",
+    "# show huber curves\n",
+    "plt.title(\"Huber loss function\")\n",
+    "plt.plot(t, y, '*b')\n",
+    "plt.xlabel(r\"Compound concentration ($\\mu M$)\")\n",
+    "plt.ylabel(\"Percent activity\")\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "f86a8a83",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEcCAYAAAAsv3j+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/FUlEQVR4nO3dd3hUVfrA8e+bOgkpQAi9C6L0JqLYRRAbYhdExF1RcW0rurrrby3ori7uuq4rllVXXey9oSKoFBURpHekBkKHBNLL+/vj3kAgbZJMS+b9PM88M3Pv3HPeDMO8c8659xxRVYwxxpjSIoIdgDHGmNBjycEYY0wZlhyMMcaUYcnBGGNMGZYcjDHGlGHJwRhjTBmWHIwxxpRhycEEnIhsEZE+wY6jJkRko4gMDlBdXURkkYgcEJHbAlFnqbqXi8gZgazThJaoYAdgwouINAKaAyuCHUsdcA/wrar29mclIrIR+K2qTi/Zpqrd/FmnCX3WcjCB1gNYo6p5ga5YROraj6F2wPJgB2HCkyUHE2g9gaXVOcDtypkgIktEJENE3hYRj7vveBH5TkT2u10hF5Vz7B9EZAmQJSJR7ra73fKyROQlEWkmIl+4XTjT3RaON7FVWL9b71a3zNUicnZl248q9xvgTODfInJQRI4VERWRTqVe84qIPOLN++TubyMiH4jILhHZIyL/FpH/AW2BT9167ilV1uBqvMcV1mvqJksOJtB6AEtqcNwVwLlAB5wEc52IRAOfAtOApsCtwOsi0uWoY68Gzgcaqmqhu+1S4BzgWOBC4Avgj0Aqzv+LKvv4K6vfjeF3wAmqmggMBTZWtP3oslX1LGA28DtVTVDVNVW+Q44y75MbayTwGbAJaA+0At5S1dHAZuBCt56/efs3elOvqbssOZhA6wksFZEBIvKjiMwSkTfdL6HK/EtVt6nqXpwvq97AQCABeExV81X1G5wvwKvLOXaLquaU2va0qu5Q1a04X8I/qepCVc0FPgS8GTCvrP4iIBboKiLRqrpRVX+tZLuvlPc+AQwAWgJ3q2qWquaq6pxa/o3e1GvqKEsOJmBERIDuOC2HLcBZqnoazi/n4e5rRrndGwdF5ItSh28v9Tgb5wurJbBFVYtL7duE86u4tC3lhLOj1OOccp4nePEnVVi/qq4D7gAeBHaKyFsi0rKi7V7U5a3y3ieANsCmUi0nb3n7HldUr6mjLDmYQOoAFKnqJlVNL/VLPh8oBlDV193ujQRVHVZFeduANiJS+nPcFth61Ov8NS99pfWr6huqegrOwLICj1e23QvZQHyp582rEesWoG0Fg/KVvT/evsemnrHkYAKpJ7Cs9AYRaQcMwemKqK6fcL4w7xGRaPe8/AuBt2oXZu3rd8cdzhKRWCAXpzVSXNF2L+tbBIwUkUgRORc4vRqxzgPSgcdEpIGIeERkkLtvB9Cxun9jNeo2dZAlBxNIRwxGi0gS8D/gOlUtqG5hqpqP80U1DNgNTAauVdVVvgm3VvXHAo+527fjDObeV8l2b9zu1rcfGAV8VI1Yi9xjO+EMQKcBV7q7/wrc756NNKEaf6Opx8RWgjPB4HZvfAL8XVVnBDseY8yRrOVgguVq4ETg/9xz6K+s6gBjTOBYy8EYY0wZ1nIwxhhThiUHY4wxZVhyMMYYU0Zdm6WyXE2aNNH27dsHOwxjjKlTFixYsFtVU8vbVy+SQ/v27Zk/f36wwzDGmDpFRDZVtM+6lYwxxpRhycEYY0wZlhyMMcaUUS/GHIwx9UdBQQFpaWnk5uYGO5R6w+Px0Lp1a6Kjq1o25TBLDsaYkJKWlkZiYiLt27fHWQLE1IaqsmfPHtLS0ujQoYPXx4V1t1J6Opx+OmzfXvVrjTGBkZubS0pKiiUGHxERUlJSqt0SC+vkMHEizJkDDz8c7EiMMaVZYvCtmryfYZkc4uJABJ59FoqLnXsRZ7sxxpgwTQ7r18PIkRDvLrgYHw+jRsGGDcGNyxhjEhLKLr89a9Ys+vbtS1RUFO+9915A4gjL5NCiBSQlQW4ueDzOfVISNK/OirzGmHpPVSku9nYVV/9p27Ytr7zyCiNHjgxYnWGZHAB27ICbboJPP4VmzWDjxmBHZIwJBRs3bqRLly5ce+21dO/enS1btjBp0iROOOEEevbsyQMPPHDotRMnTqRLly6ccsopXH311TzxxBN+ial9+/b07NmTiIjAfWWH7amsH3zg3I8f7yQKm7fPmNDz0KfLWbEt06dldm2ZxAMXdqv0NWvXruXVV19l4MCBTJs2jbVr1zJv3jxUlYsuuohZs2YRFxfH+++/z+LFiykoKKBv377069evTFmvv/46kyZNKrO9U6dOAesiqomwTQ5xcU53Uolnn3VuHg/k5AQvLmNM8LVr146BAwcCMG3aNKZNm0afPn0AOHjwIGvXruXAgQMMHz4cj8eDx+PhwgsvLLesUaNGMWrUqIDF7ithmxzWr4cJE+CjjyA72xmUHjEC/NQqNMbUQFW/8P2lQYMGhx6rKvfddx833njjEa/55z//6VVZdbXlELZjDjYobYzxxtChQ3n55Zc5ePAgAFu3bmXnzp0MGjSITz/9lNzcXA4ePMhnn31W7vGjRo1i0aJFZW6hnBggjFsOcHhQetw4eOEF54ppY4wpbciQIaxcuZKTTjoJcE41nTJlCieccAIXXXQRPXv2pFmzZvTo0YPk5ORa15ednU3r1q0PPf/973/PqaeeyogRI9i3bx+ffvopDzzwAMuXL691XZURVfVrBYHQv39/tcV+jKkfVq5cyfHHHx/sMLxy8OBBEhISyM7O5rTTTuOFF16gb9++wQ6rXOW9ryKyQFX7l/f6sO1WCjab18mYum/cuHH07t2bvn37cumll4ZsYqiJsO5WCqbS8zpNnhzsaIwxNfHGG28EOwS/sZZDgIXyvE7WmjHGlLDkEGChPK+TzVJrjCkR1slh0SJo2BCWLAlcnaF4Cm0ot2aMMcER1snhmmsgI8P5JR9IJafQzp3r3Ae7GyeUWzPGmOAIywHpo9e9WL788LZAnNlbMq8TwDPP+L++qoRia8aYcJWQkHDogrsS//jHP3jxxReJiooiNTWVl19+mXbt2vk1jrBsOSxcCEe/r+3bw+LFQQknJIRaa8aYUBAqU3b36dOH+fPns2TJEi677DLuuecev9cZli2H3r2h1NQpgPO8Z8+ghBMSQq01Y0ywbNy4kaFDh3LiiSeyYMECpk6dyjvvvMM777xDXl4eI0aM4KGHHgKcKbunTJlCamoqbdq0oV+/fkyYMMHnMZ155pmHHg8cOJApU6b4vI6jhWVyANi3D7p1gz//2Tk7Z+/eYEdkjCnji3th+1Lfltm8Bwx7rNKXhPKU3S+99BLDhg2r9nHVFbbJYdu2w4+vuCJ4cRhjQk+oTtk9ZcoU5s+fz8yZM31SXmXCNjkYY+qAKn7h+0soTtk9ffp0Hn30UWbOnElsbKzXx9VUWA5IG2OMt0Jhyu6FCxdy44038sknn9C0aVOf/F1VsZaDMcZUIhSm7J46dSoHDx7k8ssvB6Bt27Z88sknta6rMjZltzEmpNiU3f5hU3bXETbJnTF1n03ZHQQici7wFBAJvKiqwRmZ8hObstuYus+m7A4wEYkEngGGAV2Bq0Wka3Cj8g2b5M4YUxeEZHIABgDrVHW9quYDbwHDfV1JMLp2bJI7Y0xdEKrJoRWwpdTzNHfbISIyTkTmi8j8Xbt21aiSe++FWbOc++qoTVKxSe6MMXVBqCaHKqnqC6raX1X7p6amVuvYkq6d115znr/6avW6dmq7KI5NcmeMCXWhmhy2Am1KPW/tbvOJis7ereqsXl+NF3zwgTO5Xa9ezn3pSe+MMeEtLS2N4cOH07lzZ4455hhuv/128vPzAfjuu+9ITk6md+/e9O7dm8GDBwPw4IMP0qpVq0Pb761ud0g5QjU5/Ax0FpEOIhIDXAX47IqPDRvKrukAkJdX+Re9jRcYE14CPWW3qnLJJZdw8cUXs3btWtasWcPBgwf505/+dOg1p5566qGrrKdPn35o+5133nlo+2OP1f7kzpBMDqpaCPwO+ApYCbyjqst9VX6LFtCq1ZHbRKr+orfxAmPqv40bN9KlSxeuvfZaunfvzpYtW5g0aRInnHACPXv25IEHHjj02okTJ9KlSxdOOeUUrr76ap544ola1f3NN9/g8XgYO3YsAJGRkTz55JO8/PLLZGdn16rs6grZ6xxUdSow1V/ln3ACJCc7q8A59cE331R9XMl4wbhx8MILzuC0McY/Hp/3OKv2rvJpmcc1Po4/DPhDpa8J1pTdy5cvL1NGUlISbdu2Zd26dQDMnj2b3r17A3D55ZcfalU8+eSTh9Z5ePzxxxk6dKh3b0gFQjY5+NsXXzi//EtLT4fWraGwsOLjbFEcY+q/UJ2yG5xupfIm+bvzzjt9utBQ2CaHigafi4qcLiaPB3JyAhuTMeZIVf3C95dgTdndtWvXMtsyMzPZvHkznTp1Yt68eV7+BbUXkmMO/hYX5ww+V7TPBpmNMSUCOWX32WefTXZ2Nq+559kXFRVx1113cd111xFfciZMgIRlcig566g8eXk2yGyMOWzIkCGMHDmSk046iR49enDZZZdx4MCBI6bsHjZsmE+m7BYRPvzwQ9599106d+7Msccei8fj4S9/+YuP/ppqxBKuU3bffDM89xxERjpdSSX/phdfDJmZdu2BMcFiU3b7R3Wn7A7bMYcdO2D8NdsY1/mvvDDzXL5Y0o9Ne5oSv+UrXhn7IkwR92IIAYko9ViOfFxmv/s4ygOxiRCTADENIDYB4lMgsSUktYSEZhAZtm+/MfXCuHHjWLFiBbm5uYwZMyZkE0NNhO230wcfwPSZX9B/8BMUFh5ej/XZb4bx7DfDiIrK47EnBxIBRChEoM5jlEjAo0q8QgOEeFUa4DxPUWiEEl2Uh+RnQUFW+QFIJKQcA826Obe2J0HrEyDK/2vDGmN8oz5P2R22yQFgaXQy7e4fzca/P0txbgO0wIPE5JDUdwbNr3qCVxLLP6e1YH8TtkyeRJvxE4huuKfMftVItDCViOKOxEgSjSKb0MbThGPjk+nliaW/J4LUwj3IrlWw9RdY/qFzYHQ8tBsEPS6D4y5wWhvGhCFVRcqbxsDUSE2GD8J2zKHEmDGHJ+DzeCA/X7lhnPL0M0XOpfNaTLEWoxx+fOetsbzyUiyXX7ufWx5cz/7cg2TkZrE/9wA7s/ayM3s3e3L2kJG/jwOFe8jWnagcPi9WiyORgpakRHegc8PjOKvF8QyPzyI+bQ6s+RL2b3YSRc8rYdBt0LijL94mY+qEDRs2kJiYSEpKiiUIH1BV9uzZw4EDB+jQocMR+yobcwjb5BAXV/YiOICICBg+vPwB6YqOqeqaCFVlf+5+lu1az8L0tSzesZJfM1azr3ADxRHOJfFamEASx9EjpR83NGtBvx3fIEvfgeJC6HkVDH4AEu0UKlP/FRQUkJaWRm55/9lMjXg8Hlq3bk10dPQR2y05lMPjKf9ah4gI5+yl8qSnw4QJ8NFHkJ3tTLw3YgQ88UTNTn1VVX7dv5kPV85izpYf2ZS9hKKIDFSFqIIOnJDUh99H7ub4lW9DZAyc+Sc48SYnSGOMqSU7W6kcGzbAccc5p62WVlxc8RXSvp54T0To1Kgdd588mrsZjaqyIH0Fryz6jHk7ZzI3930uV6FRi0H8rjCDS766j+i102DEc9aKMMb4VVj+BI2Lg5YtyyaGEpVdIe3PhXpEhP4tu/Hv8/7AvOum8uawjzip8ZVkRuzhkbjdnNSmE5P3LWbvc4MgrWZjLMYY442w7FZKT4dbboEPPyy7T8T50p88ufLjr7oK3n47MFdSFxYV8r/F03hl2Rvs1cXEFisjDmZzSb8/cvzJv/V/AMaYeqmybqWwbDm0aAHNmpW/TxWef77ydaJru0xodUVFRjG273nMvHYK/z7tdVpED+TdxAZcs/qf3PzqVWzeX7M1tI0xpiJh2XIAZ9qM8hZ4ioiArVudL/7nn4cbbzzciqjp2Ur+sHDzcv47dQwzPblEaDQnpY7k70NvIy7aLqIzxnjHWg7lSEuDzp3LbhdxWhblrRMdSsuE9mnbjX9dP5MpeamcknOA2XteY9CU83hzyfSqDzbGmCqEZXIoGZBeu7bsviFDnARQspZ06Sm8Q26Z0JgG9LjuE/4V0Zynd2VCUR5/WXgn5705jm0HrKvJGFNzYZkcSloAJZcLeDxOK2LYMJg61fnCL+kmysk5MgH482ylGolNRK5+mzPw8P2BDLpHnc/m3Hmc+95F/HfhJ0EOzhhTV4XtmMPNNztrQMfEOBfDNW8Ov/wCHTqEzrhCtWz9Bf47DNqdzNs97uXRnx9EY9I4tsHpvHT+ozSMq90888aY+sfGHMpRugXQtatzdtLDD4fWuEK1tOoL5/4Vfv2GKw98z4yr3qOtXMzqg7M5++2L+WHLwmBHaIypQ8K25QAVn30UGemc0hoTA/n5R56xFNJU4b2xsOITGPsF2mYAf5/1Na+snYhEHWBMl9u4a+BYm8zMGANYy6FCFbUShgzx/7hCZddR1JgIXPgUJLeCj25GCnOZcPoQnj/rdSLzuvDqmie58qPxZBdk+7BSY0x9FNbJoaKzj6ZOhWeegV69nHt/LBnqtwvpPMlw0dOw91f49lEABnVsy/RRr9Ki6FJWZHzPue9cwdYD23xcsTGmPgnr5ACBP/soLs75gV/edRQ+0/EM6Hcd/PjMoTmYmiR4mDrmzwxscA9783Zw4QeXM2/bLz6s1BhTn4T1mEMw+Hra7wrlZsLkgc461jfOhqgYwJkm/G8zZvHahgeIjM7gjwMe5Kquw31YsTGmrrAxhxASsAvpPElw/t9h1yqY9/yhzSLCHwafzsMnPE9RTlse/fl+npr/Hx9Xboyp6yw5BEHAurK6DIPOQ+C7x+HAkZVc2rsLLw59Hg724sXl/+L/Zv2FYi1nsiljTFiqsltJRFJUdU+A4qkRf3QrBXpabr/Z86vTvdTtErjk+TK7l27dxzUf/pHixDmc2mIoTw3+K9ER0eUUZIypb2rbrTRXRN4VkfMkjE6QD/S03H6TcgycfCsseQs2zy2zu0erRrx/xd+IyTyP2elfMfbzW8grKmf9VGNMWPEmORwLvACMBtaKyF9E5NjaVCoil4vIchEpFpH+R+27T0TWichqERlam3pqIiBnEwXaqXdBUiv48t5y5ynv1DSRT0Y/SIPMK1m0Zy7XfX4zuYW2uLsx4azK5KCOr1X1auAGYAwwT0RmishJNax3GXAJMKv0RhHpClwFdAPOBSaLSGQN6/DK0Rej1dnpMyoT0wDOuh+2LYQV5Sx/B7RqGMdH104g4cBIlu2dz5ipN9rFcsaEsSqTg4ikiMjtIjIfmADcCjQB7gLeqEmlqrpSVVeXs2s48Jaq5qnqBmAdMKAmdXjr6O6jkJuW21d6XglNu8GMh6Ewv9yXNE/28MHo24nPvIYVexcyZuo4sgqyAhyoMSYUeNOt9COQBFysquer6geqWqiq84HnfBxPK2BLqedp7rYyRGSciMwXkfm7dlV/7YLKuo9CblpuX4iIhHMegn0bYcF/y31JejpcPTyO54beSlzGtazat5Qxn99gLQhjwpA3yeF+VZ2oqmklG0TkcgBVfbyig0RkuogsK+fmkyuuVPUFVe2vqv1TU1OrfXxl3UcffOD/6TOCotNgaH8qzHzcuUjuKCWtqP88Fcf7o8cTt38Mq/cv5zdf2hiEMeHGm+Rwbznb7qvqIFUdrKrdy7l9XMlhW4E2pZ63drf5XL3tPqqMCJzzMGTvgR/+dWhzea2otinxLLn3TqL2jmTZnoXc/PVt5BeV3x1ljKl/KkwOIjJMRJ4GWonIv0rdXgEK/RTPJ8BVIhIrIh2AzsA8P9V1qPvo00+hWTPYuNFfNYWQVn2h2wj4cTJk7QYqbkVt3Ci8cfXNsPsy5u/8kTu+mUBhsb/+6Y0xoaSylsM2YD6QCywodfsEqNUppiIyQkTSgJOAz0XkKwBVXQ68A6wAvgRuUdWi2tRVmWeegWXLYMoUJ1G0b++vmkLMGfdBYQ58/xRQeSvq+BZJ/Pey31G06yJmb/uWe2b+kaJiv/2TGGNChDdXSEepakj/XKzpFdJRUVBUzvdcyC8J6gsfjHMWBbp9MSQ245JLnCQxbpyzfGp6+pFjLd+t3slNn04iOvVLhh8zgomDHrJFg4yp4yq7QjqqkoPeUdUrgIUiUiaDqGpPH8YYUBWtAAdOd8oTTwQ2nqA4/Q+w9D2Y8yQMe+yIRPDMM2VffkaXpvwt907unp7Hx3xIk7gU7uh3e+DiNcYEVGXdSiX/8y8ALiznVmcd3ccOztKgImEwKF0i5RjodTXMfxkyvVv456JeLblv4J3k7xvAS8teZMqKKX4O0hgTLBUmB1VNdx9eChSo6qbSt8CE5x+l+9gj3Hfgkkvg5pvryTUN3jr9btAimP13rw+5blAHru38ewoyu/H4z4/zxYYv/BigMSZYvDmVNRH4WkRmi8jvRKSZv4MKhJIzlX75BcaPh8LCenZNgzcatYc+o2HBq7B/s9eH3TesK2el3ElhVgfum/1Hftj2g/9iNMYEhdcrwYlIT+BKnJZEmqoO9mdg1VGXVoILORlp8K8+0OsqZ+1pL+UVFjHqpe9YKY8TF7ePV4e9Qrcm3fwYqDHG13y1EtxOYDuwB2jqi8BMCEhu7aw3vfB12Lve68NioyJ5afRpNMu6hby8OMZNu4mNGRv9FqYxJrC8mXhvvIh8B8wAUoAb6vKZSqYcp94FkdEw82/VOiw5Ppr/jR1C7J6byMwt4IZpN7I7Z7efgjTGBJI3LYc2wB2q2k1VH1TVFf4OygRYYnM44bew5G3YtaZah7ZqGMero8+nOP037Mjazc1fj7eJ+oypByqbPiPJfTgJ2CwijUvfAhOeCZhBd0BUHMx8rNqHdmuZzLOXX0zO1pGs2ruKu2baNBvG1HWVtRxK1mpYgDONRukpNGz0t75JSIUTb4RlH8CO5dU+/LRjU3lkyOXkbh/OnK2z+ctPf8Hbkx2MMaGnsuscLnDvO6hqR/e+5NYxcCGagDn5VohNhG//UqPDrzyhLTf2uYa83afz7pp3eWnZSz4O0BgTKN4MSM/wZpupB+Ibw0m3wKrPYNuiGhVx15BjObflWAoyevHUL0/x+frPfRujMSYgKhtz8LhjC01EpFGp8Yb2VLA6m6kHBt4MnoY1bj2ICJMu70332HEUZ3fkT3Pu5+ftP/s2RmOM31XWcrgRZ3zhOI4cb/gY+Lf/QzNB4UmGQbfB2q9gS82W0oiNiuTF0QNJzbmRorwUfjfjNtbtW+fjQI0x/lTZmMNTqtoBmHDUmEMvVbXkUJ8NuBHim8C3j9a4iIbxMfzvujOI2X0DOXkR3DT9ZnZlV3+tb2NMcHhznUOxiDQseeJ2MY33X0gm6GIT4JQ7Yf13sPH7GhfTpnE8L10zlPxt17Ezax83Tx9PVkGW7+I0xviNN8nhBlXdX/JEVfcBN/gtIhMaTvgNJDSHbx6BWpyS2rtNQ54acSHZaSNZvW8Nd313l10DYUwd4E1yiJRSS36JSCQQ47+QTEiIjnOm1dj8A/z6Ta2KGtqtOX88YwS56Rfz/bbveWTuI3YNhDEhzpvk8CXwtoicLSJnA2+620x9128MNGwLXz8AtVw3+vpTOnBNtyvI230m7699n/8s/Y+PgjTG+IM3yeEPwLfAze5tBnCPP4MyISIqFs5+AHYsdeZdqqX7z+/K6U1GU5DRh6cXPs3H6z72QZDGGH/wej2HUGbrOfiRKrx4NmSmw60LICa+6mMqkZNfxJUvzObXyKeIbrCBZ85+hkGtBvkoWGNMddRqPQcR6Swi74nIChFZX3LzfZgmJInAkEfgwDaY+0yti4uLieSlMSfR6OANFOc1445v72T5nurP5WSM8S9vupX+CzwLFAJnAq8BtrJ8OGl3Mhx3Acz5JxzcWeviUhNjeWXMaej235CfH8fNX49ny4EttY/TGOMz3iSHOFWdgdMFtUlVHwTO929YJuQMfggKc2s8rcbROjVN4D+jziZ38/Vk5uZx09c3sS93n0/KNsbUnjfJIU9EIoC1IvI7ERkBJPg5LhNqmnRyFgRa8ApsW+iTIgd2TOFvFw8mc9O1pB1I55YZt9hCQcaECG+Sw+1APHAb0A+4Bhjjz6BMiDrzj9AgFT6fAMXFPilyeO9W3HXaELK2XMWy3cu5Z9Y9dpGcMSGgyuSgqj+r6kFVTVPVsap6qarODURwJsR4kp3B6a3zYeH/fFbs+DOO4bLjzyUn/SJmps20i+SMCQHetByMOaznFdBuEEx/ELL3+qRIEWHixd0ZmHoBBXvO4v217/Pckud8UrYxpmYsOZjqEYHznoDcDJj+gM+KjY6MYPKovrSLuAQ90J/Jiybz/pr3fVa+MaZ6vLnOocwVSuVtqw4RmSQiq0RkiYh8eNSsr/eJyDoRWS0iQ2tTj/GTZl2dFeN+eQ1+/dZnxSZ6onll7ADiM68iMvc4Hv7xYaZvmu6z8o0x3vOm5fC0l9uq42ugu6r2BNYA9wGISFfgKqAbcC4w2Z3oz4SaM/8IKZ3gk9sg74DPim2RHMd/rxtIwbbRRBW2555Z9/DDth98Vr4xxjuVLRN6kojcBaSKyO9L3R4EavWFrarTVLXklJS5QGv38XDgLVXNU9UNwDpgQG3qMn4SHQfDJ0PGFvj6zz4tulvLZJ4ZOZD9G0YTVdSM27+5nUU7F/m0DmNM5SprOcTgXM8QBSSWumUCl/kwhuuBL9zHrYDSl8qmUcF61SIyTkTmi8j8XbtshbGgaHui0700/2Wfdi8BnNGlKY9cNIBda8cQUZzM+BnjWb13tU/rMMZUrMqJ90SknapuqnbBItOB5uXs+pOqfuy+5k9Af+ASVVUR+TcwV1WnuPtfAr5Q1fcqq8sm3guighx4/jTIzYSb5kBCqk+L/8e01Tw962dSu/yH+Bjh1WGv0i6pnU/rMCZc1WriPSBWRF4QkWki8k3JraqDVHWwqnYv51aSGK4DLgBG6eEMtRVoU6qY1u42E6qi4+Cy/0LOPvjwRp9dHFfiznOOZcyAPuxeex1Z+QWMmzaO7VnbfVqHMaYsb5LDu8BC4H7g7lK3GhORc3HWhLhIVUvPl/AJcJWIxIpIB6AzMK82dZkAaN4dzv0r/DoDfviXT4sWEf58QVcu6dGXPb9ey+7sfYz7ehy7c3b7tB5jzJGivHhNoao+6+N6/w3EAl+7K5DOVdWbVHW5iLwDrMCZBfYWVa3dEmQmMPpfDxtmwoyHoc0AZyZXH4mIEB67pAfZ+YV8ta4A7fAKv/3qt7w09CVS4lJ8Vo8x5jBvxhweBHYCHwJ5JdtV1TeXx/qAjTmEiNwM+M/ZkLMXbvgWGvl2bCC/sJgbXpvP91vnktTuNdolt+GloS/R2NPYp/UYEy5qO+YwBqcb6QdggXuzb2JTlicZrn4Ligvhzat9ev0DQExUBM9d04++qSdwcPO1bMzYzA3TbmB/7n6f1mOM8W7ivQ7l3DoGIjgTWOnpcPrpsL02471NOsHlr8CuVfDe9VBU4KvwAHcluev6061xP7I2j2b9/g3c8PUNZORl+LQeY8KdN9NnxIvI/SLygvu8s4hc4P/QTKBNnAhz5sDDD9eyoGPOgvOfgLXT4ONbfH4GU6InmteuH0D3xieQtXk0a/f9yg3TLEEY40veLhOaD5SMMG4FHvFbRCbg4uKc+fSefdb5Hn/2Wed5XFwtCu1/PZx1Pyx5G766D3w8BXeiJ5pXrx9Aj5QTyd5yDWv2reM3X/2GPTl7fFqPMeHKm+RwjKr+DSgAcE89Fb9GZQJq/XoYORLi453n8fEwahRs2FDLgk+dAANvgZ+egy/9kyBeGXsCPRoPdLuYNjL2q7HsyNrh03qMCUfeJId8EYkDFEBEjqHUWUum7mvRApKSIDcXPB7nPikJmpd3fXt1iMDQR+HEm+GnZ+GzO/zSxfTq9QPomXIiBzZdx7YDOxjz5RjSDqT5tB5jwo03yeEB4EugjYi8DszAuYDN1CM7dsBNN8Hcuc59rQalSxNxLpA75ffO+tPv/8aZcsOHEmKjePX6AfRp2o9968eyJzuDMV+OYUNGbZs+teeTQX5jgqDK6xwARCQFGIjTnTRXVUPq8lS7zqGO+P4p+PoBaN0frnoDEpr6tPjcgiLGv/4L321YTJNOrxAXE8kL57xAl8ZdfFpPdYwfD88/DzfeCJMnBy0MY8pV2XUO3lwENwL4RlUz3OcNgTNU9SMfx1ljlhzqkJWfwgfjID4FrvwftOzj0+ILioqZ8O5iPlmxmKadXyEiMo+nznyKAS0CO/N7XJzTPXc0jwdyfNtwMqbGansR3AMliQFAVffjdDUZU33HXwhjv3AGp188B358xqcD1dGRETx5RW+u6dufnatvQIoactP0m/hiwxdVH+xDfhvkNyZAvEkO5b3GmzmZjClfy95w02zoPAS++iO8cQVkbvNZ8RERwsPDuzH+1H5sW3k9nuIO3DPrHl5d/qrP6qiK3wb5jQkQb5LDfBH5h4gc497+gTOFhjE1F98Yrnodhk2CDbPhmRPh5xd9djaTiHD30OOYeOEJbF89mviCvjwx/wn+9vPfKFbfnjFVEb8N8hsTAN6MOTQA/g8YjHM669fAo6qa5f/wvGNjDnXc3vXw6R3OrK6t+sGQR3w6q+v0FTu49c0FxLf4nPwGsxjcdjCPnvIo8dHxPqvDmLqoxgPSIhIJTFfVM/0VnC9YcqgHVGHxWzDjITiQDl3Oh7P/DE2P80nxS9MyGPvqPPLivkNSPqNL42N5+qynad7A+nlM+KrxgLS7lkKxiCT7JTJjSohA76vh1l/grP+DDbNg8onw5kjYUvv1nnq0Tuaj8YNozhDy0sawYf9mrvrsKhbvWuyD4I2pf7zpVvoY6IPTnXSoK0lVb/NvaN6zlkM9lLXHmXZj3guQux/anAj9roOuF0NMzbuDMnIKuO3NhczeuIzUTq9TKPt58OQHufCYC30VuTF1Rm2vcxhT3nZVDdypH1Ww5FCP5R2Ehf9zBqv3rIPYJOh+qXNrdzJERFa7yKJiZdJXq3luzhKaHfM22ZFrGN11NHf2u5PoiGg//BHGhKZaJQe3gDigraqu9nVwvmDJIQyowqYf4JfXYMXHUJgDDVLhuPPhuAucRBHToFpFfrp4G3e/9wtxzadSmDCbPk37MOm0STRr0MxPf4QxoaW2LYcLgSeAGFXtICK9gYdV9SKfR1pDlhzCTN5BWPe1kyTWTIOCLIiIdrqeOp4BHU6FFr0guuo5x5dvy2DcawvYzVwatPyQxNh4Jp02KeBXVBsTDLVNDguAs4DvVLWPu22Zqnb3eaQ1ZMkhjBXkOC2K9d85t+1LnO0RUdCsm3NqbKv+zuMmx5Y7XrE/O58J7y7mm1+X0uSYt8ljO7f2vZXru19PhHhzKZAxdVNtk8NcVR0oIgtLJYclqtrTD7HWiCUHc0jWbtjyE2xdAGnzYdtCyMt0dwo0agepx0NqF0jpBA3bQqN2aGJLXvoxjce+XExim48ojPuFgS0G8ugpj9I03rcTBBoTKmqbHF7Cmab7XuBS4DYgWlVv8nWgNWXJwVSouNgZyN65wlnXetcq2LnK2VZcan1riYCkVhyIa8kPO6P5Mq6QWU13EBcZzUOdR3J2u3OcWWTjGkGkDVqb+qG2ySEe+BMwxN30FfCIqpYz52RwWHIw1VZUAJlbYd8m2L8Z9pfcb6YoczuFGelsiyrk3tQUVsTGclnmAe7eu594VYhuAHENwZMMnoZHPvYkQXS8MzgeHe90Y0U3cO9Lb28AUbEQGQuRNlWZCY7KkkOFn0oR8QA3AZ2ApcBJqlronxCNCbDIaGjU3rkdvcu9LZ+/hgOfzSG14Qzeb7SEn5u04ZHGJ9JbYyA3w7n+Ime/k1RyM5zH+QeqH4tEQGSMkyiiYtzH7i3K3V76cUSUcwpv6XuJdB9X9jyq/NdIhHMRInL4sURU8bw6r6eS/W454D7m8PPytkmpfYe2Uc62mpZV2bZKyqqy/EqOq/A1ZXaUv9mT5LRofazCloOIvI2zbvRsYBiwUVXv8HkEPmAtB+Mv2zNyufu9xfyw9SeS235Aoexl5PEjua3PbeXPzVRcDAXZzi0/y73Pds6oyj9qe2EeFOUfvi+5FeZDUd5Rjwvc1+VBcREUFx6+1yL3cWXP7XddvTXoDjjnoRodWqNuJRFZqqo93MdRwDxV7VujCPzMkoPxJ1VlytxNPPblYrTxVCIb/kCrhFY8ePKDDGwxMNjheUcVtLhswiguOrwP9/6I50c/ruy15R3rxeudAA/HeTjoI+5KPSh7XHnbyi3Li+OqXVbpXdUtq0wBFWyu5Jimx0Ormn0116hbCafV4MalhVJhU8eY+k1EGH1Se84+vhl//rgV327swY42H3LDtBu4tPOl3NH3Dhp6GgY7zMqJHO5GIibY0Zg6oLKWQxGH51ISIA7Idh+rqiYFJEIvWMvBBIqq8tXy7fzfxwvJjPuc2JQ5JMUkcWe/OxjReYRdF2HqlFpPnxHqLDmYQMvMLWDSl6t5Y9FPxLf4BDzr6Z7SnftPup9uKd2CHZ4xXqntGtI+JyITRWSJiCwSkWki0tLdLiLyLxFZ5+4PyTEOY5I80Uy8uDufjrucrvIHcrZeyYpdm7j6s6t56MeH2J2zO9ghGlMrQWk5iEiSqma6j28DuqrqTSJyHnArcB5wIvCUqp5YVXnWcjDBpKp8uWw7j3zxC7ujPyW28VxiImP4TY+xjOk6xlacMyEr5FoOJYnB1YDDQ/TDgdfUMRdoKCItAh6gMdUgIgzr0YIZd57Lbb0noFsmkLXvGCYvmsy575/Hu2vepdBOJTV1TNBGz0TkURHZAowC/uxubgVsKfWyNHdbecePE5H5IjJ/165d/g3WGC94oiO55cxOzP79FYzp9ACFaePZvb8BD//4MBd9OIIvN3xJUXFRsMM0xit+Sw4iMl1ElpVzGw6gqn9S1TbA68Dvqlu+qr6gqv1VtX9qaqqvwzemxhrGx3DvsOOYeetYzomexLoHP+fX9bHcPetuLrQkYXwoPR1OPx22b/d92X5LDqo6WFW7l3P7+KiXvo4zoR/AVqBNqX2t3W3G1DlNkzwULOhK3uY2JH7zHAXpI9m0J4u7Z93N+R9czNT1U627ydTKxIkwZw48/LDvyw7WgHRnVV3rPr4VOF1VLxOR83FaESUD0v9S1SpXXbEBaRNq4uIgt5ypKaOiizl24iS00TQiY3eSEtuC3/YcwyWdR9jAtfFaRZ8vjwdycrwvJ+QGpIHH3C6mJTizvd7ubp8KrAfWAf8BxgcpPmNqZf16GDkS4t3v+/h4GDUKtmyO4Idbf8+NHScTvXssO/fF8PjPj3H6W2czad6T7Mq28TNTtYo+Xxs2+K6OoMwVrKqXVrBdgVsCHI4xPteiBSQlOb/uPB7nPikJmjcHiOb2wV24+YzOTF16Jc/+OINNRV/w2or/8r+Vr3Jay3P4ba9R9ErthU1bY8pT+efLN+xaf2P8ZMcOuOkmmDvXuT960DAmKoKL+7Tiq/HX8ubwyQyM/RsF+07kuy3fMvqL0Qx+ezivLXuDrIKs8iswYa2qz1dt2fQZxoSQPQfzeHvBOl5f9hH7omYS6UknEg8nNz+Hcb2voFdTa00Y37G5lYypY1SVXzbv4z8/zWTOjk8gYTESUUBCRAuGtjuf3/a5lNaJrYMdpqnjLDkYU4dl5xfy+bINvL70M9Zmf0dE/HoAmkV3ZXini7imx3k08sNKYKb+s+RgTD2RkVPA2wsX8+6qj9lWOIeI2N2gETSN7sbZbc/h+j4X0DzBLgo13rHkYEw9tPtALm8s+pGp678iLX8uErMHVEiO6MLJzc/kmh7n0rNFx2CHaUKYJQdj6rmc/ELeXfIzH675gl+zv0ejdwIQVdicTgknMKTjmVzV41QSPZ4gR2pCiSUHY8JIcbEy49dlvL9yOov3/MgBWYNIEVrkoSHd6JEygHOPOYVzOnclPjYolzqZEGHJwZggSU+Hq66Ct9/27QVK1bE7K5M3lkxn+qbv2JTzC8URGQAUFzQimePp3rgvQzqewuBjO9Mw3taXDieWHIwJkvHj4fnn4cYbYfLkYEfjnCK7dOdaPlz1HT+lz2Nr7jKKxbnIrigvlfjiTnRI7MaAFn05o0NXurdqSFxMZJCjNv5iycGYAPPVxGj+VqzFLN21ko9XzeKn9J/YmruKIpxkoYXxFOe2pVHksRzfqDsnt+lDr1ZNObZZIome6CBHbnzBkoMxAZaeDhMmwEcfQXa2MzHaiBHwxBPB617yRrEWszFzI7M3zWf2lvms2reUjKI0AFSF4vwmFOe2IlHa0yGpC32adaVnyxYc1yKR9ikNiIywq7frksqSg41GGeMHgZgYzR8iJIKOyR3p2LMjY3peAUBGXgaLdy7mx62LWLRjGRsOrCGraBErgZU7YMqWFIpyWyH5LUmNbUvHpE50bdqOY1KT6JjagI6pCSTHWUujrrHkYIyflEyMNm4cvPCC05qoi5JjkzmtzWmc1ua0Q9t25+xm1d5VLN21nPnpS1m9byUZBUvYByxQmJ8eTfHGZhTnNaMorxmJEa1ol3gMnRq3pF1KAm0ax9O6UTxtGseRmhBr80WFIOtWMsb4xMH8g/ya8Svr9q1jzb51LN+1mg2Z68ks2HP4RcXRFOWnUJyfQnF+EzS/CVHFqbSIb0u7Rs1o2yieNo3jadkwjubJHloke0hNiCUq0iaQ9gfrVjLG+F1CTAK9UnvRK7XXEdsz8jJYt38dv+7/lU2Zm1i/fyMbMjayPXs1Reosk7oL2K2xzN/RhILNjdCCRhQXNKS4oBEUNiIlthktkhrTIslD82TPocTRLMlDk4RYUhNiSYqLshaID1lyMMb4VXJsMv2a9aNfs35HbC8sLiQ9K53NmZvZmLmRzZmb2ZS5iS0H0kjPWkNBcf6h1+YAmzSezfmNKExrSP6vyRQXNEQLk9GCJIoLk4jWhqQ0aECThFiaJMQ494mxRz5PiKVRfDQN42OIibLWSGUsORhjgiIqIoo2iW1ok9iGQa0GHbFPVdmTu4dtB7exLWsb6QfT2XpwK+lZ6c62g4vILswuU2Yu8WzXhmwvSqJwVyI5WxIoKkhCCxPRwgSKCxPQogQojiU+JopG8TE0jI92bzFO4ohzth3eF0NyXBSJnmgSPVHERUeGTAvFnxdZWnIwxoQcEaFJXBOaxDWhZ2rPMvtVlcz8THZl72Jnzk7nPnsnO7N3sitnF7uyd7EjezO7c3ZTpEVljo8gitiIJFQT2V+cwL6iBhRmNCBvVzw5OR6KChughQlocRwUxaFFcYBzMWBkhJDoiSIh9nDCSPIcfpzoPnb2R5HkiSYuJpIGMVHOfWwk8TFRxMdEEl3LsZSJE2HOHHj4Yd9fZGkD0saYeqtYi9mbu5dd2bvYm7v3iNu+3H1ltuUUVnyFYmxEPDHSgGhJIJJ4pDgeiuMpKoyjsMBDfkEseXkesnNjKCqMRYs8UByLFntAo4CyrY2YyAg3cUS6icNpmTSIjTq0vSSRxMdE4ol2Xjf2tLYU5Jctr7oXWdqAtDEmLEVIxKEWiDdyCnOOSBqZ+Zlk5GWQmZ9JZl7moefOtj1k5K0nIz+DwqhCiHPKKG/e2wiJxBMRT0xkPDEST5TEEYmHCI1DtCSJxFJYGMu+ohh25sSQnxlFfn40ufmR5OZFUVgUjRbHQHEMTW9Yy75vjidnbTO0MOqIiyx9xZKDMca44qLiiEuIo2VCS6+PUVVyCnOOSCQH8w9ysOAgWQVZh+/zj3pecJCsgj0cLMgiqziLnOIciMC5HXXN4NEJJyoimoJV/0f2quFExRSSmxvl84ssLTkYY0wtiAjx0fHER8fTvEHNv50LiwvJKsg6lDhyCnPILsgmpzDHeVyYTU6Be1+Yw4uFx9Nm+Dyuv6GI5Z8P8vlFlpYcjDEmBERFRJEcm0xybLJXr7/zu1JPzvN9PHairzHGmDIsORhjjCnDkoMxxpgyLDkYY4wpw5KDMcaYMiw5GGOMKSOoyUFE7hIRFZEm7nMRkX+JyDoRWSIifYMZnzHGhKugJQcRaQMMATaX2jwM6OzexgHPBiE0Y4wJe8FsOTwJ3AOUnvlvOPCaOuYCDUWkRVCiM8aYMBaU5CAiw4Gtqrr4qF2tgC2lnqe528orY5yIzBeR+bt27fJTpMYYE578Nn2GiEwHypto5E/AH3G6lGpMVV8AXgBnyu7alGWMMeZIfksOqjq4vO0i0gPoACx2V1NqDfwiIgOArUCbUi9v7W4zxhgTQAHvVlLVparaVFXbq2p7nK6jvqq6HfgEuNY9a2kgkKGqPp5r0BhjTFVCbVbWqTjzC64DsoGxwQ3HGGPCU9CTg9t6KHmswC3Bi8YYYwzYFdLGGGPKYcnBGGNMGZYcjDHGlGHJwRhjTBmWHIwxxpRhycEYY0wZlhyMMcaUYcnBGGPqqPR0OP102L7d92VbcjDGmDpq4kSYMwceftj3ZVtyMMaYOiYuDkTg2WehuNi5F3G2+4olB2OMqWPWr4eRIyE+3nkeHw+jRsGGDb6rw5KDMcbUMS1aQFIS5OaCx+PcJyVB8/JW0KkhSw7GGFMH7dgBN90Ec+c6974elA76rKzGGGOq74MPDj9+5hnfl28tB2OMMWVYcjDGGFOGJQdjjDFlWHIwxhhThiUHY4wxZVhyMMYYU4aoarBjqDUR2QVsquHhTYDdPgynLrP3wmHvg8Peh8Pq63vRTlVTy9tRL5JDbYjIfFXtH+w4QoG9Fw57Hxz2PhwWju+FdSsZY4wpw5KDMcaYMiw5wAvBDiCE2HvhsPfBYe/DYWH3XoT9mIMxxpiyrOVgjDGmDEsOxhhjygjr5CAi54rIahFZJyL3BjueQBGRNiLyrYisEJHlInK7u72xiHwtImvd+0bBjjUQRCRSRBaKyGfu8w4i8pP7uXhbRGKCHWMgiEhDEXlPRFaJyEoROSkcPxMicqf7/2KZiLwpIp5w/EyEbXIQkUjgGWAY0BW4WkS6BjeqgCkE7lLVrsBA4Bb3b78XmKGqnYEZ7vNwcDuwstTzx4EnVbUTsA/4TVCiCryngC9V9TigF857ElafCRFpBdwG9FfV7kAkcBVh+JkI2+QADADWqep6Vc0H3gKGBzmmgFDVdFX9xX18AOdLoBXO3/+q+7JXgYuDEmAAiUhr4HzgRfe5AGcB77kvCZf3IRk4DXgJQFXzVXU/YfiZwFkELU5EooB4IJ0w/EyEc3JoBWwp9TzN3RZWRKQ90Af4CWimqunuru1As2DFFUD/BO4Bit3nKcB+VS10n4fL56IDsAv4r9vF9qKINCDMPhOquhV4AtiMkxQygAWE4WcinJND2BORBOB94A5VzSy9T51znOv1ec4icgGwU1UXBDuWEBAF9AWeVdU+QBZHdSGFyWeiEU5rqQPQEmgAnBvUoIIknJPDVqBNqeet3W1hQUSicRLD66pashrtDhFp4e5vAewMVnwBMgi4SEQ24nQrnoXT797Q7VKA8PlcpAFpqvqT+/w9nGQRbp+JwcAGVd2lqgXABzifk7D7TIRzcvgZ6OyehRCDM+j0SZBjCgi3X/0lYKWq/qPUrk+AMe7jMcDHgY4tkFT1PlVtrartcf79v1HVUcC3wGXuy+r9+wCgqtuBLSLSxd10NrCCMPtM4HQnDRSRePf/Scn7EHafibC+QlpEzsPpc44EXlbVR4MbUWCIyCnAbGAph/va/4gz7vAO0BZnCvQrVHVvUIIMMBE5A5igqheISEeclkRjYCFwjarmBTG8gBCR3jgD8zHAemAszg/IsPpMiMhDwJU4Z/UtBH6LM8YQVp+JsE4OxhhjyhfO3UrGGGMqYMnBGGNMGZYcjDHGlGHJwRhjTBmWHIwxxpRhycEYY0wZlhyMMcaUYcnB1IiINBeRt0TkVxFZICJTReTYYMdVXSLyoIhMCHYcVXHXWhjvi+NE5AcfxRQnIjPd6e+reu2NIqLuxYYl225xtw0VkVmlpqcwIcCSg6k2d1qBD4HvVPUYVe0H3Ec9n7EzyBoC5SYHcVT0f7nMcap6so9iuh74QFWLvHhtD2AxcByAiMTjXHm8C1iEs1bElT6Ky/iAJQdTE2cCBar6XMkGVV2sqrNF5PfuClrLROSOkv0i0t5dYewVEVkjIq+LyGAR+d5dZWxAqde87q5E9p77JVJSRpmy3WOWlXrNBLc10N4t4z/uql7TRCTOfc2f3BjmACVzCZUhIteKyBIRWSwi//MijorqK1OOiFwjIvNEZJGIPF/y67uSch4DjnFfP8l93WoReQ1YBrQRkY/cVtxyERnnhnvEcW4dB2v6txxlFKXmGBKR70Sk5Ms/pfS/C9ATZ/qJ49zntwHvAsWqugP4yC3PhApVtZvdqnXD+Y/9ZDnb++HM19QASACWA33cfe1x5qrpgfOjZAHwMiA4UyR/5L5GgUHuMS/jzHdUYdnuMctKxTABeLBUfb3d7e8A15QqJx5IAtaV1HHU39INWAM0cZ839iKO8uorUw5wPPApEO1umwxce9T7dHQ5R/+d7XHmxRpYaltJjHE4CSPl6OPc/Qdr8rccVUYMsP2obWlAhPv4TODNUvt2AR2BL3FaMwuBM4Dp7v5IYFewP9t2O3yzloPxpVOAD1U1S1UP4kx3fGqp/RtUdamqFuN8Ec1Q55thKc4XEsAWVf3efTzFLdObssuzQVUXuY8XuHWc6paTrc4aFhXNxHsW8K6q7gbQw5PNVRZHefWVV87ZOF/MP4vIIvd5xyriLs8mVZ1b6vltIrIYmIszHX3nCo4rUd2/pbQmwP6SJyLSDtjq/tuC01JY4u5rA+xR1fVAU+Bu4GngWJx/e9TpmsoXkcQqYjYBYgNApiaWc3j64uooPYtlcannxRz+LB49E2RVM0MWcmT3qKeC+opwflH7k7f1CfCqqt5Xy3KyDhXoDPQOBk5S1WwR+Y4j34vqqiqGnKPK74WbDFz9gLfdxz1wkwBwAGfxnAE4MyL/UuqYWCC3FjEbH7KWg6mJb4DYUv3aiEhPnIHFi8WZC78BMAJnavDqaCsiJ7mPRwJz3MezKyh7B9DU7eOOBS6oovxZbjlx7q/UCyv5Gy8XkRT372tcRRwVKa+cGcBlItK0ZJv7y7syB4DKflUnA/vcxHAcMNCL46r7txyiqvuASBEpSRC9cZOFiHTG6SosSQg9Sz2eBPzObSkcShru+7NbnQV2TAiw5GCqze0KGgEMFudU1uXAX4FtwCvAPJy1IV5U1YXVLH41cIuIrAQaAc+6df5SXtnul8nD7vavgVVVxP4Lzi/axcAXOIs+lfe65cCjwEy3q+YflcVRSX1lylHVFcD9wDQRWeLG3aKKuPcA37sDx5PKecmXQJT7vj2G07VU6XHV/VvKMY3D3X69gAj3b/wzzgI5JYsE9cAZA0FVP1PVH93tXXFaoeCMUXxejbqNn9l6DiZkiEh74DNV7R7sWEzVRKQvcKeqjhaRtUBfVT1Qw7I+AO5V1TU+DdLUmLUcjDE14rY8vhWRZOdpjRNDDPCRJYbQYi0HY4wxZVjLwRhjTBmWHIwxxpRhycEYY0wZlhyMMcaUYcnBGGNMGZYcjDHGlGHJwRhjTBn/D/4KLHiV4/wqAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# set loss function to NLS\n",
+    "opt.handle_opt_set (handle, 'NLDF Loss Function Type = L2')\n",
+    "\n",
+    "# solve NLS loss function with various regularisations\n",
+    "for reg in regs:\n",
+    "    # set reg type\n",
+    "    opt.handle_opt_set(handle, 'Reg Term Type =' + reg)\n",
+    "    # call the solver\n",
+    "    sol = opt.handle_solve_nldf(handle, lsqfun, lsqgrd, x, nres,data=data, io_manager=iom)\n",
+    "    # calculate response\n",
+    "    resp = sol.x[0] + ((sol.x[1] - sol.x[0]) / (1 + (sol.x[2] / dose)**sol.x[3]))\n",
+    "    # plot curve\n",
+    "    plt.plot(dose, resp, label='reg = '+reg)\n",
+    "\n",
+    "# show NLS curves\n",
+    "plt.title(r\"$l_2$-norm loss function\")\n",
+    "plt.plot(t, y, '*b')\n",
+    "plt.xlabel(r\"Compound concentration ($\\mu M$)\")\n",
+    "plt.ylabel(\"Percent activity\")\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "d8984282",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# destroy the handle\n",
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1258bec0",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.13"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/local_optimization/NLDF/elastic_net.ipynb b/local_optimization/NLDF/elastic_net.ipynb
new file mode 100644
index 0000000..d52cbb3
--- /dev/null
+++ b/local_optimization/NLDF/elastic_net.ipynb
@@ -0,0 +1,536 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "0edec5c6-4a7c-41d2-8241-03deed2b6acd",
+   "metadata": {},
+   "source": [
+    "# Using elastic net in a linear regression to predict a possum's length\n",
+    "\n",
+    "The routine **[handle_solve_nldf](https://support.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_nldf.html)** is a general nonlinear data-fitting solver in the [NAG® Library](https://nag.com/nag-library/) that supports a variety of different loss functions and regularization options - including elastic net.\n",
+    "\n",
+    "**Elastic net** regularization is a combination of L1 (lasso) and L2 (ridge) regularization that is ideally suited for high-dimensional and noisy data. In these cases, it can be used for **feature selection** by setting the coefficients of irrelevant features to zero. Further, it is particularly useful when dealing with **multicollinear** features - where two or more features are highly correlated. It achieves this by shrinking the coefficients of correlated features towards each other. It also helps to **reduce overfitting** by penalizing large coefficients, which can lead to better generalization performance.\n",
+    "\n",
+    "To demonstrate the use of elastic net regularization, we will build a linear regression model to predict a possum's total length based upon several features, such as, capture site, age, and head length.\n",
+    "\n",
+    "Note, the purpose of this notebook is to illustrate the use of handle_solve_nldf which is a general data-fitting framework that utilises nonlinear programming algorithms, such as sequential quadratic programming and interior point method. Therefore, it may not be as performant as one of our dedicated linear regression solvers.\n",
+    "\n",
+    "\n",
+    "**Reference:** \\\n",
+    "Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995. Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458. \\\n",
+    "Dataset source: https://www.kaggle.com/datasets/abrambeyer/openintro-possum"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "fcd8009c-2402-4374-a125-87f7caf0ff01",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import packages\n",
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "from naginterfaces.library import opt\n",
+    "from naginterfaces.base import utils\n",
+    "\n",
+    "# Set a random seed\n",
+    "np.random.seed(0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5411c4c6-2c14-40d1-86d0-c5e713f6a0ff",
+   "metadata": {},
+   "source": [
+    "## 1. Load and preprocess the data\n",
+    "This dataset has 13 features and 101 observations."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "5497ff22-6a92-4cd5-a112-ed4a3250435b",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>site</th>\n",
+       "      <th>Pop</th>\n",
+       "      <th>sex</th>\n",
+       "      <th>age</th>\n",
+       "      <th>hdlngth</th>\n",
+       "      <th>skullw</th>\n",
+       "      <th>totlngth</th>\n",
+       "      <th>taill</th>\n",
+       "      <th>footlgth</th>\n",
+       "      <th>earconch</th>\n",
+       "      <th>eye</th>\n",
+       "      <th>chest</th>\n",
+       "      <th>belly</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>Vic</td>\n",
+       "      <td>m</td>\n",
+       "      <td>8.0</td>\n",
+       "      <td>94.1</td>\n",
+       "      <td>60.4</td>\n",
+       "      <td>89.0</td>\n",
+       "      <td>36.0</td>\n",
+       "      <td>74.5</td>\n",
+       "      <td>54.5</td>\n",
+       "      <td>15.2</td>\n",
+       "      <td>28.0</td>\n",
+       "      <td>36.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>Vic</td>\n",
+       "      <td>f</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>92.5</td>\n",
+       "      <td>57.6</td>\n",
+       "      <td>91.5</td>\n",
+       "      <td>36.5</td>\n",
+       "      <td>72.5</td>\n",
+       "      <td>51.2</td>\n",
+       "      <td>16.0</td>\n",
+       "      <td>28.5</td>\n",
+       "      <td>33.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>1</td>\n",
+       "      <td>Vic</td>\n",
+       "      <td>f</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>94.0</td>\n",
+       "      <td>60.0</td>\n",
+       "      <td>95.5</td>\n",
+       "      <td>39.0</td>\n",
+       "      <td>75.4</td>\n",
+       "      <td>51.9</td>\n",
+       "      <td>15.5</td>\n",
+       "      <td>30.0</td>\n",
+       "      <td>34.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1</td>\n",
+       "      <td>Vic</td>\n",
+       "      <td>f</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>93.2</td>\n",
+       "      <td>57.1</td>\n",
+       "      <td>92.0</td>\n",
+       "      <td>38.0</td>\n",
+       "      <td>76.1</td>\n",
+       "      <td>52.2</td>\n",
+       "      <td>15.2</td>\n",
+       "      <td>28.0</td>\n",
+       "      <td>34.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>1</td>\n",
+       "      <td>Vic</td>\n",
+       "      <td>f</td>\n",
+       "      <td>2.0</td>\n",
+       "      <td>91.5</td>\n",
+       "      <td>56.3</td>\n",
+       "      <td>85.5</td>\n",
+       "      <td>36.0</td>\n",
+       "      <td>71.0</td>\n",
+       "      <td>53.2</td>\n",
+       "      <td>15.1</td>\n",
+       "      <td>28.5</td>\n",
+       "      <td>33.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   site  Pop sex  age  hdlngth  skullw  totlngth  taill  footlgth  earconch  \\\n",
+       "0     1  Vic   m  8.0     94.1    60.4      89.0   36.0      74.5      54.5   \n",
+       "1     1  Vic   f  6.0     92.5    57.6      91.5   36.5      72.5      51.2   \n",
+       "2     1  Vic   f  6.0     94.0    60.0      95.5   39.0      75.4      51.9   \n",
+       "3     1  Vic   f  6.0     93.2    57.1      92.0   38.0      76.1      52.2   \n",
+       "4     1  Vic   f  2.0     91.5    56.3      85.5   36.0      71.0      53.2   \n",
+       "\n",
+       "    eye  chest  belly  \n",
+       "0  15.2   28.0   36.0  \n",
+       "1  16.0   28.5   33.0  \n",
+       "2  15.5   30.0   34.0  \n",
+       "3  15.2   28.0   34.0  \n",
+       "4  15.1   28.5   33.0  "
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df = pd.read_csv('possum.csv', usecols=range(1,14))\n",
+    "df.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "06841ec7-443e-4831-b013-3aa79cc5333a",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Remove NAN data\n",
+    "df.dropna(axis=0,inplace=True)\n",
+    "\n",
+    "# Categorical features (site, population, sex) need to be one-hot encoded\n",
+    "df_encoded = pd.get_dummies(df, columns=['site','Pop','sex'], dtype=float, drop_first=True)\n",
+    "\n",
+    "# Extract total length (y), which is the variable to be predicted\n",
+    "y = df_encoded[[\"totlngth\"]].values\n",
+    "X = df_encoded.drop(columns=[\"totlngth\"]).values"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "b654fd99-5544-42d4-8467-b959b109f3cd",
+   "metadata": {},
+   "source": [
+    "## 2. Split the data into training and testing sets"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "5c6e103d-4e2c-4640-b8d5-9f690c444192",
+   "metadata": {
+    "jupyter": {
+     "source_hidden": true
+    }
+   },
+   "outputs": [],
+   "source": [
+    "def train_test(X, y, test_size=0.2):\n",
+    "    \"\"\"\n",
+    "    Split dataset into training and testing sets.\n",
+    "\n",
+    "    Parameters:\n",
+    "    X (numpy array): Features\n",
+    "    y (numpy array): Observations\n",
+    "    test_size (float, optional): Proportion of data to use for testing\n",
+    "\n",
+    "    Returns:\n",
+    "    X_train, y_train, X_test, y_test\n",
+    "    \"\"\"\n",
+    "    # Get total number of samples\n",
+    "    num_samples = X.shape[0]\n",
+    "\n",
+    "    # Calculate number of test samples\n",
+    "    num_test_samples = int(num_samples * test_size)\n",
+    "\n",
+    "    # Generate random indices for training set\n",
+    "    train_indices = np.random.choice(num_samples, num_samples - num_test_samples, replace=False)\n",
+    "\n",
+    "    # Create training sets\n",
+    "    X_train = X[train_indices]\n",
+    "    y_train = y[train_indices]\n",
+    "\n",
+    "    # Create testing sets\n",
+    "    test_indices = np.setdiff1d(np.arange(num_samples), train_indices)\n",
+    "    X_test = X[test_indices]\n",
+    "    y_test = y[test_indices]\n",
+    "\n",
+    "    return X_train, y_train, X_test, y_test"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "86657422-9e33-45ff-899f-7f7840150914",
+   "metadata": {
+    "jupyter": {
+     "source_hidden": true
+    }
+   },
+   "outputs": [],
+   "source": [
+    "def scale_data(X_train, y_train, X_test, y_test):\n",
+    "    \"\"\"\n",
+    "    Scale the training and testing datasets.\n",
+    "\n",
+    "    Returns:\n",
+    "    X_train, y_train, X_test, y_test\n",
+    "    \"\"\"\n",
+    "    mu = X_train.mean(0)\n",
+    "    sigma = X_train.std(0)\n",
+    "    for j in range(X_train.shape[-1]):\n",
+    "        xs = X_train[:,j]\n",
+    "        is_categorical = np.logical_or(np.isclose(xs, 1.), np.isclose(xs, 0.)).all()\n",
+    "        if not is_categorical:\n",
+    "            X_train[:,j] = (X_train[:,j] - mu[j]) / sigma[j]\n",
+    "            X_test[:,j] = (X_test[:,j] - mu[j]) / sigma[j]\n",
+    "    \n",
+    "    y_test = (y_test - y_train.mean()) / y_train.std()\n",
+    "    y_train = (y_train - y_train.mean()) / y_train.std()\n",
+    "\n",
+    "    return X_train, y_train, X_test, y_test\n",
+    "    "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "487c2e0f-f494-4ac3-8c34-1db320178693",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training set shapes: (81, 17) (81, 1)\n",
+      "Testing set shapes: (20, 17) (20, 1)\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Split data into training and testing sets\n",
+    "X_train, y_train, X_test, y_test = train_test(X, y)\n",
+    "\n",
+    "# Scale the data\n",
+    "X_train, y_train, X_test, y_test = scale_data(X_train, y_train, X_test, y_test)\n",
+    "\n",
+    "print(\"Training set shapes:\", X_train.shape, y_train.shape)\n",
+    "print(\"Testing set shapes:\", X_test.shape, y_test.shape)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7acd46ae-881f-4d5d-b174-0ee5a66703b7",
+   "metadata": {},
+   "source": [
+    "## 3. Fit a linear regression with least squares loss and elastic net regularization"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "ad4796a5-724c-4a55-b485-4b18ce603328",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GN, Nonlinear Data-Fitting\n",
+      " Status: converged, an optimal solution found\n",
+      " Final objective value  1.652821E+01\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Number of variables = number of features + bias term\n",
+    "nvar = X_train.shape[1] + 1\n",
+    "\n",
+    "# Create a handle for the model\n",
+    "handle = opt.handle_init(nvar=nvar)\n",
+    "\n",
+    "# Register residual structure\n",
+    "nres =  X_train.shape[0]\n",
+    "opt.handle_set_nlnls(handle, nres)\n",
+    "\n",
+    "# Create the data structure to be passed to the solver\n",
+    "data = {}\n",
+    "data[\"X_train\"] = X_train\n",
+    "data[\"y_train\"] = y_train\n",
+    "\n",
+    "# Define the residual callback function and its gradient\n",
+    "def lsqfun(x, nres, inform, data):\n",
+    "    rx = np.zeros(nres, dtype=float)\n",
+    "    X_train = data[\"X_train\"]\n",
+    "    y_train = data[\"y_train\"].squeeze()\n",
+    "    \n",
+    "    # Fit a linear regression to the data\n",
+    "    r_full = y_train - (x[0] + X_train @ x[1:]) \n",
+    "    for i in range(nres):\n",
+    "        rx[i] = r_full[i]\n",
+    " \n",
+    "    return rx, inform\n",
+    "    \n",
+    "def lsqgrd(x, nres, rdx, inform, data):\n",
+    "    X_train = data[\"X_train\"]\n",
+    "\n",
+    "    for i in range(nres):\n",
+    "        for j in range(nvar):\n",
+    "            if j==0:\n",
+    "                rdx[i*nvar] = -1               \n",
+    "            else:\n",
+    "                rdx[i*nvar + j] = -X_train[i, j-1]\n",
+    "            \n",
+    "    return inform\n",
+    "\n",
+    "# Set loss function to l2-norm, elastic net regularization, and printing options\n",
+    "for option in [\n",
+    "    'NLDF Loss Function Type = L2',\n",
+    "    'Print Level = 1',\n",
+    "    'Print Options = No',\n",
+    "    'Reg Term Type = Elastic Net',\n",
+    "    ]:\n",
+    "    opt.handle_opt_set (handle, option)\n",
+    "\n",
+    "# Use an explicit I/O manager for abbreviated iteration output\n",
+    "iom = utils.FileObjManager(locus_in_output=False)\n",
+    "\n",
+    "# Set initial guess and solve\n",
+    "x = np.array([np.random.rand() for _ in range(nvar)])\n",
+    "\n",
+    "sol_en = opt.handle_solve_nldf(handle, lsqfun, lsqgrd, x, nres, data=data, io_manager=iom)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "b84636fe-1a3c-4188-8dec-7449dbc059b2",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      " E04GN, Nonlinear Data-Fitting\n",
+      " Status: converged, an optimal solution found\n",
+      " Final objective value  1.362383E+01\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Resolve the problem with no regularization\n",
+    "opt.handle_opt_set(handle, 'Reg Term Type = Off')\n",
+    "sol_noreg = opt.handle_solve_nldf(handle, lsqfun, lsqgrd, x, nres, data=data, io_manager=iom)\n",
+    "\n",
+    "# Destroy the handle\n",
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ada90e01-6845-41b8-9f91-9944497a94ed",
+   "metadata": {},
+   "source": [
+    "## 4. Compute root mean square error (RMSE)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "126cca3a-2b1e-461b-af09-df70c8c636b8",
+   "metadata": {
+    "jupyter": {
+     "source_hidden": true
+    }
+   },
+   "outputs": [],
+   "source": [
+    "def calculate_rmse(y_actual, y_pred):\n",
+    "    \"\"\"\n",
+    "    Calculate the Root Mean Square Error (RMSE) between two lists of numbers\n",
+    "\n",
+    "    Args:\n",
+    "        y_actual (list): The actual values\n",
+    "        y_pred (list): The predicted values\n",
+    "\n",
+    "    Returns:\n",
+    "        float: The Root Mean Squared Error\n",
+    "    \"\"\"\n",
+    "    return np.sqrt(np.square(y_actual - y_pred).mean())"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "207f4ff1-b1c3-4c54-81ff-4789fa3bbad0",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Using elastic net regularization decreased the RMSE by 0.034 compared to using no regularization.\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Calculate predicted values for y with elastic net regularization and find RMSE\n",
+    "y_pred_en = sol_en.x[0] + X_test @ sol_en.x[1:]\n",
+    "rmse_elastic_net = calculate_rmse(y_test, y_pred_en)\n",
+    "\n",
+    "# Calculate predicted values for y with no regularization and find RMSE\n",
+    "y_pred_noreg = sol_noreg.x[0] + X_test @ sol_noreg.x[1:]\n",
+    "rmse_noreg = calculate_rmse(y_test, y_pred_noreg)\n",
+    "\n",
+    "# Report the difference in RMSE\n",
+    "print(f\"Using elastic net regularization decreased the RMSE by {round(rmse_noreg - rmse_elastic_net, 4)} compared to using no regularization.\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4dfdf65a-c992-4c48-ba6a-0a8438328218",
+   "metadata": {},
+   "source": [
+    "For more information on the NAG® Library and our [Optimization Modelling Suite](https://nag.com/mathematical-optimization/) or to try it for yourself, visit [‘Getting Started with the NAG Library’](https://support.nag.com/content/getting-started-nag-library?_gl=1*xmlppm*_gcl_au*MTEwNDczODM2NS4xNzIyMDAyNzkz*_ga*MjA2NzgxMjY0NS4xNzIyMDAyNzk0*_ga_6MCQDQP46G*MTcyMzEzNDUxNi41LjAuMTcyMzEzNDUzNy4zOS4wLjA.), select your configuration and language, download the software, request a trial key and experiment for yourself."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.8"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/local_optimization/NLDF/images/nldf_comp.png b/local_optimization/NLDF/images/nldf_comp.png
new file mode 100644
index 0000000..9f00e92
Binary files /dev/null and b/local_optimization/NLDF/images/nldf_comp.png differ
diff --git a/local_optimization/NLDF/images/nldf_lossf.png b/local_optimization/NLDF/images/nldf_lossf.png
new file mode 100644
index 0000000..f0e788d
Binary files /dev/null and b/local_optimization/NLDF/images/nldf_lossf.png differ
diff --git a/local_optimization/NLDF/nldf_contour.png b/local_optimization/NLDF/nldf_contour.png
new file mode 100644
index 0000000..b17654f
Binary files /dev/null and b/local_optimization/NLDF/nldf_contour.png differ
diff --git a/local_optimization/NLDF/possum.csv b/local_optimization/NLDF/possum.csv
new file mode 100644
index 0000000..0f7cc0f
--- /dev/null
+++ b/local_optimization/NLDF/possum.csv
@@ -0,0 +1,105 @@
+case,site,Pop,sex,age,hdlngth,skullw,totlngth,taill,footlgth,earconch,eye,chest,belly
+1,1,Vic,m,8,94.1,60.4,89,36,74.5,54.5,15.2,28,36
+2,1,Vic,f,6,92.5,57.6,91.5,36.5,72.5,51.2,16,28.5,33
+3,1,Vic,f,6,94,60,95.5,39,75.4,51.9,15.5,30,34
+4,1,Vic,f,6,93.2,57.1,92,38,76.1,52.2,15.2,28,34
+5,1,Vic,f,2,91.5,56.3,85.5,36,71,53.2,15.1,28.5,33
+6,1,Vic,f,1,93.1,54.8,90.5,35.5,73.2,53.6,14.2,30,32
+7,1,Vic,m,2,95.3,58.2,89.5,36,71.5,52,14.2,30,34.5
+8,1,Vic,f,6,94.8,57.6,91,37,72.7,53.9,14.5,29,34
+9,1,Vic,f,9,93.4,56.3,91.5,37,72.4,52.9,15.5,28,33
+10,1,Vic,f,6,91.8,58,89.5,37.5,70.9,53.4,14.4,27.5,32
+11,1,Vic,f,9,93.3,57.2,89.5,39,77.2,51.3,14.9,31,34
+12,1,Vic,f,5,94.9,55.6,92,35.5,71.7,51,15.3,28,33
+13,1,Vic,m,5,95.1,59.9,89.5,36,71,49.8,15.8,27,32
+14,1,Vic,m,3,95.4,57.6,91.5,36,74.3,53.7,15.1,28,31.5
+15,1,Vic,m,5,92.9,57.6,85.5,34,69.7,51.8,15.7,28,35
+16,1,Vic,m,4,91.6,56,86,34.5,73,51.4,14.4,28,32
+17,1,Vic,f,1,94.7,67.7,89.5,36.5,73.2,53.2,14.7,29,31
+18,1,Vic,m,2,93.5,55.7,90,36,73.7,55.4,15.3,28,32
+19,1,Vic,f,5,94.4,55.4,90.5,35,73.4,53.9,15.2,28,32
+20,1,Vic,f,4,94.8,56.3,89,38,73.8,52.4,15.5,27,36
+21,1,Vic,f,3,95.9,58.1,96.5,39.5,77.9,52.9,14.2,30,40
+22,1,Vic,m,3,96.3,58.5,91,39.5,73.5,52.1,16.2,28,36
+23,1,Vic,f,4,92.5,56.1,89,36,72.8,53.3,15.4,28,35
+24,1,Vic,m,2,94.4,54.9,84,34,75,53.5,16.2,27,32
+25,1,Vic,m,3,95.8,58.5,91.5,35.5,72.3,51.6,14.9,31,35
+26,1,Vic,m,7,96,59,90,36,73.6,56.2,15,29,38
+27,1,Vic,f,2,90.5,54.5,85,35,70.3,50.8,14.2,23,28
+28,1,Vic,m,4,93.8,56.8,87,34.5,73.2,53,15.3,27,30
+29,1,Vic,f,3,92.8,56,88,35,74.9,51.8,14,24,32
+30,1,Vic,f,2,92.1,54.4,84,33.5,70.6,50.8,14.5,24.5,33
+31,1,Vic,m,3,92.8,54.1,93,37,68,52.5,14.5,27,31
+32,1,Vic,f,4,94.3,56.7,94,39,74.8,52,14.9,28,34
+33,1,Vic,m,3,91.4,54.6,89,37,70.8,51.8,14.8,24,30
+34,2,Vic,m,2,90.6,55.7,85.5,36.5,73.1,53.1,14.4,26,28.5
+35,2,Vic,m,4,94.4,57.9,85,35.5,71.2,55.5,16.4,28,35.5
+36,2,Vic,m,7,93.3,59.3,88,35,74.3,52,14.9,25.5,36
+37,2,Vic,f,2,89.3,54.8,82.5,35,71.2,52,13.6,28,31.5
+38,2,Vic,m,7,92.4,56,80.5,35.5,68.4,49.5,15.9,27,30
+39,2,Vic,f,1,84.7,51.5,75,34,68.7,53.4,13,25,25
+40,2,Vic,f,3,91,55,84.5,36,72.8,51.4,13.6,27,30
+41,2,Vic,f,5,88.4,57,83,36.5,NA,40.3,15.9,27,30.5
+42,2,Vic,m,3,85.3,54.1,77,32,62.7,51.2,13.8,25.5,33
+43,2,Vic,f,2,90,55.5,81,32,72,49.4,13.4,29,31
+44,2,Vic,m,NA,85.1,51.5,76,35.5,70.3,52.6,14.4,23,27
+45,2,Vic,m,3,90.7,55.9,81,34,71.5,54,14.6,27,31.5
+46,2,Vic,m,NA,91.4,54.4,84,35,72.8,51.2,14.4,24.5,35
+47,3,other,m,2,90.1,54.8,89,37.5,66,45.5,15,25,33
+48,3,other,m,5,98.6,63.2,85,34,66.9,44.9,17,28,35
+49,3,other,m,4,95.4,59.2,85,37,69,45,15.9,29.5,35.5
+50,3,other,f,5,91.6,56.4,88,38,65,47.2,14.9,28,36
+51,3,other,f,5,95.6,59.6,85,36,64,43.9,17.4,28,38.5
+52,3,other,m,6,97.6,61,93.5,40,67.9,44.3,15.8,28.5,32.5
+53,3,other,f,3,93.1,58.1,91,38,67.4,46,16.5,26,33.5
+54,4,other,m,7,96.9,63,91.5,43,71.3,46,17.5,30,36.5
+55,4,other,m,2,103.1,63.2,92.5,38,72.5,44.9,16.4,30.5,36
+56,4,other,m,3,99.9,61.5,93.7,38,68.7,46.8,16.4,27.5,31.5
+57,4,other,f,4,95.1,59.4,93,41,67.2,45.3,14.5,31,39
+58,4,other,m,3,94.5,64.2,91,39,66.5,46.4,14.4,30.5,33
+59,4,other,m,2,102.5,62.8,96,40,73.2,44.5,14.7,32,36
+60,4,other,f,2,91.3,57.7,88,39,63.1,47,14.4,26,30
+61,5,other,m,7,95.7,59,86,38,63.1,44.9,15,26.5,31
+62,5,other,f,3,91.3,58,90.5,39,65.5,41.3,16,27,32
+63,5,other,f,6,92,56.4,88.5,38,64.1,46.3,15.2,25.5,28.5
+64,5,other,f,3,96.9,56.5,89.5,38.5,63,45.1,17.1,25.5,33
+65,5,other,f,5,93.5,57.4,88.5,38,68.2,41.7,14,29,38.5
+66,5,other,f,3,90.4,55.8,86,36.5,63.2,44.2,15.7,26.5,34
+67,5,other,m,4,93.3,57.6,85,36.5,64.7,44.1,16.5,27.5,29.5
+68,5,other,m,5,94.1,56,88.5,38,65.9,43.1,17.4,27,30
+69,5,other,m,5,98,55.6,88,37.5,65,45.6,15,28.5,34
+70,5,other,f,7,91.9,56.4,87,38,65.4,44.1,13,27,34
+71,5,other,m,6,92.8,57.6,90,40,65.7,42.8,15,27.5,34
+72,5,other,m,1,85.9,52.4,80.5,35,62,42.4,14.1,25.5,30
+73,5,other,m,1,82.5,52.3,82,36.5,65.7,44.7,16,23.5,28
+74,6,other,f,4,88.7,52,83,38,61.5,45.9,14.7,26,34
+75,6,other,m,6,93.8,58.1,89,38,66.2,45.6,16.9,26,33.5
+76,6,other,m,5,92.4,56.8,89,41,64.5,46.4,17.8,26,33
+77,6,other,m,6,93.6,56.2,84,36,62.8,42.9,16.2,25,35
+78,6,other,m,1,86.5,51,81,36.5,63,44.3,13.2,23,28
+79,6,other,m,1,85.8,50,81,36.5,62.8,43,14.8,22,28.5
+80,6,other,m,1,86.7,52.6,84,38,62.3,44.8,15,23.5,30.5
+81,6,other,m,3,90.6,56,85.5,38,65.6,41.7,17,27.5,35
+82,6,other,f,4,86,54,82,36.5,60.7,42.9,15.4,26,32
+83,6,other,f,3,90,53.8,81.5,36,62,43.3,14,25,29
+84,6,other,m,3,88.4,54.6,80.5,36,62.6,43.6,16.3,25,28.5
+85,6,other,m,3,89.5,56.2,92,40.5,65.6,43.5,14.5,27,31.5
+86,6,other,f,3,88.2,53.2,86.5,38.5,60.3,43.7,13.6,26,31
+87,7,other,m,2,98.5,60.7,93,41.5,71.7,46.8,15,26,36
+88,7,other,f,2,89.6,58,87.5,38,66.7,43.5,16,25.5,31.5
+89,7,other,m,6,97.7,58.4,84.5,35,64.4,46.2,14.4,29,30.5
+90,7,other,m,3,92.6,54.6,85,38.5,69.8,44.8,14.5,25.5,32.5
+91,7,other,m,3,97.8,59.6,89,38,65.5,48,15,26,32
+92,7,other,m,2,90.7,56.3,85,37,67.6,46.8,14.5,25.5,31
+93,7,other,m,3,89.2,54,82,38,63.8,44.9,12.8,24,31
+94,7,other,m,7,91.8,57.6,84,35.5,64.2,45.1,14.4,29,35
+95,7,other,m,4,91.6,56.6,88.5,37.5,64.5,45.4,14.9,27,31
+96,7,other,m,4,94.8,55.7,83,38,66.5,47.7,14,25,33
+97,7,other,m,3,91,53.1,86,38,63.8,46,14.5,25,31.5
+98,7,other,m,5,93.2,68.6,84,35,65.6,44.3,14.5,28.5,32
+99,7,other,f,3,93.3,56.2,86.5,38.5,64.8,43.8,14,28,35
+100,7,other,m,1,89.5,56,81.5,36.5,66,46.8,14.8,23,27
+101,7,other,m,1,88.6,54.7,82.5,39,64.4,48,14,25,33
+102,7,other,f,6,92.4,55,89,38,63.5,45.4,13,25,30
+103,7,other,m,4,91.5,55.2,82.5,36.5,62.9,45.9,15.4,25,29
+104,7,other,f,3,93.6,59.9,89,40,67.6,46,14.8,28.5,33.5
diff --git a/local_optimization/Notebooks/Readme.md b/local_optimization/Notebooks/Readme.md
new file mode 100644
index 0000000..9850f1e
--- /dev/null
+++ b/local_optimization/Notebooks/Readme.md
@@ -0,0 +1,15 @@
+[![NAG Logo](../../nag_logo.png)](https://www.nag.com)
+
+# Local Optimization Jupyter notebooks
+
+ * [Example on minimizing the generalized Rosenbrock function](bounds_quasi_func_easy.ipynb) 
+   using [bounds_quasi_func_easy](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.bounds_quasi_func_easy.html).
+ 
+ 
+ 
+<!-- foot banner for commercial material -->
+
+# Obtaining the NAG Library for Python
+
+ * Instructions on [how to install the NAG Library for Python](../Readme.md#install)
+ * Instructions on [how to run the Jupyter notebooks in the Repository](../Readme.md#jupyter)
diff --git a/local_optimization/bounds_quasi_func_easy.ipynb b/local_optimization/Notebooks/bounds_quasi_func_easy.ipynb
similarity index 97%
rename from local_optimization/bounds_quasi_func_easy.ipynb
rename to local_optimization/Notebooks/bounds_quasi_func_easy.ipynb
index 4431991..e5c5b26 100644
--- a/local_optimization/bounds_quasi_func_easy.ipynb
+++ b/local_optimization/Notebooks/bounds_quasi_func_easy.ipynb
@@ -1,5 +1,16 @@
 {
  "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -15,7 +26,7 @@
     "One can see from the HTML documentation at https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.html that the relevant algorithmic submodule for (local) optimization is ``opt``.\n",
     "\n",
     "Studying the `opt` Functionality Index confirms that the relevant optimization solver to call is\n",
-    "``bounds_quasi_func_easy``. The HTML documentation for this solver is at https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.opt.bounds_quasi_func_easy.\n",
+    "``bounds_quasi_func_easy``. The HTML documentation for this solver is at https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.bounds_quasi_func_easy.html.\n",
     "\n",
     "The optimization solver may be imported directly if desired"
    ]
@@ -64,7 +75,7 @@
       "    For full information please refer to the NAG Library document for\n",
       "    e04jy\n",
       "    \n",
-      "    https://www.nag.com/numeric/nl/nagdoc_27/flhtml/e04/e04jyf.html\n",
+      "    https://www.nag.com/numeric/nl/nagdoc_27.1/flhtml/e04/e04jyf.html\n",
       "    \n",
       "    Parameters\n",
       "    ----------\n",
@@ -263,6 +274,72 @@
       "    No equivalent traditional C interface for this routine exists in the\n",
       "    NAG Library.\n",
       "    \n",
+      "    ``bounds_quasi_func_easy`` is applicable to problems of the form:\n",
+      "    \n",
+      "        MinimizeF(x_1,x_2,...,x_n) subject to l_j <= x_j <= u_j, j =\n",
+      "        1,2,...,n\n",
+      "    \n",
+      "    when derivatives of F(x) are unavailable.\n",
+      "    \n",
+      "    Special provision is made for problems which actually have no bounds\n",
+      "    on the x_j, problems which have only non-negativity bounds and\n",
+      "    problems in which l_1 = l_2 = ... = l_n and u_1 = u_2 = ... = u_n.\n",
+      "    You must supply a function to calculate the value of F(x) at any\n",
+      "    point x.\n",
+      "    \n",
+      "    From a starting point you supplied there is generated, on the basis\n",
+      "    of estimates of the gradient and the curvature of F(x), a sequence\n",
+      "    of feasible points which is intended to converge to a local minimum\n",
+      "    of the constrained function.\n",
+      "    An attempt is made to verify that the final point is a minimum.\n",
+      "    \n",
+      "    A typical iteration starts at the current point x where n_z (say)\n",
+      "    variables are free from both their bounds.\n",
+      "    The projected gradient vector g_z, whose elements are finite\n",
+      "    difference approximations to the derivatives of F(x) with respect to\n",
+      "    the free variables, is known.\n",
+      "    A unit lower triangular matrix L and a diagonal matrix D (both of\n",
+      "    dimension n_z), such that LDL^T is a positive definite approximation\n",
+      "    of the matrix of second derivatives with respect to the free\n",
+      "    variables (i.e., the projected Hessian) are also held.\n",
+      "    The equations\n",
+      "    \n",
+      "        LDL^Tp_z = -g_z\n",
+      "    \n",
+      "    are solved to give a search direction p_z, which is expanded to an\n",
+      "    n-vector p by an insertion of appropriate zero elements.\n",
+      "    Then alpha is found such that F(x+alpha p) is approximately a\n",
+      "    minimum (subject to the fixed bounds) with respect to alpha; x is\n",
+      "    replaced by x+alpha p, and the matrices L and D are updated so as to\n",
+      "    be consistent with the change produced in the estimated gradient by\n",
+      "    the step alpha p.\n",
+      "    If any variable actually reaches a bound during the search along p,\n",
+      "    it is fixed and n_z is reduced for the next iteration.\n",
+      "    Most iterations calculate g_z using forward differences, but central\n",
+      "    differences are used when they seem necessary.\n",
+      "    \n",
+      "    There are two sets of convergence criteria -- a weaker and a\n",
+      "    stronger.\n",
+      "    Whenever the weaker criteria are satisfied, the Lagrange multipliers\n",
+      "    are estimated for all the active constraints.\n",
+      "    If any Lagrange multiplier estimate is significantly negative, then\n",
+      "    one of the variables associated with a negative Lagrange multiplier\n",
+      "    estimate is released from its bound and the next search direction is\n",
+      "    computed in the extended subspace (i.e., n_z is increased).\n",
+      "    Otherwise minimization continues in the current subspace provided\n",
+      "    that this is practicable.\n",
+      "    When it is not, or when the stronger convergence criteria are\n",
+      "    already satisfied, then, if one or more Lagrange multiplier\n",
+      "    estimates are close to zero, a slight perturbation is made in the\n",
+      "    values of the corresponding variables in turn until a lower function\n",
+      "    value is obtained.\n",
+      "    The normal algorithm is then resumed from the perturbed point.\n",
+      "    \n",
+      "    If a saddle point is suspected, a local search is carried out with a\n",
+      "    view to moving away from the saddle point.\n",
+      "    A local search is also performed when a point is found which is\n",
+      "    thought to be a constrained minimum.\n",
+      "    \n",
       "    References\n",
       "    ----------\n",
       "    Gill, P E and Murray, W, 1976, `Minimization subject to bounds on\n",
@@ -1125,7 +1202,7 @@
     "        Z[j, i] = rosen(np.array([x_i, y_j]))\n",
     "\n",
     "fig = plt.figure()\n",
-    "ax = Axes3D(fig)\n",
+    "ax = Axes3D(fig, auto_add_to_figure=False)\n",
     "ax.grid(False)\n",
     "ax.plot_wireframe(X, Y, Z, color='red', linewidths=0.4)\n",
     "ax.contour(X, Y, Z, levels=[5, 25, 50, 100, 250, 500, 1000, 1500, 2000, 2500], offset=-3000.0, cmap=cm.jet)\n",
@@ -1135,7 +1212,8 @@
     "ax.set_zlim3d(-1.0, 10000.0)\n",
     "ax.azim = -20\n",
     "ax.elev = 20\n",
-    "plt.show();"
+    "fig.add_axes(ax)\n",
+    "plt.show()"
    ]
   },
   {
@@ -1280,7 +1358,25 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
   }
  },
  "nbformat": 4,
diff --git a/local_optimization/Readme.md b/local_optimization/Readme.md
index d93803d..304ee0e 100644
--- a/local_optimization/Readme.md
+++ b/local_optimization/Readme.md
@@ -1,9 +1,228 @@
-# Local Optimization Examples
+[![NAG Logo](../nag_logo.png)](https://www.nag.com)
+
+# Local Optimization<a name=top></a>
+
+Here you will find a variety of resources (mostly [Jupyter notebooks](https://jupyter.org/)) related to the use of our optimization routines and modelling suite. If you are new to NAG's optimization solvers we highly recomment to read the [E04 chapter](https://www.nag.com/numeric/nl/nagdoc_latest/clhtml/e04/e04intro.html) of the [NAG](https://www.nag.com) Library which is dedicated to local optimization. While if you are new to NAG Library for Python we encourage to review the [NAG Python documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html) and read the sections on [How to install the NAG Library for Python](#install) and [How to run the Jupyter notebook examples](#jupyter) of this `Readme`. 
+
+If you are already familiar with NAG's optimization offering and just need to find the right solver to use for your problem, then we recommend reviewing the [Optimization Index](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/indexes/optimization.html) or the [Decision Tree for selecting the right Optimization solver](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#dtree).
+
+
+<table><tr>
+<td><img src="./images/dfo_calib.png" width="412px" alt="DFO Calibration example"/></td>
+  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
+ <td><img src="./BXNL/images/fig-unfolding.png" width="412px" alt="Nonlinear least-squares callibration example (distribution unfolding)"/></td>
+</tr></table>
+
+**Figure 1.** Applied optimization examples. (left) DFO nonlinear least-square calibration for the Kowalik and Osborne function, 
+red line shows the final solution. (right) Nonlinear least-squares fitting example, experimental data histogram (blue bars) is fitted with an 
+aggregated model (green curve) while the unfolded models are the blue and red curves. Optimal parameter values are reported in the legend, for more details see [here](./BXNL/Readme.md#unfolding-nuclear-track-data).
+
+# Content<a name=content></a>
+
+* [How to install the NAG Library for Python](#install)
+* [How to run the Jupyter notebook examples](#jupyter)
+* [Useful links](#links)
+
+### Repository
 
 * [Second Order Cone Programming (SOCP)](./SOCP/)
-* [First order active set CG (FOAS)](./FOAS)
+* [First order active set CG (FOAS)](./FOAS/)
 * [Nonlinear Least-Squares (BXNL)](./BXNL)
 * [Semi-Definite Programming (SDP)](./SDP/)
-* [Minimizing the generalized Rosenbrock function using bound constrained optimization](./bounds_quasi_func_easy.ipynb)
-* [Linear Programming Demo](./LP_demo.ipynb)
-* [Model-based derivative free optimization](./DFO_noisy.ipynb)
+* [Derivative-Free Optimization (DFO)](./DFO/)
+* [Tips and Tricks in modelling](./Modelling/)
+* [Assortment of example notebooks](./Notebooks)  ![Jupyter](https://img.shields.io/badge/NAG-Work&nbsp;in&nbsp;progress-yellow)
+
+
+# How to install the NAG Library for Python<a name=install></a>
+
+In this section we illustrate how to install the NAG Library for Python, request a Trial Licence and make sure the Library is working. Details and further information regarding the installation can be found [here](https://www.nag.com/numeric/py/nagdoc_latest/readme.html#installation).
+
+**Note** Before starting make sure you have access to a host that has Python 3 (3.4 or more recent).
+
+### Step 1. Downloading and installing
+Installing the NAG Library is done using the `pip` package manager, fire-up a terminal with [Bash](https://www.gnu.org/software/bash/) and create a Python 3 virtual environment where to install and test the NAG Library
+```{bash}
+guest@nag-37:~$ python3 -m venv nag3
+guest@nag-37:~$ . nag3/bin/activate
+(nag3) guest@nag-37:~$
+```
+Now use `pip` to install the NAG Library for Python
+```{bash}
+(nag3) guest@nag-37:~$ python -m pip install --extra-index-url https://www.nag.com/downloads/py/naginterfaces_nag naginterfaces
+```
+or if you prefer the version of the package that relies on Intel MKL for optimized linear algebra routines, then use
+```{bash}
+(nag3) guest@nag-37:~$ python -m pip install --extra-index-url https://www.nag.com/downloads/py/naginterfaces_mkl naginterfaces
+```
+
+The output should be similar to
+```{bash}
+Collecting naginterfaces
+  Downloading https://www.nag.com/downloads/py/naginterfaces_nag/naginterfaces/naginterfaces-27.1.0.0-py2.py3-none-linux_x86_64.whl (55.8MB)
+    100% |████████████████████████████████| 55.8MB 21kB/s 
+Collecting numpy>=1.15 (from naginterfaces)
+  Downloading https://files.pythonhosted.org/packages/45/b2/6c7545bb7a38754d63048c7696804a0d947328125d81bf12beaa692c3ae3/numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl (13.4MB)
+    100% |████████████████████████████████| 13.4MB 70kB/s 
+Installing collected packages: numpy, naginterfaces
+Successfully installed naginterfaces-27.1.0.0 numpy-1.19.5
+```
+The output indicates that the installation was successful.
+
+### Step 2. Getting a trial licence
+The next step is to get the licensing info (**product code** and **KUSARI ID**) and use it to request a licence. From the same virtual terminal, try
+```{bash}
+(nag3) guest@nag-37:~$ python -m naginterfaces.kusari
+```
+The output should be similar to
+```
+The NAG Library for Python on this platform uses
+underlying Library NLL6I271VL.
+This Library has been installed as part of the package
+and it requires a valid licence key.
+No such key could be validated:
+the key may not have been installed correctly or
+it may have expired.
+The Kusari licence-check utility reports the following:
+User: guest
+Directory: /home/guest
+NAG_KUSARI_FILE=""
+File /home/guest/nag.key does not exist
+-------------------------------------------------------------------------------
+Error: Licence not found; this product requires a key for NLL6I271VL
+The above information has been generated on machine nag-37
+For information on how to obtain a licence, please see
+https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.kusari.html
+KUSARI ID = "ADLXt-adEclJLmvnxlrU2sseteZoo,RopA-Ld"
+```
+The **two** important bits are the 
+
+ 1. **product code** shown as **`underlying Library NLL6I271VL.`** which identifies the licence to request, and
+ 
+ 2. **KUSARI ID** shown as **`KUSARI ID = "ADLXt-adEclJLmvnxlrU2sseteZoo,RopA-Ld"`** which identifies the host you are running the library on.
+ 
+ **Note** that the **product code** and **KUSARI ID** can be different from the previous example.
+ 
+ With these, you are set to [contact NAG and request a trial licence](https://www.nag.com/content/software-trials?product=NAG%20Library).
+ 
+ The trial licence is a plain text chunk similar to
+ ```
+ NLL6I271V TRIAL 2021/01/27 "RverXn0Pc-Ib?ctdgF=Wpis2j7I"
+ ```
+ Save or copy the text into the file `/home/guest/nag.key`.
+ 
+ The final step is to make sure the licence is valid and the library is working as expected.
+ 
+### Step 3. Testing the NAG Library
+The last step is to make sure the licence was correctly stored and that the NAG Library is working correctly. From the same virtual terminal re-run the Kusari licence module
+```{bash}
+(nag3) guest@nag-37:~$ python -m naginterfaces.kusari
+``` 
+This time the output should be similar to
+```
+Licence available; the required NLL6I271VL licence key for this product is valid
+TRIAL licence, 27 days remaining (licence from file)
+```
+Now let's try a more interesting example ([list of optimization examples](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#examples))
+
+This command runs the example for the [FOAS (First-Order Active set method) solver and minimizes the Rosenbrock 2D function](./FOAS).
+```
+(nag3) guest@nag-37:~$ python -m naginterfaces.library.examples.opt.handle_solve_bounds_foas_ex
+```
+Should generate an outputsimilar to
+```{bash}
+Trying:
+    main()
+Expecting:
+    naginterfaces.library.opt.handle_solve_bounds_foas Python Example Results.
+    Minimizing a bound-constrained Rosenbrock problem.
+     E04KF, First order method for bound-constrained problems
+...
+     Status: converged, an optimal solution was found
+     Value of the objective             4.00000E-02
+    ...
+ok
+```
+indicating that the example was successfully executed. The source code can be found [here](https://www.nag.com/numeric/py/nagdoc_latest/_modules/naginterfaces/library/examples/opt/handle_solve_bounds_foas_ex.html#main).
+
+### Running more examples
+
+To display the full list of example source files on disk, but not run them, execute
+```
+python -m naginterfaces.library.examples --locate
+```
+All examples may be executed sequentially by running
+```
+python -m naginterfaces.library.examples
+```
+Run `python -m naginterfaces.library.examples --help` to see any additional usage.
+
+
+
+# How to run the Jupyter notebook examples<a name=jupyter></a>
+
+This section briefly illustrates how to setup a host in order to open and run the [Jupyter notebooks](https://jupyter.org/) provided in this repository.
+Before running the notebooks make sure the [NAG Library is installed and working](#install). Before starting, it is advised to read [Jupyter's installation page](https://jupyter.org/install.html).
+
+<!-- You can [view a static render of the notebooks using Jupyter's nbviewer here](https://nbviewer.jupyter.org/github/numericalalgorithmsgroup/NAGPythonExamples/tree/master/local_optimization/) 
+[![Jupyter](https://img.shields.io/badge/launch-nbviewer-blue?logo=jupyter&logoColor=white)](https://nbviewer.jupyter.org/github/numericalalgorithmsgroup/NAGPythonExamples/tree/master/local_optimization/)
+or alternatively use [Binder](https://mybinder.org/) to [view them here](https://mybinder.org/v2/gh/numericalalgorithmsgroup/NAGPythonExamples/HEAD) 
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/numericalalgorithmsgroup/NAGPythonExamples/HEAD). -->
+
+
+### Installing Jupyter notebook
+To install Jupyter, launch a terminal and activate the virtual environment used to install the NAG Library for Python
+```{bash}
+guest@nag-37:~$ . nag3/bin/activate
+(nag3) guest@nag-37:~$ pip install notebook matplotlib
+Collecting notebook
+  Downloading https://files.pythonhosted.org/packages/74/19/50cd38acf22e33370d01fef764355f1e3517f6e12b4fceb8d434ece4f8fd/notebook-6.2.0-py3-none-any.whl (9.5MB)
+    100% |████████████████████████████████| 9.5MB 115kB/s 
+Collecting argon2-cffi (from notebook)
+...
+Successfully installed jupyter-client-6.1.11 jupyterlab-pygments-0.1.2 ... wcwidth-0.2.5
+```
+This indicates that Jupyter and matplotlib were successfully installed. The next section shows how to start the notebok interface and open an example.
+
+### Running the notebook examples
+To run an example, grab a copy of the notebook of interest and start up the notebook interface.
+For example, download the [Rosenbrock 2D optimization example](./FOAS/rosenbrock2d.ipynb) notebook `rosenbrock2d.ipynb` into the current directory
+```{bash}
+(nag3) guest@nag-37:~$ curl -O https://raw.githubusercontent.com/numericalalgorithmsgroup/NAGPythonExamples/master/local_optimization/FOAS/rosenbrock2d.ipynb
+  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
+                                 Dload  Upload   Total   Spent    Left  Speed
+100 61961  100 61961    0     0   382k      0 --:--:-- --:--:-- --:--:--  382k
+```
+and now open it using `jupyter-notebook`
+```{bash}
+(nag3) guest@nag-37:~$ jupyter-notebook rosenbrock2d.ipynb
+[I 12:24:07.336 NotebookApp] Serving notebooks from local directory: /home/guest
+[I 12:24:07.336 NotebookApp] Jupyter Notebook 6.2.0 is running at:
+[I 12:24:07.336 NotebookApp] http://localhost:8888/?token=f1836a06799a92f25ef9966439bf3491b2f0960dcb51806d
+...
+```
+This command will fire-up your web browser and open the `rosenbrock2d.ipynb` notebook, the window should be similar to
+
+
+![Notebook screenshot](images/screenshot.png)
+
+
+
+
+
+
+
+# Useful links<a name=links></a>
+
+* [NAG Library for Python Documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html)
+* [NAG Library Optimization (Chapter E04) Introduction](https://www.nag.com/numeric/nl/nagdoc_latest/clhtml/e04/e04intro.html)
+* [Optimization Index](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/indexes/optimization.html) 
+* [Decision Tree for selecting the right optimization solver](https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/e04/e04intro.html#dtree)
+* [Request a trial licence](https://www.nag.com/content/software-trials?product=NAG%20Library)
+* [Kusari licence module Documentation](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.kusari.html#kusari)
+
+
+**[Back to Top](#top)**
+<!-- # References
+* Kowalik J S and Osborne, M R (1968) _Methods for unconstrained optimization problems_. New York, American Elsevier Pub. Co
+--!>
diff --git a/local_optimization/SDP/NCM_SDP.ipynb b/local_optimization/SDP/NCM_SDP.ipynb
index f2532b9..875b386 100644
--- a/local_optimization/SDP/NCM_SDP.ipynb
+++ b/local_optimization/SDP/NCM_SDP.ipynb
@@ -18,15 +18,26 @@
     "# Nearest correlation matrix using Semi-Definite Programming (SDP)\n",
     "## Correct Rendering of this notebook\n",
     "\n",
-    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html\n",
+    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Installing the NAG library and running this notebook\n",
     "\n",
-    "## Introduction"
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
+    "## Introduction\n",
+    "\n",
     "We start with a matrix $G$ that is not quite a correlation matrix:\n",
     "\\begin{bmatrix}\n",
     "1 & -1 & 0 & 0\\\\\n",
@@ -220,14 +231,25 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      " E04SV, NLP-SDP Solver (Pennon)\n",
-      " ------------------------------\n",
-      " Number of variables             3                 [eliminated            0]\n",
-      "                            simple  linear  nonlin\n",
-      " (Standard) inequalities         0       0       0\n",
-      " (Standard) equalities                   0       0\n",
-      " Matrix inequalities                     1       0 [dense    1, sparse    0]\n",
-      "                                                   [max dimension         4]\n",
+      "\n",
+      " --------------------------------\n",
+      "  E04SV, NLP-SDP Solver (Pennon)\n",
+      " --------------------------------\n",
+      "\n",
+      " Problem Statistics\n",
+      "   No of variables                  3\n",
+      "     bounds               not defined\n",
+      "   No of lin. constraints           0\n",
+      "     nonzeroes                      0\n",
+      "   No of matrix inequal.            1\n",
+      "     detected matrix inq.           1\n",
+      "       linear                       1\n",
+      "       nonlinear                    0\n",
+      "       max. dimension               4\n",
+      "     detected normal inq.           0\n",
+      "       linear                       0\n",
+      "       nonlinear                    0\n",
+      "   Objective function       Quadratic\n",
       "\n",
       " --------------------------------------------------------------\n",
       "  it|  objective |  optim  |   feas  |  compl  | pen min |inner\n",
@@ -428,28 +450,29 @@
       "    ``handle_opt_set``, ``handle_opt_get``.\n",
       "    \n",
       "    ``handle_solve_pennon`` is a solver from the NAG optimization\n",
-      "    modelling suite for problems such as, quadratic programming (QP),\n",
-      "    linear semidefinite programming (SDP) and semidefinite programming\n",
+      "    modelling suite for problems such as, Quadratic Programming (QP),\n",
+      "    linear Semidefinite Programming (SDP) and semidefinite programming\n",
       "    with bilinear matrix inequalities (BMI-SDP).\n",
       "    \n",
       "    For full information please refer to the NAG Library document for\n",
       "    e04sv\n",
       "    \n",
-      "    https://www.nag.com/numeric/nl/nagdoc_27/flhtml/e04/e04svf.html\n",
+      "    https://www.nag.com/numeric/nl/nagdoc_27.1/flhtml/e04/e04svf.html\n",
       "    \n",
       "    Parameters\n",
       "    ----------\n",
       "    handle : Handle\n",
-      "        The handle to the problem. It needs to be initialized by\n",
-      "        ``handle_init`` and **must not** be changed before the call to\n",
-      "        ``handle_solve_pennon``.\n",
+      "        The handle to the problem. It needs to be initialized (e.g., by\n",
+      "        ``handle_init``) and to hold a problem formulation compatible\n",
+      "        with ``handle_solve_pennon``. It **must not** be changed between\n",
+      "        calls to the NAG optimization modelling suite.\n",
       "    \n",
       "    x : float, array-like, shape (nvar)\n",
       "        Note: intermediate stops take place only if 'Monitor Frequency'\n",
       "        > 0.\n",
       "    \n",
       "        If 'Initial X' = 'USER' (the default), x^0, the initial estimate\n",
-      "        of the variables x, otherwise `x` need not be set.\n",
+      "        of the variables x; otherwise, `x` need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
       "    \n",
@@ -461,7 +484,7 @@
       "    \n",
       "        `On intermediate entry`: if set to 0, solving the current\n",
       "        problem is terminated and the function returns `errno` = 20;\n",
-      "        otherwise the function continues.\n",
+      "        otherwise, the function continues.\n",
       "    \n",
       "    u : None or float, array-like, shape (nnzu), optional\n",
       "        Note: intermediate stops take place only if 'Monitor Frequency'\n",
@@ -477,7 +500,7 @@
       "        Note: if nnzu = 0, `u` will not be referenced.\n",
       "    \n",
       "        If 'Initial U' = 'USER' (the default is 'AUTOMATIC'), u^0, the\n",
-      "        initial estimate of the Lagrangian multipliers u, otherwise `u`\n",
+      "        initial estimate of the Lagrangian multipliers u; otherwise, `u`\n",
       "        need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
@@ -500,8 +523,8 @@
       "        If nnzua = 0, `ua` will not be referenced.\n",
       "    \n",
       "        If 'Initial U' = 'USER' (the default is 'AUTOMATIC'), U^0, the\n",
-      "        initial estimate of the matrix Lagrangian multipliers U,\n",
-      "        otherwise `ua` need not be set.\n",
+      "        initial estimate of the matrix Lagrangian multipliers U;\n",
+      "        otherwise, `ua` need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
       "    \n",
@@ -722,7 +745,7 @@
       "        Constraint: 'Inner Stop Criteria' = 'HEURISTIC' or 'STRICT'.\n",
       "    \n",
       "    'Inner Stop Tolerance' : float\n",
-      "        Default = 10^(-2)\n",
+      "        Default = 10^-2\n",
       "    \n",
       "        This option sets the required precision alpha^0 for the first\n",
       "        inner problem solved by [Algorithm 2].\n",
@@ -836,7 +859,7 @@
       "        reaching the requested accuracy on the feasibility.\n",
       "        Under normal circumstances, the default value is recommended.\n",
       "    \n",
-      "        Constraint: epsilon <= 'P Min' <= 10^(-2).\n",
+      "        Constraint: epsilon <= 'P Min' <= 10^-2.\n",
       "    \n",
       "    'Pmat Min' : float\n",
       "        Default = sqrt(epsilon)\n",
@@ -845,7 +868,7 @@
       "        option P_min.\n",
       "        The same advice applies.\n",
       "    \n",
-      "        Constraint: epsilon <= 'Pmat Min' <= 10^(-2).\n",
+      "        Constraint: epsilon <= 'Pmat Min' <= 10^-2.\n",
       "    \n",
       "    'Preference' : str\n",
       "        Default = 'SPEED'\n",
@@ -951,7 +974,7 @@
       "        Constraint: 'Stop Criteria' = 'SOFT' or 'STRICT'.\n",
       "    \n",
       "    'Stop Tolerance 1' : float\n",
-      "        Default = max(10^(-6), sqrt(epsilon))\n",
+      "        Default = max(10^-6, sqrt(epsilon))\n",
       "    \n",
       "        This option defines epsilon_1 used as a tolerance for the\n",
       "        relative duality gap (0) and the relative precision (1), see\n",
@@ -960,7 +983,7 @@
       "        Constraint: 'Stop Tolerance 1' > epsilon.\n",
       "    \n",
       "    'Stop Tolerance 2' : float\n",
-      "        Default = max(10^(-7), sqrt(epsilon))\n",
+      "        Default = max(10^-7, sqrt(epsilon))\n",
       "    \n",
       "        This option sets the value epsilon_2 which is used for\n",
       "        optimality (2) and complementarity (4) tests from KKT conditions\n",
@@ -971,7 +994,7 @@
       "        Constraint: 'Stop Tolerance 2' > epsilon.\n",
       "    \n",
       "    'Stop Tolerance Feasibility' : float\n",
-      "        Default = max(10^(-7), sqrt(epsilon))\n",
+      "        Default = max(10^-7, sqrt(epsilon))\n",
       "    \n",
       "        This argument places an acceptance limit on the feasibility of\n",
       "        the solution (3), epsilon_feas.\n",
@@ -1053,17 +1076,14 @@
       "            This solver does not support the model defined in the\n",
       "            handle.\n",
       "    \n",
-      "        (`errno` 2)\n",
-      "            This solver does not support fixed variables.\n",
-      "    \n",
       "        (`errno` 3)\n",
-      "            A different solver from the suite has already been used.\n",
+      "            The problem is already being solved.\n",
       "    \n",
       "        (`errno` 4)\n",
       "            On entry, nvar = *<value>*, expected value = *<value>*.\n",
       "    \n",
-      "            Constraint: nvar must match the value given during\n",
-      "            initialization of `handle`.\n",
+      "            Constraint: nvar must match the current number of variables\n",
+      "            of the model in the `handle`.\n",
       "    \n",
       "        (`errno` 5)\n",
       "            On entry, nnzu = *<value>*.\n",
@@ -1108,25 +1128,6 @@
       "        (`errno` 21)\n",
       "            The current starting point is unusable.\n",
       "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Inner iteration limit has been reached.\n",
-      "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Limited progress in the inner subproblem triggered a stop\n",
-      "            (heuristic inner stop criteria).\n",
-      "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Line search or another internal component failed.\n",
-      "    \n",
       "        (`errno` 51)\n",
       "            The problem was found to be infeasible during preprocessing.\n",
       "    \n",
@@ -1159,9 +1160,187 @@
       "    \n",
       "            The requested accuracy is not achieved.\n",
       "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Inner iteration limit has been reached.\n",
+      "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Limited progress in the inner subproblem triggered a stop\n",
+      "            (heuristic inner stop criteria).\n",
+      "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Line search or another internal component failed.\n",
+      "    \n",
       "        (`errno` 24)\n",
       "            Unable to make progress, the algorithm was stopped.\n",
       "    \n",
+      "    Notes\n",
+      "    -----\n",
+      "    ``handle_solve_pennon`` serves as a solver for compatible problems\n",
+      "    stored as a handle.\n",
+      "    The handle points to an internal data structure which defines the\n",
+      "    problem and serves as a means of communication for functions in the\n",
+      "    NAG optimization modelling suite.\n",
+      "    First, the problem handle is initialized by calling ``handle_init``.\n",
+      "    Then some of the functions ``handle_set_linobj``,\n",
+      "    ``handle_set_quadobj``, ``handle_set_simplebounds``,\n",
+      "    ``handle_set_linconstr``, ``handle_set_linmatineq`` or\n",
+      "    ``handle_set_quadmatineq`` may be used to formulate the objective\n",
+      "    function, (standard) constraints and matrix constraints of the\n",
+      "    problem.\n",
+      "    Once the problem is fully set, the handle may be passed to the\n",
+      "    solver.\n",
+      "    When the handle is no longer needed, ``handle_free`` should be\n",
+      "    called to destroy it and deallocate the memory held within.\n",
+      "    See [the E04 Introduction] for more details about the NAG\n",
+      "    optimization modelling suite.\n",
+      "    \n",
+      "    Problems which can be defined this way are, for example, (generally\n",
+      "    nonconvex) Quadratic Programming (QP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    linear semidefinite programming problems (SDP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    or semidefinite programming problems with bilinear matrix\n",
+      "    inequalities (BMI-SDP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    Here c, l_x and u_x are n-dimensional vectors, H is a symmetric n*n\n",
+      "    matrix, l_B, u_B are m_B-dimensional vectors, B is a general m_B*n\n",
+      "    rectangular matrix and A_i^k, Q_ij^k are symmetric matrices.\n",
+      "    The expression S⪰0 stands for a constraint on eigenvalues of a\n",
+      "    symmetric matrix S, namely, all the eigenvalues should be\n",
+      "    non-negative, i.e., the matrix should be positive semidefinite.\n",
+      "    See relevant functions in the suite for more details on the problem\n",
+      "    formulation.\n",
+      "    \n",
+      "    The solver is based on a generalized Augmented Lagrangian method\n",
+      "    with a suitable choice of standard and matrix penalty functions.\n",
+      "    For a detailed description of the algorithm see [Algorithmic\n",
+      "    Details].\n",
+      "    Under standard assumptions on the problem (Slater constraint\n",
+      "    qualification, boundedness of the objective function on the feasible\n",
+      "    set, see Stingl (2006) for details) the algorithm converges to a\n",
+      "    local solution.\n",
+      "    In case of convex problems such as linear SDP or convex QP, this is\n",
+      "    the global solution.\n",
+      "    The solver is suitable for both small dense and large-scale sparse\n",
+      "    problems.\n",
+      "    \n",
+      "    The algorithm behaviour and solver strategy can be modified by\n",
+      "    various options (see [Other Parameters]) which can be set by\n",
+      "    ``handle_opt_set`` and ``handle_opt_set_file`` anytime between the\n",
+      "    initialization of the handle by ``handle_init`` and a call to the\n",
+      "    solver.\n",
+      "    Once the solver has finished, options may be modified for the next\n",
+      "    solve.\n",
+      "    The solver may be called repeatedly with various starting points\n",
+      "    and/or options.\n",
+      "    \n",
+      "    There are several options with a multiple choice where the default\n",
+      "    choice is 'AUTO' (for example, 'Hessian Density').\n",
+      "    This value means that the decision over the option is left to the\n",
+      "    solver based on the structure of the problem.\n",
+      "    Option getter ``handle_opt_get`` can be called to retrieve the\n",
+      "    choice of these options as well as on any other options.\n",
+      "    \n",
+      "    Option 'Task' may be used to switch the problem to maximization or\n",
+      "    to ignore the objective function and find only a feasible point.\n",
+      "    \n",
+      "    Option 'Monitor Frequency' may be used to turn on the monitor mode\n",
+      "    of the solver.\n",
+      "    The solver invoked in this mode pauses regularly even before the\n",
+      "    optimal point is found to allow monitoring the progress from the\n",
+      "    calling program.\n",
+      "    All the important error measures and statistics are available in the\n",
+      "    calling program which may terminate the solver early if desired (see\n",
+      "    argument `inform`).\n",
+      "    \n",
+      "    Structure of the Lagrangian Multipliers\n",
+      "    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
+      "    The algorithm works internally with estimates of both the decision\n",
+      "    variables, denoted by x, and the Lagrangian multipliers (dual\n",
+      "    variables) for standard and matrix constraints, denoted by u and U,\n",
+      "    respectively.\n",
+      "    You may provide initial estimates, request approximations during the\n",
+      "    run (the monitor mode turned on) and obtain the final values.\n",
+      "    The Lagrangian multipliers are split into two arrays, the\n",
+      "    multipliers u for (standard) constraints are stored in array `u` and\n",
+      "    multipliers U for matrix constraints in array `ua`.\n",
+      "    Both arrays need to conform to the structure of the constraints.\n",
+      "    \n",
+      "    If the simple bounds were defined (``handle_set_simplebounds`` was\n",
+      "    successfully called), the first 2n elements of `u` belong to the\n",
+      "    corresponding Lagrangian multipliers, interleaving a multiplier for\n",
+      "    the lower and for the upper bound for each x_i.\n",
+      "    If any of the bounds were set to infinity, the corresponding\n",
+      "    Lagrangian multipliers are set to 0 and may be ignored.\n",
+      "    \n",
+      "    Similarly, the following 2m_B elements of `u` belong to multipliers\n",
+      "    for the linear constraints, if formulated by\n",
+      "    ``handle_set_linconstr``.\n",
+      "    The organization is the same, i.e., the multipliers for each\n",
+      "    constraint for the lower and upper bounds are alternated and zeroes\n",
+      "    are used for any missing (infinite bound) constraint.\n",
+      "    \n",
+      "    A Lagrangian multiplier for a matrix constraint (one block) of\n",
+      "    dimension d*d is a dense symmetric matrix of the same dimension.\n",
+      "    All multipliers U are stored next to each other in array `ua` in the\n",
+      "    same order as the matrix constraints were defined by\n",
+      "    ``handle_set_linmatineq`` and ``handle_set_quadmatineq``.\n",
+      "    The lower triangle of each is stored in the packed column order (see\n",
+      "    [the F07 Introduction]).\n",
+      "    For example, if there are four matrix constraints of dimensions 7,\n",
+      "    3, 1, 1, the dimension of array `ua` should be 36.\n",
+      "    The first 28 elements (d_1*(d_1+1)/2) belong to the packed lower\n",
+      "    triangle of U_1, followed by six elements of U_2 and one element for\n",
+      "    each U_3 and U_4.\n",
+      "    \n",
+      "    Approximation of the Lagrangian Multipliers\n",
+      "    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
+      "    By the nature of the algorithm, all inequality Lagrangian multiplier\n",
+      "    u,U are always kept positive during the computational process.\n",
+      "    This applies even to Lagrangian multipliers of inactive constraints\n",
+      "    at the solution.\n",
+      "    They will only be close to zero although they would normally be\n",
+      "    equal to zero exactly.\n",
+      "    This is one of the major differences between results from solvers\n",
+      "    based on the active set method (such as ``qpconvex2_sparse_solve``)\n",
+      "    and others, such as, ``handle_solve_pennon`` or interior point\n",
+      "    methods.\n",
+      "    As a consequence, the initial estimate of the multipliers (if\n",
+      "    provided) might be adjusted by the solver to be sufficiently\n",
+      "    positive, also the estimates returned during the intermediate exits\n",
+      "    might only be a very crude approximation to their final values as\n",
+      "    they do not satisfy all the Karush--Kuhn--Tucker (KKT) conditions.\n",
+      "    \n",
+      "    Another difference is that ``qpconvex2_sparse_solve`` merges\n",
+      "    multipliers for both lower and upper inequality into one element\n",
+      "    whose sign determines the inequality because there can be at most\n",
+      "    one active constraint and multiplier for the inactive is exact zero.\n",
+      "    Negative multipliers are associated with the upper bounds and\n",
+      "    positive with the lower bounds.\n",
+      "    On the other hand, ``handle_solve_pennon`` works with both\n",
+      "    multipliers at the same time so they are returned in two elements,\n",
+      "    one for the lower bound, the other for the upper bound (see\n",
+      "    [Structure of the Lagrangian Multipliers]).\n",
+      "    An equivalent result can be achieved by subtracting the upper bound\n",
+      "    multiplier from the lower one.\n",
+      "    This holds even when equalities are interpreted as two inequalities\n",
+      "    (see option 'Transform Constraints').\n",
+      "    \n",
       "    References\n",
       "    ----------\n",
       "    Ben--Tal, A and Zibulevsky, M, 1997, `Penalty/barrier multiplier\n",
@@ -1221,7 +1400,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/local_optimization/SDP/Readme.md b/local_optimization/SDP/Readme.md
index 01a6c1e..f41b68e 100644
--- a/local_optimization/SDP/Readme.md
+++ b/local_optimization/SDP/Readme.md
@@ -1,7 +1,20 @@
+[![NAG Logo](../../nag_logo.png)](https://www.nag.com)
+
 # Semi-Definite Programming (SDP)
 
+[[`handle_solve_pennon`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_pennon.html#naginterfaces.library.opt.handle_solve_pennon) | [`e04svf`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/flhtml/e04/e04svf.html) | 
+[`e04svc`](https://www.nag.co.uk/numeric/nl/nagdoc_latest/clhtml/e04/e04svc.html) ]
+
+
 Linear semidefinite programming can be viewed as a generalization of linear programming. While keeping many good properties of LP (such as the duality theory and solvability in polynomial time), SDP introduces a new highly nonlinear type of constraint – matrix inequality. It is an inequality on the eigenvalues of a matrix which depends on the decision variables. Typically, the matrix inequality is written in the form to request all eigenvalues of the matrix to be non-negative, thus the matrix is to be positive semidefinite
 
 * [Matrix completion using Semi-Definite Programming (SDP)](./matrix_completion.ipynb)
 * [Nearest correlation matrix using Semi-Definite Programming (SDP)](./NCM_SDP.ipynb)
 * [Compute the Lovasz number of a graph using Semi-Definite Programming (SDP)](./theta_optimization.ipynb)
+
+<!-- foot banner for commercial material -->
+
+# Obtaining the NAG Library for Python
+
+ * Instructions on [how to install the NAG Library for Python](../Readme.md#install)
+ * Instructions on [how to run the Jupyter notebooks in the Repository](../Readme.md#jupyter)
diff --git a/local_optimization/SDP/matrix_completion.ipynb b/local_optimization/SDP/matrix_completion.ipynb
index 0f035e9..9069f98 100644
--- a/local_optimization/SDP/matrix_completion.ipynb
+++ b/local_optimization/SDP/matrix_completion.ipynb
@@ -1,5 +1,16 @@
 {
  "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": 1,
@@ -293,14 +304,25 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      " E04SV, NLP-SDP Solver (Pennon)\n",
-      " ------------------------------\n",
-      " Number of variables           196                 [eliminated            0]\n",
-      "                            simple  linear  nonlin\n",
-      " (Standard) inequalities         0       0       0\n",
-      " (Standard) equalities                   0       0\n",
-      " Matrix inequalities                     1       0 [dense    1, sparse    0]\n",
-      "                                                   [max dimension        21]\n",
+      "\n",
+      " --------------------------------\n",
+      "  E04SV, NLP-SDP Solver (Pennon)\n",
+      " --------------------------------\n",
+      "\n",
+      " Problem Statistics\n",
+      "   No of variables                196\n",
+      "     bounds               not defined\n",
+      "   No of lin. constraints           0\n",
+      "     nonzeroes                      0\n",
+      "   No of matrix inequal.            1\n",
+      "     detected matrix inq.           1\n",
+      "       linear                       1\n",
+      "       nonlinear                    0\n",
+      "       max. dimension              21\n",
+      "     detected normal inq.           0\n",
+      "       linear                       0\n",
+      "       nonlinear                    0\n",
+      "   Objective function          Linear\n",
       "\n",
       " --------------------------------------------------------------\n",
       "  it|  objective |  optim  |   feas  |  compl  | pen min |inner\n",
@@ -441,28 +463,29 @@
       "    ``handle_opt_set``, ``handle_opt_get``.\n",
       "    \n",
       "    ``handle_solve_pennon`` is a solver from the NAG optimization\n",
-      "    modelling suite for problems such as, quadratic programming (QP),\n",
-      "    linear semidefinite programming (SDP) and semidefinite programming\n",
+      "    modelling suite for problems such as, Quadratic Programming (QP),\n",
+      "    linear Semidefinite Programming (SDP) and semidefinite programming\n",
       "    with bilinear matrix inequalities (BMI-SDP).\n",
       "    \n",
       "    For full information please refer to the NAG Library document for\n",
       "    e04sv\n",
       "    \n",
-      "    https://www.nag.com/numeric/nl/nagdoc_27/flhtml/e04/e04svf.html\n",
+      "    https://www.nag.com/numeric/nl/nagdoc_27.1/flhtml/e04/e04svf.html\n",
       "    \n",
       "    Parameters\n",
       "    ----------\n",
       "    handle : Handle\n",
-      "        The handle to the problem. It needs to be initialized by\n",
-      "        ``handle_init`` and **must not** be changed before the call to\n",
-      "        ``handle_solve_pennon``.\n",
+      "        The handle to the problem. It needs to be initialized (e.g., by\n",
+      "        ``handle_init``) and to hold a problem formulation compatible\n",
+      "        with ``handle_solve_pennon``. It **must not** be changed between\n",
+      "        calls to the NAG optimization modelling suite.\n",
       "    \n",
       "    x : float, array-like, shape (nvar)\n",
       "        Note: intermediate stops take place only if 'Monitor Frequency'\n",
       "        > 0.\n",
       "    \n",
       "        If 'Initial X' = 'USER' (the default), x^0, the initial estimate\n",
-      "        of the variables x, otherwise `x` need not be set.\n",
+      "        of the variables x; otherwise, `x` need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
       "    \n",
@@ -474,7 +497,7 @@
       "    \n",
       "        `On intermediate entry`: if set to 0, solving the current\n",
       "        problem is terminated and the function returns `errno` = 20;\n",
-      "        otherwise the function continues.\n",
+      "        otherwise, the function continues.\n",
       "    \n",
       "    u : None or float, array-like, shape (nnzu), optional\n",
       "        Note: intermediate stops take place only if 'Monitor Frequency'\n",
@@ -490,7 +513,7 @@
       "        Note: if nnzu = 0, `u` will not be referenced.\n",
       "    \n",
       "        If 'Initial U' = 'USER' (the default is 'AUTOMATIC'), u^0, the\n",
-      "        initial estimate of the Lagrangian multipliers u, otherwise `u`\n",
+      "        initial estimate of the Lagrangian multipliers u; otherwise, `u`\n",
       "        need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
@@ -513,8 +536,8 @@
       "        If nnzua = 0, `ua` will not be referenced.\n",
       "    \n",
       "        If 'Initial U' = 'USER' (the default is 'AUTOMATIC'), U^0, the\n",
-      "        initial estimate of the matrix Lagrangian multipliers U,\n",
-      "        otherwise `ua` need not be set.\n",
+      "        initial estimate of the matrix Lagrangian multipliers U;\n",
+      "        otherwise, `ua` need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
       "    \n",
@@ -735,7 +758,7 @@
       "        Constraint: 'Inner Stop Criteria' = 'HEURISTIC' or 'STRICT'.\n",
       "    \n",
       "    'Inner Stop Tolerance' : float\n",
-      "        Default = 10^(-2)\n",
+      "        Default = 10^-2\n",
       "    \n",
       "        This option sets the required precision alpha^0 for the first\n",
       "        inner problem solved by [Algorithm 2].\n",
@@ -849,7 +872,7 @@
       "        reaching the requested accuracy on the feasibility.\n",
       "        Under normal circumstances, the default value is recommended.\n",
       "    \n",
-      "        Constraint: epsilon <= 'P Min' <= 10^(-2).\n",
+      "        Constraint: epsilon <= 'P Min' <= 10^-2.\n",
       "    \n",
       "    'Pmat Min' : float\n",
       "        Default = sqrt(epsilon)\n",
@@ -858,7 +881,7 @@
       "        option P_min.\n",
       "        The same advice applies.\n",
       "    \n",
-      "        Constraint: epsilon <= 'Pmat Min' <= 10^(-2).\n",
+      "        Constraint: epsilon <= 'Pmat Min' <= 10^-2.\n",
       "    \n",
       "    'Preference' : str\n",
       "        Default = 'SPEED'\n",
@@ -964,7 +987,7 @@
       "        Constraint: 'Stop Criteria' = 'SOFT' or 'STRICT'.\n",
       "    \n",
       "    'Stop Tolerance 1' : float\n",
-      "        Default = max(10^(-6), sqrt(epsilon))\n",
+      "        Default = max(10^-6, sqrt(epsilon))\n",
       "    \n",
       "        This option defines epsilon_1 used as a tolerance for the\n",
       "        relative duality gap (0) and the relative precision (1), see\n",
@@ -973,7 +996,7 @@
       "        Constraint: 'Stop Tolerance 1' > epsilon.\n",
       "    \n",
       "    'Stop Tolerance 2' : float\n",
-      "        Default = max(10^(-7), sqrt(epsilon))\n",
+      "        Default = max(10^-7, sqrt(epsilon))\n",
       "    \n",
       "        This option sets the value epsilon_2 which is used for\n",
       "        optimality (2) and complementarity (4) tests from KKT conditions\n",
@@ -984,7 +1007,7 @@
       "        Constraint: 'Stop Tolerance 2' > epsilon.\n",
       "    \n",
       "    'Stop Tolerance Feasibility' : float\n",
-      "        Default = max(10^(-7), sqrt(epsilon))\n",
+      "        Default = max(10^-7, sqrt(epsilon))\n",
       "    \n",
       "        This argument places an acceptance limit on the feasibility of\n",
       "        the solution (3), epsilon_feas.\n",
@@ -1066,17 +1089,14 @@
       "            This solver does not support the model defined in the\n",
       "            handle.\n",
       "    \n",
-      "        (`errno` 2)\n",
-      "            This solver does not support fixed variables.\n",
-      "    \n",
       "        (`errno` 3)\n",
-      "            A different solver from the suite has already been used.\n",
+      "            The problem is already being solved.\n",
       "    \n",
       "        (`errno` 4)\n",
       "            On entry, nvar = *<value>*, expected value = *<value>*.\n",
       "    \n",
-      "            Constraint: nvar must match the value given during\n",
-      "            initialization of `handle`.\n",
+      "            Constraint: nvar must match the current number of variables\n",
+      "            of the model in the `handle`.\n",
       "    \n",
       "        (`errno` 5)\n",
       "            On entry, nnzu = *<value>*.\n",
@@ -1121,25 +1141,6 @@
       "        (`errno` 21)\n",
       "            The current starting point is unusable.\n",
       "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Inner iteration limit has been reached.\n",
-      "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Limited progress in the inner subproblem triggered a stop\n",
-      "            (heuristic inner stop criteria).\n",
-      "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Line search or another internal component failed.\n",
-      "    \n",
       "        (`errno` 51)\n",
       "            The problem was found to be infeasible during preprocessing.\n",
       "    \n",
@@ -1172,9 +1173,187 @@
       "    \n",
       "            The requested accuracy is not achieved.\n",
       "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Inner iteration limit has been reached.\n",
+      "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Limited progress in the inner subproblem triggered a stop\n",
+      "            (heuristic inner stop criteria).\n",
+      "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Line search or another internal component failed.\n",
+      "    \n",
       "        (`errno` 24)\n",
       "            Unable to make progress, the algorithm was stopped.\n",
       "    \n",
+      "    Notes\n",
+      "    -----\n",
+      "    ``handle_solve_pennon`` serves as a solver for compatible problems\n",
+      "    stored as a handle.\n",
+      "    The handle points to an internal data structure which defines the\n",
+      "    problem and serves as a means of communication for functions in the\n",
+      "    NAG optimization modelling suite.\n",
+      "    First, the problem handle is initialized by calling ``handle_init``.\n",
+      "    Then some of the functions ``handle_set_linobj``,\n",
+      "    ``handle_set_quadobj``, ``handle_set_simplebounds``,\n",
+      "    ``handle_set_linconstr``, ``handle_set_linmatineq`` or\n",
+      "    ``handle_set_quadmatineq`` may be used to formulate the objective\n",
+      "    function, (standard) constraints and matrix constraints of the\n",
+      "    problem.\n",
+      "    Once the problem is fully set, the handle may be passed to the\n",
+      "    solver.\n",
+      "    When the handle is no longer needed, ``handle_free`` should be\n",
+      "    called to destroy it and deallocate the memory held within.\n",
+      "    See [the E04 Introduction] for more details about the NAG\n",
+      "    optimization modelling suite.\n",
+      "    \n",
+      "    Problems which can be defined this way are, for example, (generally\n",
+      "    nonconvex) Quadratic Programming (QP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    linear semidefinite programming problems (SDP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    or semidefinite programming problems with bilinear matrix\n",
+      "    inequalities (BMI-SDP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    Here c, l_x and u_x are n-dimensional vectors, H is a symmetric n*n\n",
+      "    matrix, l_B, u_B are m_B-dimensional vectors, B is a general m_B*n\n",
+      "    rectangular matrix and A_i^k, Q_ij^k are symmetric matrices.\n",
+      "    The expression S⪰0 stands for a constraint on eigenvalues of a\n",
+      "    symmetric matrix S, namely, all the eigenvalues should be\n",
+      "    non-negative, i.e., the matrix should be positive semidefinite.\n",
+      "    See relevant functions in the suite for more details on the problem\n",
+      "    formulation.\n",
+      "    \n",
+      "    The solver is based on a generalized Augmented Lagrangian method\n",
+      "    with a suitable choice of standard and matrix penalty functions.\n",
+      "    For a detailed description of the algorithm see [Algorithmic\n",
+      "    Details].\n",
+      "    Under standard assumptions on the problem (Slater constraint\n",
+      "    qualification, boundedness of the objective function on the feasible\n",
+      "    set, see Stingl (2006) for details) the algorithm converges to a\n",
+      "    local solution.\n",
+      "    In case of convex problems such as linear SDP or convex QP, this is\n",
+      "    the global solution.\n",
+      "    The solver is suitable for both small dense and large-scale sparse\n",
+      "    problems.\n",
+      "    \n",
+      "    The algorithm behaviour and solver strategy can be modified by\n",
+      "    various options (see [Other Parameters]) which can be set by\n",
+      "    ``handle_opt_set`` and ``handle_opt_set_file`` anytime between the\n",
+      "    initialization of the handle by ``handle_init`` and a call to the\n",
+      "    solver.\n",
+      "    Once the solver has finished, options may be modified for the next\n",
+      "    solve.\n",
+      "    The solver may be called repeatedly with various starting points\n",
+      "    and/or options.\n",
+      "    \n",
+      "    There are several options with a multiple choice where the default\n",
+      "    choice is 'AUTO' (for example, 'Hessian Density').\n",
+      "    This value means that the decision over the option is left to the\n",
+      "    solver based on the structure of the problem.\n",
+      "    Option getter ``handle_opt_get`` can be called to retrieve the\n",
+      "    choice of these options as well as on any other options.\n",
+      "    \n",
+      "    Option 'Task' may be used to switch the problem to maximization or\n",
+      "    to ignore the objective function and find only a feasible point.\n",
+      "    \n",
+      "    Option 'Monitor Frequency' may be used to turn on the monitor mode\n",
+      "    of the solver.\n",
+      "    The solver invoked in this mode pauses regularly even before the\n",
+      "    optimal point is found to allow monitoring the progress from the\n",
+      "    calling program.\n",
+      "    All the important error measures and statistics are available in the\n",
+      "    calling program which may terminate the solver early if desired (see\n",
+      "    argument `inform`).\n",
+      "    \n",
+      "    Structure of the Lagrangian Multipliers\n",
+      "    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
+      "    The algorithm works internally with estimates of both the decision\n",
+      "    variables, denoted by x, and the Lagrangian multipliers (dual\n",
+      "    variables) for standard and matrix constraints, denoted by u and U,\n",
+      "    respectively.\n",
+      "    You may provide initial estimates, request approximations during the\n",
+      "    run (the monitor mode turned on) and obtain the final values.\n",
+      "    The Lagrangian multipliers are split into two arrays, the\n",
+      "    multipliers u for (standard) constraints are stored in array `u` and\n",
+      "    multipliers U for matrix constraints in array `ua`.\n",
+      "    Both arrays need to conform to the structure of the constraints.\n",
+      "    \n",
+      "    If the simple bounds were defined (``handle_set_simplebounds`` was\n",
+      "    successfully called), the first 2n elements of `u` belong to the\n",
+      "    corresponding Lagrangian multipliers, interleaving a multiplier for\n",
+      "    the lower and for the upper bound for each x_i.\n",
+      "    If any of the bounds were set to infinity, the corresponding\n",
+      "    Lagrangian multipliers are set to 0 and may be ignored.\n",
+      "    \n",
+      "    Similarly, the following 2m_B elements of `u` belong to multipliers\n",
+      "    for the linear constraints, if formulated by\n",
+      "    ``handle_set_linconstr``.\n",
+      "    The organization is the same, i.e., the multipliers for each\n",
+      "    constraint for the lower and upper bounds are alternated and zeroes\n",
+      "    are used for any missing (infinite bound) constraint.\n",
+      "    \n",
+      "    A Lagrangian multiplier for a matrix constraint (one block) of\n",
+      "    dimension d*d is a dense symmetric matrix of the same dimension.\n",
+      "    All multipliers U are stored next to each other in array `ua` in the\n",
+      "    same order as the matrix constraints were defined by\n",
+      "    ``handle_set_linmatineq`` and ``handle_set_quadmatineq``.\n",
+      "    The lower triangle of each is stored in the packed column order (see\n",
+      "    [the F07 Introduction]).\n",
+      "    For example, if there are four matrix constraints of dimensions 7,\n",
+      "    3, 1, 1, the dimension of array `ua` should be 36.\n",
+      "    The first 28 elements (d_1*(d_1+1)/2) belong to the packed lower\n",
+      "    triangle of U_1, followed by six elements of U_2 and one element for\n",
+      "    each U_3 and U_4.\n",
+      "    \n",
+      "    Approximation of the Lagrangian Multipliers\n",
+      "    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
+      "    By the nature of the algorithm, all inequality Lagrangian multiplier\n",
+      "    u,U are always kept positive during the computational process.\n",
+      "    This applies even to Lagrangian multipliers of inactive constraints\n",
+      "    at the solution.\n",
+      "    They will only be close to zero although they would normally be\n",
+      "    equal to zero exactly.\n",
+      "    This is one of the major differences between results from solvers\n",
+      "    based on the active set method (such as ``qpconvex2_sparse_solve``)\n",
+      "    and others, such as, ``handle_solve_pennon`` or interior point\n",
+      "    methods.\n",
+      "    As a consequence, the initial estimate of the multipliers (if\n",
+      "    provided) might be adjusted by the solver to be sufficiently\n",
+      "    positive, also the estimates returned during the intermediate exits\n",
+      "    might only be a very crude approximation to their final values as\n",
+      "    they do not satisfy all the Karush--Kuhn--Tucker (KKT) conditions.\n",
+      "    \n",
+      "    Another difference is that ``qpconvex2_sparse_solve`` merges\n",
+      "    multipliers for both lower and upper inequality into one element\n",
+      "    whose sign determines the inequality because there can be at most\n",
+      "    one active constraint and multiplier for the inactive is exact zero.\n",
+      "    Negative multipliers are associated with the upper bounds and\n",
+      "    positive with the lower bounds.\n",
+      "    On the other hand, ``handle_solve_pennon`` works with both\n",
+      "    multipliers at the same time so they are returned in two elements,\n",
+      "    one for the lower bound, the other for the upper bound (see\n",
+      "    [Structure of the Lagrangian Multipliers]).\n",
+      "    An equivalent result can be achieved by subtracting the upper bound\n",
+      "    multiplier from the lower one.\n",
+      "    This holds even when equalities are interpreted as two inequalities\n",
+      "    (see option 'Transform Constraints').\n",
+      "    \n",
       "    References\n",
       "    ----------\n",
       "    Ben--Tal, A and Zibulevsky, M, 1997, `Penalty/barrier multiplier\n",
@@ -1234,7 +1413,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/local_optimization/SDP/theta_optimization.ipynb b/local_optimization/SDP/theta_optimization.ipynb
index b35d79d..e0efc2d 100644
--- a/local_optimization/SDP/theta_optimization.ipynb
+++ b/local_optimization/SDP/theta_optimization.ipynb
@@ -10,7 +10,6 @@
     "from naginterfaces.base import utils\n",
     "import numpy as np\n",
     "import networkx as nx  \n",
-    "import matplotlib.pyplot as plt\n",
     "import warnings"
    ]
   },
@@ -22,15 +21,26 @@
     "\n",
     "## Correct Rendering of this notebook\n",
     "\n",
-    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html\n",
+    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
     "\n",
-    "## Introduction"
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
+    "## Introduction\n",
+    "\n",
     "The Lovasz number allows to compute an upper bound on the Shannon capacity of a graph $G$ (the maximum size of independent sets of vertices in G). While the complexity of computing the Shannon capacity is not known, the Lovasz number can be efficiently computed in polynomial time via SDP. \n",
     "\n",
     "Start by defining a graph $G = (V, E)$"
@@ -148,10 +158,10 @@
     "# A_2, A_3, ..., A_{ne+1} match the E_ij matrices\n",
     "nnza[2:ne+2] = 1\n",
     "for i in range(ne):\n",
-    "        irowa[idx] = ed[i][0]\n",
-    "        icola[idx] = ed[i][1]\n",
-    "        a[idx] = 1.0\n",
-    "        idx += 1\n",
+    "    irowa[idx] = ed[i][0]\n",
+    "    icola[idx] = ed[i][1]\n",
+    "    a[idx] = 1.0\n",
+    "    idx += 1\n",
     "\n",
     "idblk = opt.handle_set_linmatineq(handle, dima, nnza, irowa, icola, a, \n",
     "                                  blksizea=None, idblk=0)"
@@ -166,14 +176,25 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      " E04SV, NLP-SDP Solver (Pennon)\n",
-      " ------------------------------\n",
-      " Number of variables            16                 [eliminated            0]\n",
-      "                            simple  linear  nonlin\n",
-      " (Standard) inequalities         0       0       0\n",
-      " (Standard) equalities                   0       0\n",
-      " Matrix inequalities                     1       0 [dense    1, sparse    0]\n",
-      "                                                   [max dimension        10]\n",
+      "\n",
+      " --------------------------------\n",
+      "  E04SV, NLP-SDP Solver (Pennon)\n",
+      " --------------------------------\n",
+      "\n",
+      " Problem Statistics\n",
+      "   No of variables                 16\n",
+      "     bounds               not defined\n",
+      "   No of lin. constraints           0\n",
+      "     nonzeroes                      0\n",
+      "   No of matrix inequal.            1\n",
+      "     detected matrix inq.           1\n",
+      "       linear                       1\n",
+      "       nonlinear                    0\n",
+      "       max. dimension              10\n",
+      "     detected normal inq.           0\n",
+      "       linear                       0\n",
+      "       nonlinear                    0\n",
+      "   Objective function          Linear\n",
       "\n",
       " --------------------------------------------------------------\n",
       "  it|  objective |  optim  |   feas  |  compl  | pen min |inner\n",
@@ -283,28 +304,29 @@
       "    ``handle_opt_set``, ``handle_opt_get``.\n",
       "    \n",
       "    ``handle_solve_pennon`` is a solver from the NAG optimization\n",
-      "    modelling suite for problems such as, quadratic programming (QP),\n",
-      "    linear semidefinite programming (SDP) and semidefinite programming\n",
+      "    modelling suite for problems such as, Quadratic Programming (QP),\n",
+      "    linear Semidefinite Programming (SDP) and semidefinite programming\n",
       "    with bilinear matrix inequalities (BMI-SDP).\n",
       "    \n",
       "    For full information please refer to the NAG Library document for\n",
       "    e04sv\n",
       "    \n",
-      "    https://www.nag.com/numeric/nl/nagdoc_27/flhtml/e04/e04svf.html\n",
+      "    https://www.nag.com/numeric/nl/nagdoc_27.1/flhtml/e04/e04svf.html\n",
       "    \n",
       "    Parameters\n",
       "    ----------\n",
       "    handle : Handle\n",
-      "        The handle to the problem. It needs to be initialized by\n",
-      "        ``handle_init`` and **must not** be changed before the call to\n",
-      "        ``handle_solve_pennon``.\n",
+      "        The handle to the problem. It needs to be initialized (e.g., by\n",
+      "        ``handle_init``) and to hold a problem formulation compatible\n",
+      "        with ``handle_solve_pennon``. It **must not** be changed between\n",
+      "        calls to the NAG optimization modelling suite.\n",
       "    \n",
       "    x : float, array-like, shape (nvar)\n",
       "        Note: intermediate stops take place only if 'Monitor Frequency'\n",
       "        > 0.\n",
       "    \n",
       "        If 'Initial X' = 'USER' (the default), x^0, the initial estimate\n",
-      "        of the variables x, otherwise `x` need not be set.\n",
+      "        of the variables x; otherwise, `x` need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
       "    \n",
@@ -316,7 +338,7 @@
       "    \n",
       "        `On intermediate entry`: if set to 0, solving the current\n",
       "        problem is terminated and the function returns `errno` = 20;\n",
-      "        otherwise the function continues.\n",
+      "        otherwise, the function continues.\n",
       "    \n",
       "    u : None or float, array-like, shape (nnzu), optional\n",
       "        Note: intermediate stops take place only if 'Monitor Frequency'\n",
@@ -332,7 +354,7 @@
       "        Note: if nnzu = 0, `u` will not be referenced.\n",
       "    \n",
       "        If 'Initial U' = 'USER' (the default is 'AUTOMATIC'), u^0, the\n",
-      "        initial estimate of the Lagrangian multipliers u, otherwise `u`\n",
+      "        initial estimate of the Lagrangian multipliers u; otherwise, `u`\n",
       "        need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
@@ -355,8 +377,8 @@
       "        If nnzua = 0, `ua` will not be referenced.\n",
       "    \n",
       "        If 'Initial U' = 'USER' (the default is 'AUTOMATIC'), U^0, the\n",
-      "        initial estimate of the matrix Lagrangian multipliers U,\n",
-      "        otherwise `ua` need not be set.\n",
+      "        initial estimate of the matrix Lagrangian multipliers U;\n",
+      "        otherwise, `ua` need not be set.\n",
       "    \n",
       "        `On intermediate entry`: the input is ignored.\n",
       "    \n",
@@ -577,7 +599,7 @@
       "        Constraint: 'Inner Stop Criteria' = 'HEURISTIC' or 'STRICT'.\n",
       "    \n",
       "    'Inner Stop Tolerance' : float\n",
-      "        Default = 10^(-2)\n",
+      "        Default = 10^-2\n",
       "    \n",
       "        This option sets the required precision alpha^0 for the first\n",
       "        inner problem solved by [Algorithm 2].\n",
@@ -691,7 +713,7 @@
       "        reaching the requested accuracy on the feasibility.\n",
       "        Under normal circumstances, the default value is recommended.\n",
       "    \n",
-      "        Constraint: epsilon <= 'P Min' <= 10^(-2).\n",
+      "        Constraint: epsilon <= 'P Min' <= 10^-2.\n",
       "    \n",
       "    'Pmat Min' : float\n",
       "        Default = sqrt(epsilon)\n",
@@ -700,7 +722,7 @@
       "        option P_min.\n",
       "        The same advice applies.\n",
       "    \n",
-      "        Constraint: epsilon <= 'Pmat Min' <= 10^(-2).\n",
+      "        Constraint: epsilon <= 'Pmat Min' <= 10^-2.\n",
       "    \n",
       "    'Preference' : str\n",
       "        Default = 'SPEED'\n",
@@ -806,7 +828,7 @@
       "        Constraint: 'Stop Criteria' = 'SOFT' or 'STRICT'.\n",
       "    \n",
       "    'Stop Tolerance 1' : float\n",
-      "        Default = max(10^(-6), sqrt(epsilon))\n",
+      "        Default = max(10^-6, sqrt(epsilon))\n",
       "    \n",
       "        This option defines epsilon_1 used as a tolerance for the\n",
       "        relative duality gap (0) and the relative precision (1), see\n",
@@ -815,7 +837,7 @@
       "        Constraint: 'Stop Tolerance 1' > epsilon.\n",
       "    \n",
       "    'Stop Tolerance 2' : float\n",
-      "        Default = max(10^(-7), sqrt(epsilon))\n",
+      "        Default = max(10^-7, sqrt(epsilon))\n",
       "    \n",
       "        This option sets the value epsilon_2 which is used for\n",
       "        optimality (2) and complementarity (4) tests from KKT conditions\n",
@@ -826,7 +848,7 @@
       "        Constraint: 'Stop Tolerance 2' > epsilon.\n",
       "    \n",
       "    'Stop Tolerance Feasibility' : float\n",
-      "        Default = max(10^(-7), sqrt(epsilon))\n",
+      "        Default = max(10^-7, sqrt(epsilon))\n",
       "    \n",
       "        This argument places an acceptance limit on the feasibility of\n",
       "        the solution (3), epsilon_feas.\n",
@@ -908,17 +930,14 @@
       "            This solver does not support the model defined in the\n",
       "            handle.\n",
       "    \n",
-      "        (`errno` 2)\n",
-      "            This solver does not support fixed variables.\n",
-      "    \n",
       "        (`errno` 3)\n",
-      "            A different solver from the suite has already been used.\n",
+      "            The problem is already being solved.\n",
       "    \n",
       "        (`errno` 4)\n",
       "            On entry, nvar = *<value>*, expected value = *<value>*.\n",
       "    \n",
-      "            Constraint: nvar must match the value given during\n",
-      "            initialization of `handle`.\n",
+      "            Constraint: nvar must match the current number of variables\n",
+      "            of the model in the `handle`.\n",
       "    \n",
       "        (`errno` 5)\n",
       "            On entry, nnzu = *<value>*.\n",
@@ -963,25 +982,6 @@
       "        (`errno` 21)\n",
       "            The current starting point is unusable.\n",
       "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Inner iteration limit has been reached.\n",
-      "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Limited progress in the inner subproblem triggered a stop\n",
-      "            (heuristic inner stop criteria).\n",
-      "    \n",
-      "        (`errno` 23)\n",
-      "            The inner subproblem could not be solved to the required\n",
-      "            accuracy.\n",
-      "    \n",
-      "            Line search or another internal component failed.\n",
-      "    \n",
       "        (`errno` 51)\n",
       "            The problem was found to be infeasible during preprocessing.\n",
       "    \n",
@@ -1014,9 +1014,187 @@
       "    \n",
       "            The requested accuracy is not achieved.\n",
       "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Inner iteration limit has been reached.\n",
+      "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Limited progress in the inner subproblem triggered a stop\n",
+      "            (heuristic inner stop criteria).\n",
+      "    \n",
+      "        (`errno` 23)\n",
+      "            The inner subproblem could not be solved to the required\n",
+      "            accuracy.\n",
+      "    \n",
+      "            Line search or another internal component failed.\n",
+      "    \n",
       "        (`errno` 24)\n",
       "            Unable to make progress, the algorithm was stopped.\n",
       "    \n",
+      "    Notes\n",
+      "    -----\n",
+      "    ``handle_solve_pennon`` serves as a solver for compatible problems\n",
+      "    stored as a handle.\n",
+      "    The handle points to an internal data structure which defines the\n",
+      "    problem and serves as a means of communication for functions in the\n",
+      "    NAG optimization modelling suite.\n",
+      "    First, the problem handle is initialized by calling ``handle_init``.\n",
+      "    Then some of the functions ``handle_set_linobj``,\n",
+      "    ``handle_set_quadobj``, ``handle_set_simplebounds``,\n",
+      "    ``handle_set_linconstr``, ``handle_set_linmatineq`` or\n",
+      "    ``handle_set_quadmatineq`` may be used to formulate the objective\n",
+      "    function, (standard) constraints and matrix constraints of the\n",
+      "    problem.\n",
+      "    Once the problem is fully set, the handle may be passed to the\n",
+      "    solver.\n",
+      "    When the handle is no longer needed, ``handle_free`` should be\n",
+      "    called to destroy it and deallocate the memory held within.\n",
+      "    See [the E04 Introduction] for more details about the NAG\n",
+      "    optimization modelling suite.\n",
+      "    \n",
+      "    Problems which can be defined this way are, for example, (generally\n",
+      "    nonconvex) Quadratic Programming (QP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    linear semidefinite programming problems (SDP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    or semidefinite programming problems with bilinear matrix\n",
+      "    inequalities (BMI-SDP)\n",
+      "    \n",
+      "        [table omitted]\n",
+      "    \n",
+      "    Here c, l_x and u_x are n-dimensional vectors, H is a symmetric n*n\n",
+      "    matrix, l_B, u_B are m_B-dimensional vectors, B is a general m_B*n\n",
+      "    rectangular matrix and A_i^k, Q_ij^k are symmetric matrices.\n",
+      "    The expression S⪰0 stands for a constraint on eigenvalues of a\n",
+      "    symmetric matrix S, namely, all the eigenvalues should be\n",
+      "    non-negative, i.e., the matrix should be positive semidefinite.\n",
+      "    See relevant functions in the suite for more details on the problem\n",
+      "    formulation.\n",
+      "    \n",
+      "    The solver is based on a generalized Augmented Lagrangian method\n",
+      "    with a suitable choice of standard and matrix penalty functions.\n",
+      "    For a detailed description of the algorithm see [Algorithmic\n",
+      "    Details].\n",
+      "    Under standard assumptions on the problem (Slater constraint\n",
+      "    qualification, boundedness of the objective function on the feasible\n",
+      "    set, see Stingl (2006) for details) the algorithm converges to a\n",
+      "    local solution.\n",
+      "    In case of convex problems such as linear SDP or convex QP, this is\n",
+      "    the global solution.\n",
+      "    The solver is suitable for both small dense and large-scale sparse\n",
+      "    problems.\n",
+      "    \n",
+      "    The algorithm behaviour and solver strategy can be modified by\n",
+      "    various options (see [Other Parameters]) which can be set by\n",
+      "    ``handle_opt_set`` and ``handle_opt_set_file`` anytime between the\n",
+      "    initialization of the handle by ``handle_init`` and a call to the\n",
+      "    solver.\n",
+      "    Once the solver has finished, options may be modified for the next\n",
+      "    solve.\n",
+      "    The solver may be called repeatedly with various starting points\n",
+      "    and/or options.\n",
+      "    \n",
+      "    There are several options with a multiple choice where the default\n",
+      "    choice is 'AUTO' (for example, 'Hessian Density').\n",
+      "    This value means that the decision over the option is left to the\n",
+      "    solver based on the structure of the problem.\n",
+      "    Option getter ``handle_opt_get`` can be called to retrieve the\n",
+      "    choice of these options as well as on any other options.\n",
+      "    \n",
+      "    Option 'Task' may be used to switch the problem to maximization or\n",
+      "    to ignore the objective function and find only a feasible point.\n",
+      "    \n",
+      "    Option 'Monitor Frequency' may be used to turn on the monitor mode\n",
+      "    of the solver.\n",
+      "    The solver invoked in this mode pauses regularly even before the\n",
+      "    optimal point is found to allow monitoring the progress from the\n",
+      "    calling program.\n",
+      "    All the important error measures and statistics are available in the\n",
+      "    calling program which may terminate the solver early if desired (see\n",
+      "    argument `inform`).\n",
+      "    \n",
+      "    Structure of the Lagrangian Multipliers\n",
+      "    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
+      "    The algorithm works internally with estimates of both the decision\n",
+      "    variables, denoted by x, and the Lagrangian multipliers (dual\n",
+      "    variables) for standard and matrix constraints, denoted by u and U,\n",
+      "    respectively.\n",
+      "    You may provide initial estimates, request approximations during the\n",
+      "    run (the monitor mode turned on) and obtain the final values.\n",
+      "    The Lagrangian multipliers are split into two arrays, the\n",
+      "    multipliers u for (standard) constraints are stored in array `u` and\n",
+      "    multipliers U for matrix constraints in array `ua`.\n",
+      "    Both arrays need to conform to the structure of the constraints.\n",
+      "    \n",
+      "    If the simple bounds were defined (``handle_set_simplebounds`` was\n",
+      "    successfully called), the first 2n elements of `u` belong to the\n",
+      "    corresponding Lagrangian multipliers, interleaving a multiplier for\n",
+      "    the lower and for the upper bound for each x_i.\n",
+      "    If any of the bounds were set to infinity, the corresponding\n",
+      "    Lagrangian multipliers are set to 0 and may be ignored.\n",
+      "    \n",
+      "    Similarly, the following 2m_B elements of `u` belong to multipliers\n",
+      "    for the linear constraints, if formulated by\n",
+      "    ``handle_set_linconstr``.\n",
+      "    The organization is the same, i.e., the multipliers for each\n",
+      "    constraint for the lower and upper bounds are alternated and zeroes\n",
+      "    are used for any missing (infinite bound) constraint.\n",
+      "    \n",
+      "    A Lagrangian multiplier for a matrix constraint (one block) of\n",
+      "    dimension d*d is a dense symmetric matrix of the same dimension.\n",
+      "    All multipliers U are stored next to each other in array `ua` in the\n",
+      "    same order as the matrix constraints were defined by\n",
+      "    ``handle_set_linmatineq`` and ``handle_set_quadmatineq``.\n",
+      "    The lower triangle of each is stored in the packed column order (see\n",
+      "    [the F07 Introduction]).\n",
+      "    For example, if there are four matrix constraints of dimensions 7,\n",
+      "    3, 1, 1, the dimension of array `ua` should be 36.\n",
+      "    The first 28 elements (d_1*(d_1+1)/2) belong to the packed lower\n",
+      "    triangle of U_1, followed by six elements of U_2 and one element for\n",
+      "    each U_3 and U_4.\n",
+      "    \n",
+      "    Approximation of the Lagrangian Multipliers\n",
+      "    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n",
+      "    By the nature of the algorithm, all inequality Lagrangian multiplier\n",
+      "    u,U are always kept positive during the computational process.\n",
+      "    This applies even to Lagrangian multipliers of inactive constraints\n",
+      "    at the solution.\n",
+      "    They will only be close to zero although they would normally be\n",
+      "    equal to zero exactly.\n",
+      "    This is one of the major differences between results from solvers\n",
+      "    based on the active set method (such as ``qpconvex2_sparse_solve``)\n",
+      "    and others, such as, ``handle_solve_pennon`` or interior point\n",
+      "    methods.\n",
+      "    As a consequence, the initial estimate of the multipliers (if\n",
+      "    provided) might be adjusted by the solver to be sufficiently\n",
+      "    positive, also the estimates returned during the intermediate exits\n",
+      "    might only be a very crude approximation to their final values as\n",
+      "    they do not satisfy all the Karush--Kuhn--Tucker (KKT) conditions.\n",
+      "    \n",
+      "    Another difference is that ``qpconvex2_sparse_solve`` merges\n",
+      "    multipliers for both lower and upper inequality into one element\n",
+      "    whose sign determines the inequality because there can be at most\n",
+      "    one active constraint and multiplier for the inactive is exact zero.\n",
+      "    Negative multipliers are associated with the upper bounds and\n",
+      "    positive with the lower bounds.\n",
+      "    On the other hand, ``handle_solve_pennon`` works with both\n",
+      "    multipliers at the same time so they are returned in two elements,\n",
+      "    one for the lower bound, the other for the upper bound (see\n",
+      "    [Structure of the Lagrangian Multipliers]).\n",
+      "    An equivalent result can be achieved by subtracting the upper bound\n",
+      "    multiplier from the lower one.\n",
+      "    This holds even when equalities are interpreted as two inequalities\n",
+      "    (see option 'Transform Constraints').\n",
+      "    \n",
       "    References\n",
       "    ----------\n",
       "    Ben--Tal, A and Zibulevsky, M, 1997, `Penalty/barrier multiplier\n",
@@ -1076,7 +1254,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/local_optimization/SOCP/Readme.md b/local_optimization/SOCP/Readme.md
index f35f790..ad6cddd 100644
--- a/local_optimization/SOCP/Readme.md
+++ b/local_optimization/SOCP/Readme.md
@@ -1,3 +1,5 @@
+[![NAG Logo](../../nag_logo.png)](https://www.nag.com)
+
 # Second Order Cone Programming
 
 [Second Order Cone Programming (SOCP)](https://en.wikipedia.org/wiki/Second-order_cone_programming) is convex optimization which extends linear programming (LP) with second-order (Lorentz or the ice cream) cones. Search region of the solution is the intersection of an affine
@@ -23,7 +25,7 @@ This directory contains demonstrations using NAG's SOCP solver in Python.
 
 * [A classification example using NAG's SOCP from CVXPY](./cvxpy_classification.ipynb)
 
-## Portfolio Optimization using Second Order Cone Programming (SOCP)
+## Portfolio Optimization as Quadratically Constrained Quadratic Programming (QCQP)
 
 This demonstration is a walk-through of modelling techniques in portfolio optimization using second-order cone programming in the NAG Library. Models in portfolio optimization include
 
@@ -31,7 +33,13 @@ This demonstration is a walk-through of modelling techniques in portfolio optimi
 * quadratically constrained quadratic programming (tev portfolio)
 * optimization with objective of fraction of quadratic and linear (the Sharpe ratio).
 
-General functions are enclosed for users to get the principle idea on SOCP reformulation. They provide one of the ways to build and solve their problems using NAG's SOCP solver and could be copy and paste into a model and reuse repeatedly.
+NAG provides two functions for users to easily define quadratic objective and constraints. Then the second-order cone programming solver can be called directly to solve the problem without any extra effort on reformulation.
+
+* [portfolio_optimization_qcqp.ipynb](./portfolio_optimization_qcqp.ipynb)  Jupyter notebook
+* [portfolio_optimization_qcqp.pdf](./static/portfolio_optimization_qcqp.pdf)  Static pdf version
+* [portfolio_optimization_qcqp.html](./static/portfolio_optimization_qcqp.html)  Static html version
+
+Users can also transform their QCQP problem into second-order cone programming model by hand. In the following notebook two general functions are enclosed for users to get the principle idea on SOCP reformulation.
 
 * [portfolio_optimization_using_socp.ipynb](./portfolio_optimization_using_socp.ipynb)  Jupyter notebook
 * [portfolio_optimization_using_socp.pdf](./static/portfolio_optimization_using_socp.pdf)  Static pdf version
@@ -44,11 +52,18 @@ A mean-variance model with probability constraint using randomly generated data.
 * [robust_lp.ipynb](./robust_lp.ipynb) Jupyter Notebook
 * [robust_lp.html](./static/robust_lp.html) Static html version
 
-# Data
+## Data
 
 * [stock_price.pkl](./data/stock_price.pkl) - pickled data file contains daily prices of 30 stocks in DJIA from March 2018 to March 2019. It is used to estimate out-of-sample expected return and covariance matrix.
 * [djia_close_price.csv](./data/djia_close_price.csv) - CSV version of daily prices of 30 stocks in DJIA from March 2018 to March 2019.
 
-# Poster
+## Poster
 
 A 2019 poster discussing NAG's SOCP functionality is [available on the NAG website](https://www.nag.com/market/posters/socp.pdf)
+
+# Obtaining the NAG Library for Python
+
+ * Instructions on [how to install the NAG Library for Python](../Readme.md#install)
+ * Instructions on [how to run the Jupyter notebooks in the Repository](../Readme.md#jupyter)
+
+<!-- Instructions for how to download, install and license the NAG Library for Python can be found at https://github.com/numericalalgorithmsgroup/NAGPythonExamples#nag-library-for-python-installation-->
diff --git a/local_optimization/SOCP/cvxpy_classification.ipynb b/local_optimization/SOCP/cvxpy_classification.ipynb
index df06d26..0ae1273 100644
--- a/local_optimization/SOCP/cvxpy_classification.ipynb
+++ b/local_optimization/SOCP/cvxpy_classification.ipynb
@@ -13,15 +13,26 @@
    "source": [
     "## Correct Rendering of this notebook\n",
     "\n",
-    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html\n",
+    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
     "\n",
-    "## Introduction"
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
+    "## Introduction\n",
+    "\n",
     "In this notebook, we demonstrate how NAG second-order conic programming (SOCP) solver can be used to find a quartic polynomial\n",
     "\\vspace{0.1cm}\n",
     "\\begin{equation}\\label{poly}\n",
@@ -227,20 +238,22 @@
       "     Socp Stop Tolerance 2         =         1.05367E-08     * d\n",
       "     Socp System Formulation       =                Auto     * d\n",
       " End of Options\n",
-      " Original Problem Statistics\n",
-      "\n",
-      "   Number of variables                          32\n",
-      "   Number of linear constraints                176\n",
-      "   Number of nonzeros                         2432\n",
-      "   Number of cones                               1\n",
-      "\n",
       "\n",
-      " Presolved Problem Statistics\n",
+      " Problem Statistics\n",
+      "   No of variables                 32\n",
+      "     bounds               not defined\n",
+      "   No of lin. constraints         176\n",
+      "     nonzeroes                   2432\n",
+      "   No of quad.constraints           0\n",
+      "   No of cones                      1\n",
+      "     biggest cone size             16\n",
+      "   Objective function          Linear\n",
       "\n",
-      "   Number of variables                         191\n",
-      "   Number of linear constraints                175\n",
-      "   Number of nonzeros                         2590\n",
-      "   Number of cones                               1\n",
+      " Presolved Problem Measures\n",
+      "   No of variables                191\n",
+      "   No of lin. constraints         175\n",
+      "     nonzeroes                   2590\n",
+      "   No of cones                      1\n",
       "\n",
       "\n",
       " ------------------------------------------------------------------------\n",
@@ -369,7 +382,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/local_optimization/SOCP/data/stock_price.pkl b/local_optimization/SOCP/data/stock_price.pkl
index be4379c..6064972 100644
Binary files a/local_optimization/SOCP/data/stock_price.pkl and b/local_optimization/SOCP/data/stock_price.pkl differ
diff --git a/local_optimization/SOCP/portfolio_optimization_qcqp.ipynb b/local_optimization/SOCP/portfolio_optimization_qcqp.ipynb
new file mode 100644
index 0000000..f05f6ff
--- /dev/null
+++ b/local_optimization/SOCP/portfolio_optimization_qcqp.ipynb
@@ -0,0 +1,718 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Quadratically constrained quadratic programming and its applications in portfolio optimization"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Correct Rendering of this notebook\n",
+    "\n",
+    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html\n",
+    "\n",
+    "The notebook is also not rendered well by GitHub so if you are reading it from there, you may prefer the [pdf version instead](./static/portfolio_optimization_qcqp.pdf)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Introduction\n",
+    "\n",
+    "Quadratically constrained quadratic programming (QCQP) is a type of optimization problem in which both the objective function and the constraints involve quadratic functions. A general QCQP problem has the following form\n",
+    "\\begin{equation}\n",
+    "\\begin{array}{ll}\n",
+    "\\underset{x\\in\\Re^n}{\\mbox{minimize}} &  \\frac{1}{2}x^TP_0x+q_0^Tx+r_0\\\\[0.6ex]\n",
+    "\\mbox{subject to} & \\frac{1}{2}x^TP_ix+q_i^Tx+r_i\\leq0,\\quad i=1,\\ldots,p.\n",
+    "\\end{array}\n",
+    "\\end{equation}\n",
+    "It appears in applications such as modern portfolio theory, machine learning, engineering and control. Convex QCQP is usually handled through conic optimization, or, more precisely, second-order cone programming (SOCP) due to its computational efficiency and ability to detect infeasibility. However, using SOCP to solve convex QCQP is nontrivial task which requires extra amount of effort to transform problem data and add auxiliary variables. In this notebook, we are going to demonstrate how to use the *NAG Optimization Modelling Suite* in the NAG Library to define and solve QCQP in portfolio optimization."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Data Preparation"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We consider daily prices for the 30 stocks in the DJIA from March 2018 to March 2019. In practice, the estimation of the mean return $r$ and covariance $V$ is often a nontrivial task. In this notebook, we estimate those entities using simple sample estimates."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import necessary libraries\n",
+    "import pickle as pkl\n",
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Load stock price data from stock_price.plk\n",
+    "# Stock_price: dict = ['close_price': [data], 'date_index': [data]]\n",
+    "stock_price = stock_price = pkl.load(open('./data/stock_price.pkl', 'rb'))\n",
+    "close_price = stock_price['close_price']\n",
+    "date_index = stock_price['date_index']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Size of data, m: number of observations, n: number of stocks\n",
+    "m = len(date_index)\n",
+    "n = len(close_price)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydZ3hU1daA3z0lvVfSG0kg9A4KUqQXERtiF+unXsVerliv116uvSACIoJYEJSmSO8JEEpCSEhCMum9lyn7+zGTSEyAAJmEwHl9eDKzz9n7rImZs84qey0hpURBQUFBQQFA1dECKCgoKChcOChKQUFBQUGhEUUpKCgoKCg0oigFBQUFBYVGFKWgoKCgoNCIpqMFOB+8vLxkaGhoR4uhoKCg0KmIi4srlFJ6t3SsUyuF0NBQYmNjO1oMBQUFhU6FEOLEqY4p7iMFBQUFhUasrhSEEGohxH4hxG+W9y8JIbKEEAcs/yafdO6zQogUIUSSEGKCtWVTUFBQUGhKe7iPHgESAZeTxt6XUr5z8klCiBjgRqAH4A/8KYSIklIa20FGBQUFBQWsbCkIIQKBKcC8Vpw+HVgqpayTUqYBKcBga8qnoKCgoNAUa7uPPgCeAkz/GH9ICHFQCDFfCOFuGQsAMk86R2cZa4IQ4l4hRKwQIragoMAqQisoKChcqlhNKQghpgL5Usq4fxz6DIgA+gI5wLsNU1pYplm1Pinll1LKgVLKgd7eLWZUKSgoKCicI9aMKVwOXGUJJNsBLkKIxVLKWxpOEEJ8BfxmeasDgk6aHwhkW1E+BQUFBYV/YDVLQUr5rJQyUEoZijmA/JeU8hYhhN9Jp80ADlterwRuFELYCiHCgEhgj7XkU1BQUOiMZJZn8l3id6xLX2eV9Tti89pbQoi+mF1D6cB9AFLKI0KIH4AEwAA8qGQeKSgoKPxNamkq16+6nnpTPZNCJzEhtO0z99tFKUgpNwGbLK9vPc15rwGvtYdMCgoKCp2N9+Pex0Ztw49X/UiYa5hVrqHsaFZQUFDoBBwsOMgm3Sbu7nW31RQCKEpBQUFBoVPwZ8afaFQaZkbPtOp1FKWgoKCg0AnYqtvKAJ8BONk4WfU6ilJQUFBQuMDJqcwhpTSFEYEjrH6tTl06W0FBQeFiRkrJxwc+Zk3aGgBGBFhfKSiWgoKCgsIFyhcHv+DLg1/iaefJzOiZVg0wN6BYCgoKCgoXEFJKimuLMUojn8d/zqSwSbw54k2EaKkSUNujKAUFBQWFC4hFCYt4P+59RgaOxCiNPNT3oXZTCKAoBQUFBYULgtjcWCSS+YfnY5RG/sr8i4G+Awl2CW5XORSloKCgoNDB6E16Ht74MBX1FQDM7jmb+Yfnc0P0De0ui6IUFBQUFDqYuLw4KuoruMz/Mvwc/ZjTfw6zus3C18G33WVRlIKCgoKClTFJE5X6SlxsXFo8vjFjI7ZqW94f9T4OWgcAujh2aU8RG1GUgoKCgoIV2Zm9k5d2vERRbRErpq8g0DkQgF+Sf+Gd2HdwsXGhrK6MYX7DGhVCR6LsU1BQUFCwIguOLKDeVI/BZOCHpB8Ac9rpooRFuNi40M2jGzZqG66OvLqDJTWjWAoKCgoKVkJKydHio1wReAVV+ip+Sv6JqyKuotZYS0ppCnOHzu2QYPLpsLpSEEKogVggS0o5VQjhASwDQjE32blBSlliOfdZ4C7ACDwspbROayEFBQWFdiC/Op/i2mK6eXQjxjOGP0/8yYyVM9AIDTYqG6s0yTlf2sNSeARIBBoiLM8AG6SUbwghnrG8f1oIEYO5bWcPwB/4UwgRpXRfU1BQ6KwcLT4KQHeP7vTz6cePV/3I0eKjbDixgWiPaFxtXTtYwuZYVSkIIQKBKZi7qT1mGZ4OjLK8Xoi5I9vTlvGlUso6IE0IkQIMBnZaU0YFBQUFa5FYnAhAtEc0AFHuUUS5R3FVxFUdKdZpsXag+QPgKcB00pivlDIHwPLTxzIeAGSedJ7OMtYEIcS9QohYIURsQUGBdaRWUFBQaAOSipMIdg7GUevY0aK0GqspBSHEVCBfShnX2iktjMlmA1J+KaUcKKUc6O3tfV4yKigoKFgLKSWHiw7T3bN7R4tyVljTUrgcuEoIkQ4sBcYIIRYDeUIIPwDLz3zL+Tog6KT5gUC2FeVTUFBQsBoZFRnkVuUyyHdQR4tyVlhNKUgpn5VSBkopQzEHkP+SUt4CrARut5x2O/Cr5fVK4EYhhK0QIgyIBPZYSz4FhYuJgwUHmfjTRDZmbOxoURQs7M7ZDcAQvyEdLMnZ0RGb194AxgkhkoFxlvdIKY8APwAJwFrgQSXzSEGhdcw/PJ+syiwe3fSoohguEHbl7MLXwZcQl5COFuWsaBelIKXcJKWcanldJKW8UkoZaflZfNJ5r0kpI6SU0VLKNe0hm4JCZye7MpuNmRuZ1W0W0R7RzN0xl9yq3I4W65IkviCeV3a+QkZ5Bnty9zDUb2i79kJoC5QdzQoKnZwFRxYAcEePO6g31nPDbzcw+efJxHjG0NOrJ08NegqVUCratAe/p/7O8mPLWX5sORqhYWrE1I4W6axR/lIUFDoxCUUJLEtaxvVR1+Pv5E+oayiLJi1iVrdZ1Bpq+S7xO06Un+hoMS8Z8qry8LTzZGzwWBZNWsRQv6EdLdJZo1gKCgqdmI/2f4SbrRsP93+4caybRze6eXTjQP4Bbl1zK5kVme3S8F0Bcqtz6e7ZnfdHv9/RopwziqWgoNBJ0Rv1xObGMilsUot1+oOczRnemRWZzY4pWIe8qrwOaYzTlihKQUGhk5JQnECtsZYBvgNaPO5h54Gj1pGM8ox2luzSRG/UU1RbhK+johQUFBQ6gLg8c7GA/j79WzwuhCDYOZiMCkUptAf5NeZ9uF0cOqZjWluhKAUFhQuc4tpipGxW8YW4vDjCXMPwtPc85dwg5yB0FTpriofepEdv0lv1Gp2BvKo8AMV9pHDp8UHcB7y04yVM0kRhTSEf7f+Izw58RlpZWkeLdtFxrOQYY5eP5eMDHzcZr6ivIC4v7pRWQgPBLsHoKnUYTAaryfjQhocYu3wsSxKXoDdeusqhYW9IZ3cfKdlHCmeFlJKfk3+mpK6EzIpMDhceptZYi5SS3bm7WTBxQUeLeFHx0f6P0Jv0zD88n2nh0wh1DQVg3qF5VOmruD76+tPOD3IOwmAykFuV29gbGCC9LJ0Ql5Dz3lh1sOAgO7J34O/oz+t7XmfJ0SV8N/m7C7JPgLXJq1YsBYVLEF2FjpK6EgKcAogviGdM8BhWXr2Sf/X7F3F5cVZ3VVxKrEtfx6bMTczqNgs7tR3XrryWf2/7N7G5sSxOWMy08Gn08Oxx2jUaMpBO3qvwV8ZfTFsxjc/jPz9vGRceWYiz1pmfp//M6yNe50T5CXbl7DrvdTsjedV5OGodcbJx6mhRzgtFKVzilNaWntX5BwsPAvC/0f9j56ydvD7idUJcQpgaPhWBYNXxVdYQ85JCb9LzefznPLn5SXp792ZO/zksmLiAGZEzWHV8FXeuuxNvB2/mDJhzxrW6eXRDJVTsy9/XOLZFtwWAT+M/ZcOJDS3OM5qMZ4wTJBYl8seJP7gh+gYctY6MDxmPVqXlSNGRs/i0nQeTNLE4YXGzEiKHCw9TY6jheOnxTm8lgKIULmmOlx5n5A8j2ZG9o9VzDhYcxF5jT1e3rmjV2sZxPyc/BvsNZsGRBSw6sqjFwKhC63h+2/N8cuATJoZNZN74eThoHYj2iOb5oc/zv9H/Y1zIOBZOXIiPg88Z13K2caanV092ZZuf3qWU7MzeyajAUYS4hLAwYWGL8x7f/Dj3rL+n2f/Htelr+XDfh0gpeXPvm7jZujG712wAbNQ2RLlHkVCYcJ6/gQuT7VnbeXPvm3xx8IvGsZ3ZO5n1+yyuWHoFu3J2MTJwZAdK2DYoSuESJi4vDpM0NXlarNZXc6jgULNzq/RVvLP3HTbrNtPLqxdqlbrZOa9c9gr9ffvzduzbbM3aalXZG9Ab9cTlxZ1SCemNen469hM7slqv+DqKyvpKyuvLWX9iPbO6zeKtK97CXmPf5JzRwaN5b9R7ZxXMHOY3jMNFh0ksSmRr1layq7K5POByro+6nv35+zlWcqzJ+TWGGrbqthKXF8fa9LVNjn0R/wVfHfqKD/d/SFxeHA/1e6jJxrmeXj05UnQEkzRxPuRV5VFrqD2vNdqaRQmLAFiXto46Yx0ASxKX4GHnweUBl/PM4Gd4dMCjHSlim6AohUuYhCLzE9327O38d/d/mfbLNMb+OJabVt9EbG4siUWJjabyh/s+ZGHCQrIqsxjcZXCL6/k7+fPhmA8JcQnhvdj3rJrx0sAbe97gjrV3sDptdeNYtb6azZmbKa8v5/pV1/PSzpd4dderVpflfNids5sRy0bw5OYnMZgMTAuf1mZrD/MfhkmamPnbTB7c8GDj2PSI6diobJh3cF4TpRqXF0e9qR5nrTMf7vuwcTyzIpOU0hTAHOiOco/i2shrm1yrh2cPKvWV57VhzmAycO2qa/n68NfnvEZbk1ySzK6cXQzzG0aFvoL/7PoPb+55k826zVwXdR0fjP6Am7vf3OkqoraEohQuYRKLExEIsiqz+P7o97jZujE6aDR2ajt+Tv6Z2etm8+zWZzlSeITvj37PjdE38ud1f3JXr7tOuaZWpeXR/o9yvOw4Xx780mqyp5el8+rOV/nh2A9oVVo+i/+sUQm9Hfs2D/31EDNWzCC9PJ3xIePRVepIK0tjffr6Cy6n3mAy8MaeNzCYDOzI3kEXxy709OrZZuv39uqNj70Pfbz7cE+ve5gZPZNg52Dc7Ny4u9fdrElfwzux73Ck0BwL2J61HVu1Lbf2uBVdpY7K+koANmduBmBi6EQAnh70dDOLMcYzBoBDhc2tzdaSXpZOWV0ZR4uPnvMabc2vKb+iERpeH/E6fo5+rEhZwbKkZdhr7Lkh6oaOFq9NsVpKqhDCDtgC2Fqu86OU8kUhxEvAPUCB5dTnpJSrLXOeBe4CjMDDUsp11pJPStlEq5fWlvJ90vfc3fPuJr7yixW9UU9ySTLjQsax/sR6gpyDmDdhHrZqW2oMNaxKNQeMY/NieWbrM3jYefBw/4dxtnE+49pjgsdwVcRVfBb/GX28+3B5wOVtK7tJz/1/3k9BdQHTwqcxKmgUj29+nKm/TGVU0ChWJK8g1CWU9PJ05vSfw8jAkaw/sZ45G+eQWpbKvb3v5V/9/nVeMhRUF+Bu545GpWky5mnveVZlqvVGPa/tfo2U0hSeGPgEnx74lMlhk9v0iVOr1rJqxirsNfbN1r2vz30cLzvOooRFfJvwLcunLWd79nYG+A4g2DkYgPzqfJxsnNiQsYGubl15bfhr3BpzK729eze7Vle3rnjYebBFt4VpEedm7SQWJwJcMOU5jCYja9LWMDxwOJ72niyevBijyYivoy8GkwEbtU1Hi9imWNNSqAPGSCn7AH2BiUKIhjqy70sp+1r+NSiEGMxtO3sAE4FPhRDNHddtQHJJMjf+fmOTNL35h+fz6YFPL5l0uuTSZPQmPeNCxvGvfv/ijRFvYKu2BWBcyDgAunt0x0ZlQ3p5Og/0faBVCgHM5RVeGPYC7rburElr+15Ja9PWklWZxbuj3uW/I/7LuJBxPD/kebq6deW7xO8QQvDV+K/447o/uKvXXUS4ReBl70VqWarZXXJoHntz957z9eML4pn400Se2vJUo9slsSiR8T+O57FNj53WEvln7OOd2Hf4Kfkn7u51N7fF3Maaa9fwUN+Hzlm2U+GgdWhR0aiEireveJvfZ/yOrdqWZ7Y+Q1pZGmNDxjYGsvOq8zhUcIjYvFimhE/BRm3TokIAUKvUXBl8JZt1m6kx1JyTrEnFSYDZXWU0tW/zxfSydB756xHuXHsn+/L2sSdnD+/EvkN+TT5TwqcA4OPgg5+THyqhuugUAli3R7OUUlZa3mot/06XkjIdWCqlrJNSpgEpQMvO6/PE1daVzPJMXtzxIiZpolpfzY/JPwLmJ+NLgcOFhwGzuX9v73ubfMlHBo6kn08/Hh/4ONdGXUt3j+5cE3nNWa1vq7alu2f3ZkHM88VoMvL1oa/p6taVKwKvAMxKaGa3mXx85ccsmLiAD8d8SBfHLnRx7NJ4vCEO8snYTwh2DuaxTY+RWW6uHlpYU8gzW59plaxFNUU88tcjqISKP078wZq0NUgpeWPPG2jVWjZkbGDWb7P488SfzeYuOLyAiT9NbKxZZDQZWZu+lgmhE3ik/yMIIfCw82h3S1UIQbBLMFPCp5BSmkKISwhXd726Mb0yrzqPT+I/wc3WjVndZp1xvQmhE6gx1LAta9s5ydPgNtKb9I0bwtqLZUnL2JK1hYyKDO5Zfw93rb+LxYmL8bDzYFTgqHaVpaOwakxBCKEWQhwA8oE/pJS7LYceEkIcFELMF0K4W8YCgJNr/OosY/9c814hRKwQIragoOCfh1uFj4MPTw56kri8ON6LfY/P4j+jor4Cd1v3xi/sxc76dLPLqGFz08k4aB1YNGkRQ/yG8NyQ51g2dVkTN0lriXaPJqU0pU19+GvS13C87Dj39r63RTfNAN8BDA8Y3mz83t73MnfoXIb6DeXjKz/GJE1cs/IaPt7/MW/vfZvfU3/nwQ0PUlhTeNrrf7T/I8rqyvh28rf08e7DCzte4MktT7Ivfx9PDnqSN0e8icFk4PHNjzc2bgeza+nT+E/Jrc7l7nV3k1qWysHCgxTXFnNl8JXn/4tpA27ufjN2ajueGPgEWpW20VI4UniE7VnbuaX7LThqHc+4zgDfAXjYefBL8i9nLYOUksTixMa+xu3dIGhb1jYGdxnM0ilLifGM4aZuN7Htxm2su3Yddhq7dpWlo7CqUpBSGqWUfYFAYLAQoifwGRCB2aWUA7xrOb0lJ2ozy0JK+aWUcqCUcqC3t/c5y3Z116u5Luo6FiYsZMGRBUwNn8qMyBkcKTxyzmZvZyG/Op89uXuYEj6lVb7rc/VvR3lEoTfpz7sm0lt732L2utnojXo+2f8J3Ty6MSF0wlmtEeEWwQ3R5oBgiEsIS6csZXTwaL44+AWr01YzIXQCZXVlvLzj5Rbnp5Wl8V7ce/yc/DM3db+Jbh7d+HDMhwQ5B7EufR23xdzGNV2vYXL4ZJZMWUKISwhPbXmKktoSvkv8jgc2PIDepOebCd9gwsTvqb+zMXMjGpWmRSXWEUS6R7Lzpp2MChoFgJ3GDldb18b04lOV6P4nGpWGW2NuZWvWVg7kHzgrGTIrMimvL2d8yHigfeMKugod6eXpjAgYgbeDN99O/pZnhzyLq63rJaMQoJ1qH0kpS4UQm4CJUsp3GsaFEF8Bv1ne6oCTH1sDgWxrySSE4MVhL3K5vzkIemXwlWzL2sb8w/OJL4jvlG30GpBS8tbet6jSVzEqaBRutm4sTlzMo/0fJcglyOzyQDI5bLJV5Yh2jwbMPuIo96hzWiOnMofvE7/HIA28tfctdJU6Prnyk/PuORzkEsRbV7xl9n9nbub5oc/zQ9IPvBv3LpszNzMyqOkmpP/t+x8bMzfSz6cf9/e5HzD3K1g0aRGZFZmNWTdgtrTevuJtZv42k9nrZpNSmkKEawTPDXmO/r79GeQ7iNWpq9Gb9AzyHdTqWE178E+L0MfBh+SSZMCsNFrLTd1u4tuEb3kv7j3mT5jfakvz4/0fY6Oy4dqoa/k24VtOVLSfpdDg7rpQlHRHYTVLQQjhLYRws7y2B8YCR4UQfiedNgM4bHm9ErhRCGErhAgDIoE91pKvgbEhYxkbMhYhBP19+2Ovse/QUg0tbcLKr85n4k8TufKHK/lw34dnzP/fl7+PxYmLWZu+lkc2PsIda+/gjxN/cMe6O1h1fBWfx3/OAN8BVm/RGOoailal5etDX/Pk5ifPKWjY0JTeVm3L0qSlRLlHMSJgRJvJOCF0Av8d8V8ctA7cHHMz4a7hvLHnjcbNSQ0kFScxNngsCyctbHITd7ZxbqIQGoj2iObWmFtJKU1hiN8Qfp7+M9dHmYvXTQibgK5SR2FNIQ/0faDNPos1aHAh+Tj4nFWROwetA08MfIL9+fv5377/tWrOvrx9rElfw1297iLAKYAgl6B2sxTK6spYcGQBYa5hja6rSxVruo/8gI1CiIPAXswxhd+At4QQhyzjo4FHAaSUR4AfgARgLfCglLJdUw8ctY7M6DqD1WmrG2ujtydbdVsZsHgAE3+ayM/JPzeO78vbR1ZlFiGuIXx16Cte2vFSi/OTipOYu30u8w7Nw1nrzF/X/8UTA59gavhU5k+YD8Bz255Dq9Ly+vDXrf55tCotUe5RHC87ztr0tc12x56JWkMtK1JWMDl8cmNG1J0977TaBiGtSstzQ55DV6lj3qF5gHkjXLW+Gl2l7qytnf/r83880v8R3hjxRhPLZmzwWFxsXHh0wKP09enbpp+hrWkINp+NldDAtIhp3BB1AwuOLGjVnoPVaaux19gzu6e5bEaUexQJRQntUjLltV2vkVedx6uXv3pRbEA7H6zmPpJSHgT6tTB+62nmvAa8Zi2ZWsOtMbeyNGkpS5OW8kj/R5ocSy1LJasii97evdukNHBCUQLdPbojhKDOWMd/d/8XXwdfvOy9eHHHi7yz9x0GdhlIhFsEGqHh87Gf88aeN1iRsoKnBz/dzO3w0f6P2KwzbzC6qdtNONk4cXuP2xuPr75mNevT1xPpHomfkx/twX+H/5cqfRUv7HiBt/e+zdt73+bly15u5p5piS26LVQbqpkWMQ1fB1887TzPOpZwtgzxG8Kk0El8Hv85K1NWkl2VzczomcDZ3xgdtA7c3evuZuPudu5smbmlxVIhFxoNlkKU27m5/x7u/zCrUlfxbcK3vDb89F/t7VnbGdxlcKP/vr9Pf35P/R1dhY4gl+YJEW2FwWRgY+ZGrou8jj7efax2nc6CsqP5HwQ6BzLUb2izlEKjycgDfz7AAxse4Jpfr2n100tWZRaPbXqMivqKJuMH8g8w87eZrD+xHoDFCYvRVeqYO2wuCyYu4MmBTxLpHsmmzE3syd1DqGsoNmobpnedjt6k56+Mv5pdZ4tuC5PDJjMpbBJ39LijmSy2alumRUyjm0e3s/iNnB/hbuH08u7Fw/0epqSuhEp9JT8e+7HJOXqjnq26rXwQ9wG/p/7eOL4mbQ2edp4M8h1EmGsYTwwyZ8VYm5cvf5mnBz1NpHskPvY+LD+2HDi3p+VT0RkUAvxtKXR173pO811tXRut7/zq/FOel1Gega5Sx2X+lzWO9fMxP1OeXOHVGqSWpVJrrL3grbb2QlEKLTAycCTp5emkl6U3jm3SbSKrMosBvgPIr8mnqLaoVWutTFnJHyf+YHv2dsD8NH/fH/exM2cnABtObKCyvpJvjnzDiIARXOZ/GWqVmtt63MYj/R9BIjlYcJBoD3PQtrdXb/wd/Zu5Yho2bT064FHeuuKtdrMEWsvo4NHsuXkP10ddz47sHY2lEzLLMxn34zge2PAAXx/+mue2Pce69HWsSFnBFt0WJoROaPcbqL3GnltibuHjKz/muqjrMEkT9hp7ApyaZUhf9HTz6IZWpaWv97nfMK+Lug6DycD2rO2nPKfh+3Hy7vcItwhcbFysrhQaynu0FBu6FFGUQgs0pOQ1uGKq9FUsOLyALo5dGv2dZ8qfllJikia2ZZszGuJyzfsfNmZuZEf2DlamrARozHgqqyvjwb4PNlmjl1evxiqZDZk8QgimhE9hR/aOxj/mI4VHWJK4hOkR0xs3bF2I2KptGRcyjnpTPYsSFpFalspHBz6i2lDNx2M+ZsvMLYS7hvPE5ieYu30u0R7R3Nnzzg6VeUKY2V0V6RZ53hlPnZGeXj3ZfdNugl2Cz3mNcNdwbFQ2pJalnvKcfXn78HP0ayytAebd1v19+rMvz8pKoegIjlrHSz7A3IDSjrMF/J38iXSPZOGRhezI3sGhwkNU1Fcwd+hcwlzMGTsZ5RkM8B1Atb4arUrbbBfqnI1zKKotatw5HJsX29iIA0BXqWusz/PVoa8YHzKeHl5Nu2hp1Vr6+/Rne/b2JkHOO3veyYqUFby882WWTFnCyztfxtPekycGPWHNX0ub0NenL74OvnwW/xmfx3+ORHJ3r7sbYwxfT/ia7Vnb8XHwYVCXQR1+Iw53DWdU4Cj6+Fy6vubz3WGtVqkJcw1rrLDaEsfLjhPlHtUsyDuwy0A26TaRW5VrtQeehKIEYjxjOvxv7UJB+S2cgv/r838EOQdRUlvC6KDRLJm8hBuib8DPyQ+N0JBRkYGUkpm/zeS13eYAWo2hhvfj3iezPJMtui3EF8RjkiZGBo4kpTSF3Tm7MUlTY42h+/vcj7utO0P9hvKf4f9pUY7L/C9DIzRN4gDONs48NegpEosTeXvv2yQWJ3J/n/ub1LW/UFEJFYsnL2bRpEXcEnMLPT17Nol/eNh5MC1iGkP8hlwwX9KPrvyoxYCxQuuJcItofCD6JwaTgfSydMLdwpsda9gzcHJ/Dills5jeyuMrm2TstZYNGRtIKk46Y1vTSwnFUjgF40LGNaZBnoxGpSHAOYAT5SdIKE4gvTydopoi/j3k3/xx4g/mH57PxsyNGKSBgb4DyarM4vYet7NZt5lvDn8DmEsufHP4G4YHDOeKa67AUet4yhvgrO6zuDzgcjztPZuMjw8dz+fxn7Pk6BLsNfZMCp3U9r8EK9FQl6ghkKhw8RPhFsHqtNVU6aualcrIqsxCb9IT7tpcKYS7hhPgFMCq46tYk7aG2T1nszFjI39m/Mndve7mlu63IITgi/gvKK8vZ3rE9FbHoHbn7GbOxjn4OfpxVcRVbfI5LwYUpXAOBDsHk1Ge0dixrEJfwZ7cPY3v08rScLd1Z974eUjLfyEuIezL34ePvQ/39LqH22Jua9XWea1KS4RbRLNxlVBxV6+7eG7bc4wPGd/pm4UrXNw0/A0fLz3erMJqgwUR4dr871wIwfCA4SxLWtZ4bkltCd723ry19y16efUizDWMjArzJrdDhYdOm0VUpa9iedJyApwDyKwwl1pbPm15m6SYXyxcGPZ5JyPEJYSMigz+yviL3t69cdA48NEI9AAAACAASURBVGvKr2zP3t5YjXNE4AjUKjUalQatSstrw19DJVTEeMUghGiTWioTwyZyZ487ubf3vee9loKCNenqZk5pbcmF1BCAPtUO+3Eh41AJFbfH3E5xbTFONk4snrwYe409vx7/tTFuB38nh7SE3qhn5m8zeTfuXT6I+4D0snQ87TwVhfAPFEvhHAh2CTYHjcuOM3foXA4WHOTX478CcF/v+7g+6np6efdqMqePdx8+HvMx/k7+bSaHVqXlsYGPtdl6CgrWItApEEetI7+l/sZVEVc1cfGklqbi6+B7Smt3iN8Qtt+4HScbJ7wdvAl2DsbPyY+xwWNZl7YON1s3BIJuHt3YrNvcbNNpAxsyN3Ci/AR9vftyoOAANmobq5d66YwolsI5MMxvGD09ezJ36FyujbyW54c+zwvDXuDWmFvp79ufiWETW8xpHxE4okVXkILCxY5apebpQU+zJ3cPD298uHGfTU5lDvvy97UYTziZBoVxe4/bGR08GoDpXadToa9gccJiwlzDmBYxjeSS5GbWSEV9BWvS1vBdwncEOAVwT+97AEgpTVGUQgu0ylKw9DzwB2qAdCmlyapSXeCEuoby/dTvG9+rVerGYmcKCgotMyNyBpkVmfx47Ee26LagVWmZu30uBpOB54Y8d9brDe4ymJu63cSSo0vo6dWTyWGTeS/WXN78yUFPAuZKBE9sfoId2TsAmNN/TpNNaqEuoW3y2S4mTqkUhBCuwIPALMAGc09lO8BXCLEL+FRKubFdpFRQULgoeLj/w9zZ804m/DSBxzY9hq3almVTl53TE7sQgqcHP02wSzCDugzC096TUUGjWHV8FXP6z0Gr1vJtwrfsyN7Bv/r9Cw87D6aET8FeY4+PvQ/5NfmKpdACp3Mf/Yi5E9oIKWW0lHK4pblNEPAGMF0IcVe7SKmgoHDR4GzjzO0xt2OSJh7o88B53ZhVQsXN3W9u3Nx5dderKakraSwjszt3N1HuUdzb+16ui7qusUJAN0/zvh9FKTTnlJaClLJ5kv7fx+KAS6NvpYKCQpszu+dsunt2b1IAry0Y6j8Ue409W3RbuCLwCrIqs1pMdR3SZQiJRYn4OV5YNcIuBM4q0CyECBZCtF+JTQUFhYsSrVrLFYFXnFPv79Nhq7ZliN8Qtuq2YpImsiuzW0z6uCXmFtZcu6bTVKttT06rFIQQrwshYiyvrwW2AsuEEB3a80BBQUHhVIwMHEl2VTZ7cvdQZ6xrMQ1cJVSN5WYUmnImS2GSlDLB8vpRYDzQH5h6poWFEHZCiD1CiHghxBEhxMuWcQ8hxB9CiGTLT/eT5jwrhEgRQiQJIazbTUVBQeGipKFd6w9JPwDmHikKred02UcvAn6Wm7kNEAHMBATgKoR4AdgkpdxyiiXqgDFSykohhBbYJoRYA1wDbJBSviGEeAZ4BnjaYpHcCPTAnP76pxAiqr1bciooKHRufB19CXUJZVPmJgD8Hdtuw+ilwCktBSnly8AmIATzjXqRlPIV4HUgS0r5ymkUAtJMpeWt1vJPAtOBhZbxhcDVltfTgaVSyjopZRqQAgw+1w+moKBw6TLAdwB6kx6gTasIXAqcyX00G9gN/Ao8bxkLxqwYzogQQi2EOADkA39IKXcDvlLKHADLTx/L6QGYU2Ab0FnG/rnmvUKIWCFEbEFBQWvEUFBQuMQY4DsAMJdid9A6dLA0nYvThv6llFXAZ/8YS8H8FH9GLK6fvkIIN+AXIUTP05wuWhhr1ghZSvkl8CXAwIEDW9coWUFB4ZKiQSlcii1Uz5dTWgpCiC+FEL1OccxRCDFbCHFzay4ipSzF7IqaCOQJIfws6/hhtiLAbBkEnTQtEMhuzfoKCgoKJ+Pv5E+wc7CyOe0cOJ2l8Ckw16IYDvN3mYtIwAWYD3x3qslCCG9AL6UsFULYA2OBN4GVwO2Yd0Xfjtk1hWV8iRDiPcyB5khgz7l/NAUFhUuZ+RPmY6+172gxOh2n29F8ALhBCOEEDAT8MBfES5RSJrVibT9goRBCjdki+UFK+ZsQYifwg6VERgZwveV6R4QQPwAJgAF4UMk8UlBQOFd8HX07WoROifhnr9POxMCBA2VsbGxHi6GgoNDG7CytpKuDLd422o4W5aJECBEnpRzY0jGln4KCgsIFRUp1LdfuT+GV40pIsSNQOq8pKChcEByqqGZLSSV7yioxAesLy9GbJFpVS4mJCtai1UpBCOFoSVFVUFBQaFOW5RTzWFIGRos3u7eTPQcra9heWsEoD5eOFe4S44zuIyHEZUKIBCDR8r6PEOJTq0umoKBwyTA/q4BoBzs2DormtcgAlvSJwEGtYklOMcZOHPfsjLQmpvA+MAEoApBSxgNXWFMoBQWFzsXqglJmH0rj2WM6KgxnlzRYpjdwqKKGSd6udHey565Ab7xsNNzm78nK/FJujk+lMyfEdDZa5T6SUmYK0cSvd9GmihoNJtQaJf6uoNBavsosYG5KFv62WnIK9agF/Cey9ZVJd5VVYQKGuzs3GX8xwh9XjZo303I5WFlDH2elXEV70Jq7X6YQ4jJACiFshBBPYHElXWxkHCli3uNbSdimZD0oXLzk1+l5/GgGpXpDm6z3la6Aoa6O7BzandsDvJivK+RgRXWr528rqcBeJejv0vSmL4TgjgAvNAJ+yy9tciylupZlOcWKBWEFWqMU7gcexFycTgf0tby/qCjIqGD154cw1BnZtTIVff1FawwpdBAVBiNHKmvadE29SfJpRj7j9yYxZs9R9pVVUW8yUWs0EVdWxZKcomY3zt8Ly/gup5ivdOdfUDKvTk9GbT0TvVyxVal4JqwLPjZa7jmc3qh00mvq6LP9MNtKKprNN0rJhqIKBrk6Yqtqfjty12q43M2Z3wpKGz/HoqxCRu9J4pGjGewpu7ByX/aVV/HY0QxeO55NVm1947hRSo5W1VBrNLU4T0rJdftTGLorgVdSsjl0Fkq1rTmj+0hKWQi0qsZRZ0VKydZlx7CxUzPqrh6s+fwQB//KZMDEUIx6EwW6CnxDXfiHC01BoQk5dfW8m5bH5pIK9CZJDydziQWDlMQ42bGmsIz0mnomernwWUwo9urWuykL6vU4qdVN5tSbTMyMP87O0ioGuzqSVVvPDfHHkUDVSTefrva2DHZzanwfX26+4XytK+S+IB9cNOfekjK23HxTHuTqCICbVsO8nqHM2J/Ck0k6vuoZyje6QvLqDbySks26gVFNvke/5JWQWlPHU2FdTnmNqT6uPJmk49f8UoLtbHguWcdwN2d2l1XyU14JQ076bO1NpcHI9znFjPF0xiThpvhU6qVEb5LM0xUy0sOJmV082FxSyYKsQhzUKn7q25V+/7CKdpZWsa20ku6Odnypy+ezzHwW9gpjnGf733fOqBSEEAuBRyxF7bB0SntXSjnb2sJZk7oaAyve24eHvyNObnbkHC9j1M3RhPf1JrS3F7FrTqDRqoldk05tpZ5RN0fTY4RScVGhZeIrqrl2fwr1JskEL1e0KsGxqlrUlu/zV7oCPLQa7g70Yp6ukHWFZVzta246aDBJDlRU46RREe1ghxCCepOJX/JKWVVQSnpNHSnVdYxwd+KHPhEIIagyGnk6ScfO0ire6xbETX6eZNbW86+EE4Q52BJqZ4uLVs0rKVn8lFfSVClUVBNkZ0NmbT09th1mopcrL3X1J8DO5qw/996yKmxVgp7Of9cYGujqyKOhvryVlssfhWUsyy3G10bDwcoafi8oY6qPG2BWam+l5dLTyZ6rLGMtcZ2vBz/klPBQ4gkAuthq+aJHCM8c07Eqv5T/RAZg04KVYQ0OVVSTVFXLwqwiMmrrsFGpyKyt54UUc0lnd42avwZFowL+dyKPLSWV3Hk4HYAburizpqCMBVmF9HMJbrLuPF0B7ho1vw+Ios6i7O89ko5AMM3Hlfeig9G0036N1gSaezcoBAApZYkQop8VZWoXtv+YTJGukuLsKkxGSWhvL7pfbm7GMeKGSL5/eTfblifTJdwFvastsWvSiejng8ZWhUarNPu+VDhaVUO4vS02KtUpN1KdqKnj5vhU3LRqfuzblVD75r1/y/QGbFUqtCrBz3kl/FlUztW+7hil5L6EdH4vKANgqKsjtwV48WVmAQcqqgmzt6G7oz39XBxYnlvC55kFhDvY8nSSjtx6PY+H+nKTnycAQXY2rOgf2eS6u0srWZlfyquWG2e10URSVS2PhPhyubsT6wvL+Ta7kJ2llbwaGcD/TuTxSUwIx6vrMErJDF/3Zp/lZGLLqujj7NDM9fNAkA9Lc4q59VAaAD/0ieDfyTreTMthkrcraiH4LqeYjNp6vusdjuo0T8P2ahWLe4fx39QcXDRqbvH3xFWr4Rpfd37JL2VTcQXjvVxPK2dbkFxVy/jYY0jA31ZLfxdHdLX1vNwzlITKWmxVgqnebo3//9/tFozeJHk7LYe8egPvRgehIpPfCkp5IyoQtYB1heVsLC5ndWEZDwf74KBW4aBW8U3PMJ5MysRereKH3BJK9EbejQ7Cx9b6ZT9aoxRUQgh3KWUJmHsst3LeBUvWsRISt+fQf0IwPUcGYjSYcPP525xz8bJn1C3dKNRVMvSqcHTHSvjto3i+fmIrdo5ahl0TQczlSjeni5HkqlpqTCZ6OzswT1fA88lZjPd0odpoYo/lBmhjCYpO9XHDTaNmVnwqRin5vnfLCgHAVfv3V2a0hwt/FZdTUK/n2WM6fi8o4/FQX9w0Gj44kccDCSdwVKv4okcIV3m7IYRASklunZ6XLaUfujva8WWPkCYWQEtc6+vOivxS/iwqZ7K3G0cqazABfV0cGO7uzHB3Z27y92BqXDL/l2B+El+aU8SK/FJqjSbGe7rgaHEvFdUbKNQb8LPVYpSS9YXlxJVX80hI88JzdmoVS/qE82teKZ42Gka4O/F0mB93H0lncXYRk71deT89l6GujozxcG42v6Xf35vRQU3GRnm44KFV82NeiVWVQrXRRHpNHQuzCrFRCVb0iyTGya6JIpzs3fJcrUrwXMTf94prfd1ZmlvMH0Xl7CqtZH5WIWoB9wV582jo3y60ADsblvSJAMxWxKvHs5kUd4w9w2JQW9mddMaCeEKI24BngR8tQ9cDr0kpv7WqZK3gXAviGfUmDm3W0XNkQKue+qWU7F6ZihAC3dES8tLKmP3OCOwcz11rSyk5caiIoBgPJQX2AuFIZQ1X70umwmjC31ZLdp2eaEc7kixuoOt9PUivqaPOJDlUWY3B8tWxUwl+6BNxxht0A7/klfB/CSewV6kwSMlTYV34l+XGqjdJjlTW4Gurwc+2qTunxmhic3EFxXoD13ZxbzEw+08MJsngXQl0dbBlboQ/76Tnsq6wnAOX9aDLSU+dfxWV85WugBK9kSSLYgR4KyqQ2wK8SK2uY1LcMcr+sQfhMjcnvu0dhqO6dd+jKfuS2VdejQoQAlb0i2yMR5wLzxzTsTSniEOX98T5PGIjp+P/jqTzS34pagE3dPHg/W7BZ550CoxSMnhnAp42GlKr6xjj6cJ70UE4nUH2JdlFPJaUydbB3Yh0tDvn6zdwuoJ4rQk0LxJCxAJjMHdHu0ZKmXDeUnUgaq2KvmNb/z9WCMHQ6WatHRxTys/v7CMrqYSI/j5nmHlq0uILWfP5IfpcGYRfhCs2dhqCYjzOeb1Lhazaem47lEpPJwdejQw4Y5C0wmDEXqVq0R9brDeQV6fHVqVieW4x87MKcdKoeSDYh4TKWu51cWB2oBc/5JYQYKtltOff5RZK9QZ+KyijxmhivJcLIaewEFpitIczfrZaejrZ8+8IP7o5/u2P16oEfV1azse3V6uY6H12T8QaleB2fy9eT8th2r5kJDDDx62JQgAY4+nCGE+XRutIKwSh9jZ8qSsg2tGOx5MyUQt4NzqIcoMRrUrgqFYx3ccdh1YGzIUQLOsTwY95Jehq67m+i3uTz34uXOfrzoKsQn4vKOVGixutLdlfXs0v+aX0dXYgq66e+4PO/TsPoBaCx0K78HiSufPw7ACvMyoEoDEwfaiypk2Uwuk4paUghHCRUpZb3EXNkFIWW1WyVtARpbONRhNfP76VyEG+jL65GyajCSEE4hRBoJrKeo7H5dP9cn/UGhWxq9MozKzEYDBx4lBR43laWzU3vzwUR7fW31wuRKqNJn7JK+FwZQ1jPJy50tPltP7i1pBSXUtadR2eWg3/Sswgp15PncnEcDdnlvQJZ3dpFUPdHJtdZ31hGfcnnMBdo2ZOqC+3+Hk2umJeT83hS10Btaa///4nerkwN8KfCAfrfunam4J6PYN2JhBqb8vyvhGnLUd9oqaOIbsSGePhzB0BXtxzJJ06k8RNo2ZBrzCGdmCmT0tIKbliz1E0QrBhUPR5/639k9sOphJXXs2uod3bzBIxmCSj9h5FhWDz4OhWZRcZTJKuWw9yR4AXL3U9/4SXc7UUlgBTgTia9koWlvfhZ7hoELAI6AKYgC+llP8TQrwE3IO5kxvAc1LK1ZY5zwJ3Yd4x/bCUct3pP1r7o1arCIx2JzPBvHFm+Rux+HV144qZUc3ONRlNrP3iMNnJpag0KnxDXdizKo0GPdxrZACl+dW4dXHkyNYs1n55GBcvO2qrDPQZE0hwj7Z/8mlrDCbJV7oCyg1GujnZ8bWukD1lVdgIwTdZhQx3c+LlyABC7Gwo0ht4MimTB4N9GdkKPzLAd9lFPHtMR73ll+ahVbO0dzjbSyt5My2XfydnsSCrkJldPJgb4Y+tSjT6ajcWV9DLyR5HtYonk3TsKKlkgpcrO0orWZRdxDW+7lzp4UyZwcg4L1eCziH7pjPgbaNl46Bu+NhoGuMDpyLE3pYnQrsw0sOZQa6O/Dkwmh/zSrgjwLOZO+tCQAjBnBBfHkzMYG1hGZO9T53FdLZUG01sLqngdn+vNnVNaVSCn/p2xYRsdbqpRiXo7mjPoYq23efSEqeNKQizxEFSyoyzXtjcf9lPSrlPCOGMWblcDdwAVEop3/nH+THA98BgzO04/wSiTtd9raOa7BzapGPL0mNMe7gPqz6Mx9ZBw51vD6e+2kD8X5n0GROE1lbNX4sSSY7Nx9ZRg5ObLTb2Goqzq/Dr6kb6wUJmvTAED3+zPzV2dTqxa9JxcLHBZJRUl9cz/q4edB1wfuaqtZmbrOMrXWHjk4JGwMfdQ5js7cr3OcW8lJJFjUmiFQIntYoSgxEvrYZNg7vhZXPqZxKTlKzIL+WBhBOMcnfmzkAvMmrquaGLO65aDVm19QzcmYAEvLQaCv+xO9fXRsNt/l7cH+yNvUrFW2m5fJaZT53FMpgd4MVrkQHK3pOLAIPJbC3USxOr+ke2mfL6s6icWw6msrRP+AVRqfWppExW5JeQNLzXef/dnnNMQUophRC/AAPO9qJSyhwgx/K6QgiRiHlX9KmYDiyVUtYBaUKIFMwKYufZXtvahPb2YsvSY2xdlgxAXbWB5L157F+fQXF2FZXFdVSW1JKVXMqwGRHYOmjY9F0SQsCVd8QQ0c+bQl1lo0IAGDg5lIGTQwGorzXw6/v72bY8mbDeXqi1F1Yg2igl6TV1fKUrZEFWIfcGejM3wp995VW4atWNfuLbA7wY7eFMXHk1+8uriSuvYnaAF48ezWRcbBK3+3vyf8E+zQKmm4rLuftwOpVGE0NcHVnYO6zZOQF2Nlzh7szmkgq+6hmK3iQ5Vl2LwSQJsrdhvKdrk/TRZ8L9mBPiS2pNHY5q1VnFABQubDQqwScxIVx3IIWb4lNP60ZKq67Dz1aLXSviIH8VlWOvUjHU9cJwmfVytmdRdhEnautPmeXWFrQmtXSXEGKQlHLvuV5ECBEK9AN2A5cDD1mymmKBxy3prgHArpOm6WhBiQgh7gXuBQgOPvcsgPPB2cMOvwhXco6XYe+sxaA3sWFBIhobFSE9PUnanQvAlbd3p9swPwz1RrJTSokc4Etoby8AuoSfOmBoY6dhyPRwVn0YT9LuXGKGWyf9taBez9tpudwX5N1qP7pJSm6KT2VzSQUCuM+iEDQq0eLO0mB7W4LtbZvku/vaavkkI5830nL5Oa+UX/p1xdNGw/aSCo5W1fJ+eh5+tlruCvTmGt9TZ9n8O8KPkSXODLNc94ozuKTs1CpinJRG7hcj/Vwc+E9kAI8ezWRfeTUDW8ho2lRsfvK/xtedD7uHnHKtSoORt9Ny+SWvhMvdnVqlQNqDwRbltLG4gpv9tFbbsNealNQEIAo4AVRhiSlIKXu36gJCOAGbMaex/iyE8AUKMXsbXsXsYpothPgE2CmlXGyZ9zWwWkr506nW7sgezQc3ZrJ1WTKRg3yxtdeQfqiQSff3wsXLnuWv7yWinw+XXdv1nNeXUrL89VjqqvXMenFIm2+YM0rJzAPH2VZaSYCtlm97hxPjZI9RSpKra4l2sCO3Xo+LWt3ohy7VG8w59UmZPBzswwxfd7qfx032z6JyZh9KY6ibI72dHfg4Ix8AW5Vg7YCo81pb4dKjTG+g5/Yj3BPozQtd/36Q2lZSweupORyprEEvJQLYOyymRTdTncnEbQfT2FZaQX9nR54O79KsemtHIaVkxJ6jdLHRohaCKEdbXj2LarQnc14pqcCkc7qq+cJa4CfgOynlzwBSyryTjn8F/GZ5qwNO3p0SCFyw5Uoj+vuwe2UaEf28CevrzRU3RjVmIN3yyrBTZiO1FiEEw66JYOUHB9i/PoNBU8LOar6UkrQDhZQX1WA0mjiUWcbV0yJx83Ugs7aep5Iy2VZayb+CfViYXciYvUlc7uaEo1rF+qJybvP35Ke8EiLsbfm0Rwivp+Y07rod4OLAM+F+553pMdbThf9EBvDUMR1bSiqZ4ePG0+F+COiU7p26aj0IgY2dWolVdACuWg3D3Z1YXVjK3Ag/hBDElVVx68E0fGw03NDFg2t93ZmxP4X5ukL+HdFUcawvLOf3glKy6vR80C3IKimu54MQgslernxoeXiadJbpya2+TmtKzwoh+gPDMT/db5dS7mvFHAEsBIqllHNOGvezxBsQQjwKDJFS3iiE6IE546kh0LwBiGyvQLPBUElO7s908Z2GVnv6rf0NSJM875v/mVg37zBp8YVc/8xAPANa59uUUvLH/ASS95r1755IW9b1d2T64VpUMa78pq5DI1S82NWfOwK8KKjX82NuCR+eyKPUYKS3sz3xFTV4ajUU6Q2oAAe1ijsCvPDQapji7dqmN+3DFdV42Wib5c53JqrK6lj8/E4MehPufo70GRNIzHB/RTm0M99mF/Jkko4V/boy1M2Jm+NTOVJZwx+DohpTce88lMaesioOXNYDrSVb7boDKWiFoJ+LI4+EtD47rr3ZX17NpLhjDHZ1ZEW/ruf8YHY6S6E17qMXMO9i/tkydDWwXEr5nzPMGw5sBQ5hTkkFeA6Yhbn8tgTSgftOUhL/BmYDBmCOlHLN6a7RlkohOeV1MjLmodW60yPmXTw9R7bJuq3FJCW1JtlsI1B1eT3LXtuDSi3Q2Gn4LlqDq7MN34zqhp1DyzfR4/vzWfvFYQZMDCFkhB+jj6RQZjQ15hUPPFHPiwNCGdSraWZTsd5ATp2eSAdbvtIVMsXblWU5xewvr+bN6MBO+fTeQFVpHZWldfiEOLfJjbq8sIb0Q4W4+jgQ0sOzMSOt/8QQdEdLyE8vJ3KgD1fMij6vne8KZ0eVwcjwPUfx0KpZPSCKntsOM8PXnbdOKpGxvrCM2w6l8UpXf3aVVrG1pAIfGy1rBkadV8XY9kBKyddZhUw4zxTq81UKiUA/KWWt5b09sE9K2f2cJWoj2kop1NcXsn3HSNzdBlNXX0hVVRIx3d+hS5erqK8vJD9/HX5+M1Crrdf56Z20XD7NzOezmBAm/KOOS3ZyKas/O8jWIc6s8zHf0KYk1jF+gD83DA5svMlVFNeSHJtHwrZsVCrBjXMH81p6Lp9m5LO4dzgfnchjir0jTsszKcmpottlflQU1VJRVItKLQiIdmfY1RHY2Hfq0laAeZNh7vEyCjIqKMio4Pi+AowGE0ExHgy/LrJJ5lfO8TL2/pZK5KAudBva5YzWX25qGb++vx+D3oRKJbhqTl/2rEqjtkrPrBeGIKUkbu0J9qxKw9Zeg4e/I1o7NeF9vc+qZlZpfjVJu3LpPToQe+cLb4/Ahcqq/FLuOZLOrf6efJtdxKcxIVxzUqKDwSTpv/MI+fUGXDQqxnm68nhoF8IdOu9Dz9lyvkphDTDrpNLZbsBiKeXUNpf0LDlfpWAyGUg/8SlZWd9TX1/IsKHrsbHxJv7gPZSXxxMcdBe6rG8xGCoID3+MsFDr9Ra6fFcix2vqAIiwt2WkhzOjPJzp4+xArcnEZ5kFLMgq5BY/Tw4VVxJfZz73foM9T4zuynPxJzhyrJhJOyuwr5dM/r9eaKJdGb47kWnebnwc83e2hb7OyMbFR0mOzcMr0Ak3XwcM9SZOHCrE3sWGvlcG03dcUKd1fSRsz2bHTynUVZv3Lji42hDSwxP3Lo7ErU2nvtbIkKvC6D8+hP1/ZLDr11RUaoFRb6LrAB/GzY5BdYqMk6LsSla8tx8bOzUT7+3FH/OPUFFci0FvYvDUsCaxn4KMCuLWnqCmov7/2Tvv8KiqvAG/d3rNTHrvFUIPoYMoCKIiFuzY/eyr66697uq61nXdtetasKMiIhakSO8tCSW99z5JZiZT7/n+GAxGijTLrrzPw/OQO/eec+6dO+d3zq/isLnpau3l1KsHkp4b+ZPPtq64k69fKsDr9mMO0XHGLUMIjfltuEb+1vlhjiWAbWMH7pcW/OnKRl6ubeWToankHEPupf9WjlUofA7kAksJqHxOBdYCLQBCiFuP62iPgKMVCl5vNy2t39BQ/xHdPQWEhZ5CbNylhIVOBgI7h82bz8LtaSYkZCJ+n51eVx0jcz6ltOxx3O5GRubMP26TZpnTxYRNOoVFIQAAIABJREFURTyUGoNakljR0c0Gm51euf93c0N8wP2z3eNjfWcPL2+rZadWRivApQSFgFithhcz4smNCOKWPdUsarWxbvQA4g6w1fxxPeqmii42LiynvtjGmbcMJXHQgQ1tPq+fovWN1BXb8Hn8tFR3kzgoFL9P0FZnxxKuZ+w5qYRE/7I/Ntkvs25+GQXf1RGbaWXIyfFEpVgwBO279167h9UflVC2tQWlSoHfJ5M6IpyT52Sxa3U9Gz+vIHtSLJMvyezXdmeTg6KNTexZ04BCJXHOn0ZgjTTQ0+Fi4+fl1BZ2cN5dOVjCD7yb9HtlPv/nDpoqujAFa5k8J4vEQ0SsL/jHdnraXUy8MJ2V7xcjy4JJF2YQmxnc735OcGC+abVx1a4q4nUatowduN/nQggcfvmw8g79L3KsQuGKQ30uhJh7DGM7Jo5WKHR157N167no9QmkJP+RqKhZ+53jdFbicjUSHDyWjo415OVf1e/zMaOXYjQeMtPHYfNiTQuPljf0W9G4ZZktXY69hVokxllN+yXCanV5uHxtCdpOD2dIOgaMj+XWyjpaPF5uS4zkH1XN3JIQwQOph6+y8Hn9vHnHWtJHBXI7/RhZFnz+7HYay7owh+pQa5VYIw1UFbShVCmIzQymqbwLj9tHdIqF3DOTic04PMP9kbBnXQONZTYMQVqEEGSOjmL9/DJq9nQw9JR4xp2XetDVvhCCwvWNdDY5CU8wkT5y38p97ael5C+r5Zw7RhCTtrcYTK+PDx/dhNPmISzexLRrsw86+R8KT6+P0q3N7FxZR3uDg5zpieSembxfltyu1l7ee3ADo2elMHJGErYWJwuf24G9w43erOaiB0fvJxiK1q9mzQdvc9af7iMy5ehdoY+G0q3NlGxqQmtUM+WKAb+JHaYsBKftNcj+7SjdNv+XOSah8FvmaIWCEILV9VuZGJOD4hABIDu6nbxR18qtCRGI+idRKvVYrCMpKLiOAVlPEBNz/iH7aff4mN/cgUsW3BAfftBgk9O2luAXgqW5mQf8/EiweX3MKahga7eTELWSjWMGHrHxbPFru2goszF6ZjLBUUaiUi3sWlVH/vJagqOMVO9qZ/Klmf28a3p7PChVCjR6FY4uNzu+raE8rwVPr59z7xhx2J5Th4Ojy827D2xAAvz+gN+5LAsUComTLsk8pmA/r9vPB3/ZiEav4oybhrBhQTmdTU46Guyce2fOIYMOD0ZPexsGiwWlSt3Xx+p5JRStbyQi0czJl2Vh73RTX2IjeUgY5dtbKFhZx+WPjcMcElgI+Lx+Gsu6+OrFAuKygpl2TXaf7adi+xYWPvMYst9HeGIyl/79nyhVP20X8rr9qLVHvlKuyGtlx5IakoeFoTOqWfleERq9CrfTx8UPj/7Fd4gHwy/E3hTdv76Q+q1xQij8iFUdPVyYX85FUSFEa9XE6jTMidm3lV/a1oVeqeDekjpKnW60ConXs5MI06jQSdC6YxIR4dMYMODxg/YhhOCcHWVs3FtY/PGMOK6KDaPW5aHD62OoObDSzO9xMn1rCX9Lj+XauINU6jhCOrw+btxdzUXRIT9ZOetAlGxpYukbgezoGp2S6HQr1TvbsUYasDU7SRwUyhk3D/nJH1t3ey+fPrGV3h4vQWE60kZGkjkqqp+R91AIIfj82R143X6GnRpPWKyZPesasDU7qdnTwaV/HUNQmI6edhfbv60mY1QkMenHviup3t3OVy/kIyklJEnCEq4nY1QkOaclHVE7bTVVLHruSTrqa7FERjHtultJGLQv5rN8RwvL3i7E597f6zp1eDinXT94v+MFK+oC9cT1KmbcMJCagm/ZMP8jrNFTQDkYp62Z1OFGTr95Fs7uLmp25pE1fn9POnuniw/+uonBJ8WRPCwMt9N3SHXW91QVtPHNaztRa5W4HQGbTWisiWnXZPPhI5sYPzvtiNLSn+DX4YRQ+BFCCJ6qbOKf1X1xdJwVYcXll5kTE8pVuyrx730sz2XF81Z9G4V2Fx4hCFWreNv0HD5XDWPHLDloH581d3LTnmqezIjj06ZOGtweVozK4tQtxbR4fGweOwCHX+bxikaWtHWTPz77N+MO5+n1sfC5HcRlhbB7bT1uh49x56Yx7NR42mrtWCL0aHSH56HU3dZLZX4bNXvaqS3sRMiCky/LOiwvnIYyGwue2Y7OpMZl9wYO7s28N2BcNKdc/vM5wBWub2Dd/DKmXjmQpMFhR3x9W201nzx6P5JCwYgZZ7FrxRIcNhtXPPMiQWH7hL+t2cm6T5ZSsmEJk+achdY4CKNFQ+Kg0IOqvxrLO/jy+S14XB58rmK0pkH4fRqi0yy01TTg9Rgxh6jwOEvoalzIlf94kdC4/hP11q+r2PRFBQCSQkJSwOWPjcNoObgHzrr5ZeQtrSE0zsTZtw/H0+ujtbaHqBQLRouWD/6yEXOIjpm3Djvi53WCX5YTQuEgbLDZidKo+UdVE4tabSiQ6JVlglVKrogNQwLuTomm1ePl6p1VJBs0fNbcyd3GbxjY8x8mTdx6wEC373O86xQKFo/MYHVHDxcXVBCrVVPv9iIBmUYdRQ4XAJfHhPbzo/4t0VrTQ0+Hi5Rhx76LcXZ7WPzaTjqbnMx5dCxavYru9l7Wf1pGzowkGspsSJLEkJMDOuClb+6mqqCNK54YT11RJ621PQyaFIvL4cUSpkel+XmFqBCHn9r4h1Tlb+eLZx9Ho9Nx/kN/JzQ2HltzE3PvvJmY9Exm3fkgaq2O+X9/CKPFSkXeNry9Tvx+Pxc+9DhxAwcdsF2vy4XX42b3ymWs+egbtEEXISkUpAwNJ21kJKkjwrF3dPLO3S/hF9Eo1cn4PcVMuiiJYdNm4PN4EAhUKg3vPrAOU7AehUqBWqukemcbQ6bEER7bTFrumD5V1/d0t/Xy7oMbSM8NZ8ysOIJC93/v13xcwu41DVz7j4k/+3dzgmPjWA3Ni+hfTwGgi0Ayu1e/j1/4NTiewWuyEOzodnL1rkoeTI1hdtSBq6A9XFbP8pp1/JV7yR74LCEhE1GpjCgU+1ZYe+y9nLKlmCcz4rgiNqwv4ORf1c1MD7XgETIfN3UyOzKYsyODGWsxYlBKeL0daDRHvir9b6K1poePH9+CzqAmJMaIx+WjrdaOSqvsU6OMmJ6Ax+Vnz9oGsifGMumi/WtV/FbpbKznvXtvxxIewTn3/AVz6L7vc+eKJSx59XmCo6IZOfM8lr72fN9nsx/4G1/96yliswYy644H+o67nQ60BiOFa1ey8p3/4HW5QJKIHziISXP+jM6k3m91b2tuomL7FpqqTFTmC6KTizj37puY//eHcDscJI2YyY6lMlrtZmb9+SLCE5L48sWtVO9qx9X5NqdceQnDpgc8zr8XihsWlLFjaQ2W4BV4etu46tmX97v3yoI2vn6pgHP+PIKY9ONX1+AEx59jzX1UAYQTqHUAcCHQTCBJ3uvAZcdjkL82Ckkix2Ikb1z2IVeHF0eH8FpNGj5VOI1NC8gvfgyXJoXQzNdwO4uxtjzLKsOtKCU9Z4RbcTqrsXVt4ZrYc7gmNjBB9PhlpodZmBFmQSFJeL3dbN9xPTbbZnTaGKzBo4mKOpuQ4PH/c0ay8AQzUy4fQH2pjdrd7Ti6PIw9N5UdS2pIGRqGu9fH9m9rUKgk0kZGkHtm0q895MOmuaKML//1JAqlkrPveqifQAAYfPI0rBFRfP7031j62vMYg0MYeuoMHDYbiYOHMXjKdLYsnE/NrgJk2c/OZYsp2bSOQSefyq6Vy4hOy0Cl0dJQUsjES648qPHeGhnFiBkzcTm8vPHnVTRX+nDYOqkq2AFC0N6chkKVjNuxm1XvvkFqzijKNnyKyngROsu5lGzYSH3RHrxuF7PueADZD3vWNWIOdtJUtgMAj6sXja5/wsLvDcy2FucJofBfzOEIheFCiEk/+HuRJEmrhRCTJEna/XMN7NfipybhTIOONKOeQt8YVB2LUAGm3nbm5j3DVL4F2nD2fMiZ5nNoLLmdlpbFgIxSaSQyYgbt7atwOCuYETuHzo41qDUhFBbejcNRTmLiDTidVbS1raCpaQHB1jFkZz+LVhv5S9z6L0bW2GiyxkbjdfvpbuslNNbE0FPiUaoUCFnQ3e7CZNX+5upIlG5ez7p573HqdX8gNnOfPaO3p5uC5d+y/uP3MQQFcfadDxIUfuDiSPHZQ5j5x7tZ8NQj5M48j5wz9rlDDz11BlsWzueTR+8DQKlSEZWeRlXJ50SkDOD8Bx9DpdbgdjrRmfoLBL+/F5BQKve5LeuMaizhgs6mGLZ9vRCEwBAciV+kEj9QT3TS2ax+/y2qd+aRPHQEAyZl8t27VTRW+PF71gCw6fOP0QWNx2X30tP8NZbIKLqam2ivqyE6rb+3nDlUh1KlwNbkPKbnfIJfl8MRCuGSJCV8X31NkqQE4PslkOdnG9lvFEmSODPcypdVOQxmETsYwTCtjYvc7+PCQBkZDPKvZoxjI+12N4kJ19LUvIiGhnkEW3PZtfs2fL4e6mrfodcVKGinVBoYOvQ/hIZMAECW3TQ0BALlCgpuIDd3wa95yz8baq2yb7X7va++pAh4+/zW8PQ6Wf7GyzhsnXz813uJTE1DqzfQ1dJMZ2M9ABmjxzP1ulvQmw6dTC1pWA43vvY+QqPDLwuUe9NqBIVFMPuBR3F2d2GyhiCZaqmoeQSPp4UgUxRKtQJJodhPIJRX/JOqqheQJDWpKX8iIeEaHI4yZNlDWk4U2xYr2frlYoKjk4nMuJSqAiejzxpCcJSGLV/MR28O4sw/3o1ap2f9Z7X4PQnoTR1EpWWw4dPPMEdFYwrupc1Wy9Sr/8L8xx+mrbZ6P6GgUEhYIvR0Np8QCv/NHI5Q+DOwVpKkcgK+H8nATZIkGQlkQf3dcUlMKO/UD+Yz72zsQWdwc3YKDkcpaz1pLChawp38HcmvJmfkAszmASgUOiqrnmfnrj/g97uIiDid1talpKc/gOx3ERo6CbM5u699hUJLXNyluD3NVFe/gt/vRqn8/eRl+bmQZR8dnWsJDTnpiNVyaz58B4etk3Pv+QtVBTtorarA5bATEhtH9uSpxGYNJDZz4EHb9fkctLR8Q499NwpJTbejmbe2hlJmH8/zF48iPTIgSBIGDUWWvdTUvEF52bMYDKk4VdPptr9LYdG9DBzwTL8+2ttXU1X1AmFhUwEoK3+SyqoX8fvtKBQ6ho7/gp2rJBDn4/aoqCpwMnBCDBGJQUiSxJwnnkOjN6DRB1ykE7LDKN+ehsE6kJZaCW1QCp5eHy7bV6SPGkvCkGGo1Braa6sPeJ/WCAOdTY4jerYn+G3xk0JBCPG1JEnpQBYBoVD0A+Pycz/n4H6rxOs0fDAsg//bdQWPJcWi11vQ6+M4GxhgvgBb4UKio87GbA6oGGJizqe65lW6uwtIS72ThIRr8PkcqFSH9tc3GtMRwo/TWdHX1gmOnsbGTykqvp9B2f8iMvLwUnf1dLRRtG41ed9+yYgZZ5E8fCTJww9onwNACJn2jtU4HGUgZBzOCmJjLqSw6D4cjhKUSgOy7MPh1XNOShc7Wvdw7ks+3r12NMPirfT2NrBs/bUYpGK2twzl0/Irae5Rctd4LzR9hMvViFKhJSR0Eg57CY1N8zEa0xmU/RwKhY7W1iW0d6xGqwmnpvYtquse4eKHXmXDgnLUOiXZE2IJT9i3kwkK66/mih8YQsnmZrrbZCzhemTZirP9UyJTDEy8+AoUCiUhcfG01e4r2+6y2xFCRm8OCkS372xD9ssHdak9QX9k2d3PUaX/Z15aWr5BCB+RkWcc9LzjyeGmw8wBkvaeP0SSJIQQ7/xso/ovYKjZwOYD5FTJNJth1Bf9jul0MUwYvx6l0ohCEXD1+ymBAGAyBrxuHI7SE0LhKHE6K5EkFTpdHE3Nge+lqvoVwsNPp7OhnsK1K+loKiX1FC1xCedQuLwAn9dLeGIS275eSGNJEQAJg4cxac7VB+1HCEFd/XvU1r5Jb+++CVOh0NDY+AmgYPDglwgPm8bHW2u5e34BL5y5nuHh82hNSWTVhudZsHogoyKWoBAe1tpuQ2uZRm6yEwE8tW4sb56rxOVaA0i0d/wNhUJLROT5ZKT9GaUyoHKLiJhORMR0AFSqIErLHkOklXPq1dn7D/oAxGcFvO5CYoxc+MAohF/gcY1Eb95XuD4sPpGanXl9f3/2+MO01lYx7vxLsUaORfYLuttcWCMDuw+Pp43S0sdJTLoBkzH9J8fQ2bmJ1tYlREbOxGL53455qG+YR0nJIwwfNhebbSvO3iq02ggkSYVeF0dl1Qv09gZ2ZcUlf8VkyiQl+Tas1lyEkPvZkI4XPykUJEl6F0gF8oDvQy8F8LsWCkeKWn3k3hgGQzKSpMLhKDmmvmXZjdvdil5/fHPA9NiLaGtdSlTULPT6314Uq91ezOYtZyOEh6CgYXR352MyZWG3F/L1u+fgctegD3OhSZNpavPR2PImjcURtBSEgRBYo6KZcPEVJGQPITIlDYVyn++9z9eDQqFHoQj8hKqrX6W84mkslhGkpvyZkJDxCOHH73eze88fiYw4A2PQFJYXtvDMkhJyEkOYNuoO1m/4kmnxnyILDQqpkJqeRFoUd/HQ+dP71ER2t4+tVR1c/dloYDRKBYxJ8FDbZaTW5mVI7B7eu3Y0Zl3/2ILIqLMoLfs7rW3f9VNPHgqjVcu4c9OIybCiUEigkNCrg/qdExafyJ7V32HvaMfe2UFjWTHWqGhWv/cmk68MBCV2NDj6hEJp6d9pal5Id88uRuUuOGQK+sbG+ewpvAuAHnshOSM+OKxx/zfS1Z1PcfHDCOFl9+7bcbkbUCoN+P1Ovo/S1OuTGDLkNRSShta2pXS0r2FH3uUAREbOZFD28VfWHG49hYHiCKPcJEmKJyA4oggU2XlNCPEvSZJCgHkEdh5VwAVCiM6919wLXENA+NwqhPj2UH38mjWafyk2bjoNvT6RoUNePaLr3O5Wysoex9a1DY+nBVn2MCj730RGnnHMY3K5GqisepHGxk8Qwo8kadDrY1EqDRgNaVisI2lp+QazaQAJideh/RViL2TZzZat5+J2t5KQcA0VFc8hhIfRoxezO+9h7O5NIJRYgkYjy266y5LBnI9kKiUiZA567wxSRuT2EwStrctobJqP399LR8c6DIZkMtIfxOuzsXv37URGnkn2wH/20/l7fDI3vrcNvUZJXq2Nus5edGoFH103lmHxVurqP6CraxuZGX/B5WrEYEjpEzQ/pLXHzeqSVpp7XPS4fOTX2gg3a4kwa3lrXRXD4q3cdVoWo5L7x9ds3TobWXgZlbvwuD3bjoZ63rr9esadfyndba0UrV/Flc89y5cv3IOjOQjUl+D3yAyblkDGxDby8i8hLPQU2tpXkBB/Nenp9+3Xpt1eTGPTZ9TVvU9Q0BCs1pFUVb3I2DHfYTAkHmAU//1s33EZDkcZ8XGXUV7xDwyGVEaPWoQkqfH7HfT07CEoaFg/e6Lf76KhYR4+vx2TMZPw8KlH1fexxinsIjCxNx5hvz7gz0KI7ZIkmYFtkiQtBa4ElgshnpAk6R7gHuBuSZIGAhcB2QTKcS6TJCnjUOU4fw8Yjen09Ow67POFkGlo+Jiy8ieRZRfhYdPQ6qKwdW6msOg+jKaMvi28EILe3hr0+oTDNrw6nZVs3XYhfn8PsbGXEBtzMY2N83G5m/D7HbS2LaepeSE6XRw22xYczjKGDX3zqO79e2TZhxD+/YztdnsxNtsWbE4ni4tNCNmNUjcQqzGCeNXbKJxFDB3yOmFhp2C15GC3F2MyptO8KZv2dhvn3Pk0VuveFfTowLMrKrqfhsb3yEhPQaEcA4DX20VJ6SM0NX2OVhuFUmkiLu4y2ttXkpd/JSBhMudQL26nLK8Bi0HNoBgL4WYtc9dXsbyoBbNWRahJw9tX5TI8IRiLPrCqj4u9hLjYSwAwHcJrKdys5bycA+/0BsVaePDzXVzw6gbevWYUE9P3RZ+HhU2hvOIZXO4mdNqovffTTVX1i/T07CE+7oq+ieVwI7hDYmJJGpbDtq8/x+tyM+iUCRSWXk/UhFIql8SSe6qGlpogti+uptX+OrpQI20FNxMxPIi6+vf3Wyh4vTZ25F2J12vDZMpgUPY/EUKmquol9hTegSVoOGlp9/Ybm9dro7t7J6GhE39yvMcLv19mx5Ia0kdGHtRDrrHMRmutncGTY/s7BHSspbNjHcnJt6JU6unpKaSzcz2pqXeREH81Xl8XUZFn99kMVCozwcGj92tfqdQRH3/IxNXHzOEIhTBgjyRJmwH39weFEGcd6qK9JTYb9/6/Z++OIxaYBUzee9pcYCVw997jHwkh3EClJEllBOo1bziC+/mfw2TMCHit9Ow+pApACD8dnRuorHyerq6tWK2jycr8W196b5ergc1bzmbbtouIiT4PnT4Ov89OecU/iI+/ivS0+wEZv9+JSmXer+36+g+prnkdt7sZlcrMqNwvMRpTAWji/3h48W4kCWYPv5kYUzNfVUUSo1zAcPEBbe2baPMOYFVxK5ePTUJ/mCkQhBBUV79KTe0be/tcRHdPAcXFD+J2t+D37/NyGb7XRNPiDGPR9ulclf0BG5vHU69PYU6IwGodidU6Emd3F2VbNpFzxux9AmEvkqQgK+tveL2dlJQ+gsNZjsfTRkfHGmTZQ3LSrSQl3YgkqVmwo574qOtQ9MxjT00+T393Jr2+fcLbrFNx12lZ/Ht5KZMzw3njilwU0s+TsXPWsFhOHRjJqc+u5pklJUxIC+vrJzx8GuUVz9DU+BlJSTchhGBP4Z20t69Aowln566bSUq6Gbu9CJttK2PHfHtYNcpHzDiLz/K2EZ89hLCcIjpt1RgN6SSeUkZHy2qmXnkX+iAfLssOFK7pFK7vQK0/AznkCyrK/0FW1mNIkoL29jVUVb+E19tB7sjP+r3jERGn09a2lK6u7ZjNg4iKCkw5LlcDO/KuxOksJ2fEPKzWgxv+jyebv6hk+7fVNJba+vI72TvdrP2khKgUC84uD3nLa9FaKvAbuknLnoHdXkRDwzxsts2B8+1FREfPpqb2LRQKPbExF6FQqElPu/cXuYfD4XDURwcsViyEWHXYnUhSErAaGATUCCGsP/isUwgRLEnSC8BGIcR7e4+/AXwjhPj0R21dB1wHkJCQkFNdfWDXuP8VXK4Gtm27EK+vmwEDniAyYsZ+5wgh2LnrFlpbF6NWB5OWeg/R0eftNwH19tZQUHADDmclQgRCTHS6WFyuekzGTNyeVrzeDnTaGIYMfZ2mpgUoFQbsjiJaW5dgteRisQwnOno2RmMqDbZe7l+wkxXFraSEGbEa1GyvsQEQatQQapC5fsA9SBLMLz2TdQ1jmJ4dyUuX5vT55h8Mj6edpqaFlJY9hjloFD3dW9AbMnE6i+nxRlHYOYiy9iAMQScTGWRi9hAnwXo3ewrvQggvkjqTd0ruYmWpg6kDInh69lCcXj8V+TvY/NLfufAvTxA3YF+OIYfbx7LCZlq63QyONRDkfpbGpvlotVGEhU0hNuYizOaB+GXBQwt38f6mfcZks07FJaMSmJYdSbBBQ0uPm3vmF1DV7iQhxMC714wiMfTnTyf90eYa7vlsJ0/PHoJFr6ap28VlYxLJz7+a7p7dZKTfT2PjZ3R0riU9/QFiomdTsPMmOjvXI0lqhPAycMAzREefc1j9NZWVYIxUsHnLaSQl3Uxc7BxWr5yI1x5Edu7/0WXbRmvbUkaO/Iz8r/XsXFXHuKu/o6PnQ0JCJhIWejIlpY+gUlmJsNyC0j2DjFFR/foQws/mLWfj9bQTEXk6RmM6lZXP4/P1ABAWdvLPolf/MbvX1LPyg2LMwTp6OlycddswQmNNLHo+j/Z6B0IWSAo/6dM/QWFe3u9apRSL1Tib0GgrJaV/Bdj7O727X/r9ghW11OzuwO+T+2w7erOavKW1lG1rBkkiaXAog06KpWJHK3qz5qhzkv2qCfEkSTIBq4DHhBCfSZJkO4hQeBHY8COh8LUQYv7B2v492BQAXO4mdhbcSHdPAVbraBITriUs7JS+zxsaPqGw6B6Skm4hKfGmQ8Y0fK8i6OhYh822hcTEG6ipfYOurh2oVRaMpgxqa9/C57Mjy71916WnP0B83JV9gmZ3QxdXvbUFp8fPzSencdX4JHRqJW12N402FwNjglBIsLxgNY7WpzEpCulgFnvqm/BLUSQEewnS6zlp2P/RY1tFd/d6gkxZWINH0dj4GS0tXwHgVY3lgVWXMSXuY6YlrmRF7QQ2tF5McngokzMjuHR0f9VXa+sSeuxFJCVejyRpmLu+ir9+uYcfvuYxrkauP/9kEkLNCAQFdV28saaSHrev75yrxydxx9Rw9LpwJEnC7fNT2ebgxRXlLMpv4PpJKcRY9chCMDsnbj8jb0uPi1XFrcwcGoNO/cskh/P6ZS79zya2VnXwfdG+26akc8XIdnbsmAOAThdPdNTZJCff1vfcvN6AIN+46TSs1lwGD3r+gO0fiNLSv1NbN5fx41aj1UayauEf8ZkXASBJakymTHJHfo7X7ee9BzcQlRLEkJm7KC37G7LswWodzeDsN/jwL9uxd7o54+Yh+2Wltdm2kl9wHbLsRpZdqNUhDB/2No2Nn1FX/z7jx61Bqz0+aecPRNGGRpbPLSRhYAijz3fzzQsO7O0gSYAkmHxNL1Ex46hreZTW9i+w6i9n2/xMrAl7cLRG42xNBxTEpFuZck0IktKJwZDSz3PI3unm3fvXYwrRYgjS0lrbg9GqJSoliJJNzUQmB+JKmiq7kCQJIQvScyOZds3hORD8mKMSCpIkrRVCTJAkqYf+CfEkQAghgg54Yf821MCXwLdCiGf3HisGJgshGiVJigZWCiEy9xqZEUI8vve8b4G/CCEOqj76vQgFCPgr19bNpb7ufXppWNcNAAAgAElEQVRdNZhMWbhcTWi14TgcpVitoxkx/D0k6dh9wzs7N7Ej73JiYi4kOupcfH57X7S1s8vGyrXbuHujC6NOzTvXjiUj8tARvEL42bPnTpqaFyIkI5Jw4PFrUEo+lAoZgGZHOOGGNhSSQKChxH46ZZ2xLCpOZlBcBLOGRNHlqGHq4BEMjA76STVMxY4tbPj0Q4LCIlCOOoNqr4EQo5pVCxey3heNjf464enZkVwzIYW0CBP/Xl7K2+urmJgexp3TM9nd0M3zy0tp6AqE59x9WhY3Tk492sf7s+Jw+7jjk3yiLDq6e33M317HJaPjuWrwUgyGOGKiz0cIibrOXhJC+3sBFRbeS3PL10yauAWF4tAlP4UQtLevZNfuWwkNndwnSCrzt7F64R/ImXYj2aMvBQJqua6WZnat7qZgRR1XPTkBL+U01H9MR9GZdLdoKNvWgtGqRfbLXPLwGHQm9QH69NPdXYBOH49WE4bTWcnGTTMIDZ2EyZSFRh16zPp2v99Fr6sWoyGt7x1b9vYeags7OPNOPwUFVxNsmYJovw+fS8acvIjG1n9jNKbjcJSSnPQHUlL+SGN5F3nLagiLM5E6IoKGUhurPywmc2w0U/amfK8r7mT74ipkWWAwayjd1sKcR8ZiCdfTVNHF8rmFdLU4yRobzclzspAUEm11dnatricmzXJYtb4Pxq+yU5ACo50LdAgh/viD408D7T8wNIcIIe6SJCkb+ICAHSEGWA6kH8rQ/HsSCt8jy16qql+ms2M9BkMyLlc9wcHjiIubg0p18Opm31cmO1y8XhsqlaXvpfN5vXw27zMWrCtmi3kIOtnN7OZFTDvrdJKGDqcqfwfWyCgGTDz5gC/q9z9oszkbv9+JQqElvzKPPVVLcasm0umOYXVhPk5XE42OKKzGMMJMGmaPjOfSUQl9Y/d5PNg72tGZzfi9XrwuF6bQMEo3rUOt1aHSaChcs4I9a1ZgjYzG5XSgUqm47Ml/ozOZef6qCxh08jRSZ86hw+lBIUlY9WqSwvqrdz7aXMNDX+zG4wsIrcGxFq6ZkExahIlBsUdefe3XwC8LnllSzMsry7ltSjomrYqWHhctPW4W5jXw2U3jGJGwz37Q2rqUgp03MHzYu4SEjDtgm62tS6lvmEdPz048njZMpoEMHfIaOl00EEjv/ebt1+N2ODjz9rtJGjKCFXNfI+/br5h85d1sXOglLisYg0VD/IAQlr9dCEBCdgjjzk1j3mNbyBobxcAJMYREGfuqyx2M2tq5lJQ+AoAkKRk9avERlcl1uRpRq0Ow2wtpb19FfcNHeDwtWCwjMZsGEBN7EUtesqPU+IgYfR9udzOy7CI0ZBJIEh0dazEa07HbizCbBzEyZ/4BvccANn1RwdavqxgwLpqkwWEsn7sHjV6FLAucXR6kGD0FyRqCjRpSwwPvY1lzD6cNjmZy5oFzaR0tx5o6OxWoE0K4JUmaDAwB3hFC2H7iugnAGmAnAZdUgPuATcDHQAJQA5wvhOjYe839wNUEPJf+KIT45lB9/B6FwpFQsWMLW2q6ebdaQ2mLnbeuzGVc2r6tuccn811RM5MzIw6p4mirqeKZ597gI/VokCQmJBi5/5R4yhd/SvGGNf3O1QdZMFqsTP2/W/oljTschBA0d7tx+/wkhBjw+3yseOtV2utric8eQvzAwXz+9KN4Xb39rtOZzLjsPX1/K9Vqck6fxdjZl9DRUMeHD9yBMSSE+IGD2bViKWfceucBq5H9mA6Hh6V7mkiPNDM83vpfm7H21g938GVBQ59KCQKqj+smpXDvjH3fkd/vZPWaHGJj55CRfn/fcSEELS1f0dq2nObmL9Dp4gm25hIUNJTo6HP3izuwd7Qz/+8P4XH1MnDSFDbO/xClSkXKiFH0uqbSVmsHQKEM5LmaeeswdCY1KpWCjfOK2b6qAYDsiTFMPkCd8B8ihKC27m20mnAKi+4jOHgsQwa/0u+76ujcQEX5P4iIPIPOjvV0decRGnoSUZEzycv/YUCiRHDwGEKCx9HQ+GmfU0XVdzcSk7sQtPkMG/oWzc1f0tW9HaXSiEGfRFbW3+ju2YXRmH5I92u/X2bj5xUUfFeL7BfoTGrOv3ckSpWCxR8U8URFPeoQLU6vH5szUFRKq1LgkwWPnzOY80fGHbd38FiFQh4wkkBcwbfAF0CmEOL04zK6Y+CEUDg4JRvX8u4LrzIv5hyMkg+1WoNbpePBAS5SrSoSx0zmlnk7WV/RwaQEPVcYymlvacEpK1F2NROTnkFk+gBCYhP4/N/P8Ip6MiHBFt6/aRKx1oDqRQhBR30t7XU1RKVlUrMrn7rCXdQV7qKrpRm9yczY2Rcz/LSZhzVmn9cLQqDSaPD7fHz53BOUbdlIZEo6zRWlSAoF1qgYRs2ajbPLhlKlQvb7qS8uZMiU6ejNQfj9PkKiYzFY9gULVu/MY928d2mpLCc0LpHz7n8EQ9B/x2r/eNBmd3P6v9YwLjWUP0xJp8HWy6urKmjqdrHsT/2FY17+1TidVYwds7xvAmppWczOXTejUgURHX0eaal39VMv2d0+luxuwuWVuWBkHCqlgrKtm1j49KMApOeOI1wbT/6Wb7ngqRdQSBrylteye3U9U68cQOaYaDz1djo/K8Vbb8erU1KsVVPX1stVT07oS5b4U1RVv0p5+VMkJt5AasodSJKELHvYtPl0nM5qQEajiUCrjcRu30Nw8Di6uwuIj7scgzGV0JAJ/Tyv7PZitmw9L2BbE0oGDnyynxFe+GT8XW5UoUeWwNHZ7aG9wU5IlJE6l4dnlhRT2+GkqdvF6rtOxqxV0dXrRQjQqBT83ztbWV/ezllDY/jXRcOOi2A4VqGwXQgxQpKkOwGXEOJ5SZJ2CCGGH/PIjpHfm1BYXtjMx1triQrS8adpmXj9Mgu213P6kGiignR4vF6aC3eyePFKPq7XUG1MwqhWcItmO40V5XwUdgZuhZbsnj006WNoUwWT5iin1JSOWvbgl1TIkgItPob37GSnPoNepQ4JgSyp+OSGsYxMOnDxoR/istvZsXgRNbvzqSvcTXruWLxuFwMmTCZ+0BDMIftWU36fj9rdBch+P8veeAmtwciFf3mCpa+/SMmGNZx85fWMmDGTjfM/ouC7bznvvkcIjT26KnVHW0ntfwGPT0bzg8n1zbWVPPLlHlbdObmfZ1Rd3XsUlzzMqFFfodWE43LVk19wPRpNGLkjF+ynGhFCMPuVDVRU2xiPiuEhJi6+djh6q5a5d95CZ2M9l171BJ7lbchCxpetIOXyifi9Mg2lNuKygpF7PDQ/vwMUEqZRUTi2NOHzyqxudjH+/DRiB4Sgjuyv3nOV23BsaiT47DQUBnXfWIpLHqK+/gMGDniK6OjzqK17h5KSvzJk8KvodDEYjak4nJVs3hwI4oyJvuCQtdbLC1ewcdFKcqeeRcaInL5+ene107W4En+7i9CrstFn7v+7cLh9/O2rQoqaukkLN3H3jCzCTPucQGo7nMx+ZT3dvT5cPj9/mZnNFeOS9mvH55f557ISXlxRzguXDGdUUgidHb0YJYm4xKOrW3GsQmETgcR39wMzhRCVkiTtEkIcuGbgL8jvSSi02d2MemwZ4WYtbXYPEgEVgNcvSAo1oBI+6tvtxDpqKDemoFdJXJCbwJxxAeNpV0sTSz/5hO9UA1lS7UIpZK4yV3D+9LEsrXZR5zcQbDETYdbyza4m1pe3ExukJjfYh1Kj47JpIxgWf2QvoNft4pNH7qezsR6t0UhXS6Am9rjzL0WSJCrztuGwdfQdN1isOLu7UGt1eF29TJpzNbkzz+1r7/c8qR9vqtsdnPT0Sm6fmsFtU/flI3K5Gli3vn9AmEKhI2fEhwQFDdmvnTW7m1n/7k4uUmhR7lUS+9QSphQrbsmFR3KhrVaiDNNTU5pPtDYF68wUDLlRSBJ0r6zDub0Z2eEl4uZhqCONuGpsNL+Yh1IKqDQFYJ4Ui7u8C3W4Hk1SEF3fVCHcfrTpVsKuGoS01+YkhJ/t2y+lx17I6FFfU7DzOhQKHSNzPu17d4QQbNo8A4ejlGFD3yI0dNJ+9/U9xZuaWPbWHi5+eDQh0Ub8PR46PirCXd6FKtIAQiA7vJgmxqEfFIY6TI/d7eOTrbW8v6mGilY7o5ND2VbdiUalYERiMO12N2NSQllR1EKb3c3HN4wlKdSIVqXo934Lr4yv04XSpMYvC/700kZ8PR7SvHAGGuqDVEy578C2n5/iWIXCQOAGAu6iH0qSlAxcKIR44qhGcxw5WqHQ3O3i/Y3VGLUqZg2LJcqio67TyYvLS5iqbSBn1AiskVE/3dAvyCdba7nz0wK+/EPAC+irnY3IsmBgTBD3zN+J5O0lxNdFozqcy8YkcNvUTIKNB/Ygabe78fhloi0H3vbKsmBZYTOjkkOwGg7thfJTyHLAT0BCoqmilG1fLaR4/WoAIlPS0BoMDD31dJRqDdHpmexZ/R17Vi1n/EWXkZqzf0TnCY4f//fOVjaWt7P6rpP7vSvV1a/h8/Wg0YajUpoJCzt5v9xdtR1OXv+ikFklDiJlCe2wcCwnxXHV3K1c4FUxxmLA3+1BtntBpSDyD8NY9vGrRFfFEqaOQdIoUZjU+DtcaFMsmCbHokmxoFSp2LV+LW+9tZhx5izMplTCHB4i1AqUoTpkuxfh9qMwazCNiaZ7aTWGEREEz87oEwy9vbVs3HQaQUFDsNk2k57+AAnxV/Ubf139B9TVvcOo3EV9SSoBfF1uHJub8FR2oc0IpqzRwZbVDVzzr5PwFHZg+6oC0evDckYKxtwofB29tM/dg6+tFxQS3fFG3mns5CNPL1lRZu49fQAnZYRT2tzDf9ZUkl9nI0inZnNVB1qVgvevHX3A3XfvrjY65hUjvPJ+n8lAd4IJeUwkQ0bEHNV3f8zeR5IkaQiU3wQoFkJ4j2okx5mjFQp5tTbOeWkdQkBKuJEFN43nprkbWVfVTZC3i1md33H2eTMZPuNMJElBd68Pi2F/F7nDQZYF9bZe4kMOngTse2xOD/O21HLpmERM2v7b9Bve3UZerY0N956y32o5f3cZi/52D6ddOofhp8/6ycCwXxPZ72fF3NewhEeSc+Y5J1b+vyIlzT1Mf241A6KCOGNINBeMjCfcHFBvOD0+ZMF+7+Frq8tZmNeAsLl5yqlBIUHDybFMnRZw0X15ZTlPLi7ilTkjaOxyoZTh0pFxKPVqCtes4JsXnuWimx9H16LB2+ggaGoC+gGhLPvPixStW036jNnct0OiXehJdlSy4IHz+faVSoLcfnKuG0R4rBm/3YPCqEahUdK9vIbupdWoo40YciLRZYWgDtNTUvoYtbWB9Crjx61Bpzvw5OnrcGFbVI6nzo5XCCSnF0kGd5AaXXdgmvMA5nQr7lIbrhAtQeemEZEWmMir2hzc/nEeGQYtUzr9hDa7iESBfXw0WTPTDvrs82ttKCSJwXH7bFv2jY34ezyIXh/2DQ1o4s0Yx8bgt7kBgSbGBAY1mkgDisPMCnAwjnWnMJmAa2kVgRiFeOAKIcTqYxrVceBohYLP68Vh6yC/1cfV7+UTbFDTavcwpLeEyqAM7F5BiqOSINFLhS6BLpWZ07OCMZtM1HY6yY4J4q7TslD/KF98XaeTx78p4u7pWSSEGmiw9fLHeXlsruzgnatHMSnj4AE2u1Ys5e/Lq1nvi2ZcSgh3nJZFaXMPGpWCyRkRTHjyO84eHstj5wzud52QZdZ8OJetixZw/StzMVp/OkXBCU7wPR9squGjLTUU1HUBMEqj4azkMN6uayck3MjHN4xF7vXR9uYuPNEGZmwrJzhIy6NONSlCQdQfhqMO37fgael2ceo/V9PVu2/deOW4JM4bEUdqELx83RxGnnkO4y64FLUmIIDcTidP3XQDLkMI+cSwx5zFQH0vu3sNvD4WBgyYwBfP5yH7BBmjIwORviZ1X70Gx/ZmelbV4Wt2IqkVRN2Vi09jY/2GkzCZsskdGUiKIISgt6ANVbgeTYwJT4Od1td3IvtlSiwqKlrt2BHMEx4MPokLXBoiFAqGhOnQefy05YRz7uYyEsOMPD17CEqFxF2fFtDU7cKiV9PS42Z0YjBPa8z4ijqwzEgO7Ia6PKhCdegHhfXtZn6Mu7qb1pfzA38owJgThWVmyjFP/gfjWIXCNuASIUTx3r8zgA+FEDnHfaRHyNEKhabyUt6/73YAXIOnssZuweN08NrV4wjLGMQrq8r5cEMlDq/MAL0LRXst+bp0dCqJjAgjBY0Ozh0eyzPnD+W2eXkY1Er+MCWN2z7KY1t1J+cOj+XJ2UM47+X1VLQ60GuUhJu0fPmHCfvFCji7u9j65QKWfbWE9+MuItjTSZu2v1ubJIEQ8NF1YxiTEtp33GW38/afb8Rh6yRpWA7n3fvXo3iKJzgBlLX0sHlDHZM2tAHQgcwD9PLsnyZg2t6Kb2UdAJX4SR4QBoWdBJ+fgTFn//rhnQ4Puxu6iQzSMndDFe9tDKQEuWdGFkFLX6KxtBhTSCiXP/U8OqOJvBVLuearFjo0IUjA9Gg/t587jukvbiLZ38L4kdncfdoQ9qxqYOvXVQCodUpSh4cz6eJM1HsnTk+9nZYXdmCeHI9lehJt7SvRasLR2pNw5rXga3biKuoACYy5UbjKbbh6PLzR1Uu9JDPIoCdYlpAVEu4ON8Ki5n1/Dy0qgUUhoTNrkUXA28q+N/pdpZB45+pR/Vy9ZY+fjo+Kce1p7/dcVJEGjLlRaFMsqCMNSHuFmt/uofX1nQiXj/AbhyIpFSjN+6ttZb8fl70Hg8VKZ2M9CqUSS8TRqbmPVSgUCCGG/NSxX4OjFQrOLhvl2zbT1dLMtq8/R6lScdpNfyJt5D4dts8v45MFOrWSpvJS3nzsMXB2ExoSRO+su3huRSUnZ4azori1X9uDYoMobOzhjMHRfJHfwIuXDMfhcHLXwmJunJxKlkWiuqGVWKOCNSvX4muuZkfQUOr1sWiUEndot9LU2MzYm+4lKcJCeauDzZUdzBoWw9AfGXp3rVjKt6/8i/EXXkb2SVMwh/7yKapP8L9Dz6o6ur6pxH5GIoZ1Tcg2F/lxejIbXOwSPjaHqrihS0LjEwRNTcR8Svxhqf8qWu08ubiI5YUtzL0oC3NLCcv+8xJJQ4fTWF7KBkUya0PGcVp2JJVtTt67djThZi0X/Hs5W+qdCEnBteMTeGDmYOpKO/l4STmtdXZiO2XihoUx6/rBfeNoe3cP7jIb6mgjQVMT8Xe66FxQBoCklDBPjkd2eLFvakT4Bet6fDQIgV6SMARpiEqx4HZ6SRkWTta4aNZWtFPU1MOa0lbWlbXz3IXDGJ0Swq76biDwez+QbU7IAldhO8ogLbvyvqN5VSHJ6kGYxF51kUpCHWZA0ivxNTuR3X5CLxuIPqu/faG1upKN8z+iqaIMZ5cNn8dNWu4YqgvyiB2QfdQLwWMVCm8ScAB4d++hSwGVEOKqg1/1y3A8vI/sHe1ICsVPql3cTif1RbtZ8NQjDJt2Jh8qc1hW2EyE3M1V4S0YJ8wiIcRAZpSZk55aiVeWmT3QytA9n9JcWU7F1D/xVdmBa9datEqumZTKlAERWLrrmPfw3Uy5+kaGTT907YP5jz9MZ2M91/zr9RO6+RMcM21zd+Nr7SXqjpHIvT5WPLOJTIeMjKBkaixTp6bi73bjd/jQRB9Zgr+uXi+nPbeaMJOWhTePZ9l/XmDn8m+R4wbyumYiI6L0fHjrlP1qUVTtKuDPr33LzqBBDE+w0t3rpbzVwfB4K6ZyB2OcKtLOSmRwegg+r0yURUv7B4UIlw8UCuReH9pEMyGXDMAmZP61vJT6LS1k6DREdclUOTycc89IBkabUSgVB4369/pldtZ3HXEQY+GaFXz9wj+ITs+ktbqK5LRhTDrtCmjz4W1x4LW70IaYkIYbMCSE4nLYKV6/mobSIqwRUeQt+Qq1Vkfy8JEYrVZkWSZv8VfEDhjI6bfccdQLwWMVClrgZmACAZvCauClvSmuf1V+DZfU7956lR2LFzH0/Ct5pzWciA3vEO1u5oKHHyd+YEDfX9bSg9Lt5NvH7tybvEpGb7FSoYmls7GBGWdNp8kJE04aS6PdT3ZMEKE/8F+ee8fNqPV6Lnn0mYOOo7enm1euv4yRZ57DxEuu/Llvez+8rU56d7ejTTCjSbacEEq/QVzlNpzbWzBPit3Pz//HCFnQ8OhG9NmhhMwO+JTsqe9i2dZ6Ts2OZEBa6CGvPxw+217Hnz7O5/8mJhNrUtJRsosvbcF0ufx8fdtEIoP2Ly0phOCNP9/MVlUKhcZ0go1aZmYGoV3/CeW1TUjB12IQEjohIfkFuWcmM+TkOKT2XlpfzkfSqfhmdAgvbanB4fZh8Aqu7tah2DvtNWUaePT2Mcd8bwfC2d3Ff/5wLZHJqcx+4FEK167i25cDGV2jM7Kwd7TT09aKSq3B5/X0u9YUHIK9s4O03LFMu+FW9D+oteGwdWIIsiApjj7P2TEV2dk7+T+799/vnpMuuwZndxf5n7zNaWmZNHlbMQaHsOSVfzN29sXU7CogMjWNgqXf4HY4uOSxf9BWU8XXzz9DiLaBi6+/tV+KhQNVrM2aMJm1H87F1tx0QNdYb6uTonlLkf1+Mscd3Mf656RrcRWu3QGdqfmkOAwjArlZZLcf2e5FHWtCadYc1LB2giNHCAECJIXE/7P33mF61WX+/+uc8/Q680zvNZPMTHolnZBCQg0dA0sTEARXEGRlXVZ/KqKLgiIgiCAiUg0IJISSThqkTXomyUym95mn19O+f5whIaQAEdTdn+/rmmtmTvucet+fu71vJZAgccCP5DBjrUxDtB39lLWYTHhdO+HVraBBbHs3WTeOxFp+bBW3MpBADSZJdURQA0n0uIK19Og2NQVear5EnqeFowt4dkMTT31weHCJjSy3xm++NuaECgGM/hNj55xN8I9PMYTVAAQ2g9XpJE1UiGV0Ye/KIyZotJs1WHKYuuUtXPH9CfgWDWPxgR5+svoQM6uyKMt0MrpLo3NnHy3pIvhTXH/F8X3WvwykEnE2/uVFlGSSOTfdhmQyM/zMOfjyC2nZvYP969fgTEtn/LkL8Xd1kllUjJxIYLbZKaodQXpeAbFgAIf3eMvkq04mORVL6i6OZUc9Bv+bYwp/K1RF4c//eSe9zYcpHj6SKZddzZsP/dSgXjCbUWUZhzeNBbd9h9JRY43GJmtXUjC0hrTcvM88fqi3h6duv4HiEaMZu+ACKsZNPGZ9+1Ob0RsSNGcfYup3DC+e4k+Qag4Z+d92E6YsO3JnlFR7BDQda2Ua1uLPJLb9XNBiMh33f4hzvBFkjH7YdeINBbAN9eFdUHpkpqrLKsLfiUr6nxW6opHYP4BgMyHaJCSv9YSBRTAUQWx7D9ZSL8Flh0nUDyB5rSi9R/mfRIcJ95lFSGlWolu6SR4KgKZjH5mJd34ZPU/swJztIOvGo5lrsZ29DLy4/7gvPPeeCZh8X34z+I8RTSoMRFOIokB3KMGIAu9xWXyfhiLLHNi0jpIRo+lva0FTFHIrh7LxLy+w/b2lKCO/A0oLHXYrmzvdLIpYOWNhOePmlzLv4TXkmUzcMayQ/CHpLP6frQyfUcCoC8to7o8ysvD0KoJPhvBAHyufeYJDmzcBMHzWXM6+5dtf6hhfBk6XOvuUjVF1Xf+Hd7f5eykFXdWOZAp8jK6Gg7x433eZ/fVbGTn7bKIBP237dlMxbhJ9rc14c3Kxu9zE9w8QWdtG2sJKzNkO1EiKxP4BtLiCc2IeonWwalPR0BIKkssQDmtfeJZdK94lEQkzau4CooEAXYfqKRk5liFNNVhFO2Kahdw7xiFYJXoerUNuj5zyOuzDM7APz8Ra5kXyHt9zQdd0Uq1h5M4IzvG5CCfhnIl+1IX/tYNk3z4ac4GLxN5+dEUDBASTgOg0I3dGUQYSRDd3g66TeX0tos1Ez+M78M4vxTXl9Ipu/jcg1R5Bbo8g+axYCtwINonEvgHie/pR+uMofXGjqGsQglUi45oabBXHC6jYzl4GXtgPkgCqjm2YD13TsVWmYRuajhZVCC1vJtlopJRKXgv20dk4x2RjzjUU8ccBZFtNBlpMBh1SrWEsxW48s4sN7h5RQA0msZZ8OROHvwdCfb08/71vEw8bQV9dENg8/W6G7ZOpyvOw4I7RnPXD5dykOCGuIkoCVoeJRT88A5vz9OqOPgvLf/84u1e/z9hzLiQ9L59hU2Zgtn51SvZ0cbpKoRLI0XV9/aeWTwc6dF1v+NLP9Aviq1YKqbYw/r8eQu6I4LtiGI5Rx9YZxEJB7C73CX17WlIlvLaN8KoW0EDyWLCPyCS6pRs9aVT5SmlWTNlGqXyqNYSe0DAXuPBdVoU514mqyLzz+K/Yv34NnqwcMotL8O9uYV7+tYjVDrT6ONZSD46xOfj/cgDvuWVYy7xoURm5O4Ypw4a1Ig00nciHnYSWt4CqI1hEnJPyEJ1mtFAK5xl5xHf1EdnUgRYeZGesSke0SZgy7XjOKj6iILSkSs/jdaDq5Nw17jNjCUowSd/vd6H4k5jSrCh9cUSHiYzrahFMolGQ8xlQQ0mQRKSv6EM+5djhFIJFJLKxk1Rr2LiG/gSmTDuWEg+2Cu8R7h25K0p4TRux7T3HHEPyWFBDKUSHCVOOE8ljwTE2G0EU0JMqwfeaUfrjuM8swnNW0ZEJiC5rdD281VC0NhPmfBdpF1Ycd891XUf1J1H8CaylnuMmMFpCoesXWwyywWwHIGDJc+KZW4L4GdTU/+yIhYJsfnMxWSVlvP/Uo2SPm8Hy1lrGREQKrqtk/fP1DDFZGDO7iG3vtjD7umqGjD8+jfbLwrN3fRN3ZtY/fXr46SqFJcB/6rq+81PLxwM/0HX981FffoX4UpSCKoMgQrQPfdk9CPVvo+eMQq29kd4VOZCMIK2XLcwAACAASURBVGp+FKkE56RCBJsJe23GccJM13R0RUO0SEbe8e92ovTEsY/MxDW1gIEX96OGU1gr0vDOL0VPKISWt6DJGmgq5sB6TPJeItbr0GUd98wCJJcFKc0K+WZsTheJhgB9aw7AgSR5359E4lAA/8v1AJgybOR8ZzyCdHIhrSUVlP4EoeUtJPb3gwa6aGQPoIFtmA/H6CzUsExwaSOCVUJPqpgybJhynCQO+BHtElpUJvPaWmwnIAE74S2OpOh/fh+pphCuaQVE1rUDIJhFsr81BnP28dXeWkIx3CUHA6gDCQSLiGdu6VHBJnDE4vLOL8WUZkPXdOTuGCgaks9GqimIbagPwSSiJRTUiIw58+SMlomDfpKNQUNZlXhQ+uME/npo8AGD5LWiRlOYfHaUgTgoOoLNhHNcNnJ3jOShAIJZxDk5H+fEXNSBBKm2MHJHBGuZF+cZ+Sd8PmpUJvBWA/G6XuyjsvBdMZRkQ4DAmw0ovXEybxiOreqz/ciapiGeJPioJVUEk3jK9+N/O1b/6Wm2LX2DnEvvI7A8zHanyuioyLgFpUy+sAJV0T434+rpIB4O8fiNi5h25TVMuujyr2ycLwOnqxROSnonCMIuXddHnGjd3xOnrRSUFKx7CKrPh8U3gqYQldOI901CNo9DTaRhxOBlsvOeBDFKf8d1aGIWuiaCDs4z8vDMLaH/T3vRojJ6SkUNy7hnFRHf3YfSnyDz2hpsQ07yMTeuhtdvgar50LUT2rcap3b5cgbWWEg1h45sah+ZibXUS+BNwzgz5znJ+fZYwHBVJA8FsJZ7sRSdugPaJ6GrOqvfX8mWjR9xtmUckXSVHTSR7ktnwYIFOOImJJ+N5KEAkXXtyL0xbFU+lIE41tGZxEskvF4vdrud7u5utmzZQlFRESNHnjjUpKsacmcUc4GLyPoO9KRKZEM7ostC2gXG7FcNJUEUQNMJrWhB6U9gq/ZhLfUQ39VHqiV87EFNwmAgW8BS6ELuiR3jlgGw1WRgyXcSXteOnlCxFLmxDfPhnJCD6LKg9MRQQynUYBL/4oMgYvjZBz8La2UalgIX5gIXjpFHLUVd0Ui1hQmtaCF5KIDks+Ecn4NrUt4Ry+GLIrymleCyJgS7CT2uIGXY8Jxbhlpowe12n9Iq27NnD6+//jrjxo3jrLPOwmo9eUvW/6tIRCP84c5bcPmyCFkuhR4jQXLsvDjDZ04i4u9nw6svMNDeStUZ05h59Q2fccRjIScStOzZSVHNcCx2YyITDfhZ9thDVJ0xDYfHyxu/+AlX/OBnFNb8w/lCT4nTVQqHdF0/IXnHqdb9PXHaSuHwB/DcBaBrYLKjmnz0Bb9HQi+izxqjdFwVFq0NU1qMFWGV3Vs3cHvaWpz+PWi4CSlfI6pegGAR0WUN65B0BJOILqskDwYQPRZ8l1YZs7tUDCQLSINm+p7XYfdiOLQSbB6I9IArByZ9A5b/gBXWBexzT2POlFlUllYQ295DaFULKDqWUg/uGYWYMu0nnF1/Grqu09bWxuHDh0mlUkydOhW73Zgpb926lbfeeou8vDw6OzuRJImKigqampoQRZFLLrmEpqYm8vPzqa092gc2mUzy5JNPMjAwgCiKZGVl0d1tsJwKgsCll156zPanQuKAn/4X9hs55Z+C5LXgu2Io1nLDz66rGnJPHMljQemOgQjmHKeRabO6jVRnBHOmHWtlOoJJQO6Ng64TXtkKGMrBWuIhVteD3BVFMEsIZhEtelSJWMq8ZN1Qi67oJFtCaKEUjtHZCOZTzy6Npu1fzgw8VtdDsjGIKcNGZ1aMV1//C7IsM3z4cC644AJMJtNx1kB/fz9PPvkkVquVcDhMTU0Nl1122f8v04T3frCKZY/+kjk3fY8Nbyhogp9E99NH1ts9Xqx2B6qqcPNjf/hcx/R3tvPRG4s5sOkDUvE4FeMnceHd/4UgCKz641Nse/sNAMw2O5oic/sfXsFk+duIJL9qnK5SeBFYqev6U59a/nVgnq7rV3zGoM8A5wE9H1scgiD8ELgJ+LgM+D91XX97cN29wNcBFfh3Xdff/awL+1vcR9HWnTS/eh964XnY6yswRSVaRqVYXr8eSZKoqalhYGCA9vZ2nE4n6DrV9l6U/ibOZSWxnFuI9p+Pp6QBV2UAhp2HfmglyV2HsJx7PWJOJaz+Gax+AGxeuPp1CDTBX74OnnzIHAIXPQkmK7JgYev2nQx/92LabdWs9F5GT08P6enpZGRkcMW5lxCr68U5Ifdz+9UbGhp47733jghsgPz8fERRJBgMEg6Hqaio4Morr6SpqYmMjAx8Ph/9/f28+OKL9PUZdAcmk4mZM2fS2dlJeXk5Bw4c4ODBgyxYsAC/309LSwvV1dWMGDGCV199lba2NsaOHcu5556LJH12lpGWUkke8CNYJSSPBV3VQdUxF7i+FEEb39OHlG47xt2n9McJvt8MOtiGpiO5LchdUZzjc/9pfOwDAwP87ne/w+v1UlZWxqZNRjaL1WqlqqqKoUOHYrfbcbatIfbBb3Gpfrw1Z7Ej/RzeXldHeXk5Q4YMYfLkyf/gK/n7QtNUfn/7jaTnFzDr2nt44b++RcmIKopqhmOyWqmaNI3t777Fhlf+zLf++CoW21F34sEPN7Bt2ZskoxEmXnQ5QydP5+BHG3jnsYcBqJo8DZvTydalb+DJysFstRLs7mLolOkU1Y5kzfPPkFNe+U8fT4DTVwo5wOsYJIFbBxePByzARbqunyQP8cj+M4AIRuvOTyqFiK7rv/jUtjXAixztz7wcqDpVf2Y4faUQ6Qyw7ZlVEFUp0bJQUGkcEmHODefT3t7Ozp07qaurA2DhwoV4vV6eeuopbDYbZ511Fsm3/5PpbEY/8/sIq+//9JVD7nA4/xF4ei6UzYS+AyDHIT4ARZPg6tfA4iAajdLT08Obb76J3+/n6/Z3KXCqyDd9wJIlS2hra8Pv9/Pd737XUEyfE7t27WLx4sWkp6czffp0qqurOXz4MK+++irp6ekUFRWRlZXF5MmTTyi4Y7EYq1atoqSkhLfffptYLIbVaiWZNMzxOXPmMG3atOP2S6VSrF69mg0bNnDGGWcwf/78z/9Q/oUj0DSNZ555BrnnIDdUBbHIIbo8IznknIC5eQ0lTa+Q1CV0oIw2gniwFo7E1r0N3exgQ+EtbO4xEwgEWLRoEVVVVZ855v8lbHrtZda//CcW3H4Xyx79Jefd8R8MnXy0R8SBTet46+GfcfUDvyKn3HB4HNq8iTcf+ilpuflIJhN9LU0MmTiFhq0fkVNewfl33os7IxNd03jvd48S8fcTCwQY6Gjjmgd/Q3puPkoqhY5+hOjvq8bfYqH+rRXNs4CPHWR7dF1f+QUGLgWWfA6lcC+ArusPDP7/LvBDXdc3nur4p6sU2uoakV9qweSyEPGpBCth4pypx5jliUQCRVFwuYwZZnNzM+np6Xg8Hn736ENcHnySNLmLlC2TznH3UOLWoWQKhDrgxUEjyuqFb21F7qnH/PxCqDob9cLfopnsNDY28vLLL6NpGm63m4ULF1Le8grCmp/DHbsgrYi2tjZ+//vfc+mllzJ8+Gf7KOvq6li6dCmyLFNcXMzVV1+N5RNmbDgcxul0njQYeSJ0dHTQ399PbW0tvb29eL1ebLZTp9gtW7aMDz/8kJqaGhYsWIDb/fljHacFJQWrfgLDL4W8f3j5zBeHvwl2vwa+csgbSd26d+ndtoRZpp1IqoyqeTAJ3ahiNqLmRxVziCtOJKL062OJyF/D68nAntlHWvy/EUKtqNPv5uUdEbrUNG6//fZj3oP/64gG/Dx1+w1IJhOpeJxvPPEcrvSjSRF9rc388e7bWHD7XeSUVRLo7uCthx4gu7SCS+/7CSaLhXUvPsfmNxeTnpfPop88hM11fJacruvIycQx1sbfA3J3lOC7zZhzHXjnlZ7WMf7WiuZVwKrTGvnEuF0QhGuALcBduq77gQJg0ye2aRtcdhwEQbgZuBmguLj4tE6gcHQ5yeqCUwbjPi34SkqOlm2UDKnlhQ/P4SbvSl4PDmff+k5mzpxJtZDNmrp9nH3Bs6RFGqBoIut3HGDlylXccNUaCspreH3xYg4cOIAgCGRnZzNt2jTKy8txOBxgmwdrH4RHxsD5vyJvxJXYLGYONzYyvCiNyI43sVktmMqnQ9bQY86vp6eHJUuWkJubS01NDWPHjj1OEJyOcM7Pzyc/36gpyMk5QSqfvxlaNhmCzZ4OZTOYN28eNpuN9evXo2kaV1555Rce94RQFWheD+48yKgAcdDK2fZHWP9rqHvBsMKcWdCxHeJ+SIah4izIOsFsefXPoXEVTLwJ2rYYWWgjrzi5YtFU6NkH/sOQXWMI8Y8pbHvroWUjqCnUnStQIynkkuvQQn5i7Tm4h4dwFMmQWQWFE4x4VstGlMP7ETc8gKgcZdQcPfg7laqk3/p9rCNGojeuxhn9E5opi6DvQcwVhQhuM9m5TjICSeL7B4jtV0naf0527kNIq+9nEbCfCnbXTWbsxH+sG2nNQJj7Gzsoslm4tzyPSsex31dPUqYhnsQliazoDzHEaaPcbsVjkvCZTdgH02w3B6Ms6w3ygT/MgKywZuIwXKZjrV1nWjqTL/ka6156jvS8/GMUAkB6Xj6CKLL5zcX0tTQBkFlUwkX3/vCIgJ9x1fUUVg8nq6TshAoBjBjaV60QdFVDi8gkDhiZcUp/nFRLGMEqYS39ampKPleTndM++PGWQg7Qh5Hb8WMgT9f1GwRBeAyjs9vzg9s9Dbyt6/riUx3/H1XR3NbWxtNPP40oipjNZqqqqti582jmbnZ2NjU1NXR2dlJfb6SMDhkyhNmzZ/PEE0+QkZGBLMtce+21ZGR8ilOmvwGW3AlN68BbiBZoQcaMlaPcKLogEio4E8WRjTTre6gWD3967jlUOcnNt952VPiHu2Gg0RB2asoQpC0bITYArmzj99ZnDSGbO+LoT1oJnMyaUJKwfykcfM84x2Dr8dvkjwFB4rBYwopWEwtv/SGZOadZrNa1G9o2GxZY/TLo3mUsNzuh9iKYcRc8fTa4cyHQAonA8ccQzZA3CtQUeuFEhCm3G8L8N+NBUwAdTHZDUAsiTLsTiidB+ZnG/nE/rP2FoXTiA0eP686HtCJ0fxNC5GjsRtXTEJARhRMTIOqOTJDjCLKxPq57ecNyBXbRjJCoxyRkMr70Kszp+XjnlnzubKZUa5jep3ehpzTSZjtxCksR1j7IeucCptz94tHAc7Ad1j0Mc/8/sHwxYrsTYfmeLl5t6aVF0pFdZvrRGO9xMjvDjc9sYklvgFe6/JTYLAzICh6TxLpJ1UcEfURRWbD1AAdjJ6ZTE4FSuxWzKFAfTWAWBMrsVg7EErwxppJJaccLbVVRWHz/fRRUD2fq5Vcdt/6ZO76Bv7MdT1YOky66jMoJk3F4vjxKjy8KXdOJbulCi8iITjN6SkN0mQkubTySUSd6LJjSrNiqM3BOyDlS6Ho6+Js7r/0NA5fyCaVwsnV/b/fRiaArCvHt27HV1iI6Pjuzp66ujr/+9a/Mnj2badOmUVdXx/79+6mqquKtt94CICsri7y8PNLS0li7di0+n49oNModd9xxJAvohEhG4OWrQFPpMhfRfHAvKWcB9uHnsL+hmaF971BFIy5idJPJSqZwlvAheUIfQuEE8JWB1QPbngP5xILpCHJGgCYbcQ99sPWfPR0ufcZwy9jToXA8NKyCbc9C41pIBsGRCaVToXS64TbLqIRoL+x4CRpWgq6ht36IoGuEBQ/NZVdSs+h+RNPnfJFTUdj0OKz66VFh7auA6XcBumGdbP+TsU40wfXvgLfAUBxyHD1/AtFGgebeNjICL5MuDKBoYOnahkkUENy5xvnetBIt1EmbWEhBVhrS4q9D8zrjHCrnGAqhc4dhJdReZKQQZ1QYy5rWoUf6SA3YiQ4MJeoeRcppw1paRO7UDKTmdQhpBSh7NxBcr5PSK7AK+7BadpBQTfhNw1htlulOieSXVBAKhRhWMoRpM6bj9LnRdZ1t3R281+fnkpIyqtyfLcDVcAr/4oMk6gfwXTkUefXXsPh3cXDBKwwZOYloJIL40pX4+rfQNPSHFF/0rWN4kz4vdF3no2CUlZ1+HunsI02GyqiGVdHxlXpZl0owIBshQZMAtxXncGdJDltDUS6pa+DWoizmZ3qpdNj49v4WVvaH+PGQAmyiyBmHouzf0Iq/2IVwZiEdyRT10QRhRWNOhodFeT4GFJUJG/fyP1WFXFPwxZlC//rgT2jYsokZV13PhAsu+cL7f17ousESoMUUbEPSjiks1FWNyIZOops7QdVR+hPH7W/KceCanI85z4ml+NRpyV8E/zRKQRCEPF3XOwf/vhOYpOv6lYIg1AIvcDTQvAIY8lUFmgGSBw/Sdf9Pcc+ZQ/rXrqTju/cQevttBJsN57SppC1ciKW8nNCSpcQ++gjnjBnENm9Gbm/HecYZ5PznvYRjsRPmjzc0NODxeMjKMvLaE4kEf/7zn0kmk0ydOpVRo0Z97vPUdZ14PG64lwb/j0QiRKNRTI0r8C3/NqImo1nciKOugK5dEGiFSJch1CbeDAjGzLi33pgxZw6BULuRLlsyxVgnx6Fnr7H/h08af38Ms9NQLs5sqDobahdC+VkntyY+RrSPpjV/xlH3NNmpZpLWTKS0AqRZ30MYds7R7QItIA268iQzHHgH3vkeJIIM5M1kpXQmzrwhLDj3fKIDYXbs30V5eTk58YMENrzJ+u5Makadgy/mQHSYsQ5JI7CqhZUHN1Bv6jAuQTJhtdsQIl1ckHGYIdZ+9JqL0Ubfwso1q1i/eSNVWWVcMPlsrDkC4o6nEOt+j2otRc8/AyV/AfGuXOQeo1JcKbaidMfQdwUhqRGf6uKl7UtQVeOVTU9P5/rrr8fjMUz8HU+vYXPXbvoJIWgCMdUQAE6nkysWLcKamU2mxURjLEldKIq/r4k17U2ssBptLn1qlBeLRUaVjQaTDZQExPpR615ia9tBArLCHLeAWDAObchCup9uQx1IIAmHybF+m90MpVksoUqrZygGId0GfRy27O8z+voZJJtCqKEUjjHZiFYJuTuKrhotIFVd53etveRZzXR1hGkMxDjgFNgUNfiXZncrPDG7GqfTQvcj2xFtEr6bR9KkynStaSN9aw/FM0pwzyxEEAWu33WYZX3BI49fBH5gdnNpSwr78EwGXqpHtEloMYW0CytQg0k880qPCarquk7lB7u4MtfH/VWFn/t7+hgbF7/I5jcWc+OjT39lFkKiIUBw2WHkNoN+RvJYcM0oRLCIqAMJYjt6Uf1JLCUeBIuIY3Q29toMUtEkHV0d5Ek+LGVe3l3xHugaC86eh/DJSZWuG9/uaeAfohQGU1rPBDKBbuAHg/+PxnAfNQHf+ISS+D5wA6AAd+i6vuyzxjjtJjtbttDy9RvRVRUUBXNBAXJ7O74bbkBPpQi/9x5KzyBVgShiKS4m1dSE5PViGz2K6Jq1+K69hpx77yXZeBjR6UD1+/G/9BKCyUzmrbdgysggvnMn/hdeRO7oIOvOO3CMGYMWi4GuI36BbKJTItJrFL9l14DnE2R7mnrU5/5FERuA9++DkmkQ6zdcUGUzYOg58Hln+p+Arml88PT3yWx/j2z68QkhxKqzwVMAjgxY87PjdyqZSmj8v/PQ4o04nS6i0SiTM0eyvXcfCUHGKloYbi+jLnIQVdAQdIHpWjVVch4aGqvMezgs9TBl7BmUNbp407+esBCnoqKCxsZG5uWdQbIjQpPaRZPUS6bmpk8Mk6V5mKBUkq8dX3TYYu9nm6kJp2KhRetBF6DIkcOlF13Cn9//C/F4nLlz55JIJFi+fDkOh4OSkhKcTicbN27E7XZTUVGBqqrkFxaxxWTjA93KR5E4cU1HxGjK/jGcaoy7xCam2xSuC+XSa07jm60vMSp8AElXCJuc/Kr4Gg46jXhXeaITUUvh0FIkJRtx0U5OxMudsVWc1WhkycXJJCQNJ2BVuaHmG7RZ88hOipRGNXISGkm7xFUTSuh99zD2sMLcy2p4SIvx6+aj7jGnomNTdW5sSDG9V2Ho3DLcU40QYHx3H/3P7zvmvpnznMidUdIuqsQ1KY+ArLApEEVHZ1MwygKvi6LH9qAnBi2LPAe7yvvwbUqRoxp1KmkLK7APzzRcabqOllA5b99hHJLI4jFfvGRKSaWIh0PH9COQu6Mk9vvRZaPI0VqRdgz/l5ZUiO/qQ7CasJZ5jnB8JQ74cY4/6s7RdR2lJ0b3r7Yhea24ZxUhuS2E17QdLUoVwVLkwT2rCNvQdGNiGWyD+mXU79rK+laVzHQv4xLrcMdbcBEDBLrFXMThF7FP13Gl5TN+9re+8LXDP9BS+KpxukpBSyToefAXZNx0I32PPYbc3oF34YV4L7gAMFxJ4fffR+kfwD13LuacbBIHDmDOyUHyeun66U/xP/cnMm69hYFn/2hobEAQRbRUCvesWVjKyuh/6ilEjwfRYkEJBLDk55Nqb0cwm3FNn06qtRXHmNHEtmwl1dqKpagI5/RpoKiogQCp9jasZWXk/uhH/1SFSHJPDASO6c37aXxMrielWTF5rcRiMTZv3kxvWyPDDz5CiUvBFutA0BTiZfPQiqYQjcdxWk0403OIDFnI6rUfsG3bNm4Yewkvb15CWIjjsbqYkT+OlYc3ESNJSUYB515yAcuWvs3h9mYmjh5Pa0srnQPdzJs3jylja1FCIg2//ohYto5PEHmpfxNxwYjR2M02RhQOZdbUM9k/0MjqtWuIxCIsHHs2Q0fXYMp2ILeF6Qn189zSl1BcHjbmlrJQCDLM7WP1hx8hmM34TRZuufB8hg0bBsDhw4dZuXIlgUCAcDhMbnkF+vQ5rA7GOBxPktQ0ulMKRTYLZ2d6KO3eSk/DOspirYxJtpI75SastQuxOw2h2Bfq467dB3g3eew9LzELfLeyCB14pWsArxoj2t+ETYljD7WwMX0ynRYXv/W/y6ytvUTU8+mzSNw8XSesaxR195CRVU6Hy0aXqhqcXeaj71pxTKPFIbIoN535K3txyRrjLhqG3BlFEAWsQ9MxfYJcUdd1Env6UQYSaAkFU6Ydx5hseh6rQ48r5Nw1/pgZvxJIEN3URXh1K94FZchdUXZmdLB63RoqvEUsSD8DPaWSPBw0qEZ8NvSUQc/+49F21udb2T3jbyNXSLaEiG3vMdh+taPyUHSYEB1m9JQKooAcT7FfaaVEzcIp2ZDcFuKBKNtMhxmXMYzimycQXtlCfG8/Jp+NVGuE3P+YgOQwQc9edH8zStoMBJsJyW1FUCKw5uewazHkj2ZzdzsB0U66EqbNmsPY0F7eypxF3F2KKxZGCPZQIPazMmssL+Sdx6RIE2+cv/C0rvlfSuFzQFcVQp278RaMYtVAmHybhaFOI0MirKi4P5HhoCsKLTfeRGzTJqSMDJyTJqJGIuT/9KcE/rKY3l8ZjTS8l15Czve+B4pC76OPoQ70Yy4oRO7oIPrRh1hKSojX7cBSWoJr6jQSe/YQ27oVwW5H8nqRXE6SBw9R+NijuGfP/lKu829Fqi1M7+8MVnXPnBLUQBJzoYtUa/gINYTcFUUNJFEDSRBBdFpA17GWe4l3hFhq2UbnQDdF1jBDLT2sDJehYczIzGYzFRUV7N+/H4AqqYAZ0WH0Vihsp5GLLr2Y9PR0IpEIqqri9RqmfyqV4vXXX6e+vh6nReRrQ2XyEwcMV1R6GbHsbyLv3oXX9Cyqq4rIkLlo+WPxZOUjJQKGtRXpRrb6WLovQt2AjezsHLxeL9OnT2fp0qUkk928PHwWhyVjzMmJRnRHMTtkiEsmKlPdzJVbSGZV02LLRUMgz2pmpM3Erzv8dCRlqp02hjltCJrC2V4z59viiBt/A9ufN+IVQ8+BytlGkkEySWTlSpSeHlyzZ2MpLCQgKzQnUkc8B8OcNqwnc+O9cRvRHYu5cORrtDvsPLgjgWduCf/t76dFkFm89VZ2JSdgKp3CokWLAOh6v4mX6rvIEEX6Z+axdl8PYzWJWwuyiL/VSMZ1tce1jNy0aROyLDN9+vQTnQUAsV29DPx5P95zy7AUuVFDKQSLRP9ze0ADa7mXrJtH0tXVxRNPPIEkSZjNZu655x60QIrgu02Ysx0km4IIFglrqZffHu7ioSKJ7RVl5BWfngsovK6d4JJGkAQco7Pxzi9FsEokG4PEd/QaDMkWiYSc4K3WD+iM9VJRWMb52dNQg0k2yHvobnmfMzQbBZoDQVdAVFE1qBtRyyhlJZktayE1SNEy/+cw4jLo3c/AO/fxrp5Nb+44OhMp/pB76k6LH0PSdeYqIb6Z7WXi6NGfvcMJ8C+l8GnIccOPbXaAJ59+WeM7a5byrrmUcj1Co+DCLgqcl53G5mCUpniKR6qLuTz36Meg+P10/ehH+K66Csf4o/dWT6Xo+N692MePwzf4oZ0KWiJBVJQQRRGnSUJXVYTBgjJdlmm86CK0aIy0iy8msWcPqbZWrJVDyLnnu5jzPzujR0uqaOEUUobtpNaGrutoYRmlL45gkzDnOo8rikm1R/C/dhC5M4LktSKYJZSe2BGuIsEsGn/rYM53IjrN2KszUHpjqBEZPamQbAoZisMk4J9gZseh3Qwkgwx3lGE2W3BYbKzr2E5/xE+tXoxVkajNrKTwwtojdBcnOHlIhoyqcUCWZaR37kHc+ozhnqq5ELlhDXVJ2OOspCdnLEHMLGh6laJEJ4ccJZg1hRGRg6SbJYgHAJ2Yq4R6y0jC4QjdigvZq/GT6ptRRBNP+d/kI0cty3QnCbObcUonI7vWs8R3Fts8lZhUhdJgJ5LHRas1gyAS2fEQD779KyaEd5N+8XyEnS8aGWEAggRTvw2zvg+SCV3TiH7wAd0//x9SjY3GJnY72XfeSfrVV32ujlu6LKM0H0D889nsTOuuWAAAIABJREFUyVzAOcO+iTL4TM0CPK9vZuaa79KTO4vHu0ZxzTXXUF5ebjCq/nILzol5eOeWEKvrYeAlI4POXOAi+/bRx7xHkUiEhx9+GFVVT1kop2s6vU/tJHU4dMxyc64Tz7wSLMVuJJeFxYsXU19fz+zZs1m2bBk333zzkZToT2NFaz9XHWrltw0qc2vyQADnhOMp33VZRe6JG26s9gjRrd2YsuyYMu30/2EP9toM0i+vQrSaaGpqYsOGDVRWVpKTk0N+fj6CIPDcc8/R3t5OVVUV+/bt48oxHrI7VxDpaqSYjiNjaQgsyZzJg6U3cNBZglONM0rzkzK7cCb7mdv6FrIgYVeTPF68iBbb0SZa1b1t3FBVhm53UJ2bzaZAhDPT3TjXreXQqjX4QxGEslKGd7Xj6O7CMWEC2d+58zPfhRPhX0rhU9DbtrF68T2c6d9M3JnDRTU/Y7+tgCuDH7JTyuQsoZ8PMydRJ1uZku6mKyVzKJak1mmnKWH8/sOIsiMpdSfDnkiclzsHkHWdu0pzcUoi6/xhgopKjsXMhkCElkSKt3sDiILAN4uy+U5pzjEfXbyujo7v3UuqqQlzSTHWikqiGzagJxJYhwyh4OGHsFZWoqsqaiiE6HCTPBQgtHwb0Q/eRG7eC4KAuXwGki8H9Dgk2pF8diSXj/DyJaj+bgSbF9GVB6KEgErG7XejdPeiKzYkbz6Jg32g+nFNrcY1vQS0FL2P/JbI6new1YzCu/B8LBWlSG4P5uysk96TREOAvqd2HbPsY24hXdNJqTJhIU7+kGLc0wqwVqYdX7WpKkY20r430d7/KYlDjdinzEUongieQvjrrTDmarTzHua5Q6081NhJz2CVqaDrWEWRxAnee68kYhWMoO6I4C5GdW9kfGgPK32T+GXJdZRE/fxy40rSlyxBl2UcI8rJn6GQau+jv95NdF83siQhiQKiooAOiiixu6KKss5W0pUYWkLDWx4l75ozEcqnG1liBWPRPSVEP/wQLRKh/6nfk9i7F3N+Pjn/fR/W0lK6HniA6Jq12MeOJe8nP8ZSVobS2YmUno5gtaL6/aSaWwj85S9I6WmEly9Hbm5BtJkpmdlO03kP0VIxHUvoEKXrf05p7xaDbiXUwSrbAg47RnF1tYJlz6vo5z8OZVOP3PdkY5DQyhY8s4uxlh07I1+zZg3Rlx6kqqkBAiqmtDQKHnkK85DBZAolRaxxA+GWeqRGkDKGYSkZimCWiG7vRpL2YinOoW3DRgI7dtATjZJdXk7xqFE8e/AAM887j6lTp57wXQorKmes30O2X+bfmlJ4ZJ1pgoXMG4djSjOsfLknRv/ze1F6jAnPx3ELRAFTlh09qZL73fHsGQjQ1tzMR+8tY8DmRFMU0mNhHHY7JpOJcDjMzIUXs9yejrpxDbc23U8+3cQlL7vcszgslpJ98XU80BpkX0LFFw0ytX0PbXlVdGkCoqaheTx0SkddbS45wYJDOxnltuMPhjhn1pnU1taiJRIkGxqQOzoYePoZ4nV1mIuLsZaXkzxwANHlQkpPxzltKpk33XTSb+1U+JdS+BTWdnZw+f4eJkkRkskYO6Qs/mg9wLzJl8HG38DaX0IyiA4Izmw6R1/P2bZzSbNYGeWx82qXn9uKs7mvIh9N14+4IRviSXaHY5yblcaKgRC37W1GABQdSuwW/LJKv3yU/E0SINNs4kyfh4iqsrQ3yDeLsrmmIINimwXxE8pBCUfYIOvURxNUxcPUrHwP/5+eRzCbyf3hD+n+2YPITQ2I7jww29EGGkE0Ibpz0eIBSH2iAY84mPeuyZgysjH7MlHjUbRUHMHqROntMWi1U1EQJaSsMtSexsH0T9EQSN3daJEIjjG1JOoPoX2cYy4ImIuKUPv6SL96Ebaa4ZiLCrF/giQvtKIFwSxi8tlIHPTjPqsYk9dqpO81h9CiMrbqjCNCSZdldFlGsNtpaNxM+eJFxFuTvGA/i5eHncPl7y7hivR1eHONGoLHi6/ioYpvkC2JNMoqtQ31fK1hL7WHD+HeWYdqtrDiqutI9vRQuXcXSbOFg8VldPuykE0m+tN9HCwbQr/jaDLA9O0f8h/PPYnHZsVzzjlIaWn0PfkkDGYbiV4vmTfdaMSgCgpQenuJfrAauvdhKSnENuUchIwC+n7zG/oe/y3eiy4i7ZKLMRcVkdi9m64f/wSly2COMeXmkvXtb+M99xwEy9HgZejNN+n66QNowSCC3Y4ejyNYrQhmM1rEeL6i04mWSGApLCT9mn+j/4knEdUAZbNaEM2DL6o7zyBgXHk/6MqRmNgRuHLhjp1gOkFxp6ZBuAOsboIDQQ5842u4Dg4gWkHxmZB6ZJwFIoWXZCGkoiihLghHaVmdQTJgRjCbybz9dtzDc4m/8gCd7x6tK4k6HJgVBYssg64TzM5m/bnnMH3WLCZOnHj8uQBv9Pj5xh6j35cE3H0wRcomkT+9iEuLM4k+t9fog3FmEU3dIX6erVOe5uCqNzvxRmU2jdMJpmncL3iQRQmLppIaJK+sNgsMxBOIus7kNBfvJTQiquHonBTYQYXdym0zFvLrTdtYHknR507DJycZ37SPH8ydSd22bUY8KTcXQRDYuGkTqi+T8pxsOkNhIp0d3DR/PpmRMPZRo+h/7FdE164k1TFgcIABpuxMMi+YQNr86QjV5xnZeV8C/qUUPgVN13mxc4D7GzvwmU18qziHK/I+4SdNRqDtI+jeaxR71S9D1XVEmxvB7OTuoffwgnMM91Xk81xDA4exI3C0s+F5mR5WDEQYZpd4Lr2PPUIa17XDGI+DbxXnkGM1055IMTnNdSRWoes6d9e38udOQ7AV2syU2Kw4JZEyu5UP/GH2Ro/mMZ/Tp3LGoU6mvvIjxHgYJAuWqjmgdCK3N6DHI2ijRvLI+VdQV1jCBSadixr3kZ5KYRLNhJeuxiWsIbv22IYwug5xtYzWZSLuSbUgWUm2D+Acmo3FoyEHUiQOHEJMduIrD2LPlNFViPZYUZIiiYCNVMSKYDIRaTJyaQS7ndKXXsA2dNgn7nEYNTBAtK4e0WEnsXs3zmnTsI8wgoaKprOzo5HdG/7CH6RK+mzplDrMbMbNGY07+PoLL3Dnd/6buM2GKkrM3r+TK8+fw0ftDTwVczPWYSHV0Mh5a9/nugvn0/erXyE3t+CaOwfJ4yH24UeYc3PxXXctprw8tEiU2ObNCGYz6sAA0Y0bae4bYFflMKq62hl79hwyb73lmBqW2PbtxOt2YM7LxXXmmYifQf/xMXoffYy+Rx81/hFF0DSsNdVk3X47psxMrEOGIJ6kjkXp7SX41hLkjg4sJSXIba1oySTWikpEpxP3vHmgawg2G5FVq/C/+BKxTZtIP3sCuYumQdYwKJqEGo0T+OOT2PR9CF1bESId2DM+QTueOxLG3wBjrwVRJL5rF6bMDMwr/h0OvU8qItGxMZ14vwXveA+5T7zHa++8j+u1ZynZ1oAlQ8I1KZcebwJ1jYalJ0jeBD+hFi+x9sExBB1HVgrr/Em82JPDnK9/nZqaGkQgtOwdOu6+m97qYawfOpSrb7uNoqIiwOCG6uvro7Gxkbb2dpqHjqI8K4PHWnrYHTnapvS6XB/D3m/nkWorHYMuJZuqkBIlXDoUB2PsTjcUv1eVuSzbS9xsZarPg19W+G1rDzkWM2FFoyGe4JzMNO4ozeG5/bvY21bPNu9wVKMbCVkhP2fqCXI3reG86hoqhw4lsnYtkseN6HAiOuwEEgnaF79GX4aPWFkZtYebMK9bd8zzdeYksObYsLsHkHyZOGztCNLHPO4eo0Zm3HVGXZA9HXI+HyPxp/EvpXASfHztgiAg98aIrGs3muhU+7AMtiVMHgqQ3LEfh7ASta0JQYuSiq7hmvGPs9FaQkbKzzWdbyKYbBTqMepEH8/lX4hbS7J68zUUJIzZX3z+L7BNuvFYv75mzLzprUfb8Try/k2sI4PD3rEsz51ESJfwmwTaRIFa0cTCuhCTuuM8X27n9SILMbPEeY1+7nzjdbZm2OiwpBjZsJ+KkJ/gz/+H70gOGhWJ8alWNluK0AXjwxiZbOdy/3pisQA1+ZVMrp6GFusnsfQV2PQ+volexFjbkRRoHRMCRy0c3eKmv0Fkm3Mcrd4C5qb5cMoRLLHdSMl2lL4+RJudWIeCIztFx6Y0RJNO2pzRJHdvx5rtwJvXg8mUINxmRRBBsqmYbDqSw8w7GVO4u/oO/GbjGeT3dFHY20VjQTFTdmzlnSkzSZktiMD7E4ayZOMWfi040CQJSVU5u6uFOx++H1M0inPqFGJbtyG6XbjPmk1g8WJQFFxzZuOZNw+5u5vkvn3ENm/BPXcumbfegpSZCbKMGgwS37kT+8iRmLJO7hI7HcS2bEGLJ4hv3w6SSMZNNyF+Bj+RrhjPQDAdLTYLvrWE0NKlJOrrDXeSz2e4Ea1WtKhRuGirrSWxdy85996LY8J4kgcP0vPLh1A+waALYKnSsFXlku/ag+DJgVAblJ9JuOgO2m79pjG2qKOJ4pEGTa5rF1AyVAZNJTziGl7+6zukrd9JQUc77lCY7txc8js6yPjxj3n30AdcqLyBPRQi2OIkpI2D2iCF7OIJ++18867/wqTLsOLHsO05ersn0vd+PYokcnj+fKb/x38gmEy8/vrrNDcb1oHJZEIQBEaPHk1WWTmx3AKK13bxQCTIuwVmBEXDlQhT0duBoGuMjwdJiiKvldTit7uY1t/OkBEj+bfCLKpdJ1bEmq4T1zTsiQTRd1/Bru7GtOdpNs55i6V7m5ix8h0y9+9FMZtwxeIIg9YjZjPIx/b3EL1etOBgjYYo4ps3Emehmej2fbjS2nF+/23IH22wBrz9XaNgcvwN0H/IYBFo/chIigCovRgu+3z035/Gv5TCp6ArGtHNXdiqfaj+JKm2MOHVregpDV0zqJs/7mGsBpMcMQMGu1a57O9jUx/nmYKLWZA8RNm8e2HHi+BvIpE3hjuieVwwsIFzKmuhYjb6pscQDi6H4RdDqNOgSrB5DfoGd94RqghZK0bXJSzS4SPnqul2gpHRKNpwXPaNiJYw+rAL6N9v4sm8cn5XdTxPTxEJWrGRk+zj8QM/Z6o1RVPGcF7X80lJNl5yj6fTdNQ3bBUFUppOmkni/PUrmbP7IyZVRgiu3omzMg0h1s3uSBl7x8wnPR7graxy1o8YR3yw92yWxUSt045VErCKImp7O4F9+znHYaa9yENPXx/lH2zBGk3xxoy56IKAL+inItrOeLGBzriPyoFupHCUd4ZM4oXpF1DV3sgV77xFeV8P4269mcTrz6I27yTeb6HDm8PLc8+jzGrmlqGlmIuLaXz3PTq7e8g8eAB7a4tRf1JSgtzWhmPcOAp++QtMWVkoAwMEXnmVvt/+Fn2Q9VXKyMA+fDiRdesQLBYkrxd1YADHGZMQLBaybrsNW3X1F37Pviwofj+9jzxC6O1lCBhZbWr/AGo4TGTFCszFxdhHjMBcbLjtpHQfajiEKd1HqqWF0DvvGLU2g0FrAGtNNbn/dR/JhkMIZjPxrdsIvPoqAM68BLnjgkhmjUTATPvmfEx2HW9+H52pbLrtNRQVFlJ8079he/vfINBsuCRV434eHPIN4iUXYPrOXQihEFk3XkXmVRewuw/+uvgVssUgUc1MwppFhtrNzcofUMxuTGYr+EoNHqpBJNU8OlbKJPotyCYTe2trGMjKZmJpCYVnnYVzyBBee+01Ojo6SCaTjB49mjE1I+n4azeXjLdhUlVua9nFvy+6kt7eXvLy8vD7/fz6iSeJWWxcPnPasfTi0X7o2GYkKWRXk9i6lsj7S4nvPURsZz1aUkOyaJjTzSS6VaT0dOzjx9Pc14ddgIIRI3GfORMtnsAxcQIgoMsp1P5+lNZGHBPGk3rthyT37MSc3Ic9LWEQZyoJOPt+g4frVNB1aN9KZO1KpMKh2GdceFrv1L+UwqdwomCnKctOxrW1SB4L8R29JA740VUd+4hM7NU+/h977x0l2Vmde/9OrFM5dXXO3TM90z15RpMklAEJBQQiR9skg/mwDTeBzTX38wXb4A/7YjDYgC7GFroSVgAUUUIaSSNN0kxPDt09nburq7pyOHXCe/+oUc+MIhJg+NbSs1b/0+ec98R697ufvfezq8cX0Zr9iJrLwj8P448dImz8kHLkEzDwZvwbmuqqibMlNOswRDqxikGKT05TPTJJU9/NyMmduE4QhwZkd5FqdQDZTWE5fRSKmyjt/jHxj74DPaJhP/KPyIaOx6fglXcD4CgxlHhzvdp4yyfhss/zaElid75En+qw6ei/8eDkGI+G13EBWT4wuIGGgSvONvh57v4dl/QZDZpn82UeXswTVBQOFsv8PJVDIPG2Rx9gYs06GgeWIzk292bOymUYjsPbgh4u62knpil8fypFsmZRdV2qjsBFYLqCGdNCBkKqQtaur566ZUE8Oc+CojIViuI+T7pbdl3edPoE//UX9xFdvoz4Rz+C1tKCW61S3rsX79p1iGqF3E9+SuZHP8KanuYFUBTa/vZrhK6+GrdWe9EVuJ1K4eQLaE2NS4WEtfFxUt/+Dk6xgJpI1CvYZ2YxBgbo+tHNL1srUpuaInPLLSjBIAiBsCyMwUECl122lE32auBWq5inRjBPnST51a/h5POEr7kGa36e8tNPoyYSCATha6+j8XOfPc97eP59jlx1NcaaNTR9/r9RGx1D8ugELr74BVlMD95+O6k77mDdvn1nuVBA8Th0Xm3zZOIy9jkDfOqP/gi/ocO/XI+Y2Ueq8CasikL8iuWoCztRph6HcCeVSjO12UXC8XpLUzfax46G9zHuNNLZ2cnhw4d52/bltO77an0FfA5MuwmPWvdkXBeyyWaKp1xKU+ffp6ezgcCbb8DYsoVdc3PsPHQIB+jt6GbC7mSseoyPb93Ili1bAKgMD6N3dnLXww9z5MgRPvvZz9Zl6cd3wjPfofLkA2RHdBxTxrZ9VGbrD0IP2ngbXQJXvpnsI/tw5SDB699L9H3vfUmqD6B6aB/yM/8Lbf4RpFq+nvFoV6FtI7RfgLvp41hZB723B7dcxclmqB49inn0GMGr3ozs8+GkUthn/pxCoZ7i/o1/IHDF5XQ8R0O+SrxuFF4EVrJM9dgiSsSDpzeMJUsc3zGBN+qne00D+svowZSHF1j80bGlSk1kaPjwEOZ4nsIjkygRD8KuqxuiSsi6gqQr9QrI6SKiVgTNhz27v56W6C5irAgSvvbN+DZuPO9cbtmisuswcv4kxpVXIRm+ugTErn+uf2DNa6BrGxy4FQqz9RzoTb8PndteUwn8Qs3iK8cmuCVdoFFTqIr6BP+ZziauToRJ1WxWBgwS+ssHvBwh2JEp0Gl46PHqjFRMpqsW2yMBtDMB5OT0DMeOn6Jt/ToOWy4SsCbopcv7y+nRC8ehNjqKNTeHbBh4li+nNjaGEALf+vWvfLwQ2DUXy3TIpysU0lUSHUEiTWfjBplbb2PuL/6Chk99Cs+yftyqiTCrOPn6Kl3YNmpjI8Unnqiv4s5QPM/FCrTnePBCgeCb3kTz//jSixoXIQS106dxUikqwwdJ3nwr48oAmehyYkaZDZ++hsTmIYQQiGr1vInIzmSojZ3Gu2poKTB9LhZ/+K/Mf+UrRD/0QcLXXIPe3U3t9Gkkrxe3apL6+7+nevw4zrJl7LVqbP7gh2gsFnDLZdTsAQLJ73Fk+Sf491HfUtqpfc9fou7+W2b2JMiNepANo16tLwlab+ggtLELaeFoPUbluYD8z+4htiyN4tWQLvo0YuEkSuvKpWp2u/VSFg4F0HPPkB9RqaYgvNym8X1vRJ17ErLjCAH5cS/CBSNmUU56yI97qWT0pVJwORoh/8EP8vNMBtd1cS2Lj3Z0YD/2OFCn7bSODpq/9U3y6TS1r38VTc6gOyeplXzkT6vIhgc14keWSgRWdRL9yKdQGxqhadXLV/TP7K8rAcwfRnReiHvkQRS5snTdloji6wjiDLwTz6XvIX/PvaS//33cQgHPihXUxscRlcpLj38O/BdeSPs3/+FlDdLL4XWj8DwIV2DVHOyai+Gvc5I/+dKDTCfrhkB3ywy15hi6YR2lmTSOEaLl4tUossT8//wypaefJvaJv6W0M4XeFcApWDiLddfZuyqOazrIPg1jeZTyrntYvPku/Bf9J1BMKk//K95VMbzrLkD2qvg2bkDv73/1FcuzB+DZm+u9naf31mWcb/xufQXyK0IIwTO5EkNnOFZLCGLa70ZHslcDs2yhaDIj+xY4tTeJY7tsvq6H4qLJxOE0E4fTlHK1FxzXviLK2ss76F7TgLBtTr/v/VTPUcEFqHoieHq68RpgJ+cRl97AYc8WNK9GU1eQxu4Q/vFnKd15K0QSSGaZ0iMP0/KVrxB5+9sAcGs1qgcPUt69h8JDD1E9dAgAgcTwhZ8nrbURCkK+WGcwE51BmnrDDLYXsH/xAIWHH6Lc2ER+MY1vIYXm8eDbegnN738H5mKezJ0/RZo6Ref3vsf8l79C4eGH68vul4CQJCQhmL/2Gtb+2Z9RKBRoaWrE/adLMRcnObL8MwwefwIrmcKnjVKc8ZCd78bJ51FiMYRp4izWEyUkXQNJXqLo5FAI38pOmpsfRPMKXFtCVgVi+dWYvX/A6U/8Z0BCCYXwDAzgXb+OxX/5IZKmEfvgewlFRlC71+BOHcQuC6yaF9Wex1i8D7dUomL1Ucu5ZE/pmNN52LCBn7W1snl0jKbDh/EsW4awLIJXXkH29jvq1+SRcBZTKJrAKikokQih668j8elPo4ReQZb6of8BR+6CbZ+ut9v1RuDOT4LmhY7NuMcfoTjuIi/birrxRsoplfIzuyjv2oWTySwNE7jyCnzr15O76y48K1fi37oNNZHAM7CcwkMPARJaawtaYyNKvAHZ58WamcHT1/eS3uEvg9eNwvMwN5rl9q/uA0CWBLomqNZkVhSeoKk3wqG5OGml5bxjNLeKQQXLdPBW02z37yV42QdIfef/RZTKBC5/N6FrrsE89Rjhq95E8u//nsqBA9gzsyiRCG7ZRtRKhK67lta/+WskWaawWCUQ9fzqEhaVLOiB82ii9HSR40/PYVZsgjEDRZPpWBlDkkDzKARiBvKZFbvrCiSJ3ykpjdeKWsXmxK45jj8zx9zo2UKpYNzAqtpUS/WVvO5VaA5X0fc+jGyW8Ioinlqe0ubrGKt1UDYVOofimGWLeKufwnye9GwFRZNxhUQpd0bOWJHwBnWqRQvdq2D4NTJz5aXz+iMeSjkTVZMJVabRF8YhECZInnxFxVuaJ5E6gNW/GrHxAtRwK8mCweTJEpe8fzlOKM3Jw2Mkj9uIggZlf53akXJIgQnSnhqaFUGrhdFqYRTXg2JXcWUNIStEsyfY1jJGz9/9DU42S+6ee0l9+9u4+Tze9eux5ubwbdhA7CN/wMQHP0TedXCQOLV+HUomQ7Knh67COKv27MYuKbj2+ZST1tFB4LJLMY8ew8lmaPijP6pnPO3aVfecVBVjxYo6/TE3h9Ycw9cfpXhkjlCXRPaUQBTq1KQSiyIHg1jjE/Wx29tBVbFOn37J9x29rJ+mpsd57st1HchY15B68ARuOAwzM8Q+8B4ab1iN1DgIM/swb/9LJh+QsPKCzhtD+P/sPlwMhOtSGxsDITCGhl5A+znz4xS/9SeoF74b/57PIlwbyTlH7jvcifiD+8k9vIvZL36R0DVvoe2rXz1vDOG6mKdOUd69G62lheDll5+33ZqepnLoMNbsDKWnnqL0xJN4VgzQ8NGPojY34129GmFZZP/9dtSGOKG3vIXXgteNwvOQeuxp9v7Pf0NybUxPFEvzEagucPE//jFGXx9CCEbu30/yeBJ/cxh3foaxnadxVC9aezvTWT8Dx2+mbfYptK5OgpdfweIPfgCKUqcPzjRe8V9xBYWG5djbrqHpxAP416/hSLaVQqpKuNHLrp+NccG1PWy+tmfp2oQQjO5fwLUF4UYv8dYAyis0jn8+Tu1N8uD3D9f1iQwFs2S/YJ9Qwsvma7qZPJZhZF8SVVfoXhVn3Rs7ibX6fykD4Tgu1YKFEdBQ1Fd3jb8u1Co288Pj6DvuouRvYcdoK8WCS6zFR5tngcJjjxPKn6bZyFDOVpmPrCJYnCJUmkS2axhr1tD2t18DWWHqk5/EmpvDLpaYWPUuJmNb8FWTFDxNaE6VBmcKFA3JHyBszqJ6dap6hIopodgm/eYB1PQU44EYM/E+bL2ZquUjmDBobO8jM1mkMJdHskzK+NFli5r7QhrOlWvYoTRGZ475ZBKvYRBLpxHZLMVAM0Lpw7AboXo2BVbzSQhfiaw5S4gA8YAHX3sr47uLxNJHuHyrgzV+msLDDyPJMi3f+Tah7dvPe8+5e+7h+H//C4KlF8qty61N+Lsa0HoHyfzkXrRokKa/+Ev8W7ZwaHiEwztmUIXBlqtW0LEyRm18HDudxrN8OUoggHBd0t/7Pgtf/zpaRwfW3BycqT0RlQpTPYN84+KP8LYLB5h+/Fm8KYtVR+6ma6K+eNN7elCbGpF0D5KiUDl4ECeVAknCSAgSn/gIAWkPnKjraOYbP8H0N36GEo3Q9y4HJXf87M00rcZJTlJLl1De+x1S9w7jpNOUnnxyybNBllEiYfSWGHp3F+FlAu/0LciKu+TlTI9spnp8DOFKBAcjyAOXU9g/hnnwIHp/P41/8sfYqRSFRx9FmDWi738f3qEhalNTGCtWnOeN2IuLzH7xv1N8+OGz77SjA8/FFzOyZw/TPh+FYBDdsVEtm0LAT0s0ytu//Px2wL8cXjcKz4NTLJG/+26MoUG01lacMylint7eVzxWCMEdX9tLPlniuq0ZTlj9hFojtKX3kLztTlLbP0DiyH14tl3MvlQnMyfrxTk9axtwLJeJI4tLzbq8QY1KwaJ9RRRFk/EFdWzL5eTqHrNBAAAgAElEQVTus6mCsiIRa/UTbwsgSRBp8tG+IkaiM7i00n8OmbkSe+47zYld87T0hbn6D1dj+DUc28Us2YwfTqPqMrWKw777xyksVtENhb6NjbiOYGRvEttyCcYNbvjT9YQaXshXCiHYdfcYp/YkyS9UcF0BEjS0B4i3BmjuCzN4YQsS4jUFWF8JbrXK4g9+wLOHJKZqTZgYOLKOvzRL2duAZpUZOnITtifPU9u20uEKtrW14ZmeRo3F8G/fRu30aaz5JMbQIKGrr0aSZUzTZGJignw+jzwySujxx3HHxkivWkVTJI6Wy+JmUrjFErXTp1EbGnCyWdxiETkQQAQCTLY0Mxlv4LTXQHFdZNvBMKsU/X7CpsnbVBVn+CDVkycZX7GafWtW4joBDMtHa34W0drBolZBkxzylTI122Tzrl10TE7iKCpH3/p7GFddzXVvWInrCo49NYusSLQuixBq8OI4Djt27ODYsWPMn0k3NcotBPPL6D59D42l3QSvu5bKhg3c88RuPLUGNl28kkvffCGLi4ssLCzgu+l/k7nvPhxFwVs9I+990UVUhoexC2UszY+mCfr//f9gRVo5+swkz/xkDISMkGxkobH+zZ209keItfrJ5E0e+dkIsgNivkpj7jDLJ3+Gb/Vqyrt3M5tYwa6WrbhmBMNVMZUaXrse+LeUEjdc6aIjKP5N3dORfD6IRKgMDKAODuK59da6cQDiH/swCecmJKcMZoGs5z1olSP4PCNYF3wBLeKjcLpK+q4deGIKgYEE09/++ZniPRc9LIhviWJ401h5C284h+o5S7cVZz3kJ7y0XJClsqgx/lACyTAQ1XP6IMgyciCAmz/rpT4nR2PNnJXDUFtbaP7CF3CKRQr3P0Dl2WdxKxXiH/sYgcsvQ21s5ODkJD//+c+pVquoikLMMDDLZWpAOBymb+0G3njZxa/pd/S6Ufg1Y+Zklju/vo9wg5fcQj0w1L4iSna+TDFj4g1qmGUbzaOw5fpezLLNMz8dRTcUtt7QR1NPiPFDadZe3sGO206QmSvjOoLcQoVaxWbjVV0s29xEZrbMwkSehYkCizP11du5HLiqybStiNK9Ks7sSI6Tu+dRNJlVl7Sz+doeNM9LT8pmxSY5nqelN4yq1/cr52uM7l/gyR+fpHttAx6viuZR8AZ1Tu6ZR7jg8anMnMzSsTJKoitEMOqhlKsxO5Ill6xQzJhEcifxl+eRlq2iYfMQ4YQBpom3MUL32gaUV5AHOReFxSrCFWizp1j84b9SOnCQVF7j2XV/QtSZI6xViERlTtl9tPX4CQTGmJsf50SxCIpCjbrI3o033kh/f11iWQjByMgIY2Nj5HI58vk8U1NTuOfw7bIs4/f7KRQKRCIRNm/ejKIoGIZBX18fgUAA0zSZnJxkbGyM4eFhCoUCuuFl+dBa3nrVlWiailsus+/mW7h7agLVcVAkCY+mkXddYuk06/c9SzBfIGlE6CicLSQUQDYQYeGt78d//BC3JNbzqNGOK+DC/jir2yLcuKGNZyezPHI0ycRiGUmCNe0RNndHiboZ/LLgiV88jC/Tj73gx4xOUPRMYVhx/Jll4MoIycEJZKiQpeqbpakpweUnTjLV1ES5q5O+hx9BevJJrNUXsbfjvZTLdYURX0inlK1/i5aeI70+wfzMSZandLyVOvUqNImK66I7Ald2yKoSjTWVtuURht7Qxt7RRVKPziAhYSslPFEJp6TQ0K9h6gaFvTXy4aNU/Rne++GPUVmcYffu3czOzi7VGL3t2mtpeuDnZG6+GVyXYGeV9u2L9Xa1C3XvIDm9hvSOFMgyEg4NQwVsUyZzIoDicQhe0EtT3wiyeeb5N62GchrRsQXRtJba6CjV6UVqLZdxomrSlTmJR/GDN4GdXsTq6sRrmkhCUBsdxc5kiH3wg8g+H1pbG24iQa1cRjl2jNr4OHIwRPJrX8Oan6em61iJJrR1axkeWImpKrQ0xrFtm/379xNtbGXFus2sHuij4kqcShY5NJ3jll0TXNTfwN+/55UTKl4MrxuFl4CwLFCUpdQ8p1jCmprE09v7olkc5+LAw5M88eOT9KxtoKEjyKk982gehbVXdrD3vnESHUG239iPL1QfZ/p4hnhbACPw0lk7juWSXSgTb33xnrBQn7inji+SmS1jlixOH0pTSFdRdZnVl7az7srOpXO+GNxKBeG4KIGX7uew885T7Hugzus+59W09IXRvSrpmSIDW5rZcn3vedSDcBySX/87Dtx/iun+t2BLGmo5S8WII+SzsY6Is8Cm7QG63vUmNI+CosqYhQqKY1I4OoIWj+HrbKHy7LOU5DB3/cs0lqugWUVkYWPqESRJYIQ01rwjQCabpq+vj+bmZh544AEOHDiALMsYhsGHPvQhNE3j1ltvJZVKsWXLFrLZLKlUioWFBWRZJhwO4/P56O7upre3l3g8TiaT4eTJkywsLNDf38/OnTvJZs9v89nc0sp8Molw6nRhzZvgsWyEaTcESAQNlZUtITyqzM6RNBtDRTbGLIQQJNMZDpRC5KQIPZJJ1fDxhg29XEmKmu0SiIXp7m3B15g4z9tyXcFNT45x0xNjLBRNrDNSCJ0xH8saA9Qcl/2TWQrVs3ThhYEFllkTJErroegHSSAEJDoDbHtbP4/feZDFmRqKraKHZRalYyzb3MSRI4exbRvDMLgsPMjwiTA1q4oTTxL0xiikq1RYxNJzDGsxDtZauLE9ij1/mJB5pmiu0IfqauRi+3G0MhU1yMn0INstD94zl1jRC5RDR0m0Rfj4xz+GcuZ+Xcfl7z77MEoNCuGj5DwlApKJ6o9wqBRgruZhjZ4kJlf4/Y98lFZNYfbP/5zS44/TujVDqLuKFG6nMFrBzlawyipuTRAbtNG9ZYQLqSMBGlYV6/GIcAdc9gXo2FKvGj4Dy7KYmZlhenqavXv3kk6n8fl8RCIRstksmqaRy+VYtWoVb33rWzlx4gTDw8NcffXVRCIRhoeHue+++6hUKvQtW86qwZVUq1Vm02X27tqNJp/1MqRaANMO45MsNEdnCj/7RZguW0ETEhOaQ0kSzCuCiwcSfPLSPrb2Pq+d7y+J31aTnZuAa4HkOZ3XYsCtQDf1JjvvEkJkzmz7PPARwAE+I4R44JXO8ZplLmo1Fr//fVLf+Sf0zk58F1xAZXiY6uHDIAR6dzf+7duQ/X68GzdiLFuG1tZ23hhCCGZP5Uh0BdH0Xz9N8stCCEF2vow3oL+swRGuS+nJp5j+3Odwy2WMwUH09naE4yBsC//mzYRvfAdKwE+1ZHHfdw6yYlsLLX1halWbxq4XZmOUn32WxX/5YT2VMp/Dnpkl8p530/zFLyIpCqWnniJ12+1YkheloYGpPWMcbXgjllJP+fSICg32NNNaP7qZxdKDKI5J2+JeXLNGKr4aS/PTl99FNdGDWDHEZHqCSs6i6pvH0nNIknReZfob3vAGLrnkEiRJQpZlTNvh1qdHSR14lPzCDLFYjHA4zKpVq1i7di3qORkcVcthPl8lHvAQ8Jz9v+u6mKbJYtFk14kpdu4dppKeJuMajDhxUq4fXffwgW1dbOuNk8ybHJjKcmyuQK5isb0vzlMjaU4l6/pEy5sCvG9zJ+/c1IHf89oySFJFk1uemaC/McBVq5qXDLTjCo7N5RlLlZjJVvjuo8fYpozS43dZ1bcZUYySzFe40y5RdgQbOiPc/MwEfZbMJVWNuCNT07Iorgfd48NkEbUcRfKZpAPDEA1RKxeoSF6OFhtIuGGu0/xsRkWyXASCw0aKXIfC6NxRrJrDdTe8BY/Hw2233YbUtJxjdNCQLxFNpVEDp7nyjZexdu3aer3AOcgmy9z/z4dITxUo+Sc4FijziNnF8qYgf3hJHw8PnyYw9gu8Xh+XbdtINpvFv3Mn7XffSe/VC8jBCFJlEUkVS/2mRGIF0oV/jPjpnyC5JqJjK9Km36faeQmP7z5IKpWir6+PZcuW4fV6uemmm1hYWAAh0Wj0omc6qHnSiIY0re2NlHJVdCfC+NEkfi2CVQaBi+srEgwmKCaLCE0lJ7noZLF90wi5bhEtFJp71pAwQkwvVDGOeM7vsvQcJOoKxGcWAbpXxfCrdK1q4OL3vLgq7Svht2UULgaKwA/PMQpfBRaFEH8tSdJ/A6JCiP8qSdIgcAtn23E+BCz/TbXjLO3axcSHPkzgssvqee4LCxgrV+Lftg21MUHmX/8NO5nEKZeXytQDl11G4JKLsRcXwRVE3vVOtMZGhBAvGZR1azVyP/kJlT17iH34wxiDg9ROn8Y8dQrPihVobW1Lk1r21lspPfMM+hsu4a+O2/RvWsX7L+wlZGhIEtROnULv7kbSXnzit1MpFr75TUo7d+Jbv4HIJz7BoV/sxn7iMYyZCTwzk8hmFa2vn9oF27EOH4SFJHlLYJoWbcUFbFVjsaWbSCLKii9/CU9PPQAuhGB6eppjx46RTCaZGx3FSC+y7OAw+UQjvmAU1avTtHEDoYvfQLlcZvny5ZimSbVaZWxsjHQ6TU9PD+1NrRz/p7vJn55jstZCTk3QHUzjaAahBh+pqTzz5TCKIjB0i9DKKmawsrRic5G49PIrCAf8ZGvwo4MFDh49wTsGDG64bDNSoIHHTizw1EiKR44lcVyB5QhkSfBP713DG9d0nn1mjstsrsqphSJ37Jvm54fnMG2XkKFyw/o2smWL+XyV3kSA4aksh2fqPHHUp3HtmlbesbGd3oSfbNmiNeJFeb6a6zkQQpAtW9iuIBH85eowfh146lSKD//vXTQGDQpVi/wZL2JZY4CIT2P36Qw9DX7+4b3ruW33BAt7JhlK6dSUGll0GoWMGZyh4hmn6HRyqxNjQ8DgWlPhjdaZmdan4l+TwNMbRlJlsveM4qSrlEMO2oWN9FwyCMA999zD7t278Xq9VM7k47/lLW95SbE7ALvm8OjNxzjxzDwdg1HWvLWXeNhDMVVFUiS+8dhutLEnkCSWxl3m93PRg/9E1/YFXAdm2z+Pe+VbSXgFR+eqSLLMytQ9aPt/yAPtn2e+qDA1O4HtWEseAIChBJELYVoDyynMO7iOINRgkE+9sJeyrEJNKuHIFnnbT8LRcCULU6lREV5CQkZxQShQatFo6veTyMmMP7u4NEaoweCiDQncXI32d/Rjmi6LsyVirX4Mv8biTIlixmTySBrbdmnpDbPqklffihR+t3o0HwcuFULMSpLUAvxCCDFwxktACPFXZ/Z7APiSEGLny43/q9BH1WPHMFasWFplCgEnkgUGms72XHbLZapHjlDevZv0929aUqJEkuryB//Pp8nc9mPkgJ+Gj38cYdmkvvlNou9/H2pDAwv/6xvUxseRdB0hBP4LNlHevadOWwFyIIAcDIIE9sxsPUB15hxl1cOcL0baGyYkOwzMniQTSXBszcUM2FkaZkbxdLRj9HTjXb2G5N99HTu5gFi/CWv4ALJVQ3UdFj1BxsItTASbGA82s6NtLWXtbNZKR8zLpcsbqQ0foHv4SRqSU3RmpvH6DcSmTdSCAY5Hw5wql5FcQaBSIbyYZqa5Bfdlahd0j4eaeTZdT5ZlXNdFVVUuvfRSBgcHQUhokhcjqFCtVnl0x1PYVo3OthYOHjxY17eRZCzNjyUU8jXBE7VOiuLs9auyRG/Cz8hCieVNQY7N5RECGgI6bxpqJuBRuaA7xtcfPMFIssg7N7XTFvWSzJvcd2iW+Xz9GiM+jevWtLK6Pcw9w7PsHE3THDJoCOgcnyvQHDZ458Z2VrVF2NIbQ3sVcZHfNvaOL/KZW/bT3xjgypWNeFSFt21oQ1Nkdp9epDlk0BGre2+poslf/uMddDa2UMhqTM4W+UPJoAkJGQl0GWouyBC4qA3vqgb01sB5PQyEKzBHsuTuP401XcR/QTOR63txZbjjjjsoFAps3bqVcDi81K/g+XBrDpImLy2aDu+YYcdtJ3Dt8+crT0BjDzkOKDUsf5DPb5I4uOsJ1jc2cuGjX2Y00sO9bVeed4xi+QgGg8T9jeQOh5HONHhSdAlvyIPhk6lUq5SSDiARaPRSietkDLhnMUe/rtMjqeg2pB2bHek8OY+E5pbRZJm3bRsgYSiE7BTrhpazrDWOpsgszpbYc+9pRvYlcR2BJENgg4W/RSGSaaTHlNDPJKbk41WON06RKqeRAgpOk0o+VOHy7svpd7sJNkSRfwWG4nfJKGSFEJFztmeEEFFJkr4JPC2E+Lcz//8+cJ8Q4t9fZMyPAx8H6Ozs3PicMNarge24zBdMWsP1xjO24/KffnyAu/dPsr7Nz1+9ewv9jefz+m6thpPJogT82Ok0s3/+Rcq7dqEkGpANL9ZkXb9IicWWCnj0ri6a/uwLGKtXk/rHb1Pa+RTGipVE3/NuzJFRzBMn6hx/tYp3/Xqi730PX/jbO6iMjPLhYI7SzByemUmU7CJ39lzI5vQpelPjVFWdg/FeGqo5OsspNKtG2Rvgv1/4cQ4HWumycnxm+mHyQ8uQezqRZIVSuYzjjVFTvLS0trGss4ViPouzcBrbtjh06BDFYhGvz0exZOIv5KgE6+685LoMHjqMna6hWTajq7ay9TO/j2YXKSsB7EqBZNFi+HSSyXSRuVyVDilFAR+dzQ1cv2U521f1c+DoSZ7Y+TSlZP1ZCSQijS3kFmbrfXdFvUmJKgnKQmPYbmFMJOhKhAgaGgPNQbb3xRlPl3FdQWvEy6buKPGAhy/fc5T5fJWh1hA3bminK+47b7JZKJh87YFj3L5vGscVGJrM5p44V69qpiVssK0vjufc7nrneIBCCHL3jFHaPYd3ME74LT0owVfXq1q4AmG7SxOdlaogSaBEDCTlN1MfIiwXa66E1l7/lp8/+QpHgAx2qoI1W8It29Sm6h30yvuTS3SFG9Bo+vAgtbE8dqaK1uTDWBFHjby8xyMcQf6hcQqPTqK1+Ald2YWxIvai91ubLWGezIAkYc0UKQ8v4F3dQOxdA0sS6oXFKsefmUOSINERpFwyOf70HFNH6hNpToV9Ppu3b6xw4uizXNXUzKPpFG3t3fS1DpFOp1HLUcb25BDCRUgujkdwMmKQzVXxOBI+ASFJRnFgXHdJJ1SOF+vJDoOSwgcjIaqWw2BZ0OxKJGXBWF+QnC7hjxhsvqCNnuYgC+UF7h27l33z+/BqXqKeKOlqmg2RdYxnZzg9Osfp4nFW2+1cnN/IykoPilC4peFeFnw53j97NU3W+fECS7IpyCViTpicUuTwsine9Xv/P+un8CqMwreAnc8zCvcKIW5/ufFfq6dwaDrHtf/wBHG/zqq2MJOLJQKZU6zXZpAQTJDgnW+/gYsHmpjKlPnZs5MMtseI+3VURaYv4SesSeR+8hP8F12E2tBQ18mZmyd8zVsoPvUUss+Hb8OGX6rq0HVdnn76aZ7ZtZt0Jodm+LjwgnXEYjEikQhtHV3sOJliU2eI/U/tIFuTyMf6GZ2a5YGjOVpPH8FpjLOuQ0arpImH/MzNziDLMtFoFNd10XV9KU0RIBAIUDqTjy5JEl1dXbS3t1MulymbFs+cmCbc0EIwEiWdd/CGYtz4huXEAzqJwMsX3M3nq9yxb5r5fJXb905RMM+tkxBc1lCmI6wzNTNLzM0w7kRB87J+1QpMdEZm0wz2tBE0NK5a1cyypuCrfscvBdtxsZy6Ufhli/WEK5j9yjNIuoJbqCFpMkrUQAloqA1e1IQPNeFFNlQKj0/hVmwkVcbJmfV94l4qh1M4uRqSoaCEPdjz9QI3yVAw+iJ4lkfx9IQRtkttqoCo2AhHYM2XEaaDpyeM2uRDkiW0Vv95TeKtuTJuyarTN88VJJo2qR8coTaWQ+sIEn1b/9Ikbudq5O4dxRzNIWkK4pzAtOxX6zISA1ECm5tBkdE7gi9sdPQqUDm2SOb2E7gFC2MgSvyDg0t9l4ULomKTvXsEUTsjtW6o6O0BzFNZfBubCF3egRo/Pz36u8Pf5Vv7v4UkSXxp4K/pLQ+x/xdT5OfK2JJAaZ9h0RlDKzUQqw5im2fIegnMdi+efBE3DzeHqgz1NnCJ30eT30MOl7mcScSrItUc2sdLtFcFXpd6/2ZVAiSUJgO334M6amNNFpauS4l4ONw/xcjIMe6IPUQ0HGdooZvmUpxOq4WhQi8nvOP4VB9thYZ65lVcZrIhxcnuOQaWr2Jb6zYy1QwRKYSsKtiZKtZMidJUhoXZGWYiaYKzOkqjwaZ3v/E1vZPfJaPwO0Efjc0scPvd95OxFHLZHCE3h+5UGRwcRGgGRw/soyQ0KkIjJFXRJZfjdoIZN0QNhaoe4c5PX0J3g59f7HiCRDzO0OBKkoUqvzi+wFtWt+A4goeOzvPIsXmmFst88bohNnXHODaVplKp0BTxctt9j6HrBunpMZzCAguEWXAMrujxMTd5eonauvTSS+nt7eWuu+5i8YwX4vf7KZVKtLa2YruQnJtBVVW6u7upVqssW7aMDRs2EAyenVCr1SqFQoETJ06QSqUIh8Ns3LjxvH1+3chVLH5xPMlYqkRDwMO6jghDrSEkSaJqOTw7kUWRJdZ1RNB/SwVwr4TaZIHkt/YTe/cAWquf/IPjCMvFydewUxWEdTY6KOkyatyLsF2UqIFbqGEly+jtwboq72IVa6GCdyiO7FEwx/OYJ7N1Nd4XgRL1IGkydvJ8TRw5pKOEdJyMiVt6jo7UkNT6JF6bLODkTQIXtlHen8Qt22cqoQFJQjYUfGsTCEegRj14lkWRDbV+vl+hsr1iV5gsTLJzZicL5QXytTwLlQU0ofLG9FbW7+9E9mu4VXvJEwGw4hKz17gcKR7jppM/YFPzJt45dQVdx6IgCdzVfqqLRbKlDOP6DE/Ke+ls62W3NsxMeZYfXPUDOgOdPPnMHA/ccox2W6Hsm8JbaWVBl9ih1pCBNkWmVZEpuYKKcHl/S5T+lHXetZz3nP0q3qEGZL+G1ujDWBlDNlQ+9dCn2DG9g0ZvI1d7Lieg+AlUvKw+1EbcDCMQoMlIjgAXJK+K4tewe3XU8RqyUZfBMQaiaG2B1/TMXy6e+Ur4XTIKXwPS5wSaY0KI/yJJ0hDwI84Gmh8Glv2mAs0zMzPceuut5PN5gsEg7e3tLFu2jHXr6v1nDwwf4ok9z5IrlNH9YbpiXg4PP7t0fBWN46GNfGB7L8P3/wgLlZm2S3n6dIZ2FtEbOpgr2PTWRhhU53FR2OV0o3oDDJlH8EsWNjLqmVSDktCZMboJti3nU5f3s6Y9Qj6fp1ar8dhjj3HwYF3RNRgMcsMNNzA6OsqpU6cYHBxkeHgYn8/HwMAAGzZswHdOE5jX8avhOdXb8p55ijtnaP3iVmTf+YF+4Yq6cVgo42RNPMujqGHPC8Z5uR+vEAI7VaE2XkDSZbQWP0rIAwjkM9lJdqqCW7Fxaw7WTBFrtoRTtFCCOp6uEJJHoXpssc7nn8qiRDxErunF0xvGKdbIPzSB5FHAdnErNuGrXz0Fdi5KVom7R+5mvDCOLut4FA9HFo/w+NTjuKL+XXtVL37NT6OvEdu1Gc2NcmFmLVc6F+INBjjROMVIZYzT2TEm9DmsM1k5W1u2ciR9hHwtT8KO8uHk9VyR28KYZxpLtemutKG79efiRhW+67mVBWURRVeJ9bUyOt9MbG8LK8oxapLLdPcEF7sKy0ttBOzz301FMnk8to9HA7tIRJq4tuVqMmaGidIEjb4m9smHKUlltrZsZSA6wJHFIwgh+Maz3+C63uuwXZvh1DBVu4orXPq8Pby36Z1ctuwKCg+Oo0Q8eNck0Fp+OZWA/yj8trKPbgEuBRqAeeAvgLuA24BOYAJ4pxBi8cz+fwb8AWADfyKEuO+VzvFajYKdrbLwjwfwrI0T2taOGjMQtoudqqA2eOvpX2e0gFzToXIoRaVZwlEF2WyWf7/jLrJVh0knzAp1AYFETg4R1QWimmfeDaF4/TSYswwNDZHOZJmbqUs8Kx4fUkMPyXSGG666gtZ4kLaGCEHvi/9AhRBMTU0xPT3NqlWrCAQC9Z4PrnhBg/LX8dKwF6vUxvM4ZQvvQAzXdKgeTWPNlRCWi1tzcYs19LYAruViTReRdAU7Wad59O4QjX+49rd8F795OK7DLcduoepU2dqylVUNq0hVUjw2+RgRI8JodpTh1DDDC8MsVhcxFANb2NiuTdyIc33f9SyPLWdj40ZaAufrhxVrRW47cRsPjT/EaG6UgBagK9TF5ubNrG1ci1f1oskag/FBHNfBci00WWOuPMfOyafojfWxOrEa1XmOUilSfGqG2sRZ+qaolPlM998wqy2wfPzdXGH2cr3bwaKWZ7/3GEebJ9jvOYZVNgk6PlauXIvP48en+rhn7B6S5XoBW1ugjdnSLI2+Rvyqn5HcyHn30h3q5o7r70D7NbXH/I/G68Vrz4OVLJO7b4zq8UxdH6jZX6cBTKfeSMcVKEEdrTWANV/CyZgoIR0l4sFerLIoF/mZswvTqdEaaqK/pZvdYwfQajLddoJhdRxJktjUtYatvkGsfIWToQV87RGW9y/DHwogn5HmFq7Ami5S2jNHbbqI4tdwShZ6RxDf+ka0Bi+16SLm6TzmyQxyQMdeKGNnqvjWJAhsa0VNeCnvnce1XIIXt/9K/O9/BITlIASIqo2VrODpCSG9TDZPdSSLnaqgtwdxqzbl3XM4ZRsna+Jkq0ieOk/vlu26TLmh1GXLRX0VLwRgv0gCuARqgxdJV5A0GdmnYY5kQZYw+sI4RQvfmgTCdvH0htHbf3M02ythsbpIqpKiyddE2BM+b5vt2mTNLDEjhiydfY5lq4zlWi/Y//k4nD7Mnrk99IZ7+fGJH/Po5KNL2xLeBOlqemn1D9Af6acz2MlHVn+E1Q319qkCcd65/yNRmy2BK3DLFukfHcP1w57ECPfn7+fPpj/GyZ55LvmDtyNkgaZouMJlJDtCza0xFD/bzrJqV5ktzZLwJmkBt1IAACAASURBVAjoAUzHRJM1ZElmvjTPyexJVsRWcHDhIN3hbnrCPS9zVb85CNfl2JOP4QkE6F1/wWsa43Wj8BJwciaFx6awUhXUqAe9I4SVLCEpMna6gr1QQdJk/JtbKO2pt9XUEj7snMnkydM8rB9iu7WcLrfeqlHvDKKEPYwdOoUfD0HhRfaryF4NO3U+J6zGDdQGL7WpAm7JBlXG01mf9GRDxZzIw7npdxLo7UGcsoXsVdGa/VSGF5aCc89Ba/WjBHVCb+pGb6tnnQghcHI17DPGUAl7iFzfhxL14ORrKCH9FV1bp2RRfHK6HlSNG7glC2G56G0BZK+KpMmgvnzw1ilZVA6lyN13GvFc8FmA7NdQE1586xvxrWvEyZvgCpyiReHRScxT51cTS4aK2mCg+DXUhA+3auPkTGSfhqjWKZbnqJE6z66gBHWMZREkTaZydBEloOHpDZ+hac5CnDEevy0vzHIsxvfvIz0/zRFzhJP7nsYslxiN58n4610Ao50dxEoGA3o3aTfHk+Z+cqKIR/EwGB+kPdDOicwJjmeOo0gKf7rxT/nQ4Ide8t287573cTBVpygVSeFzmz7H9X3Xc/fo3RxMHaQr1MXlHZdTdao0eBtoC7S96Di/0n1bGfL5g9hOESEcFhZ+TlPjtTQ2vvlVjVM9kSH9o6OIap15NjWLrs9fhOp77VTZbwqVQp6RPc+wMD5GoruXXHIOj9dHoqsX17FpWzlEcmyEuVMnSI6PsXB6lFxyHo/fT3ExzbIt27n+s194Ted+3Sj8BlAdyZK7bwz/Bc3IPhW3ZOPf3AyOYPHHx1GiBoEtLSjR+qRTmyxgzZTqqZdVG2uqiJWqoLcGMAaiGMuj5/HVbtWmciiNU6ihtwfQ24PI3vMzmZb2KdbQO4I46SrFp2dwcjVAEL6qB7dsUT6wUD83oIT1uoy37SIHdcqFIoGmMJ7+KFrUqGfVhD24ZYvs3aMoIR3/Bc3kH55YypgRCE57pnk6cJCT3nG6q20MVfoYKvfj8/pQ4l60uIESM7AXq7j5Gk6xthQs1btDePoiSBKoTT4Kh+c5mDpEYs5P1A6RV0o4kkNVqnEsOs6hrgmkkMblxoXYOJzwjNMR6WBdYh0hPUTIE8JQjKVJb640x23Hb2Pv/F6OpI/wpu438aXtX0KTz3f1TcckWU6SrqQxHZO4Eacn3IMin5//nTNzfO/g99g9txvTMaFiEZqxiRhRGvwJVCFjBVVs06QmLGTLxfXrqC0R2vyttIc6mC5Oo0gK21q3sTK2kvn8LMMnn2H38KOUZ5Mo+RoVq4JtW3Qmz8aFaqqLpbj4zbPv3tIFWu3sBF/xODw7kMPX2YwV1UlX0yS8CdY1rmMiP8FjU4/xqXWf4pNrP/mC73g8P861d17LR1Z9hO2t2xmIDbyiZ3EubNfmyeknUXBYG2lDVX0YRvt56bymOYtl5fD5elAU47zjHafKyOj/x/T0zbju2WC7JKmARF/f5/D5emmIX740pm0XMM0kHk8jqvpC700IgVuoUXxqBr0jhHfotUlB/DoghGB+9BSZ2Wk8fj+GP4Ciagw/dD+HH38Yx7KQFRXXsZEkGSFevN9FIBansbuXcGMzxUya3g2bGbr48hd0z/tl8bpReB5qTo350jyN/kY8imfpf/la/gUu+O8KnvvxDTUM0eBteNl9rVSF8e89w3eNW5nWk3h1H5PeeYQMBVFACGgkjs82OMRxEm6MkijTVmvkv8z8Pu21JgSCW9se5LQ8RUVUSelZ3tB7CW3BNn48cQcny6eQkGjTW5ipzeHi4pW8dEqtmI7JmwrbCRYNPB6DaCBGi95MoD3OrfyUy1a+kSZ/E7efvJ0npp9gpjhD1akiI+ORPFTE+V5VzIhhuzb5Wr2iWJEUnOflIGiyxorYCpr9zTw5/SSmY7IytpLWQCs/H/85YU+YmBFDl3XWJNawd34vo7kzPYsFxHM6miPRVYjS5m3BafbjNPmpyTY7kk9RtatsbrqAxCTEH0kiua/8uykEHfxFmWcGFzneVcRTk/GaCrG8zpYjUTxnKoIdWVDw2ghJ4LEVZjtcsv0GA54e3nXlx+kJ93Dfozfz4MgDpFOzJLIepmMlKn5o15pYdlRDPVNle6A/x7HuIggXxZGRJBlPLESqkuLC1gvpCfegKzo7Z3cymZ/Eci1Mx6Q90M7VPVfz/pXvJ+596Ul0Mj/JTYdv4vHJxwl5QsyVZiha9cVCp+6wzW+zKeTHr3pQ1TCuU6Zq1tVBJUmjo+P36O/7z9h2kfn5nzE59S+Uy6O0tLyDlua3o2phKlaBn07sQl+8nTZRr0OKRS/E5+slXxgmnz8IuCiKj40b/g/B4NBLXe6vHZnZadJTkwjh4vEFUHUdq1pF93nxBkLMnDzG8Z07SE9N4AuFyacWKGUWXzCOoqoMXXola664ikRXD+npSUINCarFAvmFJI5tM37oWQKNLi3Lu/GGgtSsRYRrk8vto1A8gSewitUDr3sK5+G1GoXD6cO85+73ALAqvgpZkjmYOohA4FXrhSb90X42Nm3k/7L33kGSXfd97+eeG7tv554cd2Z3ZnMAFou0CCQAihFPJC2RIhUgyZL8VDblkt+j9MeTrFBPliWX69n1JFmiLD2KkkiKokyRFIic0y6wCBuwi82zMzu5c7h983l/9GAjAgnBMlzGt2qqprtvn773nHvP95d/eTNPzatRTBQZSY2wsbARW7+6mNxMfYZHZh9htbPKZzZ+BluzeXbhWZadZQbsAQbtQQbsga7kFHlkzSx9yT5mG7McWD6AEzhEccTJ2kmc0KE30UvVq2IIg529O/mrY3/FTGOGqfwUf/XRvyKpv3mU0cHVg/zqk7/KUnuJjdlpXOkxnZ9GExoZo1vDaLY5y6qzys3DN7PUWiKpJ3n43MN4ocfPDP447dDhK8tfYyAxQEKxKNhFXi69TCxjhlPD/Oy2n+WOsTvoSfTQDtq8svIKD517iIXWAu2gzaHSoavOS1M0Qhle9vqmoZsYTY3Q+3iJpu7T2d2Lbid5tfwqURzx4XUfvuDcHE4N05PoIYgDjleOM9ecoxN2yJgZRtOjNPwGnaBDIVFgOjfNTGOG46XX6MQuXGo5WSOBbFsn19SZWEyS7lyipSG72buvv7Z1LGESuR5RGGKN9WHetY2nl58ljALW5SaYnTvOQrCCAoSqZKhkMVRKoEjor1q4RoTlX9RAmj0Cf0cvO7fdzM6NNzPTOsem/CbGM+Nva8qLZUzFrZA386hCJY4iVs+d5Zl/+AZnn3n28oOFwkN3NCgnHFJGikqnQrwW9WaqJl7k0ZfoY0N+A/sW92GqJr+997e5eehmFBTSRpoojvjqy7/Ft888wHHHQVPgmkwW16+TFgHb0jZaag//sHiC2fYquiL4Z8NTfLyniKIo1PQpDtaWOF8/ypQ8waZ0gTBsEMc+qdQWNqz/Inp6F/sW9vHSwhM8OvcIi24bBbh7/Hbu6ulBrX6POPZIpTaSy92AgmDu/F9gGH3ccP23UdV31pby+0VtaZGnvv4VTjz31Nsem+ntZ2D9FJ1GnVSxh9Gt2xma2oTnOHjtFp7TZmh6M8m8TbnyBE77NLEMqFSeIZZQJ0uls0hPvMiy16IZKXhSYTlQmPEFaVXjuKexu2ea//hDf/OOrud9UrgCC60Fvnv6u1TdKq+svIKiKNw0dBM9iR7mmnNUvSqHVg8x15y76rtpPc2PbvxRrh+4nq3Frcy35vnSoS/x6NyjAGhCQ1VUwji8Spq9EgpKN575CgzagzT8BmkjTctv0QpaTOen+fC6D/OHr/whtm4zYA+wd2gvg/YgBatAM2jywtIL7FvYR9WrMmQP8Xu3/R67+nZ93/Oy1F7id/b9Do+ffxyAj6z7CL9/2+9f2KScwGG1s8qQPYSu6rxaepWvH/86c8050nqaLT1buGXoFpzA4RsnvsHto7fTY/XQDJostBbYt7iPIAo4VT9F02+iSIW0mYblFv/bM91IFceMeG5bGUM1MRSN9FJEvmWQwaaNiy9CdKGR8UwMRUcU0yz1+iyUz6HGCq4RU8p5xAmNW2aGyc8EWH1F+j+4B1GwMc80OPPyAYLFNelNUUisH+LGuz5JYMFZY5VXqoc4fuwAesVHjRTWuUViFVZklViBQxvqhJpkfXY9WTPLbHOWLcUt7B3aS9pI05fsozfRy/nWeeZrc7QfO0xByVIcHoWUwVBulPXXXo94l/tNSCk5se9pnHoNRagIVfDo//cnjNx4HX/U1xVYJjOTfChxI4UDy/SvtwimsmQTDoZ3mvPtCn+50uJ4q45QBAoKW/OTdLwlTrab9Osqd5obmGroiE6L1nya/vXTLB8vU52fJz80zNBdN/E9/QUemn2YvmQfmqKx0O5qCrrQQEquyfWgqya/dO0v80Jlnrn6Ke49ez+t0EVFsj7S2Pt8P7W8wz9MVwmEwqBl84FiH0XDxgrm6HjLLIeC65Ihg8W97NzxpatMU28ExzmHrufQ9a6JLAjqCGEzd+Qg7Xody7ZJpDNk+wbwnDaPfflLLJ85hec4CE3luk98mvW7u2vntVuEvo9uWfhuh06jQbrYw+jWHSiKQrN5lGbzVTqdc7juAlHskkxO0GodxzT7qVafxXFmKYUKtUjhMSfPCcclfL3AI1y1O4zYA9T8Ftt7tvPZTZ/lzrE739G98j4pXIEjpSN87t7Pdcfov45f2fMrABwtH+VQ6RBTuSnuGr8LieSx2ceYqc+wIb8BS7P46rGvcrR89LLNPKkluWfrPXx6w6d5YekFnl54mnbQJm/lKXfK7F/czzV91yAUwb7FfST1JBkjgxM4jGXG2DOwh4JVoBN2eHDmQVY6K/zBHX/Arr5dNPwG5+rn2NqzFaEIHpl9hKfnn2a2McuLyy9eRjx5M89tI7cxlZ/iU1OfuqAVXAkpJbGMUYVK3etWGk2oCTSh4QQOzy8/Tyfo4IQOU/kpdvbu7FaFbS0iHY+TRw7wxGsPcqhyBEM36UsN0FA7nAnPo4UK40tJJhdsIlVyrt9hqeiiRgoLPS6FfB/bitsYsAdQFZVm0KRwoE747Cn0z+4h+N5haFxSTlhXsYcG6MkPdG32XgehCOx8AaGqLJ46QatcuuoaFSHQdIONN9/K+WNHqC0tXnh/YP0UW269g7HtO7Fzeczk1ZpfEAccKx/jRPUEf/HqX5DQEvzQuh9iND3K5sJmUkaKvJl/T8WeX4o4DonjDo/++Zc5+uSj3PL5ezj21ON47Qbt+ipRECEjgSIk+ekmAxuLRJ6FPvwqj/tpNM2m6cxxylNoRILPmXvZ3NnDy/f/A3HU1fayff3UV5axCymKU1A+3aFdisiP5PDyGitOk8CC3lEouGfJrGvwtVaG5cikGbh4cXccXZFsjhQ+EPazoWc3556uU1teJgoCDNvE7wl4bstZjq9NtekLFAmuGZMWkrtzPntslcGBu9m08f9GVS86laWMWFz8byyv3EvgV6iWjiEjg8GxO9DUDAcffJDKsR68xhsTtG6ZjO2aQNHb5DadRuqLSBljGEUKhVuZnvq3qOrlwQpx7PHI4d/itw5/m0FdYihQjw36DI1xrcn27CAiKPGSm+BZJ8lypyug5M08H1t3J5OZEfL2GEfLRxlLjzGSHiGpJelJ9NBv978r98f7pHAFam6N/Uv7mW/N819e+S+40cVNKK2naQbduOfXzR1CEZeF5AHkzBwD9gDnGufwI5/1ufVoQuNo+ShJLYkTOqiKStbMcuPgjTw+9zhO6HDH6B387q2/+6bmn9nGLD95309ScStszG/ktpHbmC5Mk9bTzDXnaPpNMkaGydwkk9lup7iqW6UdtAllyKbCJpJakuPV4zww8wAnqydpB22SerIrvTbPc7R8FC/yyFt5lp2LpS+MWCXVUokUST0VYPkCNRbstrdhHCnRP6egR9+Hv0UoTFx3PYvNBdzXzq91tgIUKAyNsPGm2+gdX0cyk2No42a+8sV/hZVO89nf+Pe4rRaLp45jpVIgoWd0HN16cwlQxnF3Y8rn0QyTdq3K6QP7Kc2d47pPfIpsXz9xHDF35DCN0grrr7uBZOb7d6T+j4TrLrCw8A3CsEkmsxPbXk+7fYqV1Qeo1Q6Qy15LvrAXp32acuVJgqBCMjFBPn8jK6sP0unMoPgbOPq3abyWSyJnoCarRK7OB//F3aSTezn08Hc5/sxLxGFXuEjmbYrbTxP7CbLZXWzYcxvzB1d58bvfAwV6pwXbPrKDTHYaXxylunoCxzuIbY91Je6XF1g5WCDyVRQhCdoaMu7eM/nhApMfXcIPzzJXNXhWkdzcGmNj//Uc+u5JOo3uc2elM3z8l75I0Olw+sXnOf7cUyQyGcb23sjysWOUTp7qthS94Vqe4kWeycywMRnxk0UPW9Ww7Sl0uZWpzT/NS0//HscfncGv22imSrsUgwQ9GaKaEW7VJD9uMrxngEa6Sbl0jKTro7d1VFUlNVLHzAREUlDVpznWgY25EbYkdUqr95FObSWV3oKm2kSRw6qzyOOLh7iv6qOpJpqaQhU6k9lJztTPXPa8AdwwcD239E2RMzIMBIdwqo+iKAbX7Poyudwb7tnvCt4nhSsQRR4L5/6cntU2JTXLq34FefI+is5x1qtZSoO38GTPetpGgltHbmVrcSvPLz3PYmuR4fQwpmry50f+nKPlo1zbdy0T2QleWHqBhdYCP7X1p9i/uJ89A3u4Z+s9KCjdJDgZI6W8KrLljeAEDt869S3uP3s/h0uH39QMJRTBTYM3EcQBB5YPEMsYBYW8lafiVlAVlQ25Ddi6jRM6VKrLXHeiQCFOoxo6Qb1FQu3avWMZE682wO/+ljFQIFitI6Pu61hTsLdPoPVlKYyNcd30DfSkhonCkCgM6DTqtGtVhKYzNL3pwsZbW1qkXa8hhGDm0EucP3qE2SMHL1xDprefxuoyH7zn57n2Yz/8A6/lPyXiOMDzVnHd8wihY1kjmGY3HBm/DS99Bdw6LB/pEuF1PwPpQciNQ9ABr7FGkPICUbqWzvzKt3Dd86QzOwj8Ch13niAoUasdII5dQHBpoX1Ny2BZwzjO2bXPu9E6qpoEKQmjJkKYSBkhZditL+T1g7HMyOiP09vzQebmvkyjeYgwbOA3NfyWjowVFvb10yldTcKFjTU2f6Qf3dSpN15BygBNy5FIjDI48ElGRn4KRRHEcUAUtQnDFo5zGs9xCBp9eM0O9//Rf+rmM6gqvuMg1K4/BCCZzfGxL/yf6KZF/+QG1Etqhi2eOs5Df/qHrM6cIdvXz5bb7qBdrfLqEw93fTybRtkfHUExFMZ3LHOLMsLhr1n0bKnSmE2hyDTrtl+P57QZnNpIKl/kyBP3U5o/z8LteV62z7LQvnyzVpFoikAoEgWJF0N0iZ8pJaCgQSuSdGLo0WIkCguBQozCiB7zU0WPAdPANIfQ9QxR5FFX8iyIcWLFpDdeIuM8QxR1KyOraorh4c9RKj2M5y0zNvpzJJMTVKrP0GodJ449NC2FrhdYP/lvSKU2vuN7+X1SuALV1/6Mlxb+HQBaGJN0IjxLwzMuLrrdjpiwbqXvml9HMbOQ/sHVtnatyvN//7fMHHyJD9zz80zs2n3Z51eVPwh9cMqQuZgJ6oYu5xrnaAUt7Bq8+q3v4vkd7Gs3cFYu8ML888QDKW7o30PfawErJ07QGNJYv303t03dhWj6LJ0+ydLpE8weOYjbapIrFgijiEyxB+HXwcqDbpHrG2Bs+05alTJHHnuIoenN9I5PoOo60zfegplMdlsc/vWPQn0OcmMQuN0NMWjD4E7Y9ePd94evAyMJegIpJb6/iq5nEcKkvrKM226xdOo4MwdfIts3wI3/7Mew7DfpOCdltwXcD4ooRC68TKn8KJXgJDKOWOevx1r3YRi57uKYnRrUz4PdC0e+CXEI196DtNIsLn6LTuc8K6vfw3HOcKWVV6ChKgb4DpIYEUuMSMPyYuxGB98UFMs+rqVSyeu0kyqB3pWctTDGN8RbX5uUmL4kNHQi5YqIKz2PaQ6STE5gGEV8bxXPW8IPymhalmx2F3HksbD4DYSwUNUkUeQQxz6m2Uex+AEy6W0kEmPoeg5QKJUe58i+P0O11tq/riQo9m1h9x2/QjbbzegOggadzgyp1BaE+P6bBNWWl3jum18lCkNGt2xndXaG6Rv2EscRPaPjpPKFt/x+u1Ylkckg1gSrKAx55YF7efwrf3rhmNNDbXojhczyRU1cfHoTzUGf6/qvRUYdvn7mEdw4ptReoR3W2WiGDJkaW/v30p+7lgWnxOnSCzTapxBqCjMxjq1n2FiYYk/fTp6c+S4Hymeo+Q4pFdJmkUW3gZAh48kUt/dvZlv/XoKwjuuex+3ME0YthDBot0/R6XQjqoSw6Ov7KP19H0fKgGz2OgyjgOstceL4b7JaegjokkU2ew2qsAijNs3mYZLJSa7b/Xf/89U++u+Nd5yn4LdxHvgC5Yn1OP4CLe8cEQlE88NUzq9gpZq0Wo/QiX3UMCaZ9ejRcrQr2wlLJQYKLpM//BtQXM/hV76I30pjWlmc4AAZfoatN3+amYMv8cAf/2f8joOdK9CslCgMjZAuFLCzWdxWm5lDL5PJpUhbIZ12A0KPrYMLTG/cg7fuY5xbCSitVrun7NY5uf8FdEug6ipuI7hwOalCkcB18Zz2Bcn7SqSNkIFszHWpYxQyLbRIor1eBExoMHpjd6McvQHW7QXrEhNL6MPRv4cjfwenHoFEHnZ9vruRGjYYKVB1OPptqJ4FLtZekxO3cmxTgcX2MwDo0sTUcqSsSbKJadL9t5ENUqAnIFGAVF+XBErHIQrg+Pfg4NcgjuHWX4ZkEWQMxQ0w/yL+3FN4+V5SvTej9G2B9ACcewb3lT/lfPASywVwLRU1jJFCAQmDSy5KehAnY+P6K0Sxix7EaJEk1YqwvAgnlaDWk8ZRnQvTIGIw/Ih0M8S1BJ6hEqkQi27lTEXVieXFdfl+YMQmoyWddLlKPeFjejG2ExFpClEyS2HDPWitMrz0l0RKhGfbRJs+grX3/0LPrX/7HwAWF/+O147/OqY5QE/PHajCYnz8X7xhjD9AENS6WooMyKR3kEi8+8lq7ybOvnyAdLGHky/s49m//WuQkiMTdTYvZKklff7hxgVUBcI1ST8tJGlV0ogUvrhujD3rPkNf38cwzb7Lxv3HFJx7M0gpqTdeAilJpTa+6RoAuO4iYdQiYY1d5rdYWPgmx177VbZt+3/p7/vYOzqP90nhCpTPz/HEX/5XXKfN0NRGVN3g8CMP0Gk2LjYlfhsUN1cRmqT8Wo44eN3O3t0KCyN9VOdLZIdsJm+dZdBtsVz6EA0nQePUAdpuBKpgNLVKOzIoqQkUo2t/9WqXO63MRIhUNUI3prCpxrrrQ2KtQ6sUQ1BksP9znN0/j0WH66ZVBpMBdd9i6Zm/w40U1GIGYzjCHdLR/YhVu0OguKgYrFN2oha3YCyfwlo4RXL+BLofgGrC7V3nO5oFx74Dc/shMwJbPwk3/iJkux2f4jik7ZxC1zIgobb0AItL36LaOcag3IC+dJxzgwqDSy4JX+BpEZ4pqKd1AqM7bze+UMXurEnBRhp0C9qr3fEVBWXidpROlXDlEC1bZW44gWcIPFPgWl2pMdUKSXYifF3BM1Q6ie77aX2E4Z670WKNc7Vv0/Rn15bqdT/H2z/0iU7M6GLAsLYTMXYzjN0Io9d3ybBypmsWGtwFikIcB0gJzeZh6o2XSSbXsbLyAJY5SCa7Exn76HqedHobmnaJg1tK8FugJWDxFYgjGN4N6pokXjkLS4fg5ENw8OtdLWz3z3TJuL0KehJ6pqB3Ewxd253DS+D7ZTQtjRDvvczedxOluXMcfPo+nkh9gwfmK6BH/PvrP8mWoY9xuHQQRIKpdB+Rc4Ig9tgw8YX/7uGs7zakjNj//CdIJifZsf0P39EY75PCFSjPz3HfH/xHdNNi4cQxpJRMXruH3R//JEPTm6kuzuN3OuiWRRyGlM/P4lRXyfR6ZIZ7ePHbT/DaM68Cksl8mencKm29SFuMUE3OcvblftK9Hus+MUPWC2jbKkjINEM6CbVrMrgEljnE9PSvE8cxK6cWmDl6P548SbKvQ9L2sR1J36pL/6qL5XWjzCvr1nGm36dp+vSWQ9oJCHTB2GKM8F0aI+OUkh2iuCvpWtYwQVAll7uBnp47WFm+l2pt31Vzo4kEhD65aod2UsXwY/JNaE3spK21saxhwrCB48wRRc21LMzwsjFMcwDbnqZSeQqQFK3t7PSuR2kuwU3/Ctwa0m/htE+zv/R7jKXuZIP90a7pbPlVQneVmSGNZf8wblxHCAMhTMKwDnTt54aSRBMpdHuEKGrjdRaIYw8hFRACP25zZcPbRGKMgYFPEwY1PHcRQ+8hV7wR0+zHNPrRNJtS+Ul8v0TCGiWbvQYhNDQSKIoA7T2yoa4eh4d/C07cByhd7clvwVoSGUYaipNdovro73W1sP/FEMc+X37+3zCaneJDm//1/+jTedfhecsYRm/3vnwHeJ8U3gJOo7vR/KARKd7qLNqj/xZ1/e2QLMC+P4aFlwgnbuaQ8zIyr9Kb3sbo4E/gTe7h/KHfpOqdxEyto2f4k5hmP1HUIYocisVbMYzLs5S78c2zRCtHMc88h52axujZhVJYD+efhzNPEActZvojzumnMdQ0ZmqCeqNb4tsweikWP0A+dxOG2UsmvRldzxOGTYQwUBQDz19GKBq+X8Z152m3T+J6i0Rhh2rpSZLJdbQ7M3jBCkJYF5ya3y8MowfL6moUMg6IYgffL6HrRZLJCTLpbZQrT9Nun6RQuAWnfZowcvD9FeSbmGEUVAyzjyhqEYZNFMXANPvwvEWkjBDCxDQH6en5IAMDnyQM6jSbRzCMPvr77/6BbODveTiVriZnJLvmtcY8dd8XggAAIABJREFULB2Gkw9AbQ5OPwpjN8Gn/hjy411zHHSd3mefhMEdXf/PPxZBp+uXSQ+8oebViWIeLNc53nbZlU5yVzGDWDvOj2O+vlihHcXcmEsxYGocbnbYm09hv8t5HO/jIt4nhX9q1M93bfLm21fVjOOQhYW/YWXle7jeApY5hGUNEYZNSuVHubylRLfgnKH3kM/fSE/PnRSLt3Xr/gd1hNCQUiJUoxvF0pnl3Lk/vkAUmpYlDOsIYZFMrkNRdNLpreh6jkbjEJ63dCGKxU6uZ2X1gQuREbqeZ2zs54miNrqev+CcTNmbiCIHIXRU1abZOkq99iK6nmN19UGCsIFQ9K60r1oYehHfL+E4Z2i1T3KlNA8KQpgMDnyK/v67AeVCUlIQNshlr+1G2cBaEyK5pq1EF+bnfazh8DfhO1/omqJ6promKOiapNyuMMTYTbDn52Dz3aC9cXtNKSX76m0mEiYD7fNd81bfli4hLbxM5/5f43Rscjy/nVOjH2SlsAWZyOP4HUrNKkdDjYq46Pgt6CrTSYsBU+dAvcV5L7zqN3f48/zvaQ9twx2kVUGvoXGo2eHFRpvNqQQ/PdSD9i5VA5ZS8lS1RUIV7MnaLHsBx9subhwTSsm6hMmWVKI7j0uHoGcaR03QiWKKhtY1IS4fhfJJmHkGIg9+4r91TXvvUbxPCv8ISBnh++U1Ve0fdxPWGwepVp4ljn2EatFqvUa9/iKuO0/K3kjSXo/nLeG6CwhhUSzeytDQjxEEVdrtU/j+KlLGuJ05KtVnCYIKiqJeRhyqmiKRGKXVOgaApuUYH/8FhKLRds5gWUMXNIMocmg2jxKGDWx7A7a9Ye16KzSbh8mmridfuJHVs8ucfLxEwi5g5wq0KiWSmSy7PvIJBtZPXzYvMo4JfA/DenuThe+XaDZfo9M5h2UNkc3uRtNS71glfh9vgPp5eO6PoHyqqxXIqEsIOz8Py4fhxb/oBgekh9h32+/yf0TTnPcCtqUS/NhggfUJi/98bpknqk00BT5ee4Fdped5MbOVQ6lpPGGwahSI19ZMyIgev4YgJhm5FIMao3GTz7df5tqz3+aB8U/xTP/tnCDFgpZlU+0o9yzfx/aoxH57inklRd4r82tTv0RbvTqXJ6UKWlFMXlNJayopVXB3X44PFjIYQkFVFKaTb9w9zoliHik38OIYCaz4ISt+wKvNDk/XusJPXlWovkEXtinVp792kqpigGpyOjGMi8qWYIXblx7hpxf+nnF3CdJD0FyAT30Jdn72B16uSEqWKkucmzvIydwWnmhGNDsNjLCDaSRRrQxOFNOOIm7KpfjVycG3H/QN8J4jBUVRZoAmEAGhlPI6RVEKwN8A64AZ4DNSyupbjfNOScH1ljg/9xWEmiAKm/h+Cc9bxvUWcN0lpPSxrGE0LYvjnF6rubL5wqapqSlyuevJZq+h05lDElGrvUCl8jSZzA6GBj9DFLWp1V/EcxdR1STJ5CTHT/zGmv29m8BumoOk01sZHPw0PYW7aFUrCFV929A86JJVrf4SlcpTKIqOYXSjcmrVQ9QqR4gaY1TPCvy6hW7miIKAiV27aZRWqa8sk8oX2HjTLSyeOkG7XuH80VcJPQ9V11k9d5aL8UNd9I5PoAhBq1LGzuWpryzhdzpkevsZnNqI33GoLS/RWFkiCkPSPb3c+vmfZvPe25FSIuP4XS/r8E+FWEqerDZ5pNxgpuNjCIVaELEhaTJlWyy4ASccFy+OsYQgrakogB9LJpMmP9KfJ6kKXmw4LHk+RV2jHcUcbDqc7fi0woiEKhi1DEIpyWgqu9JJrskkOeG4nHY8tqcS3FZIYwpBLCXLfoAlBLOuz8GGw7wX4Mcx++ttnCi+sHIpVeWGnM2n+vOkVIETxQhFoR6ErPgh+2stZsvz1KvnedkcYTisc9fAAE94Bsfb7toYgi9ODLAw8yJf76So62lGRMC1apuUkWCwMMTGTJpp22RShBhnH+2arxL5bjRbz4buyZx8GB7+DWgudfM3Gudh2490JWqvAYradd6PXk993QdYuffXCGeepmZkWd79i2wdmmRD3zruPXOUx+s+rt3HgrB5tta+bL0GDJ0hS+fnRnqxVcHfLFZ4uelQCUK8KwoZJmRAf9TkJxe+gxq0OZ5cx5b2aTY758iETYSZ5bn0Fp60N1JNDlKws8jqDGPNs/QFFZ7K7+H53HYkgn85nONTg/38/X3/D4+mtjExNM3OfIF8YwbVazA0fi29SZtFL6AWhix7AYte16TXb+jcOzfDQU/FVy4+J8N+iaHOIp7QCRSd0MyQSPWQsmxuTZv88tT4O7qn36ukcJ2UsnTJe78PVC5p1ZmXUv7qW43zTkmh0TjEgRc/i5Q+QlgYRi+amidoG6Qy6xDCpNM5i6IG5Is70I0iq6sP4vsVZAxhVCOKGleNm0nvotk8huRiCWBdLxBFrbXiX5u4ZtdX0LQMS2eOcuihx+gdmyD0PV594mGqi90aMdM33cqOOz/M0NQmVEPHbbWoLy/x1Fe/jO97DExtRtdUjj75KOPbd5HtH6S2tMDSqRPUltfKOSiCntEx9ESSoOMQhSGVhfNoukFucIjq4jxR0L0hNd2gb3IDiXSGwO0wOLUJRYFkLo/XapHM5th+xw9dVqbXc9qc2PcMp198ntVzZzDtFLm+AbL9A1h2ilMH9rF06gSZ3j58xyGOI7befhdCFWy+5YP0T254yzUKYkm14xLMz1BdmEeaFrmhEU6/8BwoAmklMO0UxUyapGl2I8foxrJ3Wk0CRSCdNlY6g3/tzbwiNZwo5rZ8mhhJLYhYDUJWvIBKEBIDK37AohuQVAVbUwkSquDFRpvjbZdKEJEQChMJk0BK0prKa20XJ4oxFIUNSZOUpuJGMY0oIpagKwrnXO+ythiXIqepTNsWaVWlHUXMuRcJpxpenbCoKdBr6NTDCCe63Owm6Jrzd2dsevS1Bk5AJQh5qeEQvMlz/vo1ZTWVde4Cv77/lyk4S8jBHbyc28Hs0F7ukkukzj4GJ+7DmbyL1me+Rp/1T+R0by7Bd/81nLj/jT8f2MHZ3b/Ia6FF6LdoJPp5NjnFUcfn2BqpDUYN9pafpzd2uHP5UQa9VRQkfVEbW0iU/AT0b+ua2KwMoEBtFhQBrW4fFUb2wK6f6JreohAiv2s+Q7IYRPy7M4v87VJXhlWQXFc/woLZy7w18JaXZ0UeUlHwhMGm8gnuLO1nNJNkdP1N9M89T/XwUWarGo12ROR7xKGPKWK8WGHDiM3H/sM339G0/s9CCseBD0gpFxVFGQQel1K+ZcreOyWFOIo4+8oBjj7xMLOvHgYU4ijE73SuOjZd7CXwXBLpNPWV5bUMTMnIzn76Nic58dQR4lCQyY+StNdz7vBzbPnYIBt234VX6qW5Wsf3qwztUsjYN/PYn3+V80ePEMcRmqYTBj4AAxum2XLbHbQqZV667zuEntdtsC7UC7VmRCbHfKZI/8JZRBwztm3nWrGuNql8gcGpTQxsmGZwaiP9kxsuM+FIKakvL2EXCuiGSaO0yuLJ44xu2UYym/uB5/DScQMpMa6o6/56YtHymZNoponbanLy+ee6xCJh3Z0fYesdH2Y2U+S/np1nvFYisXKepqJS8nx6X36WvtUFtPitiwq+FUJVQ4tCzg1N8I27fxZVKBf6sxueS6ZdB0VgpFKkm3WGnTq9fodKtshzvWM4sWRHOsnWlMXefJqP92YxLyXGOKYdxWRU9U3t2yU/5OuLZRKqYHfGZtQyqIYhCSEYNPULDtcr5/Rgs8Mpx2WjbTGRMHmu1uL5epsVPySjCSaTFn4cM2Dq7EonGbMMYkB9g/EqQch3V2poikJGU4mkJKer5HWNjUkL69Kud41FuO+L4FS7uSJrocGkB+Gan4Sbv7C2cV4yz2GI7/tEUUSj0aDVanV9W0IghCCKIsrlMtVqlcHBQbZv346uX7S3R1FEtdrdUFVV5YX9+5HtBuu3bKU4METCMrGWXsTvNGkvHEfPD6OP7sZ97SHMQ3+FtdYg6AISecLhPfzJ+n9O5rW/53OrD6Nt/eFuomV+HDbcBcfvg5mnLzrh3wHCIKC+stQtdAg8Wm5w3vW5o5hhZPkArBxluTTPbCdLtSNolk/hRcv0RjUyYRsl1KnqW2g3WjRKVcq1q3spKIogkR0D8viegowlMnZQRIKB4UF+7Hf/5Ts69/ciKZwFqnSFmT+RUn5JUZSalDJ3yTFVKWX+Db77C8AvAIyNje0+d+7cD/z7Tx94gf3/4bfwkikW1m0iAkQcc27XzeTaDSxNxbJT5CrLJObO0DETJJwmmf5BJtdNkm3XOfHUo1QXFxjdsp2td32Ux/7yz/CqZRIbNtE59drV16wbyDBAGCZizy0M5HIUP/BDRE6bI6HCS6Fg1Q8o6Bq9hGxYOkf93FlO1RqUEiliITi2YQcjuRxerUzQbtE/NsGPDhQYNDWW/JBYSramEuzO2FiqIIglf7lQ4olqk4ymcmM2RU5XiWRXsmxHMfvqLU47HpqikNYEKgqmUOgzdFaDkBFTZ0/WphF2pddKEFINIo61OpxwXJphTCAlA4bOJ/qy/Eh/gUXPZ8UPmUiY7K+3KAcRSSF4vFTlTLXOHc9+j02nDqHGMfVUjnS7gbiitlTcP4y5eQdne0eQ/UNMuE1Ymse45nrUZJpE0CFyHKqNBuW2w3nVpBFFRMkU/YUCmxM6pwNJ74EnSd37N9z4Uz+HnS9y5MQJ2q8doTVz6i3zUXpGx+mb3EDPyBjF0TF6RsZJ91z0K9VXltBNi2Q2R+C6zB07zNyrh2mWSzj1OoqikhsYpFVxsNI5esZGGFi/jt6xcSz7Yg6BjCVxJAnDmNCLsFI6nhMShTEyliydqTP7aoXQjxCqgtAEqqqgqAKn7tGqebSri7TLLxEGq2T7xhjbehOjW6cpDKVIpHXs7Bs7kN8WUXAhQfHo8RkCRaW6uIDbbqHYGc6cPkXb9Wg5ztuPBQhFIZYSTdMoFAp0Oh2EotBsNonfZh9SVZUoemMBYbQvRz6dIlXoZ9DqkF96Cm3pFXqbh1ENm+CnH6Ru9JNKpYjjGNM0UVW1GwK+tIQaR1RXlvAadZqry6zMnKGyvExhYJBQERiGQb5YpHR+ltkzZ8gMDWMPjrI0c4bOwhy3/siPsfuujxBFEStLS8yePcvi4iIzp07SiWP4PkrbZGsNtEYvsUyBXLM0KCqqPoGd72FgIkumN0GmaJEqWLgtn0TaYN32t+6t8mZ4L5LCkJRyQVGUPuAh4AvAd74fUrgU71RTON3q8Dv3PwgbtpI0dPS1TNdGJ6AZRHSEpB7F1MMIL5YUDa27Ga6p9KoCG02Na+ZOsK93nNOo6IFHoVpiuXeQmw88hmdYzA5PUk/nsTst9rzyFM10jiPT19BMXy6ZK8BG22LI1KkGEct+wIIXkBCCu4oZPjOQZ1MqQSOMWJ8wWfEDvrZY4bFKk1eaVz+QBrAFnXNxSFVIhhE4ClTfoKtTXlPZaFvEQDuKiCS4ccySF1DUNZb8gCv9bjlNZTxhsDOdJKupJFTBsZbLvau1N4gl6tqk3ViyI53g84NFBkydaqXC6r4nkXNn2TY5weDEBvomJnFbLdx2i7GtO962q1Qcx3ieh6qqqKqK7/vouo4QgpWVFU6fPo3ruhx8+H46rSYIlVg3SCaT5Hp6EaaJ63nIOMa0EuQLBVTdoLm6THNxnk61jOd2kEIFIZCajjSTKKqO7DQRvosaA4HXLY2hCFRpQqijxB4ENVA0kB0kCrGVINYTCK0HqSdR1F7QUt1Q2jAgFjFSRBC5iNAjEm1CI0BRdEQYoEc6hjZArAjCuEkQLKDoxsX+CFIQdurd9qumTWjYIE22b76eu+/5CH47JgojkC5PfOs+Wp0O/ROTYAmazSZC6rhRm3angaIIsqkUqow4c/YMNefqcGThOgivg/A9BFmQIXir6IqCjELiOF5zSwlsK4ffXMY3TMJ0DjWVQReCTruFEgZoAYRAw0pxPhwjZWXItQ+Ri8pdk42RgdBBCVykEEhFRYlDpGYQZvLEmt7dfC/RlAazBrpmMFduXV6cREoMoSB0HdcPuuG8QkAUIXwXaSWQVwQ7KGGAVLXvv9xKFKJ6HqpvocoMipJBkT5CbRJ5TQh9FFKo+gac7DKx6nPdug+xftsIuqHRbDZZLi0yvmGI9ZtH0S6pBRVFEe1214+SybxxJeS3w3uOFC47AUX5TaAF/Dz/ROajhZlV7vvG0+iGimaodIIW5doKXtBBxDpIBTVMoAdZRKyhqQYD6wrEeZsZS+V8RmOlV+eU5zMRq2xPmGzvt5kSERUv4DVhoPse9tJ54tIqahzh2BnmpKDH0Jg0VJZdj7jj4dSr4Dg41RaBH2IKG1NNk8jmMDSBrZts3LgRTdMpz7dZmq0QRgGmadGphYitOZqdgObhKl47YL6gcXZA51yvRt6Jueasx/r5ru+gkhIEmkL/aJodd42SsDTylQBNFeimim6p6KaKYWlYKR1FwKofcLLawZ2tonUciqZNeaFOGAckCypNp0qz2aTVatOMJDVpYLgmtu7TSWUYtW1G0knShSxj63vxfRc/chFCkE6n0XWdSqVCuVwmjuOutLWywuLiIpqmYRgG1Wr3NyzLQhU6qqYgpaRWq+F53lXrK4TobkhrUIXa7XGt6+RyOTzfp91uY5ommUyGwA/xPJ9Wq3GhJWIYXREmKUGJQIQxxAFSN4m7HSPfFIZukcvkCEKfeqN2VaXd7rhXZFZHEVKshdZKCcIgkKARolxRd0lKiBHEiooQCmrsX/gskgotaZJQAgwl6hbFCyNQFBSVqwg3liAUCCOFhEgSBx6R6oGqonguKU9FNk3qWpZYzZBzVmnoo+TNFgvjEyQm+ikYGgeeP4NXmqE3jJg0JIYTQc92VkOVmcjDjOuMq2VS7Xm8yKGjjDOfWMdCNsUZGeDF8rI+AgLo0SVjleMEiSK5RIJ0yqZjpam0IrKLVaZZYNN4jtWzT1NvlZG6iZpM4fUOEfo+ZrtOyjIRyTQtYSMUSac0j4KkkE5jDowhVRs/ClCViL6eXuxEGoQkdASthkPLqRF7Kp1VDR0TvyEhUgn1NmF8jFhxkbGLFusUixPkshrj22/FSqW7Gp4qcFsBC6dq2DmT4pBNrj+JbqrMnpvj3se+iVzTogzDwLlC+0qn01iWRbvdvvDZho1b+InPfebNb8C3wHuKFBRFsQEhpWyu/f8Q8NvAnUD5EkdzQUr5K2811jvuvPbySf7223998Q2pkBAZ8sU8ofQI/Yh6u0IUXx0/DaDEKiI2MIWNH/rEqkusXnwgdc0gCLuvLdNCUVQ6bvsNx1JDCxFZiFjDtHV82nhxC3mpzC0FWpBCipBIu3izJEQWWkl0NYFdFJgZhXQ2RTKRJJ2z8QMX13ORkUIcKAhpEHdUThyZIYgdQCEWIYoUgEQq8dp0xMSqS6S6oMgrA5GuhlQQsQHIy+bhnUJBkBDZrsQbhwhpYJAkjAPCMMCydXRTQ8Q6tplBUSEIQhIJEykifD8gahm48wmUSEfXVYY35UnlTGQsSRUsyvMtKgttGmWXMOhqgDUh0aWCLUEqEVIEKFIlkoKgYJHaXqCZFCx1fAhj0oaCgk/L6RCHIduGs6S1kDgMCD2XTrOG226i6zrSSiMTeaRps9LwUU2TuZk5VpoBDjq+VCgFAidSUWSEQYyPIOJ104PExsdUQnw0fKnio5IydUxNYGmC7f0GipRkEjq9hSz9OZtKucy9zxymX22gE+Gj4kqNapxETaRpdXzcSEGJAiI9QT020GRItBYBk5ERNWGgA7HCVVrj67B0gRvEpC2Njh8RrkX5XF7f9c0xVkjywY29fGBTHzdNFvHCmMePr3ByucVLs1WePV2mJ2XQ6IQEcUzRNkmZKjPl7vOQixVGAshFLRI2CFmm//wztHLrOJLZy3wkcZFEa/exTcwIdU7LPOEl97YqYSgS1IUkEytESDSpkI8V2jpoto6lCnIJnc3DGX5k5zCj4xk6rQAhFJpC8uCxZR47vsrplRa5pM5kb4psQiMIJZsH0yzUXfJJg56UgRvGWJpgYWmZlcUFnEYV4hA7nSVMFDg5twx+i4T0MJQIT+q0Yg0Xnc2TI/ynf/6hH+zhWsN7jRQmgW+tvdSAr0opf0dRlCLwDWAMmAV+VEp5dXPTS/DOS2dHdDod4jgmjmOSySSGcXk0RRAEVCoVPM/Ddd0Lf51Oh2qpzuJsiUazRipjkzBSNOZjoraKlTFouiVEZGJ6RdTQ7pbP1mPCOAAJvcNZjITG+JZeiEEzVIamcvSNd1XBOI5pNpsoikJptcyhV46wsrpEKpNicHCATCZDvV5nbm6O+fn5C2YT27ZxHAff91+fawzDIIoiwvBygktYNjKOSSQShFG3Z4QQKl1hVsHSbExhI0MF1VDoH82TyWRxOi2yxTSWaeE2IrJ2gXQuRcI2sGydEJ9Go06hUKBcLuO0XVr1DpXVKpXVBppiUF8ICPyIWHhEcUhvXw+5XB4ZKgR+DJ5O6MVohopmCDRDJQpi4iimOJzi5QdnEapCpieB3wkJ/Qjd0mjVPEIvwkho5PqTjG0tUBi0mT9RY+l0jcWGy0EloByE9Jk6nZTKCd+j5IfoQiFY28hURcHSBaYmMDTBatMnuuQ5GchYRFLS9kKEopBN6ARRzErzaq3ljZAyNfwoJmNp9KTMtT+Dgm1i6YKxQpK01R1zstdmosdGURTaXkjLCwmimHzSIJfUMbW3t1e3vZC/eG5mbSMyKbU89q7vYayYJI4lisIFX8lrM4v8+pcfoa+QYXxqitlqh6miTTOIMDTBZG8KQxOcWm6yvi/FcsPl2rE8u0ZztL2IbFInjGKOLTbZf7ZMpe0zlEswkk9wzWiephdwcK7OXNUhaaikTI1do7kL1/hmcIMIS1eJXyebNcf+XMXh8ROrPH58hZfOVqm6FzPhFSmRikJBEWzJ2aSFYPtgFj+I+M7RJVaUiF2pJBtHsvQXEmiq4JXFOq+WWoxlEyy2XOyEjodkvtZhOJ/A0lRaXkjNCVhquBiaYLyQ5CPbBjh4vs6TJ7qO+am+FFuGMlSdgDOrLVprCXo1J8BQBX50NVUWbIOhnIVQFOarHWIpuX6iwLoeG1Xp6omxlIwVkqRMjeFcguvWvX34+hvhPUUK7ybeSxnNcRTjtkMSKZ0Tzy8RhRLNEChCwc4anHm5hGlrrNvRQ+/o22c6v44givHCmJTZtSn+/+3deYwkZRnH8e+vq88595jZZXe5d1cU5UYiWQOaGBU04vGHRjRGDQSjgib+gRIjGhNFQeIfxqigMWIgGkVRE13jhUfkUtgjy7ILrLgMu7PDzu4cfVc9/lE1Pb3DzHDMtM12P5+k03V11fvM21NP1Vtdb1XqIYFEOvnFSHw3c410Ok0qaRKo1+uUSiUKhUKjLTIMQ4rFIpOTkwwMDNDXt0A31S8TYWRMlGqMF6uMF2tEZuTTAaOTZcJ6RBCITDogSImURDoQ6ZTIpVMUqyGPH5pi37NFxiYrjBerHJ6usmNkgloYsaony7PTVXqzAZeeMczpQ32UayGb1sTvY1NVSrWQci2kXItYN5hn89o+Ng7Hr0L2uTtiM2Pv6BQT5fiCfxjFr2oYUatHrF9RYE1/jnSQYlXvy6QPpQ5UqYeYwZP7jnLLT3dwwmCez199AbnMsXV2ZLTIoacm2XT+GvQS74zevv8ov9o2ws6Ro/x977Os7s3ywYtP4e1nr2fTmuf+f5kZBybKDPXlmCrXmSzXyWVSlGshw/05erL/vy5YPCnM8fSREjf/bjdDfVnSQYp9Y9M8emCS8WKVQiagWo8YLGQYKGQ4PF1lolzj5FU9DBYyBCmxopBhy6Yh3nZ2fDfhVLlOpR4xOlnmSLHG+hUFDkyUefipI4wXq5xxQj9nrO3n8HSVJ8ammSjVCM3Yc3CKUjUkjIxaFMXvoVEPI4rVkKlKnYly3Otmfz5NtR4niEwgXr1+kA9vOZUtm4YYyMflqkcRU+U605WQyUqN6UrIVKXG2FSVA0fLpAORT3akYWREZskOLD4CiSIjsviuSkt2bJHFR5oHJsqMTVWoh4ZhRBFUw4hyLWT9YIF8sqNc7PvUPKv5caZzP3J4usqe0SnCaGnfzUwghvpyrOzJsqo3y8bhXq6+dCMbVhQYn65SyAbkM8fnDXXu5eXgRJmBfGbeA4aXI08Kc+x4+ijX3PEQhyYrmMHawRxnbRhkdW+OUnKafHiqynS1zqreLL25NP89XGSqUieKjJGjZQ5NVujJBpRr8Y1K85GgN5tunDrOCFJCwKY1fY0d+syRbpBKkQlETzZNXy5gsCdLIRPwzNEShUxAfz7NZKXO73ce5Imx+a9TLIeU4p8QplKikAk4YSDPcH+OTBAfmUuQCeImlpEj5WNOh+e2AjSPNjcRHDt9drg3l+ZV6wYY7suxsjfDip4sKYlSNWTtQO6YpFYPjTBJYLUwolKLyGcCNg73sWFlgWCZ+sdxrpN4UlhmZsZD/xnn7n8/zVBfjuH+HNl0ijX9OfrzGfaPFxnuz3H2iSvozQbsHy+xZ3SSlT1ZTh/uYyCfJjKWtMMKI+OBfYfZOTJBqVpvrK8vl6Y3l6Yvl6Y/Hw+v7MmwbrBAZEapGmIkO/2k6SVIdvJBanbYO5ZzrnN5UnDOOdewWFLw7iidc841eFJwzjnX4EnBOedcgycF55xzDZ4UnHPONXhScM451+BJwTnnXIMnBeeccw3H9c1rkg4BL/7Ra7OGgLHnXaqzeMzdwWPuDi815lPMbHi+Gcd1UlgqSQ8udFdfp/KYu4PH3B1aEbM3HznnnGvwpOCcc66h25PCd9tdgDbwmLuDx9wdlj3mrr6m4Jxz7ljdfqbgnHOuiScF55xzDV2ZFCS9VdJuSXslXd/u8rSKpH1GzjcQAAAFj0lEQVSStkt6WNKDybRVkn4vaU/yvrLd5VwKSd+XNCppR9O0BWOU9Nmk3ndLekt7Sr00C8R8o6Snk7p+WNLlTfM6IeaTJP1J0i5JOyVdl0zv2LpeJObW1rUlD2nvlhcQAI8DpwNZ4BHgzHaXq0Wx7gOG5kz7GnB9Mnw9cFO7y7nEGC8Bzgd2PF+MwJlJfeeA05LvQdDuGJYp5huBz8yzbKfEvA44PxnuBx5LYuvYul4k5pbWdTeeKVwE7DWzJ8ysCtwFXNHmMv0/XQH8MBn+IfDONpZlyczsXuDwnMkLxXgFcJeZVczsSWAv8ffhuLJAzAvplJifMbN/JcOTwC5gAx1c14vEvJBlibkbk8IG4L9N4/tZ/A99PDNgq6SHJF2dTFtrZs9A/KUD1rStdK2zUIydXvefkLQtaV6aaUbpuJglnQqcB9xHl9T1nJihhXXdjUlB80zr1N/lbjGz84HLgI9LuqTdBWqzTq77bwMbgXOBZ4BbkukdFbOkPuBnwKfMbGKxReeZdlzGPU/MLa3rbkwK+4GTmsZPBEbaVJaWMrOR5H0UuJv4VPKgpHUAyfto+0rYMgvF2LF1b2YHzSw0swj4HrPNBh0Ts6QM8c7xx2b282RyR9f1fDG3uq67MSk8AGyWdJqkLPA+4J42l2nZSeqV1D8zDLwZ2EEc64eSxT4E/LI9JWyphWK8B3ifpJyk04DNwP1tKN+ym9kxJt5FXNfQITFLEnA7sMvMvtE0q2PreqGYW17X7b7C3qar+pcTX8l/HLih3eVpUYynE/8S4RFg50ycwGrgD8Ce5H1Vu8u6xDjvJD6FrhEfKX10sRiBG5J63w1c1u7yL2PMPwK2A9uSncO6Dov59cRNIduAh5PX5Z1c14vE3NK69m4unHPONXRj85FzzrkFeFJwzjnX4EnBOedcgycF55xzDZ4UnHPONXhScB1P0uqmHiUPzOlh8h8t2uZ5km5bYN4+SUPLuK27JG1ervW57uY/SXVdRdKNwJSZ3dzi7fwU+LKZPTLPvH3AhWY2tkzbuhT4gJldtRzrc93NzxRcV5M0lby/QdJfJP1E0mOSvirpSkn3J8+k2JgsNyzpZ5IeSF5b5llnP3D2TEJIzlS2Svq3pO/Q1EeNpF8kHRbunOm0UNJHJd3atMxVkr6R3KX+G0mPSNoh6b3JIn8F3iQp3aq/k+senhScm3UOcB1wFvBB4BVmdhFwG/DJZJlvArea2WuB9yTz5rqQ2a4HAL4A/M3MziO+A/XkpnkfMbMLks9cK2k1cXfu70j6vQH4MPAD4K3AiJmdY2avAX4LYHEfOHuT8ju3JH5k4dysByzphlnS48DWZPp24I3J8JuAM+NuaQAYkNRvcX/3M9YBh5rGLwHeDWBmv5E03jTvWknvSoZPAjab2T8l/RF4u6RdQMbMtkuqADdLugn4tZn9tWk9o8B64KGXHL1zeFJwrlmlaThqGo+Y/V9JARebWWmR9ZSA/Jxpz7l4J+kNxEnmYjMrSvpz0+duAz4HPEp8loCZPSbpAuL+b74iaauZfSlZPp9s17kl8eYj516crcAnZkYknTvPMruATU3j9wJXJstfBsw8FGUQGE8SwiuB1818wMzuIz5zeD9xB3hIWg8UzewO4GbiR3LOeAVxx4fOLYmfKTj34lwLfEvSNuL/n3uBa5oXMLNHJQ02NSt9EbhT0r+AvwBPJYv+FrgmWddu4J9ztvUT4Fwzm2luOgv4uqSIuIfUjwFIWguUZpq+nFsK/0mqcy0g6dPApJnNe6/CC1zHr4kvav/hBWxrwsxuf6nbcm6GNx851xrf5thrFC+YpBWSHiM++l80ISSOMPvweueWxM8UnHPONfiZgnPOuQZPCs455xo8KTjnnGvwpOCcc67Bk4JzzrmG/wHYe/FJT6v5MAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Extract stock closing prices to a numpy array\n",
+    "data = np.zeros(shape=(m, n))\n",
+    "i = 0\n",
+    "for stock in close_price:\n",
+    "    data[:,i] = close_price[stock]\n",
+    "    plt.plot(np.arange(m), data[:,i])\n",
+    "    i += 1\n",
+    "# Plot closing prices\n",
+    "plt.xlabel('Time (days)')\n",
+    "plt.ylabel('Closing price ($)')\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "For each stock $i$, we first estimate the $j$th daily relative return as $$relative~return_{i,j} = \\frac{closing~price_{i,j+1}-closing~price_{i,j}}{closing~price_{i,j}}.$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9eZgl113f/Tm13KW7p2fXLnlsecMYjB0bBwyOCcQJhEAedl4S53XeN46fQAjx6xB4A3lNErMFgjFehOMV4w0byxa2bCNha5elGW0zo5FmpNmn9+X23Wo/57x/1Km6dbtv93SPZnpTfZ+nn+6+t5ZTVafO93x/2xFaa0qUKFGiRIm1wtroBpQoUaJEia2JkkBKlChRosQloSSQEiVKlChxSSgJpESJEiVKXBJKAilRokSJEpcEZ6MbsJ7Yt2+fPnDgwEY3o0SJEiW2FB555JFZrfX+xZ8/rwjkwIEDHDp0aKObUaJEiRJbCkKIs4M+L01YJUqUKFHiklASSIkSJUqUuCSUBFKiRIkSJS4JJYGUKFGiRIlLQkkgJUqUKFHiklASSIkSJUqUuCSUBFKiRIkSJS4JJYGU2FLQWvPk3X9HEkUb3ZQSJZ73KAmkxJbC/Nh5vv6BP+H042VCaIkSG42SQEpsKSRxDIBMkg1uSYkSJUoCKbGloJXq+12iRImNQ0kgJbYUcgIpl2IuUWLDURJIiS0FVSqQEiU2DUoCKbGloKUEQCm5wS0pUaJESSAlthR6CqQ0YZUosdEoCaTElkLpRC9RYvNgQwlECPFPhBDHhRDPCiF+Y8D3LxdCPCiECIUQ71zLviW2J7QxXZUEUqLExmPDCEQIYQPvB34UeAXwi0KIVyzabB74VeCPLmHfEtsQSmdRWCWBlCix0dhIBfK9wLNa61Na6wj4LPCTxQ201tNa64NAvNZ9S2xPlCasEiU2DzaSQK4Hzhf+v2A+u6z7CiHeJoQ4JIQ4NDMzc0kNLbF5oEwUVpkHUqLExmMjCUQM+Gy1o8Kq99Vaf0hr/Vqt9Wv379+/6saV2JzIlIcqFUiJEhuOjSSQC8CNhf9vAMbXYd8SWxhlImGJEpsHG0kgB4GXCCFeKISoAL8A3LYO+5bYwih9ICU2M7TWPPQ3p5if6G50U9YFzkadWGudCCF+BfgGYAMf1Vo/KYR4u/n+FiHENcAhYBRQQohfA16htW4N2ndjrqTEeqIkkBKbGUmkOPTVMziuxZ5rhze6OVccG0YgAFrr24HbF312S+HvSVLz1Kr2LbH9obaAD8Q/NodsR4y8/tqNbkqJdYYyFRKeL5USykz0ElsKW6Eab/eRKTr3j210M0psALRM+6WSm7d/Xk6UBFJiSyEP493ECgSlYRM3r8SVQ6ZAVKlASpTYfOgpkE08Qiu9qRVSiSsHXZqwSpTYvNgKYbxa6VSFlHjeIVcgpQmrRInNhy2RSKjZtgRycuEkf3jwD0uFtQwy4ihNWCVKbEJk1XjZ7CasTdy854J7L9zLJ499knbc3uimbErkJqxSgZQosfmwFcJ4tdKwTWfoiU6AzX3/NxKlAilRYhNjSyQSbmMfSFZOX+pySeFByEx7fQSiNdz3HujObVCrrhxKAimxpaDyBaU27wCt9eZu33NBRhwlgQxGpkD6TFiNM3Dn/wcnvr4xjbqCKAmkxJbC1lEgG92IK4NMgajt6uR5jhiYB6KS/t/bCCWBlNhS2DJ5INtVgRgFmGzDwfByQA8kEKPWtuE9KwmkxJZC6UTfWKzJBzL2CHz8xyEJr3CrNg8GmrByBbL9zH4lgZTYUtg6JqySQBh7FM7cC93ZK9yqzYOBCiS7V9vQb1QSSIkthS2xpK1OfzZ1Gy8RuRN9NbNpGaW/t6HpZjmUPpASJTYxtoICyf0fm7eJl4yMQFblRH8eE0ifDyzrq9vwPpQEsk6QUjI/P39ZjznTDjl05vIec7NjK/hAcvPVdlQgmRNdr2IwlHH6ezMHPFxmDCznXiqQEs8VTz31FO973/vwff+yHfMTD5zhrR87eNmOtxWQK48tQCDbMRIrD+Ndzf0vFUiKzPdROtFLXCo8z0MpRRRFl+2Y3SjBj7dfp1wJW6GYYu772IYEsqZEwuchgQwO4y0VSInniGxQuZyO1Vgqkm04SK0EtQVWJMyJYxs+mzVFYcntO3Auh4Hl3Ms8kBLPFVfCdp88zwq3Qa8ar97E5oDM5L8dTViXFoW1edUiwOy5M4w9fQyv1eTTv/1OWrMzl3ysPA9kYCLh5u2zl4qSQNYJV2LmHMn0mM8nFbIVFpTqOdE3thlXAmtTIFvDhPXgFz/H3330gzQmxpk48TQzZ09f8rFWzAMpCaTEpaJXpfPyKxD5PCIQXZqwNhRr84GYKKxNTiAyjpBxzPz5CwDMPHPyko812IS1fU15JYGsE66EAklUNhvcfgPVctgKYbxXwt+1WZCZrrZTHoiSEq0V8XS6SFY0273kYw1cE30FApk8+QxBt3PJ59tolASyTrgSg0qUGAXyPFn9DIo+kM1LILny2IbPJSOOVRVTzAhkk5fwUFKilWahkxJIo916DsdavRNda83n3vUbPPG3t1/y+TYaJYGsE66IE12pvt/PB2yNarzpr20oQNaYiZ6ZsDY3gWilUEox20prds11Lz05d3Apk8E+EK0USRQS+t4ln2+jURLIOuFKmLBi40R/PvlA8lpYm5Q0+00X2++55ApkVZnoW8SEpVITVjcMAAijS68ePNCEpQcrkKwvqyS+5PNtNEoCWSdcCSd6nDnRt+NUdxls+kTCbU4guQJZUyb65lcgqQpJB/hVhSgvg7U40bPVNWWyue/PSigJZJ0QmRIml9WJnoXxbkNb+3LIB67NOjgXnu92zAMphvH6R2dJFlaYrW+RKKzUB6JY8NJ2tsJLn5ysuKDUIl9QT4Fs7vuzEkoCWSfMTYwB4DUXLtsx4+dxGO9mVSB9roFt+FiKiYRzn36K7sHJFTbeIiYsqdBaI6PY/P8cFMjARMJlFIg5z4XW+Us+30ajJJB1QjbwyefQORcj94E8D01Ym9aJvs1NWHkxRSlBgU5WeA5bzImuLhIpefdffpQj3/rbFY810ISV9dVF9yGJU4JtPAen/UajJJB1QjZjlpdRrj4vneibPBO9OPPcjiasPA8kmwitZD7dKmG8SoJSPbPTMgTyzEP3c/aJx1Y8lh5UXmgZBRKapX71ZZxUrjdKAlknXAnTS1bC5PnkA1nPBaW0Uhz8my8SrSXMsjj4bENlmDvRzeRFy3T2HscDIom2jAlLopRCJ1l7B1fMVkpddAKY53utIg8kisP8/FsVJYGsEzJ5fDk7S2zMB2qFgSo40SBZCC7bOTcaWeTKemR5z144xz1/+VFOPXZo9TsVFcg2JPbMhJVfm9Q89NBDfOADH1i68RZxomuV+kAypSSWmZxopVBy5WvJEwn1xRVIXCqQEqtFJmnlRTrgWhBnCmQFU8ncp5+i88D4ZTvnRmM9nejSrN0SB6sn4H4n+vYjkFyBmNBTLTWtVotmszlg460RxquUNCRiPljmuWmtL6pAemawgglzmWKKmQLRcnOaY1eDkkDWCZnT93I60ZPcB7J8B9SxQsdbt4MuRs8HcuUHpexZxcEaVpHss31f5gZtAuQZ6Hm5FuOAzmbxRWwVApEy7U89Bhm4nVYKeZGkv6LqzMlkmUz02JjMSgIpcVH0Ra9cJvTCeAd/r7VOnZzbyJm7ntV4swzhOFxDZvJ2d6Iv9oEovXyS7BpNWFGQ8Jn/9hBTZy69FtWlIDNhZdchlonwi6MIv7uyP6xv/rCEQAb7QJZ9gbcASgJZJ+jchHU5M9EvUgsr78CX7ZQbjvV0omfmijhcgwmrz/a9/QgkV4AZgSR6+Tpva3Sie82I+fEuc2PrW502c6K7JqzWXqa9cRTRbg0w1RVQVBO5GklM/wn7rytXIJs0onA12FACEUL8EyHEcSHEs0KI3xjwvRBCvNd8f1gI8ZrCd2eEEEeEEI8LIdbg5dwY5NEZq5DzSdLm3PmPXXSWfbEwXj0oqWmTo9H4No2Fg8t+3zNhXflryggkulQT1jb2geQDZUGBZCY/pWTqGFZrUyADK9muA7RSoDVV4QLgLjcsan1RC0IxfDf/2zfJw1G7b9uMQLayAnE26sRCCBt4P/CPgAvAQSHEbVrrY4XNfhR4ifl5PfBB8zvDD2mtZ9epyc8JeR7IKjrL7Ow3eeaZ/8G+vW9iaOiFyxxPF8zQy7xwW3Bho5On/hjLqrL71X858HudF1O88nb1rMREHKzehFW0fmwl4l4tegSShauqJQrkC//9t7jm5hfzxmynVSZ99pLw1ndAVavsS1pronhlNdpHIBkR5lFYg30gW+n9XIyNVCDfCzyrtT6ltY6AzwI/uWibnwT+Qqf4NrBLCHHtejf0ciCbjGadNeh08JaRw8rEoUu5fGeNC7J3WQWSrN9s/XJByTC//oHfr2cUVu4DWUMY9PPFiZ4N8nKpAlmYnqQ5NVHYabUKJEu2Xd/+mp1X5M7z5c6vL2puKjrR8/dODc7Ij3MfyNZ5PxdjIwnkeqBYBOaC+Wy122jgb4UQjwgh3rbcSYQQbxNCHBJCHJqZmbkMzb406EVO9Ds+/H6+9r4/Xmbb9IVTevmBNC50umXDeLegAlE6QqvlI13W04me+0BKE1aOfCnbbM0TudQHoqTsL1G+ZhPWyoN0s9nkM5/5DOFaghtWQI8UVs5ER2vERZ5pkV9yNZKF7uvFCiReutMWw0YSiBjw2eKns9I2b9Bav4bUzPXLQog3DtgWrfWHtNav1Vq/dv/+/Zfe2ueIPJEwUyDtJn67vcy2hkBWmIknhZdMLSKIeNpj/nPHUdGipK8tACVDlF6JQNZvPZCeE30NJqxiNd4tdN9Xi8VkoaVaEoUlk6S/wuxqCWRQHakBOHT8EMePH+fZsWfX1PZlz5v5NS4SxptufBEFMsCE5RtLwrjo3zcxUWpic0c5r4iNJJALwI2F/28AFme8LbuN1jr7PQ3cSmoS27RI4qTvt5Jq2UEwUyB6BQKJCgSyWIEsHJ/n7sfGka2tZ2NVOkKtoEDWsxaWuoQorO2iQIITDZp3nCVWmn//1FnO+CmJ5gqkkIne8+/1FkhSsqhAVjdCrtaJPtFJzWPjrcuTIJtN6kI7vcZYLO1/Wut0NntRBbLUhLUgUwXbWGTTTHIFsnX7yUYSyEHgJUKIFwohKsAvALct2uY24C0mGuvvA02t9YQQYlgIsQNACDEMvBk4up6NXysye3oW0ZMnLw2AXpUC6XW6xT6Qr52f4z/isdBKB74t5QNRIXoF0916VuPtmbCefz4Q/+gsnQfGOR9EfH6ywQMLaQjq4lImWmrimTQ3YnkFsloCUX2/l0NWd6sTPvdw3ywCCyC2zHs3QBJorfCvexHx7qtWPF6R/LK/s/XjF/fZxDjRxRZ6Pxdjw6KwtNaJEOJXgG8ANvBRrfWTQoi3m+9vAW4Hfgx4FvCAt5rdrwZuFUJAeg2f1lp/fZ0vYU3IuogqhDou5wjWKiOQ5U0nKxFIO0zP0fUTqrClZjhKXUyBrGFFvOeIS3Gib5coLC3TJNRQZblGxlGe14syGyqNDLP+WiAQmfSmpwUTVpIk+L7Pjh07lpwzG3DlRRRI5jvoRt21X9jic/b1o+V9IFopZH0YPciovmi73rEzRWUIZBkFIrbwRGPDCARAa307KUkUP7ul8LcGfnnAfqeAV13xBl5GLImVN6ugDd724gqkaMJaTCChib6Kg5gq6WBw4amjHL3rTv7x2/8DhnjXDfFUF+HaOHtqF91WqQi9og9k/VYkVJeiQLZLNV5jYg3NfY4zP8eiUiY6Ucw0z4EtSJIkJfisZpRrjlUgkEOHDnHXXXfx67/+61hWvwFktSasjEC8cA1VkpdBMYQ3dGzqgBzwfiilQAgQFlophDXYeKMGTCBkdv2L+kNGINYWJpAyE32dkc1GlJTLmmFW5UQv9NTFPpCcQOIsYkZz6rFDPHnXnRetJnolMP/5EzS/dvqi22mt0DpelQ9kXRRIXgtrLQpke5Qy0SpVIFGmQHS/Asl8IFppul4ajh52urnZLyzmSxSijxYWFgiCYODzWzOBRM+dQIqTOCk0e17eQFhLTVgySdKQHiFWrGc3yIkudfbOLSKQzImut242+kUJRAjxU0KIZ4QQTSFESwjRFkKsb7GabYCs68jczruCCSurN7RSGG8hVr5YTPG+sfsY70yn20S92WLYTe3FSbRyMbgrAdWJUcHFiSsjzNUokPVxoqftSOJo1clm28UHohMNGgLTX+N8Nt0fxovUWHZqyOgsLOSqbdovrLJXuHePJ4I7vuO1AwfhfD3xlVY5BBIzCQrigKeffpqxsbG1XVwBxczy0d1tbvoHk+y6Zml0ZLpdqkDUCgUV+3wgmUrLfSD9BFKs7Hs5i6yuJ1ajQP4Q+Amt9U6t9ajWeofWevRKN2y7Ies7vQGwZ8JaPMPNBtCVfCDLJRJ+5dRXmPIa6TZhFvKqCbupvVjGy5PSlYKOZDogXQTZ9a6kQJZzoiul+OQnP8mpU6eeQ0v7UXzBk9WG8habtYUVSJYomJlKk2VMWEoqLCslEK/ZzO9ZnyO8YMJ6EoeTV92AP6Ases+JvvJ9S8y+QRTwjW98g/vvv39Nl1ZEcSLiGgdHpbKUwGSS8NJXPMh1L3pmxZLuSmksW/QdWy4z+Sgu7bARloHLgdUQyJTW+qkr3pJtj6U+EKUU544e5r3/6mc4f+xIb8tMgaxgwooLs7SiCStRCVKljzXJyrhLTeh1zWcRXqt52VdBu9C+sGxynwolXGRWCf0KZNljFV744ssfRREnT57k/PnzS/Y5/tAk02fXLpqLA0W0SjNWnwlrC/tAsusIMnPoIhNWFqiUJArLsgHSfpVkIehFAun1ta7pd91kaf9bbSmTSic9n/YS4jjG8y7dlFV8DxxDdBV36WAexRGjO2cZ2bmwIoFopbFdyxw7I11zzxYrkAJpXM6lrtcTqyGQQ0KIzwkhftGYs35KCPFTV7xl2wzKzG6SuFcOWyvFxLPHATj1aK+AYCZ5pzoX8hDAxSiShlyWQJYqkMjz+Miv/huO3nXnZbkugPHOOD/2xR/j2xPfXvKdTlRa7mJVBNKb5Q8yY2Uhl5Ztm+0LJGpewGTAi3j/F57h6D1rN3MUQ1FXHYm1TarxZooxzBVISoiazCyTbmdJjcgIpN3KB0IhBbEyKVyFPtyJsgiqpc93tT4QK0i/F75GSonnecvO8i+GomnSMQO9M4BA4iRCCI1lK+Sg5Xvz42kcQyA9sSaLG+R/9hFIHG/JdUFWQyCjpCG0bwb+mfn58SvZqO2IbFyJ85BHiZKSugln9FrzuVkmi8K69ZnP881z38yPIWXA8RP/jSRp55V4AaQukokk0eljldksT2kCo0C8VovI92jPXb4alPPBPBrNrL/0mCozo63i5SgqrkHqKyMMy0lNJsUZfkYcg9bmlrFCLreo1vmDcNcfDPyqOCtctSNdbQ8CydqeB2Qo3XOg0xvkLQ3CFIzwO538ntXjCnPxbwMiJZCP/Rgc+iihuSWtcMDzvUgY7/l5jwsND90xz7gbkyQJc+OneccHf2nVl3a+dZ533PUOQhn2KSVHpG13arJXfsQgjiOEUAhL8eTUEd7ytbcQyqVmTa00tmMUSKaoDEk5zSEe+eqt+bbF/uUfnGHqfz2y6mvYLFiRQEzF3MNa67cu+vnX69S+7QMTGZgvyWrCeKtDIwCMn/s6k5Np58qisGw0rahnemm3j3LhwidYWDjYVwur+MLFOkYaAjkeZOsN9Jzo2e81ZVcD3bjL2dbZgd9FZt2H7HcROiOQNfhAYAUFAtgZgRRmjyspkCRRPXPeYhz7Ety9HIH02rBaAtkuUVjN2kNMv/SzBIUoLFXwOxUn1cKo66Db7jmYNUi9B9whtEzQZx4kfvhLRCb8tR0tTyDLmbB+84tH+O0vHSWWipmRnahQkyQJ7tQU+w8NLgs0CI9MP8IdZ+9grDPWdy5LpOd3KglqUYRXEAUgQFvw5NSTPDb9GDPe0tp6Si4lkMwkbUuL2XNnCtsWQojnPeYXZrdcn1mRQHR65T+xTm3Z1hihyw/wcMEHkvTNfmJfEQRpaYZMgQxph7hQEkKqAA28+elR7un2kqiW+EDMC/14ZAZk1fOBBFk01hoL0X3s6Mf4l7f/y4HfZTOxaJBqyKKvVmPC0kUFsjyBZFE/gxTIYgLRWqMSzeGK5AuT8yxBEqSjoew/n1IhuL2Ksqsm3MJlbsbImsbkOHd++AMXjSqbcx5g4cZvEhV8IEUFogfs7ntefs1aKzQ1lLOTeNZDCEV07CFikQ45l2LCavoxC37M+eoQ9vhpFqyhtMSIkgyIvF0W2UQnUUnfIC6s9Lx2TaK6/VnuYRhjCXCEoOulkzov6SeZZpzw2Zc6xDVjwspCnQ3xWui+SU/RhPX5+Cv8uxf+7pZbfno1JqwHhBDvE0L8oBDiNdnPFW/ZJob36GPEawwdfJl1ih/hfuo67XzKrKOQzXJlaBWcyGnHunlyiPkHexValAppsIfx2OEvu70Zl9L9BJKYx+rmFVN7dtvgEhXIeGecZjS4/HxRgbRmplmY7A28OrpUE9aAAWaJAinak03OxiITljQD4Dd3a/707NTSk2arxcX9g8H9R/+KyktvQ9dTMl49gRSexSaMrDn7xGM8ccfttGdXrkw92anw7OnvzqOlFiuQIlEK099Cv9vzG2VRW/Z+OifTBZXcnTaJIf/2AFNjlHS49h/+d0L72JLvAMJE4kcSFfq8YOwUKjZlSJTEjVafHFskkGIfEkaB2BVJ1Fzo28cLfIRQWJYkNMvaeov6zKGWx8HrHM7tynx0/ZFrNrrPr1YkrwvRGPNOM39ftgpWQyDfD3wn8N+APzY/f3QlG7XZMfYf/yOzH/7wmvaxzRtnmZmuNiasU920NlYYVvMqtJkT3RaSaHwyP4ZSIRNcB8Bu0Xt0/Q71ng/EzoKw4l6nDS9RgcwH8yitBjorMwUSypBvfvzP+cYtf9prc2bCitdqwhpgDltEIKtxome+jwidZ1X3IVvUJ+4v2T7RmMYSGr0rjVi3p4/A2QdXbH8UzS8itc1HIJndPeiuXAZkxh9ievpFBInHaw4/gOy0+wI6iuU3LGOfDX0vnxBprekSoKy9dE+nfc5xAhLjcO/GS++NF55h575z6KHBC4yKqAthl8ScT2uL+rkTWGGAWIPlJ1PKsYr7lFhGIE5N4s/P9e0ThCFCKGwrIfLSfrpYgfhmkhTUMhNW5tNMz2EJjd9pceFYOilUMiG46gZkfZjJ7nm00ERewGef/uxAf+JyeOaZZzh37tyqt7+cuCiBaK1/aMDPP1yPxm1WqE4H1VlbHR6HrIZQluORFlOcN6vdqUAsUSDCVijPJolj4jBAycEEsjgKazSY5afHb6VqnOhJYUW9oHNpCmQ+SM0/iV764hcJJJgbJ2j0SG9mNg2rXY0C0RdVIOZFdFyz/SoIxPheYkjrOi2cg9+9AaafNjsOViCJuSZhfFT7n/1L+NvfWrbtUTTP/Q+8gU77RO/cK5iw5sY6yzv2ryDyop7eyv1XalDKxp8c44cfuB37sUdWUCAmwjBJclOp1pK/qT5CLHcTjKf31hKSyAPneHMggSSmaq1wBivdlwbHeVFwgiQrNSIEVhQi1phUuqwCMTVF7Kqi2+xvQ+j7CEtiWZLEOPH9RZMO3xzLrxiCy01YRtkIzfzYef7uox8E0iCXeO81JCO78HR6rNMzJ3n3Q+/mG2e+serrueOOO7jvvvtWvf3lxGoy0f/roJ/1aNxmhYoi9FrqI5GWK5iMXoZFmuOQ5YF45kUSqjeAZk50y9aowOIr//t/8an/8Z9RKmTSEEi9sFRKH4HohJ3BNNeFkwyZFc9EoQJc6HW5unYAHa7tpcsJZEBYcZgYAgm6yMZ5kmZqKgrDFh84+H7TSH1RB6G8iBP9CVMRNgvjXUwglXA3kdc/aGehzAkQKQ1zJ9O1qRumtIocrEBkRiz1OgAi9pZsU0QUzaJURFIw8y2nQEIv5q/efZATBycHfn8l0F1oEHrdnEDCi+ROKJ3O8DutNCm102z0+UCEKvQpu8bk6B4QglbBNNbBZ9Lb2WfWU/Mhu8YmaEdL741UaZtsd7BD3NEJjo7yWlUKAeg11xxbzgfSru7g1/gAM9WrWGg2+vYJuh2E0AhLov10n8UKJAs48AyB9JzoxvogNLFMaGrBXCfk1s6P0FJVtBAEIu375yfTNU4Wm8cWQ0rFkbsuoJQmjuOBwSPrgdWYsLqFH0m6gNOBK9imTQ0tJQ+/+ns4bq2tIOE0r+Kv53+XRLu9cF2lGFfwoV98B62RnXmyWk+BpPWIjp1+lAsTp1AqYIJ0Rd9iIuFiBZJ5OCumQ4sC2UQdjzde87PsC5auDPwXY7McbC6dmWqtcwKJ5dKB3Zu8AEDn/GlkovNKwV57AlcXCiheJL7/YgrkcCttm7KWEkjox4w2Xkk0PdS3jzIKJBIQKA2RcY4a0uspkH5ySLK21Kqm7WH6swyUCvraLVF02vN88G3/grmx/uTG0EtQSuO316+szBd/713c++lP5Db48KIKRKC1heenA1kYBATdXnutAoEcv+4FfPW7vg+EwFto8Pf2vpmbd7wagHN6JO3HBm/cdQ+/+wPvphMsHSCVmYVbyxFIEuEmUS5+tBaGPNK1OlabuJkRSKziPgKZr+9lRlzNBXETrW5KIEoqzhyZJfSzyYsE0w0WD/KZCavrGgLJVH7BB+IrmN+xjzuOTTGvdnNYXgtCEDgm92syNUX5ycqrYB6//zz3fPYEzz48RtxdIGlOrLj9lcJqTFh/XPh5N/Amli49+7yBDgLGrno5F8TQxTcuQFEBLBLL7gsdnMSmuXMPU/uuZeJsj0ACBX+CZrLeQsUJQqo+BRKZwafiWIsKKyYIQ0AVM2AXCSTpBFjCwpL9BKi15ndOjvOp8X7bL6QhvLEZGAeasExV1DAJSZRmj3szsx87it+ZZkj2CORiZqyiD2TQqoRBNssakAcS+QkCwWLeycJ3E6GJtILQDAjeqVMAACAASURBVE4ZERofyKc+8WFarV7IdGwIRToOtusiZNgjnQGQMlvnJW2jRNGYn8JrLjB7rj/8OW/TZXKYnjg4xV/+1wd7eT8D0GnM4bUWSOJMgaxMIFnia2hCwVWScPRrPcVkFVStFg6x7aCEIPC6XDd0M1fXX4CF4HQo8+gmgH3uLMOuh+8ttfFLld5Dxx28zscPffse3nTwvh6BAMnIKLKemhlXW10h84EsNmEpE2LsU8cztbwe+OuTfPX9h+nMGAKxEjxdZ+Gq36S1aNKRJUl2HKM8Dn8h/W36qSVUno2+bySdmPjaBWER2mm/mZiYBD2YQB5++GHGx9NIze7xxwBoH3+MJA5JOgMiDNcBl1KNdwh40eVuyFZB2Omwo/VKOt0b1rSfMI5tIay+uje+eem79R0sPNVA+gtoLVmQggYwNhpBohASQhkzzdUATJmBoO7aFMflRCVYGYHkCqT3mGPjACQjkOYFuO3f0w59/knyKXb7S+sKZeoDBiuQ0LxIkQxJpGZ35SaC4w2Czhx1VSCQi4TyFqOwBq3GmNdPGmDCCnwz0IX9XTrzM8SWQGpIAjM4ycUKxKNZsHuHZrGiWAgqtTqWilYmEDP46azaMorQLB4Wev0DYtamrM3PFU89ME5z2qcx5bHwlVOEA8q2RL7PXGeWE7Np5YPwIk70LJcozjLLlSQKegN0fwlyAUKghUW308YWLq62QMH8qSNEJi9CYjFkp5ONJOo3EQFonT4Lp7KUQJTSjHY7jHY6KHq+hWjf9fkiT8kKRQ6L6DNhFZzoytSwCqgTGKWamRkTM6BbdkJg14hrr2BmUSTZ5EIaudWyjJ+zlRY1zdYBSfNMjKPenMvXLqpayxXIdKi4tr1nIIGcPPVbPPHEx9JjtlPFoRfGibW9mij5K4LV+ECOCCEOm58ngePAe6980zYnus0mQlTR2r34xkWYGVtKIL1OG5gZSXdohE6rw+996efQKiYyJgIpEkQUY0nNhchCCRPFYjpi1bH6qvHGKkEYP4Vrjl1c/yNzqOc27FN3w6N/wcTkCd7M17nGvyffdvbcmT7zFSzjAzEEEsoIqcC20tlV0GksIpCVTQxLFIi/yA6dzbDtXhRWFM0yN3c3QdvUYAqqfftkYbyJudwwW4Qo830YUnBJ+uzImQ9GWuDW6lgqXpUC0bkC0blJcvFg3W6mg9PUxMqhtKtFbAb27oxP574xgqf6Z6NKSZIoZLx5gcOTj6dtWqUCyUxeQss+p79TMGFZJqBD2g6tVhvHcrEsh+vEBD9/0+P4ZrYdWFWGLbN6oRxQ8RZDIK63xBwVzzyDK2McmeQ+D601WCL9AeLC8/F9f9kaWcv5QLTIFEiNWHfQumdmjJOez7NCek+6iwqTeqavdQw5nO5W+fO7T+aqwxI6/zurJOFrl6RSIXZMgrFQ7O3sWEIgcRyzf/8pEIfT/4MsGMJHYrOKPN0rgtUokB+nV8LkzcB1Wus/u6Kt2sToNJsI4ZIuorh6ZJI/DVsvZKCaAccbGiGJBGNRE61lXvIhtmJcr4ojHaYLJg9lXhrXtvoTCaXCMQrELRCLhYVl20g/7msPpqNOtBrU8BFmJj195hSf+E+/wtjxY/0KZIBvIlv7IVIRiRK4hkAir8WQ6g3oa1IgU0/CH96cRk0ZZApE54mEiqMP/zm3f+g3CNrmhVt0imzQS8zjiiKzXRa+KzMCiYlPnkTnGdIZgQgq9TqWjntqZVDbMxNWtpqkUMQmVHrxYN1ppwNbVtZmNYjDgGRA9nb6nXHqzhoTaNxvysmy6GUck5hBb5ATXWU5O0ojswlMNvgpmZMxgFMwYWVhvNK28VotLGFjCZcD4jw3DrdQw+kw49lVhgyB2CxVGVqn98uyJXF3tvgFlY/8EEPSx5Gy5zTXGi2sfOCPCpGFX/nKV/jCF1ITUqISfua2n+Fb576VblcI4+0zYdnpcQLqQIvmTG8QlwX/lyDdv5tEPDHzRB5y62eFIg2BHI2u4/3fejavH2YXFEhkgmd8XOLCXFQJyUhUW0IgQdBECI2OUuXhGQLxu2m7kostlXiFsBoC+R9a67PmZ8wsRfvJK96yTYrWfDpz0mJtizmKbNwVFkeO/Wvmv3OOM9d08Q2BdIZ2IEPB6EyM0gmReUekSHCsl+BUXk0zTE0sI6qDstLqKI4tUEqjVILWmkQK3JxACucXFrZbwfRtasMyncGZwX+y28RBYhlHZhZN4zUXLkogURaFpVIF4ogKGk3odagXfCAX09lFApFTbSaD9yKne3b3MCMQKytWpxg7cp7px/cStFPzgS8C/uDhXmmSbNCThnBzAlmkQKphgPwPv0bzttvS+2VmmVJApVbHJknJZhlHrTRO9J4JS+cD/mIC8brptkm0ervDl//o3XzzY+lincki00ngpecJ5o0KWnSfI2NKk0mcr7+92KwWjXcYf9cD6frmUqOMCSsLyLBFnN9Lra0+BSIKCkS3PW53H+VYfY5hUrIIhisAzOldDNvpvXDEUgWkZI8AJj/8J70vYh8RdfArVxFW9qYqBLCUNqsEGn9NgUC63S6NRqpg21Gb443jHJtPExSzsPMlJiyrQCBWi7HjPQVcjBC0DYF0kpC33/F2PvHkJ4CCE93KyNchTHqEZ9FTIGGYDwjEdmEiYUfU4/oSAvG91DcZk44/cZwRkYkyVBuzNuBqzvqdxX+EEA7w965MczY/vtmJSSzQYvUmLK01TtNERoWKdvdxDl/f5ciLWkiZvmStkZ0kAXz/3RFaJ4RmRiGtBMd9MXb1lXTMC7xDd9GWQAiwhUBrj3vvex2zs3eQxFZeltotDHYCC8d1cU0EUz10OX3qJPPhAh/eOcqYnxKGbRRI0E7t6EkYXtSEFWWlTEwdruSV93DizW8l9Dvsjnb17sNFCaT3ksq5Col+AbJRyGExJqxcgSidz6iDdmYSsTi1cIpOI+DuTx8nMrP8TIEE2Up5uQ8k/V3rBiAlsXFSikyBCE21VsHKpM2Ael9QUCAyQZFWrZXGX3Tsnm/1VT/2u5kiWD2BtGZnaMT3c9sdP8X73/rzeK10MvHA5z9Nc+LLACxMpAPeYlNh5Ju2JTJXnosVSDzWAQVyIS0wKJW5YVn5GGPCqgea7zpN6uMwsM0wIi0Lx4s5U4+ZrkpqymfSH0FX0u9n9O7cB1K1liogKXuk0pl6pnAB6efPHPg5zt34E9gyM6vpdInZTIFEvUFXKZWbsDpxSpbdOD1O5sdLo7AGO9HjSkBjqtfGYgkSTNHFRtSmE3dYCNPJSxDHvProt4mERlogcQiTXpixJVRvAtKe4O8q/w8HxAQ+hQRNJ2JYDS0lkGYa6WjXzaQkEey2BVk6jWSTKRAhxG8KIdrAdxdWImwDU8CX162Fmwjn/JDf33M1R15QQYnKRbcPT59GxzFKKazhLle/+tPYUiNEapOXts4jWzvDI8QROLFG64Rscpq4mtRcZtMxnWVEt9FmlmNbApcFkqSF550GaeUmrKGCw9sSFpbrUjUE4qgq9917H3e3T/Gne3bxubGP4ClwjALxDYHEYUAjaPDDXY8/mp4drEBCxT8/8mtYflpZOHxJmtQU+gFX+zfkCWh6URjv2Dvewbl/+2/z/4u1sJ6Ndqbb+IUsekMgKneiS6SJfIm9dFC2lI2f+Jx8bIzH77id9nxaP0zlCiQjkCwKyygQ4xtK5ufN/eoRSK3m8Li6mYfVy5b1gxR9IBKFROXBEpHvMXehYIoz0V7SXzlUM8OJh+4nCnz0yGkqHCaJI7oLKVlMPHscZcwajWdT/8ZyJiykwjbKISzUeup0jjN7+t5030ShE81YvIsjyTV5CGpqwtK86YjmnX8tuWbeIbMXWvQUiBsLbvuu7+UbL7mZ6QWbT5/5HiJjGpq29jJsCKRmL1UgQvSe/1y3EJZqHNqJXSdxhtEaDn3396fkJgRYS01YUkrCMEzLvZtw24xA+k1YSxWIr+soWyLNS6iQUFBHY3tuAmDc6yem+oXT/Mh9X+H6yXP4FUGEjbYFgp4PJEO9+Sw3WxO8SpykXUjrF05EVS81YXUW0lDwuh0gZciI3sEbdzgM6RGEFnn1ifXGsmfVWv+e1noH8D8LKxHu0Frv1Vr/5jq2cdNgxiQ/Nfd61Gp+n6MveKaBbBdMMM0mp37iJ2ndfjtKKZxrJtn9km/hVNKOkQiNtHPfOkF1GBUmCKnRqqdAEksisBHCJsuRqwdtbCF5VWjzD8/I3J6cyC46cXB0grJsrgp6EjxTIBXjhLeVSxAEzM/X+enD7ySJEo74Ni6LCSRkLpjj+/yAf9T1iAfkQsjA5prOC6kH+/s+DzyNIwRxtqRnQYGoKKJ1+9fo3p067bXWvHXyB7iXfwDAfJKavhphwV+UrXZn9dYDycw5Se7bSQnk9FPfpr37NM2Z2Vx9pMfoN109Wj/AH13/Fs60K0ghkPPpPbNEz5dRq7r8cfKz/Hb81uUJJIvCUorZl32a5qs/kPtDgD7/RbiQmiPkAM/nXx08z1MTvSiq0OvyN//r95j1FJaV4NoaLJ2Xomk0Z/K8IdtcaDw1Q+e+XjRdpkAs1cvfmLhwnpMnTwIwNf1VOhOn0vbHCi0Vp9QejiTX5kmAzeG9zFswEmj8qoujLIRJiEhagspDMyjbxrFcvHoFf0fMhfbNaATSEMiUs5uane4zNIBANL17W999Te+LqIvWIC2XxBliZt+1fOv7f4zWDrMwqjFhdRpdPvQf7mbqTCuvAuD7fq5AOoaI+kxYBQUi7HRSGOg6WArvmZPMDJ/hw6//T4R2b0APq2ly6VycOdNN9r0xFVajEK+imXv1Av/8B+/MzVa2KCQ9+qmCvFo06BYrQdoRlnbw40V+s85473ZE0zik78eIVed1yc1IbBqNRq5M1wuroa3/IoT4F0KI3wYQQtwohPjeK9yuTYl502HCm86y/xV3QpzVrtLMfuxJOg/0HnIyMwNxTDLfSIlGZKF8WVipReza6Cyr1naInQrt+t4+H0hiJyBSBeIZO+ewamNZmj3SYjQCW6ed7W+nJ2nVf4CRuoWlZB4dk57XwnJcXEMgFi5BGNCc2s/+7o3s9q8mUIKKCaX05tJBLpyfZz6Y5+qoggXIcGn0TJY4iHKxKoUIs8DCEaT5F9BXabS7aBnSSGtOJru4IG4GYMbM7rL13QEC1U8gWuu8zpeMsvUpLPzEp9FdIBndzczsMySFpM9bhl6XzgdlDFrzV/t+iD950f/JhKoxP1wjPHmS06ffh20UiEJTq9p4uso5fRWN2Qne8573pCG/jbPQTn00PQUi8fc8jRyezGsgwSICMeY2tSgXRynN/3vrET77cE+tzMylA8K8GMI2oZ62m0ZVAczOT4ExgVStdGCLTp9n9s/+zBxTcvDLqTPZVqIXfitlXj9JyQDX35u2P1ZEYUh9uIkSmnqoGLv6Ru78/n/KrTfXqMSghMASFsJETYkIxEJEIhy0UyWwqqhaTDtOB2RtwUL8NobEgfy66oMUiPKQ4TBogRi1UFn0WuyhJSi7QuLU8etpDlZiltLNTFid+S5xKGnN+DRn0n7jLczQffB9AHST9HjV+Z383OO/QRzI/uq4rokWYwhhKaK5BZqV8yhLElk9BZIpFSkqvGbmNehp0/+NAqrEIV7V4jv2PMQPuz3TZTGMVwep2esqscBh3Zt4aTtGC4fA7y/m2C3kzYThFLZI2yqxuVbtBuDPb7mFW97+r2gf+iLEAcfmjvHg+IOEp09z7m1vwz9ylMuN1RDI+4HvA/4P83/HfPa8wdP3381dn/wIDWNCmXV2Y1c9lJkF6iABpUkaAbKTDhTSxITnJiw7k/u9sFJp9c9Am1ddz8TVB9KSGAp+bZfN/koCOCBsPO1Q0SG1SoK2LSpmduiY2e+Yt0DovghXJYy6exGiN/UWwiImxhEOyooQwiEKI+JmGkNfj0e5Tf847+XX+PjYLJ3xtNqwf+EC0940N4XD6YEGEUhessHBuXlH/nkU1FMCMXb0yO/ZlNtf79X60VoTZGtwW2lSWBibKLOTMnXsQl5aXBWq8SaGQDLLmsBGdT12d57kXbyHcP4JZEGBfGH0tcw7O1Nfhox5fGgf0rKRtkO36iIbDZ499R52WqYAIAHVik1IBZ8aJ85cYGFhgbm5Ofjr/wu+norxYhRWPDSFcr28JA2QD/gAoW/6jeqP5Gt4EYnSdAqqa34hvd8SkWZBA3ZFEZvjiUhBlvdjot/QgmS+STLn0200OHP4USBVH5kJSyjJyEh6r6Xycf196a6JIvICNMYPIuFvfuTnAYgtqMWpOdASFsKU39ghQ75bnCKxHbz6MFpYRJbbC9UVNh35E1yvr8qva4e1tB/ZhKikih2PIIci4kkTQBF10FIgrQrSqePVTLuNKTNTIHEUstc5jUySXIGMHXuQ7jNfB6BrfCm1hZ3s8a8laYq+gpxFH4hlSYIgJDHtFIVnKc0EpmLVONA5QKVhzNlh2gdSAoHdzgyuiMgWAyoqECua5/jNw1ztzqLtgl/NisF20F6/rzFIeoTSnL+Ai0PrmgcAiwUTkDAXaO7c80Y+8tmvMnb/Z7jliVv4nQd/h2Rmhu499y4pUX85sBoCeb3W+pchnW5orRvAxR0A2wjTZ07x2Nf+hjmzitos+3HsLl+bbvDaB58k8NLRa+HkAo0vprVsEhMBoqMIrTXt+m6+wC/kIY97mjdzffOlpghDis7oHrRUaJWwo3MDB3a0+d7khWinBsIh0BVqBFREiLIsHLOvayR5jQDJDl7kvIB/fP1bqdvD+bEFFtLSOJbg1BvfQfMFjyOnp3C7aWJiPd6JpTzGuYEPnZ/Gb6Yvzmw7ZK41R92YF9SimRGkppio82UqAdT3F16GwMURgsC8fO99pJc+1H2wV9n24wc/iJcRCOnsUumUJIY6LsHTqV/ipoU0CU4ZEp6ff4jH934Hn/jpf4eSaVe2lOBHvtXg2laaqXtd4PUpEADPrjHdSbj7c8eZ5SUA7PunXfybQXkeduVm6lZ6vXV8Ko4gIA2aODvTBg3Wt+YI54fAZCxnUViJ3QI7ASdE6ZipfdemGdMFAonzEvf9r99MJ92mWwjvbSyk5ixLK7L5gF1RuaKxYgVItFZUMwLBQoy+iun3P444/BmyWW+qQAyBaE1oTFsyCnDCdBarY0XoB9wweY6fH/8CoVOlvSMNhNAaqn0KJG3vDyZH+VTl3UROhc7O9D5FooIy5tCKtQeAUeMDEBHssJYOZsKO0bKCldTQrioQSBclBcqYmLqmwGVeldcM/DTH+IV976A+fV9uXp6YbdAxzz8zZclYoWSDJJYD80ACUcO2FGEYERsCsSgoFTu9xqujkbT6gZnYWOYZV6KIPWNf5WouUCFGFydypu8Ka5wL19e5cf8Frq72LBfYMdpxcbqiv9JC0rtfZ59+CvaeYeK7P0S0Z4zAqOUxOcqxkZdxLt7H5Mw8zbDJRHeCuGP60PDIknv+XLEaAonNyoQaQAixnyXR9tsbs16AkgkTs6ksbomdWFXN0y2fC0FMo512nHkpUd2Yo7NHedfX3wmkBKKk5LFdL+RW8bM06ukM/bvOv5nXXHgzTiGltz28Ey0TlEpw/bRWlWsJEA5g4esqNXyqtp86LPViAvHZ0/SpWVUsYVO3e2rAEhYIgVOPkJUO8egkzvQYVTNw1JPdvEgf49U8gi8VvpemKh6vuNwwdwN1Mxhob2mWs+tLVHySoU7I8M7e95ZMTSq+6Wbz3QZSpeHDSaOBvSsdmD7+0AeYMZI+MiVihDLJgkLlqxre0D4DgG1m+82FRzmx+0VM77+Orl019yJh10JMaBI9d8iozwcC0LVrfODYLo7cP47npG0YurbD6FtmCW70UPpabMtEsomQyI0JzJzpwkJAFQfnmYDA6znVs2g66fb8Tve99CX8xc/8MqdvemmeE0LkEcVZEEB/KPiM6UeNjsfk5CRSSQ6dT53bw8pnvPOC9PorEmv+JMjUZ5YioWKlbZRYJNVhlJcwfNe7GHHS4zoSdnm9mxFka8q0rbxagU4UQdejHnrsipsok+9kywTfESmBWAKLHoHUtGRU+CgsujvT7UOrgpU9E5H2sR3Gr9RZqDFsd5m95RbC06fz9lhWgpYVhHLRriaZnKQzP8dH/vTTzAXDJGoWlUzR3Zn6PoaGzT01CkR3075nt+fI7kqn3eWgeBnQq101NNcman2cZMEbWMokoIZlJ6TSNeFNz/4iAos2Owio5UEc12fP0fiybGPSrsQheztHqVQyWdy753u/e5bRm4+gVaoa7OGQoUqvz2gT0rvDr/cFrCR4aA2JtgjCMWzHBJS4YR4Fl+WbhFKQhAGtqIXSipmpc3SqLtJdY/LzKrAaAnkvcCtwlRDi3cB9wO9e9pZsYgg/rS47ebhndpmtjOKZ+PuGcZ5XpEbHkieO3s+1Y9cRODY6ikiShNiEngaVKlpDJRnCUS67aj0x1xnegVYKrZM8f0JWWggsBIKQVIFUjT026w6u6Wg1At5y1+14Q2l7qnY9P7Z2qmgLrLqJLqq2sZPezHwo3oVSMRUiPJmkyYFW6qMZSUaoG3u3DpYSSFbl204E1bqfFrkDIpFeg2deIEfbNMIG2vMgjnFvSMvBDIfQzOppUUOLCsKYd5RQKJNp7XSyQc6EwSY+U7V0dtut1gCNhcWQp7BMAT+JQ2L3K5CWvQNb1hHKxa+kdzGghrAgOqCZPjeBZYjdFSHv6H6ZhrE5zz1+lopRRyqp5UUYlQxS01FlAY86J7yb+dr3vD69D26lFzY7fQyp0ueyy7YZf+QUZ8+mtbIyAjnldXjvN+7k4NRBvnXucwCMyg7TU6+gGkh+ZOQUNz/0qyRHvojIbr6OcZ20Ly2MWJy4KW2vYsgksKX+oauu9vnOt5zAciV+tiRBuzew6EgSBh62lLg6oVpP23113CFxBW5i0RnZgSXsnEAyJWxZiu6Ia55jFeGkbfCc9BnhmmfcrFCxI6b/7D20v/51vOYC02dOISwJ0kXICtqRxBOTNCbGWGi0mQ5Hib276MgH8dxUWVdqNV784oe49vpn0qEzi8Rrd3MCmW95nLH286ONN1DtGjKMJKCR3ahPgWSmqUDUsG3JrF1hj1Xj5TN/n7oc5g/5LT7DvyQySqhmsseFTNWCG2cKJGRoZyHYwuoNsyPXdrlu93ks42uMhyWu00FrQzKmDMqubi+UVyuF7Db53/pX+Hb8gyRqAteYv4UbYZv7f8BOJ2GhtEjigHaUThAembjAPS+/ifvPnOJyYzXFFD8F/Drwe8AE8M+11p+/7C3ZxNg1M4MAztv78s9m3J10THXSZiftDLVEo2PF/PlzWNrGq7roqadJZEJoHH5epYr7pGCoeZZK6ziOcBjSHSwt8as1WtUQrROGzAzatTSYzhWpOjV8KibcsWIGass4l3dbAd3qNDWdvrhWYeYT778BJUAMmRlztYWLITW3w/mrXsqzw79Ah2GCOCSSMdrMtIaTOlWTF0Gw1PRgRZqrvmeWYZlgOSF+Zwh/rkpiBt3EmGr2dmzm/DmkCWNt2YKFoSqvOrGPp3/1l9PDU6Er9lBVWclujY4k3QsXqLRNaXUzm0+kR3M0df52hqq8+J+9k+EDj3B9/Xt6BKIrLLIU0bRGcKJRlAC/ml7jgr8PpQRyGPy2zgmkIiIWZEyoTTLcXMxQFt6phvPsdBUoXvLND2IHu/k4/4bfGfp9YjfdJ3HcfP0VPX+ORNoMXXWMvdUmd95xJ3/12c8AMG0IRH9HxO3X7aMVtqgkxjQnE6Kwzt4TCe79FiqG9ngvV0LpmHlrAY3GEi7KnFvrHoEA1K/1ceuSykjCvCm7L9q9agHx5DSh38U2zmWnmvat62QH3xV4uw/wxPf9AAkaS2R1xEZ5sP0vcIWkW88IpIblpv1rtpa+N9LxOMp38ZF9/y4NrR4G5fk8/OXP88XffxeWk4CqYKkKylE8+O1jvWRMWeWmNx2m8sbeqpKq4rJv31n27B0DBEm2jnmSLpmAVgQdDweLX538JV4/+8r082zp3Ej2JxJmCZHCQdoW3x4ZpiJTFW/jMM8eZtmHdNJ+6DiZaTCN/MsIpBb52CM99aALwSxuTVK1YmzjP/KGLFy3i05SUtQmImtvdzglEJkwffhe8Dzusf4Bj/M6GkwzU6vwTt7LfM0ltrJqCmm/DLWFjEJaUfqezRqlGY/u5HJjRQIRQlhCiKNa66e11u/XWr9Pa/3UZW/FJsfs2EsR1h5m3d3sDVO5Oe3sotNIGT8jkrpMO2V3Jo1g+vwbbJ5lmjgKic1g7FWq7PuwQ919muHaU2A7VIjZIbv41WGq9hBaS4YNabiWRkZnSMIjxKpGRcW4JhM2mzc6RoYPi4Cnb5qhqnuqJrOjCttFCQ11M/hWmliiguc2OXdtm0de/kKm629kjBuxwizjOyOQCs0dDqdvrEOnyWOf/zLt2V5UyDW2x3Wvn+Ha/bNM6508dt8rOXHrATAz9cSoiR9/1BCIKVoY7BpnfNcI+5ojdMzFhFSZF/upmom1QqH8mGP/7CexvfQly9ZZH5uxaddSE1RnDzj1FtV9Z9m/7w3YtkIhSLSbZ6FnaNkjuPEoXrX3eSvajYwc4hGB1ektLlQTIT/3ret4cesMAJNDe7DMuhW+3pcTiGg6WLKGiHfwrH4xbhKycyH1j0ROhYd2nOS9j76Xkw9PsG/0Vm56059gv+AbNLwFup6HlEmuQLRrMWvvpdFt4hqVKNBMO+OEJ2p0J2p4MxW8uV6uROI0uKd+mDFrHke4eT2yxtl9eR4CQGVn2nfsWsJ8aw6lNaJrInp0gPJCojBVIACylp7/GjWP5wiUM4S2LBKLXIHoaDePtn8Y207waukzj0UFMZTuu0/t4cvuQ0xWxnmM1/L4ntfRZhQ1olGeR9Dt4jUXsOwEIStGgSSEE5N5wWZAqQAAIABJREFUsEAgK9R2e7T29ez4quLguCHVqgeWyElaqAiNpjo9hnz6GCNJ2rmqyiWQAbbJk1FhfzVeWVAKsesys8/l6WteBYAjXCKq+AwRG9NcpWWD1ljSZcZr45q27vBaVEZ7fqxY9hSeU5MM2RGWmQSGNZu63UVLQyAi5jomGVJOut7Ik7fifepfE1craGHRVrtwXI9nh3cwIa7nwtAwOKZSsNAINL6o4gdBrmB84zyv7+wl9V4urEggOl244gkhxE2X/cxbCPumj/Bd58bxqqPsi2ep6oBpezfzZoDomno0FhAFCZVzZnWxaxweH+nQ8ltERoH4lSrENje84WlufMOzKNvBJmGnahHUhvilXW8nCUepOkZlCI0ODyODg8SqhpskuGSZ5ukL6pgZVU0HRE5CTVeJSLjDPZxHaAhhoWOBHjLmn2oTWzhMjZxlendPqXSCIeqBiWs3BFJVLpNXVTl9YIhoqsWeQzs5/6WDeK0mjclxtOvwB/wWreERPum/nb9+7S+hpYVQkvOv/QP0/jR8sJ44TM2NIZsmx2RvSKuWLqjjDRnzgXZpiP1Us1mi0Mw9+SyffiNMOKbUvFkM61RnT97u4b3prNAemaRRcbAtTUSFSNdICutRAIyN78ONd9CtFxYTSnbxJfHTjO++CrctewRCSC2BG4J0sJ7c12Gqmv7d1lfhd15B48vPItqGtLXDtLiaSudefvJLacWf2K0w7bZ5ePJhxsfm2P+6VDnokXk6IgRhce7pEzz+SOo0ji2XRLh8+eDdVOLeKzpZO03LLJcazFUIFnrFGBMnnWV6IqSiXByT6No4uR8rKhDIaDrZueeGH+A2+wAfODfNXBvudY/yjD1Ot9kmDP28XEhcdbC0ZI+eRlmCqJrOyGOhcwJRUYeg9Vnq0iKo9NqrhtOBc0SPMmN3WHBnaOhUMc6xl3jEQnkejVbqixC2REgXS7loJ2a0u8DEWBoNGKkKlpswZ9TMkO4SV9NqDJWKhxYWcezz1aMvJ2gtAALbrOGxI34xAKPapRN1qJuK1Lrl9ZmwlCgSSJXmAYt7vuPlaMAVFmFOIMa8rAU/evvt7Dvs8Z8/f5yqIZDRzgKV0QiJRUQlJxAN2NUE244QVk+h7G/biDj161g64v/ms3xvdQI/8Ynmz+AnFkEt7d8ta5SKHbPgZhNSixp+FieBgyJwhzk33sujaccxp298Caq2tiUoVoPV+ECuBZ4UQvydEOK27Oeyt2QToxY0uGphhqhaZ1h3GKVJSwwzYxYbmvd7nUGFMcr4RtwkjUBqdmdzH4jnVkmcOpVRH9tN0JaNQ8IumnQqVRCCcOFG7Go6IFQEaO2jdUgkq9iJThWICqlkIYEJXLj3auL5GGlLKlQYs+Y4a88wZpnMastGKdD1zNnbwbYF0zvOMjtaxVIa2z/PQncndVO7yTI2bEvbjFcdtBBYrRBb2HTHx7jjQ3/Grb//LlpDezksXs2F3TcQDNWZ23cVSgiqdgtvz1M41z3Kguhy/Jqd/Orsi5gyCkTu7zJ7zbV0XvIq4opxvlJhnn1UZcL5IYFGc6xynjtfExEa5ZXVFZtUvfj5GePucUamODLaYnbXDt7+yt+ia9WhkKDmqoh5byd2Mkyyu2eOG+cGvlT7WX7zZX+A207IxpKqWXVuOOniyIQbwzFeMZ4OYi51/PAVeIem8BrpCztl70ILhx9/fJZqktbOit0KSiu6cRevdgZ3ZxclHRhaIBbpAHbi4ONMm/vii/Ri6vI63KT3imodsMuTKFfjzbl0mgVzjm2yogmoaJcK6bMTbj1PZPOrNSo7jaO3FtMJKzzdDTjX8DluT3GTvZsZcY4oCvJyOEG9zjAdHNvURjMEkgiNEDEalS4pqz2qMQSV3mw7GUr7fKaG4kqXhk7v3Rz7iYYdkm6b09PpdQs7QahUgdxdeTV3v+7vM2uSHUPlYrmSpr0rfwdDs/Kf60YIR9NpLvC0vZ/x02NoIZDVOnZF8robDjH3wtvY7UgaQQMnMj6sdn81Xlkw+YaWy76ohbJEGoRh20jh4FMnMr6mOLEZbXe4fn6Ws/MBVVPlYKTbprIj5g/5L7xVfIZE1vn/2XvzKMmuu87zc9/+XmwZkWtVVmbti6pKkmVrtSXLxotsbGzAbbDNYoPHHk7TdDM+Mw1Ms9PQ3Sw9DcNmM2DANNjQbYyh3bbB2JK8ydpKKqkk1V6VteQae8Tb350/7s2ILGNw9aGmmzP0PSdPZmTEi3hxl9/6/X1/l5klMU2EqbxbwxrLjJ2xyWz7EEeaR7FiHwOJ2XD57HrEmXNLhJlFpIsXu2YJ28jpWJvyRICMN5HC7OMSQ9Mjy4YEaUAlqbBUrfCf3vBOPtM+zY0e16NAfgrFyPvTwC9t+flHM4RjYRYZketQpk/AgKEIRny8w2jsrpoIpK5YdzKDFdeh2VweeSBD2yV1fJxSgmFKMkNgklE3mgwdl6GMaCWzfGLyDjJMbKMAGZI7BofPnmM6XeEmnuX27s9ibYLhehHrJxp0zzpkVo4rXZYNLYy08BTCpJCQ+zpxKiSOl7JSvsDQs5nq5pjFEGkZlK6q0Jxja7y9tFh31P07mq9KNB2unHye7trqqC4jsW0y3yQzbDrVCRy7z8f5FtbrEU+Z53l8riDD4Jy2AONaTur7YFqkus/5sLBo0eBcpcS33Ffmqm/w+3OfAJQiUzekY+u2hoeGA9Z1LmPFr3O55HGisZdPTr6cy0HtmuZU2+M1Qq+EQDAsj9etKZRlHJoBYT5Gr1maO6uetHnZ+pMc2VjG1ta9g8uj5TlVfNdRqLmn+gcAeJW8B0fG2FlKYjkIqVBATUeHLtoLUBpzjJ188lOktRYWuWaDhc5EMQphAZBlpBXB8i+k9BObdLillsJM+MLem1m1EkxMSvmmRvUodAHqn7/x7fyR890AlJ0BpJL1JCNsao8wcxHmkHSrAnF9SgzwLHWvyzUF+9b1/0A2ojKxM4jMcfg0LxkEgc3ASHl6fg+XvFlaGpG1wSRJYHJ57SyFRi8ZVo7IHZ609/Or3rv4nW99K3lXeWWJtLAcyYASZXp4hMT2WHw55ZxYF27mWcbpYppu7lDaNmR6/gTr+z9K0DhLO2mzWX5VxPm1IawtHkhsOeTVWf23IN/cnwREhgZe5Bbndu/CNQtWBsXIA7GTBLua8ox4kZpr4wF+i3fwyOXDo/cXds45uZuVeIYv7Xwb1uwRDnUOUr78ar7Q34VnRnzmrCS5eJVhbhM6aj17ZhkhoK3vZ2BZZFvQWr8Vf4Cf+PInqV25xOHWYe5s3slGRRlaQfvGV6lfTxL9wa/1c8Pv5B/wMF2b1DJJTZMKXQKGDAkQOjmZbOkjccG5ghsqodPoCAYm9JpXScRYgTz+ipsQhsS0IBNCeSDGGqHjslY0+cvq3fxF5Rv4Ai/HNSTl+VUmjg45FJ7i7ZXfpUGT28wlLJ1jkF3d0KnnkNgFV6pl3n9kO7kQDMVYgeRSkHl9TuYHCfGwSwlrwUVafpnJ/gAnS8ESlFZ0EaSjk6tC4OrCvk0OyYrZIIlCkjwj15s79lwiQ7n3g901kiDhI+I7eah2MwNCckPQ6LW4NFDvfzy9aRQmy3SO6OYTx5n/i4u0tMW14ps0rQ4TWRWzMMldj6FOYreCMm6a0Bh0aep7/Q3rB/jMgb0MbXV9v1QgGR+wxdVVIkfFm1e2UEi0jHF8+MHd3zH6e1OmlMyc16w/SiXNRnT1BoI/acyQ+Gt4nsoJ9XT+aU9SwpMxZpaS2g5OarDRb7Jc13QZrZ2YQUdB2CRIM+LWS08zJddItYLq2jPYmUFuFqxMzlGYc/RtFxzIqgI6KV4jorRtQHuxzPEde/nyTrUnqpsxddunpT2aZmOST/F6hgTMWQPuOXUc6/w5htoUCkkwUo84ibF0cjm0PEr0KWsFEgYqEZsaEkGuPBA9V3YqiKxxQt5bXGf/O56h5azypb038/nyS2kJNc8bTPHFnUc4nTjkmz1HzAyzcPi1+qsAcJOEWHN+hRgIs6BPmRJ9fEKiLXx0Vjkj0fec5RkXs2nywsHyxmtsU9CNu3QmavzpA+8gzfmaSXRQjLydQFf2W8VIgYRbFQguX7nrLk7dcwsv6gsCzTkmjIJLlV2j9+rp89EpPNaYZokFngv286PGL/I+7zf4fOPVHN9zkNXAREiTz7eOcmo9wTt/DuviMmFuE9oq/JQLi1j4dEYKxKS3pUbliZUXcfyWf447qLJUXuKxiadZrc3jRUOmT/4PQGH9zwFm4NKZUFq8IjYVSGmE2c6ynK4OIRwrvTCizK6GBolRMGitjzyQnu0wmNd0ItoDscipiSZSGLRdA1tHXE5wlLIhmTqyxvzhc5iVPr9jvIceZepbiOfy/qYCsUhs+NRinWfmttEsVYl02MdAIAvJwE/4GfNn+Gtei+0XBJmg6U9Qyy7QCA2wBLO9q2BYnKkrYSEQ2EJZ5Umu6yasKmlh8Edvehe5rxWI7RJpOo3OnhnCQG3sc8ZuUl8J2PnmOi+0B0jT4KnVW0ErkEQfkG5lggKXgaaV2PBsIiNmMZ6lJB2Ge44ynC2TewHrlTrVcECQRDQtnxSLq2xj6Jn0LfV+3l2fwZy9vGWu9oGGFyeWgSFzhCzo2Or7OTLiucVd48U3JIUQ2DcFdF42iVGPcd78EVJPhXT2PPcE/ekniDTqabXiMJHGxAf/FLtkYGQFqW3jpgYJMWGpQEqIWosIo+B+aztvTF5Cgc2B7mn2WGMak449jZMZ9IKUT7zqrZw68F6kFhZFWbUX3v+mC+x7wyXYp+7nhVm1ZpVCKRBR88kNg9SyKIiQwuSF4hCHRcg3n13ijk/+OX1XV2CLBCHFqJMiwNAKKNMfVY7HOmybyIJnC5vLxsaoGNZKITS8EbTYqIUIs2B1cg0pBOfs3WTakNpgiguT23mktA+ZR4BEWBmhDFi1qor91zAItXevo04MKFNigEs08tQAnCAl0+HAvJB8v1Hhnrn7ObZw+3gtMenGXTb2THJ692GGVe9v9UAifDoaYp9bMam1CSs3CXUSPTTGynIqicktg+N3vBqrXvC4ccfoucuO8vCKqslP8m/4YfEf+FJwF5ZMeF370/xv+b/FkJIv7lG5msJ2GCTwwOc+jvH4BmFmE5rj/EXXqNLWYbSBaTPUcJq+4/HBV7yetLiMnZr07T5B5tGf3EGjdZV95d3c6PE/Fch1DLPss3GvClFMussqhEVAZm8mTiVXbE2HbuQkpsWxm+5gspKRmxlRt0uoBWXXtvE8ndg2CzJhYJIxgbLKNzyTYaI2y0kOYZspppNjuzGXJmb5nHgNJ6Ij1LZYz9lA4+t7LoltcmxSExEGtVGVqkAg7JyWWaUQJutM4c01+dYdSjHes/AJZosBwoID3dMMtu8ewXgBhKuUYi+5Wz0WgglKDDyX1NUC2XaJNMlbsz5F31eH8wK7cedO0mgsMd1rcbxrEnkepV6fRHsOhatCSEM/QFo2Q21hLZlg5hYH03VMPYdCGOR+iWapzly6wmL5FH0z4BKLSGES2zbrWiFE+BTlMe9SagtMqe6x50hKxQCPiL5OMN4tv8TFusdQV8QLS3BhYhcLB19g4fCzWNtChD8krih67XJakJSukqZqHpdqAduMi7R3fZoDbzlLJe6TOA5+ZCKFxBMDZOyS9RWtx3ZPMiUrWBVdE6PrdGwZs2FPYec2VHfQqjboV3ZwtqaEQFGS9F+eUxQCMpuOr/biGX+RwZbCSbuh5jG1HFJtBBzLb8NyewxLO/Da7dEabCqQNI4ozQ2ZvnWDoVGiVAwJ0FTotoEQOcXev+KvPYNPOc/z1ESf1ck5jFQSGgH1QimbRAvajZran2tidnRfG0wxY/TpiICsWEUYiqV62VTzuJdTZJbFQCunRENmB5Qp08ctEiI81uUkA0rYpYxMZ5LzomC6sPnsnjk+su9drGbbMFIfw5B0kg6iqs9O6Voyxa0eyIAyPR22zZx0TJuyZWx6uQAHuMD5XYf55EtewfLenTzLLaPnVmy9/7Ztp61DeJ92X8Oh/AR3XHmW241HObpxkrWJfRSyQFoO0hZMJsuQSIbSItzCKtExq3S08uqbDrHOd12ZqfOl/QdZnVglNGPqrZh93T20yzXqvVUalRsv7q/rHYUQvhC6nPMf4XBqFdZuUos0YbVw85iQgNjeTDKDs+9DrO7+z5QSk9OLB/jL+9+M84YpbtrWI+33SXTsp2e6uJ5O3hoFmQCLjNoWBRLp166KObp2QN+tsGFOs1FWSI1Wv86E2OSfysiiIYWQRD2H0KxyoaoEZBhMEuvqXwPBBb9MC5U36DCBd+QkTVspxnlxiarTobAsnCLlys4D4/gNYGq3SFjjmHzZbrDYWiXTOZC+XR5h3letGTo6lRALD3P3OgePfp7p3gZVM2GlWqY07OPUY3bvfhxT5zdaVsDZrEFfv+eqY/O25Tfzku5dqiBLtzQdlGpErsse6wUWKycBOJGqwr3Ycuii8jfDvExW0l5YkZNZEl/nBAaeoFz08GQ0+g53iS9SCMFzqHi1V7I42bgZ20lwvQGuzptk2qqsZIKktEKh+54sVW1mjQtE7W24bkggY1LLIYjU+09GV3i6uJ072K7X6CoWJkKb2Jav5ncfp+ibFbLaHqKpA6MQymfmvwGA7rRAThWsLS3gPPl6lpMFQIU4vryFFFnoMExsuSSGEkKnOIzp9tl36Bs4WLpp1BogJMIsTNI0ZvcDS8zfvcqAEkGSU9IKJLFMahMr2HseojqhmBk+t2cnf/Sm/wVywcAImMrU3ER4ZJj0ytcSV8wMQppMsdu/QjAZsGfXJQ4/cB6AK0519P0BNnRuC09b2TqEZWUFET4/z4/xIfk92EFKJgpyLyCT4GOyohtZHSvuRhQ2hlHw7IlnKTZ7tNvGNSGsXBj4mx05GSu7zMqJrb+pQCLHY8fhx5mYvgRWyLCkvfSaR4caps4jJboehorBojyvP8vmaHacfk8plGlWyE1bcXN5Jre8fo3Smy5CAbFhMmAMX+5Qo6OV88BwSTAREtDFi9Ztp7gUXOSe53dgG7vITIvb4xnEtZ2Ob8i4np7o3wQcAz6pH7/oHxsKy56ssjGnNlqZHm6WEeIzdNQGFSLj/9n+Cv5of87uxlPE+v+XWEQakA0jUu26h6ZH4A75IvfysHkvmTA0CksrkEpIuqVy+oS9mw9X38nP8ROs+cpKz8V+Ktoik/kaEklzYQ5h2WDuU2ipoqBdqo4UiMCgXunTRgm6tlQbd/myek9nmFNx1cFvV0zOTG/HGPVSLzA0LYNpjRFNs/4iBzdaZNozaFvq8Dsy5jLzdKvjw/kj4v/iR/glJtIh+4ernNh7kMqgw/TcZXYsnCDXHnpmChqrp+jqQzd0PWpphZlsAScYsrjwNEZRsNZQB3yv8wINFLz3Me4czXFPAwCGw2lyTyOPsozMLEYKpOeVqcoWjm6lahYZR3gat8hHFmQqp3jjaoXz7iLPW4eoTOjksqlCctXMoB10cKIyqYCma9NgnfOXDqm9Y6bIssc27Zl9ufRyfqH0Pq56DWRu8/z0Z8ntPk6qvq9wlWC4F0Vzf2nxdnqeEvyVXpuH515Okwad3T6GURCnAeXVl3BxuJe54QqmzHh6eswWMDTVOuca5TaZNVmyF8jcmLIbUJs6TLm8zu7dj9NngCEt0iQm63kUGAxFmXJk4evugrFt42kDyDByPGnS8RwS1yMxTIaUaGjSwi9yH9/HB1kNxnBrgHp7hSYNMHMa5ZTt233sRbUGS44KX+1CxetDy0cC/Z3zFAgGlCjRx0hUQntZbOOq3IFTSkkNg+Huw2xUJvClyemS2n/HjBdzSe4gE3D58mVyrQxyR3DGdOlrbq2tCmSZMQw28cd1XFtHWrb5pakf5JHFI+RuTuirdUorDn2qVDS7QqY/T9qdkbcAcCQ5QXElIcssGoZSxpVtl9l+SOcqJrUCMg36lLE1tLpNnZ4OaQ2ETygkrrBGCLh4zqG6s4cZzLNeVkptYZhjl288heH1eCA/CdwJSsJJKY8Bu274nfwDHmF6gp6uPq3Qw04ypDBoumrDRHbOp8Ub+JB4Nx9avJdMu75LLBDnBTJKibVXERo+Fbfg93g3nxLfSGYYGEXB413l9g+2nacwBZ5Um++q0WDFnGNNzPKCrZzAVaOMaeUYVkQm15CWg1taIKvUwb4JqyhYbK6wWgpIRKaqkxE0yh3a2gNpU0fGDv2NOlaWkQ0Cqo5SYp+8u01TDtTmkBJrC+RQWiG/vs/hrBOxv/oSdg0yCp3faQn13nPRGrHwuWgsYsoMR/fguCJ24Lgq0dip+pSHfVxHCSO7pKnyPR8vC2lpOpbIs8ndNpaRM7njHDv3Pcuhw19kva7goPvc5zjI83hyyElHlSvlwqLpKMHZj6YodDV12eySGTne0icxadIqzbEzv4qrG1n5eYRNxpHBBk/yEjJMhJkhbZuP2W/hN/kBqlMaQWZvcN5YJXUtNiyJm7ms6YRtPcrZaCsF5zoRspqzff86hQj4dPWNai5ck+HaftypPo/c+X5qhdagOiyyJ2qxWJzn5Pad9HR47RXHvkBumPwJb4dZpdzP2Xs5OzlB3/Up9yN8QjrBGJ0ViUles/2dLNx8LwC7W6sUwqTjqrbDoZkzO3uWHQsniI0hsVQeyES+dxTGmxyUsMhxioTYsvE8zVBrFDSkR6gNpn7VJhUODV0R/hyHCUWJp+1bx5QrwPSwgxQGA9vHNTKSLRxNV5wq9bRDFaUEY8sBw8BwlMchhUmZPkYiSISr1poGdpCAkfMv+Q0qXh+bnFXfQciCp+zD/O/+z/Cp8mGMkjES6Llt8IuNPTx49+sAKDBwZEI5GXKaA6N7KqaaJNbfFJVhyaMlJjnt7kXactQnZBiUiIVLJVLzMFI+zoAQn5fJB/lX8sdp5B2CTots3aVhKbTZ1KElFvYo78taVdSLolowoEQ9VOi4VWZJxRgV9pFbbuHBPbcSOspI2WCKcsOn8ALWAh+jKDAHV0nmrq+B2X/LuB4Fkkkp//t2KfkHNk7M9+hLZV2X6WFrcr9Y13Y0t7T9PmXvxGgo7+ASKlEq02y04JHweSbYT19USVBNjExyPt0pcGRM2/LJLUGFHtWiw5rRYF0oYRnr5O+6RjqZXpuM5ihXIQ2DzF1gth+yrddjw3dJTJNu4xn8ybNMTW7QKtR7tWWd4ol7iawJ/DRmOJgYKRCzbDPIVyiHA0SWsjZR5QyqT8dyKed39rp8+I6HOLX3/QxERK69q472bqYGylc+ySHK+YCjl8/h6Y5uwk3IDUHuuJjCJtANtpJAzU9mOxhGQUtDNEPHZfbWjxLufZihZ/NpXkdj9jzdmRLldEBNdHFIuIsxuy/AqqviOP1igty0sGSKZ4TkTgT5gNO7r5Iagp3yPJ7uUOdpRffq1pOsijk+wZvASJFuQocJWmKS9UpD32eXR6xTLFfgSjhPkOc8fZvqjR01HYrcJot8Kn6bGA83iDHN1zDUYaQLdsbSQ/+CD268h/+z9D5EOWL7PSvkgVJ21d4Ed4ovcbXWYKWqFXMC9w2+wMO8gkE14A/5bn774Lv4sTtmtQLp4zOkpyMma6LLnzun+UT1JM/OqY52Fd03vW+WkWbE+tpT+IE63ok1oCdL5EmMYSnEE8DccBJZCLwiJLG2eCAipyEdok1E0DatQAdqHodCXX9ZLDArlwmKPn44oBZq+nFnkkja5M4YxXjVrTAZt0Y5l8R2kaaFaaYMUHPnRQJzC9VU25jA9DIskREQUXOGPOutk1oWd+XjfdE3HGIZI7UykLaka1gsz6j8Uy5MDCTb+uu0NKwbIKt3SYxrPRBPDmlayki5bM3Ts3JCVyncpuZnq2k05mYNmLBDQgLqNDnMsxS5RdDr4iynTNjqzPSpcPXKPsINl7RicmbvHkpzIQNZxh9CLRlyCWUoOTJmQJmr1QlWKjWGmvtuvZhhcnIK0/bpBHVmhiEt0aY8M/Z+btS4HgXyjBDiHYAphNgvhPi/gS/eiA8XQrxOCPGCEOK0EOKHv8bzQgjxK/r5p4UQL77ea2/kCJrzZJ0XYecpw9UaSefahVj1xiGn2HDAUwL+EosIy0BkYpQDkULwCe8+ABJccmFgStXRuFL06JhlClPgkFDP2iyJhdFB3ByRPtiW3yGhhdSVsdIwifwpGlHIrCbKawUVNvZ+jOr+v6QkBmzkKnkbmx7R8mGGfgU/TUj6UyPG3XdOm8yvHyOzq4g04cGdt/O7vBeAKzosEJZsktlnAdUpDhRCBWCuryzUFbGNUj7kzvPP8cqLjwCwq/sYwikwKzZ3Tb8B103IMAn9sRYWnkN3E2ViBzhBm9zrcGziKL8n3sNV5lkvNdiWqorwcH2el+mQTyNX4axQH6Ykd0mxsEixSBF+iFXdxtUJ9f47xVncTTJKrUBuzh7lDvklPspbuWLPsGwep4cyII6jqC1yp89QxESm5Fy0B9e9ylpZK6Iri2wv6liDWQJjQISHXU4pJfuYLBTYYkmsUWTLXBGL9EWVE7dEzNzSxK6pdXMu+NzBIyAEz88t4CcRppXy4vgJpDA4ZR3kv/JGKnGflmuSmyaVXhdPxgy0gFwzNpicPcO2YoKkZCJkQb2vlEWXKu/fZ/GVqRLDwOYL3EdihbiZSZ4mxGLA+lDlx6Z6DfLEI5Ch9kCUAuk6JcrCIdXV8T3d7qPSEhjy2rzHpFhnW3yFSr/DXFuxOTzlv4imt8C6Lk4sMFh1q0xHnZECiW0PaZgUthytwdqjk5hbujkWwqRvVTBMeOLgzThlh6c0cOIe8Xl+/cLPq9cZGYlMyLRAz2yL1DBpTkxx+/y3k2NiyoIZ3SRsc0SVmPSroj81OqP9XgiT1VqdWHuKq6aaiLJuipaaFk4UkTkZqXAIdDgwL0yG3l6KboVdvXUKAAAgAElEQVQJT9Mi5Q1On76H/lqJtGLysQfewE++6BdYlttxkwQ/H7KkFcgcV+mLCrHl0vEcBjqstSHnqFRDMtuhVZlisRcTi4KKO+byu1HjehTIDwBHUOW8fwh0gB/8+36wpoj/NeD1wGHg7UKIw1/1stcD+/XPe4Hf+G+49oYNu3MrK+E23DTlhYfvJNzCXgqwqhN9gRwSCQfhqQMxFCVCY0rFlbGpakfupDiEkIVWICaWLoAq5wP6hk9hWrhE1LIu59kDQF0qwTiddoh00yXb61AZ9CicCT51+E6a0zvpBnXqwyEzGpnV8UvkXgvL71GtdWgxtqzagU+nUsVPY4Lu4ijOnQifIysNfvflr6U16TJ0PJZYoMBgRZPldZjAKneZsCSpce3pOtg1RgIk0NW5nubda5V2sCucIJNlpsr7+KJ/F9/PbzMIxoiWfnWKxLCZkC0yYTGgTO71aLo6UZ3tZc2dZIELGIMZovVpVVy5+mXuHz58zb20HIsUB4cUS+YIL0VOTGDsbWIXCduMJXyNxClripTEb/M9/BYBQz5QeReuP6SnlfbTqOKwwhmQC0lk5Cz3dyCdDRXXB97WO8Kr46ME4Q5cYmI87CBjWJpmnktU84jzlZyoeISVqhI2DzZuAiDT1dWdEyeZS9aZyVfITJtJrRjniyVMmfJZXk0hTF588YXRdy0PenhFxEALyHDqKQ4d+gJ31DLadoVq3hutR5s6H9xZ5y9vu5U/d9/Mr4sfZKXi4ecWeZ4SmyHtXFvSKWSRRcBw5IEM8fn13d/LgzvmR0nibkPtg1I0xN9S4Q1Q7nZ47WN/xmse/jh21OO25Aked2/jv95+lI8EqmHVMnNkhsnsoDNO2rsehWnxK3vew0f5NrWXBm229mACaFt1dle305q9SjBb47KvRNs24zKhVja5gDQbK5CBO4bGXp6cIRcK1l3vKXZkS6aUZY/I8Ci8a1sZB2l0zePlap1YozJXdP4k0A3UMikp9dbJNMHbpqFWpALMGmG8SFnDpAep2g+ng5tp2jXWylW6Ro0NcwqsPvW4xUCj6WYZc6ENPG9UpNmiQeptMLBtur7P9nYT08x48OGHuNHjehTIQSnlv5JS3qF/flRKGX39y77uuBM4LaU8K6VMgA8Db/6q17wZ+H2pxpeBCSHEtuu89oaNy8WQS26ElyaITF7TaQ5g1VVCtZF1iYUzqqoGiOVNiMIiES4TjGEQt2bHiXEUjFcrEL+ICIVHbpq4xNSj3ig89F38Dt8jP8D+qEOoPQ4/6GBkQ4bTuzg3vZ3H9t9KYZpUowHaGCZyHApXKS7TKWiJGnamLO5W4NIpV/GTmFKvhqVJ5gZFCRsFFw1evE5ou6TCZZk5Nhx16DbDVXvKIbF5rQJZGE5Q1f2nvSiFoqA0UIKxW9tB6E7zB3e/ih95scVfWa+lLyqseOOk5XpD/b2AOsht6uRuhw1LKb9j8m4yYbPbPI3X3clwPcBAct+lR9kdXrrmXkLhk6H6xIvYpbAlwa4rXDIW2JZexTYTAl0L0Ih1T3FvQI0O3xv/NivmHOd37UQKE1eGPM8RksJDuiGP7jzEie07qXU82t4KbRpYRUE1KRikLbzBdlxCEuFilgpatUnmxBUq2ZBuuUxz0ia1HWbzNU6Im1ligdQ2sWRKHEcMVqe4y1DO/jQqyeqaCQss8YK2lxbXV5nvKUFV6w5xi5hQe4SJ22JAwHffchOPcheTcUxNE39eYpFCCC5OTfEoCpp9fHYPTmGR5zmPeYf5g9J3qkkcrJMMBQF9ItvCthOe4VYSw+FqyWcgVGjpiphXeybrEqSbDb50TcjpnPKzHbavXiLNu9wRPkYsXFLL4KqhPJ1ntHe3v7k8NmacgMx26VvlkffnD7qI8FqCzJY5wayjkGiF6ZBta+p5W6OXGghZUAgoxwGpuVk3MYbGfnK6S46BISXVgeKLrdLBKyJCfFLzWlHpbWlRXJMt1iZqZNqJ7upiSVeTO+aF5Ozr6nRcZYRsfjeZgl1IsnAbZdR5GebTPLT/Vn515z/nw+Z3YTCGoHtxxi0bz48ez6Tjds8AA1FBSEnLrJJ4rRFqs9z5Ii+798MkK6e40eN6FMi/F0I8L4T4GSHEkRv42fPA0pbHl/T/ruc113MtAEKI9wohHhNCPLa2tva1XvJ1Rz98gth2cLMEUQgiO73m+XVdfVtPe8S4pLaFqekzOuYUUmO266iq2oPyBIvJGgkumbBGh8zPI0LhkxrKA5nujpOhB3iBV/MpJlIYmhZFYZAHQ642KrTrKmF7Zlr9roR9SrHEkJLENWFLzUjXqDDT1THvyjS9UgU/jXGjmAsnVNFVbHg06yqHsGbOjCqjl1ikY6tNuZFPUxQGk7UmiXGtR7YQNajpOLg3MLDDkIlYW9blMr9zxxSpYfH5qTKXNE/nsr1tNA9rDfXZi1sUCGbGmqbTf9xSCKm9zgsE/QWaSw5PPfVa4v4sfnpt6CQ3PKI8wMglZqyUyeLeJ7jAbhaKS5hmjq53ZFvkISWYOi9zIFXNjlZr6nNfXDxOIlxORndx1tvO47sO8ZVdhznSiem767SoMxUXpEVIlA/wB9vxdB+VdWuaxPGY4yp+1iN0PDb0un3zxl/hySEf5duIhYfPkJbr0bsywx18Wd2beQVXWhhGNkIoNYp1SknMzqba1+XBACdPGG72y3Z6PM6dXLJniPE40vV46UUXO0u5oHEwUhhEwqcuN3imcYAM1Zv9KftmUuHwc0+FDNefJAtNdnOWjdIEGzQ4hoomny85I+j2FX0ES0UHX3fp295WaLXKYGzBR7LHrvgib4k/xssuD9gwpolxeIoXMRF1me31lcdYZMSuR6LrjDIdBvaHPRxt7JQ0tf+ymOfPd76En+MnOO1P0S+p7+SQkGauaiUtBEFWJ9UGT0+jBgGWKiUKYWDKgoq8RFl2qdLByVNCAhLttTjadnY0Y7WQBYd4jkHFRZS/yi3ShuHl2iIfKX8HH+++HQBPszkXKZimIIp2YZPhypBzYicntu9GyIIldrI2OQ47Lfaq3NbJWJDqXMzE63z1mIk6FMLgx50f4+H9SuEuxErpJFP/AwoJpZSvBF4BrAEfEEIcF0L86A34bPE1/iev8zXXc636p5QfkFLeLqW8fXp6+mu95OuO1doZItPCSxPMTLLeuBbNsNmIZiIaKAViWVRRwj/DIdfV2dtQrSu/gb/EzQRSGMR4Iw/Ey2NC4RNpD2Sqp5AolkyZCHWVbW+FgWMTJz6fmTnA7/+T97I6oaqPN+lASlEfQ1rUEkni6QS7hBCPxHTYpukhzgUFuWniJTFZ2MFtqvkJ8Vndrlzpi1sAdxfzfSMF0hE1Bu1JqF1QeZ8tYy71aejmPpUoZuHERQ4l6r1PTc1w2ZrjO/LfpSrH7XE3jCmqmj11raE+e9MD+Y+8k4d4BU0dfhsYPqbM2M5lrN4ceb9Htz1DIR385NptIAwPu3kUoy9xEpu48Mlsk6EosU2oCvVA2wNTmYXIfDytQLwMAtnnSll5RPcPHsGUKY/J2/iw+R0IWRA5Lt1Sncht0pSTzESCOB/SFxFB6xBpW4WBNgX2LMt46ZCB7dKsK8vbWYt4Q/pZviJeykkOqlCRLNG/eB/eRXhg44vcb/4Vdxa7MI2c3VqB7EyUgju09Cyvf/xz+EmMm2eEGmwhnQGP8FKm5Cq/HP+v/OAzGb7r46fxaF1NmVGWPb6T32VoBRxrmBiFSSwcqnmPQ6ePcyZ9gWwouI+/BiF4mFfyJC8B4Gx5nJ8LRQk7z0GsjMKC+1eXOLTWYmFlnFfosIYYJnxr/mc8sKwm/1x6gOc4yoH2Om5XCWc3j4kdj9TZglIBvDjE07035vo9rCLjo7yV39++m5Mc4jdnvoHj9lF2oeYnTT0MJFJAI/JItcHT08WmRlGwVi6PciBle8DLeIibeUorEJ/UMHFkPAqt2dqjDrKQKdZom7VRkn9zxK66Zs1Re39F50Y2ASUyge3BNjJdYlemzylH7bVDvTVWmGO5NPbM94qAYW7wT/gwt8gnqYctvnrM9pRxeFbsoxNUqGZtpkrryEJw6OYbT6p+XYWEUsplKeWvAN+Hqgn58Rvw2ZeAhS2PdwBXrvM113PtDRsD3yK2bNw0wY0GxO54o2zSXgPYxYBcWPQcm0AONB2DQ67DPvMs8e/lP+VlPISr+6ymwsEscva1D+BnsebaMXFkgtU6D8Ak6/g6oZl3likMk25cp1ONSW2XY1rYq/vJceI+sjCpp5JYY8OL1TlahRJm25vKvX9O9wZpJJJ+ssHEhqJSCPFZ1cWIF7YqELmHtqmUVWgGGKsOSbAyKnwEMGSOVwgampF4YhgSmAm1TD13zlJtWSfWYr6fX+a98ldH1wZ5hJsmrE4oRbE3vcwt8gk2mOT3eDdSGJR0+95tXMEmY9gqY4gydU2tb8cgtEI2ZYY0HXqGAUWKWwii3FceDTBpKTbbiu441chM7LSsGhsBIvNpyCarOvk41WlzkOd5MLiL58RR7r3wBG6a8NjiHKnTpsUk03FBnA9p2xIj9+gu79LzqKy/Oa5SiWNCx6NZqeCkKcl6nW9/WFn0F8VufBlhimkojjD48nt41fMDdhgXWfQKTGNcI7E4UPvDyRP2Xj6DNAROmjLEpxAZkSc4zq3cxRdxOj1k1MP1KvhpNEL0vX39D3l39pvs1YV750oCC5tIuDhFypfWPk5op2Shybx1mV3hBT7GW+iKCSpZj+Sr6iPKSUpsr+JpT3By0OVfPnyMkoa0AoR2jtEbIq2E/ZG6/guh8r6OPHeBZZ2D8IqI2PFJnTFoxcwz7Dwj0ICHiSimmvVIhcuBwWneyh/ygj9PhM+38wcApKmrYMRCEGTuCBHZd1SoyU9jEtMkx8SQBVVi3pH9AW/jP2JnufJAhIVDPKrF8GKl+IIkosE6qXBGOTBQSmlYsvBkxKqpPM0Nt673uXoPK3e5beJmdrpl0qFDmR5N3W3x7naXQpgMzRL7c8WiW0oLThcmt/MVfoh/jT1Qimh6iycy2VaG61F5jB+SP817xK/hT8Wkgyp373kVN3pcTyHhTUKInxRCPAP8KgqBteMGfPajwH4hxG4hhAO8DfjqAsWPA9+t0Vh3Ax0p5dXrvPaGjcvFDJHjUl27jDdcJ7cCLB2iKsfKWrVkMupN3rN8HJngEpNaPrkOcTkkzLKCAPx0fPBMmXP3pdcRpDGx8AgNB0cmVDoqcTrFGu5QVS47OhTw7Pn76EdKqXQ8d2S9T/WHFCKnZ/WoJ5LQdvk9vpf3p+/jzDFVC1Dv9/CSmLWqFqQxnCtCCplhFzkhJdYC3ZBIwxnn5FUuGgs0RYOy1AWHeZXCGRALG0vnhXwZkZJQH6h5megPWJ2fIxc5lSIahTlYLXGUp7mfz+LrxjeBHBIk0aguYK5Z54eKf8ermg8R6V7pt3eU1bXABYrM4pGLTwEmc1e0hZsElHSMuZ53SUyLgSjIiWnkLjIPSFdfCUDDVPNb1mtRSyX2cKyM7dxnUm6MQjTymZydV3okhsNeeZK71k5w5OoSx2br/Lupf8ZVYzuTUU5cxMRyQF5kOCiL8AK7MGXONKtMDTJy02S1Wmci7CGAU62HmE/Ud/BkiCOV0GnYDxO11XE7417ANHN2JJd4m/wQU/Y4Bm4kEdIUOElGLmy6bpezwU5yYXEHj9AKq/SyiLI7RaDj96bMuN/5K25aPsskG5gy42IgcLCIhTtCpxW2QRaqOXpt8mkm5QZvyT/M/Z0xGHOzzqOcpKT2MkGq9sNd/UkcFrg0Mza6IluSpwZYMfPJECELHqzehJ3EVM88RL7Z36aIiV2P2B17uL7OK5T1npmIIiqp2vu3Dx/nNXySnckSbyn+mAUd5U5TD1MWSCFoCDFSIF1TeU9eEpMbxsgDudxZoMh1G+ak0B6IjUsCQxukxE11iDaOmUQJcCnMkVzwspi+Z+DJhFDv3aHme/N0hXrNVcaUawjSQWmUB7FyyUvb47DzA+FXuP9izDNLK8RboueerreZaEf4ufKMZtZbvOnyMu/mA9zCU7zYeILKjj5pv4Zd+u/ckVCPDwIt4LVSyvullL8hpVz9ehd9vSGlzIB/BnwKeA74Yynls0KI7xNCfJ9+2SeAs8Bp4LeAf/p3Xfv3vae/bYReDYSBP+hi5l0So4Iv1QYu6Q0dyCFWpha9b5QIZI4rE0LTph+ojeNu6UvhJ+NDYRYFHTPG1ciO2PBwiwxD1JmQLWZZpnr1peTn9+L2dNV3PslyPI6P7mldws4yZobqHjqVi5iVJ4kcmxPczJnaHK1UCaJKr00pCmlqBTLonEFUJnly7oMEacIKc0Sa2mNz3JM+xrrZIBc2e1EW0VWpDkAkHCZ0XNeXCU2rw9zGMvedPMaOtMnq7CwDEVPLY6QwCIqIrF2mKAyKwhgpYV8Ome0qBWHLhGqvyu4v/ByNk+Ntem9TzdEiF4jbdZJsgCEFcyvKm8jSgJI+iI2sS9eEdXtAYSR4OWC4yGVVODahc1IVXQVeTSXOcBwysPMSDcbW3WAtpvboGtsGa7yXX8czM+498RivfO5xLplqbr2oTztrc9VY5QvZYzhCzcsFdjMl1zEpmOqofbBerjGpYbUrrLNzqEIuXj7EwKXSu8h0/hXS/jQysYgqFzGMnDQO+CY+xkplG2KzH3kSIxyBrZFkq36XDVut7/b0MuHG7WykA0p2jYr2DiZoEVQHDK9OYuSSRtbiSmDhCpMYFzfXPGqGQRaqObrH+xz/pvNTfFP+Z0zl4xBkXaq5rCYphRgQpBluVvCKaDeFMcUg2zN6beJAkRoIIbHMHtOskguDQ2dfwMlSCk1h7xcRseNR8cfBhlKoLOyZtMVtF09y88oqjbhLRXZ4cXIch5T3dX6RN4n/DN1Jis48WeYgKCiEIC+cUS5lk9jRTxMywyTHwpCSXmeCvLDIc5MgktoDsXGIcfIUO1eGFoCXREykY3DMrIZpu2lKzzXxir+JN7J13dFiqowpT0A6qI8USGOYs7dnjJTyjvXzvPxLAy4aHo0tvYcc3aumOuhR1k3a/DSmlDzPDCsjJWiYkEdlcnFtKPBGjOvJgdwtpfxlKeUNDxFJKT8hpTwgpdwrpfxZ/b/flFL+pv5bSim/Xz9/s5Tysb/r2v+vxsBUQsWPQgpRkJklgiJEyGIEi/RlSEW7lD1RxSlSfJmQGg5NHQ7abEULUErGi2nmOf9l34dGFdsAbp7SDnbzw/wUb83/E0F7P93Pv4ggU253ZDvEW9Beu+zT3H/qON98UgmhxtzzVK11+maJVWbpuc6IsqHUWWX/lQsUOnfT2LhKtbKNwupSDkPOaejwbDa2Ex4YPMT2TAnTPVqBPFG7j8/zciI8GqlWqEXKst3kYvkcR66ex6xszklEVdN2zyQRZlqi32+QJD5lTYNdKkJef+mvecfzf8b/wc8iUx8nnGE2MtlXnKQse7x0VTDVzzhaHCPq1IEUIaHl9mlbG4ioPopT1/I2Qxv67pBcpBhZSmoIlp1NAaoEYNpU4ZvZqMDqjzmQ/KzMtFTfuVwMqHgJ88uP8bYvfYQdLOFaGUUy4ODqEj+Y/QIAwzOf4OnBcTxpM+XPY+sq95aYZLtQFnG5rbnQhODmq2cQSUTh+iz01RHziogrlad5yRO/QD2+Qkmcx1izMUqrGEbGcFgjLwQyN/Gk2gNGEmHYNq5GJy27XdbNScpZlwt/8gDD869hXa/RhN5mmwo0XyshMoPpbI3lwMYzVW7O1aEWQxhkOtTkOBGDroGUBuV0nNeYydVeKScpJiZH1nq8/KqiQoykpG+O93tuSQqN0srcDttRuaijp1RortBNtPwiJHWDa3IgpVitbVmE3HXuBFNhyGuvPMpP8yOULLWPXCdECEjP7MZ69AcAgSGlajJlqU6VW4eXjj0QoyjwY0gLgzjxCGKVA0mEgysTvCLBzvORp+EmCU46RkrNGGoN3SylY9u4xVcl1gEj1x5grrx81xAU/cNUdK+dqFghSAJmUEZRvaWMjHUvo56N790j5e4XnuTQ0guU+0qBmEaHM94UYVimefUw6VCd+Syr021dC0W+EcP6254QQvyxlPLbhBDHuTZBLVCy/Za/5dL/341Io3/8eEhuSspJhmGF+GaIl2vruYgoa9x3LDxsmeEWMZnwyCxdHPa3KZCiIDdV74jN4RYZG/40L2UJM1OJ62HeJchuBiA1lAIx85zcNDlUPkb72ZQX9Rb5dBV2TF3iLN0RZjxxoV3Sne7CNqfmFxH6UJXaG7hTMzzwwhHO7RpweUJZfDcVp1lhhpIcYsQu3yU/w6/Wv5GjyUn+1IUHFw/xuJwnxqWeroEHfpFz1l1ipbTE9niKwIsg9BmIiAmNnNnejXCyPhcv3ILtRJRKMUxChZgD+x7hZr+PS0gRKUX22vRWguHv0yzBdP/dvO8TTYzZkI3ObUh5HiPw+A/ftp+N3ueY3biFQBMVVtMuRclAGB650cLMUxIDlu0Cq8goCSXIndOf5aeSm9k5nKDljL06s3CZ0jxblSLk0FyNbidm8YIib3S8Hv28QuPy87zEepSfOPGvGS5lhOUZarnDXFHHKcY5sv0oNMxxT93fdK/JS3rPsBTVyL0S23vqs7wspF1ax5AFblQwbf8JTifCnOkizIw4Dnj88i7e6D/IJfmNhCLBSGLwqzhDpUBW/DbrxiKTg3XytIJv1ejml4nzkFqi1qFBE5nDYnwSmQum5Sqn/INYpiDCw9EehmVIssFYVMR9G78wqWXqfoUsmMyaYCtU1LbEZO+6w3dupIDNX/gpXXcsZIUwSLR1nDltbuM0g+Y2Ftb6SEDm2gMhJLJdhrol8bes/TF7nlO1D4H27AxySqlkhhVCS4V0q26CBFa6V4k7AaIWYkjlgQgn/RsKxE9jMtMilyqEVbVLxLlJnFsEYUoqHAayjCMTdnQ3sOMcU6hz70SSKA4wg4xcWKPaDC9N6MoruM61yCezyHF0zk3k6j5cAdmpVzJfacAuSJMWZNuY5ywDWcaIG8SyR2RniGwcCjTsGrddOIlIIia6a5SH81hSsOvyCsfPvIGdzVms29sQ9BnIKfqrIfXZaxP9f9/xd3kg/0L/fiPwTVt+Nh//oxl7tqvD40VDMlMymcRsCzfwGVL3lZXgFTFbcsnYMscpIlLhkmsG280EXJEJqtcokBxEjrGFWtrJMpqaNkOkmjgtTwhylZNITIvEsjm4cpG3Xv4zjnpPUq5uIJ0qntdlOggx++OWrQBr5TJemmIIg41KncXVSwRxiJXGlPw5pF2FzZqItMV+cQKAidBk5clv5+bkIu/nXczHY5e9LypIYVLTnlg1DLgszxFrrglXN9Ppi4jJvu5VMUhY9mNarXlWV/ZS1vmSCgNcJ8J11eM8VhNakwG3DiLuSp7CkDYnd/fZeK5O1JoEmRJM1gk0OuzixAVKKABDJVbhjsIok5kFhlYgK46gGg1HUD6ZGri6v7zRGydCL0cFk9oKLGcxtx2s8559X2Fypceg26A8eYkq93N0/kkAOsJDVF5FqzFHBZuGLNOIxrbXgbWE2qX7yBKJGGbIM0P6h2LMeIh0XKxQ8F3yt7m7+3lSyyIXYMeCKDcxBgLT7yKEpMgtXCeEcBJPOhiFQBQ5Vr2K31PfuV3ussIcjcE6QsN6MXzWoiUmNFKtzgbhhocjM8xMMpsvk5omYaVKhIerobgl6Y1yIABJ20AWBo1ce2dySKlQCiKIhhwIbQrLwtjsUyEkNimJsMiEiSNMYj3fsbXOq/k073z8SxhisxOkQGYGfjEksh2Gmjj0SOsZXtQ8iUBSEep7GjLFKJQgNm2NbtLtoPMI0tzHuHJM1YFgYDkJKdfCzuvarovxMKTk+3/+/Xy4Y/CHHQg0bVGHCRwZcVvzNPefOoapiwG9KOK/nH0trvbuZvV+cdOMSudx3OJaq9/JUlzNHGoULl2GuAIqRko9Ut+jiAesF/DN+cf4Hj5AX+7mghfiGBmm9/+y997RdmV3nednhxNvfPnpKaukkkpVUuXoCk7lVNhlMAYbbDfGNj2EpunV0O6xGZrVpG6GBdMMvZpgN90whLEZBjw0NmWDwYBxBNvlyjm4SiW9p6cX770n7D1/7H3OvU96UqlUJSi3/VvrLV3dcO655+y9v/v7/aWGK+EPrMomNowoEVz71Y/ypk/9McJKxtdWmFyaIEqOIFZybKmZVztoNTf+7hfCTgsg3lkN8APW2sdG//C+iG8UW2i7nU3SXyfXlgkjObD6CDP9Y0y0vOOzHPBMOQxpVMYBSCZcMTiAwE/IMpMkudzwXiFAFEMAicqcwodIiiLBWotpfBepp/emMGQ6oJUVzD7upIJWa56eKtmy5QGMhaef3BhufKzZdE7ONGEiK7j8H/6K7/j//ivz4zOkMuXWH/qXLI45gPo3xz/BhHbSQrunyJa3YoVy9DOLiQcb8y06vvJoq59yLH+U5WAZREG74XY8PTLaA++MFmssRcOonKbXtZusEgUjjbL6w0Wr/fT1tB6/mZ4w6JafCNYABY1Og1bkAGRepUwyzzgLhN6Ra1UbKwMMzpF6NFZ01ofXpsxl3U/DrA8z4teKgAnfC7yZZ8iogZaWQR7Q+HKDdvcJxmzKI6ELTlgtNZ+58Kt8eefdNPyp7xsMHZcv+egOpu9+J0ZFRH/9DKvPCHZs3YFePYFaW6FYNryGP2Xb2uMIpVlNQA0EmQkQ66AT35jIKA4uXk28upV95ZY6oi+cmkIvunu2npYcZ4LuygJUACIijvQeoes7OraKFVaealDIEF0aZr1KvdDpMiAm9M5soRQml7Wmni8C/ZzYrpP0eq7Nsw8gSQfrhEqwjSHzWsUSiJxCBBRCE4qA6uqf8LKeLVoIOQQQU0pS1imVZGL/3wMQZIad4yVbZwRN6a5FZI8jSjceKgCpzOWS61EAACAASURBVAzcxi8PLNI4AAmC/gYGEhYlO3MnC/eIkcbQTFIeLw2PmZxwxbEwByAZ2rOh0A74ti/+JVMLx7lr4SLUwI3badx6EOUl7fW3E3u5KvK+kKAoiAs3r3/THOG4XEUIwZju0c7dsWW/z8f0F9iZPc11fJpBPs1DoSQSOTP7pjFG1eMAILOShl2jszYsWbh64cPcsb/k2MqTvOQLR1lQO2kkpxWcztnOxol+6ybPvfaFPpEXsw3W3CKY9NfJNEzYnPc98ht8z+f/nFS5nVdUDOgeG2rCgTUEpk9PhLSkW9yqorYml4QjCW+6LJ0zdKS+T5TnRLHGGkFZpPStBSGRlCSDgvk4xApBNxcY3yNcCsN6eJQtc/fxwHzMotnIQJaSJq1BTtFK+OBn+hwqv8zU/NM8MbebuITJXW1+uVziB9Z/lb3R5+oeJVHPnWvu9fY8i9h5rGDXM0PJrdlzS0KUFSR5zkq4wiXX/z4Tc0OndJpX4bURK8Gw5HjScwO/KRap2zECZX+4Y2o/cy1bHn4rJ7RhcuDbe/okvdZEi47vI3Fct/lWPsRP8ON1sheAkSmlV2KfbgV0V4eSisklK77ceTHSP90azRjHEdYgB30I3cQPx6dpf3EZKS1rF3yM1OwDYNAPuGfm0xxtPU3blyTZZoaSWHrPHfxx+Ae04mEC2565m9DFOunj96EfdOGrZS5BaFZjkANBWWrEukBIdx8uG+zjksffxPZj17PXzLIWNSjDmObW7Qhfh+xoMoEVku7ScZQfagLFwytfZmnhK248PLCFI1+Y5Ak5hyotsz4S/qlOl1JoomqMSpBYip7vRrgSgJEIZWmtr9O0K7T9QjnWX8KgGNjh9V3DojEUUlMKRRglrEtfmlw7gDYjAGJ0gikEDR+oUlV5/trSgL2TGbfetJW4koPtoJaCZLgRQGweIkzBenp5zUCCoE8+AiDNAnzfM3IRoYxBCEFSNGkWXeJlJ9MNRExoMrRvtWCigOnVExTWLaHN0s21WZ5GWIPNctp6kshfl62F249HZU7qAWTFWkp8+ZwoYs+aQZicqzuGQvcofGO5otfhMZESiZzmZBNj3Hw3RjGr1pk0E+xjHenD1wsr+JWt38VHG6/h473beETvYllPY3obK2i8EHZaABFCfL/3f+z3hQyrv0eAr7zgZ/Iitl3FMYQxRNmAQSCZJSNDs32lTegpalhktFeHme6BNURlRl8EbBUuNFT66JIyCxAjfdRVWfIrr/gV7Ej9oDDP6HQamDJkuUh5wO/wUYbWeslRn609kTuHJrjy2uXUR5HS8MUnA1bC4SINYKSk3R+g4oBtPYuddwP0ibndJKVFRopX3H4bu+1drLWfqDPnVd8AlnzN7dT0iuB1n3+CN35mCFBhXtLNDOl6n1vWt3Db50pesvWn6Y67hDNtBV0fdpjFsyxGTgYTRjG+9BjXZp/hgPrShvMt8i4n2/EQ0l61AHjZbLLLWOR2+oOgQWL7TLBANBgCchHuZazvJvNSoukuV9nAEqxg0ZejKUxGvu7pgw3QlLyZ32PqyP2QdEFIxvdfQuOBdSgiZufupL3lLso8QpxwC6CymvGmW2wnSvfc1mNHMEtP8Nfp3zDe8t0OBezd8XJs5OUcmZCtaPKVgICI9VggBpKyVBSD4aKX+mN2+g6cH5+aYv2CS+jMzBD5EN2nfKOwzvFFIi8vIjQWy9jRh7nhwTvZ8/Aj2FLyMDtRRcmkdPLLEd9DotrkCHKUsBQ91443WwkwpUZIy5V33ccryk+we3CcOBuwe/lJCqsxI33oV7EoLIVQFEITiYg16dlNw80fmUU1gBQqdQDigyGqvJ0jKzmiHDAuCmIf0WhtjvASlpAbk0jLLCbpzbPcTD2AKGSQ10UQ3bW0xCNkuqrh1i7GGS9n2LI0TNYLbYbWrjGV9KHFBRIlSpqF628/wTzvOv7fmHzqGM1Q1xLWloEDkKSwhF7CMkZT+BbFbdvg4FLJ1BPfx1v3O8DMCseG12yHFSlo5Bal1AYGcv3LL+I7o6u5onOEnak7172PPszk/AIlKX++fhu3Xf5fEFZii42qwQthZ2Igv4vzdXyEjT6QK621b3vBz+RFbGO7byAerCOwKGl425YBuVXMqQexq76wYdYjLIe759C4/gl9QgovYVUAkjNNb+TKq7Lk5m03105dAF1k7J1pUw7azOcdHvSLL4Gh1TMsdn1yW+7KmgAIYSBZot9vsrpaUvoCbVX5bIBmbx3liz8OfHb7E1t20Swswu/C+2WEFjmJWWdy0GfmRIm0Jcpr5+tZwp8e+DWkuKfO/wgHJd/3iQUu/vIjXNk8wD/7c8v09tfR8n3VlRUcfvhh/sOXehgZML/lh5BliLCKUpzgbcu/y1jqVVP/e6ouf6O2EEl0z0V1SM8WWmNjTMbue0IZYf2ONB6MJLkJycd3TtLsu3vUXVwDa7Fe/tgx7b4rNxn3/N8X8JXfO4T1E/V2/pCJ4wtw1bvhrb+PbLYRVsC9h5id+BrtHZ9j+fFr8Wshjayk0QqwAnQZ8/NHf5Rf/dn3AfDPnryJ8XEHLu04IApTyob7vf0o4b4/2MPRL08w25sjzVs8JmZZtk0G5dBnVmn+Aom1hlWPLd1Gg4OHXWjoY8I5b1vzJ1C+qZitepWXBYe/9hCxHxd6+TiygDDICPOMY7FbuKIMDAKtJblVFD1FvqaxRmKNRirL4fvv5CX2k2ztHeF7/u6jTA0epLCqZj1/GhznGSyiL9GmQAuL0uP4RG504s9hHYSaQIgZeslODyBuzJ9gzHWTDArn2Cj66Lp9bYEsN2+UVBZN0t5RVhtpLWERujFfSUqNQpCUw8IW0rjj3nbsnbz+xPfQLgu6xm12Ijugme4ijhto3420sIpQldyYfZLXn/gQAQV7Vx/FlIKJNCDya8JMz43tbi5qwDNGYfzvmLRtFtQSVhR00jGuWnqCLI+xRnA8cYy1IUBKuQFAZKCBiC2NjI6vlD2xsIA1YHynyUIIyrEvE+8b2/Q6PR87kw9kyVr7qLX2rd7v0cPN26YQ4oXPiX8R27/av51v+7NfA0DrgkZ7kiKXXBh/injVDZC4l5HYIYAE1hCWGQMRsyzdYFWZ9wEUTb7UGlYC1T6mfEtjue6Op4sBh2eneeJTP8L9j9+O9S1sZWRp9Sylr82zI2ugBhnWOAnLBC63IghDLMtgDVuWh0yksb5G4NuD3jzz7RzoXMtvfRHm+gbhy4D3/c5naXmOP/pkxhUPDYCcBel2t/eHiuONp7H6CJOl2/XogWW1/w8cnVFM3vIKGjfeiGy1aLTbzldhCrLeAq98pqAfGhbaU6giQVjFUrCAGSikX3VaR64lmN+JxUeQkWOt+/3HY0lHPolE1i1D42aTqcQXsFMh1gcrRNlGzfeJsRaHH3QhyOPLS+jcIkSCEJL37HORUYXNMJmiZ7fUAAIgSg3tWbjw1Sjvm+p/IqYcKKQqOPHQLcT+Pmqj0GmKaofIMmJ38hDNvpNj1lPo+FarY74HSlg6idQmKWWmsEYgZYCREWYgSbKM/giAiDKg9KGjA9MjSBsYBJ004arrriQwA5ZFh6ZdYerICeSkC02WVXdKz3SlDxuXWR8KiQpK4iJj3ndADIqA39r23YRasqtxnIWvzvL05xybtiZAKIs166AMy4MT6KUFZuxxcgKUl2b+3AdE6ELQLleZG0vZNjPDmr/XFYCEvT5CKFC7iaKOBxC3oTrOBMJmPL51FYoBFAOMcmPjaNaFcnPncGHGSdePshY3ENY6APHNxRpectLx08jO/fVnpL+Hk3KGCTmFSBvszd2YCU3OeHeCyckpQh9aXCBJo4RXbvkUb+l+2D1XhBSthB+/7WANIJ1skaDMmc0TpA/fNaWuAUQieChwEmIj6nB18nl6WUI+6PBk+yGsEsxEJUKIDQCifaUJTJcb+CIHOgN2PfIoyi0IgGuwFssXnn24834WE0K8XgjxAPAI8FfAo8BHz8vZvEhtexwyffxRAPqNLlz0eqyWCAEs+oiKE5CqoQQVFQWRcY7DBwYPuKQg7wAv85AP7RhJJPQJiAe2NupeATLLGGs0GKxN0zeNuiCiTKA14hsfWx+QPvxVME4jN4GLkOlccx1GGi564CscPjpP7DNno94ykQeQLekFXDr+UnavGeRIr3Pbd49X5ncR4WK9relzTxnwzPxBnvS+kPVgjYnMsRw9sHz2pS9HTG+n8/JXsOMDv4EQgjBOEGVJWfRZzhb8NVTkgSLtzdFY2c29c4uMzw9LU48/9ErMh67CCAdkOXntm3jZ1Am2HfhDBALpZYwwTpjzAJLqkNiHqVYAsuXEMBnwioceAmBi6QS6gDgd5+AtL0d5B2Ph4/az5hTWDAFIh8PHygcGdJfnefJvZlm490oGJ3bQ8SCnjUTEEXo8QZgAG7cQ0iK1YTHN6KQeQDyQKN/tUoz0RLFCUmhNc32NZm+NdTsM0JDEPFi4irH9Yg2xew9/dPlNdJOEbmeyDsZoZstsX24jL7sYsAgyEAI56KGXFlBrbmMhyhJRSqSyxHnGcV+lNsgsK0ELDbxpx100V29m8QHH9KwJEdJi7TpSWXKVkzz1GHvSh8kJ0H4nnwVuLIXCnVPUaJKGKSt+QQvSAaaQhAPfmRKYkApTyBpAFhkHO0AJCUUPij6xH6+FiWgUQ59Sff1KgbVNkt4zrDaaQwYSuPNKczfPgvAoYnyYg1xJWEkrIGoEyDRh98DlVvVEwvXXXMU73/lOIl/OqECShBsZ0MPZNIuT25jrJoQ+3Dct1+GRNa49UtKYv4QvfO068iJCQC1jPaZcLk0nmWRMH+XPHrqV/3zf2zEdy+CVc+xoeAbifZ7GSpSXXg1jdFnh1Vdt9z5VQAksrl9JcpK890LZ2TjRfxq4DrjfWrsbeAXwt+flbF7EVlZdzMa6hGGT0l+65uqAOBvQfeYEYShrBhEUJdrvkNfilIAc45OAyiKkHydDtuF3hHM7b6hLPcsiox1EFAoKlWF8T3LdkLR7w8HwuSf+Lxc7b6STsJSFUhDIgFLCbX/xYd71RMiUZz9B7wRbp4aLYSVriGAIII1lX7jx+B6EEMQSStun1CHv+/v/haZvmLUSrDLR993p+vBrn+9xxcJjG65bEMWIssCWOetjPab/5RXkXbcDC3RAOBgnJocdQ/DNP/uHlPkxrC8TnomCwktlrU5OGawghEALf63jmOnE0fOLkgbCS4UTfc27/2yBA08/Wh/7pns/xdvu+Dy3fOEOgkzSHtvNa77/RxCRj9jxADJoRhQMGUgFDgC65aPj8hVOPNTmqc+63JxKcNNGI+MEPRYhEFxk/ysyNMjQsEZKO6kYiPs39ItAkAxZKVJQqIDGoE9nZYXVkUJ9k2+7lMXIgWLfrLG12eRoe5yWlqTtCTIfOn3JZ77A/btvZnYip6FPENj7kNJlOCdPPYL0eUfClOAXpaTo01P+/gwMLdGn45lnEmqqJSNZW0Qoi5COQZSR4vjeCxgPV8nQrvotkPuopaZUSK3Zccml9GyPFW3JVv1CmCt04Vj6XGCYUhJbCho+VLcvEgcgViBMAdkqTW0Jjz5JuGbZm+2pHemm9jNKEAlp7xirSQNhjZuzHkASDyAx68hk2AJA+FD6l73tALe8dT8yTtjVd2N6Xk4hhHBOds/ScqtIAoUyQ1Hmri372XrIVWm4dulOftT+DLPrS6iH1rhoPide2cUH7/ouJC5Js0+OwdDLLT994CfZP3mQUOfMLM3yleRyVv3mJkriUyQsVdW6sx1KIUj2XU3nV/5P1qPEMRC/wsfqnw5AcmvtAiCFENJa+0nwXXW+gczECmEtarxDoAJyXx8pHJR8z999lInFY4SRr5cDJJa63MF63CBkQOEHeVkGlNLWiYVVCZTJuZfVndhUUdIIQnIlsMpQha4HzYCxkYI48aBPoQMoFVIYpDBgHIAgoJSWFMm4D1oJ1o4TjzRvEj4aRoQjQ6EYpxhIwlVXJbQtC6x5hl2dVW4Pv8rcmFtgToSrNFccgJRr7vNremMkjNKa+OhThPNPs/3gxYRbGkxW5bmjHBWs86b7uig9HOD2sfs50e9Tke5cFhjhfrNNBpThKgJJ7h2UQRTT9lFYrbiB9UxPyQazJyAeSdAMBLzr//1FGsUqc492OHDgZwGQvmrxfLrKfdtX6CXH+JtDXmcvFe/qfrk+hvYSlkoiQGKye4nN3czpEiwEpUQmMcoDZZxuQUUCFVrWSeg03PNdL2FFsRsXSbNVfwdCUviaYFsWjrJih68FzTa0FYXJ6ZdrHGo3aChJR2t0axj1dem9X+SyxsfZ03yEN0/8W6bHv4bw/rg8Hso+AupQ2GYxlGGjfsGbojtpqYKBCNjS+SI2qHpa9JDKIP3CZI3iAeP8L7kNkX5X3fcbk0hYoiTllrd9L1e3r2Z8sI21I96ZnGuUl3q6hSSVEWUuaaphqRTsAO19Y/QWkWFCtHAEkUtWRs4/X3eLbZlJhEgI8hMsN9sI4yUsXTEQN89i+oRqSOlrJ/pkQms8hjTh4pV7eKn9OG9e/jDCV2/opC6IpUASB4rx6f31MVY7Y2xvuzm2rTzK5fw9wjPoNSzrWDJAYpBWsir6PCOWmKTNay94LUII0AnXlPOEO1vkLQdOcZIgpaQclbB0hBUlhd1CFmqCsQtJr7oKjcFKUctYif6nA5ATQogm8Cngd4QQ/wl44ePBXuSmZxNees/jdLdNo4Um97vTamcoy5y0PUvsS1c0pCvgBrAeNV1fAj/IiyIgMDlRzUC85NDeWjMQlVuaKuCOy1Pu2tPDdtxn4zTk2w87+UKYkiDPyEIJRiFkiZCGQGhC3/PgcwcXEdIw5h3g4foSOvEarMwRPtx0FECmwmu467f3EWnfl0M9g8k/TrxlJyZ5ks6cc9Aej9fZcmfB/qe+SrocUGLoqY29UgCSfh/dW2XbQbdTH/eU/9FkCmMNa0cTlp5yE872BaIUkD3O8cAR3ZwCq92CZJM+ZbBCrBoMCl9aO4pp+zyQOEzoZREYUMIxgDgfDlfru8ZJZRFynMhnnstWSN/2+OQFD/F3h46jreY7gt8CHOB34yEb0S1fBrzZcJFNZokL0g/TanZpFA0aWYCIY/SYA0qZaIK2RDcNOQHdhnt+3DOQyT176U9voz07bGljpaTb91JcnrMihwCiZETaafOF+Y9x//IX+a5tU3zmuotIlYR0gtb8r3DDZ38baQ27k6+y69hf0BBHidtjKF/jLB3b2D5HFG5MtEYARPooLCklfRlSdo5Q+N1wo5UhpEVUO9tCca/dwZqIWaEDnjGWieWilXvYbRfQvqpuJ+xwxZFXsHbE3XMVmRpAIqNoiJTBUkgzWaxLhgg7QPkEOnqLUJc3UXxOWHI/7KqaXWWmECrmEz/zUwyiBOElLOOd6HHNQHoEIxFjVU+a+lqnCWFW8h5+la3ZEbe4A+Mt5wtyACJR2q0Ds1u/h0flQXZ6lilMlTzszmsdywnv91BYFII/D+/kz8M7uTLfg/JMGB3RkPNEeclS6u59miYbGIg1Cq1DrChYLt7Klw5OoqIOWmtXAWEEQMKNRZNfMDsbALkd50D/V8DHgIf4BstEB3jm6p188NUGtXMbQggKoVi3MRkRk5MPo1aX6M5eReQBpB03qObWYjpBm2XKCkBKTVz0awlL+SgQpSMS20PZHFNIIin56o6ApUmJ8JpvlGgubLtdfzToI4BeZLBGoSgRoiRSoWMgwGPbVsiFqgEk7a8RRDFW5Fg1QHV86Gl7KJG89Nu+k5e+4/uJGm5RXsmPI7QlnprhL+f+kq7f5Z5IeswsJrzhI39IKAN6ss+6OnVvEXrGs90DSFe70fzJy5qkEw9hheD4w06CUj4QLQu0a9kG5MKQ+VDUMu5RBms0gy5VhZ0gjuhGXQ6MH+DA+AHmB+MUmaojZZJ8pL1q4P0NykI67A8jQ8WHiw/y2dad7m3GhWsCZFmCjob+ibDt83rabXwsA+3r30qz0eGWp2/hpvsmkXGM8kxNppqtr2nQfYmbbhWAVD6Q1p7LyCdmGWuPVEsVktZgeN7rYULpEzGlSkg7HR5bu5tVsYRWiqnKmRq1GXskZfsjvtfJxAz6wTsAuPpb3sCeK6+tn6e+giB8O71OOdyNh2XOwWIbDWl4Mp7lnmg3ZdIELAuD3Qhl68AHWWqWafDmmV/gYfYhRYa1FmkHvHL+L2naPtpvHKSUCNli7Rl3HVU0GAKIVYzZNoMTEVLampELO6g3WvSXUD5SDCGZD6DwrLPwIdhlJtHNmP7evWRB6Mr2ICmkbwxVAYgdkPRHGHm5cfyqJEF6fNFKI/yCHPnrXVhFHCiUr+x74Z4f4n9cfTHvmPNMcD1CFYYid9/xEXJ+x/vupLBIJO28izYhW+xYHQmJjtkT/RVjZpEnlfvs+Pj4KRKW1jFW5RgRYsZdErBSitDkeI0MgOCsGnc8dzubYopr1trSWltYa/+7tfaXvaT1DWVRq82nDkkaPpnsK2oHnxNOybs7PIa4+DiHXvUGIr/jaLc6+MApVuM2E8xTeJ05M4Io7xOaqqiaj4kXgoZZI6bvso+FQNiCQFo8cyaKQ8Yw6DInytxkX4tzrFFISjQFWkdoP1GsDVigw7gHkKS3RhAnGFVgdIb0UoaIRrK+p6a54jWvJ4g09/YKHl37MlJZtHSLTCNsICyUMkcGe4i6349QET+17df5y8lTU4TCVoPxuW00ug4kuoHfQY2lTM4kWAW5zxquAKQfaHzOFqXNGXgAseE6CEtnelj0MIhitNR8+PUf5hW7XsET81dw34M3oTyAzJldIyfjFulSa6auvG3jeY6UhtNG4zeb5FmMHOkBE/qFfnL7DprjLmY/2XYRzbRJUiYkhUDEMdHuDp3X7iLe10W1mpS+xejcWIMDsy0u2+68Ji0PSNP+XysECIGQmr949ev4zCWX8ZW9Byh8WLKSMUnbfTaMT6qwKgTjS4fQvvdLMnuBczwLycTFN7LlApf02J7xCZ5CYoVE+NyEdjGsEBDaghuK/ahA8fM7voc/FddRpk1AsFxs28BAQisZXDtJrJybYSJawoaCb/37T7jfZO1JAKKxI/fF+pyeUAb0wpz+ou+vXgGIyepWzAAiqBZ9RZKDqfrr9NzzZSbZeW2bREqKICRvNTDIOokw8ADSKAStpSEbEycxkCCKkH7uCClrCbAzPsGjnRmO2iaRVmjllQiZcKCRkPgWuMHSFLd8+jiydOf1txT8sWc8rsmV4OLebq5du8L/Lr8kzx5if/K3zNgnWfHryCXXXLEJgEQYmVMGqwSxAxCtNaF1DMSniJ03ADlTMcUVNimiWP1rrT019OF/Ymt67bcVuh37Z4N9jOVuQXywLDl0YZfuzCyR3zV3Gh2kGTqmJzhGf73DPXffzMLSBBMTx1j3mrcqhu+7NfsYh5N/oPCRToKcUFiEX03jJEQoxXT/KAMfbbOW9rBGEZgMbXKEjmoGYmzIFBHf9kTO9i9/gsZVR5m5YCdrag0bFPWOR0anclwdKe4bWHKeJtAQ+F7SqU6xAgqZe0qvEErylcb9XKxP7Xp86a2vIx7pXDfmZZRYSi669VYe+sIdlFXOhvel9APNjO/kqPoZuqkwDDDexzJz437ue8y1ew1G2IFSin6vQ6/f5YK2A5Ctvld3JAX4Rex4YzsHrtyYzhT41r3CCtSIA73MQ4hHoqAavjz/WJfYrLKE81+EaYrOc5QpkXGMUJLWLb4U+dXvZu2pIxxY2UYcaj72IzfXxzt06BBTU1OsHXOJfHj/mipyHrrhJn53ehcTx4/6a5QjpWMg4AIITraZoEfsNe9460Xw6J/C+B4IYi68/iaKPKeXjLluGQKE1HW9tXYxbKOsRcbjq/cQbwn4lbt/lv+4+q1EvjKsLSOEsixMVH2/NbYbET89QFEgRUmQKgLhYuWsMTWLU74JlSlh8fOvRi0bNEcRJkccFNzdeJT+Y+5ebGAgI/OpZpIoJlYM1m/Oir73q2SKXRdP8YDfgYvANYyqypgoD5TNLCBdG20EtZGB9G54Cat/lRKx7iId/b1pxDF/tv9qomeeIQ4krfYhWq1DSBlt+LwRAQIIxHAFj8s+fRWzFsV8eveACz6zxqSeRAWrNcPhu36f8LfeSKsq1iol2+KQY1JuyERXOsLKHCNzAu3WI62128hKgVaGDAj+sSUsa23LWtse+WuN/nt+TufFaw3fKaz6V0iB8W7egRzQ7O4CQHun9HhjHDUSuTPJMSSK+fmdWCN5450fqhmIHElk2pI9zbV8htJHwkTF00zIVZSXsNI0Aqk5sPoA7RVXOmU9HWBtyeTxeZKsh1Bxvdgro2kgmBlYjmcwfdk8WsegCtBFveMRm4ikQQUu2iK1qFlNrL0TXI5ox1ECFhKVnHKcK177eg7e9LL6/x0/mmMp2btvH52xMQovz7BeAYgi9lFJcpBhmwVZ8ymMl/06My5vQ2ld6/rgWJzyUW3VjjeQgoaShEIgq5DLcONEB4h8NcygVDTLYV0hk2sIR6qg+jBe2WzW4JW02sgoYuroMbqLJxAnL+yXv41tt/0ob3nLW075Xq0127ZtoxG7c7J+l6vyjLb32egy9wAikDIk9QwkiE+93r90fZ+3XDPB4Ve8BjV70D05fREAzbFxrrn92+l66dIYECpAFO5at4yvwGtzGu0Gn1n8IjpO0JTEccJl+n6kFFjrAOQLlzgxovQbniTP0LagrX6fiTfOIFSl15sNDMQKA4Vi9o+eZssdj5Gbe7jx0+8n6SpELDFFwGA9qsPahc2GTnRA+kizmd1dPnp1o2Ygpkgp+oq8p5memiWuknidy7oupBitP0XXLrJ7bUCyOgQQcRKARI2U9ab3z1lqH0ggBdZHZsaBYmb6tVxz9R/Vr1dW+j164M9DYGh5kP7kxVezOmmRkFEzOQAAIABJREFUoseiPMbsng9uvJFhg6ZnK/vSCCmED+MdYSAqxlYMJHBjQghB4Pf+ofcd6vMUxntW1bWEEDcC+6y1vymEmARa1tpHzssZvUitYiBNL2EhoRQl0kpymdOccyU7Ih99MjU+gy5HAWQeZfYBFqwhwNSNZeTIxLC+1LPy9ZLet2WRiyYu4s67nsHgHGmsKX7uvp/kF45eCqTkgcRgkKLEKIsI4pqBSDsEhoevzbiWkjjeygn1FDYsawA5HQMBkBqUlvUxIw9u5QYACYms80U8m1U+kNizqiCOhgykp8hDhZGStNGEE1DaghM7nuLE9IeYNW8AYGzWAcgo+6jP2xgKhgAilaCrFX1jERWARKcCSOgbDIUZ7FsIWetdRiP5EtY24cLX1O9TzSaz/+4naN5yC8Fv/br7Lc0WNoq5+a//2n3nJszg2Ux7sKgYiM76tDw46qKgzDRSxgghagZyioQFjL/63zAOHAJ4xlVUZvrghveMdR2AWB0w0Z5G+D7djar+GQNmdmxj9ZmDBPFHkBhSscqr5x7ARLexZJaQEnQ1bPwC3hj0UGRoeRR2dIds4yQAQRgoYyYWXYn7B2Y0QbGGjCKEtlgpGZwISdMhA1Ej80T4NtH7rp7j3laCecRLtkXKQ3+yg/5aQPNdU8ReEtXSAUjFQES+yH/m3UwuvQmWh10o7Un9O6aikKc9KIRyuZawJgON8hFm8Rn0IaF9hJ3PI4rUoG4yVUhJiOX68Q8jO1sR6qTjpBM0feHLfd5vJqUkyxKsiTFGolREnsxTxAsE4TDTPPC1poPArUf/ZD4QIcS/A94L/K/+qRB8s+FvIKuYRwUkWZKxrn1tJ5XRaDupIvSi43i7gxypuTPBPEFV791ahJKEvtCatsPbUDXTqRaI9xx+DzduvRHldzvNNAGpSayl0L66bwDWSqwCq5w+XAMImuOeKW3TD5Iku0iS7ZjtJ5C7SoRnA2ITAAl8ZJZOIGyqIQNRMf/P5Pv41V8eOlxFqPn1V/4677v1fc96LccCn3NQVSmOY2wpmX9gAu6NyRsNTBA5AMH5QJKxBlYPsCZDCEXHa/h6kwW02hUFYZWoJ+kGiliKuobRZgCipEZaQVBIgqJFVtzmf9ss7NtYU3TsrW8lmJsbYSAtZDw85ikM5CxM+fO1UiKtQJQ5DR/Kq8ucspcQ+qixMzGQDTa1H67/ITj0HRuebvhrK8e38NrbfxBpY0wmaApXtiOxGXsu3cr3/vyNBFGIwtD0clK/28bnCRJ5R1+yZnjvFz/A+PoKtqoaGsQEcczs3gvRQYDyAKmUwgqD9DW9SikZW3OhqjKOEbEGIRks6JqBYAbokc2QTlrEjSbd2VlCKbA+ysmaBr2FmPWySZi0iL0kpMRGAFnPcvLlmGRxP3bQRvmosZOjsK7uNGsWISlrANkah3zpJZewZ6rBzvHT99hQfn4lfn6lqldnpxstiYRlLryP2fQxt1MbtZf/OK39rwIcAwEHIE8/fSHHj/8wSgVIGfC1y/4Tz1z027WEBeCDK+vw+PPFQM4Gl74VeAO40eM7E7bO+In/Ca3ji/VVO+zF7Yt8dvqzzFw8Q6lLdrZd4lBoZsBa0iCoAiAA5wMJvT4qjEFK6SIlADVSMqP0O7nO2DBCCOCC8QsAGGt1QCgia+okLSf/KtBgNUg19IGsJB3ewiqvZZlGsM7ExE3ueO/4Xna/8e1nlLAqBjJ9acglb9jC5dOX8y17voW9Y3vZOraTVt84Xg+INOaK7Vcw1Zw65TgnW81A/GQMEzcBn/yHnSyuTmMuOUR+0RV1vkppC5J2VYAuAxRhnJB2uoSbMZAqI9xHykifIxFKgfTS1WYMQSmNtoqgcMlicTyFMZLSzJ7y3sqCOEYqTRAniBFQOjcG4v1eQqJRYHKaHvB0kbP0wB6uvOJ3AUi9I3+z37/BpIJX/wxM7t3wdBUZt2tuiqmXX0hz8jFMJkmFb2plcsamp4jSACEVWhg6YpUTtFhP2qylvnuiX0GMSLhg2ZVmL7XfWOgEqRRJq02Z5xslLAzWL3ilUkjr7q+KYmSqQUqWn2iCDxRxEtZwjKq4yQ988Pe44MpriUazs31LhSyOUWFUj7FAOR9I5UQf2ILH/+BK0hMXsqTzulvoyU70NNB1Yqq1TkKqbCoMuONHbuZdN25sGrXBOpLSSlLvA0xUvy6waIUgwoIp3N/JANKcptV282mUgViryLIGUkqkDEEaEHYDA7nysIt4vDBxBV71PxUDATLrChFZACHEC9vS6uvEXrHjFfziS3+RHW23UwpVyEq4wu2vvZ3Pfffn2D/uEon22pLti0cJggAhFMKWKFvQYYl2yy+u1iKVJPAMpKKbAKUv6d4Zn2HUuj6kNog0SEVsLStpzmpSIK1w9U6VAxAhghpACh2zDqyAA5Dxmzcct8r/2EzCqnwgC3e/h8OX/Qcmk0l+7qafI9EJslOFnLoJV5VUOBurorAqCavRcr81Nwl/d8OlHPw/fom3v+MdKJ9gV5iCtNLsbVY7Mjszs5vuwKucqcCXBpFKsCMOmQ6DmoHITRZeKRWBlejSFUppNab52795K9acfoHYeuAgF1x5jYuYGznmOTGQoKoqqz2AlDWABGWJVg1i380wiGOCKH52BnIaC2O3YKeNFKEkUaKwmSTSKwQ2J7E5za6L6pFehuqyyopsszowdSRQ29//QqRYr7vnag1UBFIipcKUJUU2qPNAKh+IlV0sUAqB8VKdjCN0EmGFZOWJJvfMOwlG2AFjjLBGHdX+hlAIjA+Rt8Yt1Lm/llU0VKTkBie6EYO6bE1PlYRUm7lTd+rKh4Eb5Ck+Dq0kUopTPlPZUmMvvyTeTeznfiyHAIKEUFiwpYsokKfOwZbfbO1LhwACUBSFi2YTwzIqgR7Kx3u2O0Xkhhnfh+Q81cI6Gx/Ih4QQvwZ0hRDvAb4X+MB5OZsXscU65tadQxmjStSbTCZrhzXAjbIguOuzyDe9GiUDYvo0inWktkSNBsy7FqBSj0hYI60Mrd/tjE1srFfZ6EQEkSJqOAAJLdy9e4X7dq6w98QEFg0KUKBkWJ+TlcMB1o6h2712w3GrAoqbSlj+OUWXMBzf8JryACKscY2morNfyDqnMBDvpBQKKy2NRoNGo8G9oetVXtqctNOEecdAhPdV3Pid76DMT+05XZX10l5SUlrw0/u2klvL1+7w/enTTQBEK7RxDAQhaDddpnkQnB4cD73sVRx6mZMZKglLhGEtdTwXq3foQiGtBCytJIasJMSeAhZXvO52tuy78Dl/Dwx9J1UUV5w2sblAhgOado24LGpmKP3OOGFAIWNWVlZoNr0voNpABA1KrzaFIq+jpKRWWFNSjDAQpZTzgagWhRSUUmGr1+KYIHbgA5Ar53De92Sfq3tT1K089EhejhSUdYVbL3tqd88mvFyaKsk8gkEZIkVBocsaQAayrBmI5FQAifq+CoIdRmGdrSmtWaVBGrdQoiARfdLS16WVwklNptycgQDfMtXBWLtBwoIhgMiR+R0EQwZSSXfLnV1gzh8DeVYAsdb+ghDiVmAZ2A/8hLX24+fndL5+LFQhY9FYDSSVXXrppYyN+XA6KYjpM14eB+3oOeBkHyuZ6R9lwh5DjwCQLSWmEEyNbZRNLrxmhh0XTzhWIDUCiKxhoCQ6ByEUVgMKhAwIZaWnh3Xs9Uuv/y203kggK+lqMwDR/jW9iby1AUAYLtZnY6GUNJQcygvVwijlBk6s0xCwWGEJk6GEVU3iHZcc3vT4utqZxhUDkTQ9aJWTLY4Bs1OdUz4npeLGo7sxjy9gUIQeOM4EIKNWSVjnwj5gKGFJqesw4nYjgaVVIqxbWEfsxre8/Zy+B1xOQ2d6hs6UY39JdwYWBDIpmOQo3XwYcST9YhyJHCMDVldXSVN3Dw6UOaAQSYtyySfZMQIgUmFKQ5FlNYB0Oh2sMAjZoJQuuU+kblyG7Q6BWnf5KUAunRf8NV/sc8XE3GkBRBq/+zYdLBD7hMAr2yl3XHUhv3j/XTyGZFDEaFkw22/VBTozWcJAQIyrgnCSxb7bYFAUz3ljoLUGBkRh2znQRZ+DK/cyv2OOL+ltRKZiIJsDyFQY8K5tIwmvpzAQTZVhMSphRf59K9OH4MgSWv3TMRA8YHwcQAihhBDfba39nfNyRl8ntrW5lcFI2YfKZmdnmZ11i3+oBDt5hLn8KDYUwygba1ifh2u7n+fV2/6EVfnd9eeLTFP0FGOtjTt+qSRp23/eD7TIWgaA7JVAiAkBeRIDEaHbkheWyfYkJ1sdhbVZGG90egCRjYaTKEyJUUO562ztDdNdru/6Dn8eQKxUjKRfoJsRj6/+Ayss1qBROdHPZFoIZFnWEpgaqTRc+0CSTRiIUhxYmGBhcQ0mZT1ZnyuAnIv/A4YSVks1mfWdDJtpCqwS+8rGL6S9/T/+ci0rqaSNySTB1IAfFv87nadeAzjHeyVhJQwocUBeNTE7XGR8jQQRJORWEtOjLZdGMv4VxaDvJSz3+8bHx1GBRIiAQkpKpUh9YmhzappofRGkxAQBl8zv59PTEGcDRDAOMgCTgx6CaSgk1joAMkZhwpiGD8cVQnC4lRIo5ZzoZYi2BfsG27Eco7A5uchhAMQO8E62ygcSGDPM0zhLq0LMo6TJ6y/4EzonjhDZjHGfMRtJ6nYHm0lYp5yLB/WiKFBKIYQL6zZmsNGJXjEQnzujOZWpvxB2pkTCNvCDwFZcU6mP+///GPAl4BsaQN579Xsx9syoHirJj/Fz9LKdmEQRN/ykMpbVo5aJC93/Az1cGJ58eDfzX21zy61n2NH7BTS2lmVA59bVZKpaX8uhDwQRgpbEwhJvkk0kzxCFpb1/JAhP3XUJKVHtNsK30QyfI4D80oGhRFdLWFJuBJBGzN8d+wgzsxfUspWxrgzdmUwLibS2joCRI+GRVRjvpj4QpSgytyloTbfqENSzBRD5PBmIVAohJJPBGJea7awAraZbGPdefIjrJq85p+OezqJ0hI3qBJMpdGwY5zjNlaGUo/yGJWVAjgP9ygdSqoqlNOgR8oN8gLv1GOjp+jcVfafDVxsoKSXj410G89ALIgqdYPZfyfiOmHDHDqLHH6cYm8GUGbuOz/JpoL226u5dkMJgaQMDiaSoS5mUhWR9z0Gi9WEej/sNzom+vpogmwYVNLEco297WOGSPwG0PnUcGx9afy4SlvbsLYwbvOWyVe78H09xjAm0d9ZXbJky25SBnGwnMxD3nAOQcAMD8S0ZfKHWwJ662X0h7ExX47dxktWdwLuBO4A3A7dba28/L2fzdWRKqg2+j80srfMoBhirSNpu0GsdctFtXXQvpswkMhgCSCOZpb/aOPOi5XcqYRVtVLjdnI18kTY5rIVlRYjVgm6yedc2NREjAolqn/r6mRgIgOy068zdYBMAOlsblbCqjHsYOsEbjU7NOozJkOLMEy1QEmkM0h9LjRzzTDKTkIrCV+VrXjf33BlIJZmdI4AIIQjThEBHyCik+dKX0vRJizOzs2zZu/9ZjvA8LEgo8uHvXBi5xhUDiUVGYX1PcM9AiordBSlrxKQURNZAMJK3MPAAMpK8OT7pFrtfv+I9PHThe5BjE8z82/citCaJE2yjS9GZYG5B8b997WEuu/9ud++quTLCQAIpyPpNbKko88Dl0ZxEFLRQGCsZrEdIUxJPzjERFiTRL/DSwQfQPiJSq1PHVlUi3vXceY4+kIb7nWF7issv/+/M3+XkqMBvPp/Bj5VicFYMpBqTeZ7Xj4UIkTJEyuE6UsnDyx5AtO1zPuxMM3GPtfaQO0HxAWAe2GGtXTnDZ75pI1YlD0ndRxloTrjFYOehQxy8YSef/ukv8cT9OQcODyfD1CVXMW8Cr52exuSQgQAEhUCKABu6eaNGwnitCJGBonuaKKn4gi5zP3n9qUlMDEHhdOCgOl2Ej5+PngeAjEpYo2whaLrJlXbHatZlTF4n2p3Orr7pJrbdc099LKlHGYj3M2zis5FKUnoAkVLWDCQMNwffUz7/PBkIwO3/+v0UH1tEkjD3q/8Fay3/etcMt009e4Lm87IgJs+GY+Que4LX+cfKL6oxGVVdyqpbY6GkiyoMU9ZtjAJaRe6YAg58sp7vShgOjz81M8nTLHG8uZWsl6CC4XhPwwa58Mw2b3FYrLuS82FYA9MGH4iQLD6+n2Lh31NkVfXejc5wLRVGSAZKII2h0e4ihGWn+nuwLs8GIFLPxkCem4S157pv4cr1O5jYcWF9PUpjaPddTs2c77VyLgwkSSo/U4gUYxvOrWIgR7IcRUnM+QGQM83EOs3YWlsCj3wTPJ6bhZXergcIa+ubr7VmfOJGhNVkK2GtfQOEjSaq1TnzQB3xgYDrPyFkWBf/kxsYSEC4vcF3XLX9tIfbDDxg1Im++euq3UZ6CavdPLtFdjOrJCyk3LDYh77tb3ff1pqBnI0PZM8rX8lL/sW/qJnHqA+kkrDEphKWpvBRXUKqf3QfCMD2iw/TaHSH0XFC8GO7t9R5AOfNdEKRDe/hR8WD9ePKiZ4wIC8MQRC4cjg4CUsaUFHCmg+zbRd5vcBLqch6LjxrlIFMz7ideOJ34sFIx8dUDxtryTJ27QeCAJmmNTCNMpBICqyR5GvTGN9pQpwUTaWFwiIZKIU0JUmS0hupFFEBSGMzCauok102u3JntE6nw+u/9c31ZqTysUysrfBjRx/kDdIlbjoGcq4SVrDBgQ5DJ/ozg4Im63V5/RfazgQglwohlv3fCnC4eiyEWD7D575p3qpy4lL3EdbWoKC1ptU8WDvkRidWkiSkaXrqwUbNL6A1gBQSIYeLnFLBUF4TIe3dbb73TMlOp7GagZxGwlJjY6TG7SkmJs/dwTuxbQfN2RnKKEWNTOC02+XQy1/F3quvQ3jnyGgeyLNZJWGNspqqFtbmDERRZFn9+Ln6QIby2NlHpG1mMg2QyVnFt7xwFsRkuTvvoi8xdrggqdqJnmGFZG5urg4fLbRAGouOYta9HNMusg1O9IrV6REmN+ElrNT7HjYwkCDlZb19HF67BKwhSgJ2/NqvMvaW7xyRsIaAGkhR56BYX0roZABR0jnRjRRIU5LGCb1y+J1B7pza7U2CK0w+ZCDP12oJTEi2lBmiksxM/pwApCzLEVCKNuSAwJCB5NbSEj2MPbVPzwthZyqmqE4qpKi/kYspnosF1SSSFpUP6a+qnKXpNNdPvWHY2wC46aabeMc73nHmA5/MQAqBHAEQeZIPJHmOum19/hUDOY08NfnPv4/24f3+lM490LzRHeP1P/VT2DDauNhLxav++Q8zsW1H3QluNA/k2ayWsDbzgZwmkbDKrD8nAJESEYbI5xktNfbGCxj7jnPL7zhnC1Jy7wPJ1wIm+db6pUpOlcJ19du6dSvC5y4VygGIihLWrLumkSnBtxhWI5LQKNMOfOOkmcGi+44RAEl0QrsMOCzGyFZ+lzAJaNxwA3pyclMGsi+NsaICkNNIWMIDiFIIa0jjlNJKjA1YN5MEVT8SfSr4G8887DkwkJOt8ifhCyNu8Hs8Bx/I6OPx8ZuYmLhlw/uikfe1RQ/7jw0g37Tnb9HIQhIMNkpYAFpOsKN5EWpkgUqShImJiTMf2A+0yAyd6KMAovRGH0h6Gonq2UxH/nxPw0CivXuJt876U3p+k6sZN7m7ezfR1s137zUDOQsJq7LaiT7qA6lkpvTURX4jeElarRZBEDz7/Rg9zyh63gxEtSN09zxLVidba7YuiJiva5qN4R5RbXAsOwCRdaUDJ2EFIwwEgG1XAdTVeGEjA9E+fHz7wJXaCEZ8dKlOyciwNseWx+r8GPfGUxnIj+6eJaqKIPoCnyePRi21C+NNLIMgJ/WJr+s0eDy7gsBLWGlw6r3z+b7YTbLUn6tVAGKl31COsunnwEBGH1+47/3s3Pl9G94XjYQbt2Xf+Q7Pg30TQM6jBaOOvkG5QcICsH5RfC5lQIBTneilQI30IVAyrKsGW5meMwNRWtKeShibPb2kVi0E6hxBqrJEJ9wzdg/J+Oa799oHYnPEWQ7boYQ1nEzJ4cPMvP/9pNddt8n71YbHzWaT97///Wzbtu2sf4eenERPPns9sBedzV0O2gFlvqYJRmRVpUcSXRFs27atLqFhpUBaSxjFrNmRxXe7q3ggTwMgqioP64+jRhzsgQrIyOpMcbUpgJy80DtfivEAUoiNryshKYWiiATr0YCGL+XyEbmLvzzxzroqRNI+tcyfyRRBbmD5+QPIqIR1KgM5NwDZzMIRH2pLDLDnyQfyjyy0fmNZGKR1JEKYncpA5sujqJWCZrjvuR24ass54gORKqTKSlE6Znt7J7/xqg/wxnuCc2YgQgje/lPXn/E9us61eH4MJJABb7vobdy87eZNX69kK2vL2gf0bDaUsEYYiFKMv/1tm75fjExmsUk0ztnYjv/2m8hG89nf+CI0KX0dqbWAd71yWHxxlIHIMKHdbm+UTA1ce8E0H95+BI76Jyf2+WMOr+MGUKqKeHoAGXWiAxyzz6AGlX9kFEAqCWsjQ7MeOKzMwZoN5YEAlHC1rBAKgSWu6qzpHCMVoQ/V7aSbRLuVATf/3XE+vXBq9YLnavX1qCQscX4ARAhBLAV9Y+nIwXljIN8EkPNooa76qUF0+fdv8IEAnLCLPD7/WW4ND57mCKcxcRIDKQRKh/gGhSjv4Lx29hq498t1QbnzYVWE1vMFEID3XvPe07426jg/Wyd6FX01GoV15vePMJCz0KM3s2Bm5tnf9CI1KVO+9ulplh5t8ZY9QxY1Cqz7Lz7kCkeO1GCSxtJIIrbuWhgCSBUhtMEHMlzUdS0rVgCyccH/G/Upth7zDF2fBQPxYb9Wl4iiqKPE6u8WwhdDVGBM3dNcSINQOWXhjtdMTgUJW29eXjgGYoUvzDgKGufoAzmdRVLSNyUdmX3TB/L1aFE4ktgzcegUCasaTKMOxLOyESe6RKCtIoyG1Fv7ySWEQAvOWcI6G6t2kvI8ghSwwXF+tk706tz0WXbTGV0o5TkykK9nUzrg2J0TZCvhxt8/cl3GJx1A/v/tnXuwJGV5h59fd8+cOWd3z97vF1jYZWERWXBBLS0QuQibCxDFIGIopSSYoMYqq0I0F5IYgwZvf1hUEE2oaEmZMomUUgbFRLQSFTRcliC7aFBX1gUVC3SR3T3nyx99mZ6ZnjkzPd1ndmbep+rU6enpy/dNd39vv9fPaxAggBcwG1VU2LN4dWrX+m+fjjaUJ7xAiQbiNVVJOLQ4NT99yvlOZQr8astg62L9O5hl6gff5dgVjXE+nsDhsdD3cb9eV687FjjkHWHhwV9SPfRrFlVaw9HlxQKk/3s8+T0ynei9aSD+HPdo7AeZ9g6XZsIyAVIitdRb0GRtbYsJK/7s9zphcbTfBb86yO+vPZu33PJJJhfWVW/fT2XpSrlNWN0QVIrTQDqRRwOZXj7J+W/azuYd3fkkGnwgOTWQYaauITQlzKXNLH5cFTZV5fnZw+BVeH5qCW9ftYJbT35lfVcv2wcCEFQEka+i+f6ZWZo2d6U0kNN/D37rIy1tl0IB4gWz+EeOsHC6SQOJ3OpHqOHNVhOtRn6ogZyy9wDXfOoDLMqYaCzWQGYLGC7j+yrRQEoyYUG9HtZi/4iZsIaRiVREx9TUep55JsrIbdZAqr060cP9dzx/iB0bL4DpxXipqsBpAbKhVmXzZH9RQZ1Yt3Upx+1YWS/0WBINGgjdD+4nnNl+MqhmGp3o4/duldyHzUms6YEtmqI1SN1jm3/4HHgBFa/CVxZMcV6qNE+DE73SLED8uhO9+QVkxQKIsqcbBMjKbeFfE04urJBeFX4Q4DWVJIlrTs1oknWLa0m7PD/UQCpHaniHnkuKHzYQ5VTNtsR29U7diR5rIP1HYbUjLmey2DtSmgnLBEiJpGPKq9UFeF4Ya54kZi2KKqHmNGGFy+HN7TfkgdSXv3LGiZSpHKzYsJCLrj2lvBNENITu9ljQrlvSWkee+TyGnbhyQqsASf0WfjzgV3j66VM4Z9/X8Y848LxkymMvdX3aRWGFn/3EhNX8ewdLFwHh7IgNPpA2zHpHYBY0JVYccyzL1jdWXoijWlVZxqmrluBF/i75Ds+vl8fJuu4uiAVI/1ppOg+kRQPpIjikNx9I+RrI+D0l88hEyuYbBEGLD2RBpGbPZctsocGkEETHqD+c6bf1iie8Huv3HI2kBchcxRTz0hzGO24kUVLNAjrDhOX7PvufOJclT88kpp1K8jKT8TtKjZoEUaWD2AfS9JZz5Qvqc50EXSRy/rr2Iw4f/CqVRT6v/5sPsuOCXQ3f+9EzcIiAipSUz/GrM+DN1Lua8awc1hR37DuJPc+tnbMdc1HPA4nDeHtzoqfb140THWCxP2M+kGGk2mBW8lm6dClbtmxJ8gqURKr0qoGk7abxJEQpp6ZXrjlpEMyLBjLmPpCJuCZZiwaSrrFfn1VwdnaWWafEtBPf775af8egUm2dDrbqJ9e1WYC8eG195sxmwZPFTOUwM89/O5l4rJn48IdmZ/ElFi1bwaXveieLNz8LnsMR15Vqvbc832fvsys47Pp/rtImrDAKq3wn+hKf0dJAJC2T9CVJe6P/S9tsd6GkRyU9Jun61PobJP1Y0v3R366s/QeN7/vs2fMSHtgdOhUnJia48sorkxkL6wKkVyd6+o0weutL2aSlHn0qQ0BagHSbid4r6euQNw9kmJmcCvNAWvwAbTSQI0eO4PBaNJAsE1aWFpEu0pkVhBGboboRIIcD4aTGOU5SxBrI87OOSrS8cfvpeD5Uq14SVqyMF4e4D71W4s2ingfilZoHAqEPZDrwqPj+yCUSXg/c7Zy7MRIM1wMNSQAKR4mPAucD+4B7Jd3hnPvfaJMPOedums9G94rv+xz4yVZmKjOZ33u5BUiGDyRIayCjKEDSYbzrhJKzAAAUCElEQVTlDO7jHsYbRMl1XrMASd9vfl0DmZmZYRYlRQYTE5Zaf8dm/wfUk1DD47UOhq/98/fy+APfodZFYubUhmP41cwyTpjOzsNJTFjOEcRFTIOFgPArXpIDlDXjoAoUIK0aSHlO9KonlgZBONWDK2dGwkGZsC4GbouWbwMuydjmTOAx59z3Xdj726P9hgbP88IqoW1+ZSWRIAX4QLzR1kDSP2K3pUx6PsOYm7DijPNWAZJtwgoFiNdiwkprILFQTueA1A/VWQNZsGQpJ599bldtP37pFlx1guladp3X9NWsxA51eQTBQiYWzFKpxYmFGSaslNbQL57v15MsWzSQ7nwgyVz1cwiQy9cs49pNq5ACZmdHywey2jm3HyD6vypjm/XAj1Kf90XrYq6T9KCkT7QzgQFIukbSfZLue+qpp4poe084tRcgRWogQSria/Q1kLKc6F7m8rgQm5laBtH0wJkyYc3MzOBQ4j/opIFkmaHSGkivc403E/sD2vkF/JT2kF5ev+51vOSStRx/WjgEZeUYJSasvlqYOlZagDQ8y11WmU7v34GLVi7hjetXRFUDZsMyQAVT2lMi6cuSdmf8datFZF2vuJbAzcDxwA5gP/CBdgdxzt3inNvpnNu5cuX8F7lzcm0Ho/hBzbK7diTTB5KOwhpFAZL6DechjHccTVhxuGxL3zPvt0gDSTnRs30gca5Tqwbiz6GB9EJzmaBm0vKpkhIgW7b8MRuOeRXVyfp87S3tjAVIAaHd8rx6yHAOJ3q6jd1Gb8ZRi2VoIaX5QJxz57X7TtIBSWudc/slraVeQSfNPiAdzL0BeCI69oHUsT4GfL6YVhdPLaixbHpZ5nex4OjLiR7ddH6kgTjnFWKrPdqYFyd6ynTTs1AfAeJEwpYAgoZEwroG4pyLnOiRAPEzwngTE1arD6Qyhw+kF+YaVNNaR5DxfCQaUNZ3hTrRPdqbsIrVQGLiyebCZMJik4oHpaffAVwVLV8FfC5jm3uBrZI2K8w2ujzaj0joxFwK7C6xrX1RCSpMVrNLlBdiwkoe2qi8thvNgS/UQLzUcvE0OCjHUAMJ2mkgbaKwAJwX4KJ7MFMDiee+yRAgRWogcw2qwVwCRO33T6LSihAgvp+8nPSrgXQrQLykGGTxobyDEiA3AudL2ksYZXUjgKR1ku4EcGHc2XXAvwOPAJ9xzj0c7f9+SQ9JehA4B3jHfHegWzzPSxIHm8kdxtvw1tLoAxlVAQJ1zaM8H8h4m7Cq0Vzui6abKtK2MWEBOD9IHOuJBtKQBxKbsDI0kBIESFsTVvq8WZFW0bosM1U8k2LP+VoZrNmyDW9xaJHwUuas6ARdHaNnDSQyaQ+VCasTzrmfAS3hFc65J4Bdqc93AndmbPeG5nVHK77vFy9AMjSQut9jdAc+ye9pQqmej5/OAxnDUibx4FubbNKY04Nc0KiBzDglgr1zHkiGBlJJC+xyBchcJqzY1JZ13WPhN7mo/5m8X3zJZdx/4Of8Yv/+jHLuJWkgDSasYhm/p2SemZqaYuHC7Dj2/CasVrW3buccbQGS/l80XobtfpyI37Bb3rQbNJB6GC/AjCO5B6teayZ6LJQzw3hTZfb7jcKaK7TVb+NEr5+/fS2seuHFYobLhrbOgxNdiRO9eAFixRRL5oorrqDSJpM2vwkrmkvZzSY3nTcmGki4UH4m+jiG8cYFBjsmEmZoILHpqrMTPSsTPTqfp74d1L1oIFnKTnz+rHZ4HYRLHhrO1WMeSLo9vTvRR8SENU4sWtQ6x3JM/UbIMSB6AcwcSkxY9dyP0RcgpTnRx9wHEt+HLYOw2msgsyi5BzuasLIy0QuczbIXAZLlA1m+YRPL1m2gMlFr+S7RTgq67xoEgFe+AIlfLmdLMGGZABkgickgyDFYxQ+1F/tA4ks5upd0Xp3o42jCiic6a5uJXrfZ1wWIh9ckQDKLKWZmosemoXkQIOnzZmgZx51+BsedfkabY8eaUgkmrAYneslhvGbCGi22n3UOC5cvz6+BqB5TXneij+4ljQVHeWG8sYlMY+lET7LGm30gsUAIJpJQ1nig/gkrqS7ZwmKyS5kkiYQZTvSgwOmQ5xpU53Kid6KugRSTX9VgwsrhRO+2lEly2BLDeEd3tBkCFq9awymrup8xrwHPS7QPiG4q51GrZVcjHQXi6KteZiTshcRZOobaB6RrYbXJRG+angDgC5zLa894LavJ1kBiJ7qfacKKNMoCNJC8mehdHTvxgRQjQNqbsMp2ohfvAxm/16xRwQsS23Oyyp9gYWpu9FGjdA0kb3HLESHRQNqZsDIECEAtyh/J8oHEQim7Gm88EM6vD6RXDSSphVXQi0V7J3pZJqw4ydjCeI0Y+S03nOdVRnIyqYSkhlC5PpBxjMCCdP87mLAi0gP1ZJQ3kjmh1Dw70duasFLLWU70bo5dlAlr/p3okQZiJiwjwQuo15YMkYJUOO/okQiOksN4x9WEFTvP82ogNT/8n56JMzb/dHaiF+cDaaeBBA1hvEeRD2QeNJDp6VN55Tl7S9HcTYAMKxk3m+dVk4iLUcQrOYw3qVE05iasthpIGwESayBLakv48Dkf5sw1ZybfLVm9hk0veCFrjz+h5Xx1J3r5JiwvHcbbqwmrQ5Z6HopKJOy+lEl5GrUJkGHF86DJlCNVSjPvHBXEAqR0J/p4mrBizaNl7o54kAtaBYgkqinz1LmbGisUVSenuOzP3pt5viLDeOdyoqdPEfR4uk5Z6nloMInNgwApkxEebUYcLwDXaMLatPGNTE5uGlCDyqf8RMLowR5TDaQyUePCP3gHm045tfGLuPKB3+oDqdVquQeyRAMpILppGMN488xImOxH91FYZWICZFiR3xibCGzceFWbjUeD0hMJk4SxwT+Yg6LtFLLyM01Ysf8jD/KEF6gQDWTbtm0cPHiQ6ensgof9hPHWo7BKKGViGogxEOJEwjGidA0kzsQe0yisjnh+pglrsrlyb49Uqn4hv/f09DRnn3122+8b5gPJHYVVQimTeXCil4kJkGGleT7lMaD0YoqmgbRHflsTVj/4Fa8QDWTO85DfiV60D6StE73L+/poEiCDb4GRDy9oyEQfB0ov5+7nrI48DjQlrhalgQRVf14ESFrp6DWM10sFDBTSlrRPJfYvwVBqIINvgZGPjEz0UaeeiV7OAJ/MfW0CpBXPy0wk7FcDqUz4+EH5w5DfRxhvqRoIRJqHoMvjmxPd6J+p5Q1OzXEgtkGXFsZrJqz2ZJiwJDE1NdXXYV/+mi1UauUPQw1hvD36QFTwG3/L3CM93m9HkwZiAmRYueTmQbdg3pm/WliDfzCPOqbXweINyUdJXHbZZaxfv76vw244cVm/LeuKBid6j5aodJXmImgRABkRlT3tP0BMgAwrU/Pz4B1NJNV4yzJhRWXczQeSwdV3tfjctm/fPqDG9I5HWoAMNgqrVQMJwtlFe9zfBIhh9EC9FlZ5D47n+2M5F8icVPpzlg+aueZE70RZJqzkeJ4HzjQQwyiXkqvxQmiuMB/I6NGPE72eSFhCFBaEJqweDm1OdMPIgVeyDwTCwcJMWKNHP2G8iUZasAmrroFEUVhdYhqIYeRAJRdThDCE1wTI6JH2e/Q6H4iS6LwSiilClP9hAsQwyqXkREIIH8qiZp4zjh7iTHSRJ5GwxGKKEJmwTIAYRqmUnYkOYT0sC+MdPWIneq8RWEAyRW9piYTNNbHmao8JEMPonXkRIOZEH0kkIfIJEBU8oVSmE72HunYnnXQSnueZE90weqFeTLG8N6/pFStZtGJlacc3BocvqOS4dUo3YXl+T9noa9asYc2aNYW0pV9MgBhDw3w40V/zp+8pLFzTOLrwpZwaSDkmrAYn+pBqvSZAjKGh7PlAoD6tqzF65Bcgxd532aVMhvO+G7wXxjC6pF4LazgfNmOw+PSeRAgpE1ZBmmmrBjK8c/uYADGGhnotLLttjd7Jq4F4poG0xZ5EY2goez4QY7TxlDcKq1gNZHp6mlqtRqUSFaf0hleADGerjbEkeQM0AWLkwJd6ngsEiq/Ge/LJJ7Nt2zaC2N+29NiGuVaGCRMgxtBgGojRD4GUywdSRh5ItZqaDO7VtxZy3EFgJixjaCh7RkJjtPHo04RVUB7IKGECxBgayp6R0BhtQid67/slM1UeBaVDjjYG8otIWibpS5L2Rv+XttnuE5KelLQ7z/7GaDEfpUyM0cXP6UT3Ck4kHCUG9YtcD9ztnNsK3B19zuIfgQv72N8YJUyAGH3gSz2XcgczYXViUALkYuC2aPk24JKsjZxz9wA/z7u/MVoE/gJAeF5t0E0xhpDceSB+sU70UWJQUVirnXP7AZxz+yWtmuf9jSFk1arfYHJyE9XqskE3xRhCgpwmrNrChaw94URWHntcCa0abkoTIJK+DGSVjHx3Weds045rgGsANm3aNJ+nNgrG9ydYsmTnoJthDClv3bSaJZXezZ9+UOGKv76phBYNP6UJEOfcee2+k3RA0tpIe1gLPNnj4bve3zl3C3ALwM6dO12P5zEMY0S4ZLXF2hTNoIx6dwBXRctXAZ+b5/0NwzCMPhmUALkROF/SXuD86DOS1km6M95I0qeB/wa2Sdon6epO+xuGYRjzx0Cc6M65nwHnZqx/AtiV+vy6XvY3DMMw5g+LSzMMwzByYQLEMAzDyIUJEMMwDCMXJkAMwzCMXJgAMQzDMHIh58Ynt07SU8APcu6+Avhpgc0ZFsax39bn8WEc+52nz8c451Y2rxwrAdIPku5zzo1dHY1x7Lf1eXwYx34X2WczYRmGYRi5MAFiGIZh5MIESPfcMugGDIhx7Lf1eXwYx34X1mfzgRiGYRi5MA3EMAzDyIUJEMMwDCMXJkC6QNKFkh6V9Jik6wfdnrKQ9LikhyTdL+m+aN0ySV+StDf6P9Sz8kj6hKQnJe1OrWvbR0l/El33RyW9ajCt7p82/b5B0o+j632/pF2p74a+35I2SvoPSY9IeljS26P1I3u9O/S5nGvtnLO/Dn+AD3wPOA6oAg8A2wfdrpL6+jiwomnd+4Hro+XrgfcNup199vEs4HRg91x9BLZH13sC2BzdB/6g+1Bgv28A3pmx7Uj0G1gLnB4tLwL2RH0b2evdoc+lXGvTQObmTOAx59z3nXOHgNuBiwfcpvnkYuC2aPk24JIBtqVvnHP3AD9vWt2ujxcDtzvnnnfO/R/wGOH9MHS06Xc7RqLfzrn9zrnvRMvPAo8A6xnh692hz+3oq88mQOZmPfCj1Od9dL4gw4wD7pL0bUnXROtWO+f2Q3hzAqsG1rryaNfHcbj210l6MDJxxaackeu3pGOB04BvMibXu6nPUMK1NgEyN8pYN6qxzy9zzp0OXAT8oaSzBt2gATPq1/5m4HhgB7Af+EC0fqT6LWkh8Fngj5xzz3TaNGPdUPY7o8+lXGsTIHOzD9iY+rwBeGJAbSkVF04pjHPuSeBfCVXZA5LWAkT/nxxcC0ujXR9H+to75w4452acc7PAx6ibLkam35IqhAPpp5xz/xKtHunrndXnsq61CZC5uRfYKmmzpCpwOXDHgNtUOJIWSFoULwMXALsJ+3pVtNlVwOcG08JSadfHO4DLJU1I2gxsBb41gPaVQjyIRlxKeL1hRPotScDHgUeccx9MfTWy17tdn0u71oOOGhiGP2AXYTTD94B3D7o9JfXxOMJojAeAh+N+AsuBu4G90f9lg25rn/38NKEKf5jw7evqTn0E3h1d90eBiwbd/oL7/U/AQ8CD0UCydpT6Dbyc0BzzIHB/9LdrlK93hz6Xcq2tlIlhGIaRCzNhGYZhGLkwAWIYhmHkwgSIYRiGkQsTIIZhGEYuTIAYhmEYuTABYhhNSFqeqlr6k6Yqpv9V0jlPk3Rrm+8el7SiwHPdLmlrUcczxhcL4zWMDki6Afilc+6mks/zz8B7nHMPZHz3OLDTOffTgs51NnClc+7NRRzPGF9MAzGMHpD0y+j/KyR9VdJnJO2RdKOk10v6VjSnyvHRdislfVbSvdHfyzKOuQh4YSw8Ig3oLkn/I+nvSdUrkvRvUbHLh+OCl5KulvSh1DZvlvTBqLrAFyQ9IGm3pN+NNvkacJ6koKzfyRgPTIAYRn5OBd4OnAK8ATjBOXcmcCvw1mibjwAfcs6dAbw6+q6ZndRLSwD8BfB159xphFnDm1Lfvck596Jon7dJWk44xcBvRzWQAN4I/ANwIfCEc+5U59wLgC8CuLAe0mNR+w0jN/YGYhj5uddFZcElfQ+4K1r/EHBOtHwesD0sUQTAtKRFLpyrIWYt8FTq81nA7wA4574g6enUd2+TdGm0vBHY6pz7hqSvAL8p6RGg4px7SNLzwE2S3gd83jn3tdRxngTWAd/O3Xtj7DEBYhj5eT61PJv6PEv92fKAlzrnnutwnOeAWtO6FuekpFcQCqSXOucOSvrP1H63Au8CvkuofeCc2yPpRYS1kP5W0l3Oub+Ktq9F5zWM3JgJyzDK5S7guviDpB0Z2zwCbEl9vgd4fbT9RUA8+c9i4OlIeJwIvCTewTn3TUKN5ArCwolIWgccdM59EriJcErbmBMIi2YaRm5MAzGMcnkb8FFJDxI+b/cA16Y3cM59V9LilGnrL4FPS/oO8FXgh9GmXwSujY71KPCNpnN9BtjhnItNXqcAfydplrAK71sAJK0GnovNb4aRFwvjNYyjAEnvAJ51zmXmgnR5jM8TOuzv7uJczzjnPp73XIYBZsIyjKOFm2n0qXSNpCWS9hBqFR2FR8QvgNvynMsw0pgGYhiGYeTCNBDDMAwjFyZADMMwjFyYADEMwzByYQLEMAzDyIUJEMMwDCMX/w9ebX7BVjeMIQAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Relative return\n",
+    "rel_rtn = np.zeros(shape=(m-1, n))\n",
+    "for j in range(m-1):\n",
+    "    rel_rtn[j,:] = np.divide(data[j+1,:] - data[j,:], data[j,:])\n",
+    "# Plot relative return\n",
+    "for i in range(n):\n",
+    "    plt.plot(np.arange(m-1),rel_rtn[:,i])\n",
+    "plt.xlabel('Time (days)')\n",
+    "plt.ylabel('Relative return')\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Simply take arithmetic mean of each column of relative return to get mean return $r$ for each stock, followed by estimating covariance $V$ using numpy."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Mean return\n",
+    "r = np.zeros(n)\n",
+    "r = rel_rtn.sum(axis=0)\n",
+    "r = r / (m-1)\n",
+    "# Covariance matrix\n",
+    "V = np.cov(rel_rtn.T)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Classic Mean-Variance Model\n",
+    "## Efficient Frontier"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "One of the major goals of portfolio management is to achieve a certain level of return under a specific risk measurement. Here we demonstrate how to use NAG Library to build efficient frontier by solving classical Markowitz model with long-only constraint (meaning, buy to hold and short selling is not allowed):\n",
+    "\\begin{equation}\\label{MV_model}\n",
+    "\\begin{array}{ll}\n",
+    "\\underset{x\\in\\Re^n}{\\mbox{minimize}} & -r^Tx+\\mu x^TVx\\\\[0.6ex]\n",
+    "\\mbox{subject to} & e^Tx = 1,\\\\[0.6ex]\n",
+    "     & x\\geq0,\n",
+    "\\end{array}\n",
+    "\\end{equation}\n",
+    "where $e\\in\\Re^n$ is vector of all ones and $\\mu$ is a scalar controling trade-off between return and risk. Note one could build the efficient frontier by varying $\\mu$ from $0$ to a certain value."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import the NAG Library\n",
+    "from naginterfaces.base import utils\n",
+    "from naginterfaces.library import opt\n",
+    "# Import necessary math libraries\n",
+    "import math as mt\n",
+    "import warnings as wn"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Input for quadratic objective\n",
+    "# Sparsity pattern of upper triangular V\n",
+    "irowq, icolq = np.nonzero(np.triu(V))\n",
+    "v_val = V[irowq, icolq]\n",
+    "# Convert to 1-based\n",
+    "irowq = irowq + 1\n",
+    "icolq = icolq + 1\n",
+    "# Sparsity pattern of r, which is actually dense in this application\n",
+    "idxr = np.arange(1, n+1)\n",
+    "\n",
+    "# Input for linear constraint: e'x = 1\n",
+    "irowa = np.full(n, 1, dtype=int)\n",
+    "icola = np.arange(1, n+1)\n",
+    "a = np.full(n, 1.0, dtype=float)\n",
+    "bl = np.full(1, 1.0, dtype=float)\n",
+    "bu = np.full(1, 1.0, dtype=float)\n",
+    "\n",
+    "# Input for bound constraint: x >= 0\n",
+    "blx = np.zeros(n)\n",
+    "bux = np.full(n, 1.e20, float)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The input data is ready, we can easily build the efficient frontier as follows."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Set step for mu\n",
+    "step = 2001\n",
+    "\n",
+    "# Initialize output data: absolute risk and return\n",
+    "ab_risk = np.empty(0, float)\n",
+    "ab_rtn = np.empty(0, float)\n",
+    "\n",
+    "for mu in np.linspace(0.0, 2000.0, step):\n",
+    "    # Create problem handle\n",
+    "    handle = opt.handle_init(n)\n",
+    "    \n",
+    "    # Set quadratic objective function\n",
+    "    # In qcqp standard form q should be 2*mu*V\n",
+    "    q = 2.0 * mu * v_val\n",
+    "    idqc = -1\n",
+    "    opt.handle_set_qconstr(handle, 0.0, idqc, idxr, -r, irowq, icolq, q)\n",
+    "    \n",
+    "    # Set linear constraint e'x = 1\n",
+    "    opt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)\n",
+    "    \n",
+    "    # Set bound constraint\n",
+    "    opt.handle_set_simplebounds(handle, blx, bux)\n",
+    "    \n",
+    "    # Set options\n",
+    "    for option in [\n",
+    "            'Print Options = NO',\n",
+    "            'Print Level = 1',\n",
+    "            'Print File = -1',\n",
+    "            'SOCP Scaling = A'\n",
+    "    ]:\n",
+    "        opt.handle_opt_set(handle, option)\n",
+    "        \n",
+    "    # Call socp interior point solver\n",
+    "    # Mute warnings and do not count results from warnings\n",
+    "    wn.simplefilter('error', utils.NagAlgorithmicWarning)\n",
+    "    try:\n",
+    "        slt = opt.handle_solve_socp_ipm(handle)\n",
+    "\n",
+    "        # Compute risk and return from the portfolio\n",
+    "        ab_risk = np.append(ab_risk, mt.sqrt(slt.x[0:n].dot(V.dot(slt.x[0:n]))))\n",
+    "        ab_rtn = np.append(ab_rtn, r.dot(slt.x[0:n]))\n",
+    "    except utils.NagAlgorithmicWarning:\n",
+    "        pass\n",
+    "    \n",
+    "    # Destroy the handle:\n",
+    "    opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd3yW9b3/8dcHkJ2EEfYMSzaCEawidfUIYovaWnerHUhbtXb8WtvT9pwu6zm1Q1srx+MqPVZbV6sVxbpFRQh7BCTsQEISwoaEjM/vj+sKvZve3LkYd+6M9/PxuB/e17w/uUzuD99t7o6IiEhtLVIdgIiINExKECIiEpcShIiIxKUEISIicSlBiIhIXK1SHcCplJmZ6QMHDkx1GCIijcbixYtL3L1bvGNNKkEMHDiQnJycVIchItJomNmWYx1TFZOIiMSlBCEiInEpQYiISFxKECIiEpcShIiIxKUEISIicSlBiIhIXEoQIiKN0KEjlSzZupvPPbaIl1cVJOUzmtRAORGRpsbd2b7nMLkF+8kt2Hf0taX0EDXL+ezYc5ipo3ud8s9WghARaSDKKqpYVxiTCAr3s7ZgH/vKKo+eM7Bre0b0SueK8X0Z0SuNEb3S6du5XVLiUYIQEUmB4v3lrNy+559KBptKDlIdlgrat27J8J5pfHxcb0b0SmdEr3SG90yjQ5v6+9pWghARSTJ3J3/3YRZuKmXhplIWbS5lY8nBo8f7dm7HiF7pTB/bm5FhqaBf5/a0aGEpjFoJQkTklKuudvKKD/xTQijYWwZAettWTMzqwtVn9WN8/84M75VGetvTUhxxfEoQIiInqbKqmtU79rFocykfbColZ3Mpuw9VANA9rQ0Ts7ocfQ3rnpbykkFUShAiIseprKKKZdv2sGhTKQs3l7Jky24OHqkCYEDX9lw8ogdnZXVhUlYX+ndpj1njSAi1KUGIiNRhf1kFi7fsPlpdtHzbXo5UVQMwvGcanzyzL2cNDEoIPdLbpjjaU0cJQkSklpID5eSE1UWLNpeyZsc+qh1atTBG98ng5nMHctbALmQP7Eyn9q1THW7SKEGISLOXv/sQizaXHm1U3lAc9DBq06oFE/p35tYLhzIpqwvj+3eifevm87XZfH5SERGCLqebSg6yYGPp0aSwfc9hANLatuKsgV341Jn9mJjVhTF9MmjdqvnOSKQEISJNXunBI7ybV8L89SXMzys5mhAyO7ZhUlYXvnheFhOzunJ6zzRaNpIeRvVBCUJEmpyyiioWb9nNO+tLmJ9XzOod+3APxiCcMziTL50/mHMGdyUrs0Oj7WFUH5QgRKTRq652cgv3HS0hLNxUSnllNa1aGBMGdObrFw9j8tBMxvTJoFXL5ltldLySmiDMbCpwL9ASeMjd7651fDjwKDAB+Hd3vyfmWCfgIWA04MDn3P39ZMYrIo1Hwd7DQQlhfQnvbSih5MARAIZ278h1k/pz3tBMJmV1rde5i5qapD05M2sJ3A98DMgHFpnZ8+6+Jua0UuB24PI4t7gXeNndP2VmrYH2yYpVRBq+A+WVLNiwi/l5JbyzvvhoT6PMjm2YPCSTyUO7MXlIJj0zms44hFRLZmqdCOS5+0YAM3sSmAEcTRDuXgQUmdn02AvNLB2YAtwUnncEOJLEWEWkgamsqmZ5/t6w2qiYpVv3UFnttD2tBROzunLNWf2ZPDST4T3T1I6QJMlMEH2AbTHb+cCkiNcOAoqBR81sHLAY+Kq7H6x9opnNBGYC9O/f/6QCFpHUcXc27zrE/PXFvLO+hPc37mJ/WSVmMKZPBjOnDGLy0EzOHNCZNq1apjrcZiGZCSJeSveI17YiaJe4zd0/MLN7gTuB7//LDd0fBB4EyM7Ojnp/EWkAarqfvptXwjvr/9H9tG/ndlw2theTh3TjnMFd6dyh6Y5WbsiSmSDygX4x232BHcdxbb67fxBuP02QIESkETtW99O0tq04Z3BXZp0/mPOGZDKga+Od4K4pSWaCWAQMNbMsYDtwDXBdlAvdvdDMtpnZ6e6+DriImLYLEWkcqqudtYX7mZ8XVBst2lxKWUXY/bR/Z74Wdj8dq+6nDVLSEoS7V5rZrcA8gm6uj7j7ajObFR6fbWY9gRwgHag2szuAke6+D7gNeDzswbQRuDlZsYrIqVO4t4x31hczP6w6qul+OqR7R645K+x+OqgrHdX9tMFL6v8hd58LzK21b3bM+0KCqqd41y4DspMZn4icvAPllXywcVdYbVRCXtEBADI7tubcIZlhF9RMemW0S3GkcryUwkXkuLg7q3fs4421RbyzvoQlW3f/U/fTq7P7ce6QoPtpY1k5TeJTghCROpVVVLFg4y5ezd3Ja7lFFOwtwwxG987gi1MGcd6QTCYM6Ezb09T9tClRghCRuHYdKOf1tUW8mruTd9aXcOhIFe1Oa8mUYZl87WPDuHB4dzI7tkl1mJJEShAiAgRVR+uLDvBq7k5eXbOTpdv24A4909tyxfg+XDyyBx8Z1FWlhGZECUKkGauoqmbhptKjVUdbSw8Bwcjlr140lItH9GBU73SNSWimlCBEmpm9hyp488Mi/r5mJ299WMz+skpat2rB5CGZ3PLRQVw0vIcmvBNACUKkWdhUcpDXcnfy9zU7ydmym6pqJ7Nja6aN7snFI3oweWhms1prWaLRb4RIE1RZVc2SrXt4LXcnr+buPDo19vCeacz66CAuHtGDcX07qRuqJKQEIdJE7C+r4O0PS3gtdydvrCti96EKTmtpnD2oKzeePYCLRvSgXxctqyLRKUGINGL5uw/xWm7QFXXBxl1UVDmd2p/GBad35+IRPZgyLJO0tqelOkxppJQgRBqZ/N2HmLuygBdXFLA8fy8Ag7p14OZzs7h4RA8m9O+kie/klFCCEGkEduw5HCSFlQUs3boHgLF9M7hz2nD+bWQPBnXrmOIIpSlSghBpoHbuK2PuygL+tqKAxVt2AzCqdzrfmno608f0YkDXDimOUJq6hAkinGr7UuA8oDdwGFgFzHX3tckPT6R5KdpfxsurCvnb8gIWbSnFPeh59M1/G8alY3qppCD16pgJwsy+B3wSeJtgTei/A22BYcCvLBha+U13X1UfgYo0VSUHyoOksGIHH2wKksKwHh2546JhTB/bkyHd01IdojRTiUoQK939J8c49t9m1ot/XlJURCIqPXiEeauDpPD+hl1Ue9DQfNuFQ7lsbC+G9VBSkNQ7ZoJw97/W3hdWObVy90PuXgAUJDM4kaZkz6EjvLJ6Jy+s2MF7G3ZRVe0M7NqeL58/hOljezG8Z5rmPJIGJXIjtZndDHweaGFmr7n795MXlkjTUFFVzRtri3hmST6vry2iosrp36U9M6cMYvqYXpoITxq0RG0Q09z9pZhdl7j75PDYckAJQuQYVu/Yy9OL83l+2Q52HTxCZsfWfPYjA/nEGb0Z0ydDSUEahUQliElmNhP4ftgQvdrM5gDVgHowidRSvL+cvy7bztOL81lbuJ/WLVtw8cjufHJCX6YM68ZpGrwmjUyiNoj/NLM+wI/NrBz4D6AL0N7dl9RXgCINWXllFa/nBlVIb6wrpqraGdc3gx/PGMXHx/WmU/vWqQ5R5ITV1QZRCnwJGAU8ArwL/DLZQYk0ZO7Oyu1hFdLyHew5VEH3tDZ84bwsPjWhL0PVA0maiERtED8ELgZOA/7g7peZ2ZXAXDN7yN2fqK8gRRqCon1lPLc0qEJaX3SA1q1acMmonnxyQh8mD8nU/EfS5CQqQcxw9zPCAXGLgd+4+7Nm9gJwe5Sbm9lU4F6gJfCQu99d6/hw4FFgAvDv7n5PreMtgRxgu7tfFvWHEjlVyiur+PuanTy9OJ+3Pyym2mFC/07cdcUYpo/tRUY7zZQqTVeiBJFrZo8C7YD5NTvdvQL4RV03Dr/c7wc+BuQDi8zseXdfE3NaKUGyufwYt/kqkAuk1/V5IqfS1l2H+OPCrTyVs41dB4/QK6MtXzp/MFdO6MtgTXchzUSiRuprzWw8UHGC02lMBPLcfSOAmT0JzACOJgh3LwKKzGx67YvNrC8wHfgp8PUT+HyR41JZVc3ra4t4/IOtvL2+GAMuHtGD6yb157yh3Wip1dekmUnUBnG2uy9IcLwj0L9WiSBWH2BbzHY+MOk4Yvs18C1ALX6SVIV7y3hy0VaeXLiNwn1l9Ehvw+0XDuWaif3oldEu1eGJpEyiKqbrzeznwEsEbRDFBJP1DQEuCP/7zQTXx/vnlkcJyswuA4rcfbGZnV/HuTOBmQD9+/ePcnsRqqudd/JKeHzBFl5bW0RVtTNlWDd+OGMUFw3vrgZnERJXMd1mZpnAVcCNQC+C6b5zgd+7+5t13Duff57Mry+wI2Jc5wKfMLNLCZJSupn9n7vfECfOB4EHAbKzsyMlIGm+Sg6U81ROPk8s3MrW0kN07dCaL543iGsn9tP6CiK1JBwH4e4lwAPh63gtAoaaWRawHbgGuC7Khe7+HeA7AGEJ4pvxkoNIVMu27eGR+Zt4aVUBFVXOpKwufPOS07lkVA/atGqZ6vBEGqSkrSjn7pVmdiswj6Cb6yPuvtrMZoXHZ5tZT4JurOlAtZndAYx0933Jikuaj6pq55XVhTw8fxM5W3aT1qYV108awA1n99caCyIRmHvTqZXJzs72nJycVIchKba/rII/LdrGY+9tJn/3Yfp1acfN52RxVXZf0tpq3IJILDNb7O7Z8Y5pTWppMraVHuLRdzfz55xtHCiv5KyBnfne9BF8bGRPdVEVOQGREoSZTQQGxp7v7n9MUkwikbk7i7fs5uH5m5i3upAWZkwf24vPT85ibN9OqQ5PpFGrM0GY2WPASGAZUBXudkAJQlLG3XlzXTH3v5FHzpbdZLQ7jZlTBvPZcwZo7ILIKRKlBHE2QcNxdbKDEalLVbXz8qpC7n8jjzUF++id0Zb//PhIPn1WP9q3Vo2pyKkU5S9qNZAJFCU5FpFjqqiq5rml25n95gY2lhxkUGYHfv6pscw4ow+tW2lQm0gyREkQGQQT9y0Aymt2uvuVSYtKJFRWUcWfFm3jwbc3sn3PYUb0Suf+6yYwdbQankWSLUqC+FnSoxCppayiiicWbuV3b26geH85Zw7ozE8uH835p3fTes4i9SRhggin7P6Wu19ST/FIM3ekspqnFm/jt6/nUbC3jElZXbjvmvGcPaiLEoNIPatrqo0qMztiZuka3SzJVFlVzbNLt3Pfa+vJ332YCf07cc9V4zhncFclBpEUiVLFdABYbmavAAdrdrq71miQk1ZV7fxtxQ5+/ep6NpUcZEyfDH58+WjOH6aqJJFUi5IgXg1fIqeMu/Pmh8XcPXct63buZ3jPNB688Uw+NrKHEoNIA1FngnD3h+sjEGk+Vm3fy11zc3lvwy4GdG3Pb64dz/QxvWihXkkiDUqUkdTribPQj7sPS0pE0mRtKz3EL15Zx1+W7aBLh9b858dHct2kARrHINJARalimhzzvi3BAkIZyQlHmqJ9ZRX89vU8Hnt3M2bwlQsGc8tHB5OumVVFGrQoVUw7a+26x8zmJykeaUKqq52nF+fz3/PWsuvgET45oS/f+LdhmitJpJGIUsU0NmazBZCNShBSh8VbdvPDF1azIn8vZw7ozKM3TWRMX/3aiDQmUaqY7o95XwlsAq5OTjjS2JUcKOeuF3N5dul2eqS34ddXn8GMM3qrZ5JIIxQlQdzg7ltid5hZ/yTFI42Ue1Cd9NO5uRwsr+TL5w/mKxcMoUMbzbAq0lhF+et9DphQa99f4uyTZmpzyUG++9xK3tuwi+wBnbn7k2O05rNIE3DMBGFmw4ARQIaZfSLmUDpBbyZp5iqqqvnfdzZy76vrad2yBT+9YjTXntVf4xlEmohEJYhRwJVAJ4KurTX2A7ckMyhp+JZt28Odz6xgbeF+po7qyQ9njKJHuv7dINKUHDNBuPtzwHNmNtnd1a1VgGAa7nvmreORdzfRLa0N/3PjmVwyqmeqwxKRJIjSBlFoZvOAnu4+Luz2Ot3dtU5EM7O2cB9ffWIZ63bu5/pJ/fn2tOEa7CbShEWZ4+Ah4IdAzZrUK4EbkhaRNDjV1c7D8zfxid++y66DR3j05rP46RVjlBxEmrgoCaKDu79Xs+HuDlREubmZTTWzdWaWZ2Z3xjk+3MzeN7NyM/tmzP5+ZvaGmeWa2Woz+2qUz5NTb+e+Mj776EJ+/Lc1TBmaybw7zuOC07unOiwRqQdRqph2mVkW4YR9ZnY5UFjXReFqdPcDHwPygUVm9ry7r4k5rRS4Hbi81uWVwDfcfYmZpQGLzezvta6VJHt5VSHfeXYFhyuq+OkVo7luYn8NeBNpRqIkiFuBh4HhZrYFKACujXDdRCDP3TcCmNmTwAzg6Je8uxcBRWY2PfZCdy8IPwd3329muUCf2GsleQ4dqeRHL6zhyUXbGNMng19fcwaDu3VMdVgiUs+iTNaXB1xoZhmAufueiPfuA2yL2c4HJh1vgGY2EBgPfHCM4zOBmQD9+2uA98naUHyAWX9YTF7xAb58/mDuuHiYpuMWaaYS/uVboBOAu+8FDprZzWa2KsK949VF/Mu6EnV8fkfgGeCOY62J7e4Punu2u2d369bteG4vtby0soAZYUP0Hz43iW9NHa7kINKMHfOv38yuAnYDH5rZ62Y2BcgjGDz3uQj3zgf6xWz3BXZEDczMTiNIDo+7+7NRr5PjV1lVzV1zc/nS40sY0r0jf7ttMpOHZqY6LBFJsURVTP8BTHL3dWZ2FjCfYOK+pyLeexEwNGzg3g5cA1wX5UILWkIfBnLd/ZcRP09OQPH+cm57YgkLNpZy49kD+N5lI2jTqmWqwxKRBiBRgjji7usA3H2RmW0+juSAu1ea2a3APKAl8Ii7rzazWeHx2WbWE8ghmN+p2szuAEYCY4EbgZVmtiy85Xfdfe7x/oBybIu3lPLlx5ew93AFv/z0OK6c0DfVIYlIA5IoQXQ3s9tjtjvEbrv7fXXdPPxCn1tr3+yY94UEVU+1zSd+G4acIs8tzefbT6+kZ0Zbnv3SREb2Tk91SCLSwCRKEI8C3RJsSyNUXe386tUP+c3reUzK6sL/3Hgmndq3TnVYItIAJZqs7/v1GYgkX1lFFd94ajkvrijg09l9+cnlY9RLSUSOSct9NRPF+8v54pwclufv4c5pw7llyiCNihaRhJQgmoG8ogN89pGF7DpYzgPXn8nU0ZqeW0TqpgTRxC3ftoebHl1IyxbGU7ecw5i+GakOSUQaiURLjt5+rGMQrReTpNb89SXc8occOndozf99fhIDMzukOiQRaUQSlSBqeiwNJZh474Vw+zLgrWQGJSdv7soC7nhyGVmZHZjz+YlaDlREjludvZjC1eTOqJkLycy+D/ypfsKTE/GnRVu589mVTOjfmUc+exYZ7bWwj4gcvyhtEAOAspjtciArOeHIyfq/BVv43l9W8dFh3Zh9w5m0a61pM0TkxERJEH8EPjCzZwhmY70SeDypUckJmfP+Zn7w19VcOLw7D9wwQXMqichJibIexI/M7CVgSrhrlrsvSm5Ycrwemb+JH/1tDR8b2YPfXjdeyUFETlrUbq4tgWJ3n2NmXc2sv7tvTWZgEt1D72zkJy/mMnVUT+67drxGR4vIKVFngjCz7wHnAoOBOUBbgmqnyckNTaKY/dYG7n5pLdPH9OLX15zBaS2VHETk1IjybfIp4FLgIIC7byeYnltS7P438rj7pbV8fFxv7lVyEJFTLMo3Srm7O+FyoWbWPrkhSRQPvbORn89bx4wzevOrT4+jlZKDiJxiUb5VnjWz+4EMM7sZeIVg6m9JkT9+sJWfvJjLpWN68ourlBxEJDmi9GL6LzObBhwBxgE/dfeXkh6ZxPWXpdv597+s5ILTu/Hrq8crOYhI0kRppL7L3b8LvBRnn9SjeasL+cZTyzk7qysP3HCmeiuJSFJF+YaZGmff9FMdiCT29ofF3PbHpYztm8H/fjabtqdpnIOIJFei2VxvAWYBp5vZkphDacDiZAcm/7B4Sykz/5DDkO4deeymiXRso1naRST5En3T/Bl4DfgZcGfM/v3uXpTUqOSovKL9fO6xHHpltGPO5ydq4j0RqTeJZnPdDew2s/8Gdrr7AQAzSzOzbHfPqa8gm6vCvWV85uGFtG7Vgjmfm0hmxzapDklEmpEobRAPAoditg8C/5OccKTG3sMV3PToQvaVVfLoTWfRr4uGn4hI/YqSIFq4e3XNRvhe9RxJVFZRxcw5OWwoPsDsG85kdB8tEyoi9S9KgthkZl8ys5Zm1sLMvgJsjnJzM5tqZuvMLM/M7oxzfLiZvW9m5Wb2zeO5tqmqrna+8dRyPthUyj1XjWPy0MxUhyQizVSUBHELcBGwM3x9FPhiXReZWUvgfmAaMBK41sxG1jqtFLgduOcErm2Sfv3ael5cUcCd04Yz44w+qQ5HRJqxKCOpdxJM2He8JgJ57r4RwMyeBGYAa2LuXQQUmVntcRV1XtsUPb98B/e9tp6rzuzLLVMGpTocEWnm6ixBmNkQM5tnZsvD7bFm9p0I9+4DbIvZzg/3RRH5WjObaWY5ZpZTXFwc8fYNz7Jte/h/Ty1n4sAu/OSK0ZhZqkMSkWYuShXTQ8APgZqG6pXADRGui/cN5xHjinytuz/o7tnunt2tW7eIt29YCvYe5otzcuiW1kZLhYpIgxElQXRw9/dqNsKpvysiXJcP9IvZ7gvsiBjXyVzbqBw6UskXfp/D4SNVPPzZs+iqsQ4i0kBESRC7zCyLf6wHcTlQGOG6RcBQM8sys9bANcDzEeM6mWsbjepq5xt/Xk5uwT5+c+14Tu+ZluqQRESOijKpz63Aw8BwM9sCFBB8YSfk7pVmdiswj2BN60fcfbWZzQqPzzaznkAOwQp11WZ2BzDS3ffFu/YEfr4G7Xdv5vHSqkK+N30EFwzvnupwRET+iQU1RhFONMsIz9+T3JBOXHZ2tufkNI4ZQN7NK+HGhz/gsrHBcqFqlBaRVDCzxe6eHe9YlPUgOgPfByYDbmbzgZ+EczXJCSjcW8btTyxlULeO/OzKMUoOItIgRWmDeBLYD1xP0HtpH/CnZAbVlFVUVXPrH5dwuKKK2TdMoIOm7haRBirKt1Omu/9HzPYPzUzrQZygu19aS86W3fzm2vEM6a5GaRFpuKKUIN4ys6Mjqc3sSmKWH5XoXl5VwMPzN3HTOQP5+LjeqQ5HRCShKCWIm4E7zKyCoKtra2BvOGmfu3uXZAbYVOzYc5hvP7OScX0z+O6lI1IdjohInSJVMSU9iiauqtr5+p+XUVFVzb3XjKd1qygFNxGR1IryTXWDu1fVvAhKEXfGbEsd/uftDSzYWMp/fmIUAzM7pDocEZFIoiSI6Wb2gpn1CKfcfh9onJMepcDybXv45SsfMn1ML646s2+qwxERiSzKdN+fNrPrCCbpOwx8xt3fSnpkTUBZRRVf+/MyuqW14a4rNN5BRBqXKNN9DwK+BLxAMIneVWbWLtmBNQW/evVDNhYf5L8+OZaM9lqlVUQalyhVTC8BP3b3zwPnEazTsCipUTUBy7bt4X/f3sjV2f2YMkw1ciLS+ETpxTTR3fcCuHs18F9m9tfkhtW4lVdW8a2nl9M9rS3/fpm6tIpI43TMEoSZfQPA3feGg+NiXZ/UqBq5376ex4c7D3DXlaNJb6uqJRFpnBJVMcUmge/VOlZ7DWkJ5Rbs43dvbuDK8X24cHiPVIcjInLCEiUIO8b7eNsCuDs/+Osq0tu24vuXjUx1OCIiJyVRgvBjvI+3LcBzS7ezaPNuvj11OJ07tE51OCIiJyVRI/U4MyslKC2khe8JtzsmPbJGZl9ZBXfNXcu4fp34dHa/ui8QEWngEiUI/RP4OPz67+vZdbCcR27KpkUL1cCJSON3zASheZaiW1u4j9+/v5nrJvZnbN9OqQ5HROSU0LSip8BPX8wlrW0r/t8lp6c6FBGRU0YJ4iTNX1/CO+tLuO3CoXRqr1o5EWk6lCBOQnW1818vr6VPp3bccHb/VIcjInJKHbMNwsx2E787q6GV5AB4cWUBK7fv5VdXj6NNq5apDkdE5JRKVILIJFj3ofarZn+dzGyqma0zszwzuzPOcTOz+8LjK8xsQsyxr5nZajNbZWZPmFnb4/nBku1IZTX3vLKOEb3SmTGuT6rDERE55Y6ZIGJXkQt7NGUAPWJeCZlZS+B+YBowErg2XHAo1jRgaPiaCTwQXtsHuB3IdvfRQEvgmuP82ZLqTznb2LLrEN+aerq6tYpIkxRlPYjpZvYhwVoQH4T/fT3CvScCee6+0d2PAE8CM2qdMwOY44EFQCcz6xUeawW0M7NWQHtgR6SfqB5UVFUz+80NTOjfifM1lbeINFFRGql/CpwLrHP3fsAlwJsRrutDsHZEjfxwX53nuPt24B5gK1AA7HX3V+J9iJnNNLMcM8spLi6OENbJ+8vS7Wzfc5jbLhyqVeJEpMmKkiAq3b0YaGFm5u5/BybUdRHxJ/Sr3egd9xwz60xQusgCegMdzOyGeB/i7g+6e7a7Z3frlvx/zVdVO797cwOjeqdz/ukqPYhI0xUlQew1sw7AfGCOmf0CqI5wXT4QOylRX/61muhY51wMbHL3YnevAJ4FzonwmUk3d2UBm0oO8pULhqj0ICJNWpQEcTlQBtxBULW0HbgswnWLgKFmlmVmrQkamZ+vdc7zwGfC3kxnE1QlFRBULZ1tZu0t+Ba+CMiN8gMlk7vzwJsbGNytA1NH9Ux1OCIiSRUlQXwn7MlU4e4Pu/svga/XdZG7VwK3AvMIvtz/7O6rzWyWmc0KT5sLbATygP8Fvhxe+wHwNLAEWBnG+eDx/Win3qLNu1lTsI8vnDdIPZdEpMkz98RLO5jZEnefUGvfcncfl9TITkB2drbn5OQk7f5feXwJ8/NKWPCdi2jXWgPjRKTxM7PF7p4d71iikdS3ALOAYWa2JOZQGpC8b+EGqmDvYV5eXcjnJ2cpOYhIs5BoPYg/A68BPwNiR0Hvd/eipEbVAD2+YCvV7tx49oBUhyIiUi8SrQexG9gNXGVmo4HJ4aF3gGaVIMorq3hi4VYuGt6Dfl3apzocEZF6EWUk9VcIShP9w3Iz2d4AAAxCSURBVNefzezLyQ6sIXk9t4hdB49wvWZsFZFmJFEVU41bgInufgDAzO4C3gN+l8zAGpJnluTTI70NU4ZqYJyINB9RurkaUBGzXUH8EdBNUvH+ct5YV8zl4/vQUl1bRaQZSdSLqVU4luEPwAIzeyY8dAXw+/oIriH467LtVFU7n5rQN9WhiIjUq0RVTAuBCe7+32b2BnAeQclhlrsvqpfoGoCnF+czrm8GQ3ukpToUEZF6lShBHK1PCRNCs0kKNXIL9rG2cD8/mjEq1aGIiNS7RAmim5kdc0qNcMqNJm3uygJaGEwf06vuk0VEmphECaIl0JFm1CBd20urCpmY1YWuHdukOhQRkXqXKEEUuPuP6i2SBiavaD95RQf4zEdUvSQizVOibq7NtuQA8NLKQgAu0bTeItJMJUoQF9VbFA3QS6sKOXNAZ3qkt011KCIiKXHMBOHupfUZSEOyrfQQawr2MW20Sg8i0nxFGUnd7LyxLpiL8OIRPVIciYhI6ihBxPHWumIGdm3PwMwOqQ5FRCRllCBqKa+s4r0Nu/joME3MJyLNmxJELTmbd3O4ooqPnq4EISLNmxJELe9tKKFVC2NSVtdUhyIiklJKELUs2rSbUX0y6NAmylIZIiJNlxJEjPLKKpbl72HiwM6pDkVEJOWUIGKsyN/Lkcpqsgd2SXUoIiIppwQRY+GmYGzgWUoQIiLJTRBmNtXM1plZnpndGee4mdl94fEVZjYh5lgnM3vazNaaWa6ZfSSZsQKsyN/DwK7t6dKhdbI/SkSkwUtagjCzlsD9wDRgJHCtmY2sddo0YGj4mgk8EHPsXuBldx8OjANykxVrjdU79jG6T0ayP0ZEpFFIZgliIpDn7hvd/QjwJDCj1jkzgDkeWAB0MrNeZpYOTAEeBnD3I+6+J4mxsufQEfJ3H2ZUbyUIERFIboLoA2yL2c4P90U5ZxBQDDxqZkvN7CEzizvvhZnNNLMcM8spLi4+4WDX7NgHwOg+6Sd8DxGRpiSZCSLeehIe8ZxWwATgAXcfDxwE/qUNA8DdH3T3bHfP7tbtxEc/rykIEsTIXkoQIiKQ3ASRD/SL2e4L7Ih4Tj6Q7+4fhPufJkgYSbOx5CCd25+m5UVFRELJTBCLgKFmlmVmrYFrgOdrnfM88JmwN9PZwF53L3D3QmCbmZ0enncRsCaJsbKp+CBZmr1VROSopM0n4e6VZnYrMA9oCTzi7qvNbFZ4fDYwF7gUyAMOATfH3OI24PEwuWysdeyU21RykHOHZCbzI0REGpWkTjjk7nMJkkDsvtkx7x34yjGuXQZkJzO+GgfLKyncV8agbipBiIjU0EhqYNvuQwAM6No+xZGIiDQcShDAzn3lAPRMb5viSEREGg4lCKBoXxkA3dLUg0lEpIYSBFC0PyhBdE9TCUJEpIYSBFC8v5y0Nq1o17plqkMREWkwlCCAov1lql4SEalFCQLYc6iCzpriW0TknyhBAAePVNFe1UsiIv9ECQI4fKSSDq2TOmZQRKTRUYIADpZX0b6NShAiIrGUIIBDKkGIiPwLJQigvLKa1q30KEREYulbEbhkVE9G9dZCQSIisVSvAvzq6jNSHYKISIOjEoSIiMSlBCEiInEpQYiISFxKECIiEpcShIiIxKUEISIicSlBiIhIXEoQIiISl7l7qmM4ZcysGNiS6jhiZAIlqQ6iAdPzSUzPJzE9n8SiPp8B7t4t3oEmlSAaGjPLcffsVMfRUOn5JKbnk5ieT2Kn4vmoiklEROJSghARkbiUIJLrwVQH0MDp+SSm55OYnk9iJ/181AYhIiJxqQQhIiJxKUGIiEhcShCngJlNNbN1ZpZnZnfGOZ5hZi+Y2XIzW21mN6cizlSJ8Hw6m9lzZrbCzBaa2ehUxJkKZvaImRWZ2apjHDczuy98divMbEJ9x5hKEZ7PcDN738zKzeyb9R1fQxDhGV0f/u6sMLP3zGxc1HsrQZwkM2sJ3A9MA0YC15rZyFqnfQVY4+7jgPOBX5hZ63oNNEUiPp/vAsvcfSzwGeDe+o0ypR4DpiY4Pg0YGr5mAg/UQ0wNyWMkfj6lwO3APfUSTcP0GImf0Sbgo+Hf1485jsZrJYiTNxHIc/eN7n4EeBKYUescB9LMzICOBL/UlfUbZspEeT4jgdcA3H0tMNDMetRvmKnh7m8T/D4cywxgjgcWAJ3MrFf9RJd6dT0fdy9y90VARf1F1bBEeEbvufvucHMB0DfqvZUgTl4fYFvMdn64L9ZvgRHADmAl8FV3r66f8FIuyvNZDlwJYGYTgQEcxy9xExfl+YlE9XngpagnK0GcPIuzr3bf4UuAZUBv4Azgt2aWnuzAGogoz+duoLOZLQNuA5bSfEpYdYny/ETqZGYXECSIb0e9plXywmk28oF+Mdt9CUoKsW4G7vZg0EmemW0ChgML6yfElKrz+bj7PoJnRFgNtyl8SbTfL5GEzGws8BAwzd13Rb1OJYiTtwgYamZZYcPzNcDztc7ZClwEENatnw5srNcoU6fO52NmnWIa7b8AvB0mDQme1WfC3kxnA3vdvSDVQUnjYWb9gWeBG939w+O5ViWIk+TulWZ2KzAPaAk84u6rzWxWeHw2Qc+Bx8xsJUGVwbfdvVlMUxzx+YwA5phZFbCGoBjcLJjZEwQ92zLNLB/4D+A0OPps5gKXAnnAIcKSVnNR1/Mxs55ADpAOVJvZHcDI5vQPjAi/Qz8AugK/CwroVEad5VVTbYiISFyqYhIRkbiUIEREJC4lCBERiUsJQkRE4lKCEBGRuJQgpFEzsyvMzM1seMy+883sb6fg3o+Z2afqOOd8MzvnOO97vpntNbOlZrbWzO6JOfaJeDPexhy/ycx+G+EzLjezH4TvbzOzVWY2t2a8iZlNNrNfxpzfzcxePp6fQ5o+JQhp7K4F5hMMwEuF84HjShChd9x9PDAeuMzMzgVw9+fd/e5TENe3gN+F778AjCWYwuSScLT69wnG5xB+bjFQUBOHCChBSCNmZh2BcwkG1tVOEOnhGhNrzGy2mbUws5ZhqWCVma00s6+F9znDzBaE8+U/Z2ad43zWZjPLDN9nm9mbZjYQmAV8zcyWmdl54b/EnzGzReEr4Reuux8mmKerT3jvoyUEM7sqjHW5mb0dJ6bp4VoImbX2DwPKaw3GPA1oTzDr6Y3A3JgZPmv8Bbg+UbzSvGgktTRmlwMvu/uHZlZqZhPcfUl4bCLBNOJbgJcJZovdBPRx99EQTPERnjsHuM3d3zKzHxGMRL2jrg93981mNhs44O73hPf8I/Ard58fTnEwj2CkeFxhMhoK/EsCIBgBe4m7b4+Jtea6K4CvA5fG+aI/F1gSs30PwTTPq4F3CRJBvPUDcoCfHCtWaX5UgpDG7FqC9SUI/3ttzLGF4RoUVcATwGSC+a8GmdlvzGwqsM/MMoBO7v5WeN3vgSknEdPFBLP1LiOYRyndzNLinHeema0ACoG/uXthnHPeJZii5YsE05TUuIBgRs7pcZIDQC+guGbD3f/g7uPd/QaCpHIfMM3MnjazX5lZzfdAEcGMwyKAEoQ0UmbWFbgQeMjMNgP/D7g6rF+Hf50S28Mv03HAmwSr/D10HB9ZyT/+XtomOK8F8BF3PyN89XH3/XHOeydc4WsM8CUzO6P2Ce4+C/gewWyuy8KfGYJElwYMO0YMh+PFaGa9gbPc/a/hfa8GygknkgyvOZzgZ5NmRglCGqtPEay0NsDdB7p7P4IqpMnh8YnhDLItCL4I54d19S3c/RmCRtoJ7r4X2G1m54XX3Qi8xb/aDJwZvv9kzP79BF/WNV4Bbq3ZiPfFHyucXfNnxJmj38wGu/sH7v4DoIR/TPu9haDKbI6ZjYpz21xgSJz9Pyb4uQHaESTRaoK2CQgSTtx1jaV5UoKQxupa4Lla+54Brgvfv0+wENEqgsTxHEFD8Jth9c9jwHfCcz8L/Dys8jkD+FGcz/shcK+ZvQNUxex/AbiippGaYH3k7LDBew1BI3ZdZgNTzCyr1v6fh43pqwjaKJbXHHD3dQQNyk+Z2eBa170NjI8pTWFm48Prloa7HiZY3XACQRsNBFVXL0aIV5oJzeYq0gSZ2b3AC+7+6nFc8zYw4xjtGtIMqQQh0jTdxT+qjupkZt2AXyo5SCyVIEREJC6VIEREJC4lCBERiUsJQkRE4lKCEBGRuJQgREQkrv8PWYz2VrwzrgcAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# plot the result\n",
+    "plt.plot(ab_risk*100.0, ab_rtn*100.0)\n",
+    "plt.ylabel('Total Expected Return (%)')\n",
+    "plt.xlabel('Absolute Risk (%)')\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Maximizing the Sharpe ratio"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The Sharpe ratio is defined as the ratio of return of portfolio and standard deviation of the portfolio's excess return. It is usually used to measure the efficiency of a portfolio. Find the most efficient portfolio is equivalent to solve the following optimization problem.\n",
+    "\\begin{equation}\\label{sr_model}\n",
+    "\\begin{array}{ll}\n",
+    "\\underset{x\\in\\Re^n}{\\mbox{minimize}} & \\frac{\\sqrt{x^TVx}}{r^Tx}\\\\[0.6ex]\n",
+    "\\mbox{subject to} & e^Tx = 1,\\\\[0.6ex]\n",
+    "     & x\\geq0.\n",
+    "\\end{array}\n",
+    "\\end{equation}\n",
+    "By replacing $x$ with $\\frac{y}{\\lambda}, \\lambda\\gt0$, model (\\ref{sr_model}) is equivalent to\n",
+    "\\begin{equation}\\label{sr_model_eq}\n",
+    "\\begin{array}{ll}\n",
+    "\\underset{y\\in\\Re^n, \\lambda\\in\\Re}{\\mbox{minimize}} & y^TVy\\\\[0.6ex]\n",
+    "\\mbox{subject to} & e^Ty = \\lambda,\\\\[0.6ex]\n",
+    "     & r^Ty=1, \\\\\n",
+    "     & y\\geq0, \\\\\n",
+    "     & \\lambda\\geq0.\n",
+    "\\end{array}\n",
+    "\\end{equation}\n",
+    "Problem (\\ref{sr_model_eq}) is similar to problem (\\ref{MV_model}) in the sense that they both have a quadratic objective function and linear constraints."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Input for linear constraint: e'y = lambda\n",
+    "irowa = np.full(n+1, 1, dtype=int)\n",
+    "icola = np.arange(1, n+2)\n",
+    "a = np.append(np.full(n, 1.0, dtype=float), -1.0)\n",
+    "bl = np.zeros(1)\n",
+    "bu = np.zeros(1)\n",
+    "\n",
+    "# Inpute for linear constraint: r'y = 1\n",
+    "irowa = np.append(irowa, np.full(n, 2, dtype=int))\n",
+    "icola = np.append(icola, np.arange(1, n+1))\n",
+    "a = np.append(a, r)\n",
+    "bl = np.append(bl, 1.0)\n",
+    "bu = np.append(bu, 1.0)\n",
+    "\n",
+    "# Input for bound constraint: x >= 0\n",
+    "blx = np.zeros(n+1)\n",
+    "bux = np.full(n+1, 1.e20, float)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now we can call the NAG SOCP solver as follows."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Create problem handle\n",
+    "handle = opt.handle_init(n+1)\n",
+    "\n",
+    "# Set quadratic objective function\n",
+    "# In qcqp standard form q should be 2*V\n",
+    "q = 2.0 * v_val\n",
+    "idqc = -1\n",
+    "opt.handle_set_qconstr(handle, 0.0, idqc, irowq=irowq, icolq=icolq, q=q)\n",
+    "\n",
+    "# Set linear constraints\n",
+    "opt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)\n",
+    "    \n",
+    "# Set bound constraint\n",
+    "opt.handle_set_simplebounds(handle, blx, bux)\n",
+    "    \n",
+    "# Set options\n",
+    "for option in [\n",
+    "        'Print Options = NO',\n",
+    "        'Print Level = 1',\n",
+    "        'Print File = -1',\n",
+    "        'SOCP Scaling = A'\n",
+    "]:\n",
+    "    opt.handle_opt_set(handle, option)\n",
+    "        \n",
+    "# Call socp interior point solver\n",
+    "slt = opt.handle_solve_socp_ipm(handle)\n",
+    "\n",
+    "sr_risk = mt.sqrt(slt.x[0:n].dot(V.dot(slt.x[0:n])))/slt.x[n]\n",
+    "sr_rtn = r.dot(slt.x[0:n])/slt.x[n]\n",
+    "sr_x = slt.x[0:n]/slt.x[n]\n",
+    "\n",
+    "# Destroy the handle:\n",
+    "opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3hUZfbA8e9JSAi9hd57DwFCQDqiAsKCoLi2FQsrrLKuuhZ0Lfhb17JiQ3ftoiIrCohiWxEWlE4C0lsCBAg1IRBCSZ3z+2OGIYSUCWQyk+R8nmce5pb33jM3YU7uve89r6gqxhhjTE4Bvg7AGGOMf7IEYYwxJleWIIwxxuTKEoQxxphcWYIwxhiTq3K+DqAohYaGarNmzXwdhjHG+JW0TAepGVmkZmRxNiOL1AwHGVkOANIPxyaqau3c2pWqBNGsWTOio6N9HYYxxvhESmoG2w+nsO3QSdcrhR2HUzibkQVAcIDQLrQS7etXpX39qjStVZHhYQ325rW9UpUgjDGmLHA4lP3Hz7iTwLZDJ9l2+CT7k86616lWIYj29atwU2Rj2tevSof6VWlVpzIhQYEe78cShDHG+LkTZ9KJijtOVFwS6/YeZ9uhk5xOd54ViEDz0EqENarO7yMau88O6lcLQUQua7+WIIwxxs8cTk5lTVwSUXuSWLMniR1HUgAIDgygc6NqXN+9kTsRtK1bhQrBnp8VFIYlCGOM8SFVZe+xM6zZk8SaOGdC2Jd0BoBKwYF0a1qD33WpT49mNenSuHqhLhFdLksQxhhTjBwOZceRlAsSQkJKGgA1KgbRo1lNbr+iKZHNa9KhflXKBfruaQRLEMYY40XpmQ42H0xmzR7nJaOouCROpmYCUL9aCL1b1qJHs5r0bF6TlrUrExBwefcNipIlCGOMKUJn07P4bd9xVruSwbp9x0nNcD5z0CK0Etd2dl4uimxek0Y1Klz2jWRvsgRhjDGXIflMBtF7k9yXjDbFJ5PpUESgfb2q3NSjCZHNa9KjWU1qVynv63ALxRKEMcYUwtGTqe57B+d6GKlCUKAQ1qg64/u1oGfzmnRrWoNqFYJ8He5lsQRhjDF5UFX2J51l9Z5jRLmSQtwxZw+jCkGBdG9ag2Gd6hPZvCbhjat7rbupr1iCMMaYbI6dSmP5rmMsi0lgWUwiB5NTAeeTyT2a1eSWnk2IbF6Ljg2qEuTDHkbFwRKEMaZMS83IIjruOEtjnQlhy8GTAFQJKUfvlrWYOLAlPZvXonUd/+phVBwsQRhjyhSHQ9l2+CTLYhJZFpvImj1JpGU6KBcgdGtag79e3YY+rUMJa1jNp88g+ANLEMaYUu9Q8lmWxiSyLCaR5bGJHDudDkDrOpW5pWcT+rUOpWfzWlQqb1+J2Xn1aIjIUOANIBD4QFVfzLG8HTAd6Ab8TVWnZltWHfgA6AQocJeqrvRmvMaY0uFUWiardh1jWWwiS2MS2JVwGoDQyuXp1zqUvq1r07dVKPWqhfg4Uv/mtQQhIoHAv4CrgXggSkTmq+rWbKslAfcD1+WyiTeA/6rqDSISDFT0VqzGmJItM8vBhvhk12WjBH7bd4JMhxISFEBk81rc1KMJfVuH0q5eFb9+MM3fePMMIhKIVdXdACIyCxgFuBOEqh4FjorI8OwNRaQq0B+4w7VeOpDuxViNMSWIqrIn8bTrDCGRVbuOkZKWiQh0alCNP/ZvQb9WoXRrWqNYi9uVNt5MEA2B/dmm44GeHrZtASQA00WkC7AW+Iuqns65oojcA9wD0KRJk8sK2Bjjv5JOp7M8NtF9c/nACefgOI1qVGBEl/r0aRVKn5ah1KgU7ONISw9vJojczuPUw7blcN6X+LOqrhaRN4DJwFMXbVD1PeA9gIiICE+3b4zxc6kZWazde9x5czk2gS0HT6J6YffTfq1CaVqrol028hJvJoh4oHG26UbAwUK0jVfV1a7pOTgThDGmlFJVth1KYVlsAktjEomKSyI1w9X9tEkNHryqDX2t+2mx8maCiAJai0hz4ABwE3CLJw1V9bCI7BeRtqq6AxhMtnsXxpjS4XByKktjElgW6+x+mnjKeauxVZ3K3NTD1f20RS0qW/dTn/DaUVfVTBGZBPyEs5vrR6q6RUQmupa/IyL1gGigKuAQkQeADqp6EvgzMNPVg2k3cKe3YjXGFI9TaZms3n3MddkokdijpwAIrRxMn1ah9G0VSt/WodSvVsHHkRoAUS09l+0jIiI0Ojra12EYY1wysxxsPODqfhqTyLp9x8l0KOXLBRDZvKbzmYRWtWlXr0qZK2PhL0RkrapG5LbMztuMMUXm3PjKS2MTWRaTwIpdx0hJte6nJZUlCGPMZcnIchC1J4mF246ycNsR9iU5y2E3rF6B4Z3r07d1KL1bhlLTup+WOJYgjDGFlnwmgyU7j7Jw21GW7DhKSmomweUC6NsqlD/2a07f1rVpZt1PSzxLEMYYj+xJPM2ibUdYuO0IUXHHyXIooZWDGdapHle1r0vf1qFUDLavlNLEfprGmFxlOZR1+46zcKszKZwreNeuXhUmDmjBVe3r0qVRdbu5XIpZgjDGuJ1Ky+TXnQks3HaExduPcvxMBkGBQq8WtfhDr6YMbl+XxjWtbmZZYQnCmDIu/vgZFrluMK/afYyMLKV6xSCubFuHwe3r0r9NKFVCgnwdpvEBSxDGlDEOh7LxQDKLth3h561H2H44BYAWtStxZ5/mXNW+Lt2aVLdyFsYShDFlwdn0LJbFJrJo2xEWbT9KQkoagQFCRNMa/O3a9gxuX4cWtSv7OkzjZyxBGFNKHTmZyqJtR1m07QjLYhNJy3RQpXw5BrStzVXt6zKwbW2qV7RnE0zeLEEYU0qoKlsPnXTfT9gYnwxA45oVuDmyCVd3qEuPZjUJLmeXjoxnLEEYU4JlOZTouCS+33SIhVuPcDA5FRHo2rg6jwxpy9Ud6tK6TmV7YM1cEksQxvijevXgyJGL59eti+PgIdbtO853Gw/xw6ZDHE1JIyQogAFtavPA1W24sl0dQiuXL/6YTaljCcIYf5RbcnDN7/3i/zh8MpXy5QIY1LYOI7rU58p2dewpZlPk7DfKmBImrFE1Hg9rx+D2dW0gHeNV9ttljB/R1FT2/mcezfJZ573bcy3db0yRswRhjI9pair7Zn1Nymef02z5IpqlnvZ1SMYAliCM8QlNTSV+9nxOfvIfmi5fSNPU05wIqczaiCuRsWPp/5fbfR2iMZYgjCk26ekcnP0NJz7+D02W/Uzj1NMkl69EdMRAGHsjYbePYUAN19PMzz+SZy8mY4qLJQhjvCk9nRPzf+DIhzNo8MsCGpw9ReXylYjuNhDH2BsIG3c9A2tWubjd4cPFH6sxOViCMKaopaeT/tMCjnwwg5oLf6T6mRQCylciKrw/OnYsne+4noG1qvo6SmMKlG+CEJFg4FqgH9AAOAtsBn5Q1e3eD8+YEiIjA124kKTpn1Hxh2+pcDqFauUr8UuH3py9bgxd7xrLlY1q+TpKYwolzwQhIk8C1wO/AmuBn4EQoA3wmjif3X9YVTcXR6DG+J2MDPjf/zjz2ecEfPM1ISnJBAVX5Ke2vUgYOooO465nSPsGBNqIa6aEyu8MYpOqPpfHsn+KSH2gsRdiMsZ/ZWTA4sVkzvoCx1dfEZx8gqzgCvy3dS9i+g+j5a2jGdK9qQ2wY0qFPBOEqn6Tc57rklM5VT2jqoeAQ94Mzhi/kJkJixejX3xB1tyvKHfiOKnBFfm5VSSrRg2mwY2juK5XC8bUquTrSI0pUh7fpBaRO4G7gQARWaSqT3kvLGN8zJUUmD2brLlfEZh0jLPBFfipVU8WXdOfyiOHM6pXS15oXpMAu4RkSqn87kEMU9Ufs80aoqp9Xcs2AJYgTOmSmQlLlsDs2ehXXyGJiZwtX5GfWvbghwF9Sb3yKkZd0YqXOtWjktVAMmVAfr/lPUXkHuAp143oLSLyKeAAPOrBJCJDgTeAQOADVX0xx/J2wHSgG/A3VZ2aY3kgEA0cUNURHn4mYzyXmQm//AKzZ8PcuZCYSHpIBRa17snX/XqzO6Ifv+vZkqe6NqRxzYq+jtaYYpXfPYgpItIQ+LuIpAHPADWBiqq6rqANu77c/wVcDcQDUSIyX1W3ZlstCbgfuC6PzfwF2AZYp3FTdLKyLkwKCQlkVqhIVKc+fNy3B8taRTAwvCnjejbhipa1bLAdU2YVdJ6cBPwJ6Ah8BCwHXvVw25FArKruBhCRWcAowJ0gVPUocFREhudsLCKNgOHAP4CHPNynMbnLyoJffz2fFI4exVGxIjt7DOSjBhHMrx9Grdo1uDmyMX/v0Zg6VUJ8HbExPpffPYhngauAIGCGqo4QkTHADyLygap+XsC2GwL7s03HAz0LEdvrwKNALnUILojzHuAegCZNmhRi86bUy8qCpUvhyy/hq6/gyBG0YkWO9r+KuS1781ZIK84GhXBl2zr8u1cTBrSpY88sGJNNfmcQo1Q13PVA3FrgTVX9SkS+xXlZqCC5/U9TT4ISkRHAUVVdKyID81tXVd8D3gOIiIjwaPumFMvKgmXLnElh7lxnwbsKFUgdOowlYQN5OaAFu85A7SrlubtHY37fozGNati9BWNyk1+C2CYi04EKwLJzM1U1A3jFg23Hc+GDdI2Agx7G1QcYKSLX4nx6u6qIfKaqt3nY3pQlWVmwfPn5pHD4MFSogA4fzs7+Q3mnYju+3ZVMZqrSp1UtHu7ZlKs61CUoMMDXkRvj1/K7SX2ziHQFMi6xnEYU0FpEmgMHgJuAWzxpqKqPA48DuM4gHrbkYC7gcFyYFA4dgpAQGD6cjOtv4NuG4by37ijbD6RQveJp7uzTjJsjm9CidmVfR25MiZHfPYheqroqn+WVgSY5eiW5qWqmiEwCfsLZzfUjVd0iIhNdy98RkXo4u7FWBRwi8gDQQVVPXvpHMqWWwwErVjiTwpw555PCtdfCjTeSOOAqZm5OYsaqvSRu2EXbulX45/VhjAxvQEhQoK+jN6bEEdXcL9uLyJtAOPAjznsQCTgv97QCBrn+fVhVVxdPqAWLiIjQ6OhoX4dhipLDAStXnk8KBw86k8KwYXDjjTBiBDtOKR8t28O89QdIz3QwqG1t7u7bgj6trIuqMQURkbWqmutA5/ldYvqziIQCY4E/APVxlvveBnyiqku8EKsxzqSwatX5pHDgAJQvf0FScFSqzC8xCXz0xRaWxiQSEhTA2O6NuLNPc1rVsctIxhSFfJ+DUNVE4G3XyxjvOZcUZs92vs4lhaFD4Z//hBEjoGpVUjOymLsuno+WrWVXwmnqVi3PI0PacktkE2pUCvb1pzCmVLGCMsZ3HA5Yvfp8UoiPh+BgZ1J46SX43e+gqvMh+pTUDGb+sosPlu4h8VQanRpW5fXfh3Nt5/oEl7PeSMZ4gyUIU7xUL0wK+/efTwovvOBMCtWquVc/fjqd6Svi+Hj5Hk6mZtKvdSj3DuxKrxY17f6CMV5mCcJ4nyqsWXM+Kezb50wKQ4bAP/4BI0dekBQAjpxM5YOlu5m5eh9n0rMY0rEu9w5sRZfG1X30IYwpezxKECISCTTLvr6q/sdLMZnSQBWios4nhb17ISjImRT+/ndnUqh+8Zf9/qQzvPPLLmZHx5OlysguDfjTwJa0qZtvxRVjjBcUmCBE5GOgA7AeyHLNVsAShLmQKkRHO3sfZU8K11wDzz4Lo0blmhQA9h47zRuLYvhm/UECRbghohET+7ekSS0rg2GMr3hyBtEL58NrDm8HY0ogVVi79nxSiIuDcuXOJ4WRI6FGjTybxx8/w5uLYpmzLp6gQOGO3s24p38L6la1aqrG+JonCWILEAoc9XIspqRQhXXrzieFPXucSeHqq+GZZ5xnCvkkBYDDyan8a3Ess6L2IQh/6NWUewe2pI4lBmP8hicJohrOwn2rgLRzM1V1jNeiMv5HFX777XxS2L3bmRSuugqeesqZFGrWLHAzCSlpvL1kF5+t3ovDodzYozGTBrWiQfUKxfAhjDGF4UmCeMHrURj/pArr1zuTwpdfOpNCYKAzKfztb3DddR4lBYATZ9J555fdfLIijrTMLMZ0a8T9V7a2ewzG+LF8E4Rr2NBHVXVIMcVjfE0VNmw4nxR27XImhcGD4YknnEmhVi2PN5eakcWnK+N463+xpKRl8ruwBvzlqta0tKqqxvi9gkptZIlIuohUtQqrpZgqbNx4PinExjqTwpVXwuTJzqQQGlqoTTocyjcbDjD1p50cOHGWgW1r89jQdrSvb8OLG1NSeHKJ6RSwQUQWAKfPzVRVGye6JDuXFGbPdiaFmBhnUhg0CB59FEaPLnRSOGdZTCIv/LiNLQdP0rFBVf55Qxh9Wl3atowxvuNJgljoepmSThU2bTqfFHbuhIAAZ1J4+GFnUqhd+5I3H3Mkhee+38YvOxNoWL0Cr/8+nJFdGhBg4zwbUyIVmCBU9cPiCMR4iSps3nw+KezY4UwKAwfCQw85k0KdOpe1i+SzGby+cCefrtxLpeBAnri2Hbdf0cwG6TGmhPPkSeoYnE9OX0BV23glIlM0tmw5f09h+/bzSeGBB2DMmMtOCgBZDuWLqP1MXbCD42fSuTmyCX+9ug21Kpe//PiNMT7nySWmvtneh+AcQKhaHusaX9qy5fyZwrZtzqQwYADcf78zKdStW2S7io5L4pn5W9hy8CQ9mtXgmd9F0qmh/VoYU5p4conpSI5ZU0VkmZfiMYW1dev5pLB1K4g4k8KkSc6kUK9eke7u+Ol0XvxxO19E76d+tRCm3dyV34XVt9LbxpRCnlxiCss2GQBEYGcQvrVt2/mksGWLMyn07w9vvQXXX1/kSQFAVZmzNp7nf9hGSmomEwa04C+DW1Mx2CrGG1NaefK/+1/Z3mcCe4Dfeycck6ft288nhc2bnUmhXz9nUhgzBurX99quY4+e4ol5m1izJ4nuTWvwj9GdaFfPnmcwprTzJEHcpqp7s88QkSZeisdkt2PH+dpHmzY5k0LfvvDmm86k0KCBV3efkeXgvV9388aiGCoEBfLimM7cGNHYuq0aU0Z4kiDmAd1yzPs6l3mmKOzceT4pbNzonNe3L0yb5rx85OWkcM6Wg8k8OmcjWw6e5NrO9Xh2ZCdqV7HeScaUJXkmCBFpA7QHqonIyGyLquLszWSKys6d50de27DBOa9PH3jjDWdSaNiw2ELJyHLw78W7ePN/MVSvGMTbt3ZjWGfvXb4yxviv/M4gOgJjgOo4u7aekwJM8GZQZUJMzPmksH69c17v3vD6686k0KhRsYe0O+EUD365gQ37TzCySwOeHdmRGpWCiz0OY4x/yDNBqOo8YJ6I9FVV69ZaFGJjzyeF335zzrviCnjtNWdSaNzYJ2GpKjNW7eX5H7ZRvlwgb93SlRFhxXMpyxjjvzy5B3FYRH4C6qlqF1e31+GqWuA4ESIyFHgDCAQ+UNUXcyxvB0zHeT/jb6o61TW/MfApUA9wAO+p6huF+Fz+Y9eu872PziWFXr3g1Vfhhht8lhTOSTyVxl+/3MAvOxPo36Y2L98QZsN9GmMAzxLEB8ATnO/uugn4nAIGEnKNJfEv4GogHogSkfmqujXbaknA/cB1OZpnAn9V1XUiUgVYKyI/52jrv3bvPp8U1q1zzuvZE155xZkUmvhHJ7AVuxL5y6z1JJ/N4O+jOnJbr6b2wJsxxs2TBFFJVVec++JQVRWRDA/aRQKxqrobQERmAaMA95e8qh4FjorI8OwNVfUQcMj1PkVEtgENs7f1O3v2nE8Ka9c650VGwtSpzqTQtKlv48smy6FMWxTDtP/F0Dy0Ep/eFWnjNBhjLuJJgjgmIs1xFewTkeuAwx60awjszzYdD/QsbIAi0gzoCqwubFuvi4s7nxSio53zIiPh5ZedSaFZM19Gl6sjJ1P5y6zfWLU7iTHdGvL3UZ2oVN6ehjbGXMyTb4ZJwIdAOxHZi/Mv+5s9aJfbtYqLqsLmuwGRysBc4IG8RrQTkXuAewCaFMelm7g4mDPHmRSiopzzevSAf/7TmRSaN/d+DJdoyY6jPPTlBs6mZzF1bBdu6F78PaWMMSWHJ8X6YoErRaQaIKp6wsNtxwPZ78A2Ag56GpiIBOFMDjNV9at84nsPeA8gIiKiUAnIY3v3nk8Ka9Y450VEwEsvwdixfp0UADKzHExdsJN3ftlFu3pVeOuWrrSqU8XXYRlj/Fy+CUKcNx6qqeoJVU0WkSARuRPnDeROBWw7Cmjtujx1ALgJuMWToFz7/RDYpqqvetKmyO3bdz4prHZd3ereHV580ZkUWrTwSViFdfx0Ovf9Zx0rdh3jlp5NeHpEBxvIxxjjkfyepB4LvA+ki8hmYAowA9gI3FXQhlU1U0QmAT/h7Ob6kapuEZGJruXviEg9IBrn09kOEXkA6ACEAX8ANomI6ykynlDVHy7tY3po//7zSWHVKue8bt2cSeGGG6BlS6/uvqhtP3ySP34azZGTaXZJyRhTaKKa+1UZV1K4XlV3iEgPYBnOwn2zizPAwoiIiNDoczeLPXUuKcyeDStXOud17Qo33uhMCq1aFX2gxeDHTYf46+wNVC5fjnf/0J2uTWr4OiRjjB8SkbWqGpHbsvwuMaWr6g4AVY0SkTh/Tg6FEh9/PimsWOGcFx4Ozz/vvHxUQpMCgMOhvL4ohmmLYghvXJ13/9DdHnwzxlyS/BJEHRG5P9t0pezTqjrNe2F5wYED55PC8uXOeV26wD/+4UwKrVv7Nr4icCotkwe/WM/PW49wQ/dGPHddJ7vfYIy5ZPkliOlA7Xym/d/Bg+eTwjJXOamwMHjuOWdSaNPGt/EVoYMnznLn9ChiE07xzO86cEfvZvZUtDHmsuRXrO+p4gykyBw8CHPnOm80L18OqtC5M/z9786k0LatryMsctsOneSO6Ws4k5bFJ3dG0rd1qK9DMsaUAqXrEdodO5xlslWhUyd49llnUmjXzteRec3y2EQmzFhL5fLlmP2nK2woUGNMkSldCSIzE6ZMcSaF9u19HY3XfbUunkfnbKRl7cp8fFcP6ler4OuQjDGlSOlKEB07wtNP+zoKr1NV/r1kFy//tIMrWtTi3du7UzUkyNdhGWNKmfwelLs/r2VQAnsxlRKqyvM/bOP9pXsYFd6Al2/oQnC5AF+HZYwphfI7gzjXY6k1ztLd37qmRwC/eDMokzuHQ3nqm83MXL2PcVc05ZnfdSQgwHoqGWO8o8BeTK7R5MLPVVMVkaeAL4onPHNOZpaDR+du5Kt1B5gwoAWTh7azbqzGGK/y5B5EUyA123Qa4N/lS0uZ9EwHD36xnu83HeKhq9vw5ytbWXIwxnidJwniP8BqEZmLczyHMcBMr0Zl3FIzsrhv5joWbT/Kk8PbM75fyagia4wp+TwZD+L/RORHoL9r1kRVjfJuWAbgbHoWf/w0mmWxiTx3XSdu6+U/w5YaY0o/T7u5BgIJqvqpiNQSkSaqus+bgZV1Z9OzuPuTKFbtPsYrY7twvZXqNsYUswIThIg8CfQBWgKfAiE4Lzv19W5oZVdqRhb3zIhm5e5jvHpjF0Z3teRgjCl+nnSgvwG4FjgNoKoHcA7wY7wgLTOLiZ+tZVlsIv+8PsySgzHGZzxJEGnqHFVIAUSkondDKrvSMx3c+9k6luxI4IXRnRkb0bjgRsYY4yWeJIivRORfQDXXeNQLcJb+NkUoI8vBpP84eys9d10nbops4uuQjDFlnCe9mF4SkWFAOtAF+Ieq/uj1yMqQzCwHf5n1Gwu2HuHZkR2tt5Ixxi94cpP6eVV9Avgxl3nmMjkcysOzN/DDpsM8Obw943o383VIxhgDeHaJaWgu84YXdSBlkary7Ldb+Hr9QR4Z0tYegjPG+JX8qrlOACYCbUVkXbZFVYC13g6sLHhjUQyfrNzLH/s1596BLX0djjHGXCC/S0xfAouAF4DJ2eanqOpRr0ZVBnyyIo7XF8ZwQ/dGPHFte6utZIzxO/lVcz0OHBeRfwJHVPUUgIhUEZEIVY0uriBLm2/WH+CZ+Vu4qn1dXhzT2ZKDMcYveXIP4j3gTLbp08C73gmn9Fu84yh//XIDPZvX5K1bulIu0Ab7Mcb4J0++nQJU1XFuwvXexre8BOv3n+BPn62lbb0qvD8ugpCgQF+HZIwxefIkQewRkT+JSKCIBIjIfUCcl+MqdfYnnWH8J1HUrlKej++MtDGkjTF+z5MEMQEYDBxxvQYAf/Rk4yIyVER2iEisiEzOZXk7EVkpImki8nBh2pYkyWcyuGP6GjKylOl3RFK7Snlfh2SMMQXy5EnqIzgL9hWKiAQC/wKuBuKBKBGZr6pbs62WBNwPXHcJbUuEtExnZdb9SWeZcXckrepU9nVIxhjjkQLPIESklYj8JCIbXNNhIvK4B9uOBGJVdbeqpgOzgFHZV1DVo67BhzIK27YkUFUem7OR1XuSeHlsGD1b1PJ1SMYY4zFPLjF9ADwLnLtRvQm4zYN2DYH92abjXfM84XFbEblHRKJFJDohIcHDzReP1xbGuJ+SHhXu6Uc3xhj/4EmCqKSqK85NuEp/5/yLPze5de5XD+PyuK2qvqeqEaoaUbt2bQ83730/bjrEtEUxjO3eyJ6SNsaUSJ4kiGMi0pzz40FcBxz2oF08kH1Ag0bAQQ/jupy2Prft0En+OnsDXZtU57nRnexBOGNMieTJmNSTgA+BdiKyFzgE3ORBuyigtSu5HHC1ucXDuC6nrU8lnU7nj59GUyWkHO/e1p3y5exZB2NMyeRJL6ZY4EoRqQaIqp7wZMOqmikik4CfgEDgI1XdIiITXcvfEZF6QDTOIUwdIvIA0EFVT+bW9lI+YHHKyHJw38x1HE1J48sJV1CnaoivQzLGmEvmyXgQNYCngL6Aisgy4DlXraZ8qeoPwA855r2T7f1hnJePPGrr7/7x/TZW7j7GK2O7EN64uq/DMcaYy+LJPYhZQApwK87eSyeBL7wZVEn0ZfR+Pl4Rx919m3N991xznjHGlCie3IMIVdVnsk0/KyI2HkQ2m+KTeXLeZvq2CuXxYe18HY4xxhQJT84gfhER95PUIjKGbMOPlnUnUzO47z/rqFU5mGk3W3VWY0zp4ckZxJ3AA8RQTnQAACAASURBVCKSgbOrazCQ7Crap6pa05sB+jNVZfLcjRw4cZYvJ/SiZqVgX4dkjDFFxqNLTF6PooSasWovP2w6zOPD2tG9aZnNk8aYUsqT6yG3qWrWuRfOs4jJ2abLpE3xyTz33TaubFeHP/Zr4etwjDGmyHmSIIaLyLciUldEOgArAf+paeED2e87vDK2CwEB9qS0Mab08eRBuRtF5BacRfrOArer6i9ej8yPPfPNFvd9hxp238EYU0p5Uu67BfAn4FucNZLGikgFbwfmr77beJB5vx3gz1e2svsOxphSzZNLTD8Cf1fVu4F+OMtwR3k1Kj91ODmVv83bTJfG1blvUCtfh2OMMV7lSS+mSFVNBlBVB/CSiHzj3bD8j8OhPDJnA+mZDl67sQtB9ryDMaaUy/NbTkT+CqCqya6H47K71atR+aEZq/ayNCaRvw1vT4vaNmyoMab0y+/P4OxJ4Mkcy4Z7IRa/tT/pDC/+uJ0BbWpza88mvg7HGGOKRX4JQvJ4n9t0qaWqPDFvEwECz4/pbIP/GGPKjPwShObxPrfpUmvuugMsjUnksWHtaFi9zHbeMsaUQfndpO4iIkk4zxaquN7jmi4TF+ETUtL4+3dbiWhag9t6NvV1OMYYU6zySxBl/gmwKd9u4Wx6Fi9eH2ZPSxtjypw8E0RZrrME8L/tR/h+4yH+enUbWtUpEydMxhhzAevMn4vUjCye/XYrLWtXYsKAlr4OxxhjfMKTB+XKnA+X7WHvsTPMuDuS4HKWQ40xZZN9++Vw8MRZ3vpfLEM71qNf6zJdtNYYU8bleQYhIsfJvTurUIpHkvvHD9twqPLkiPa+DsUYY3wqv0tMZW4kuTV7kvh+4yEevKoNjWpU9HU4xhjjUx73YhKRmkBItlkHvRWUL6gqL/y4jXpVQ7inv40QZ4wxnowHMVxEduIcC2K169//eTuw4vbfzYf5bd8JHry6NRWCA30djjHG+JwnN6n/AfQBdqhqY2AIsMSbQRW3jCwH//xpB63rVOb6bo18HY4xxvgFTxJEpqomAAEiIqr6M9DNy3EVq1lR+9mTeJrHhrajnI3zYIwxgGcJIllEKgHLgE9F5BXA4cnGRWSoiOwQkVgRmZzLchGRaa7lG0WkW7ZlD4rIFhHZLCKfi0hIzvZFITUji2mLYohsVpPB7et4YxfGGFMieZIgrgNSgQdwXlo6AIwoqJGIBAL/AoYBHYCbRaRDjtWGAa1dr3uAt11tGwL3AxGq2gkIBG7yINZC+3zNPhJS0njomjZWytsYY7LxJEE8rqpZqpqhqh+q6qvAQx60iwRiVXW3qqYDs4BROdYZBXyqTquA6iJS37WsHFBBRMoBFfFCr6nUjCze+WUXkc1r0qtFraLevDHGlGieJIihuczzZES5hsD+bNPxrnkFrqOqB4CpwD7gEJCsqgty24mI3CMi0SISnZCQ4EFY530ZvZ8jJ9N4YHDrQrUzxpiyIL8xqSeIyG9AWxFZl+0VA2z1YNu5Xa/J+WR2ruuISA2cZxfNgQZAJRG5LbedqOp7qhqhqhG1a3teGiMtM4u3l+wiomkNrmhpZw/GGJNTfk9SfwksAl4Ast9gTlHVox5sOx5onG26ERdfJsprnauAPa7eU4jIV0Bv4DMP9uuRb347yKHkVF66PszuPRhjTC7ye5L6OHAcGCsinYC+rkVLAU8SRBTQWkSa47yxfRNwS4515gOTRGQW0BPnpaRDIrIP6CUiFYGzwGAg2vOPlT9V5cNle2hXrwr9Wpe5iiJ+JyMjg/j4eFJTU30dijGlVkhICI0aNSIoKMjjNgWW+xaR+4D7gK9ds74UkX+p6r/za6eqmSIyCfgJZy+kj1R1i4hMdC1/B/gBuBaIBc4Ad7qWrRaROcA6IBP4DXjP409VgGWxiew4ksLLN9jZgz+Ij4+nSpUqNGvWzH4exniBqnLs2DHi4+Np3ry5x+08GQ9iAhCpqqcAROR5YAWQb4JwBfUDziSQfd472d4rzuSTW9tngGc8iK/QPly2h9DK5RkZ3sAbmzeFlJqaasnBGC8SEWrVqkVhO/J40otJgIxs0xnkfnO5RIg9msKSHQncfkVTypezmkv+wpKDMd51Kf/H8hsPopyqZgIzgFUiMte1aDTwySVF6Ac+W7WP4MAAbu3ZxNehGGOMX8vvDGINgKr+E+dTzmdw3jCeqKpTiyG2Inc2PYuv1sUzrHM9alUu7+twjB8JDAwkPDzc/XrxxRcBWLp0KR07diQ8PJyzZ8/yyCOP0LFjRx555BHeeecdPv300zy3efDgQW644YZLjun111/nzJkzuS7LGdfl+vjjjzl48Hwnw/Hjx7N1qye92U2ppqq5voDf8lrmr6/u3btrfuZE79emj32nK3cl5rueKV5bt271dQhaqVKlXOdPmDBBP/roI/d0lSpVNDU1tVhiatq0qSYkJHgU1zmZmZmXtK8BAwZoVFTUJbW9nP2a4pXb/zUgWvP4Ts3vJnVtEcmzpIY6S26UKJ+v2UeL0Er0bF4qR0stFZ79dgtbD54s0m12aFCVZ37XsdDtPvjgA7788kt++uknFi5cSEpKCqdPn6Znz548/vjjbNu2jcqVK/Pwww8TGxvLxIkTSUhIIDAwkNmzZxMYGMiIESPYvHkzWVlZTJ48mSVLlpCWlsZ9993HhAkTWLJkCVOmTCE0NJTNmzfTvXt3PvvsM958800OHjzIoEGDCA0NZfHixXnG9cc//pFnn32W+vXrs379erZu3cqrr77KRx99BDjPBh544AHi4uIYNmwYffv2ZcWKFTRs2JBvvvmG77//nujoaG699VYqVKjAypUrGTZsGFOnTiUiIoIFCxbwzDPPkJaWRsuWLZk+fTqVK1emWbNm3HXXXSxYsIBJkyZx001eKZdmfCi/BBEIVKYE35DObueRFKL3Hudv17a3G6LmImfPniU8PNw9/fjjjzN+/HiWLVvGiBEj3JeKKleuzPr16wGYMmWKe/1bb72VyZMnM3r0aFJTU3E4HBw9ev5xoQ8//JBq1aoRFRVFWloaffr04ZprrgHgt99+Y8uWLTRo0IA+ffqwfPly7r//fl599VUWL15MaOiFz+rkjGvJkiWsWbOGzZs307x5c9auXcv06dNZvXo1qkrPnj0ZMGAANWrUICYmhs8//5z333+fG2+8kblz53Lbbbfx1ltvuRNCdomJiTz33HMsXLiQSpUq8dJLL/Hqq6/y9NNPA86+9cuWLSu6H4TxK/kliEOq+n/FFomXzV0bT7kAYUy3nOWgjD+5lL/0i0KFChXcX/yFlZKSwoEDBxg9ejTg/NLMacGCBWzcuJE5c+YAkJycTExMDMHBwURGRtKokXOgqvDwcOLi4ujbt+9F28hPZGSku3/7smXLGD16NJUqVQJgzJgxLF26lJEjR9K8eXN3IuzevTtxcXH5bnfVqlVs3bqVPn36AJCens4VV1zhXv773/++UHGakiW/BFFq/sx2OJT5Gw4yoE1tuzltipzzMm7B67z55psMGTLkgvlLliyhfPnzv5OBgYFkZmYWOoZzyaCgeHLuq6Ab3KrK1Vdfzeeff17gfk3pk18vpsHFFoWXrd6TxKHkVEZ1tbMHU/SqVq1Ko0aN+PprZ7GBtLS0i3ofDRkyhLfffpuMDOcjRTt37uT06dP5brdKlSqkpKQUOp7+/fvz9ddfc+bMGU6fPs28efPo16/fJe2rV69eLF++nNjYWADOnDnDzp07Cx2TKZnyTBCqmlScgXjTN+sPUCk4kKvb1/V1KMZPnbsHce41efJFAyDma8aMGUybNo2wsDB69+7N4cOHL1g+fvx4OnToQLdu3ejUqRMTJkwo8EzhnnvuYdiwYQwaNKhQsXTr1o077riDyMhIevbsyfjx4+natWu+be644w4mTpx4UbfZ2rVr8/HHH3PzzTcTFhZGr1692L59e6HiMSWXeHJ6XFJERERodPSFNf3SMrPo8dxCrmpfl1d/H55HS+NL27Zto3379r4Ow5hSL7f/ayKyVlUjclvfk1IbJdri7QmcTM20ukvGGFNIpT5B/LDpEDUrBdO3lZX1NsaYwijVCSI908Hi7Ue5qn0dygWW6o9qjDFFrlR/a67cfYyUtEyGdKzn61CMMabEKdUJ4qcth6kYHEgfu7xkjDGFVmoThMOh/Lz1CAPb1iYkyMZ9MMaYwiq1CWLTgWQSUtK4poNdXipV6tUDkYtf9S7v53yu3HenTp0YO3ZsnmW28/L8889fMD1t2jTat2/Prbfemmebjz/+mEmTJgEUWDq8sObPn+8uWf71119fULp74MCB5OwOXlyK+nMW1kcffUTnzp0JCwujU6dOfPPNN4Bvj0lhrF+/nh9+OD9IZ/afs1fkVea1JL6yl/t+c9FObfrYd5qYUjylmc2lK1S5b8j7dRmyl/u+5ZZb9JVXXvGoncPh0KysrIvKhbdt21Z3796db9vp06frfffdV/hgC2ncuHE6e/Zs9/TllvYuqfbv368tWrTQEydOqKpqSkqK+2d0OcekqEudZ2Rk5Lnscn9nClvuu9SeQfwak0inhlWt9pIptH79+rlLS7z66qt06tSJTp068frrrwMQFxdH+/btuffee+nWrRt33323+0nsW2+9lYkTJ7J7925GjhzJa6+9RlJSEtddd537SeSNGzdetM8pU6YwdapzHK7169fTq1cvwsLCGD16NMePH79g3aysLFq0aIGqcuLECQICAvj1118viP3c2cmKFSuYP38+jzzyCOHh4ezatQuA2bNnExkZSZs2bVi6dOlF8SxZsoQBAwZw44030qZNGyZPnszMmTOJjIykc+fO7u18++239OzZk65du3LVVVdx5MgRAO6//37+7/+ctT5/+ukn+vfvj8PhuOBzDhw4kAcffJD+/fvTvn17oqKiGDNmDK1bt+bJJ590H+tOnTq545o6daq7iq4n7bM7evQoVapUoXLlyoCzMu+5Aod5HZO4uDj69etHt27d6NatGytWrHAfn0GDBnHLLbfQuXNn4uLiaNeuHePGjSMsLIwbbrjBfRa6du1aBgwYQPfu3RkyZAiHDh26KLY77riDhx56iEGDBvHYY4+xZs0aevfuTdeuXenduzc7duwgPT2dp59+mi+++ILw8HC++OKLC85C9+7dy+DBgwkLC2Pw4MHs27fvov0UWl6ZoyS+zp1BnErN0FZPfK8v/LDt0tKsKVb+dAaRkZGhI0eO1H//+98aHR2tnTp10lOnTmlKSop26NBB161bp3v27FER0ZUrV17U/pzsg/1MmjRJp0yZoqqqixYt0i5duqjqhX8NPvPMM/ryyy+rqmrnzp11yZIlqqr61FNP6V/+8peL4h0yZIhu3rxZv/32W42IiNDnnntOU1NTtVmzZhdtO7cziIceekhVVb///nsdPHjwRdtfvHixVqtWTQ8ePKipqanaoEEDffrpp1VV9fXXX3fHlJSUpA6HQ1VV33//ffd2T58+rR06dND//e9/2qZNG42Njb3ocw4YMEAfffRR9zbr16/v3l/Dhg01MTFR9+zZox07dnTH9fLLL+szzzzjcfvsMjMz9ZprrtHGjRvrHXfcofPnzy/wmJw+fVrPnj2rqqo7d+7Uc98xixcv1ooVK7rPQPbs2aOALlu2TFVV77zzTn355Zc1PT1dr7jiCj169Kiqqs6aNUvvvPPOi473uHHjdPjw4e6zkeTkZPeZxM8//6xjxoy56Oeac3rEiBH68ccfq6rqhx9+qKNGjbpoP0U5YFCJtXrPMTKylH6trfeS8Uz28SD69evH3Xffzdtvv51n2eymTZvSq1cvj7a9bNky5s51Dul+5ZVXcuzYMZKTk3NdNzk5mRMnTjBgwAAAxo0bx9ixYy9ar1+/fvz666/s2bOHxx9/nPfff58BAwbQo0cPj2IaM2YMkH/J7x49elC/fn0AWrZs6R6/onPnzu4BjOLj4/n973/PoUOHSE9Pd/9FXrFiRd5//3369+/Pa6+9RsuWLXPdx8iRI93b7Nixo3t/LVq0YP/+/VSvXj3fz1FQ+1q1arnXDQwM5L///S9RUVEsWrSIBx98kLVr17rPSHI7JhkZGUyaNIn169cTGBh4QaHC7CXWARo3buwui37bbbcxbdo0hg4dyubNm7n66qsB59nfuRhzGjt2LIGBzg41ycnJjBs3jpiYGETEXeQxPytXruSrr74C4A9/+AOPPvpogW0KUiovMS2NSSQkKIDuTWv4OhRTQpwbD2L9+vW8+eabBAcH4/zjKneFKXOd23Yud9Cqfv36sXTpUtasWcO1117LiRMnWLJkCf379/eo/bmy3/mVF89eGjwgIMA9HRAQ4G7z5z//mUmTJrFp0ybeffddUlNT3W02bdpErVq1LhjrOq99ZN9+9n2UK1cOh8Phnp99+560z0lEiIyM5PHHH2fWrFnuxJ3XMXnttdeoW7cuGzZsIDo6mvT0dPf6OX8Hcv5MRQRVpWPHju7frU2bNrFgwYJcj0X27T311FMMGjSIzZs38+233170uT1RFAOjlcoEERWXRLcmNax7a2lUN4+KvHnNvwyFKZsdFBSU5195/fv3Z+bMmYDz2nVoaChVq1bNdd1q1apRo0YN9zXwGTNmuM8msuvZsycrVqwgICCAkJAQwsPDeffdd3ON71LLhnsiOTmZhg2dZfQ/+eQT9/y9e/fyyiuv8Ntvv/Hjjz+yevXqS9p+3bp1OXr0KMeOHSMtLY3vvvvukmM9ePAg69atc0+vX7+epk2b5tsmOTmZ+vXrExAQwIwZM8jKyspz3X379rFy5UoAPv/8c/r27Uvbtm1JSEhwz8/IyGDLli0Fxpr9uH788cfu+fn9LHv37s2sWbMAmDlzZqEHncpNqUsQp9My2XYohQg7eyidDh/O/Q5EjvLaRaEwZbPvuecewsLCcu3WOmXKFKKjowkLC2Py5MkXfJHm5pNPPuGRRx4hLCyM9evXu4f3zK58+fI0btzYfZmrX79+pKSk0Llz54vWvemmm3j55Zfp2rWr++ZyUZkyZQpjx46lX79+7qFRVZW7776bqVOn0qBBAz788EPGjx9/SX8FBwUF8fTTT9OzZ09GjBhBu3btLjnWjIwMHn74Ydq1a+e+yfvGG2/k2+bee+/lk08+oVevXuzcuTPfM8f27dvzySefEBYWRlJSEn/6058IDg5mzpw5PPbYY3Tp0oXw8HD3je78PProozz++OP06dPngqQ0aNAgtm7d6o4/u2nTpjF9+nTCwsKYMWNGgZ/NE6Wu3Pe0L/7LLe+vZvqdPRjUto6vQzIesHLfpqSLi4tjxIgRbN682deh5KvMl/tet9fZJbBbYzuDMMaYy+HVBCEiQ0Vkh4jEishFQ3SJ0zTX8o0i0i3bsuoiMkdEtovINhG5Imf73Kzde5zWdSpTrWJQUX4UY4zJU7Nmzfz+7OFSeC1BiEgg8C9gGNABuFlEOuRYbRjQ2vW6B3g727I3gP+qajugC7DNk/1uOnCSsEb5d40zxhhTMG+eQUQCsaq6W1XTgVnAqBzrjAI+dT2vsQqoLiL1RaQq0B/4EEBV01X1REE7zHQoiafSaF+/StF+EmOMKYO8mSAaAvuzTce75nmyTgsgAZguIr+JyAcikmv3ARG5R0SiRST6SEISAB3q596F0BhjjOe8mSBye0ojZ5epvNYpB3QD3lbVrsBp4KJ7GACq+p6qRqhqRPlKzhor7SxBGGPMZfNmgogHGmebbgTkfKQyr3XigXhVPfd0zRycCSNfZzOyqFu1PDUrBV9y0KZsOnz4MDfddBMtW7akQ4cOXHvttReUVSiM8ePHu8tr5ywDnpdmzZqRmJh4SfvzVM7Cd56s/5///KfAbUVHR3P//fcXSYzGv3gzQUQBrUWkuYgEAzcB83OsMx+43dWbqReQrKqHVPUwsF9E2rrWGwxspQBpGQ7a1LX7D6ZwVJXRo0czcOBAdu3axdatW3n++efdlUkL64MPPqBDB2d/DE8ThLfl9wRwXvJLENlFREQwbdq0SwnL+DmvJQhVzQQmAT/h7IH0papuEZGJIjLRtdoPwG4gFngfuDfbJv4MzBSRjUA4UOD/tPRMB01rVSzCT2GK3QMPwMCBRft64IF8d7l48WKCgoKYOHGie154eDj9+vXj1KlTDB48mG7dutG5c2f3ADP5lXc+N/jM5MmTLygDDnDdddfRvXt3OnbsyHvvvVfg4ahcuTKPPfYY3bt356qrrmLNmjUMHDiQFi1aMH/+fHcsnpSkzm737t107dqVqKgosrKyeOSRR+jRowdhYWG8++67AEyePJmlS5cSHh7Oa6+9lmeMS5YsYcSIEYDzyeq77rrLHWP2xPHZZ58RGRlJeHg4EyZMuKSkZYqXV6u5quoPOJNA9nnvZHuvwH15tF0P5Pp0X16yVGlWy/MiasYAbN68me7du+e6LCQkhHnz5lG1alUSExPp1auXu4Lojh07+PDDD+nTpw933XUX//73v3n44YfdbV988UXeeust1q9f75730UcfUbNmTc6ePUuPHj24/vrrL6g4mtPp06cZOHAgL730EqNHj+bJJ5/k559/ZuvWrYwbN46RI0dSp04dfv75Z0JCQoiJieHmm292j462Zs0aNm/eTPPmzd0VSnfs2MFNN93E9OnTCQ8P57333qNatWpERUWRlpZGnz59uOaaa3jxxReZOnVqoesfbd++ncWLF5OSkkLbtm3505/+RGxsLF988QXLly8nKCiIe++9l5kzZ3L77bcXatumeJW6ct9NLUGUbK5BefyFqvLEE0/w66+/EhAQwIEDB9yXnnIr75w9QeRm2rRpzJs3D4D9+/cTExOTb4IIDg5m6NChgLOkdfny5QkKCnIPUgOFK0mdkJDAqFGjmDt3Lh07dgRgwYIFbNy4kTlz5gDOQnExMTEEB1/avbzhw4dTvnx5ypcvT506dThy5AiLFi1i7dq17nLkZ8+epU4dK4Xj70phgrBLTKZwOnbs6P5yzGnmzJkkJCSwdu1agoKCaNasmbvoXG7lnfOzZMkSFi5cyMqVK6lYsSIDBw4ssIBdUFCQe7t5ldzOXpLa4XAQEhLibp+zuFy1atVo3Lgxy5cvdycIVeXNN99kyJAhF8V7KbKX3T5XOltVGTduHC+88MIlbdP4RqmrxVSvWkjBKxmTzZVXXklaWhrvv/++e15UVBS//PILycnJ1KlTh6CgIBYvXszevXvd6+RW3jmn7GXAk5OTqVGjBhUrVmT79u2sWrWqSOIvTEnq4OBgvv76az799FP3DeghQ4bw9ttvu+PcuXMnp0+fLtIy4YMHD2bOnDkcPXoUgKSkpAuOpfFPpSpBCFClfKk7KTJeJiLMmzePn3/+mZYtW9KxY0emTJlCgwYNuPXWW4mOjiYiIoKZM2deUG46t/LOOWUvAz506FAyMzMJCwvjqaee8nhEuoIUpiQ1OM8qvvvuO1577TW++eYbxo8fT4cOHejWrRudOnViwoQJ7jjLlStHly5d8r1J7YkOHTrw3HPPcc011xAWFsbVV1+d69jMxr+UqnLflRu11VPxO3wdhimkkljuu6SUdzYmuzJd7rtcwOUPsWeMMcapVCWIoEBLEKZ4lNbyzsZkV6oSRLmAUvVxypTSdKnTGH90Kf/HStU3aqCdQZRIISEhHDt2zJKEMV6iqhw7duyCLtCeKFVdfgIK6Idu/FOjRo2Ij48nISHB16EYU2qFhITQqFGjQrUpZQnC1xGYSxEUFHTB077GGP9Qqi4xFfQkqzHGGM+VqgRhZxDGGFN0SlmCsAxhjDFFpVQ9SS0iCYC3CryEAt4d8uvy+HN8/hwbWHyXw59jA4vPE01VtXZuC0pVgvAmEYnO63F0f+DP8flzbGDxXQ5/jg0svstVqi4xGWOMKTqWIIwxxuTKEoTnCh5A2Lf8OT5/jg0svsvhz7GBxXdZ7B6EMcaYXNkZhDHGmFxZgjDGGJOrMp8gRGSoiOwQkVgRmZzL8moi8q2IbBCRLSJyp6dt/SC+OBHZJCLrRSTaR/HVEJF5IrJRRNaISCdP2/o4tuI4dh+JyFERyXVgCXGa5op/o4h08/Sz+Tg2fzh27URkpYikicjDOZYVx//by4nP68fPY6paZl9AILALaAEEAxuADjnWeQJ4yfW+NpDkWrfAtr6MzzUdB4T6+Pi9DDzjet8OWORpW1/FVhzHzrWP/kA3YHMey68FfsQ53HovYHVxHLvLic2Pjl0doAfwD+Dhwvxe+DK+4jp+nr7K+hlEJBCrqrtVNR2YBYzKsY4CVcRZCbAyzi/gTA/b+jK+4uBJfB2ARQCquh1oJiJ1PWzrq9iKhar+ivPnlZdRwKfqtAqoLiL1KYbfvcuIrVgUFJ+qHlXVKCAjx6Li+H97OfH5lbKeIBoC+7NNx7vmZfcW0B44CGwC/qKqDg/b+jI+cCaPBSKyVkTuKeLYPI1vAzAGQEQigaZAIw/b+io28P6x80Ren6E4fvcKkl8M/nDs8uIPx64gfnP8StV4EJcgt+p+Ofv9DgHWA1cCLYGfRWSph20v1yXHp6ongT6qelBE6rjmb3f9ZVOc8b0IvCEi63EmsN9wnuF4+/hdTmzg/WPnibw+Q3H87hUkvxj84djlxR+OXUH85viV9TOIeKBxtulGOP8Sz+5O4CvXqXQssAfn9WpP2voyPlT1oOvfo8A8nKfXxRqfqp5U1TtVNRy4Hed9kj2etPVhbMVx7DyR12cojt+9guQZg58cu7z4w7HLlz8dv7KeIKKA1iLSXESCgZuA+TnW2QcMBnBdn24L7Pawrc/iE5FKIlLFNb8ScA2Qa48Kb8YnItVdywDGA7+6zm68ffwuObZiOnaemA/c7uox1AtIVtVDFM/v3iXF5kfHLi/+cOzy5HfHz9d3yX39wtkbYyfOng1/c82bCEx0vW8ALMB5CWIzcFt+bf0ljk4jKwAABN5JREFUPpy9NDa4Xlt8GN8VQAywHfgKqFFcx+9SYyvGY/c5cAjnjcp44O4c8QnwL1f8m4CIYjx2lxSbHx27eq75J4ETrvdVi+PYXU58xXX8PH1ZqQ1jjDG5KuuXmIwxxuTBEoQxxphcWYIwxhiTK0sQxhhjcmUJwhhjTK4sQZgSTURGi4iKSLts8waKyHdFsO2PReSGAtYZKCK9C7ndgSKSLCK/ich2EZmabdnI/CqMisgdIvKWB/u4TkSedr3/s4hsFpEfzj33ISJ9ReTVbOvXFpH/FuZzmNLPEoQp6W4GluF84MkXBgKFShAuS1W1K9AVGCEifQBUdb6qvlgEcT0K/Nv1fjwQhrOUyBBXYcengL+fW1lVE4BD5+IwBixBmBJMRCoDfXA+hJQzQVQV51gPW0XkHREJEJFA11nBZle9/Qdd2wkXkVXiHNdgnojUyGVfcSIS6nofISJLRKQZzoefHhRn7f5+rr/E54pIlOuV7xeuqp7FWUuroWvb7jMEERnrinWDiFxUi0dEhotzTIHQHPPbAGmq/9/e3YRoVcVxHP/+BoQKxCBalGSW2abMmUkFUYMg0GpRUiDjC66CxBIJIgRRfKEWStLLwoWBGbQp6WUqLFo4vtALoSZi6KZxEUhJUgoiaD8X//Mwt5kzM9mmHp//Bx7mueeec++5izl/zjk8/+tzjeIJwC3ED7dWAF/YPj/skh8Dy8bqb+osnZ6sL7W3p4F9tk9L+l1Sr+0j5dwcIp33GWAfkbX1Z2Cy7QchUm2UunuAF20PSNoMbATWjndz24OSdgIXbW8v13wf2GH7kKQpwJdEtt2qEoymA7VkbBuAhbZ/afS11W4x8BLwRGWgnwccaRxvB74lfpl7mAgEiyr3+wHYOlpfU+fJGURqZ31EPn/K377Gue8dOf+vEmkP5hM5tO6V9JakRcCfkiYBt9oeKO3eJV728m89BrytyBD7KTGTmVipt0DSceAs8Jnts5U6h4Hdkp4jXnTT8ijwCvBkJTgA3AH81jqw/Z7tHtvLiaDyJvC4pA8l7ZDUGgd+JVK3pARkgEhtStJtRIrzXZIGgZeBJWV9HUamcHYZTGcC+4HVwK7ruOUVhv5fbhqjXhcw13Z3+Uy2faFS76Dth4AZwCpJ3cMr2H4eWE9kHz1Wnhki0E0E7h+lD5dqfZR0JzDb9iflukuAy5Rkj6XNpTGeLXWYDBCpXT1LvNHsbttTbd9FLCHNL+fnlIydXcRAeKis1XfZ3kts0vba/gM4L2lBabcCGGCkQeDh8v2ZRvkFYrBu+Qp4oXVQG/ibbJ8GXiNmBH8jaZrt72xvAM4xlKb6DLFktkfSA5XL/gTcVynfQjw3wM1EEP2L2JuACDj/p8yr6T+WASK1qz4iV37TXmBp+f4N8UKgE0Tg+IjYCN5fln92A+tK3ZXAtrLk0w1srtxvE/FyoYPA1UZ5P7C4tUkNrAFmlQ3vk8Qm9nh2Ao9IumdY+baymX6C2KP4sXXC9iliQ/kDSdOGtTsA9DRmU0jqKe2OlqJ3iCysvcQeDcTS1ef/oL+pQ2Q215RuQJLeAPptf30dbQ4AT42yr5E6UM4gUroxvcrQ0tG4JN0OvJ7BITXlDCKllFJVziBSSilVZYBIKaVUlQEipZRSVQaIlFJKVRkgUkopVV0DGFFoRc1HxB0AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# plot result.\n",
+    "plt.plot(ab_risk*100.0, ab_rtn*100.0, label='Efficient frontier')\n",
+    "plt.plot([sr_risk*100], [sr_rtn*100], 'rs', label='Portfolio with maximum Sharpe ratio')\n",
+    "plt.plot([sr_risk*100, 0.0], [sr_rtn*100, 0.0], 'r-', label='Capital market line')\n",
+    "plt.axis([min(ab_risk*100), max(ab_risk*100), min(ab_rtn*100), max(ab_rtn*100)])\n",
+    "plt.ylabel('Total Expected Return (%)')\n",
+    "plt.xlabel('Absolute Risk (%)')\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Portfolio optimization with tracking-error constraint"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "To avoid taking unnecessary risk when beating a benchmark, the investors commonly impose a limit on the volatility of the deviation of the active portfolio from the benchmark, which is also known as tracking-error volatility (TEV) \\cite{J03}. The model to build efficient frontier in excess-return space is\n",
+    "\\begin{equation}\\label{er_tev}\n",
+    "\\begin{array}{ll}\n",
+    "\\underset{x\\in\\Re^n}{\\mbox{maximize}} & r^Tx\\\\\n",
+    "\\mbox{subject to} & e^Tx = 0,\\\\\n",
+    "     & x^TVx\\leq tev,\n",
+    "\\end{array}\n",
+    "\\end{equation}\n",
+    "where $tev$ is a limit on the track-error. Roll \\cite{R92} noted that problem (\\ref{er_tev}) is totally independent of the benchmark and leads to the unpalatable result that the active portfolio has systematically higher risk than the benchmark and is not optimal. Therefore, in this section we solve a more advanced model by taking absolute risk into account as follows.\n",
+    "\\begin{equation}\\label{tev_model}\n",
+    "\\begin{array}{ll}\n",
+    "\\underset{x\\in\\Re^n}{\\mbox{minimize}} & -r^Tx+\\mu (x+b)^TV(x+b)\\\\\n",
+    "\\mbox{subject to} & e^Tx = 0,\\\\\n",
+    "     & x^TVx\\leq tev,\\\\\n",
+    "     & x+b\\geq0,\n",
+    "\\end{array}\n",
+    "\\end{equation}\n",
+    "where $b$ is a benchmark portfolio. In this demonstration, it is generated synthetically. Note here we use the same covariance matrix $V$ for tev and absolute risk measurement for demonstration purpose. In practice one could use different covariance matrices from different markets."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Generate a benchmark portfolio from efficient portfolio that maximiz the Sharpe ratio\n",
+    "# Perturb x\n",
+    "b = sr_x + 1.e-1\n",
+    "# Normalize b\n",
+    "b = b/sum(b)\n",
+    "\n",
+    "# Set limit on tracking-error\n",
+    "tev = 0.000002\n",
+    "\n",
+    "# Compute risk and return at the benchmark\n",
+    "b_risk = mt.sqrt(b.dot(V.dot(b)))\n",
+    "b_rtn = r.dot(b)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Input for linear constraint: e'x = 0\n",
+    "irowa = np.full(n, 1, dtype=int)\n",
+    "icola = np.arange(1, n+1)\n",
+    "a = np.full(n, 1.0, dtype=float)\n",
+    "bl = np.zeros(1)\n",
+    "bu = np.zeros(1)\n",
+    "\n",
+    "# Input for bound constraint: x >= -b\n",
+    "blx = -b\n",
+    "bux = np.full(n, 1.e20, float)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Initialize output data: TEV risk and return\n",
+    "tev_risk = np.empty(0, float)\n",
+    "tev_rtn = np.empty(0, float)\n",
+    "\n",
+    "for mu in np.linspace(0.0, 2000.0, step):\n",
+    "    # Create problem handle\n",
+    "    handle = opt.handle_init(n)\n",
+    "    \n",
+    "    # Set quadratic objective function\n",
+    "    # In qcqp standard form q should be 2*mu*V\n",
+    "    q = 2.0 * mu * v_val\n",
+    "    r_mu = 2.0*mu*V.dot(b)-r\n",
+    "    idqc = -1\n",
+    "    opt.handle_set_qconstr(handle, 0.0, idqc, idxr, r_mu, irowq, icolq, q)\n",
+    "    \n",
+    "    # Set quadratic constraint\n",
+    "    # In qcqp standard form q should be 2*V\n",
+    "    q = 2.0 * v_val\n",
+    "    idqc = 0\n",
+    "    opt.handle_set_qconstr(handle, -tev, idqc, irowq=irowq, icolq=icolq, q=q)\n",
+    "    \n",
+    "    # Set linear constraint e'x = 1\n",
+    "    opt.handle_set_linconstr(handle, bl, bu, irowa, icola, a)\n",
+    "    \n",
+    "    # Set bound constraint\n",
+    "    opt.handle_set_simplebounds(handle, blx, bux)\n",
+    "    \n",
+    "    # Set options\n",
+    "    for option in [\n",
+    "            'Print Options = NO',\n",
+    "            'Print Level = 1',\n",
+    "            'Print File = -1',\n",
+    "            'SOCP Scaling = A'\n",
+    "    ]:\n",
+    "        opt.handle_opt_set(handle, option)\n",
+    "        \n",
+    "    # Call socp interior point solver\n",
+    "    # Mute warnings and do not count results from warnings\n",
+    "    wn.simplefilter('error', utils.NagAlgorithmicWarning)\n",
+    "    try:\n",
+    "        slt = opt.handle_solve_socp_ipm(handle)\n",
+    "\n",
+    "#       Compute risk and return from the portfolio\n",
+    "        tev_risk = np.append(tev_risk, mt.sqrt((slt.x[0:n]+b).dot(V.dot(slt.x[0:n]+b))))\n",
+    "        tev_rtn = np.append(tev_rtn, r.dot(slt.x[0:n]+b))\n",
+    "    except utils.NagAlgorithmicWarning:\n",
+    "        pass\n",
+    "    \n",
+    "    # Destroy the handle:\n",
+    "    opt.handle_free(handle)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAFYCAYAAAD5gk07AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3zN9/fA8dc7kcQIsTKsIEaMiL0rKDVK1ehQ1SpqtKV76Pbr1NLl20EpSml1F7WqjT1qE3sTK4hEIjv3/P74RBpEXOTmZpzn45FH87n3fj73JJWcvMfnHCMiKKWUUsqxXJwdgFJKKVUQaMJVSimlcoAmXKWUUioHaMJVSimlcoAmXKWUUioHaMJVSimlckAhZweQncqWLStVqlRxdhhKKaXyoVSbEJeUSlxSStp/U7Gl3VrragypIiSd2n9WRLwzOz9fJdwqVaqwYcMGZ4ehlFIqj0tJtbH3dCybj51n05EoNh87z8EzFwFwM9DMrwSN/EvS0L8UDf1LElC2GMYYjDFHrnXNfJVwlVJKqZtxNjaRzUej2Hz0PJuPRrE1PIq4pFQAyhRzp6F/Kfo0qkhD/5LUr1iSYh43nj414SqllCpQklNt7Dp5gc1Ho9iUlmCPRsYBUMjFUKd8Ce5tXJGG/qVo5F+KSqWLYIy55ffVhKuUUipfi09KZc3Bs6w9GMnmo+fZFh5NYooNAJ/iHjTyL8WDzf1pVLkUQeW9KOLu6pA4NOEqpZTKdw6fvcjSPRGE7jnDmoPnSEqx4e7qQt0KJXiweWUaVbbWX8t7Fc6W0as9NOEqpZTK8xJTUvn3UCShu8+wdE8EB89aG5wCyhajf/PKtK/lTdMqpSns5pjRqz004SqllMqTjkfFW6PY3WdYtf8s8cmpuBdyoWVAGR5uWZl2gT5UKVvM2WGm04SrlFIqT0hOtbHh8HmW7o1g6e4z7DkdA0CFkkW4p3FF2tfypmVAWYetwd4qTbhKKaVyrYgLCSzda00Tr9h7lpjEFNxcDU2rlObVxrVpX8ubat6eObYOeys04SqllMo1Um3ClmNRaRueIgg7fgEA3xIedAsuR7tAH1pXL0Pxwm5OjvTGacJVSinlVJEXk1i+9wyheyJYtvcMUXHJuBhoXLkUL3QOpH2gD7XLFc8To9isaMJVSimVo2w2YceJC4SmjWK3HItCBMp6utOhli/ta3nTpro3XkXz3ig2K5pwlVJKOVx0fDIr950ldE8ES/ec4WxsIsZAcMWSPNWhBrfX8iGovBcuLnl7FJsVTbhKKaWynYiw53QMobutqeKNR86TahO8irgRUtOb9oHehNT0pqynh7NDzTGacJVSSmWLi4kprNp/ltA91q7ik9EJANQtX4LH2lajfS1v6lcsSSHXgtmKXROuUkqpmyIiHDx7kdDd1jTxukPnSE4VPD0K0aZGWZ7p6EPbQG98SxR2dqi5giZcpZRSdktKsbH6wFlCd1t1ii912anp68mg1lVpF+hD48qlcC9UMEexWdGEq5RSKksJyaks23uGhWGnWLLrNDEJKRRxc6V19TIMDQmgXaA3FUsVdXaYuZ4mXKWUUleJTUwhdHcEC8NOEbongrikVEoWdaNLXT+61vOjVbWyTm0EkBdpwlVKKQVAdFwyf+06zcKwkyzfd5akFBtlPT3o1bACXYPK0TygNG4FdMNTdtCEq5RSBdjZ2EQW7zjNgrCTrDlwjhSbUN6rMA8296drUDkaVy6Faz6+NzYnacJVSqkC5lR0AgvDTrIg7BTrD0diE6hSpiiPtgmga5AfwRW98nwZxdxIE65SShUAxyLjWJCWZDcfjQKsncUjbq9B1yA/avnl/VrFuZ1DE64xpgvwGeAKTBaRMVc8XwuYCjQCXhWRcRmeKwlMBoIAAQaJyBpHxquUUvnJ/ojY9JHsjhNW152gCiV4oXMgXYL8qObt6eQICxaHJVxjjCvwBXAHEA6sN8bMEZGdGV4WCTwJ9MzkEp8BC0XkHmOMO6B7zpVSKgsiwq6TMelJdl9ELACN/Evy6p216RLkR6XS+qvUWRw5wm0G7BeRgwDGmB+Au4H0hCsiEUCEMaZbxhONMSWAEOCRtNclAUkOjFUppfIkEat/7MKwUyzccYoj5+JwMdCsamn6t6hL57p++HlppafcwJEJtwJwLMNxONDcznMDgDPAVGNMfWAj8JSIXMzeEJVSKu9JtQkbDkeyIOwUi3ac4mR0AoVcDK2ql2V422rcUce3QDUFyCscmXAzW30XO88thLWuO1JE1hljPgNGAa9f9SbGDAWGAvj7+99kqEoplbslp9pYe/AcC8JOsXjHac7GJuJeyIWQGt483ymQjrV9813/2PzGkQk3HKiU4bgicOIGzg0XkXVpxz9jJdyriMjXwNcATZo0sTehK6VUrpeYksrKfWdZkFZSMSoumaLurrSv5UOXun60r+WDp4febJJXOPL/1HqghjGmKnAc6Av0s+dEETlljDlmjAkUkT1ABzKs/SqlVH4Vl5TCsj1nWBB2in92RxCbmELxwoW4o7YvXYL8CKnprSUV8yiHJVwRSTHGjAAWYd0WNEVEdhhjhqc9P8EY4wdsAEoANmPM00AdEbkAjARmpu1QPggMdFSsSinlTDEJyfyzO4IF20+xdG8ECck2Shdzp3twOboEWXWLtftO3mdE8s8sbJMmTWTDhg3ODkMppa7r/MUk/tpplVRctf8cSak2fIp70CXIjy5BfjSrUrrANmrPy4wxG0WkSWbP6eS/UkrlkIiYBBbtsJoDrD0YSapNqFCyCA+3rEzXen40rFQKF61bnG9pwlVKKQc6HhVv3SMbdpINR84jAgFlizEsJICuQeUIqlBCSyoWEJpwlVIqmx0+e5EFaUl2a3g0ALX8ivNUhxp0DSpHTV9PTbIFkCZcpZS6RSLCvohYFmw/xYKwk+w+FQNAcEUvXuwSSNegclQtW8zJUSpn04SrlFI3QUTYceJCegeeg2cuYgw0qVyK17vXoUuQHxVKFnF2mCoX0YSrlFJ2EhE2H4tiwXYryYafj8fVxdAioDQDW1elcx1ffEpo3WKVOU24Sil1HYfPXuTXzcf5ffNxjkbG4eZquK16WZ68vQYd6/hSupi7s0NUeYAmXKWUysT5i0nM23aCXzcfZ/PRKIyB1tXK8mSHGnSq60uJwlq3WN0YTbhKKZUmMSWV0N0R/LrpOKF7IkhOFQJ9i/Ny11rc3aCCtrlTt0QTrlKqQBMRNh45z6+bj/PntpNExyfjXdyDAS2r0KtRBeqU0/tkVfbQhKuUKpCuXJct4uZK57q+9GpUkdbVymhZRZXtNOEqpQqMa63LPtWhBp2D/LTVnXIo/dellMrXdF1W5RaacJVS+Y6uy6rcSBOuUirf0HVZlZtpwlVK5Wm6LqvyCv2XqJTKc3RdVuVFmnCVUnmCrsuqvE4TrlIqV9N1WZVfaMJVSuU6ui6r8iP9V6uUyhV0XVbld5pwlVJOteNENN//e5S5W3VdVuVvmnCVUjkuPimVedtOMHPdUbYci8KjkAtdg/x0XVbla5pwlVI5Zn9EDDPXHeWXjeFcSEihmncx3uhehz6NKuJVVPvLqvxNE65SKnv4+cHp01c9LL6+zFm4kVnrjrLuUCRuroauQeV4sLk/zaqW1iljVWBowlVKZY9Mki2AOX2ap37YQuUyRRnVtRb3NK5IWU+PHA5OKefThKuUcrgZg5vRulpZXFx0NKsKLt2ZoJS6NTYbZ3//M8uXtKnhrclWFXg6wlVK3ZTU0xEcHvs5nt9Nw/f0MWeHo1SupyNcpZT9RDg/bxF723fDVqEC1T56m+OFS/Lni2OdHZlSuZ6OcJVS12WLOMORj7+i6Lff4HvqKC4exVjSrjfFRjxOy7va0MjVBb4dl/nGKV/fnA9YqVxIE65SKnMiXFj8D6fHjady6AKqpiazpVId1j37PsFPP0rXSmUvf/2pU86JU6k8QhOuUuoycu4cxz6biPuUyfgdPwQexfi7TQ88HhtOq17taeDm6uwQlcqTNOEqpUCEpOUrOPnhePz+mot/chJbK9Ri7ci3qfv0o3QN8HN2hErleZpwlSrIoqKImzKN+M+/osyhvZR2L8Lipl1xf3w4be7tSH13/RWhVHbRnyalChoRWLeOmPFf4vHLTxRNSmCfXw1+e/hlaj09hO4Nqmi5RaUcQBOuUgXFhQvIjBnEf/4VRXfvwMWtML/WbcfJvgPoOuBOHvUr4ewIlcrXNOEqld9t2IDtq6+wzfqeQgnxHPStxm/dn6TEoId5oENdfEpoY3elcoImXKXyo5gY+P57UidMwHXzZhLdCvNH7RBC2/bktr5deK5JJYrq+qxSOUp/4pTKTzZvhokTsc2ciUtsLPt9qzLjjsc41rUn/ToF82VtX1y1prFSTqEJV6m87uJF+OEHmDgR1q8nyb0wcwJv4/uGXSnXqS2PhlSjQaWSzo5SqQJPE65SedXWrTBxIvLdd5iYGI6Vq8rkjsP4q2FHuobU4dNWVahUuqizo1RKpdGEq1ReEhcHP/5ojWbXriXV3Z1/gtoysXZHjtdpxMDbqrKwmT8lCrs5O1Kl1BU04SqVF+zYYSXZ6dMhOprIilWZ2mUYM2q2pWL1igxpE8Cd9crh5qoNwJTKrTThKpVbxcfDzz9biXbVKsTdne3NO/BB5XasKl+HjnV8mdAmgOZVS2uhCqXyAIcmXGNMF+AzwBWYLCJjrni+FjAVaAS8KiLjrnjeFdgAHBeR7o6MValcY9cu+Ppr+PZbOH+e5IDqLH7oWf6vTBPOF/WiT6OK/B0SQDVvT2dHqpS6AQ5LuGnJ8gvgDiAcWG+MmSMiOzO8LBJ4Euh5jcs8BewCtASOyt8SE+GXX6zR7PLl4OZG7J13MT24Mx8lV8DV1YW+TSsxrG01KpQs4uxolVI3wZEj3GbAfhE5CGCM+QG4G0hPuCISAUQYY7pdebIxpiLQDXgXeNaBcSrlPHv3WqPZadPg3DkICODMq//HJxVb88ORBNzFhQGtKjOsbQC+WhFKqTzNkQm3AnAsw3E40PwGzv8UeBEontWLjDFDgaEA/v7+NxiiUk6QlAS//WaNZkNDoVAhuPtuDt/Tnw+TKjB/ZwRFTyQzJCSAIW0CKOvp4eyIlVLZwJEJN7NdHGLXicZ0ByJEZKMxpl1WrxWRr4GvAZo0aWLX9ZVyigMHrNHs1Klw5gxUqQLvvsvOLn34eHsMS7acprhHJCNvr86g1lUpVczd2RErpbKRIxNuOFApw3FF4ISd57YGehhj7gQKAyWMMd+JSP9sjlEpx0pOhj/+sEazS5aAqyvcdRcMG8bGwCaMDz3Ish/341XEjWc61uSR1lXwKqL30CqVHzky4a4HahhjqgLHgb5AP3tOFJGXgZcB0ka4z2uyVXnKoUMwaRJMmQKnT0OlSvDWWzB4MGsTPPjfP/tYtXQdpYu582KXQB5qUZniWqxCqXwty4RrjHEH7gTaAOWBeCAMmC8iu7M6V0RSjDEjgEVYtwVNEZEdxpjhac9PMMb4Yd32UwKwGWOeBuqIyIVb/LqUynnJyTBvnjWaXbwYjIFu3WDYMKRzZ1YdimL8nH38eziSsp4evHpnbR5s4a9de5QqIIxI5suexpjXgD7AcmAjEIE1vVsTaI+1Rvu8iITlTKjX16RJE9mwYYOzw1AFzZEjMHkyfPMNnDwJFSrAo4/C4MFQqRIr953lo7/2sPloFH4lCjO8bQB9m/lT2M3V2ZErpbKZMWajiDTJ7Lms/rTeLiLvXOO5D40x5bh8jVapgiMlBebPt0azCxZYj3XtChMmwJ13QqFCbD0WxYeT17Jq/zkqlCzCOz2DuLdJRTwKaaJVqiC6ZsIVkT+ufCxtirmQiMSJyEngpCODUyrXCQ//bzQbHg7lysGrr1oj2sqVAdgfEctHi/ewIOwUZYq58+ZddejX3F8TrVIFnN2LR8aYgcBgwMUY87eIvO64sJTKRVJTYeFCazT7558gAp06wfjx0L07uFmbnU5ExfPZkn38tPEYRdxceaZjTQa3qYqnh67RKqWySLjGmK4isiDDQ51F5La057YCmnBV/nbihDWSnTwZjh4FX1946SUYMgSqVk1/2fmLSXy5dD/frjkCAgNbV+XxdtUoowUrlFIZZPWnd/O0Kk6vp22M2mGMmQ7YgCx3KCuVZ9ls1g7jiRNh7lxrdNuxI3z0EfToAe7/FaO4mJjClJWH+Hr5QS4mpdCnUUWe6liDiqW06btS6mpZreGONsZUAN42xiQCbwKlgaIisimnAlQqR5w6Zd0zO2kSHD4M3t7w3HPWaLZ69ctempRi4/t/j/K/f/ZxNjaJTnV8eaFzIDV8s6xCqpQq4K63uBQJPAbUBaYAq4CPHR2UUjnCZoO//7ZGs3/8Ye08bt8exoyBnj3B4/Ip4VSbMGfrcT5avJfw8/E0r1qarx+uRSP/Uk76ApRSeUlWa7j/B3QE3IAZItLdGNMbmG+MmSwi3+dUkEplq4gIq57xpElWfeMyZeCpp2DoUKhZM9NT1hw4x1vzdrLr5AXqli/Bu73qEVKjrDZ+V0rZLasR7t0i0sBYv1E2Av8TkV+NMXOxetgqlXeIWJ15Jk60OvUkJ0NIiFVusXdvKJx567tjkXG8N38XC8JOUaFkEcY/0JDu9crh4qKJVil1Y7JKuLuMMVOBIsDKSw+KSDLwkaMDUypbnD1r9Zr9+mvYtw9KlYInnrBGs7VrX/O02MQUvgzdz+SVh3A1hufuqMmQkACtDqWUumlZbZp6wBjTEEjOTeUblbouEVi+3BrN/vKL1X+2dWt4/XW45x4oUuSap9pswq+bj/Phwt1ExCTSq2EFXupSCz8vbf6ulLo1Wa3hthCRtVk87wn4i8hOh0Sm1I2KjITp061Eu3s3eHnBsGHWaDYo6LqnbzwSyVtzd7I1PJoGlUoy4aHGuiFKKZVtsppSftAYMxZYgLWGewareUF1rOYF1YHnHR6hUlkRgdWrrST744+QmAgtWlibou67D4pe/57YE1HxfLBwN39sOYFvCQ8+ub8+d9evoOu0SqlsldWU8khjTFngXuAhoBxWe75dwLcisjRHIlQqM+fPw3ffWYl2xw4oXtzqzjN0KNSvb9cl4pNSmbj8ABOWHUAERt5eneFtq1FMSzEqpRwgy98sInIW+CrtQynnEoG1a/8bzcbHQ9OmVunFvn2hWDG7LxW6O4I35oRxLDKebvXKMaprLSqV1gpRSinH0T/lVe4XHQ0zZ1qJdts28PSEhx6y1mcbNbqhS52KTuCteTuYv/0U1byLMWtIc1pVK+ugwJVS6j+acFXuJAIbNlhJ9vvvIS4OGja0+s3262dNId+AlFQb3645wseL95BiE17oHMiQNgG4F3Jx0BeglFKX04SrcpeYGJg1y0q0mzdbm5769bPWZps0gZuo7LTlWBSv/LqdnScv0LamN2/fHYR/GZ0+VkrlLLsSrjGmGVAl4+tFZJaDYlIF0aZNVpKdNQtiY62NT19+CQ8+CCVK3NQlo+OTGbtoNzPXHcWnuAdfPtiIrkF+Wo5RKeUU1024xphpQB1gC5Ca9rAAmnDVrYmNhR9+sBLthg1WQYr777fWZps3v6nRLICIMGfrCd6et4vIi4k80qoKz95Rk+KF3bL5C1BKKfvZM8JtAdQREZujg1EFxNatVpL97jtrCrluXRg/3toIVbLkLV36yLmLvPLbdlbtP0f9il5MG9iUoApe2RS4UkrdPHsS7g6gLBDh4FhUfhYXB7NnW4l23Tqr9d1991mj2Vatbno0e0mqTfh29WHGLtpDIRfD23fXpV/zyrhq8QqlVC5hT8L1wmpksBZIvPSgiPR2WFQq/wgLs5LsjBnW7T21asEnn8DDD0Pp0tnyFgfOxPLiz9vYeOQ87QO9ea93Pcp5XbteslJKOYM9Cfd9h0eh8pf4ePjpJyvRrl4N7u5W04Bhw6BNm1sezV6SahMmrzjIx3/tpbCbKx/fV59eDSvopiilVK6UZcI1xrgCL4pI5xyKR+Vlu3ZZSXb6dKv0Ys2aMG4cDBgAZbO3uMTe0zG88PM2th6LolMdX97pGYRPCe3oo5TKva5X2jHVGJNkjCkhIhdyKiiVhyQkWC3wJk6EFSvAzc1q6D5sGLRrl22j2UuSU21MXHaA8X/vx7NwIf73QEO6B5fTUa1SKtezZ0o5FthqjFkMXLz0oIg867CoVO63Z4/V1P3bb+HcOahWDT74AB55BHx8HPKW+yNieGb2VrYfj6Z7cDn+r0ddynh6OOS9lFIqu9mTcJekfaiCLjERfvvNGs0uXQqFCkHPntZo9vbbwcUxZRJFhBlrj/Dun7so5lGICf0b0SWonEPeSymlHOW6CVdEvsmJQFQutn+/NZqdOhXOnoWqVeG992DgQPDzc+hbR1xI4IWft7Fs7xnaBXrz4T3B+BTXtVqlVN5jT6WpfViVpS4jIjUdEpHKHZKS4I8/rNHs33+Dqyv06GGNZu+4w2Gj2YwWhp3i5V+3EZ+cytt316V/i8q6VquUyrPsmVK+LcPnhbEa0mvpnvzq4EGYNAmmTIGICPD3h7ffhkGDoHz5HAkhNjGFt+bu4McN4dSr4MUn9zeguo9njry3Uko5ij1TyqeveGicMWalg+JRzpCcDHPnWqPZxYut0Wv37tZotnNna3SbQ8KOR/PErE0ci4xjRPvqPNmhhrbQU0rlC/ZMKQdnOHQBmqAj3PzhyJH/RrMnT0LFijB6NAwebH2eg0Ss0ozvzd9NGU93fhjakmZVs6cSlVJK5Qb2TCl/keHzFOAQcL9jwlEOl5ICf/5pjWYXLrQeu/NOazTbtau18ziHRccl8+IvW1m04zQdavkw7t76lCrmnuNxKKWUI9nz27W/iBzJ+IAxxt9B8ShHOXYMJk+Gb76B48et9djXXoNHH7XWaZ1k89HzjPx+M6eiE3itW20G31ZVN0YppfIlexLub0CjKx77PZPHVG6TmgoLFlij2fnzQcRak/38c2uN1gmj2UtEhCmrDvP+/F34lijMT8Nb0tC/lNPiUUopR7vmb1xjTE2gNuBljOmR4akSWLuVVW51/Lg1kp082RrZ+vrCqFHWaLZqVWdHR1xSCi/+vI15205yRx1fxt1TH6+i2hxeKZW/ZTXEqQv0Bkpi3Qp0SQwwzJFBqZuQmmrtMJ44EebNs47vuMNqhdejh1XjOBc4dPYiw2dsZF9EDC92CeSxttV0ClkpVSBcM+GKyG/Ab8aY20REbwPKrU6etHYZT5pk7Tr29obnn4chQ6z6xrnI37tO8/TsLbi6GL4d1Iw2NbydHZJSSuUYexbxThljFgF+IlI/7TahbiKifXKdxWazqj9NnGhVg0pJsWoZf/ihVdvYPXft8BURxv+9n0+W7CWoQgm+erAxlUoXdXZYSimVo+xJuJOBV/jv9qDtwPdoY/qcd/o0TJtm1TU+eBDKlIGnn7ZGszVzZ6XN+KRUnv95K39uO0mvhhV4v3c9CrvlXCENpZTKLexJuMVEZPWldTYREWNMsmPDUulsNggNtUazv/9uVYVq2xbeecfqO+uRe9vTnYpOYOiMDWw/Hs1LXWoxvG2ArtcqpQosexLuOWNMVdIaGBhjegKnHBqVsrryTJtmJdr9+6FUKRgxAoYOhVq1nB3ddW0Lj2LI9A3EJKTw9UNNuKOOr7NDUkopp7In4Y4AvgFqGWOOACeBBxwaVUElAsuXW0n2l1+sjj2tW8Mbb8A990CRIs6O0C7ztp3guR+3UtbTg18ea0XtciWcHZJSSjmdPc0L9gO3G2O8ACMiUY4Pq4CJjIRvv7XWZnfvBi8vq9TisGFQt66zo7ObiPDVsgN8uHAPjSuXYuJDjSnrmXunvJVSKidl2YbFWEoCiEg0cNEYM9AYE2bPxY0xXYwxe4wx+40xozJ5vpYxZo0xJtEY83yGxysZY0KNMbuMMTuMMU/d4NeV+4nAypXw0ENWmcVnn7WmjadOhRMnYPz4PJVsU1JtvPJbGB8u3MNd9csz89HmmmyVUiqDrCpN3QtMApLSEuxoYAawDRh0vQsbY1yxdjbfAYQD640xc0RkZ4aXRQJPAj2vOD0FeE5ENhljigMbjTF/XXFu3nT+PMyYYU0b79wJJUpY3XmGDYPg4OufnwtdTExhxKxNhO45w2PtqvFCp0BcXHRzlFJKZZTVlPKbQHMR2WOMaQqsxGpk8JOd124G7BeRgwDGmB+Au4H0pCkiEUCEMaZbxhNF5CTWWjEiEmOM2QVUyHhuniICa9daSXb2bEhIgKZNrdKLfftCsWLOjvCmRVxIYNC369l54gLv9griweaVnR2SUkrlSlkl3CQR2QMgIuuNMYdvINmClSCPZTgOB5rfaIDGmCpAQ2DdNZ4fCgwF8Hdi15tMRUfDd99ZiXb7dvD0hAEDrNFsw4bOju6W7Y+IZcCUfzkfl8Q3A5rSvpaPs0NSSqlcK6uE62OMeTLDcbGMxyIy/jrXzmxOUW4kOGOMJ/AL8LSIXMjsNSLyNfA1QJMmTW7o+g4hAuvXW0n2hx8gLg4aNbKOH3gAihd3doTZYsuxKAZO/RdXF8OPw1oSVMHL2SEppVSullXCnQp4Z3F8PeFApQzHFYET9p5sjHHDSrYzReTXG3hf54iJgZkzrcS6ZYs1TdyvnzWabdLE2dFlqxX7zjBsxkbKeLozY1BzqpTNu1PiSimVU7JqXvD6LV57PVAjrWjGcaAv0M+eE41VjugbYJeIfHyLcTjWxo1Wkp01Cy5ehPr14csv4cEHrQ1R+cy8bSd4ZvYWqnl7Mn1QM3xKaKdGpZSyh8M6kItIijFmBLAIcAWmiMgOY8zwtOcnGGP8gA1YPXZtxpingTpAMPAQsN0YsyXtkq+IyHxHxXtDYmPh+++tRLtxo1WQom9fazTbrBnk0/KFs9Yd5dXft9O0cmkmDWiCV5Hc0fJPKaXyAoclXIC0BDn/iscmZPj8FNZU85VWkvkasHNt2WIl2ZkzrSnkoCD43/+gf38oWdLZ0TnUNysP8fa8nbQP9Oar/o21AYFSSt0ghybcfOHiRetWnokT4d9/oXBhuO8+azTbsmW+Hc1m9Pk/+xi3eC9dg/z4rG9D3IQfF54AACAASURBVAtlWS9FKaVUJrIqfPHktZ4Du3Yp523bt1tJdsYMuHABateGTz+1KkOVLu3s6HKEiDBu8R6+CD1Ar4YVGHtPMIVcNdkqpdTNyGqEe2lHcg2sIhZz0467A8scGZTTxMfDjz9aiXbNGqv13T33WKPZ224rEKPZS0SE9+bvYtKKQzzQrBLv9qyn1aOUUuoWXHeXsjFmEdDg0n2wxpjXgdk5E14O2bnTSrLTp0NUlNXM/aOPrCIVZco4O7ocJyKMWbibSSsOMaBlZUb3qKt9bJVS6hbZs4ZbGUjIcJwIVHVMODkoIQF+/tlKtCtXgpsb9OljjWbbti1Qo9mMRISPFu9l4rKD9G/hr8lWKaWyiT0JdxawzhjzC1alqN7ATIdG5Ui7d1tt8L791mqLV706fPghPPIIeN9IXY/86bO/9/F56H76Nq3EWz2CNNkqpVQ2sacf7lvGmAVASNpDw0VkvWPDymaJifDrr9ZodtkyKFQIevWyRrPt24OLbgQC+CJ0P58u2cc9jSvyXi9ds1VKqexk721BrsAZEZlujCljjPEXkaOODCxb7NtnjWanTYOzZ6FqVXj/fRg4EHx9nR1drjJh2QHGLtpDr4YV+KBPsCZbpZTKZtdNuMaY14DWQDVgOlAYa5r5NseGdpOSkuD3363R7D//gKsr3H23NZrt2FFHs5mYvOIgYxbs5q765Rl3b31cNdkqpVS2s2eEew9We7xNACJy3BiTO4sEHz8OlSpBRARUrgzvvAODBkG5cs6OLNeatuoQ7/y5izvr+fHJfZpslVLKUexJuIkiIsYYATDGFHVwTDfv1Kn/RrOdOlmjW3VNv24KZ/TcnXSq48tnfRtqUQullHIgexLur8aYLwAvY8xAYDBWq77cp149azpZXVfonghe/HkbrauX4X/9GuKmyVYppRzKnl3KHxhjugJJQH3gXRFZ4PDIboa7u7MjyBM2Hz3P499tItCvOBP6N8ajkM4EKKWUo9mzaeo9EXkFWJDJYyqPOXAmlkHT1uNd3INpA5tRvLC22FNKqZxgzzxil0we65bdgSjHOxWdwMPf/Iuri2H6oGZ4F/dwdkhKKVVgZNUtaBgwHAg0xmzK8FRxYKOjA1PZKzo+mQFT/iUqLonZw1pSpWwxZ4eklFIFSlZTyj8CfwPvA6MyPB4jIhEOjUplq4TkVIZM38DBs7FMfaQZQRW8nB2SUkoVOFl1CzoPnDfGfAicFpFYAGNMcWNMExHZkFNBqpsnIoz6ZRv/Hopk/AMNua1GWWeHpJRSBZI9a7hfA3EZji8CEx0Tjspun/+zn9+3nOD5TjXpUb+8s8NRSqkCy56E6yIitksHaZ/r1tY8YN62E3z01156N6zAE+2rOzscpZQq0OxJuIeMMY8ZY1yNMS7GmCeAww6OS92iLceieO7HrTSpXIr3+9TTNntKKeVk9iTcYUAH4HTaR1tgiCODUrfmeFQ8j367AZ8SHkx8SAtbKKVUbmBPpanTWA0MVB4Qm5jC4GnrSUxO5fshzSnjqffaKqVUbnDdEa4xproxZpExZmvacbAx5mXHh6ZuVKpNeOr7zeyLiOXzBxtRw7e4s0NSSimVxp4p5cnA/wGXNk5tB/o7LCJ1096fv4u/d0cw+q46tK3p7exwlFJKZWBPwi0mIqsvHYiIAMmOC0ndjFnrjjJ55SEeaVWFh1pWcXY4SimlrmBPwj1njKkKXOqH2xM45dCo1A1Ztf8sb/wRRrtAb17rVtvZ4SillMqEPf1wRwDfALWMMUeAk0Bfh0al7Hb0XByPz9xEgHcx/veANpFXSqncyp5dyvuB240xXoARkSjHh6XsEZ+UytAZVoXNyQ831VZ7SimVi9nTD7cU8DpwGyDGmJXAO2m1lpWTiAijft3GntMxTH2kKf5lijo7JKWUUlmwZ/7xByAGeBBrd/IFYLYjg1LXN3XVYf7YcoLnOwXSLtDH2eEopZS6DnvWcMuKyJsZjv/PGKP9cJ1o7cFzvDt/F53q+PJY22rODkcppZQd7BnhLjPGpFeaMsb0BhY4LiSVlZPR8YyYtYnKZYry0X31cXHRGslKKZUX2DPCHQg8bYxJxro1yB2ITmtiICJS2pEBqv8kpqTy2HebiE9K5YehLXSTlFJK5SF2TSk7PApll9FzdrLlWBQT+jeiuo+WbVRKqbzEninl/iKSeukDa5Q7KsOxygE//HuU7/89yuPtqtElqJyzw1FKKXWD7Em43Ywxc40xvsaYOsAaQAv15qDt4dG88ccO2tQoy3OdAp0djlJKqZtgT+GL+4wx/bCaFsQDD4vIModHpgC4kJDME7M2UdbTnfF9G+Kqm6SUUipPsqc9XwDwGDAXCAfuNcYUcXRgyipu8fIv2zkeFc//+jWkVDF3Z4eklFLqJtkzpbwAeFtEBgNtgGPAeodGpQD4bt1R/tx+kuc7BdK4sm4GV9cmIliNvJRSuZU9u5SbiUg0gIjYgA+MMX84Niy140Q0b8/bSbtAb4aFBDg7HJXDUm02TlyIIDwqguPREYRHRxARG0lUXAxR8TFEJcQSl5RAcmoySakpJKemMKb7SLrUauXs0JVS13DNhGuMeU5EPhKRaGNMbxH5NcPTD2LVV1YOEJuYwohZmylV1I2P7tXiFvldcmoKeyKOsO3kPvZEHGbfmaPsP3eMxJT/2k4XcnHFx7MUpYqUoGSR4lQuXZ5i7oVxd3XDzbUQbq6FCChTwYlfhVLqerIa4T4IfJT2+WtAxoTbDU24DiEivPrbdo6cu8j3Q1pQxtPD2SGpbJZiSyXs5H5WH97GpvDdbD+5n4SURABKFSlOTe/K3Fv/DqqXrUSlkr5U8PLBx7M0ri7aelGpvCyrhGuu8Xlmxyqb/LjhGH9sOcFzd9SkeUAZZ4ejssmFhIssO7CR5Qc3sfbIdi4kXMTFGAJ9qtCrXnsaVKhJg/I18S1eBmP0x0up/CirhCvX+DyzY5UN9pyK4c05O7itelkeb1/d2eGoW3QxKZ6/9/7L4r1rWXN4Gym2VLyLlaJ99aa0rlKfFpXr4VXE09lhKqVySFYJt74xJhJrNFs87XPSju36LWGM6QJ8BrgCk0VkzBXP1wKmAo2AV0VknL3n5jcJyak89cNmPD3c+Pj++nq/bR4lImwK383vYaEs3rOOhJREyhUvywMNu9ApsAVB5arhYnRqWKmCKKuEe0s3fRpjXIEvgDuw7t9db4yZIyI7M7wsEngS6HkT5+Yr4xbtYfcpq5m8T/HCzg5H3aDYxDjm7FjOD5sXceT8SYq5F6Fbndb0qNuW+uVr6jSxUuraCTcb6iQ3A/aLyEEAY8wPwN1AetIUkQggwhjT7UbPzU9W7T/L5JWHeKhFZdrX0mbyecmJ6DN8t3E+v4ct5WJSPMHlavBO18fpUKMZRd31Dyel1H/suQ/3ZlXAKpJxSTjQPLvPNcYMBYYC+Pv733iUThYdl8xzP24lwLsYr9xZ29nhKDsdjjzBN+t+Z/6uVQB0CmxJv0ZdqFdO196VUplzZMLNbA7N3s1Wdp8rIl8DXwM0adIkT23mEhFe+X07Z2MT+e3h1hRxd3V2SOo6jkWd4stVP7Fg12o8CrlxX4M7GNCkO34ltIulUiprjky44UClDMcVgRM5cG6e8fuW4/y57SQvdA6kXkUvZ4ejsnAm9jxfr/mVX7f/QyEXVx5pdhcPNe5GmWL6/00pZZ+sKk2dJ/NRpQFERK5X3Hc9UMMYUxU4DvQF+tkZ162cmycci4zjjd930LRKKYa3rebscNQ1JKYk8d3G+Uxe+ztJqcn0Ce7AkBa98PYs5ezQlFJ5TFYj3FuaIxORFGPMCGAR1q09U0RkhzFmeNrzE4wxfsAGoARgM8Y8DdQRkQuZnXsr8eQmNpvw/E9bEeDj+xroLUC51PIDmxjzzzSOR0fQvnoTnm3bH/9Sfs4OSymVR9m9S9kYUxrIuO3yulO8IjIfmH/FYxMyfH4Ka7rYrnPzi+/WHWHdoUg+6FOPSqWLOjscdYXIuAt8+M80FuxeTUCZiky891VaVK7n7LCUUnncdddw027Z+QQrMZ7D2kG8F6jl2NDyp6Pn4nh//m7a1vTmviaVrn+CyjEiwsLdq/ngn2nEJMbxWKt7Gdz8btxcHbnVQSlVUNjzm+RdoDWwWEQaGmPuAPo4Nqz8yWYTXvxlK4VcDO/3rqfFEHKR0zHneOevb1h+cBNBftUY3Xk4Nbz1DyKlVPaxJ+GmiMgZY4yLMcaIyF/GmHcdHlk+NHPdEdYetKaSy5cs4uxwVJole9cxetFEklNTeL7dQ/Rr1FU78yilsp09CTfaGFMMWAlMN8ZEADbHhpX/HIuM4/0FuwnRqeRcIzEliY+WfsfsLYup61eNMd1G6qYopZTD2JNwewIJwNPAw4AX0N2RQeU3IsJLv2zDxRjG6FRyrnD0/ClemPspuyMO07/xnTwd0k/XapVSDmXPb5iXReQVIBX4BsAY8x7wiiMDy09+2hjO6gPneK+XTiXnBgt2r+btxZNwdXHhs57P0656E2eHpJQqAOxZqOqSyWNXNhtQ13AuNpH35u+iaZVS9G2qU8nOlGJL5f2/pzJq3niql63Ijw9/oMlWKZVjsqo0NQwYDtQ0xmzK8FRxrGIVyg7vzd/NxcQU3utVDxctcOE0FxIu8sLcT1l7ZLtOISulnCKr3zg/An8D7wOjMjwek9ZWT13H6gNn+WVTOE+0r0YN3+LODqfAOnr+FE/+9iHHok7zZueh9K53u7NDUkoVQFlVmjoPnAfuNcYEAbelPbUC0IR7HQnJqbz2Wxj+pYsy8vYazg6nwFp/dAfPzfkEgIn3vkqTSnWcHJFSqqC67hquMeYJrNGuf9rHj8aYxx0dWF731dIDHDx7kXd6BlHYTdvuOcPcHcsZ/vN7lC5agpn939Fkq5RyKnsWsYYBzUQkFtJ3KK8GvnRkYHnZgTOxfLX0AD3qlyekprezwymQZm6cz4eh02nmX5ePejxLicLFnB2SUqqAsyfhGiA5w3EymTeIV1j33L7623YKu7nwWvfazg6nwBERJqz+mQlrfqFDjWaM6TYS90Juzg5LKaWy3KVcSERSgBnAWmPML2lP9QK+zYng8qLftxxn7cFI3u0VhE/xwtc/QWUbm9j48J/pfL95IT3qtuXNzkMp5KLT+Uqp3CGrEe6/QCMR+dAYEwq0wRrZDheR9TkSXR5zMTGF9+fvpn5FLx5o6u/scAqUVJuN0YsmMmfHMvo3vpPn2vXHxWg9ZKVU7pFVwk2fNk5LsJpkr+OL0P1ExCTyVf/Ges9tDrKJjbcWf82cHct4rNW9DGvZW8tnKqVynawSrrcx5tlrPSkiHzsgnjzr6Lk4Jq84RK+GFWhcuZSzwykwRIT3lkzh97ClDGvZh+GttHOkUip3yirhugKe6AYpu7zz504KuRpe6lLL2aEUGCLCh6Hf8tPWJQxqdjePtbrH2SEppdQ1ZZVwT4rIWzkWSR62ct9ZFu88zQudA/Hz0o1SOWX8ih+YtWkh/RvfyZNt+uo0slIqV8tqV4n+9rJDSqqNt+btwL90UQbfVtXZ4RQYszYtZMq/f3BP/Y483+4hTbZKqVwvq4TbIceiyMNm/XuUvadjebVbba0olUMW71nLh/98S/vqTXmlwyBNtkqpPCGrWsqRORlIXhSTkMynS/bRMqAMner4OjucAmHDsZ28Mv9z6pevwZhuI3F10Vt/rpScnEx4eDgJCQnODkWpfKtw4cJUrFgRNzf7C+tof7JbMGn5QSIvJjGqay0dZeWAI+dP8vTvH1HRy4fxvV6ksJu7s0PKlcLDwylevDhVqlTRf5dKOYCIcO7cOcLDw6la1f6lRB0e3KSICwlMWnGIbsHlqF+ppLPDyfdiEuN46rexuLq48Hnvl/Aq4unskHKthIQEypQpo8lWKQcxxlCmTJkbnkXShHuTPvt7H8mpNl7oFOjsUPK9VJuNl+Z+xrGo03zU4xkqltTp++vRZKuUY93Mz5gm3Jtw4EwsP6w/Rr/m/lQpq11oHG38iu9ZdXgrozoM1BZ7ecSpU6fo27cv1apVo06dOtx5553s3buXw4cPExQUlG3v88Ybb7BkyZJbvs748eOpXbs2Dz74IImJiXTs2JEGDRowe/ZsHn30UXbu3HnNc+fMmcOYMWNu6n2joqL48strN17LGFd2eO+99y47btWqVbZcV9lJRPLNR+PGjSUnDJ+xQeq8vkDOxCTkyPsVZKH7N0jw2Pvl7cWTnB1KnrFz506nvr/NZpMWLVrIV199lf7Y5s2bZfny5XLo0CGpW7euE6PLXGBgoBw8eFBERNasWSMhISE58r7X+35kjCuj5OTkm3q/YsWK3dR5Itb/19TU1Js+Pz/K7GcN2CDXyFE6wr1B28OjWRB2ikfbBFDW08PZ4eRrJ6LP8PqCL6nlU4UX2j/s7HCUnUJDQ3Fzc2P48OHpjzVo0IA2bdpc9rrDhw/Tpk0bGjVqRKNGjVi9ejUAJ0+eJCQkhAYNGhAUFMSKFStITU3lkUceISgoiHr16vHJJ58A8Mgjj/Dzzz8DsH79elq1akX9+vVp1qwZMTExV8U2duxYmjZtSnBwMG+++SYAw4cP5+DBg/To0YMPPviA/v37s2XLFho0aMCBAwdo164dGzZsAGDhwoU0atSI+vXr06GDdefktGnTGDFiBABnzpyhT58+NG3alKZNm7Jq1SoARo8ezaBBg2jXrh0BAQGMHz8egFGjRnHgwAEaNGjACy+8cFmsGeP65JNPGD16NEOHDqVTp048/PDDJCQkMHDgQOrVq0fDhg0JDQ1Nj6d379506dKFGjVq8OKLL6a/V3x8PA0aNEgfMXt6/rcXIrPvzeHDh6lduzaPP/44jRo14tixY/b+M1CZ0F3KN+jTJXvxKuLGo220yIUjJaem8OK8z7DZbIzr8TQehXRH8s34v7k72HniQrZes075Erx5V91rPh8WFkbjxo2vex0fHx/++usvChcuzL59+3jggQfYsGEDs2bNonPnzrz66qukpqYSFxfHli1bOH78OGFhYYA1FZtRUlIS999/P7Nnz6Zp06ZcuHCBIkWKXPaaxYsXs2/fPv79919EhB49erB8+XImTJjAwoULCQ0NpWzZsjRv3pxx48Yxb968y84/c+YMQ4YMYfny5VStWpXIyKvvnHzqqad45plnuO222zh69CidO3dm165dAOzevZvQ0FBiYmIIDAzkscceY8yYMYSFhbFly5arrnVlXKNHj2bjxo2sXLmSIkWK8NFHHwGwfft2du/eTadOndi7dy8AW7ZsYfPmzXh4eBAYGMjIkSMZM2YMn3/+eabvda3vjb+/P3v27GHq1KlZTn0r+2jCvQHbwqP4e3cEz3eqSfHC2tTckT5dPovtJ/cz7q6nqVTSz9nhKAdITk5mxIgRbNmyBVdX1/Rk0bRpUwYNGkRycjI9e/akQYMGBAQEcPDgQUaOHEm3bt3o1KnTZdfas2cP5cqVo2nTpgCUKFHiqvdbvHgxixcvpmHDhgDExsayb98+QkJC7Ip37dq1hISEpN8GUrp06ates2TJksvWey9cuJA+0u7WrRseHh54eHjg4+PD6dOn7XrfjHr06JH+h8TKlSsZOXIkALVq1aJy5crp38MOHTrg5eUFQJ06dThy5AiVKlW65nWv9b3x9/encuXKtGjR4oZjVVfThHsDPl2yj5JF3RjQqoqzQ8nXlh/YxHcb59O3YWfuCNQf9FuR1UjUUerWrZs+zZuVTz75BF9fX7Zu3YrNZqNwYasOeUhICMuXL+fPP//koYce4oUXXuDhhx9m69atLFq0iC+++IIff/yRKVOmpF9LRK67a1REePnllxk2bNhNfV32vIfNZmPNmjVXja4BPDz+W4JydXUlJSXlhmMoVuy/TZrWcmHmbvS9rvW9OXz48GXvqW6NruHaaeuxKP7ZHcGQNgE6unWgqPgY/m/x19Qo689zbfs7Oxx1E26//XYSExOZNGlS+mPr169n2bJll70uOjqacuXK4eLiwowZM0hNTQXgyJEj+Pj4MGTIEAYPHsymTZs4e/YsNpuNPn368Pbbb7Np06bLrlWrVi1OnDjB+vVW2+6YmJirkkznzp2ZMmUKsbGxABw/fpyIiAi7v66WLVuybNkyDh06BJDplHKnTp34/PPP048zm77NqHjx4pmuNdsjJCSEmTNnArB3716OHj1KYGDWtym6ubmRnJx81eO3+r1R9tERrp0+XbKXUjq6dbj3lkwhKj6GL/qMwr2Q/mGTFxlj+O2333j66acZM2YMhQsXpkqVKnz66aeXve7xxx+nT58+/PTTT7Rv3z59JLV06VLGjh2Lm5sbnp6eTJ8+nePHjzNw4EBsNhsA77///mXXcnd3Z/bs2YwcOZL4+HiKFCnCkiVLLtsU1KlTJ3bt2kXLli0Ba8PQd999h4+Pj11fl7e3N19//TW9e/fGZrOlr0FnNH78eJ544gmCg4NJSUkhJCSECRMmXPOaZcqUoXXr1gQFBdG1a1fGjh1rVyxgff+GDx9OvXr1KFSoENOmTbtsZJuZoUOHEhwcTKNGjdKTNVz7e+PqqvXhs5PJaloir2nSpIlc2k2YnTYfPU+vL1fzYpdAHm9XPduvrywLd6/mpXnjGXHb/Qxp0cvZ4eRZu3btonbt2s4OQ6l8L7OfNWPMRhFpktnrdUrZDuP/3meNbltWcXYo+dbZi1G8t2QKQX7VGNish7PDUUqpbKcJ9zp2nrhA6J4zPNomgGIeOgPvKB/+8y3xyYm80/VxCrnoNJZSKv/RhHsdE5cfoJi7K/2bV3Z2KPnWqkNbWLRnDY+26EnVMhWcHY5SSjmEJtwsHIuMY962k/Rr7o9XUd3A4wjxyYm8u2QKVUqXZ2BTnUpWSuVfmnCzMHnFQVwMDL4twNmh5FuT1/7G8egIXus4WHclK6XyNU2413AuNpHZG47Rs0EF/LwKOzucfCk86jTfbpjHXXVCaOqf8wUalFIqJ2nCvYZv1xwhIdnGsLY6unWUT5fPwtW48mRIX2eHorKZq6trevOBe++9l7i4uBs6/8o2cva0qcvYRGDChAlMnz79xgO/howt+H7//ffLyjdmbG6Q07L767xRU6ZMoV69egQHBxMUFMQff/wBOPd7ciO2bNnC/Pnz049vpdWiPTThZiIhOZXv1h6hY20fqvsUd3Y4+dKm8F38tXcdA5v1wMfz6pq0Kof4+YExV3/43Vr96iJFirBlyxbCwsJwd3fPsvhDRiKCzWa7KuF++eWXzJ8//7JiDVkZPnw4Dz+cfR2mevTowahRo4CrE64zZffXeSPCw8N59913WblyJdu2bWPt2rUEBwff8nUvVRzLLlmVtbwy4Wb8/+wImnAzMXfrCSIvJjGotXYEcgSb2BgbOgMfz9IMaNrd2eEUbNcqoH8ThfWvpU2bNuzfvx+Ajz/+mKCgIIKCgtIrT13ZAm7w4MGXtZG7sk1dZGQkPXv2JDg4mBYtWrBt27ar3nP06NGMGzcOsH6ptmjRguDgYHr16sX58+cve21qaioBAQGICFFRUbi4uLB8+fLLYr80el69ejVz5szhhRdeSG/fB/DTTz/RrFkzatasyYoVK66KZ+nSpbRt25b77ruPmjVrMmrUKGbOnEmzZs2oV69e+nXmzp1L8+bNadiwIR07dkxvcPDkk0/y1ltvAbBo0SJCQkKw2WyXfZ3t2rXjmWeeISQkhNq1a7N+/Xp69+5NjRo1eO2119K/10FBQelxjRs3jtGjR9t9fkYREREUL148vZqXp6dnemOHa31PrtWScenSpbRv355+/fpRr149Dh8+TK1atRgwYADBwcHcc8896bMkGzdupG3btjRu3JjOnTtz8uTJq2J75JFHePbZZ2nfvj0vvfQS//77L61ataJhw4a0atWKPXv2kJSUxBtvvMHs2bNp0KABs2fPvmyW5MiRI3To0IHg4GA6dOjA0aNHr3qfG3atRrl58SM7GtDbbDa587PlcsfHS8Vms93y9dTV5oQtk+Cx98ucsGXODiVfuqEG9HDtj1twqdF5cnKy9OjRQ7788kvZsGGDBAUFSWxsrMTExEidOnVk06ZNcujQITHGyJo1a646/5LKlSvLmTNnRERkxIgRMnr0aBER+fvvv6V+/foiIjJ16lR54oknRETkzTfflLFjx4qISL169WTp0qUiIvL666/LU089dVW8nTt3lrCwMJk7d640adJE3nnnHUlISJAqVapcde0BAwbITz/9lH5u27Zt5dlnnxURkT///FM6dOhw1fVDQ0PFy8tLTpw4IQkJCVK+fHl54403RETk008/TY8pMjIy/ffOpEmT0q978eJFqVOnjvzzzz9Ss2ZN2b9//1VfZ9u2beXFF19Mv2a5cuXS369ChQpy9uzZqxrejx07Vt588027z88oJSVFOnXqJJUqVZJHHnlE5syZc93vycWLFyU+Pl5ERPbu3SuXfmeHhoZK0aJF5eDBgyIicujQIQFk5cqVIiIycOBAGTt2rCQlJUnLli0lIiJCRER++OEHGThw4FXf7wEDBki3bt0kJSVFRESio6MlOTlZRET++usv6d2791X/X6887t69u0ybNk1ERL755hu5++67r3qfG21Ar5UcrrDxyHl2nLjAu72CrtsZRN245NQUvlz1E7V9q9Ktzm3ODkc5yKURKlijxMGDB/PVV1/Rq1ev9JrJvXv3ZsWKFfTo0eOGWsCtXLmSX375BbAaJZw7d47o6OhMXxsdHU1UVBRt27YFYMCAAdx7771Xva5NmzYsX76cQ4cO8fLLLzNp0iTatm2b3u7venr37g1A48aNOXz4cKavadq0KeXKlQOgWrVq6S0G69Wrl948Pjw8nPvvv5+TJ0+SlJSUPmIsWrQokyZNIiQkhE8++YRq1apl+h49evRIv2bdunXT3y8gIIBjJtyIzAAAIABJREFUx45RsmTJLL+O651fpkyZ9Ne6urqycOFC1q9f///tnXtcVNX6/98LBBEV84KmaaLmJVEYQAFTvJS3zCwry0tldiyt47HO7xWl/U4es87J0pMn7aJmXvJYejI1j1maJonmBUxUJBQNTEUTNfGGXJ/vH3uYBpyB4TIwwHq/XvvFzN5rrf08ew3zzFp77efD1q1b+etf/8q+ffssI2Zb18SeJCNAaGhogRFyq1at6NmzJwCPP/44c+fOZfDgwcTHxzNgwADAmJ3It7EwI0aMsOSCTk9PZ+zYsSQlJaGUsingUJhdu3axZs0aAJ544glefvnlYusUh1OnlJVSg5VSR5RSx5RSN02MK4O55uMHlVLBVsf+qpQ6rJSKV0p9rpSqkKXCS39MwcerFsODdAIGZ7AuPorUy2n8ueejuCl9R6O6kn8PNy4ujnnz5uHp6VmknFxJJOBstVPWH8cRERFER0ezd+9ehgwZwqVLl4iKinJYKzdfNKAoKTxrYQE3NzfLezc3N0udv/zlL0yaNIlDhw6xYMECbty4Yalz6NAhGjduTGpqarF2WLdvfY5atWpZBCCAAu07Ur8wSilCQ0OZOnUqK1eutPwQsndNrCUZY2NjycrKspQv/Bko3KdKKUQEf39/y2fr0KFDbN682ea1sG7vtddeo1+/fsTHx/O///3vJr8doTwGYE77xlNKuQMfAPcCnYFRSqnOhYrdC7Q3b88CH5nr3gZMBrqJSBfAHXD6Utaz6Tf4Jv4sj3VvhbenHvyXN1k52Xy8ew0BzdvTq42pss3RVDC9e/dm3bp1XL9+nWvXrrF27VoiIiJslrUnI5ffTv7iqaioKJo0aWJTcB6gQYMGNGzY0HIPcfny5ZbRrjVhYWH8+OOPuLm54eXlhclkYsGCBTbtK4ukXnGkp6dz223Gj/1ly5ZZ9p84cYJ//etf7N+/n2+++YY9e/aUqv1mzZpx7tw5Lly4QGZmJhs2bCi1rampqQVkEuPi4mjduuiMfPYkGW3x66+/smvXLgA+//xzevXqRceOHUlLS7Psz87O5vDhw8Xaan1dly5datlfVF/eddddrFy5EoAVK1bQq1fZZ+ScOcQIBY6JyC8ikgWsBB4oVOYB4FPz1Pdu4BalVP78QC2gjlKqFuAN2P9ZV058tucEeSI8qUUKnMKXB7fy25WL/LnXo3q63lVo1qxk+8tAcHAwTz31FKGhoYSFhTF+/HiCgoJsls2XkbP1GND06dOJjY0lICCAKVOmFAhMtli2bBmRkZEEBAQQFxfHtGnTbipTu3ZtWrVqZZnWjoiI4MqVK3Tt2vWmsiNHjmTWrFkEBQVZFjuVF9OnT2fEiBFERETQpEkTwBjR/+lPf2L27Nm0aNGCTz75hPHjx5dqlObh4cG0adMICwtj6NChdOrUqdS2Zmdn89JLL9GpUyfLoqP33nuvyDrPP/88y5YtIzw8nKNHjxY5s3HnnXeybNkyAgICuHjxIs899xyenp6sXr2aV155hcDAQEwmk2XhVVG8/PLLTJ06lZ49exYI8v369SMhIcFivzVz585lyZIlBAQEsHz58mJ9cwSnyfMppR4BBovIePP7J4AwEZlkVWYDMFNEdpjfbwVeEZFYpdQLwD+ADGCziNh8AE8p9SzG6Jjbb7895MSJE6WyNyc3j55vf0/n5j4sGRdaqjY09snKyWbIosncfsutfPLYNB1wnYiW59NUdVJSUhg6dCjx8fGVbUqRuJI8n61v1MLR3WYZpVRDjNFvG6AFUFcp9bitk4jIQhHpJiLdfH19S23sD0fT+O1yJiNDby91Gxr7bPx5J2lXf2d8+IM62Go0mhqJMwPuKaCV1fuW3DwtbK9MfyBZRNJEJBtYA9zlRFtZGXOSJvVqc3enps48TY0kT/JYGrOejk396NG67A/GazSa6o2fn5/Lj25LgzMDbgzQXinVRinlibHoaX2hMuuBJ82rlcOBdBE5A/wKhCulvJUxHLoH+NlZhp67fIPvE8/xcMhteLjrlbPlzfbjP5F8MZVx3e/Xo1uNRlNjcdpSXBHJUUpNAjZhrDJeLCKHlVITzcfnAxuBIcAx4Dowznxsj1JqNfATkAPsBxY6y9YvfzpNbp7wWLdWxRfWlJgle9fTwseXAR0de85So9FoqiNOffZFRDZiBFXrffOtXgvwZzt1/w783Zn2mc/DqphfCfVrRFvfes4+XY0j/sxx4lKP8vLdY6nl5l7Z5mg0Gk2lUePnT2NSfiflwnUe7a5Ht87gvwe+o45HbYb53/zso0aj0dQkanzAXbv/NN6e7gzpWjZ1FM3NXL5xlW8TdzLkzl7Ur+1d2eZoKpCzZ88ycuRI2rVrR+fOnRkyZEiBNH4lYfz48RZ1nsIqQvbw8/Pj/PnzpTqfoxQWAnCk/GeffVZsW7GxsUyePLlcbNS4FjU64Gbm5PL1wVQGdm6mM0s5ga/ifyAzJ5tHTQMq2xRNBSIiDB8+nL59+3L8+HESEhL45z//aVG+KSmLFi2ic2cjSZ2jAdfZlEZCrqiAa023bt2YO3duaczSuDg1OuBGHUnj8o0cHtB5k8udPMnjvwe+w9SiA52a+lW2OZoKZNu2bXh4eDBx4kTLPpPJREREBFevXuWee+4hODiYrl27WgTLi5JjyxcznzJlSgHZPoAHH3yQkJAQ/P39Wbiw+HWV9erV45VXXiEkJIT+/fuzd+9e+vbtS9u2bVm/fr3FFkck5Kz55ZdfCAoKIiYmhtzcXCIjI+nevTsBAQEsWLAAgClTphAdHY3JZGLOnDl2bYyKimLoUEO2cvr06Tz99NMWG60D8X/+8x9CQ0MxmUxMmDCh3HVkNeVPjR7WfRV3msZ1PYm4o0llm1Lt2H/qCL/+fpZnwx+qbFNqNi++CHFx5dumyQRmLVtbxMfHExISYvOYl5cXa9euxcfHh/PnzxMeHm5RqDly5AiffPIJPXv25Omnn+bDDz/kpZdestSdOXMm77//PnFW/ixevJhGjRqRkZFB9+7defjhhwso2hTm2rVr9O3bl7fffpvhw4fzt7/9je+++46EhATGjh3LsGHDaNq0Kd999x1eXl4kJSUxatQoYmNjAdi7dy/x8fG0adPGooBz5MgRRo4cyZIlSzCZTCxcuJAGDRoQExNDZmYmPXv2ZODAgcycOZPZs2eXOH9xYmIi27Zt48qVK3Ts2JHnnnuOY8eOsWrVKnbu3ImHhwfPP/88K1asqDQxeo1j1NiAe/lGNlt+Psfo0NuppZ+9LXc2JERTx6M297TXaTI1fyAivPrqq2zfvh03NzdOnz5tmWq2JcdmHXBtMXfuXNauXQvAyZMnSUpKKjLgenp6MnjwYMCQoKtduzYeHh4W0XMomYRcWloaDzzwAF9++SX+/v4AbN68mYMHD7J69WrASJyflJSEp6dnSS6Vhfvuu4/atWtTu3ZtmjZtym+//cbWrVvZt2+fRT4wIyODpk110h5Xp8YG3E3xZ8nKyeMBU4vKNqXacSM7i81HdjGgQxjenhWiqqixRxEjUWfh7+9vCTaFWbFiBWlpaezbtw8PDw/8/PwsSfhtybEVRVRUFFu2bGHXrl14e3vTt2/fYhP6e3h4WNq1J5FnLSGXl5eHl9cfn+HCyfYbNGhAq1at2LlzpyXgigjz5s1j0KBBN9lbGqxl8vKl7kSEsWPH8tZbb5WqTU3lUGOHdt/Gn+W2W+pgalW0ILOm5EQdj+VqVgZDO9uWXtNUb+6++24yMzP5+OOPLftiYmL44YcfSE9Pp2nTpnh4eLBt2zasxUZsybEVxlq2Lz09nYYNG+Lt7U1iYiK7d+8uF/tLIiHn6enJunXr+PTTTy0LogYNGsRHH31ksfPo0aNcu3atXGX97rnnHlavXs25c+cAuHjxIqUVbtFUHDUy4F65kU100nkG+d+qUw06gQ0J0TSr34hurfwr2xRNJaCUYu3atXz33Xe0a9cOf39/pk+fTosWLRgzZgyxsbF069aNFStWFJCHsyXHVhhr2b7BgweTk5NDQEAAr732mkVar6yUREIOjFHvhg0bmDNnDl999RXjx4+nc+fOBAcH06VLFyZMmGCxs1atWgQGBha5aMoROnfuzJtvvsnAgQMJCAhgwIABnDlzpkxtapyP0+T5KoNu3bpJ/uKGovgq7jQvrIzji4k96O7XqAIsqzn8fv0y93w0kSe7D+XF3qMr25waSVWU56sqcmwajTWuJM/nsmw6fBbf+rUJub1hZZtS7Yg6vo9cyWNQxx6VbYpGo9G4FDUu4GZk5bItMY1B/s1wc9PTyeXN90kxtPBpop+91ZSI6irHptFYU+MC7g9H08jIzuXeLs0r25Rqx7WsDHafOES/O7rre+MajUZTiBoXcL9L+I0GdTwIbaPv3ZY3O5MPkJWbzd3tu1e2KRqNRuNy1KiAm5cn/HD0HH06+GqheSew7VgMDevUJ+i2TsUX1mg0mhpGjYo6B0+nc/5qFnd30hlZyps8yePHlIP0bGPC3a1Gfaw0Go3GIWrUN+P3iedwU9Cng29lm1LtSPwthUsZV7jLL7CyTdG4AO7u7phMJgIDAwsIAJQX1gn+nU29evWcfo6lS5eSmppqeR8dHY2/vz8mk4mMjAybdbSkX9WjRgXcbYnnCLq9IQ3rli6nqcY+u04cAiC8teP6oBoX4swZ6NMHzp4tl+bq1KlDXFwcBw4c4K233mLq1Knl0m5FIiLk5eU5/Ty5ubk3BdwVK1bw0ksvERcXR506dYptQ0v6VQ1qTMA9d/kGh06n6+lkJ7Er5SAdfVvTuK5OlVkleeMN2LEDZswo96YvX75Mw4Z/PPM+a9Ysi3Td3//+d8AYrd15550888wz+Pv7M3DgQMvI7tixY/Tv398yWj5+/DgAV69e5ZFHHqFTp06MGTOG/CQ+fn5+vPrqq/To0YNu3brx008/MWjQINq1a8f8+fMtde3JBN555508//zzBAcHc/LkSYvd58+fp0ePHnz99dcF/CtKWnDr1q0EBQXRtWtXnn76aTIzMy02zpgxg169evH5558TGxvLmDFjMJlMzJs3j//+97/MmDHD4ldkZCRdunSha9eurFq16qZrbD3iv3jxIg8++CABAQGEh4dz8ODBMvagptwQkWqzhYSEiD1W7j0hrV/ZIAmp6XbLaErH9awbEvLuGPnXtuWVbYpGRBISEhwv7OUlAjdvXl5lssHNzU0CAwOlY8eO4uPjI7GxsSIismnTJnnmmWckLy9PcnNz5b777pMffvhBkpOTxd3dXfbv3y8iIiNGjJDly43PU2hoqKxZs0ZERDIyMuTatWuybds28fHxkZMnT0pubq6Eh4dLdHS0iIi0bt1aPvzwQxERefHFF6Vr165y+fJlOXfunPj6+oqISHZ2tqSnG98FaWlp0q5dO8nLy5Pk5GRRSsmuXbssvtStW1fOnj0roaGhsnnz5pt8TU5OFkB27NghIiLjxo2TWbNmSUZGhrRs2VKOHDkiIiJPPPGEzJkzx2Lj22+/bWmjT58+EhMTY3k/duxY+eKLL0REZPXq1dK/f3/JycmRs2fPSqtWrSQ1NVWSk5PF399fRES2bdsm9913n4iITJo0SaZPny4iIlu3bpXAwMAS95/GMWz9rwGxYidG1ZgR7veJ52jewItOt9avbFOqHQfPJJGdm0OYnk6uevzyC4weDd7exntvbxgzBpKTy9Rs/pRyYmIi3377LU8++SQiwubNm9m8eTNBQUEEBweTmJhIUlISAG3atMFkMgEQEhJCSkoKV65c4fTp0wwfPhww9HS9zbaGhobSsmVL3NzcMJlMFnk9wKKx27VrV8LCwqhfvz6+vr54eXlx6dIli0xgQEAA/fv3LyAT2Lp16wJ5mbOzs7nnnnt45513GDBggE1/C0sL7tixgyNHjtCmTRs6dOgAwNixY9m+fbulzmOPPebQtdyxYwejRo3C3d2dZs2a0adPH2JiYoos/8QTTwCGkMSFCxdIT0936Fwa51Ij5PlycvP48dgFhgY21wkZnEDc6SMoFF2bt69sUzQlpXlz8PGBGzfAy8v46+MDt95abqfo0aMH58+fJy0tDRFh6tSpTJgwoUCZlJSUm2ToMjIyLNPEtrAlW1f4mLUEX/77nJycImUCC4sV1KpVi5CQEDZt2kSfPn1s2mJLWrAo222dxx7FteNIef295xrUiBHuwdPpXMnModcdenWyMzhw+ijtmrTEx8uxLxCNi/HbbzBxIuzebfwtp4VT+SQmJpKbm0vjxo0ZNGgQixcv5urVqwCcPn3aIjFnCx8fH1q2bMm6desAyMzMtNwfLQtFyQQWRinF4sWLSUxMZObMmTbL2JIW7NSpEykpKRw7dgyA5cuX2w3YRUn39e7dm1WrVpGbm0taWhrbt28nNDTUrr29e/dmxYoVgHFvt0mTJvj4+Ngtr6k4asQI98dj5wHo0a5xJVtS/ciTPA6eSWKgFiuouqxZ88frDz4olyYzMjIs08MiwrJly3B3d2fgwIH8/PPP9OhhfF7q1avHf/7zH9zd3e22tXz5ciZMmMC0adPw8PDgiy++KLN9Y8aM4f7776dbt26YTKYCMoG2cHd3Z+XKldx///34+Pjw/PPPFzieLy04YcIE2rdvz3PPPYeXlxdLlixhxIgR5OTk0L17dyZOnGiz/aeeeoqJEydSp04dS+DOZ/jw4ezatYvAwECUUrzzzjvceuutBabQrZk+fTrjxo0jICAAb29vli1b5viF0TiVGiHPN3LhLi5n5LDxBS2IXt4kpZ3kkWWRvHnv89zv37uyzdFQNeX5qjJaWrDmouX5CpGRlctPJy7Rq32TyjalWhJ/1pgu69r8jkq2RKPRaFybah9wY09cJCs3j7v0dLJTOHLuBN4eXtzesPwW2Wg0VQktLahxlGofcHceu4CHu9LqQE7iaNoJ2vu2wk1V+4+SRqPRlIlq/y25J/kCgS1vwduzRqwPq1BEhKNpJ+jg27qyTdFoNBqXp1oH3IysXA6dSqe7Ht06hdTLaVzJvE7Hpn6VbYpGo9G4PNU64MadvEROnhDqpwOuM0hK+xWADr63V7IlGo1G4/pU64Abk3IRpSC4dcPiC2tKzInfjQQJbRq1qGRLNK5Gvjxf/pafMKKw7FxkZCT+/v5ERkYyf/58Pv30U7ttpqam8sgjj5Tapn//+992k2Y4IodXEgqr/4wfP56EhIQyt2uP9evXW67xunXrCpyrb9++2Hpc0pqUlBQ+++wzp9lXXly6dIkPP/ywVHWHDBnCpUuXiixTuN/KHXtJlqviVli84PFFu2XQnB8cyUGtKQVvbP5YIub9qbLN0BSiROIFTqJu3bo290+YMEEWL15seV+/fn25ceNGhdjUunVrSUtLc8iufHJyckp1rsJiBCWltOcVKSh84Kgt1uIHroy1YENhynLN8ilpv2nxAjO5ecJPJ36nu55Odhq//n6WVrc0q2wzNFWERYsWFZCdGzZsGNeuXSMsLIxVq1Yxffp0Zs+eDdiW5LMWXM/NzSUyMtIi87dgwQLASGXYt2/fm2T75s6dS2pqKv369aNfv35F2hUVFUW/fv0YPXo0Xbt2BeDdd9+lS5cudOnShX//+9+AfUnB1atXF5Dby8jIKDDK3Lx5Mz169CA4OJgRI0ZY0lxaS/ZZZ9PKzc2lbdu2iAiXLl3Czc3NIoIQERHBsWPHWLp0KZMmTeLHH39k/fr1REZGYjKZLFKGX3zxBaGhoXTo0IHo6Oib+mbKlClER0djMpmYM2eO3ev72GOPsXHjRku9p556ii+//PKm9t555x26du1KYGAgU6ZMASAuLo7w8HACAgIYPnw4v//+O2CMwF955ZWb7Dt8+DChoaGYTCYCAgJISkpiypQpHD9+HJPJRGRkpM2+evDBBwkJCcHf35+FCxdabPLz8+P8+fMl6rfyptou3T127irXsnIJbq31WZ3FyUtnMd1WdEo8TeXyzvfLOHIupVzb7NjUj5fvHltkGevUjgBTp05l/Pjx7Nixg6FDh1qmhuvVq0dcXBxgpCTMZ8yYMUyZMoXhw4dz48YN8vLyCuRc/uSTT2jQoAExMTFkZmbSs2dPBg4cCMD+/fs5fPgwLVq0oGfPnuzcuZPJkyfz7rvvsm3bNpo0KZgEp7BdUVFR7N27l/j4eNq0acO+fftYsmQJe/bsQUQICwujT58+NGzYkKSkJD7//HM+/vhjHn30Ub788ksef/xx3n//fWbPnk23bgUTDp0/f54333yTLVu2ULduXd5++23effddpk2bBhhqSDt27ChQx93dnQ4dOpCQkEBycjIhISFER0cTFhbGqVOnuOOOOyx17rrrLoYNG1bgGgPk5OSwd+9eNm7cyOuvv86WLVsKnGPmzJnMnj2bDRs2ALBw4UKb13fkyJGsWrWKIUOGkJWVxdatW/noo48KtPXNN9+wbt069uzZg7e3NxcvXgTgySefZN68efTp04dp06bx+uuvW3682LJv/vz5vPDCC4wZM4asrCxyc3OZOXMm8fHxls9M4b4CWLx4MY0aNSIjI4Pu3bvz8MMP07hxwTwMJe238qLaBtwDJ425+sCWOuA6g6ycbM5cvsAwfz3C1dxMvjxfabAlyVeYzZs3c/DgQVavXg0YYgRJSUl4enpaZPsAi2xfr169SmRDaGio5Qt8x44dDB8+3KLu89BDDxEdHc2wYcNsSgoWxe7du0lISLBI+WVlZVnySoN9yb6IiAi2b99OcnIyU6dO5eOPP6ZPnz50797dIX8eeughh20E+9f33nvvZfLkyWRmZvLtt9/Su3dv6tSpU6Duli1bGDdunEVGsVGjRqSnp3Pp0iWLeMPYsWMZMWJEkfb16NGDf/zjH5w6dYqHHnqI9u1tq5FZ9xXA3LlzWbt2LQAnT54kKSnppoBb0n4rL6pvwD11ifpetfBrrBVsnMG5qxcRhFt9dMpMV6a4kagrIg7kdxcR5s2bx6BBgwrsj4qKKlK2z1GspfOKsseWpGBRiAgDBgzg888/L/a81kRERDB//nxSU1OZMWMGs2bNIioqit69Hctfnm+no9fD3vUFYwp406ZNrFq1ilGjRtmsW1I5QFv2jR49mrCwML7++msGDRrEokWLaNu27U11ra9ZVFQUW7ZsYdeuXXh7e9O3b1+L7KKt8+Wf0xnTx7aotvdwD5y6RGDLW3Bz0zqQziDtmjGD0LSeXgFeas6cgT59yl0Or6rjiCTfoEGD+Oijj8jOzgbg6NGjXLt2rch2i5LAK4revXuzbt06rl+/zrVr11i7di0REUULodg7V3h4ODt37rRI9l2/fp2jR48Wa0NYWBg//vgjbm5ueHl5YTKZWLBggU07SuNn4TpFXd+RI0eyZMkSoqOjbQbkgQMHsnjxYkufXbx4kQYNGtCwYUPL/dmipArz+eWXX2jbti2TJ09m2LBhHDx4sFjf0tPTadiwId7e3iQmJrJ79+4yXYfyploG3BvZuSSeuUJAywaVbUq15fxVY8GDrw64peeNN2DHDpgxo7ItKXfy7+Hmb/kLZxxl+fLlzJ07l4CAAO666y7OFvpRMn78eDp37kxwcDBdunRhwoQJxY7cnn32We69996bFk0VR3BwME899RShoaGEhYUxfvx4goKCiqyTL7dXePGNr68vS5cuZdSoUQQEBBAeHk5iYmKxNtSuXZtWrVoRHh4OGCPeK1euWBYKWTNy5EhmzZpFUFCQZdFUcQQEBFCrVi0CAwOZM2dOkdd34MCBbN++nf79++Pp6XlTW4MHD2bYsGEW6cP8hXDLli0jMjKSgIAA4uLiLPet7bFq1Sq6dOmCyWQiMTGRJ598ksaNG9OzZ0+6dOlCZGSkzXPn5OQQEBDAa6+9ZrlejmKv38qLainP99Ovv/PQhz8y//EQBnfRSfWdwYqfvuGd75ex7fmFNPLW4tYlok4dsDHNhZcXlMM/uZbn02gqBi3PB/x85jIAXW7TgcBZnL96iVpu7txSp15lm1L1+OUXGD0azItK8PaGMWMgObly7dJoNE6lWgbcxDNXqF+7FrfdUqf4wppScfF6Og29fbRKUGlo3hx8fIxRrpeX8dfHB27VszEaTXWmWn5bHjl7hY631i/xSjmN41zNvE792noFeKn57TeYOBF27zb+6oVTGk21p9o9FiQi/Hz2MsMCdX5fZ3I1K4N6nnoGodSsWfPH6w8+KPfmS/NohkajcZzSrH+qdiPcM+k3uHIjh0631q9sU6o1VzOvU6+2d2WbobGBl5cXFy5cKNUXgkajKR4R4cKFCzaTshSFU0e4SqnBwHuAO7BIRGYWOq7Mx4cA14GnROQn87FbgEVAF0CAp0VkV3HnPHLWeIaqU3O9YMqZXM3KoIWPb2WbobFBy5YtOXXqFGlpaZVtikZTbfHy8rJkNHMUpwVcpZQ78AEwADgFxCil1ouItUbVvUB78xYGfGT+C0Yg/lZEHlFKeQIODacSzQG3QzM9wnUm1zIzqFtbTym7Ih4eHgVS3Wk0GtfAmVPKocAxEflFRLKAlcADhco8AHxqVjXaDdyilGqulPIBegOfAIhIlogULWRo5njaVZrWr02DOh7l54nmJrJys6ld6+aH3jUajUZjG2cG3NuAk1bvT5n3OVKmLZAGLFFK7VdKLVJK2VwSq5R6VikVq5SKTUtLI+X8Nfya6NWzziY7NwcPt2q35k6j0WichjMDrq0lkoVXcdgrUwsIBj4SkSDgGmAzN5yILBSRbiLSzdfXl5QL12mjBQuczvXsG2xI2F7ZZmg0Gk2VwZlDlFNAK6v3LYFUB8sIcEpE9pj3r8ZOwLVm375959k34MQ+4J3SWl1ymgDnK+50TqHUPqhJi8rZlDJRo/vCxdB+uA7VwQeoOn60tnfAmQE3BmivlGoDnAZGAqMLlVkPTFJKrcRYLJUuImcAlFInlVIdReQIcA/3gtQ5AAAIaElEQVSQQDGISIUvm1VKxdrLm1lVqA4+QPXwozr4ANoPV6I6+ADVww+nBVwRyVFKTQI2YTwWtFhEDiulJpqPzwc2YjwSdAzjsaBxVk38BVhhXqH8S6FjGo1Go9FUKZy66kVENmIEVet9861eC/BnO3XjgCr9a0aj0Wg0mnyqXaapSmBhZRtQDlQHH6B6+FEdfADthytRHXyAauBHtdLD1Wg0Go3GVdEjXI1Go9FoKgAdcO2glBqslDqilDqmlLrpkSSlVAOl1P+UUgeUUoeVUuMcrVuRlNGPFKXUIaVUnFIqtmItL2BjcT40VEqtVUodVErtVUp1cbRuRVJGP1ylLxYrpc4ppeLtHFdKqblmHw8qpYKtjrlSX5TFj6rSF52UUruUUplKqZcKHatKfVGUHy7RFw4jInortGGsqj6OkfHKEzgAdC5U5lXgbfNrX+CiuWyxdauCH+b3KUCTKtAXs4C/m193ArY6Wrcq+OEqfWG2ozdGUpp4O8eHAN9gJLUJB/a4Wl+UxY8q1hdNge7AP4CXSvJZrAp+uFJfOLrpEa5tHMkDLUB9pZQC6mEEqhwH61YUZfHDVXDEh87AVgARSQT8lFLNHKxbUZTFD5dBRLZjfEbsYTM/Oq7VF2Xxw2UozgcROSciMUB2oUNVqi+K8KPKoQOubRzJA/0+cCdGZqxDwAsikudg3YqiLH6AEYw3K6X2KaWedbaxdnDEhwPAQwBKqVCMTC8tHaxbUZTFD3CNvnAEe366Ul84QlH2VpW+sEdV64uiqFJ9obPP28aRPNCDgDjgbqAd8J1SKtrBuhVFqf0QkctATxFJVUo1Ne9PNP8arUgc8WEm8J5SKg7jR8N+jFF6VesLe36Aa/SFI9jz05X6whGKsreq9IU9qlpfFEWV6gs9wrWNI3mgxwFrzFNOx4BkjPtujtStKMriByKSav57DliLMRVV0RTrg4hcFpFxImICnsS4F53sSN0KpCx+uEpfOII9P12pLxzBrr1VqC/sUdX6wi5VrS90wLWNJQ+0MlJLjsTI+2zNrxg5njHfZ+uIkYLSkboVRan9UErVVUrVN++vCwwEbK4idDLF+qCUusV8DGA8sN08Qq9SfWHPDxfqC0dYDzxpXuUbzh/50V2pLxzBph9VrC/sUdX6wiZVsi8qe9WWq24YqxSPYqzm+//mfROBiebXLYDNGFN/8cDjRdWtan5grGA8YN4OV6YfDvjQA0gCEoE1QMMq2hc2/XCxvvgcOIOxgOUU8KdCPijgA7OPh4BuLtoXpfKjivXFreb9l4FL5tc+VbAvbPrhSn3h6KYzTWk0Go1GUwHoKWWNRqPRaCoAHXA1Go1Go6kAdMDVaDQajaYC0AFXo9FoNJoKQAdcjUaj0WgqAB1wNRqNRqOpAHTA1WgqAKXUcKWUKKU6We3rq5TaUA5tL1VKPVJMmb5KqbtK2G5fpVS6Umq/UipRKTXb6tiwomTdlFJPKaXed+AcDyqlpplf/0UpFa+U2pifAEQp1Usp9a5VeV+l1Lcl8UOjcRV0wNVoKoZRwA6MrD6VQV+gRAHXTLSIBAFBwFClVE8AEVkvIjPLwa6XgQ/Nr8cDARg5pAeZFaxeA97ILywiacCZfDs0mqqEDrgajZNRStUDemJk0CkccH2UITqfoJSar5RyU0q5m0et8WZx7b+a2zEppXYrQxB9rVKqoY1zpSilmphfd1NKRSml/DAy9/xVGULdEeaR4pdKqRjzVmQAE5EMDJGL28xtW0awSqkRZlsPKKVuShyvlLpPGQLiTQrt7wBkish5q90egDdG1qEngI0i8nuhJtcBY4qyV6NxRbRakEbjfB4EvhWRo0qpi0qpYBH5yXwsFEMH9wTwLYY8XzJwm4h0ASPHsrnsp8BfROQHpdQM4O/Ai8WdXERSlFLzgasiMtvc5mfAHBHZoZS6HdiEIdNoE3Nwbw/YUmKZBgwSkdNWtubXGw78P2CIjcDZE/jJ6v1sYDdGmr6dGIF1sI3zxQJv2rNVo3FV9AhXo3E+ozBEvjH/HWV1bK8YQuC5GDlle2GIYLRVSs1TSg0GLiulGgC3iMgP5nrLgN5lsKk/8L4ypADXY4y069soF6GUOgicBTaIyFkbZXYCS5VSzwDuVvv7Aa8A99kItgDNgbT8NyKyXESCRORxjCA9F7hXKbVaKTVHKZX/fXUOIwe4RlOl0AFXo3EiSqnGGFrDi5RSKUAk8Jj5/iTcrEMq5uAUCEQBfwYWleCUOfzxf+1VRDk3oIeImMzbbSJyxUa5aBEJALoCzymlTIULiMhE4G8Ykm9xZp/B+OFQH+hgx4YMWzYqpVoA3UXkK3O7jwGZmFWtzHUyivBNo3FJdMDVaJzLI8CnItJaRPxEpBXGlHEv8/FQs0yaG0Zg2WG+1+kmIl9iLBoKFpF04HelVIS53hPAD9xMChBifv2w1f4rGMEvn83ApPw3tgKpNSJyFHgLY8RaAKVUOxHZIyLTgPP8obV6AmOK/FOllL+NZn8G7rCx/w0MvwHqYPwoycO4twtGAHdtGTaNxgY64Go0zmUUhjC2NV8Co82vdwEzMQJIsrnsbUCUebp3KTDVXHYsMMs8xWsCZtg43+vAe0qpaCDXav//gOH5i6aAyUA38wKsBIxFVcUxH+itlGpTaP8s8+KueIx7vAfyD4jIEYwFTl8opdoVqrcdCLIa7aOUCjLX22/e9QmGPF4wxj1uMKaqv3bAXo3GpdDyfBqNptJQSr0H/E9EtpSgznbgATv3hTUal0WPcDUaTWXyT/6YKi4WpZQv8K4OtpqqiB7hajQajUZTAegRrkaj0Wg0FYAOuBqNRqPRVAA64Go0Go1GUwHogKvRaDQaTQWgA65Go9FoNBXA/wH0NddqH1lUyAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 540x396 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Plot the result\n",
+    "plt.figure(figsize=(7.5, 5.5))\n",
+    "plt.plot(ab_risk*100.0, ab_rtn*100.0, label='Classic efficient frontier')\n",
+    "plt.plot([sr_risk*100], [sr_rtn*100], 'rs', label='Portfolio with maximum Sharpe ratio')\n",
+    "plt.plot([sr_risk*100, 0.0], [sr_rtn*100, 0.0], 'r-', label='Capital market line')\n",
+    "plt.plot(b_risk*100, b_rtn*100, 'r*', label='Benchmark portfolio')\n",
+    "plt.plot(tev_risk*100.0, tev_rtn*100.0, 'seagreen', label='Efficient frontier with tev constraint')\n",
+    "\n",
+    "plt.axis([min(ab_risk*100), max(ab_risk*100), min(tev_rtn*100), max(ab_rtn*100)])\n",
+    "plt.ylabel('Total Expected Return (%)')\n",
+    "plt.xlabel('Absolute Risk (%)')\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Conclusion"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "In this notebook, we demonstrated how to use NAG Library to solve various quadratic models in portfolio optimization. Conic optimization is usually a good choice to solve convex QCQP. It is worth pointing out that the versatility of SOCP is not just limited to the QCQP models mentioned here. It covers a lot more problems and constraints. For example, DeMiguel et al. \\cite{DGNU09} discussed portfolio optimization with norm constraint, which can be easily transformed into an SOCP problem. We refer readers to the NAG Library documentation \\cite{NAGDOC} on SOCP solver and \\cite{AG03, LVBL98} for more details."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# References\n",
+    "\n",
+    "[<a id=\"cit-J03\" href=\"#call-J03\">1</a>] Jorion Philippe, ``_Portfolio optimization with tracking-error constraints_'', Financial Analysts Journal, vol. 59, number 5, pp. 70--82,  2003.\n",
+    "\n",
+    "[<a id=\"cit-R92\" href=\"#call-R92\">2</a>] Roll Richard, ``_A mean/variance analysis of tracking error_'', The Journal of Portfolio Management, vol. 18, number 4, pp. 13--22,  1992.\n",
+    "\n",
+    "[<a id=\"cit-DGNU09\" href=\"#call-DGNU09\">3</a>] DeMiguel Victor, Garlappi Lorenzo, Nogales Francisco J <em>et al.</em>, ``_A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms_'', Management science, vol. 55, number 5, pp. 798--812,  2009.\n",
+    "\n",
+    "[<a id=\"cit-NAGDOC\" href=\"#call-NAGDOC\">4</a>] Numerical Algorithms Group, ``_NAG documentation_'',  2019.  [online](https://www.nag.com/numeric/fl/nagdoc_latest/html/frontmatter/manconts.html)\n",
+    "\n",
+    "[<a id=\"cit-AG03\" href=\"#call-AG03\">5</a>] Alizadeh Farid and Goldfarb Donald, ``_Second-order cone programming_'', Mathematical programming, vol. 95, number 1, pp. 3--51,  2003.\n",
+    "\n",
+    "[<a id=\"cit-LVBL98\" href=\"#call-LVBL98\">6</a>] Lobo Miguel Sousa, Vandenberghe Lieven, Boyd Stephen <em>et al.</em>, ``_Applications of second-order cone programming_'', Linear algebra and its applications, vol. 284, number 1-3, pp. 193--228,  1998.\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.5"
+  },
+  "latex_envs": {
+   "LaTeX_envs_menu_present": true,
+   "autoclose": false,
+   "autocomplete": true,
+   "bibliofile": "biblio.bib",
+   "cite_by": "number",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 1,
+   "hotkeys": {
+    "equation": "Ctrl-E",
+    "itemize": "Ctrl-I"
+   },
+   "labels_anchors": false,
+   "latex_user_defs": false,
+   "report_style_numbering": false,
+   "user_envs_cfg": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/local_optimization/SOCP/portfolio_optimization_using_cvxpy.ipynb b/local_optimization/SOCP/portfolio_optimization_using_cvxpy.ipynb
new file mode 100644
index 0000000..350540b
--- /dev/null
+++ b/local_optimization/SOCP/portfolio_optimization_using_cvxpy.ipynb
@@ -0,0 +1,121 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "9a8d9072",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG Library and running this notebook\n",
+    "To run this notebook, you will need to install the NAG Library for Python (Mark 29.3 or newer) and a license key. You can find the software and have a license key (trials are available) from our website here: [Getting Started with the NAG Library](https://www.nag.com/content/getting-started-nag-library?lang=py&os=linux)\n",
+    "\n",
+    "We are solving a classic portfolio optimization problem using the NAG Library integration in CVXPY. It can be formulated in the following way:\n",
+    "\n",
+    "\\begin{equation*}\n",
+    "    \\begin{aligned}\n",
+    "        &\\min_{x \\in \\mathbb{R}^n} &&\\frac{1}{2} x^T Q_0 x + r^T_0 x\n",
+    "        \\\\\n",
+    "        &\\textrm{subject to } &&\\frac{1}{2} x^T Q_1 x + r^T_1 x \\leq 0,\n",
+    "        \\\\\n",
+    "        & &&e^Tx = 1,\n",
+    "        \\\\\n",
+    "        & && x \\geq 0,\n",
+    "    \\end{aligned}\n",
+    "\\end{equation*}\n",
+    "where $e$ refers to the vector of all ones."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "dcbfd044",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import modules\n",
+    "from cvxpy import Minimize, Problem, Variable, quad_form, sum, atoms, OPTIMAL, NAG\n",
+    "import numpy as np\n",
+    "import naginterfaces"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "4d4bec67-2af9-4d14-932c-ac616f223be8",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "-0.17415932352686342"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# Define number of assets\n",
+    "n = 500 \n",
+    "\n",
+    "# Generate random data\n",
+    "np.random.seed(2)\n",
+    "r0 = np.matrix(np.random.randn(n, 1))\n",
+    "r1 = np.matrix(np.random.randn(n, 1))\n",
+    "q0 = np.matrix(np.random.randn(n, n))\n",
+    "q0 = q0.T * q0\n",
+    "q1 = np.matrix(np.random.randn(n, n))\n",
+    "q1 = q1.T * q1\n",
+    "\n",
+    "# Skip psd check due to issues with ARPACK\n",
+    "q0 = atoms.affine.wraps.psd_wrap(q0)\n",
+    "q1 = atoms.affine.wraps.psd_wrap(q1)\n",
+    "\n",
+    "# Create the cvxpy problem:\n",
+    "# Define the variables\n",
+    "x = Variable(len(r1))\n",
+    "\n",
+    "# Define the constraints\n",
+    "constraints = [\n",
+    "               0 <= x, \n",
+    "               sum(x) == 1,\n",
+    "               0.5*quad_form(x, q1) + (r1.T @ x) <= 0]\n",
+    "\n",
+    "# Define the objective function\n",
+    "objective = Minimize(0.5*quad_form(x, q0) + r0.T @ x)\n",
+    "\n",
+    "# Set up dictionary for option setting\n",
+    "nag_params = {'SOCP System Formulation':'AS',\n",
+    "              'SOCP Factorization Method':'MA86'\n",
+    "              }\n",
+    "\n",
+    "# Define the problem\n",
+    "prob = Problem(objective, constraints)\n",
+    "\n",
+    "# Solve the problem using NAG\n",
+    "prob.solve(solver=NAG, nag_params=nag_params)"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.8"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/local_optimization/SOCP/portfolio_optimization_using_socp.ipynb b/local_optimization/SOCP/portfolio_optimization_using_socp.ipynb
index 7441bc6..504b1e1 100644
--- a/local_optimization/SOCP/portfolio_optimization_using_socp.ipynb
+++ b/local_optimization/SOCP/portfolio_optimization_using_socp.ipynb
@@ -15,8 +15,33 @@
     "\n",
     "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html\n",
     "\n",
-    "The notebook is also not rendered well by GitHub so if you are reading it from there, you may prefer the [pdf version instead](./static/portfolio_optimization_using_socp.pdf).\n",
+    "The notebook is also not rendered well by GitHub so if you are reading it from there, you may prefer the [pdf version instead](./static/portfolio_optimization_using_socp.pdf)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Note for the users of the NAG Library Mark $27.1$ onwards\n",
     "\n",
+    "At Mark $27.1$ of the NAG Library, NAG introduced two new additions to help users easily define a Quadratically Constrained Quadratic Programming (QCQP) problem. All the models in this notebook then can be solved in a much simpler way without the need of a reformulation or any extra effort. It's recommended that the users of the NAG Library Mark $27.1$ or newer should look at the [notebook on QCQP instead](./portfolio_optimization_qcqp.ipynb)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
     "# Introduction"
    ]
   },
@@ -225,7 +250,6 @@
     "from naginterfaces.library import opt\n",
     "from naginterfaces.library import lapackeig\n",
     "# Import necessary math libraries\n",
-    "from scipy.sparse import coo_matrix\n",
     "import math as mt\n",
     "import warnings as wn"
    ]
@@ -1169,7 +1193,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/local_optimization/SOCP/robust_lp.ipynb b/local_optimization/SOCP/robust_lp.ipynb
index eda3c8c..c935cb1 100644
--- a/local_optimization/SOCP/robust_lp.ipynb
+++ b/local_optimization/SOCP/robust_lp.ipynb
@@ -13,15 +13,26 @@
    "source": [
     "# Correct Rendering of this notebook\n",
     "\n",
-    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html\n",
+    "This notebook makes use of the `latex_envs` Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
     "\n",
-    "## Introduction"
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
+    "## Introduction\n",
+    "\n",
     "We consider a classic portfolio problem with loss risk constraints:\n",
     "\\vspace{0.1cn}\n",
     "\\begin{equation}\\label{prob}\n",
@@ -144,7 +155,6 @@
     "# Import utility libraries and the NAG Library\n",
     "import numpy as np\n",
     "import math as mt\n",
-    "from scipy.sparse import coo_matrix\n",
     "from scipy.stats import norm\n",
     "from naginterfaces.library import opt\n",
     "from naginterfaces.library import lapackeig"
@@ -402,20 +412,22 @@
       "naginterfaces.base.opt.handle_solve_socp_ipm:   E04PT, Interior point method for SOCP problems\n",
       "naginterfaces.base.opt.handle_solve_socp_ipm:  ------------------------------------------------\n",
       "naginterfaces.base.opt.handle_solve_socp_ipm:\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:  Original Problem Statistics\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:    Number of variables                          17\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:    Number of linear constraints                 10\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:    Number of nonzeros                           89\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:    Number of cones                               1\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:  Presolved Problem Statistics\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:  Problem Statistics\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:    No of variables                 17\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:      free (unconstrained)           9\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:      bounded                        8\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:    No of lin. constraints          10\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:      nonzeroes                     89\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:    No of quad.constraints           0\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:    No of cones                      1\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:      biggest cone size              9\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:    Objective function          Linear\n",
       "naginterfaces.base.opt.handle_solve_socp_ipm:\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:    Number of variables                          17\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:    Number of linear constraints                 10\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:    Number of nonzeros                           89\n",
-      "naginterfaces.base.opt.handle_solve_socp_ipm:    Number of cones                               1\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:  Presolved Problem Measures\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:    No of variables                 17\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:    No of lin. constraints          10\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:      nonzeroes                     89\n",
+      "naginterfaces.base.opt.handle_solve_socp_ipm:    No of cones                      1\n",
       "naginterfaces.base.opt.handle_solve_socp_ipm:\n",
       "naginterfaces.base.opt.handle_solve_socp_ipm:\n",
       "naginterfaces.base.opt.handle_solve_socp_ipm:  ------------------------------------------------------------------------\n",
@@ -560,9 +572,9 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 2",
+   "display_name": "Python 3",
    "language": "python",
-   "name": "python"
+   "name": "python3"
   },
   "language_info": {
    "codemirror_mode": {
@@ -574,7 +586,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/local_optimization/SOCP/simple_SOCP.ipynb b/local_optimization/SOCP/simple_SOCP.ipynb
index fdd1354..d652874 100644
--- a/local_optimization/SOCP/simple_SOCP.ipynb
+++ b/local_optimization/SOCP/simple_SOCP.ipynb
@@ -1,5 +1,16 @@
 {
  "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Installing the NAG library and running this notebook\n",
+    "\n",
+    "This notebook depends on the NAG library for Python to run. Please read the instructions in the [Readme.md](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#install) file to download, install and obtain a licence for the library.\n",
+    "\n",
+    "Instruction on how to run the notebook can be found [here](https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Readme.md#jupyter)."
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -120,14 +131,14 @@
    "outputs": [],
    "source": [
     "# Set linear constraints\n",
-    "opt.handle_set_linconstr(\n",
+    "_ = opt.handle_set_linconstr(\n",
     "    handle,\n",
     "    bl=[-1.e20, 1.0],\n",
     "    bu=[1.5, 1.e20],\n",
     "    irowb=[1, 1, 1, 2, 2, 2],\n",
     "    icolb=[1, 2, 3, 1, 2, 3],\n",
     "    b=[-0.1, -0.1, 1.0, -0.06, 1.0, 1.0]\n",
-    "    );"
+    "    )"
    ]
   },
   {
@@ -146,12 +157,12 @@
    "outputs": [],
    "source": [
     "# Set cone constraint\n",
-    "opt.handle_set_group(\n",
+    "_ = opt.handle_set_group(\n",
     "    handle,\n",
     "    gtype='Q',\n",
     "    group=[ 3,1, 2],\n",
     "    idgroup=0\n",
-    ");"
+    ")"
    ]
   },
   {
@@ -194,11 +205,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "\n",
-      " ------------------------------------------------\n",
-      "  E04PT, Interior point method for SOCP problems\n",
-      " ------------------------------------------------\n",
-      "\n",
+      " E04PT, Interior point method for SOCP problems\n",
       " Status: converged, an optimal solution found\n",
       " Final primal objective value -1.951817E+01\n",
       " Final dual objective value   -1.951817E+01\n"
@@ -298,7 +305,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/local_optimization/SOCP/static/portfolio_optimization_qcqp.html b/local_optimization/SOCP/static/portfolio_optimization_qcqp.html
new file mode 100644
index 0000000..d0531e6
--- /dev/null
+++ b/local_optimization/SOCP/static/portfolio_optimization_qcqp.html
@@ -0,0 +1,13933 @@
+<!DOCTYPE html>
+<html>
+<head><meta charset="utf-8"/>
+
+<!-- javascript from CDN for conversion -->
+  <script src="https://cdnjs.cloudflare.com/ajax/libs/marked/0.3.5/marked.js"></script>
+
+    
+
+
+<script type="text/x-mathjax-config">
+// make sure that equations numbers are enabled
+MathJax.Hub.Config({ TeX: { equationNumbers: {
+    autoNumber: "AMS", // All AMS equations are numbered
+    useLabelIds: true, // labels as ids
+    // format the equation number - uses an offset eqNumInitial (default 0)
+    formatNumber: function (n) {return String(Number(n)+Number(1)-1)} 
+    } } 
+});
+</script>
+
+
+
+<meta charset="utf-8" />
+
+<title>portfolio_optimization_qcqp</title>
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
+
+
+
+<style type="text/css">
+    /*!
+*
+* Twitter Bootstrap
+*
+*/
+/*!
+ * Bootstrap v3.3.7 (http://getbootstrap.com)
+ * Copyright 2011-2016 Twitter, Inc.
+ * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE)
+ */
+/*! normalize.css v3.0.3 | MIT License | github.com/necolas/normalize.css */
+html {
+  font-family: sans-serif;
+  -ms-text-size-adjust: 100%;
+  -webkit-text-size-adjust: 100%;
+}
+body {
+  margin: 0;
+}
+article,
+aside,
+details,
+figcaption,
+figure,
+footer,
+header,
+hgroup,
+main,
+menu,
+nav,
+section,
+summary {
+  display: block;
+}
+audio,
+canvas,
+progress,
+video {
+  display: inline-block;
+  vertical-align: baseline;
+}
+audio:not([controls]) {
+  display: none;
+  height: 0;
+}
+[hidden],
+template {
+  display: none;
+}
+a {
+  background-color: transparent;
+}
+a:active,
+a:hover {
+  outline: 0;
+}
+abbr[title] {
+  border-bottom: 1px dotted;
+}
+b,
+strong {
+  font-weight: bold;
+}
+dfn {
+  font-style: italic;
+}
+h1 {
+  font-size: 2em;
+  margin: 0.67em 0;
+}
+mark {
+  background: #ff0;
+  color: #000;
+}
+small {
+  font-size: 80%;
+}
+sub,
+sup {
+  font-size: 75%;
+  line-height: 0;
+  position: relative;
+  vertical-align: baseline;
+}
+sup {
+  top: -0.5em;
+}
+sub {
+  bottom: -0.25em;
+}
+img {
+  border: 0;
+}
+svg:not(:root) {
+  overflow: hidden;
+}
+figure {
+  margin: 1em 40px;
+}
+hr {
+  box-sizing: content-box;
+  height: 0;
+}
+pre {
+  overflow: auto;
+}
+code,
+kbd,
+pre,
+samp {
+  font-family: monospace, monospace;
+  font-size: 1em;
+}
+button,
+input,
+optgroup,
+select,
+textarea {
+  color: inherit;
+  font: inherit;
+  margin: 0;
+}
+button {
+  overflow: visible;
+}
+button,
+select {
+  text-transform: none;
+}
+button,
+html input[type="button"],
+input[type="reset"],
+input[type="submit"] {
+  -webkit-appearance: button;
+  cursor: pointer;
+}
+button[disabled],
+html input[disabled] {
+  cursor: default;
+}
+button::-moz-focus-inner,
+input::-moz-focus-inner {
+  border: 0;
+  padding: 0;
+}
+input {
+  line-height: normal;
+}
+input[type="checkbox"],
+input[type="radio"] {
+  box-sizing: border-box;
+  padding: 0;
+}
+input[type="number"]::-webkit-inner-spin-button,
+input[type="number"]::-webkit-outer-spin-button {
+  height: auto;
+}
+input[type="search"] {
+  -webkit-appearance: textfield;
+  box-sizing: content-box;
+}
+input[type="search"]::-webkit-search-cancel-button,
+input[type="search"]::-webkit-search-decoration {
+  -webkit-appearance: none;
+}
+fieldset {
+  border: 1px solid #c0c0c0;
+  margin: 0 2px;
+  padding: 0.35em 0.625em 0.75em;
+}
+legend {
+  border: 0;
+  padding: 0;
+}
+textarea {
+  overflow: auto;
+}
+optgroup {
+  font-weight: bold;
+}
+table {
+  border-collapse: collapse;
+  border-spacing: 0;
+}
+td,
+th {
+  padding: 0;
+}
+/*! Source: https://github.com/h5bp/html5-boilerplate/blob/master/src/css/main.css */
+@media print {
+  *,
+  *:before,
+  *:after {
+    background: transparent !important;
+    box-shadow: none !important;
+    text-shadow: none !important;
+  }
+  a,
+  a:visited {
+    text-decoration: underline;
+  }
+  a[href]:after {
+    content: " (" attr(href) ")";
+  }
+  abbr[title]:after {
+    content: " (" attr(title) ")";
+  }
+  a[href^="#"]:after,
+  a[href^="javascript:"]:after {
+    content: "";
+  }
+  pre,
+  blockquote {
+    border: 1px solid #999;
+    page-break-inside: avoid;
+  }
+  thead {
+    display: table-header-group;
+  }
+  tr,
+  img {
+    page-break-inside: avoid;
+  }
+  img {
+    max-width: 100% !important;
+  }
+  p,
+  h2,
+  h3 {
+    orphans: 3;
+    widows: 3;
+  }
+  h2,
+  h3 {
+    page-break-after: avoid;
+  }
+  .navbar {
+    display: none;
+  }
+  .btn > .caret,
+  .dropup > .btn > .caret {
+    border-top-color: #000 !important;
+  }
+  .label {
+    border: 1px solid #000;
+  }
+  .table {
+    border-collapse: collapse !important;
+  }
+  .table td,
+  .table th {
+    background-color: #fff !important;
+  }
+  .table-bordered th,
+  .table-bordered td {
+    border: 1px solid #ddd !important;
+  }
+}
+@font-face {
+  font-family: 'Glyphicons Halflings';
+  src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot');
+  src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot?#iefix') format('embedded-opentype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff2') format('woff2'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff') format('woff'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.ttf') format('truetype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.svg#glyphicons_halflingsregular') format('svg');
+}
+.glyphicon {
+  position: relative;
+  top: 1px;
+  display: inline-block;
+  font-family: 'Glyphicons Halflings';
+  font-style: normal;
+  font-weight: normal;
+  line-height: 1;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+}
+.glyphicon-asterisk:before {
+  content: "\002a";
+}
+.glyphicon-plus:before {
+  content: "\002b";
+}
+.glyphicon-euro:before,
+.glyphicon-eur:before {
+  content: "\20ac";
+}
+.glyphicon-minus:before {
+  content: "\2212";
+}
+.glyphicon-cloud:before {
+  content: "\2601";
+}
+.glyphicon-envelope:before {
+  content: "\2709";
+}
+.glyphicon-pencil:before {
+  content: "\270f";
+}
+.glyphicon-glass:before {
+  content: "\e001";
+}
+.glyphicon-music:before {
+  content: "\e002";
+}
+.glyphicon-search:before {
+  content: "\e003";
+}
+.glyphicon-heart:before {
+  content: "\e005";
+}
+.glyphicon-star:before {
+  content: "\e006";
+}
+.glyphicon-star-empty:before {
+  content: "\e007";
+}
+.glyphicon-user:before {
+  content: "\e008";
+}
+.glyphicon-film:before {
+  content: "\e009";
+}
+.glyphicon-th-large:before {
+  content: "\e010";
+}
+.glyphicon-th:before {
+  content: "\e011";
+}
+.glyphicon-th-list:before {
+  content: "\e012";
+}
+.glyphicon-ok:before {
+  content: "\e013";
+}
+.glyphicon-remove:before {
+  content: "\e014";
+}
+.glyphicon-zoom-in:before {
+  content: "\e015";
+}
+.glyphicon-zoom-out:before {
+  content: "\e016";
+}
+.glyphicon-off:before {
+  content: "\e017";
+}
+.glyphicon-signal:before {
+  content: "\e018";
+}
+.glyphicon-cog:before {
+  content: "\e019";
+}
+.glyphicon-trash:before {
+  content: "\e020";
+}
+.glyphicon-home:before {
+  content: "\e021";
+}
+.glyphicon-file:before {
+  content: "\e022";
+}
+.glyphicon-time:before {
+  content: "\e023";
+}
+.glyphicon-road:before {
+  content: "\e024";
+}
+.glyphicon-download-alt:before {
+  content: "\e025";
+}
+.glyphicon-download:before {
+  content: "\e026";
+}
+.glyphicon-upload:before {
+  content: "\e027";
+}
+.glyphicon-inbox:before {
+  content: "\e028";
+}
+.glyphicon-play-circle:before {
+  content: "\e029";
+}
+.glyphicon-repeat:before {
+  content: "\e030";
+}
+.glyphicon-refresh:before {
+  content: "\e031";
+}
+.glyphicon-list-alt:before {
+  content: "\e032";
+}
+.glyphicon-lock:before {
+  content: "\e033";
+}
+.glyphicon-flag:before {
+  content: "\e034";
+}
+.glyphicon-headphones:before {
+  content: "\e035";
+}
+.glyphicon-volume-off:before {
+  content: "\e036";
+}
+.glyphicon-volume-down:before {
+  content: "\e037";
+}
+.glyphicon-volume-up:before {
+  content: "\e038";
+}
+.glyphicon-qrcode:before {
+  content: "\e039";
+}
+.glyphicon-barcode:before {
+  content: "\e040";
+}
+.glyphicon-tag:before {
+  content: "\e041";
+}
+.glyphicon-tags:before {
+  content: "\e042";
+}
+.glyphicon-book:before {
+  content: "\e043";
+}
+.glyphicon-bookmark:before {
+  content: "\e044";
+}
+.glyphicon-print:before {
+  content: "\e045";
+}
+.glyphicon-camera:before {
+  content: "\e046";
+}
+.glyphicon-font:before {
+  content: "\e047";
+}
+.glyphicon-bold:before {
+  content: "\e048";
+}
+.glyphicon-italic:before {
+  content: "\e049";
+}
+.glyphicon-text-height:before {
+  content: "\e050";
+}
+.glyphicon-text-width:before {
+  content: "\e051";
+}
+.glyphicon-align-left:before {
+  content: "\e052";
+}
+.glyphicon-align-center:before {
+  content: "\e053";
+}
+.glyphicon-align-right:before {
+  content: "\e054";
+}
+.glyphicon-align-justify:before {
+  content: "\e055";
+}
+.glyphicon-list:before {
+  content: "\e056";
+}
+.glyphicon-indent-left:before {
+  content: "\e057";
+}
+.glyphicon-indent-right:before {
+  content: "\e058";
+}
+.glyphicon-facetime-video:before {
+  content: "\e059";
+}
+.glyphicon-picture:before {
+  content: "\e060";
+}
+.glyphicon-map-marker:before {
+  content: "\e062";
+}
+.glyphicon-adjust:before {
+  content: "\e063";
+}
+.glyphicon-tint:before {
+  content: "\e064";
+}
+.glyphicon-edit:before {
+  content: "\e065";
+}
+.glyphicon-share:before {
+  content: "\e066";
+}
+.glyphicon-check:before {
+  content: "\e067";
+}
+.glyphicon-move:before {
+  content: "\e068";
+}
+.glyphicon-step-backward:before {
+  content: "\e069";
+}
+.glyphicon-fast-backward:before {
+  content: "\e070";
+}
+.glyphicon-backward:before {
+  content: "\e071";
+}
+.glyphicon-play:before {
+  content: "\e072";
+}
+.glyphicon-pause:before {
+  content: "\e073";
+}
+.glyphicon-stop:before {
+  content: "\e074";
+}
+.glyphicon-forward:before {
+  content: "\e075";
+}
+.glyphicon-fast-forward:before {
+  content: "\e076";
+}
+.glyphicon-step-forward:before {
+  content: "\e077";
+}
+.glyphicon-eject:before {
+  content: "\e078";
+}
+.glyphicon-chevron-left:before {
+  content: "\e079";
+}
+.glyphicon-chevron-right:before {
+  content: "\e080";
+}
+.glyphicon-plus-sign:before {
+  content: "\e081";
+}
+.glyphicon-minus-sign:before {
+  content: "\e082";
+}
+.glyphicon-remove-sign:before {
+  content: "\e083";
+}
+.glyphicon-ok-sign:before {
+  content: "\e084";
+}
+.glyphicon-question-sign:before {
+  content: "\e085";
+}
+.glyphicon-info-sign:before {
+  content: "\e086";
+}
+.glyphicon-screenshot:before {
+  content: "\e087";
+}
+.glyphicon-remove-circle:before {
+  content: "\e088";
+}
+.glyphicon-ok-circle:before {
+  content: "\e089";
+}
+.glyphicon-ban-circle:before {
+  content: "\e090";
+}
+.glyphicon-arrow-left:before {
+  content: "\e091";
+}
+.glyphicon-arrow-right:before {
+  content: "\e092";
+}
+.glyphicon-arrow-up:before {
+  content: "\e093";
+}
+.glyphicon-arrow-down:before {
+  content: "\e094";
+}
+.glyphicon-share-alt:before {
+  content: "\e095";
+}
+.glyphicon-resize-full:before {
+  content: "\e096";
+}
+.glyphicon-resize-small:before {
+  content: "\e097";
+}
+.glyphicon-exclamation-sign:before {
+  content: "\e101";
+}
+.glyphicon-gift:before {
+  content: "\e102";
+}
+.glyphicon-leaf:before {
+  content: "\e103";
+}
+.glyphicon-fire:before {
+  content: "\e104";
+}
+.glyphicon-eye-open:before {
+  content: "\e105";
+}
+.glyphicon-eye-close:before {
+  content: "\e106";
+}
+.glyphicon-warning-sign:before {
+  content: "\e107";
+}
+.glyphicon-plane:before {
+  content: "\e108";
+}
+.glyphicon-calendar:before {
+  content: "\e109";
+}
+.glyphicon-random:before {
+  content: "\e110";
+}
+.glyphicon-comment:before {
+  content: "\e111";
+}
+.glyphicon-magnet:before {
+  content: "\e112";
+}
+.glyphicon-chevron-up:before {
+  content: "\e113";
+}
+.glyphicon-chevron-down:before {
+  content: "\e114";
+}
+.glyphicon-retweet:before {
+  content: "\e115";
+}
+.glyphicon-shopping-cart:before {
+  content: "\e116";
+}
+.glyphicon-folder-close:before {
+  content: "\e117";
+}
+.glyphicon-folder-open:before {
+  content: "\e118";
+}
+.glyphicon-resize-vertical:before {
+  content: "\e119";
+}
+.glyphicon-resize-horizontal:before {
+  content: "\e120";
+}
+.glyphicon-hdd:before {
+  content: "\e121";
+}
+.glyphicon-bullhorn:before {
+  content: "\e122";
+}
+.glyphicon-bell:before {
+  content: "\e123";
+}
+.glyphicon-certificate:before {
+  content: "\e124";
+}
+.glyphicon-thumbs-up:before {
+  content: "\e125";
+}
+.glyphicon-thumbs-down:before {
+  content: "\e126";
+}
+.glyphicon-hand-right:before {
+  content: "\e127";
+}
+.glyphicon-hand-left:before {
+  content: "\e128";
+}
+.glyphicon-hand-up:before {
+  content: "\e129";
+}
+.glyphicon-hand-down:before {
+  content: "\e130";
+}
+.glyphicon-circle-arrow-right:before {
+  content: "\e131";
+}
+.glyphicon-circle-arrow-left:before {
+  content: "\e132";
+}
+.glyphicon-circle-arrow-up:before {
+  content: "\e133";
+}
+.glyphicon-circle-arrow-down:before {
+  content: "\e134";
+}
+.glyphicon-globe:before {
+  content: "\e135";
+}
+.glyphicon-wrench:before {
+  content: "\e136";
+}
+.glyphicon-tasks:before {
+  content: "\e137";
+}
+.glyphicon-filter:before {
+  content: "\e138";
+}
+.glyphicon-briefcase:before {
+  content: "\e139";
+}
+.glyphicon-fullscreen:before {
+  content: "\e140";
+}
+.glyphicon-dashboard:before {
+  content: "\e141";
+}
+.glyphicon-paperclip:before {
+  content: "\e142";
+}
+.glyphicon-heart-empty:before {
+  content: "\e143";
+}
+.glyphicon-link:before {
+  content: "\e144";
+}
+.glyphicon-phone:before {
+  content: "\e145";
+}
+.glyphicon-pushpin:before {
+  content: "\e146";
+}
+.glyphicon-usd:before {
+  content: "\e148";
+}
+.glyphicon-gbp:before {
+  content: "\e149";
+}
+.glyphicon-sort:before {
+  content: "\e150";
+}
+.glyphicon-sort-by-alphabet:before {
+  content: "\e151";
+}
+.glyphicon-sort-by-alphabet-alt:before {
+  content: "\e152";
+}
+.glyphicon-sort-by-order:before {
+  content: "\e153";
+}
+.glyphicon-sort-by-order-alt:before {
+  content: "\e154";
+}
+.glyphicon-sort-by-attributes:before {
+  content: "\e155";
+}
+.glyphicon-sort-by-attributes-alt:before {
+  content: "\e156";
+}
+.glyphicon-unchecked:before {
+  content: "\e157";
+}
+.glyphicon-expand:before {
+  content: "\e158";
+}
+.glyphicon-collapse-down:before {
+  content: "\e159";
+}
+.glyphicon-collapse-up:before {
+  content: "\e160";
+}
+.glyphicon-log-in:before {
+  content: "\e161";
+}
+.glyphicon-flash:before {
+  content: "\e162";
+}
+.glyphicon-log-out:before {
+  content: "\e163";
+}
+.glyphicon-new-window:before {
+  content: "\e164";
+}
+.glyphicon-record:before {
+  content: "\e165";
+}
+.glyphicon-save:before {
+  content: "\e166";
+}
+.glyphicon-open:before {
+  content: "\e167";
+}
+.glyphicon-saved:before {
+  content: "\e168";
+}
+.glyphicon-import:before {
+  content: "\e169";
+}
+.glyphicon-export:before {
+  content: "\e170";
+}
+.glyphicon-send:before {
+  content: "\e171";
+}
+.glyphicon-floppy-disk:before {
+  content: "\e172";
+}
+.glyphicon-floppy-saved:before {
+  content: "\e173";
+}
+.glyphicon-floppy-remove:before {
+  content: "\e174";
+}
+.glyphicon-floppy-save:before {
+  content: "\e175";
+}
+.glyphicon-floppy-open:before {
+  content: "\e176";
+}
+.glyphicon-credit-card:before {
+  content: "\e177";
+}
+.glyphicon-transfer:before {
+  content: "\e178";
+}
+.glyphicon-cutlery:before {
+  content: "\e179";
+}
+.glyphicon-header:before {
+  content: "\e180";
+}
+.glyphicon-compressed:before {
+  content: "\e181";
+}
+.glyphicon-earphone:before {
+  content: "\e182";
+}
+.glyphicon-phone-alt:before {
+  content: "\e183";
+}
+.glyphicon-tower:before {
+  content: "\e184";
+}
+.glyphicon-stats:before {
+  content: "\e185";
+}
+.glyphicon-sd-video:before {
+  content: "\e186";
+}
+.glyphicon-hd-video:before {
+  content: "\e187";
+}
+.glyphicon-subtitles:before {
+  content: "\e188";
+}
+.glyphicon-sound-stereo:before {
+  content: "\e189";
+}
+.glyphicon-sound-dolby:before {
+  content: "\e190";
+}
+.glyphicon-sound-5-1:before {
+  content: "\e191";
+}
+.glyphicon-sound-6-1:before {
+  content: "\e192";
+}
+.glyphicon-sound-7-1:before {
+  content: "\e193";
+}
+.glyphicon-copyright-mark:before {
+  content: "\e194";
+}
+.glyphicon-registration-mark:before {
+  content: "\e195";
+}
+.glyphicon-cloud-download:before {
+  content: "\e197";
+}
+.glyphicon-cloud-upload:before {
+  content: "\e198";
+}
+.glyphicon-tree-conifer:before {
+  content: "\e199";
+}
+.glyphicon-tree-deciduous:before {
+  content: "\e200";
+}
+.glyphicon-cd:before {
+  content: "\e201";
+}
+.glyphicon-save-file:before {
+  content: "\e202";
+}
+.glyphicon-open-file:before {
+  content: "\e203";
+}
+.glyphicon-level-up:before {
+  content: "\e204";
+}
+.glyphicon-copy:before {
+  content: "\e205";
+}
+.glyphicon-paste:before {
+  content: "\e206";
+}
+.glyphicon-alert:before {
+  content: "\e209";
+}
+.glyphicon-equalizer:before {
+  content: "\e210";
+}
+.glyphicon-king:before {
+  content: "\e211";
+}
+.glyphicon-queen:before {
+  content: "\e212";
+}
+.glyphicon-pawn:before {
+  content: "\e213";
+}
+.glyphicon-bishop:before {
+  content: "\e214";
+}
+.glyphicon-knight:before {
+  content: "\e215";
+}
+.glyphicon-baby-formula:before {
+  content: "\e216";
+}
+.glyphicon-tent:before {
+  content: "\26fa";
+}
+.glyphicon-blackboard:before {
+  content: "\e218";
+}
+.glyphicon-bed:before {
+  content: "\e219";
+}
+.glyphicon-apple:before {
+  content: "\f8ff";
+}
+.glyphicon-erase:before {
+  content: "\e221";
+}
+.glyphicon-hourglass:before {
+  content: "\231b";
+}
+.glyphicon-lamp:before {
+  content: "\e223";
+}
+.glyphicon-duplicate:before {
+  content: "\e224";
+}
+.glyphicon-piggy-bank:before {
+  content: "\e225";
+}
+.glyphicon-scissors:before {
+  content: "\e226";
+}
+.glyphicon-bitcoin:before {
+  content: "\e227";
+}
+.glyphicon-btc:before {
+  content: "\e227";
+}
+.glyphicon-xbt:before {
+  content: "\e227";
+}
+.glyphicon-yen:before {
+  content: "\00a5";
+}
+.glyphicon-jpy:before {
+  content: "\00a5";
+}
+.glyphicon-ruble:before {
+  content: "\20bd";
+}
+.glyphicon-rub:before {
+  content: "\20bd";
+}
+.glyphicon-scale:before {
+  content: "\e230";
+}
+.glyphicon-ice-lolly:before {
+  content: "\e231";
+}
+.glyphicon-ice-lolly-tasted:before {
+  content: "\e232";
+}
+.glyphicon-education:before {
+  content: "\e233";
+}
+.glyphicon-option-horizontal:before {
+  content: "\e234";
+}
+.glyphicon-option-vertical:before {
+  content: "\e235";
+}
+.glyphicon-menu-hamburger:before {
+  content: "\e236";
+}
+.glyphicon-modal-window:before {
+  content: "\e237";
+}
+.glyphicon-oil:before {
+  content: "\e238";
+}
+.glyphicon-grain:before {
+  content: "\e239";
+}
+.glyphicon-sunglasses:before {
+  content: "\e240";
+}
+.glyphicon-text-size:before {
+  content: "\e241";
+}
+.glyphicon-text-color:before {
+  content: "\e242";
+}
+.glyphicon-text-background:before {
+  content: "\e243";
+}
+.glyphicon-object-align-top:before {
+  content: "\e244";
+}
+.glyphicon-object-align-bottom:before {
+  content: "\e245";
+}
+.glyphicon-object-align-horizontal:before {
+  content: "\e246";
+}
+.glyphicon-object-align-left:before {
+  content: "\e247";
+}
+.glyphicon-object-align-vertical:before {
+  content: "\e248";
+}
+.glyphicon-object-align-right:before {
+  content: "\e249";
+}
+.glyphicon-triangle-right:before {
+  content: "\e250";
+}
+.glyphicon-triangle-left:before {
+  content: "\e251";
+}
+.glyphicon-triangle-bottom:before {
+  content: "\e252";
+}
+.glyphicon-triangle-top:before {
+  content: "\e253";
+}
+.glyphicon-console:before {
+  content: "\e254";
+}
+.glyphicon-superscript:before {
+  content: "\e255";
+}
+.glyphicon-subscript:before {
+  content: "\e256";
+}
+.glyphicon-menu-left:before {
+  content: "\e257";
+}
+.glyphicon-menu-right:before {
+  content: "\e258";
+}
+.glyphicon-menu-down:before {
+  content: "\e259";
+}
+.glyphicon-menu-up:before {
+  content: "\e260";
+}
+* {
+  -webkit-box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  box-sizing: border-box;
+}
+*:before,
+*:after {
+  -webkit-box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  box-sizing: border-box;
+}
+html {
+  font-size: 10px;
+  -webkit-tap-highlight-color: rgba(0, 0, 0, 0);
+}
+body {
+  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #000;
+  background-color: #fff;
+}
+input,
+button,
+select,
+textarea {
+  font-family: inherit;
+  font-size: inherit;
+  line-height: inherit;
+}
+a {
+  color: #337ab7;
+  text-decoration: none;
+}
+a:hover,
+a:focus {
+  color: #23527c;
+  text-decoration: underline;
+}
+a:focus {
+  outline: 5px auto -webkit-focus-ring-color;
+  outline-offset: -2px;
+}
+figure {
+  margin: 0;
+}
+img {
+  vertical-align: middle;
+}
+.img-responsive,
+.thumbnail > img,
+.thumbnail a > img,
+.carousel-inner > .item > img,
+.carousel-inner > .item > a > img {
+  display: block;
+  max-width: 100%;
+  height: auto;
+}
+.img-rounded {
+  border-radius: 3px;
+}
+.img-thumbnail {
+  padding: 4px;
+  line-height: 1.42857143;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  border-radius: 2px;
+  -webkit-transition: all 0.2s ease-in-out;
+  -o-transition: all 0.2s ease-in-out;
+  transition: all 0.2s ease-in-out;
+  display: inline-block;
+  max-width: 100%;
+  height: auto;
+}
+.img-circle {
+  border-radius: 50%;
+}
+hr {
+  margin-top: 18px;
+  margin-bottom: 18px;
+  border: 0;
+  border-top: 1px solid #eeeeee;
+}
+.sr-only {
+  position: absolute;
+  width: 1px;
+  height: 1px;
+  margin: -1px;
+  padding: 0;
+  overflow: hidden;
+  clip: rect(0, 0, 0, 0);
+  border: 0;
+}
+.sr-only-focusable:active,
+.sr-only-focusable:focus {
+  position: static;
+  width: auto;
+  height: auto;
+  margin: 0;
+  overflow: visible;
+  clip: auto;
+}
+[role="button"] {
+  cursor: pointer;
+}
+h1,
+h2,
+h3,
+h4,
+h5,
+h6,
+.h1,
+.h2,
+.h3,
+.h4,
+.h5,
+.h6 {
+  font-family: inherit;
+  font-weight: 500;
+  line-height: 1.1;
+  color: inherit;
+}
+h1 small,
+h2 small,
+h3 small,
+h4 small,
+h5 small,
+h6 small,
+.h1 small,
+.h2 small,
+.h3 small,
+.h4 small,
+.h5 small,
+.h6 small,
+h1 .small,
+h2 .small,
+h3 .small,
+h4 .small,
+h5 .small,
+h6 .small,
+.h1 .small,
+.h2 .small,
+.h3 .small,
+.h4 .small,
+.h5 .small,
+.h6 .small {
+  font-weight: normal;
+  line-height: 1;
+  color: #777777;
+}
+h1,
+.h1,
+h2,
+.h2,
+h3,
+.h3 {
+  margin-top: 18px;
+  margin-bottom: 9px;
+}
+h1 small,
+.h1 small,
+h2 small,
+.h2 small,
+h3 small,
+.h3 small,
+h1 .small,
+.h1 .small,
+h2 .small,
+.h2 .small,
+h3 .small,
+.h3 .small {
+  font-size: 65%;
+}
+h4,
+.h4,
+h5,
+.h5,
+h6,
+.h6 {
+  margin-top: 9px;
+  margin-bottom: 9px;
+}
+h4 small,
+.h4 small,
+h5 small,
+.h5 small,
+h6 small,
+.h6 small,
+h4 .small,
+.h4 .small,
+h5 .small,
+.h5 .small,
+h6 .small,
+.h6 .small {
+  font-size: 75%;
+}
+h1,
+.h1 {
+  font-size: 33px;
+}
+h2,
+.h2 {
+  font-size: 27px;
+}
+h3,
+.h3 {
+  font-size: 23px;
+}
+h4,
+.h4 {
+  font-size: 17px;
+}
+h5,
+.h5 {
+  font-size: 13px;
+}
+h6,
+.h6 {
+  font-size: 12px;
+}
+p {
+  margin: 0 0 9px;
+}
+.lead {
+  margin-bottom: 18px;
+  font-size: 14px;
+  font-weight: 300;
+  line-height: 1.4;
+}
+@media (min-width: 768px) {
+  .lead {
+    font-size: 19.5px;
+  }
+}
+small,
+.small {
+  font-size: 92%;
+}
+mark,
+.mark {
+  background-color: #fcf8e3;
+  padding: .2em;
+}
+.text-left {
+  text-align: left;
+}
+.text-right {
+  text-align: right;
+}
+.text-center {
+  text-align: center;
+}
+.text-justify {
+  text-align: justify;
+}
+.text-nowrap {
+  white-space: nowrap;
+}
+.text-lowercase {
+  text-transform: lowercase;
+}
+.text-uppercase {
+  text-transform: uppercase;
+}
+.text-capitalize {
+  text-transform: capitalize;
+}
+.text-muted {
+  color: #777777;
+}
+.text-primary {
+  color: #337ab7;
+}
+a.text-primary:hover,
+a.text-primary:focus {
+  color: #286090;
+}
+.text-success {
+  color: #3c763d;
+}
+a.text-success:hover,
+a.text-success:focus {
+  color: #2b542c;
+}
+.text-info {
+  color: #31708f;
+}
+a.text-info:hover,
+a.text-info:focus {
+  color: #245269;
+}
+.text-warning {
+  color: #8a6d3b;
+}
+a.text-warning:hover,
+a.text-warning:focus {
+  color: #66512c;
+}
+.text-danger {
+  color: #a94442;
+}
+a.text-danger:hover,
+a.text-danger:focus {
+  color: #843534;
+}
+.bg-primary {
+  color: #fff;
+  background-color: #337ab7;
+}
+a.bg-primary:hover,
+a.bg-primary:focus {
+  background-color: #286090;
+}
+.bg-success {
+  background-color: #dff0d8;
+}
+a.bg-success:hover,
+a.bg-success:focus {
+  background-color: #c1e2b3;
+}
+.bg-info {
+  background-color: #d9edf7;
+}
+a.bg-info:hover,
+a.bg-info:focus {
+  background-color: #afd9ee;
+}
+.bg-warning {
+  background-color: #fcf8e3;
+}
+a.bg-warning:hover,
+a.bg-warning:focus {
+  background-color: #f7ecb5;
+}
+.bg-danger {
+  background-color: #f2dede;
+}
+a.bg-danger:hover,
+a.bg-danger:focus {
+  background-color: #e4b9b9;
+}
+.page-header {
+  padding-bottom: 8px;
+  margin: 36px 0 18px;
+  border-bottom: 1px solid #eeeeee;
+}
+ul,
+ol {
+  margin-top: 0;
+  margin-bottom: 9px;
+}
+ul ul,
+ol ul,
+ul ol,
+ol ol {
+  margin-bottom: 0;
+}
+.list-unstyled {
+  padding-left: 0;
+  list-style: none;
+}
+.list-inline {
+  padding-left: 0;
+  list-style: none;
+  margin-left: -5px;
+}
+.list-inline > li {
+  display: inline-block;
+  padding-left: 5px;
+  padding-right: 5px;
+}
+dl {
+  margin-top: 0;
+  margin-bottom: 18px;
+}
+dt,
+dd {
+  line-height: 1.42857143;
+}
+dt {
+  font-weight: bold;
+}
+dd {
+  margin-left: 0;
+}
+@media (min-width: 541px) {
+  .dl-horizontal dt {
+    float: left;
+    width: 160px;
+    clear: left;
+    text-align: right;
+    overflow: hidden;
+    text-overflow: ellipsis;
+    white-space: nowrap;
+  }
+  .dl-horizontal dd {
+    margin-left: 180px;
+  }
+}
+abbr[title],
+abbr[data-original-title] {
+  cursor: help;
+  border-bottom: 1px dotted #777777;
+}
+.initialism {
+  font-size: 90%;
+  text-transform: uppercase;
+}
+blockquote {
+  padding: 9px 18px;
+  margin: 0 0 18px;
+  font-size: inherit;
+  border-left: 5px solid #eeeeee;
+}
+blockquote p:last-child,
+blockquote ul:last-child,
+blockquote ol:last-child {
+  margin-bottom: 0;
+}
+blockquote footer,
+blockquote small,
+blockquote .small {
+  display: block;
+  font-size: 80%;
+  line-height: 1.42857143;
+  color: #777777;
+}
+blockquote footer:before,
+blockquote small:before,
+blockquote .small:before {
+  content: '\2014 \00A0';
+}
+.blockquote-reverse,
+blockquote.pull-right {
+  padding-right: 15px;
+  padding-left: 0;
+  border-right: 5px solid #eeeeee;
+  border-left: 0;
+  text-align: right;
+}
+.blockquote-reverse footer:before,
+blockquote.pull-right footer:before,
+.blockquote-reverse small:before,
+blockquote.pull-right small:before,
+.blockquote-reverse .small:before,
+blockquote.pull-right .small:before {
+  content: '';
+}
+.blockquote-reverse footer:after,
+blockquote.pull-right footer:after,
+.blockquote-reverse small:after,
+blockquote.pull-right small:after,
+.blockquote-reverse .small:after,
+blockquote.pull-right .small:after {
+  content: '\00A0 \2014';
+}
+address {
+  margin-bottom: 18px;
+  font-style: normal;
+  line-height: 1.42857143;
+}
+code,
+kbd,
+pre,
+samp {
+  font-family: monospace;
+}
+code {
+  padding: 2px 4px;
+  font-size: 90%;
+  color: #c7254e;
+  background-color: #f9f2f4;
+  border-radius: 2px;
+}
+kbd {
+  padding: 2px 4px;
+  font-size: 90%;
+  color: #888;
+  background-color: transparent;
+  border-radius: 1px;
+  box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25);
+}
+kbd kbd {
+  padding: 0;
+  font-size: 100%;
+  font-weight: bold;
+  box-shadow: none;
+}
+pre {
+  display: block;
+  padding: 8.5px;
+  margin: 0 0 9px;
+  font-size: 12px;
+  line-height: 1.42857143;
+  word-break: break-all;
+  word-wrap: break-word;
+  color: #333333;
+  background-color: #f5f5f5;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+}
+pre code {
+  padding: 0;
+  font-size: inherit;
+  color: inherit;
+  white-space: pre-wrap;
+  background-color: transparent;
+  border-radius: 0;
+}
+.pre-scrollable {
+  max-height: 340px;
+  overflow-y: scroll;
+}
+.container {
+  margin-right: auto;
+  margin-left: auto;
+  padding-left: 0px;
+  padding-right: 0px;
+}
+@media (min-width: 768px) {
+  .container {
+    width: 768px;
+  }
+}
+@media (min-width: 992px) {
+  .container {
+    width: 940px;
+  }
+}
+@media (min-width: 1200px) {
+  .container {
+    width: 1140px;
+  }
+}
+.container-fluid {
+  margin-right: auto;
+  margin-left: auto;
+  padding-left: 0px;
+  padding-right: 0px;
+}
+.row {
+  margin-left: 0px;
+  margin-right: 0px;
+}
+.col-xs-1, .col-sm-1, .col-md-1, .col-lg-1, .col-xs-2, .col-sm-2, .col-md-2, .col-lg-2, .col-xs-3, .col-sm-3, .col-md-3, .col-lg-3, .col-xs-4, .col-sm-4, .col-md-4, .col-lg-4, .col-xs-5, .col-sm-5, .col-md-5, .col-lg-5, .col-xs-6, .col-sm-6, .col-md-6, .col-lg-6, .col-xs-7, .col-sm-7, .col-md-7, .col-lg-7, .col-xs-8, .col-sm-8, .col-md-8, .col-lg-8, .col-xs-9, .col-sm-9, .col-md-9, .col-lg-9, .col-xs-10, .col-sm-10, .col-md-10, .col-lg-10, .col-xs-11, .col-sm-11, .col-md-11, .col-lg-11, .col-xs-12, .col-sm-12, .col-md-12, .col-lg-12 {
+  position: relative;
+  min-height: 1px;
+  padding-left: 0px;
+  padding-right: 0px;
+}
+.col-xs-1, .col-xs-2, .col-xs-3, .col-xs-4, .col-xs-5, .col-xs-6, .col-xs-7, .col-xs-8, .col-xs-9, .col-xs-10, .col-xs-11, .col-xs-12 {
+  float: left;
+}
+.col-xs-12 {
+  width: 100%;
+}
+.col-xs-11 {
+  width: 91.66666667%;
+}
+.col-xs-10 {
+  width: 83.33333333%;
+}
+.col-xs-9 {
+  width: 75%;
+}
+.col-xs-8 {
+  width: 66.66666667%;
+}
+.col-xs-7 {
+  width: 58.33333333%;
+}
+.col-xs-6 {
+  width: 50%;
+}
+.col-xs-5 {
+  width: 41.66666667%;
+}
+.col-xs-4 {
+  width: 33.33333333%;
+}
+.col-xs-3 {
+  width: 25%;
+}
+.col-xs-2 {
+  width: 16.66666667%;
+}
+.col-xs-1 {
+  width: 8.33333333%;
+}
+.col-xs-pull-12 {
+  right: 100%;
+}
+.col-xs-pull-11 {
+  right: 91.66666667%;
+}
+.col-xs-pull-10 {
+  right: 83.33333333%;
+}
+.col-xs-pull-9 {
+  right: 75%;
+}
+.col-xs-pull-8 {
+  right: 66.66666667%;
+}
+.col-xs-pull-7 {
+  right: 58.33333333%;
+}
+.col-xs-pull-6 {
+  right: 50%;
+}
+.col-xs-pull-5 {
+  right: 41.66666667%;
+}
+.col-xs-pull-4 {
+  right: 33.33333333%;
+}
+.col-xs-pull-3 {
+  right: 25%;
+}
+.col-xs-pull-2 {
+  right: 16.66666667%;
+}
+.col-xs-pull-1 {
+  right: 8.33333333%;
+}
+.col-xs-pull-0 {
+  right: auto;
+}
+.col-xs-push-12 {
+  left: 100%;
+}
+.col-xs-push-11 {
+  left: 91.66666667%;
+}
+.col-xs-push-10 {
+  left: 83.33333333%;
+}
+.col-xs-push-9 {
+  left: 75%;
+}
+.col-xs-push-8 {
+  left: 66.66666667%;
+}
+.col-xs-push-7 {
+  left: 58.33333333%;
+}
+.col-xs-push-6 {
+  left: 50%;
+}
+.col-xs-push-5 {
+  left: 41.66666667%;
+}
+.col-xs-push-4 {
+  left: 33.33333333%;
+}
+.col-xs-push-3 {
+  left: 25%;
+}
+.col-xs-push-2 {
+  left: 16.66666667%;
+}
+.col-xs-push-1 {
+  left: 8.33333333%;
+}
+.col-xs-push-0 {
+  left: auto;
+}
+.col-xs-offset-12 {
+  margin-left: 100%;
+}
+.col-xs-offset-11 {
+  margin-left: 91.66666667%;
+}
+.col-xs-offset-10 {
+  margin-left: 83.33333333%;
+}
+.col-xs-offset-9 {
+  margin-left: 75%;
+}
+.col-xs-offset-8 {
+  margin-left: 66.66666667%;
+}
+.col-xs-offset-7 {
+  margin-left: 58.33333333%;
+}
+.col-xs-offset-6 {
+  margin-left: 50%;
+}
+.col-xs-offset-5 {
+  margin-left: 41.66666667%;
+}
+.col-xs-offset-4 {
+  margin-left: 33.33333333%;
+}
+.col-xs-offset-3 {
+  margin-left: 25%;
+}
+.col-xs-offset-2 {
+  margin-left: 16.66666667%;
+}
+.col-xs-offset-1 {
+  margin-left: 8.33333333%;
+}
+.col-xs-offset-0 {
+  margin-left: 0%;
+}
+@media (min-width: 768px) {
+  .col-sm-1, .col-sm-2, .col-sm-3, .col-sm-4, .col-sm-5, .col-sm-6, .col-sm-7, .col-sm-8, .col-sm-9, .col-sm-10, .col-sm-11, .col-sm-12 {
+    float: left;
+  }
+  .col-sm-12 {
+    width: 100%;
+  }
+  .col-sm-11 {
+    width: 91.66666667%;
+  }
+  .col-sm-10 {
+    width: 83.33333333%;
+  }
+  .col-sm-9 {
+    width: 75%;
+  }
+  .col-sm-8 {
+    width: 66.66666667%;
+  }
+  .col-sm-7 {
+    width: 58.33333333%;
+  }
+  .col-sm-6 {
+    width: 50%;
+  }
+  .col-sm-5 {
+    width: 41.66666667%;
+  }
+  .col-sm-4 {
+    width: 33.33333333%;
+  }
+  .col-sm-3 {
+    width: 25%;
+  }
+  .col-sm-2 {
+    width: 16.66666667%;
+  }
+  .col-sm-1 {
+    width: 8.33333333%;
+  }
+  .col-sm-pull-12 {
+    right: 100%;
+  }
+  .col-sm-pull-11 {
+    right: 91.66666667%;
+  }
+  .col-sm-pull-10 {
+    right: 83.33333333%;
+  }
+  .col-sm-pull-9 {
+    right: 75%;
+  }
+  .col-sm-pull-8 {
+    right: 66.66666667%;
+  }
+  .col-sm-pull-7 {
+    right: 58.33333333%;
+  }
+  .col-sm-pull-6 {
+    right: 50%;
+  }
+  .col-sm-pull-5 {
+    right: 41.66666667%;
+  }
+  .col-sm-pull-4 {
+    right: 33.33333333%;
+  }
+  .col-sm-pull-3 {
+    right: 25%;
+  }
+  .col-sm-pull-2 {
+    right: 16.66666667%;
+  }
+  .col-sm-pull-1 {
+    right: 8.33333333%;
+  }
+  .col-sm-pull-0 {
+    right: auto;
+  }
+  .col-sm-push-12 {
+    left: 100%;
+  }
+  .col-sm-push-11 {
+    left: 91.66666667%;
+  }
+  .col-sm-push-10 {
+    left: 83.33333333%;
+  }
+  .col-sm-push-9 {
+    left: 75%;
+  }
+  .col-sm-push-8 {
+    left: 66.66666667%;
+  }
+  .col-sm-push-7 {
+    left: 58.33333333%;
+  }
+  .col-sm-push-6 {
+    left: 50%;
+  }
+  .col-sm-push-5 {
+    left: 41.66666667%;
+  }
+  .col-sm-push-4 {
+    left: 33.33333333%;
+  }
+  .col-sm-push-3 {
+    left: 25%;
+  }
+  .col-sm-push-2 {
+    left: 16.66666667%;
+  }
+  .col-sm-push-1 {
+    left: 8.33333333%;
+  }
+  .col-sm-push-0 {
+    left: auto;
+  }
+  .col-sm-offset-12 {
+    margin-left: 100%;
+  }
+  .col-sm-offset-11 {
+    margin-left: 91.66666667%;
+  }
+  .col-sm-offset-10 {
+    margin-left: 83.33333333%;
+  }
+  .col-sm-offset-9 {
+    margin-left: 75%;
+  }
+  .col-sm-offset-8 {
+    margin-left: 66.66666667%;
+  }
+  .col-sm-offset-7 {
+    margin-left: 58.33333333%;
+  }
+  .col-sm-offset-6 {
+    margin-left: 50%;
+  }
+  .col-sm-offset-5 {
+    margin-left: 41.66666667%;
+  }
+  .col-sm-offset-4 {
+    margin-left: 33.33333333%;
+  }
+  .col-sm-offset-3 {
+    margin-left: 25%;
+  }
+  .col-sm-offset-2 {
+    margin-left: 16.66666667%;
+  }
+  .col-sm-offset-1 {
+    margin-left: 8.33333333%;
+  }
+  .col-sm-offset-0 {
+    margin-left: 0%;
+  }
+}
+@media (min-width: 992px) {
+  .col-md-1, .col-md-2, .col-md-3, .col-md-4, .col-md-5, .col-md-6, .col-md-7, .col-md-8, .col-md-9, .col-md-10, .col-md-11, .col-md-12 {
+    float: left;
+  }
+  .col-md-12 {
+    width: 100%;
+  }
+  .col-md-11 {
+    width: 91.66666667%;
+  }
+  .col-md-10 {
+    width: 83.33333333%;
+  }
+  .col-md-9 {
+    width: 75%;
+  }
+  .col-md-8 {
+    width: 66.66666667%;
+  }
+  .col-md-7 {
+    width: 58.33333333%;
+  }
+  .col-md-6 {
+    width: 50%;
+  }
+  .col-md-5 {
+    width: 41.66666667%;
+  }
+  .col-md-4 {
+    width: 33.33333333%;
+  }
+  .col-md-3 {
+    width: 25%;
+  }
+  .col-md-2 {
+    width: 16.66666667%;
+  }
+  .col-md-1 {
+    width: 8.33333333%;
+  }
+  .col-md-pull-12 {
+    right: 100%;
+  }
+  .col-md-pull-11 {
+    right: 91.66666667%;
+  }
+  .col-md-pull-10 {
+    right: 83.33333333%;
+  }
+  .col-md-pull-9 {
+    right: 75%;
+  }
+  .col-md-pull-8 {
+    right: 66.66666667%;
+  }
+  .col-md-pull-7 {
+    right: 58.33333333%;
+  }
+  .col-md-pull-6 {
+    right: 50%;
+  }
+  .col-md-pull-5 {
+    right: 41.66666667%;
+  }
+  .col-md-pull-4 {
+    right: 33.33333333%;
+  }
+  .col-md-pull-3 {
+    right: 25%;
+  }
+  .col-md-pull-2 {
+    right: 16.66666667%;
+  }
+  .col-md-pull-1 {
+    right: 8.33333333%;
+  }
+  .col-md-pull-0 {
+    right: auto;
+  }
+  .col-md-push-12 {
+    left: 100%;
+  }
+  .col-md-push-11 {
+    left: 91.66666667%;
+  }
+  .col-md-push-10 {
+    left: 83.33333333%;
+  }
+  .col-md-push-9 {
+    left: 75%;
+  }
+  .col-md-push-8 {
+    left: 66.66666667%;
+  }
+  .col-md-push-7 {
+    left: 58.33333333%;
+  }
+  .col-md-push-6 {
+    left: 50%;
+  }
+  .col-md-push-5 {
+    left: 41.66666667%;
+  }
+  .col-md-push-4 {
+    left: 33.33333333%;
+  }
+  .col-md-push-3 {
+    left: 25%;
+  }
+  .col-md-push-2 {
+    left: 16.66666667%;
+  }
+  .col-md-push-1 {
+    left: 8.33333333%;
+  }
+  .col-md-push-0 {
+    left: auto;
+  }
+  .col-md-offset-12 {
+    margin-left: 100%;
+  }
+  .col-md-offset-11 {
+    margin-left: 91.66666667%;
+  }
+  .col-md-offset-10 {
+    margin-left: 83.33333333%;
+  }
+  .col-md-offset-9 {
+    margin-left: 75%;
+  }
+  .col-md-offset-8 {
+    margin-left: 66.66666667%;
+  }
+  .col-md-offset-7 {
+    margin-left: 58.33333333%;
+  }
+  .col-md-offset-6 {
+    margin-left: 50%;
+  }
+  .col-md-offset-5 {
+    margin-left: 41.66666667%;
+  }
+  .col-md-offset-4 {
+    margin-left: 33.33333333%;
+  }
+  .col-md-offset-3 {
+    margin-left: 25%;
+  }
+  .col-md-offset-2 {
+    margin-left: 16.66666667%;
+  }
+  .col-md-offset-1 {
+    margin-left: 8.33333333%;
+  }
+  .col-md-offset-0 {
+    margin-left: 0%;
+  }
+}
+@media (min-width: 1200px) {
+  .col-lg-1, .col-lg-2, .col-lg-3, .col-lg-4, .col-lg-5, .col-lg-6, .col-lg-7, .col-lg-8, .col-lg-9, .col-lg-10, .col-lg-11, .col-lg-12 {
+    float: left;
+  }
+  .col-lg-12 {
+    width: 100%;
+  }
+  .col-lg-11 {
+    width: 91.66666667%;
+  }
+  .col-lg-10 {
+    width: 83.33333333%;
+  }
+  .col-lg-9 {
+    width: 75%;
+  }
+  .col-lg-8 {
+    width: 66.66666667%;
+  }
+  .col-lg-7 {
+    width: 58.33333333%;
+  }
+  .col-lg-6 {
+    width: 50%;
+  }
+  .col-lg-5 {
+    width: 41.66666667%;
+  }
+  .col-lg-4 {
+    width: 33.33333333%;
+  }
+  .col-lg-3 {
+    width: 25%;
+  }
+  .col-lg-2 {
+    width: 16.66666667%;
+  }
+  .col-lg-1 {
+    width: 8.33333333%;
+  }
+  .col-lg-pull-12 {
+    right: 100%;
+  }
+  .col-lg-pull-11 {
+    right: 91.66666667%;
+  }
+  .col-lg-pull-10 {
+    right: 83.33333333%;
+  }
+  .col-lg-pull-9 {
+    right: 75%;
+  }
+  .col-lg-pull-8 {
+    right: 66.66666667%;
+  }
+  .col-lg-pull-7 {
+    right: 58.33333333%;
+  }
+  .col-lg-pull-6 {
+    right: 50%;
+  }
+  .col-lg-pull-5 {
+    right: 41.66666667%;
+  }
+  .col-lg-pull-4 {
+    right: 33.33333333%;
+  }
+  .col-lg-pull-3 {
+    right: 25%;
+  }
+  .col-lg-pull-2 {
+    right: 16.66666667%;
+  }
+  .col-lg-pull-1 {
+    right: 8.33333333%;
+  }
+  .col-lg-pull-0 {
+    right: auto;
+  }
+  .col-lg-push-12 {
+    left: 100%;
+  }
+  .col-lg-push-11 {
+    left: 91.66666667%;
+  }
+  .col-lg-push-10 {
+    left: 83.33333333%;
+  }
+  .col-lg-push-9 {
+    left: 75%;
+  }
+  .col-lg-push-8 {
+    left: 66.66666667%;
+  }
+  .col-lg-push-7 {
+    left: 58.33333333%;
+  }
+  .col-lg-push-6 {
+    left: 50%;
+  }
+  .col-lg-push-5 {
+    left: 41.66666667%;
+  }
+  .col-lg-push-4 {
+    left: 33.33333333%;
+  }
+  .col-lg-push-3 {
+    left: 25%;
+  }
+  .col-lg-push-2 {
+    left: 16.66666667%;
+  }
+  .col-lg-push-1 {
+    left: 8.33333333%;
+  }
+  .col-lg-push-0 {
+    left: auto;
+  }
+  .col-lg-offset-12 {
+    margin-left: 100%;
+  }
+  .col-lg-offset-11 {
+    margin-left: 91.66666667%;
+  }
+  .col-lg-offset-10 {
+    margin-left: 83.33333333%;
+  }
+  .col-lg-offset-9 {
+    margin-left: 75%;
+  }
+  .col-lg-offset-8 {
+    margin-left: 66.66666667%;
+  }
+  .col-lg-offset-7 {
+    margin-left: 58.33333333%;
+  }
+  .col-lg-offset-6 {
+    margin-left: 50%;
+  }
+  .col-lg-offset-5 {
+    margin-left: 41.66666667%;
+  }
+  .col-lg-offset-4 {
+    margin-left: 33.33333333%;
+  }
+  .col-lg-offset-3 {
+    margin-left: 25%;
+  }
+  .col-lg-offset-2 {
+    margin-left: 16.66666667%;
+  }
+  .col-lg-offset-1 {
+    margin-left: 8.33333333%;
+  }
+  .col-lg-offset-0 {
+    margin-left: 0%;
+  }
+}
+table {
+  background-color: transparent;
+}
+caption {
+  padding-top: 8px;
+  padding-bottom: 8px;
+  color: #777777;
+  text-align: left;
+}
+th {
+  text-align: left;
+}
+.table {
+  width: 100%;
+  max-width: 100%;
+  margin-bottom: 18px;
+}
+.table > thead > tr > th,
+.table > tbody > tr > th,
+.table > tfoot > tr > th,
+.table > thead > tr > td,
+.table > tbody > tr > td,
+.table > tfoot > tr > td {
+  padding: 8px;
+  line-height: 1.42857143;
+  vertical-align: top;
+  border-top: 1px solid #ddd;
+}
+.table > thead > tr > th {
+  vertical-align: bottom;
+  border-bottom: 2px solid #ddd;
+}
+.table > caption + thead > tr:first-child > th,
+.table > colgroup + thead > tr:first-child > th,
+.table > thead:first-child > tr:first-child > th,
+.table > caption + thead > tr:first-child > td,
+.table > colgroup + thead > tr:first-child > td,
+.table > thead:first-child > tr:first-child > td {
+  border-top: 0;
+}
+.table > tbody + tbody {
+  border-top: 2px solid #ddd;
+}
+.table .table {
+  background-color: #fff;
+}
+.table-condensed > thead > tr > th,
+.table-condensed > tbody > tr > th,
+.table-condensed > tfoot > tr > th,
+.table-condensed > thead > tr > td,
+.table-condensed > tbody > tr > td,
+.table-condensed > tfoot > tr > td {
+  padding: 5px;
+}
+.table-bordered {
+  border: 1px solid #ddd;
+}
+.table-bordered > thead > tr > th,
+.table-bordered > tbody > tr > th,
+.table-bordered > tfoot > tr > th,
+.table-bordered > thead > tr > td,
+.table-bordered > tbody > tr > td,
+.table-bordered > tfoot > tr > td {
+  border: 1px solid #ddd;
+}
+.table-bordered > thead > tr > th,
+.table-bordered > thead > tr > td {
+  border-bottom-width: 2px;
+}
+.table-striped > tbody > tr:nth-of-type(odd) {
+  background-color: #f9f9f9;
+}
+.table-hover > tbody > tr:hover {
+  background-color: #f5f5f5;
+}
+table col[class*="col-"] {
+  position: static;
+  float: none;
+  display: table-column;
+}
+table td[class*="col-"],
+table th[class*="col-"] {
+  position: static;
+  float: none;
+  display: table-cell;
+}
+.table > thead > tr > td.active,
+.table > tbody > tr > td.active,
+.table > tfoot > tr > td.active,
+.table > thead > tr > th.active,
+.table > tbody > tr > th.active,
+.table > tfoot > tr > th.active,
+.table > thead > tr.active > td,
+.table > tbody > tr.active > td,
+.table > tfoot > tr.active > td,
+.table > thead > tr.active > th,
+.table > tbody > tr.active > th,
+.table > tfoot > tr.active > th {
+  background-color: #f5f5f5;
+}
+.table-hover > tbody > tr > td.active:hover,
+.table-hover > tbody > tr > th.active:hover,
+.table-hover > tbody > tr.active:hover > td,
+.table-hover > tbody > tr:hover > .active,
+.table-hover > tbody > tr.active:hover > th {
+  background-color: #e8e8e8;
+}
+.table > thead > tr > td.success,
+.table > tbody > tr > td.success,
+.table > tfoot > tr > td.success,
+.table > thead > tr > th.success,
+.table > tbody > tr > th.success,
+.table > tfoot > tr > th.success,
+.table > thead > tr.success > td,
+.table > tbody > tr.success > td,
+.table > tfoot > tr.success > td,
+.table > thead > tr.success > th,
+.table > tbody > tr.success > th,
+.table > tfoot > tr.success > th {
+  background-color: #dff0d8;
+}
+.table-hover > tbody > tr > td.success:hover,
+.table-hover > tbody > tr > th.success:hover,
+.table-hover > tbody > tr.success:hover > td,
+.table-hover > tbody > tr:hover > .success,
+.table-hover > tbody > tr.success:hover > th {
+  background-color: #d0e9c6;
+}
+.table > thead > tr > td.info,
+.table > tbody > tr > td.info,
+.table > tfoot > tr > td.info,
+.table > thead > tr > th.info,
+.table > tbody > tr > th.info,
+.table > tfoot > tr > th.info,
+.table > thead > tr.info > td,
+.table > tbody > tr.info > td,
+.table > tfoot > tr.info > td,
+.table > thead > tr.info > th,
+.table > tbody > tr.info > th,
+.table > tfoot > tr.info > th {
+  background-color: #d9edf7;
+}
+.table-hover > tbody > tr > td.info:hover,
+.table-hover > tbody > tr > th.info:hover,
+.table-hover > tbody > tr.info:hover > td,
+.table-hover > tbody > tr:hover > .info,
+.table-hover > tbody > tr.info:hover > th {
+  background-color: #c4e3f3;
+}
+.table > thead > tr > td.warning,
+.table > tbody > tr > td.warning,
+.table > tfoot > tr > td.warning,
+.table > thead > tr > th.warning,
+.table > tbody > tr > th.warning,
+.table > tfoot > tr > th.warning,
+.table > thead > tr.warning > td,
+.table > tbody > tr.warning > td,
+.table > tfoot > tr.warning > td,
+.table > thead > tr.warning > th,
+.table > tbody > tr.warning > th,
+.table > tfoot > tr.warning > th {
+  background-color: #fcf8e3;
+}
+.table-hover > tbody > tr > td.warning:hover,
+.table-hover > tbody > tr > th.warning:hover,
+.table-hover > tbody > tr.warning:hover > td,
+.table-hover > tbody > tr:hover > .warning,
+.table-hover > tbody > tr.warning:hover > th {
+  background-color: #faf2cc;
+}
+.table > thead > tr > td.danger,
+.table > tbody > tr > td.danger,
+.table > tfoot > tr > td.danger,
+.table > thead > tr > th.danger,
+.table > tbody > tr > th.danger,
+.table > tfoot > tr > th.danger,
+.table > thead > tr.danger > td,
+.table > tbody > tr.danger > td,
+.table > tfoot > tr.danger > td,
+.table > thead > tr.danger > th,
+.table > tbody > tr.danger > th,
+.table > tfoot > tr.danger > th {
+  background-color: #f2dede;
+}
+.table-hover > tbody > tr > td.danger:hover,
+.table-hover > tbody > tr > th.danger:hover,
+.table-hover > tbody > tr.danger:hover > td,
+.table-hover > tbody > tr:hover > .danger,
+.table-hover > tbody > tr.danger:hover > th {
+  background-color: #ebcccc;
+}
+.table-responsive {
+  overflow-x: auto;
+  min-height: 0.01%;
+}
+@media screen and (max-width: 767px) {
+  .table-responsive {
+    width: 100%;
+    margin-bottom: 13.5px;
+    overflow-y: hidden;
+    -ms-overflow-style: -ms-autohiding-scrollbar;
+    border: 1px solid #ddd;
+  }
+  .table-responsive > .table {
+    margin-bottom: 0;
+  }
+  .table-responsive > .table > thead > tr > th,
+  .table-responsive > .table > tbody > tr > th,
+  .table-responsive > .table > tfoot > tr > th,
+  .table-responsive > .table > thead > tr > td,
+  .table-responsive > .table > tbody > tr > td,
+  .table-responsive > .table > tfoot > tr > td {
+    white-space: nowrap;
+  }
+  .table-responsive > .table-bordered {
+    border: 0;
+  }
+  .table-responsive > .table-bordered > thead > tr > th:first-child,
+  .table-responsive > .table-bordered > tbody > tr > th:first-child,
+  .table-responsive > .table-bordered > tfoot > tr > th:first-child,
+  .table-responsive > .table-bordered > thead > tr > td:first-child,
+  .table-responsive > .table-bordered > tbody > tr > td:first-child,
+  .table-responsive > .table-bordered > tfoot > tr > td:first-child {
+    border-left: 0;
+  }
+  .table-responsive > .table-bordered > thead > tr > th:last-child,
+  .table-responsive > .table-bordered > tbody > tr > th:last-child,
+  .table-responsive > .table-bordered > tfoot > tr > th:last-child,
+  .table-responsive > .table-bordered > thead > tr > td:last-child,
+  .table-responsive > .table-bordered > tbody > tr > td:last-child,
+  .table-responsive > .table-bordered > tfoot > tr > td:last-child {
+    border-right: 0;
+  }
+  .table-responsive > .table-bordered > tbody > tr:last-child > th,
+  .table-responsive > .table-bordered > tfoot > tr:last-child > th,
+  .table-responsive > .table-bordered > tbody > tr:last-child > td,
+  .table-responsive > .table-bordered > tfoot > tr:last-child > td {
+    border-bottom: 0;
+  }
+}
+fieldset {
+  padding: 0;
+  margin: 0;
+  border: 0;
+  min-width: 0;
+}
+legend {
+  display: block;
+  width: 100%;
+  padding: 0;
+  margin-bottom: 18px;
+  font-size: 19.5px;
+  line-height: inherit;
+  color: #333333;
+  border: 0;
+  border-bottom: 1px solid #e5e5e5;
+}
+label {
+  display: inline-block;
+  max-width: 100%;
+  margin-bottom: 5px;
+  font-weight: bold;
+}
+input[type="search"] {
+  -webkit-box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  box-sizing: border-box;
+}
+input[type="radio"],
+input[type="checkbox"] {
+  margin: 4px 0 0;
+  margin-top: 1px \9;
+  line-height: normal;
+}
+input[type="file"] {
+  display: block;
+}
+input[type="range"] {
+  display: block;
+  width: 100%;
+}
+select[multiple],
+select[size] {
+  height: auto;
+}
+input[type="file"]:focus,
+input[type="radio"]:focus,
+input[type="checkbox"]:focus {
+  outline: 5px auto -webkit-focus-ring-color;
+  outline-offset: -2px;
+}
+output {
+  display: block;
+  padding-top: 7px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #555555;
+}
+.form-control {
+  display: block;
+  width: 100%;
+  height: 32px;
+  padding: 6px 12px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #555555;
+  background-color: #fff;
+  background-image: none;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+}
+.form-control:focus {
+  border-color: #66afe9;
+  outline: 0;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+  box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+}
+.form-control::-moz-placeholder {
+  color: #999;
+  opacity: 1;
+}
+.form-control:-ms-input-placeholder {
+  color: #999;
+}
+.form-control::-webkit-input-placeholder {
+  color: #999;
+}
+.form-control::-ms-expand {
+  border: 0;
+  background-color: transparent;
+}
+.form-control[disabled],
+.form-control[readonly],
+fieldset[disabled] .form-control {
+  background-color: #eeeeee;
+  opacity: 1;
+}
+.form-control[disabled],
+fieldset[disabled] .form-control {
+  cursor: not-allowed;
+}
+textarea.form-control {
+  height: auto;
+}
+input[type="search"] {
+  -webkit-appearance: none;
+}
+@media screen and (-webkit-min-device-pixel-ratio: 0) {
+  input[type="date"].form-control,
+  input[type="time"].form-control,
+  input[type="datetime-local"].form-control,
+  input[type="month"].form-control {
+    line-height: 32px;
+  }
+  input[type="date"].input-sm,
+  input[type="time"].input-sm,
+  input[type="datetime-local"].input-sm,
+  input[type="month"].input-sm,
+  .input-group-sm input[type="date"],
+  .input-group-sm input[type="time"],
+  .input-group-sm input[type="datetime-local"],
+  .input-group-sm input[type="month"] {
+    line-height: 30px;
+  }
+  input[type="date"].input-lg,
+  input[type="time"].input-lg,
+  input[type="datetime-local"].input-lg,
+  input[type="month"].input-lg,
+  .input-group-lg input[type="date"],
+  .input-group-lg input[type="time"],
+  .input-group-lg input[type="datetime-local"],
+  .input-group-lg input[type="month"] {
+    line-height: 45px;
+  }
+}
+.form-group {
+  margin-bottom: 15px;
+}
+.radio,
+.checkbox {
+  position: relative;
+  display: block;
+  margin-top: 10px;
+  margin-bottom: 10px;
+}
+.radio label,
+.checkbox label {
+  min-height: 18px;
+  padding-left: 20px;
+  margin-bottom: 0;
+  font-weight: normal;
+  cursor: pointer;
+}
+.radio input[type="radio"],
+.radio-inline input[type="radio"],
+.checkbox input[type="checkbox"],
+.checkbox-inline input[type="checkbox"] {
+  position: absolute;
+  margin-left: -20px;
+  margin-top: 4px \9;
+}
+.radio + .radio,
+.checkbox + .checkbox {
+  margin-top: -5px;
+}
+.radio-inline,
+.checkbox-inline {
+  position: relative;
+  display: inline-block;
+  padding-left: 20px;
+  margin-bottom: 0;
+  vertical-align: middle;
+  font-weight: normal;
+  cursor: pointer;
+}
+.radio-inline + .radio-inline,
+.checkbox-inline + .checkbox-inline {
+  margin-top: 0;
+  margin-left: 10px;
+}
+input[type="radio"][disabled],
+input[type="checkbox"][disabled],
+input[type="radio"].disabled,
+input[type="checkbox"].disabled,
+fieldset[disabled] input[type="radio"],
+fieldset[disabled] input[type="checkbox"] {
+  cursor: not-allowed;
+}
+.radio-inline.disabled,
+.checkbox-inline.disabled,
+fieldset[disabled] .radio-inline,
+fieldset[disabled] .checkbox-inline {
+  cursor: not-allowed;
+}
+.radio.disabled label,
+.checkbox.disabled label,
+fieldset[disabled] .radio label,
+fieldset[disabled] .checkbox label {
+  cursor: not-allowed;
+}
+.form-control-static {
+  padding-top: 7px;
+  padding-bottom: 7px;
+  margin-bottom: 0;
+  min-height: 31px;
+}
+.form-control-static.input-lg,
+.form-control-static.input-sm {
+  padding-left: 0;
+  padding-right: 0;
+}
+.input-sm {
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+select.input-sm {
+  height: 30px;
+  line-height: 30px;
+}
+textarea.input-sm,
+select[multiple].input-sm {
+  height: auto;
+}
+.form-group-sm .form-control {
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+.form-group-sm select.form-control {
+  height: 30px;
+  line-height: 30px;
+}
+.form-group-sm textarea.form-control,
+.form-group-sm select[multiple].form-control {
+  height: auto;
+}
+.form-group-sm .form-control-static {
+  height: 30px;
+  min-height: 30px;
+  padding: 6px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+}
+.input-lg {
+  height: 45px;
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+  border-radius: 3px;
+}
+select.input-lg {
+  height: 45px;
+  line-height: 45px;
+}
+textarea.input-lg,
+select[multiple].input-lg {
+  height: auto;
+}
+.form-group-lg .form-control {
+  height: 45px;
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+  border-radius: 3px;
+}
+.form-group-lg select.form-control {
+  height: 45px;
+  line-height: 45px;
+}
+.form-group-lg textarea.form-control,
+.form-group-lg select[multiple].form-control {
+  height: auto;
+}
+.form-group-lg .form-control-static {
+  height: 45px;
+  min-height: 35px;
+  padding: 11px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+}
+.has-feedback {
+  position: relative;
+}
+.has-feedback .form-control {
+  padding-right: 40px;
+}
+.form-control-feedback {
+  position: absolute;
+  top: 0;
+  right: 0;
+  z-index: 2;
+  display: block;
+  width: 32px;
+  height: 32px;
+  line-height: 32px;
+  text-align: center;
+  pointer-events: none;
+}
+.input-lg + .form-control-feedback,
+.input-group-lg + .form-control-feedback,
+.form-group-lg .form-control + .form-control-feedback {
+  width: 45px;
+  height: 45px;
+  line-height: 45px;
+}
+.input-sm + .form-control-feedback,
+.input-group-sm + .form-control-feedback,
+.form-group-sm .form-control + .form-control-feedback {
+  width: 30px;
+  height: 30px;
+  line-height: 30px;
+}
+.has-success .help-block,
+.has-success .control-label,
+.has-success .radio,
+.has-success .checkbox,
+.has-success .radio-inline,
+.has-success .checkbox-inline,
+.has-success.radio label,
+.has-success.checkbox label,
+.has-success.radio-inline label,
+.has-success.checkbox-inline label {
+  color: #3c763d;
+}
+.has-success .form-control {
+  border-color: #3c763d;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+}
+.has-success .form-control:focus {
+  border-color: #2b542c;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168;
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168;
+}
+.has-success .input-group-addon {
+  color: #3c763d;
+  border-color: #3c763d;
+  background-color: #dff0d8;
+}
+.has-success .form-control-feedback {
+  color: #3c763d;
+}
+.has-warning .help-block,
+.has-warning .control-label,
+.has-warning .radio,
+.has-warning .checkbox,
+.has-warning .radio-inline,
+.has-warning .checkbox-inline,
+.has-warning.radio label,
+.has-warning.checkbox label,
+.has-warning.radio-inline label,
+.has-warning.checkbox-inline label {
+  color: #8a6d3b;
+}
+.has-warning .form-control {
+  border-color: #8a6d3b;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+}
+.has-warning .form-control:focus {
+  border-color: #66512c;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b;
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b;
+}
+.has-warning .input-group-addon {
+  color: #8a6d3b;
+  border-color: #8a6d3b;
+  background-color: #fcf8e3;
+}
+.has-warning .form-control-feedback {
+  color: #8a6d3b;
+}
+.has-error .help-block,
+.has-error .control-label,
+.has-error .radio,
+.has-error .checkbox,
+.has-error .radio-inline,
+.has-error .checkbox-inline,
+.has-error.radio label,
+.has-error.checkbox label,
+.has-error.radio-inline label,
+.has-error.checkbox-inline label {
+  color: #a94442;
+}
+.has-error .form-control {
+  border-color: #a94442;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+}
+.has-error .form-control:focus {
+  border-color: #843534;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483;
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483;
+}
+.has-error .input-group-addon {
+  color: #a94442;
+  border-color: #a94442;
+  background-color: #f2dede;
+}
+.has-error .form-control-feedback {
+  color: #a94442;
+}
+.has-feedback label ~ .form-control-feedback {
+  top: 23px;
+}
+.has-feedback label.sr-only ~ .form-control-feedback {
+  top: 0;
+}
+.help-block {
+  display: block;
+  margin-top: 5px;
+  margin-bottom: 10px;
+  color: #404040;
+}
+@media (min-width: 768px) {
+  .form-inline .form-group {
+    display: inline-block;
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .form-inline .form-control {
+    display: inline-block;
+    width: auto;
+    vertical-align: middle;
+  }
+  .form-inline .form-control-static {
+    display: inline-block;
+  }
+  .form-inline .input-group {
+    display: inline-table;
+    vertical-align: middle;
+  }
+  .form-inline .input-group .input-group-addon,
+  .form-inline .input-group .input-group-btn,
+  .form-inline .input-group .form-control {
+    width: auto;
+  }
+  .form-inline .input-group > .form-control {
+    width: 100%;
+  }
+  .form-inline .control-label {
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .form-inline .radio,
+  .form-inline .checkbox {
+    display: inline-block;
+    margin-top: 0;
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .form-inline .radio label,
+  .form-inline .checkbox label {
+    padding-left: 0;
+  }
+  .form-inline .radio input[type="radio"],
+  .form-inline .checkbox input[type="checkbox"] {
+    position: relative;
+    margin-left: 0;
+  }
+  .form-inline .has-feedback .form-control-feedback {
+    top: 0;
+  }
+}
+.form-horizontal .radio,
+.form-horizontal .checkbox,
+.form-horizontal .radio-inline,
+.form-horizontal .checkbox-inline {
+  margin-top: 0;
+  margin-bottom: 0;
+  padding-top: 7px;
+}
+.form-horizontal .radio,
+.form-horizontal .checkbox {
+  min-height: 25px;
+}
+.form-horizontal .form-group {
+  margin-left: 0px;
+  margin-right: 0px;
+}
+@media (min-width: 768px) {
+  .form-horizontal .control-label {
+    text-align: right;
+    margin-bottom: 0;
+    padding-top: 7px;
+  }
+}
+.form-horizontal .has-feedback .form-control-feedback {
+  right: 0px;
+}
+@media (min-width: 768px) {
+  .form-horizontal .form-group-lg .control-label {
+    padding-top: 11px;
+    font-size: 17px;
+  }
+}
+@media (min-width: 768px) {
+  .form-horizontal .form-group-sm .control-label {
+    padding-top: 6px;
+    font-size: 12px;
+  }
+}
+.btn {
+  display: inline-block;
+  margin-bottom: 0;
+  font-weight: normal;
+  text-align: center;
+  vertical-align: middle;
+  touch-action: manipulation;
+  cursor: pointer;
+  background-image: none;
+  border: 1px solid transparent;
+  white-space: nowrap;
+  padding: 6px 12px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  border-radius: 2px;
+  -webkit-user-select: none;
+  -moz-user-select: none;
+  -ms-user-select: none;
+  user-select: none;
+}
+.btn:focus,
+.btn:active:focus,
+.btn.active:focus,
+.btn.focus,
+.btn:active.focus,
+.btn.active.focus {
+  outline: 5px auto -webkit-focus-ring-color;
+  outline-offset: -2px;
+}
+.btn:hover,
+.btn:focus,
+.btn.focus {
+  color: #333;
+  text-decoration: none;
+}
+.btn:active,
+.btn.active {
+  outline: 0;
+  background-image: none;
+  -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
+  box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
+}
+.btn.disabled,
+.btn[disabled],
+fieldset[disabled] .btn {
+  cursor: not-allowed;
+  opacity: 0.65;
+  filter: alpha(opacity=65);
+  -webkit-box-shadow: none;
+  box-shadow: none;
+}
+a.btn.disabled,
+fieldset[disabled] a.btn {
+  pointer-events: none;
+}
+.btn-default {
+  color: #333;
+  background-color: #fff;
+  border-color: #ccc;
+}
+.btn-default:focus,
+.btn-default.focus {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #8c8c8c;
+}
+.btn-default:hover {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+.btn-default:active,
+.btn-default.active,
+.open > .dropdown-toggle.btn-default {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+.btn-default:active:hover,
+.btn-default.active:hover,
+.open > .dropdown-toggle.btn-default:hover,
+.btn-default:active:focus,
+.btn-default.active:focus,
+.open > .dropdown-toggle.btn-default:focus,
+.btn-default:active.focus,
+.btn-default.active.focus,
+.open > .dropdown-toggle.btn-default.focus {
+  color: #333;
+  background-color: #d4d4d4;
+  border-color: #8c8c8c;
+}
+.btn-default:active,
+.btn-default.active,
+.open > .dropdown-toggle.btn-default {
+  background-image: none;
+}
+.btn-default.disabled:hover,
+.btn-default[disabled]:hover,
+fieldset[disabled] .btn-default:hover,
+.btn-default.disabled:focus,
+.btn-default[disabled]:focus,
+fieldset[disabled] .btn-default:focus,
+.btn-default.disabled.focus,
+.btn-default[disabled].focus,
+fieldset[disabled] .btn-default.focus {
+  background-color: #fff;
+  border-color: #ccc;
+}
+.btn-default .badge {
+  color: #fff;
+  background-color: #333;
+}
+.btn-primary {
+  color: #fff;
+  background-color: #337ab7;
+  border-color: #2e6da4;
+}
+.btn-primary:focus,
+.btn-primary.focus {
+  color: #fff;
+  background-color: #286090;
+  border-color: #122b40;
+}
+.btn-primary:hover {
+  color: #fff;
+  background-color: #286090;
+  border-color: #204d74;
+}
+.btn-primary:active,
+.btn-primary.active,
+.open > .dropdown-toggle.btn-primary {
+  color: #fff;
+  background-color: #286090;
+  border-color: #204d74;
+}
+.btn-primary:active:hover,
+.btn-primary.active:hover,
+.open > .dropdown-toggle.btn-primary:hover,
+.btn-primary:active:focus,
+.btn-primary.active:focus,
+.open > .dropdown-toggle.btn-primary:focus,
+.btn-primary:active.focus,
+.btn-primary.active.focus,
+.open > .dropdown-toggle.btn-primary.focus {
+  color: #fff;
+  background-color: #204d74;
+  border-color: #122b40;
+}
+.btn-primary:active,
+.btn-primary.active,
+.open > .dropdown-toggle.btn-primary {
+  background-image: none;
+}
+.btn-primary.disabled:hover,
+.btn-primary[disabled]:hover,
+fieldset[disabled] .btn-primary:hover,
+.btn-primary.disabled:focus,
+.btn-primary[disabled]:focus,
+fieldset[disabled] .btn-primary:focus,
+.btn-primary.disabled.focus,
+.btn-primary[disabled].focus,
+fieldset[disabled] .btn-primary.focus {
+  background-color: #337ab7;
+  border-color: #2e6da4;
+}
+.btn-primary .badge {
+  color: #337ab7;
+  background-color: #fff;
+}
+.btn-success {
+  color: #fff;
+  background-color: #5cb85c;
+  border-color: #4cae4c;
+}
+.btn-success:focus,
+.btn-success.focus {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #255625;
+}
+.btn-success:hover {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #398439;
+}
+.btn-success:active,
+.btn-success.active,
+.open > .dropdown-toggle.btn-success {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #398439;
+}
+.btn-success:active:hover,
+.btn-success.active:hover,
+.open > .dropdown-toggle.btn-success:hover,
+.btn-success:active:focus,
+.btn-success.active:focus,
+.open > .dropdown-toggle.btn-success:focus,
+.btn-success:active.focus,
+.btn-success.active.focus,
+.open > .dropdown-toggle.btn-success.focus {
+  color: #fff;
+  background-color: #398439;
+  border-color: #255625;
+}
+.btn-success:active,
+.btn-success.active,
+.open > .dropdown-toggle.btn-success {
+  background-image: none;
+}
+.btn-success.disabled:hover,
+.btn-success[disabled]:hover,
+fieldset[disabled] .btn-success:hover,
+.btn-success.disabled:focus,
+.btn-success[disabled]:focus,
+fieldset[disabled] .btn-success:focus,
+.btn-success.disabled.focus,
+.btn-success[disabled].focus,
+fieldset[disabled] .btn-success.focus {
+  background-color: #5cb85c;
+  border-color: #4cae4c;
+}
+.btn-success .badge {
+  color: #5cb85c;
+  background-color: #fff;
+}
+.btn-info {
+  color: #fff;
+  background-color: #5bc0de;
+  border-color: #46b8da;
+}
+.btn-info:focus,
+.btn-info.focus {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #1b6d85;
+}
+.btn-info:hover {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #269abc;
+}
+.btn-info:active,
+.btn-info.active,
+.open > .dropdown-toggle.btn-info {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #269abc;
+}
+.btn-info:active:hover,
+.btn-info.active:hover,
+.open > .dropdown-toggle.btn-info:hover,
+.btn-info:active:focus,
+.btn-info.active:focus,
+.open > .dropdown-toggle.btn-info:focus,
+.btn-info:active.focus,
+.btn-info.active.focus,
+.open > .dropdown-toggle.btn-info.focus {
+  color: #fff;
+  background-color: #269abc;
+  border-color: #1b6d85;
+}
+.btn-info:active,
+.btn-info.active,
+.open > .dropdown-toggle.btn-info {
+  background-image: none;
+}
+.btn-info.disabled:hover,
+.btn-info[disabled]:hover,
+fieldset[disabled] .btn-info:hover,
+.btn-info.disabled:focus,
+.btn-info[disabled]:focus,
+fieldset[disabled] .btn-info:focus,
+.btn-info.disabled.focus,
+.btn-info[disabled].focus,
+fieldset[disabled] .btn-info.focus {
+  background-color: #5bc0de;
+  border-color: #46b8da;
+}
+.btn-info .badge {
+  color: #5bc0de;
+  background-color: #fff;
+}
+.btn-warning {
+  color: #fff;
+  background-color: #f0ad4e;
+  border-color: #eea236;
+}
+.btn-warning:focus,
+.btn-warning.focus {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #985f0d;
+}
+.btn-warning:hover {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #d58512;
+}
+.btn-warning:active,
+.btn-warning.active,
+.open > .dropdown-toggle.btn-warning {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #d58512;
+}
+.btn-warning:active:hover,
+.btn-warning.active:hover,
+.open > .dropdown-toggle.btn-warning:hover,
+.btn-warning:active:focus,
+.btn-warning.active:focus,
+.open > .dropdown-toggle.btn-warning:focus,
+.btn-warning:active.focus,
+.btn-warning.active.focus,
+.open > .dropdown-toggle.btn-warning.focus {
+  color: #fff;
+  background-color: #d58512;
+  border-color: #985f0d;
+}
+.btn-warning:active,
+.btn-warning.active,
+.open > .dropdown-toggle.btn-warning {
+  background-image: none;
+}
+.btn-warning.disabled:hover,
+.btn-warning[disabled]:hover,
+fieldset[disabled] .btn-warning:hover,
+.btn-warning.disabled:focus,
+.btn-warning[disabled]:focus,
+fieldset[disabled] .btn-warning:focus,
+.btn-warning.disabled.focus,
+.btn-warning[disabled].focus,
+fieldset[disabled] .btn-warning.focus {
+  background-color: #f0ad4e;
+  border-color: #eea236;
+}
+.btn-warning .badge {
+  color: #f0ad4e;
+  background-color: #fff;
+}
+.btn-danger {
+  color: #fff;
+  background-color: #d9534f;
+  border-color: #d43f3a;
+}
+.btn-danger:focus,
+.btn-danger.focus {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #761c19;
+}
+.btn-danger:hover {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #ac2925;
+}
+.btn-danger:active,
+.btn-danger.active,
+.open > .dropdown-toggle.btn-danger {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #ac2925;
+}
+.btn-danger:active:hover,
+.btn-danger.active:hover,
+.open > .dropdown-toggle.btn-danger:hover,
+.btn-danger:active:focus,
+.btn-danger.active:focus,
+.open > .dropdown-toggle.btn-danger:focus,
+.btn-danger:active.focus,
+.btn-danger.active.focus,
+.open > .dropdown-toggle.btn-danger.focus {
+  color: #fff;
+  background-color: #ac2925;
+  border-color: #761c19;
+}
+.btn-danger:active,
+.btn-danger.active,
+.open > .dropdown-toggle.btn-danger {
+  background-image: none;
+}
+.btn-danger.disabled:hover,
+.btn-danger[disabled]:hover,
+fieldset[disabled] .btn-danger:hover,
+.btn-danger.disabled:focus,
+.btn-danger[disabled]:focus,
+fieldset[disabled] .btn-danger:focus,
+.btn-danger.disabled.focus,
+.btn-danger[disabled].focus,
+fieldset[disabled] .btn-danger.focus {
+  background-color: #d9534f;
+  border-color: #d43f3a;
+}
+.btn-danger .badge {
+  color: #d9534f;
+  background-color: #fff;
+}
+.btn-link {
+  color: #337ab7;
+  font-weight: normal;
+  border-radius: 0;
+}
+.btn-link,
+.btn-link:active,
+.btn-link.active,
+.btn-link[disabled],
+fieldset[disabled] .btn-link {
+  background-color: transparent;
+  -webkit-box-shadow: none;
+  box-shadow: none;
+}
+.btn-link,
+.btn-link:hover,
+.btn-link:focus,
+.btn-link:active {
+  border-color: transparent;
+}
+.btn-link:hover,
+.btn-link:focus {
+  color: #23527c;
+  text-decoration: underline;
+  background-color: transparent;
+}
+.btn-link[disabled]:hover,
+fieldset[disabled] .btn-link:hover,
+.btn-link[disabled]:focus,
+fieldset[disabled] .btn-link:focus {
+  color: #777777;
+  text-decoration: none;
+}
+.btn-lg,
+.btn-group-lg > .btn {
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+  border-radius: 3px;
+}
+.btn-sm,
+.btn-group-sm > .btn {
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+.btn-xs,
+.btn-group-xs > .btn {
+  padding: 1px 5px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+.btn-block {
+  display: block;
+  width: 100%;
+}
+.btn-block + .btn-block {
+  margin-top: 5px;
+}
+input[type="submit"].btn-block,
+input[type="reset"].btn-block,
+input[type="button"].btn-block {
+  width: 100%;
+}
+.fade {
+  opacity: 0;
+  -webkit-transition: opacity 0.15s linear;
+  -o-transition: opacity 0.15s linear;
+  transition: opacity 0.15s linear;
+}
+.fade.in {
+  opacity: 1;
+}
+.collapse {
+  display: none;
+}
+.collapse.in {
+  display: block;
+}
+tr.collapse.in {
+  display: table-row;
+}
+tbody.collapse.in {
+  display: table-row-group;
+}
+.collapsing {
+  position: relative;
+  height: 0;
+  overflow: hidden;
+  -webkit-transition-property: height, visibility;
+  transition-property: height, visibility;
+  -webkit-transition-duration: 0.35s;
+  transition-duration: 0.35s;
+  -webkit-transition-timing-function: ease;
+  transition-timing-function: ease;
+}
+.caret {
+  display: inline-block;
+  width: 0;
+  height: 0;
+  margin-left: 2px;
+  vertical-align: middle;
+  border-top: 4px dashed;
+  border-top: 4px solid \9;
+  border-right: 4px solid transparent;
+  border-left: 4px solid transparent;
+}
+.dropup,
+.dropdown {
+  position: relative;
+}
+.dropdown-toggle:focus {
+  outline: 0;
+}
+.dropdown-menu {
+  position: absolute;
+  top: 100%;
+  left: 0;
+  z-index: 1000;
+  display: none;
+  float: left;
+  min-width: 160px;
+  padding: 5px 0;
+  margin: 2px 0 0;
+  list-style: none;
+  font-size: 13px;
+  text-align: left;
+  background-color: #fff;
+  border: 1px solid #ccc;
+  border: 1px solid rgba(0, 0, 0, 0.15);
+  border-radius: 2px;
+  -webkit-box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175);
+  box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175);
+  background-clip: padding-box;
+}
+.dropdown-menu.pull-right {
+  right: 0;
+  left: auto;
+}
+.dropdown-menu .divider {
+  height: 1px;
+  margin: 8px 0;
+  overflow: hidden;
+  background-color: #e5e5e5;
+}
+.dropdown-menu > li > a {
+  display: block;
+  padding: 3px 20px;
+  clear: both;
+  font-weight: normal;
+  line-height: 1.42857143;
+  color: #333333;
+  white-space: nowrap;
+}
+.dropdown-menu > li > a:hover,
+.dropdown-menu > li > a:focus {
+  text-decoration: none;
+  color: #262626;
+  background-color: #f5f5f5;
+}
+.dropdown-menu > .active > a,
+.dropdown-menu > .active > a:hover,
+.dropdown-menu > .active > a:focus {
+  color: #fff;
+  text-decoration: none;
+  outline: 0;
+  background-color: #337ab7;
+}
+.dropdown-menu > .disabled > a,
+.dropdown-menu > .disabled > a:hover,
+.dropdown-menu > .disabled > a:focus {
+  color: #777777;
+}
+.dropdown-menu > .disabled > a:hover,
+.dropdown-menu > .disabled > a:focus {
+  text-decoration: none;
+  background-color: transparent;
+  background-image: none;
+  filter: progid:DXImageTransform.Microsoft.gradient(enabled = false);
+  cursor: not-allowed;
+}
+.open > .dropdown-menu {
+  display: block;
+}
+.open > a {
+  outline: 0;
+}
+.dropdown-menu-right {
+  left: auto;
+  right: 0;
+}
+.dropdown-menu-left {
+  left: 0;
+  right: auto;
+}
+.dropdown-header {
+  display: block;
+  padding: 3px 20px;
+  font-size: 12px;
+  line-height: 1.42857143;
+  color: #777777;
+  white-space: nowrap;
+}
+.dropdown-backdrop {
+  position: fixed;
+  left: 0;
+  right: 0;
+  bottom: 0;
+  top: 0;
+  z-index: 990;
+}
+.pull-right > .dropdown-menu {
+  right: 0;
+  left: auto;
+}
+.dropup .caret,
+.navbar-fixed-bottom .dropdown .caret {
+  border-top: 0;
+  border-bottom: 4px dashed;
+  border-bottom: 4px solid \9;
+  content: "";
+}
+.dropup .dropdown-menu,
+.navbar-fixed-bottom .dropdown .dropdown-menu {
+  top: auto;
+  bottom: 100%;
+  margin-bottom: 2px;
+}
+@media (min-width: 541px) {
+  .navbar-right .dropdown-menu {
+    left: auto;
+    right: 0;
+  }
+  .navbar-right .dropdown-menu-left {
+    left: 0;
+    right: auto;
+  }
+}
+.btn-group,
+.btn-group-vertical {
+  position: relative;
+  display: inline-block;
+  vertical-align: middle;
+}
+.btn-group > .btn,
+.btn-group-vertical > .btn {
+  position: relative;
+  float: left;
+}
+.btn-group > .btn:hover,
+.btn-group-vertical > .btn:hover,
+.btn-group > .btn:focus,
+.btn-group-vertical > .btn:focus,
+.btn-group > .btn:active,
+.btn-group-vertical > .btn:active,
+.btn-group > .btn.active,
+.btn-group-vertical > .btn.active {
+  z-index: 2;
+}
+.btn-group .btn + .btn,
+.btn-group .btn + .btn-group,
+.btn-group .btn-group + .btn,
+.btn-group .btn-group + .btn-group {
+  margin-left: -1px;
+}
+.btn-toolbar {
+  margin-left: -5px;
+}
+.btn-toolbar .btn,
+.btn-toolbar .btn-group,
+.btn-toolbar .input-group {
+  float: left;
+}
+.btn-toolbar > .btn,
+.btn-toolbar > .btn-group,
+.btn-toolbar > .input-group {
+  margin-left: 5px;
+}
+.btn-group > .btn:not(:first-child):not(:last-child):not(.dropdown-toggle) {
+  border-radius: 0;
+}
+.btn-group > .btn:first-child {
+  margin-left: 0;
+}
+.btn-group > .btn:first-child:not(:last-child):not(.dropdown-toggle) {
+  border-bottom-right-radius: 0;
+  border-top-right-radius: 0;
+}
+.btn-group > .btn:last-child:not(:first-child),
+.btn-group > .dropdown-toggle:not(:first-child) {
+  border-bottom-left-radius: 0;
+  border-top-left-radius: 0;
+}
+.btn-group > .btn-group {
+  float: left;
+}
+.btn-group > .btn-group:not(:first-child):not(:last-child) > .btn {
+  border-radius: 0;
+}
+.btn-group > .btn-group:first-child:not(:last-child) > .btn:last-child,
+.btn-group > .btn-group:first-child:not(:last-child) > .dropdown-toggle {
+  border-bottom-right-radius: 0;
+  border-top-right-radius: 0;
+}
+.btn-group > .btn-group:last-child:not(:first-child) > .btn:first-child {
+  border-bottom-left-radius: 0;
+  border-top-left-radius: 0;
+}
+.btn-group .dropdown-toggle:active,
+.btn-group.open .dropdown-toggle {
+  outline: 0;
+}
+.btn-group > .btn + .dropdown-toggle {
+  padding-left: 8px;
+  padding-right: 8px;
+}
+.btn-group > .btn-lg + .dropdown-toggle {
+  padding-left: 12px;
+  padding-right: 12px;
+}
+.btn-group.open .dropdown-toggle {
+  -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
+  box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
+}
+.btn-group.open .dropdown-toggle.btn-link {
+  -webkit-box-shadow: none;
+  box-shadow: none;
+}
+.btn .caret {
+  margin-left: 0;
+}
+.btn-lg .caret {
+  border-width: 5px 5px 0;
+  border-bottom-width: 0;
+}
+.dropup .btn-lg .caret {
+  border-width: 0 5px 5px;
+}
+.btn-group-vertical > .btn,
+.btn-group-vertical > .btn-group,
+.btn-group-vertical > .btn-group > .btn {
+  display: block;
+  float: none;
+  width: 100%;
+  max-width: 100%;
+}
+.btn-group-vertical > .btn-group > .btn {
+  float: none;
+}
+.btn-group-vertical > .btn + .btn,
+.btn-group-vertical > .btn + .btn-group,
+.btn-group-vertical > .btn-group + .btn,
+.btn-group-vertical > .btn-group + .btn-group {
+  margin-top: -1px;
+  margin-left: 0;
+}
+.btn-group-vertical > .btn:not(:first-child):not(:last-child) {
+  border-radius: 0;
+}
+.btn-group-vertical > .btn:first-child:not(:last-child) {
+  border-top-right-radius: 2px;
+  border-top-left-radius: 2px;
+  border-bottom-right-radius: 0;
+  border-bottom-left-radius: 0;
+}
+.btn-group-vertical > .btn:last-child:not(:first-child) {
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+  border-bottom-right-radius: 2px;
+  border-bottom-left-radius: 2px;
+}
+.btn-group-vertical > .btn-group:not(:first-child):not(:last-child) > .btn {
+  border-radius: 0;
+}
+.btn-group-vertical > .btn-group:first-child:not(:last-child) > .btn:last-child,
+.btn-group-vertical > .btn-group:first-child:not(:last-child) > .dropdown-toggle {
+  border-bottom-right-radius: 0;
+  border-bottom-left-radius: 0;
+}
+.btn-group-vertical > .btn-group:last-child:not(:first-child) > .btn:first-child {
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+}
+.btn-group-justified {
+  display: table;
+  width: 100%;
+  table-layout: fixed;
+  border-collapse: separate;
+}
+.btn-group-justified > .btn,
+.btn-group-justified > .btn-group {
+  float: none;
+  display: table-cell;
+  width: 1%;
+}
+.btn-group-justified > .btn-group .btn {
+  width: 100%;
+}
+.btn-group-justified > .btn-group .dropdown-menu {
+  left: auto;
+}
+[data-toggle="buttons"] > .btn input[type="radio"],
+[data-toggle="buttons"] > .btn-group > .btn input[type="radio"],
+[data-toggle="buttons"] > .btn input[type="checkbox"],
+[data-toggle="buttons"] > .btn-group > .btn input[type="checkbox"] {
+  position: absolute;
+  clip: rect(0, 0, 0, 0);
+  pointer-events: none;
+}
+.input-group {
+  position: relative;
+  display: table;
+  border-collapse: separate;
+}
+.input-group[class*="col-"] {
+  float: none;
+  padding-left: 0;
+  padding-right: 0;
+}
+.input-group .form-control {
+  position: relative;
+  z-index: 2;
+  float: left;
+  width: 100%;
+  margin-bottom: 0;
+}
+.input-group .form-control:focus {
+  z-index: 3;
+}
+.input-group-lg > .form-control,
+.input-group-lg > .input-group-addon,
+.input-group-lg > .input-group-btn > .btn {
+  height: 45px;
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+  border-radius: 3px;
+}
+select.input-group-lg > .form-control,
+select.input-group-lg > .input-group-addon,
+select.input-group-lg > .input-group-btn > .btn {
+  height: 45px;
+  line-height: 45px;
+}
+textarea.input-group-lg > .form-control,
+textarea.input-group-lg > .input-group-addon,
+textarea.input-group-lg > .input-group-btn > .btn,
+select[multiple].input-group-lg > .form-control,
+select[multiple].input-group-lg > .input-group-addon,
+select[multiple].input-group-lg > .input-group-btn > .btn {
+  height: auto;
+}
+.input-group-sm > .form-control,
+.input-group-sm > .input-group-addon,
+.input-group-sm > .input-group-btn > .btn {
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+}
+select.input-group-sm > .form-control,
+select.input-group-sm > .input-group-addon,
+select.input-group-sm > .input-group-btn > .btn {
+  height: 30px;
+  line-height: 30px;
+}
+textarea.input-group-sm > .form-control,
+textarea.input-group-sm > .input-group-addon,
+textarea.input-group-sm > .input-group-btn > .btn,
+select[multiple].input-group-sm > .form-control,
+select[multiple].input-group-sm > .input-group-addon,
+select[multiple].input-group-sm > .input-group-btn > .btn {
+  height: auto;
+}
+.input-group-addon,
+.input-group-btn,
+.input-group .form-control {
+  display: table-cell;
+}
+.input-group-addon:not(:first-child):not(:last-child),
+.input-group-btn:not(:first-child):not(:last-child),
+.input-group .form-control:not(:first-child):not(:last-child) {
+  border-radius: 0;
+}
+.input-group-addon,
+.input-group-btn {
+  width: 1%;
+  white-space: nowrap;
+  vertical-align: middle;
+}
+.input-group-addon {
+  padding: 6px 12px;
+  font-size: 13px;
+  font-weight: normal;
+  line-height: 1;
+  color: #555555;
+  text-align: center;
+  background-color: #eeeeee;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+}
+.input-group-addon.input-sm {
+  padding: 5px 10px;
+  font-size: 12px;
+  border-radius: 1px;
+}
+.input-group-addon.input-lg {
+  padding: 10px 16px;
+  font-size: 17px;
+  border-radius: 3px;
+}
+.input-group-addon input[type="radio"],
+.input-group-addon input[type="checkbox"] {
+  margin-top: 0;
+}
+.input-group .form-control:first-child,
+.input-group-addon:first-child,
+.input-group-btn:first-child > .btn,
+.input-group-btn:first-child > .btn-group > .btn,
+.input-group-btn:first-child > .dropdown-toggle,
+.input-group-btn:last-child > .btn:not(:last-child):not(.dropdown-toggle),
+.input-group-btn:last-child > .btn-group:not(:last-child) > .btn {
+  border-bottom-right-radius: 0;
+  border-top-right-radius: 0;
+}
+.input-group-addon:first-child {
+  border-right: 0;
+}
+.input-group .form-control:last-child,
+.input-group-addon:last-child,
+.input-group-btn:last-child > .btn,
+.input-group-btn:last-child > .btn-group > .btn,
+.input-group-btn:last-child > .dropdown-toggle,
+.input-group-btn:first-child > .btn:not(:first-child),
+.input-group-btn:first-child > .btn-group:not(:first-child) > .btn {
+  border-bottom-left-radius: 0;
+  border-top-left-radius: 0;
+}
+.input-group-addon:last-child {
+  border-left: 0;
+}
+.input-group-btn {
+  position: relative;
+  font-size: 0;
+  white-space: nowrap;
+}
+.input-group-btn > .btn {
+  position: relative;
+}
+.input-group-btn > .btn + .btn {
+  margin-left: -1px;
+}
+.input-group-btn > .btn:hover,
+.input-group-btn > .btn:focus,
+.input-group-btn > .btn:active {
+  z-index: 2;
+}
+.input-group-btn:first-child > .btn,
+.input-group-btn:first-child > .btn-group {
+  margin-right: -1px;
+}
+.input-group-btn:last-child > .btn,
+.input-group-btn:last-child > .btn-group {
+  z-index: 2;
+  margin-left: -1px;
+}
+.nav {
+  margin-bottom: 0;
+  padding-left: 0;
+  list-style: none;
+}
+.nav > li {
+  position: relative;
+  display: block;
+}
+.nav > li > a {
+  position: relative;
+  display: block;
+  padding: 10px 15px;
+}
+.nav > li > a:hover,
+.nav > li > a:focus {
+  text-decoration: none;
+  background-color: #eeeeee;
+}
+.nav > li.disabled > a {
+  color: #777777;
+}
+.nav > li.disabled > a:hover,
+.nav > li.disabled > a:focus {
+  color: #777777;
+  text-decoration: none;
+  background-color: transparent;
+  cursor: not-allowed;
+}
+.nav .open > a,
+.nav .open > a:hover,
+.nav .open > a:focus {
+  background-color: #eeeeee;
+  border-color: #337ab7;
+}
+.nav .nav-divider {
+  height: 1px;
+  margin: 8px 0;
+  overflow: hidden;
+  background-color: #e5e5e5;
+}
+.nav > li > a > img {
+  max-width: none;
+}
+.nav-tabs {
+  border-bottom: 1px solid #ddd;
+}
+.nav-tabs > li {
+  float: left;
+  margin-bottom: -1px;
+}
+.nav-tabs > li > a {
+  margin-right: 2px;
+  line-height: 1.42857143;
+  border: 1px solid transparent;
+  border-radius: 2px 2px 0 0;
+}
+.nav-tabs > li > a:hover {
+  border-color: #eeeeee #eeeeee #ddd;
+}
+.nav-tabs > li.active > a,
+.nav-tabs > li.active > a:hover,
+.nav-tabs > li.active > a:focus {
+  color: #555555;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  border-bottom-color: transparent;
+  cursor: default;
+}
+.nav-tabs.nav-justified {
+  width: 100%;
+  border-bottom: 0;
+}
+.nav-tabs.nav-justified > li {
+  float: none;
+}
+.nav-tabs.nav-justified > li > a {
+  text-align: center;
+  margin-bottom: 5px;
+}
+.nav-tabs.nav-justified > .dropdown .dropdown-menu {
+  top: auto;
+  left: auto;
+}
+@media (min-width: 768px) {
+  .nav-tabs.nav-justified > li {
+    display: table-cell;
+    width: 1%;
+  }
+  .nav-tabs.nav-justified > li > a {
+    margin-bottom: 0;
+  }
+}
+.nav-tabs.nav-justified > li > a {
+  margin-right: 0;
+  border-radius: 2px;
+}
+.nav-tabs.nav-justified > .active > a,
+.nav-tabs.nav-justified > .active > a:hover,
+.nav-tabs.nav-justified > .active > a:focus {
+  border: 1px solid #ddd;
+}
+@media (min-width: 768px) {
+  .nav-tabs.nav-justified > li > a {
+    border-bottom: 1px solid #ddd;
+    border-radius: 2px 2px 0 0;
+  }
+  .nav-tabs.nav-justified > .active > a,
+  .nav-tabs.nav-justified > .active > a:hover,
+  .nav-tabs.nav-justified > .active > a:focus {
+    border-bottom-color: #fff;
+  }
+}
+.nav-pills > li {
+  float: left;
+}
+.nav-pills > li > a {
+  border-radius: 2px;
+}
+.nav-pills > li + li {
+  margin-left: 2px;
+}
+.nav-pills > li.active > a,
+.nav-pills > li.active > a:hover,
+.nav-pills > li.active > a:focus {
+  color: #fff;
+  background-color: #337ab7;
+}
+.nav-stacked > li {
+  float: none;
+}
+.nav-stacked > li + li {
+  margin-top: 2px;
+  margin-left: 0;
+}
+.nav-justified {
+  width: 100%;
+}
+.nav-justified > li {
+  float: none;
+}
+.nav-justified > li > a {
+  text-align: center;
+  margin-bottom: 5px;
+}
+.nav-justified > .dropdown .dropdown-menu {
+  top: auto;
+  left: auto;
+}
+@media (min-width: 768px) {
+  .nav-justified > li {
+    display: table-cell;
+    width: 1%;
+  }
+  .nav-justified > li > a {
+    margin-bottom: 0;
+  }
+}
+.nav-tabs-justified {
+  border-bottom: 0;
+}
+.nav-tabs-justified > li > a {
+  margin-right: 0;
+  border-radius: 2px;
+}
+.nav-tabs-justified > .active > a,
+.nav-tabs-justified > .active > a:hover,
+.nav-tabs-justified > .active > a:focus {
+  border: 1px solid #ddd;
+}
+@media (min-width: 768px) {
+  .nav-tabs-justified > li > a {
+    border-bottom: 1px solid #ddd;
+    border-radius: 2px 2px 0 0;
+  }
+  .nav-tabs-justified > .active > a,
+  .nav-tabs-justified > .active > a:hover,
+  .nav-tabs-justified > .active > a:focus {
+    border-bottom-color: #fff;
+  }
+}
+.tab-content > .tab-pane {
+  display: none;
+}
+.tab-content > .active {
+  display: block;
+}
+.nav-tabs .dropdown-menu {
+  margin-top: -1px;
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+}
+.navbar {
+  position: relative;
+  min-height: 30px;
+  margin-bottom: 18px;
+  border: 1px solid transparent;
+}
+@media (min-width: 541px) {
+  .navbar {
+    border-radius: 2px;
+  }
+}
+@media (min-width: 541px) {
+  .navbar-header {
+    float: left;
+  }
+}
+.navbar-collapse {
+  overflow-x: visible;
+  padding-right: 0px;
+  padding-left: 0px;
+  border-top: 1px solid transparent;
+  box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1);
+  -webkit-overflow-scrolling: touch;
+}
+.navbar-collapse.in {
+  overflow-y: auto;
+}
+@media (min-width: 541px) {
+  .navbar-collapse {
+    width: auto;
+    border-top: 0;
+    box-shadow: none;
+  }
+  .navbar-collapse.collapse {
+    display: block !important;
+    height: auto !important;
+    padding-bottom: 0;
+    overflow: visible !important;
+  }
+  .navbar-collapse.in {
+    overflow-y: visible;
+  }
+  .navbar-fixed-top .navbar-collapse,
+  .navbar-static-top .navbar-collapse,
+  .navbar-fixed-bottom .navbar-collapse {
+    padding-left: 0;
+    padding-right: 0;
+  }
+}
+.navbar-fixed-top .navbar-collapse,
+.navbar-fixed-bottom .navbar-collapse {
+  max-height: 340px;
+}
+@media (max-device-width: 540px) and (orientation: landscape) {
+  .navbar-fixed-top .navbar-collapse,
+  .navbar-fixed-bottom .navbar-collapse {
+    max-height: 200px;
+  }
+}
+.container > .navbar-header,
+.container-fluid > .navbar-header,
+.container > .navbar-collapse,
+.container-fluid > .navbar-collapse {
+  margin-right: 0px;
+  margin-left: 0px;
+}
+@media (min-width: 541px) {
+  .container > .navbar-header,
+  .container-fluid > .navbar-header,
+  .container > .navbar-collapse,
+  .container-fluid > .navbar-collapse {
+    margin-right: 0;
+    margin-left: 0;
+  }
+}
+.navbar-static-top {
+  z-index: 1000;
+  border-width: 0 0 1px;
+}
+@media (min-width: 541px) {
+  .navbar-static-top {
+    border-radius: 0;
+  }
+}
+.navbar-fixed-top,
+.navbar-fixed-bottom {
+  position: fixed;
+  right: 0;
+  left: 0;
+  z-index: 1030;
+}
+@media (min-width: 541px) {
+  .navbar-fixed-top,
+  .navbar-fixed-bottom {
+    border-radius: 0;
+  }
+}
+.navbar-fixed-top {
+  top: 0;
+  border-width: 0 0 1px;
+}
+.navbar-fixed-bottom {
+  bottom: 0;
+  margin-bottom: 0;
+  border-width: 1px 0 0;
+}
+.navbar-brand {
+  float: left;
+  padding: 6px 0px;
+  font-size: 17px;
+  line-height: 18px;
+  height: 30px;
+}
+.navbar-brand:hover,
+.navbar-brand:focus {
+  text-decoration: none;
+}
+.navbar-brand > img {
+  display: block;
+}
+@media (min-width: 541px) {
+  .navbar > .container .navbar-brand,
+  .navbar > .container-fluid .navbar-brand {
+    margin-left: 0px;
+  }
+}
+.navbar-toggle {
+  position: relative;
+  float: right;
+  margin-right: 0px;
+  padding: 9px 10px;
+  margin-top: -2px;
+  margin-bottom: -2px;
+  background-color: transparent;
+  background-image: none;
+  border: 1px solid transparent;
+  border-radius: 2px;
+}
+.navbar-toggle:focus {
+  outline: 0;
+}
+.navbar-toggle .icon-bar {
+  display: block;
+  width: 22px;
+  height: 2px;
+  border-radius: 1px;
+}
+.navbar-toggle .icon-bar + .icon-bar {
+  margin-top: 4px;
+}
+@media (min-width: 541px) {
+  .navbar-toggle {
+    display: none;
+  }
+}
+.navbar-nav {
+  margin: 3px 0px;
+}
+.navbar-nav > li > a {
+  padding-top: 10px;
+  padding-bottom: 10px;
+  line-height: 18px;
+}
+@media (max-width: 540px) {
+  .navbar-nav .open .dropdown-menu {
+    position: static;
+    float: none;
+    width: auto;
+    margin-top: 0;
+    background-color: transparent;
+    border: 0;
+    box-shadow: none;
+  }
+  .navbar-nav .open .dropdown-menu > li > a,
+  .navbar-nav .open .dropdown-menu .dropdown-header {
+    padding: 5px 15px 5px 25px;
+  }
+  .navbar-nav .open .dropdown-menu > li > a {
+    line-height: 18px;
+  }
+  .navbar-nav .open .dropdown-menu > li > a:hover,
+  .navbar-nav .open .dropdown-menu > li > a:focus {
+    background-image: none;
+  }
+}
+@media (min-width: 541px) {
+  .navbar-nav {
+    float: left;
+    margin: 0;
+  }
+  .navbar-nav > li {
+    float: left;
+  }
+  .navbar-nav > li > a {
+    padding-top: 6px;
+    padding-bottom: 6px;
+  }
+}
+.navbar-form {
+  margin-left: 0px;
+  margin-right: 0px;
+  padding: 10px 0px;
+  border-top: 1px solid transparent;
+  border-bottom: 1px solid transparent;
+  -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1);
+  box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1);
+  margin-top: -1px;
+  margin-bottom: -1px;
+}
+@media (min-width: 768px) {
+  .navbar-form .form-group {
+    display: inline-block;
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .navbar-form .form-control {
+    display: inline-block;
+    width: auto;
+    vertical-align: middle;
+  }
+  .navbar-form .form-control-static {
+    display: inline-block;
+  }
+  .navbar-form .input-group {
+    display: inline-table;
+    vertical-align: middle;
+  }
+  .navbar-form .input-group .input-group-addon,
+  .navbar-form .input-group .input-group-btn,
+  .navbar-form .input-group .form-control {
+    width: auto;
+  }
+  .navbar-form .input-group > .form-control {
+    width: 100%;
+  }
+  .navbar-form .control-label {
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .navbar-form .radio,
+  .navbar-form .checkbox {
+    display: inline-block;
+    margin-top: 0;
+    margin-bottom: 0;
+    vertical-align: middle;
+  }
+  .navbar-form .radio label,
+  .navbar-form .checkbox label {
+    padding-left: 0;
+  }
+  .navbar-form .radio input[type="radio"],
+  .navbar-form .checkbox input[type="checkbox"] {
+    position: relative;
+    margin-left: 0;
+  }
+  .navbar-form .has-feedback .form-control-feedback {
+    top: 0;
+  }
+}
+@media (max-width: 540px) {
+  .navbar-form .form-group {
+    margin-bottom: 5px;
+  }
+  .navbar-form .form-group:last-child {
+    margin-bottom: 0;
+  }
+}
+@media (min-width: 541px) {
+  .navbar-form {
+    width: auto;
+    border: 0;
+    margin-left: 0;
+    margin-right: 0;
+    padding-top: 0;
+    padding-bottom: 0;
+    -webkit-box-shadow: none;
+    box-shadow: none;
+  }
+}
+.navbar-nav > li > .dropdown-menu {
+  margin-top: 0;
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+}
+.navbar-fixed-bottom .navbar-nav > li > .dropdown-menu {
+  margin-bottom: 0;
+  border-top-right-radius: 2px;
+  border-top-left-radius: 2px;
+  border-bottom-right-radius: 0;
+  border-bottom-left-radius: 0;
+}
+.navbar-btn {
+  margin-top: -1px;
+  margin-bottom: -1px;
+}
+.navbar-btn.btn-sm {
+  margin-top: 0px;
+  margin-bottom: 0px;
+}
+.navbar-btn.btn-xs {
+  margin-top: 4px;
+  margin-bottom: 4px;
+}
+.navbar-text {
+  margin-top: 6px;
+  margin-bottom: 6px;
+}
+@media (min-width: 541px) {
+  .navbar-text {
+    float: left;
+    margin-left: 0px;
+    margin-right: 0px;
+  }
+}
+@media (min-width: 541px) {
+  .navbar-left {
+    float: left !important;
+    float: left;
+  }
+  .navbar-right {
+    float: right !important;
+    float: right;
+    margin-right: 0px;
+  }
+  .navbar-right ~ .navbar-right {
+    margin-right: 0;
+  }
+}
+.navbar-default {
+  background-color: #f8f8f8;
+  border-color: #e7e7e7;
+}
+.navbar-default .navbar-brand {
+  color: #777;
+}
+.navbar-default .navbar-brand:hover,
+.navbar-default .navbar-brand:focus {
+  color: #5e5e5e;
+  background-color: transparent;
+}
+.navbar-default .navbar-text {
+  color: #777;
+}
+.navbar-default .navbar-nav > li > a {
+  color: #777;
+}
+.navbar-default .navbar-nav > li > a:hover,
+.navbar-default .navbar-nav > li > a:focus {
+  color: #333;
+  background-color: transparent;
+}
+.navbar-default .navbar-nav > .active > a,
+.navbar-default .navbar-nav > .active > a:hover,
+.navbar-default .navbar-nav > .active > a:focus {
+  color: #555;
+  background-color: #e7e7e7;
+}
+.navbar-default .navbar-nav > .disabled > a,
+.navbar-default .navbar-nav > .disabled > a:hover,
+.navbar-default .navbar-nav > .disabled > a:focus {
+  color: #ccc;
+  background-color: transparent;
+}
+.navbar-default .navbar-toggle {
+  border-color: #ddd;
+}
+.navbar-default .navbar-toggle:hover,
+.navbar-default .navbar-toggle:focus {
+  background-color: #ddd;
+}
+.navbar-default .navbar-toggle .icon-bar {
+  background-color: #888;
+}
+.navbar-default .navbar-collapse,
+.navbar-default .navbar-form {
+  border-color: #e7e7e7;
+}
+.navbar-default .navbar-nav > .open > a,
+.navbar-default .navbar-nav > .open > a:hover,
+.navbar-default .navbar-nav > .open > a:focus {
+  background-color: #e7e7e7;
+  color: #555;
+}
+@media (max-width: 540px) {
+  .navbar-default .navbar-nav .open .dropdown-menu > li > a {
+    color: #777;
+  }
+  .navbar-default .navbar-nav .open .dropdown-menu > li > a:hover,
+  .navbar-default .navbar-nav .open .dropdown-menu > li > a:focus {
+    color: #333;
+    background-color: transparent;
+  }
+  .navbar-default .navbar-nav .open .dropdown-menu > .active > a,
+  .navbar-default .navbar-nav .open .dropdown-menu > .active > a:hover,
+  .navbar-default .navbar-nav .open .dropdown-menu > .active > a:focus {
+    color: #555;
+    background-color: #e7e7e7;
+  }
+  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a,
+  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:hover,
+  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:focus {
+    color: #ccc;
+    background-color: transparent;
+  }
+}
+.navbar-default .navbar-link {
+  color: #777;
+}
+.navbar-default .navbar-link:hover {
+  color: #333;
+}
+.navbar-default .btn-link {
+  color: #777;
+}
+.navbar-default .btn-link:hover,
+.navbar-default .btn-link:focus {
+  color: #333;
+}
+.navbar-default .btn-link[disabled]:hover,
+fieldset[disabled] .navbar-default .btn-link:hover,
+.navbar-default .btn-link[disabled]:focus,
+fieldset[disabled] .navbar-default .btn-link:focus {
+  color: #ccc;
+}
+.navbar-inverse {
+  background-color: #222;
+  border-color: #080808;
+}
+.navbar-inverse .navbar-brand {
+  color: #9d9d9d;
+}
+.navbar-inverse .navbar-brand:hover,
+.navbar-inverse .navbar-brand:focus {
+  color: #fff;
+  background-color: transparent;
+}
+.navbar-inverse .navbar-text {
+  color: #9d9d9d;
+}
+.navbar-inverse .navbar-nav > li > a {
+  color: #9d9d9d;
+}
+.navbar-inverse .navbar-nav > li > a:hover,
+.navbar-inverse .navbar-nav > li > a:focus {
+  color: #fff;
+  background-color: transparent;
+}
+.navbar-inverse .navbar-nav > .active > a,
+.navbar-inverse .navbar-nav > .active > a:hover,
+.navbar-inverse .navbar-nav > .active > a:focus {
+  color: #fff;
+  background-color: #080808;
+}
+.navbar-inverse .navbar-nav > .disabled > a,
+.navbar-inverse .navbar-nav > .disabled > a:hover,
+.navbar-inverse .navbar-nav > .disabled > a:focus {
+  color: #444;
+  background-color: transparent;
+}
+.navbar-inverse .navbar-toggle {
+  border-color: #333;
+}
+.navbar-inverse .navbar-toggle:hover,
+.navbar-inverse .navbar-toggle:focus {
+  background-color: #333;
+}
+.navbar-inverse .navbar-toggle .icon-bar {
+  background-color: #fff;
+}
+.navbar-inverse .navbar-collapse,
+.navbar-inverse .navbar-form {
+  border-color: #101010;
+}
+.navbar-inverse .navbar-nav > .open > a,
+.navbar-inverse .navbar-nav > .open > a:hover,
+.navbar-inverse .navbar-nav > .open > a:focus {
+  background-color: #080808;
+  color: #fff;
+}
+@media (max-width: 540px) {
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .dropdown-header {
+    border-color: #080808;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu .divider {
+    background-color: #080808;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a {
+    color: #9d9d9d;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:hover,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:focus {
+    color: #fff;
+    background-color: transparent;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:hover,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:focus {
+    color: #fff;
+    background-color: #080808;
+  }
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:hover,
+  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:focus {
+    color: #444;
+    background-color: transparent;
+  }
+}
+.navbar-inverse .navbar-link {
+  color: #9d9d9d;
+}
+.navbar-inverse .navbar-link:hover {
+  color: #fff;
+}
+.navbar-inverse .btn-link {
+  color: #9d9d9d;
+}
+.navbar-inverse .btn-link:hover,
+.navbar-inverse .btn-link:focus {
+  color: #fff;
+}
+.navbar-inverse .btn-link[disabled]:hover,
+fieldset[disabled] .navbar-inverse .btn-link:hover,
+.navbar-inverse .btn-link[disabled]:focus,
+fieldset[disabled] .navbar-inverse .btn-link:focus {
+  color: #444;
+}
+.breadcrumb {
+  padding: 8px 15px;
+  margin-bottom: 18px;
+  list-style: none;
+  background-color: #f5f5f5;
+  border-radius: 2px;
+}
+.breadcrumb > li {
+  display: inline-block;
+}
+.breadcrumb > li + li:before {
+  content: "/\00a0";
+  padding: 0 5px;
+  color: #5e5e5e;
+}
+.breadcrumb > .active {
+  color: #777777;
+}
+.pagination {
+  display: inline-block;
+  padding-left: 0;
+  margin: 18px 0;
+  border-radius: 2px;
+}
+.pagination > li {
+  display: inline;
+}
+.pagination > li > a,
+.pagination > li > span {
+  position: relative;
+  float: left;
+  padding: 6px 12px;
+  line-height: 1.42857143;
+  text-decoration: none;
+  color: #337ab7;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  margin-left: -1px;
+}
+.pagination > li:first-child > a,
+.pagination > li:first-child > span {
+  margin-left: 0;
+  border-bottom-left-radius: 2px;
+  border-top-left-radius: 2px;
+}
+.pagination > li:last-child > a,
+.pagination > li:last-child > span {
+  border-bottom-right-radius: 2px;
+  border-top-right-radius: 2px;
+}
+.pagination > li > a:hover,
+.pagination > li > span:hover,
+.pagination > li > a:focus,
+.pagination > li > span:focus {
+  z-index: 2;
+  color: #23527c;
+  background-color: #eeeeee;
+  border-color: #ddd;
+}
+.pagination > .active > a,
+.pagination > .active > span,
+.pagination > .active > a:hover,
+.pagination > .active > span:hover,
+.pagination > .active > a:focus,
+.pagination > .active > span:focus {
+  z-index: 3;
+  color: #fff;
+  background-color: #337ab7;
+  border-color: #337ab7;
+  cursor: default;
+}
+.pagination > .disabled > span,
+.pagination > .disabled > span:hover,
+.pagination > .disabled > span:focus,
+.pagination > .disabled > a,
+.pagination > .disabled > a:hover,
+.pagination > .disabled > a:focus {
+  color: #777777;
+  background-color: #fff;
+  border-color: #ddd;
+  cursor: not-allowed;
+}
+.pagination-lg > li > a,
+.pagination-lg > li > span {
+  padding: 10px 16px;
+  font-size: 17px;
+  line-height: 1.3333333;
+}
+.pagination-lg > li:first-child > a,
+.pagination-lg > li:first-child > span {
+  border-bottom-left-radius: 3px;
+  border-top-left-radius: 3px;
+}
+.pagination-lg > li:last-child > a,
+.pagination-lg > li:last-child > span {
+  border-bottom-right-radius: 3px;
+  border-top-right-radius: 3px;
+}
+.pagination-sm > li > a,
+.pagination-sm > li > span {
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+}
+.pagination-sm > li:first-child > a,
+.pagination-sm > li:first-child > span {
+  border-bottom-left-radius: 1px;
+  border-top-left-radius: 1px;
+}
+.pagination-sm > li:last-child > a,
+.pagination-sm > li:last-child > span {
+  border-bottom-right-radius: 1px;
+  border-top-right-radius: 1px;
+}
+.pager {
+  padding-left: 0;
+  margin: 18px 0;
+  list-style: none;
+  text-align: center;
+}
+.pager li {
+  display: inline;
+}
+.pager li > a,
+.pager li > span {
+  display: inline-block;
+  padding: 5px 14px;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  border-radius: 15px;
+}
+.pager li > a:hover,
+.pager li > a:focus {
+  text-decoration: none;
+  background-color: #eeeeee;
+}
+.pager .next > a,
+.pager .next > span {
+  float: right;
+}
+.pager .previous > a,
+.pager .previous > span {
+  float: left;
+}
+.pager .disabled > a,
+.pager .disabled > a:hover,
+.pager .disabled > a:focus,
+.pager .disabled > span {
+  color: #777777;
+  background-color: #fff;
+  cursor: not-allowed;
+}
+.label {
+  display: inline;
+  padding: .2em .6em .3em;
+  font-size: 75%;
+  font-weight: bold;
+  line-height: 1;
+  color: #fff;
+  text-align: center;
+  white-space: nowrap;
+  vertical-align: baseline;
+  border-radius: .25em;
+}
+a.label:hover,
+a.label:focus {
+  color: #fff;
+  text-decoration: none;
+  cursor: pointer;
+}
+.label:empty {
+  display: none;
+}
+.btn .label {
+  position: relative;
+  top: -1px;
+}
+.label-default {
+  background-color: #777777;
+}
+.label-default[href]:hover,
+.label-default[href]:focus {
+  background-color: #5e5e5e;
+}
+.label-primary {
+  background-color: #337ab7;
+}
+.label-primary[href]:hover,
+.label-primary[href]:focus {
+  background-color: #286090;
+}
+.label-success {
+  background-color: #5cb85c;
+}
+.label-success[href]:hover,
+.label-success[href]:focus {
+  background-color: #449d44;
+}
+.label-info {
+  background-color: #5bc0de;
+}
+.label-info[href]:hover,
+.label-info[href]:focus {
+  background-color: #31b0d5;
+}
+.label-warning {
+  background-color: #f0ad4e;
+}
+.label-warning[href]:hover,
+.label-warning[href]:focus {
+  background-color: #ec971f;
+}
+.label-danger {
+  background-color: #d9534f;
+}
+.label-danger[href]:hover,
+.label-danger[href]:focus {
+  background-color: #c9302c;
+}
+.badge {
+  display: inline-block;
+  min-width: 10px;
+  padding: 3px 7px;
+  font-size: 12px;
+  font-weight: bold;
+  color: #fff;
+  line-height: 1;
+  vertical-align: middle;
+  white-space: nowrap;
+  text-align: center;
+  background-color: #777777;
+  border-radius: 10px;
+}
+.badge:empty {
+  display: none;
+}
+.btn .badge {
+  position: relative;
+  top: -1px;
+}
+.btn-xs .badge,
+.btn-group-xs > .btn .badge {
+  top: 0;
+  padding: 1px 5px;
+}
+a.badge:hover,
+a.badge:focus {
+  color: #fff;
+  text-decoration: none;
+  cursor: pointer;
+}
+.list-group-item.active > .badge,
+.nav-pills > .active > a > .badge {
+  color: #337ab7;
+  background-color: #fff;
+}
+.list-group-item > .badge {
+  float: right;
+}
+.list-group-item > .badge + .badge {
+  margin-right: 5px;
+}
+.nav-pills > li > a > .badge {
+  margin-left: 3px;
+}
+.jumbotron {
+  padding-top: 30px;
+  padding-bottom: 30px;
+  margin-bottom: 30px;
+  color: inherit;
+  background-color: #eeeeee;
+}
+.jumbotron h1,
+.jumbotron .h1 {
+  color: inherit;
+}
+.jumbotron p {
+  margin-bottom: 15px;
+  font-size: 20px;
+  font-weight: 200;
+}
+.jumbotron > hr {
+  border-top-color: #d5d5d5;
+}
+.container .jumbotron,
+.container-fluid .jumbotron {
+  border-radius: 3px;
+  padding-left: 0px;
+  padding-right: 0px;
+}
+.jumbotron .container {
+  max-width: 100%;
+}
+@media screen and (min-width: 768px) {
+  .jumbotron {
+    padding-top: 48px;
+    padding-bottom: 48px;
+  }
+  .container .jumbotron,
+  .container-fluid .jumbotron {
+    padding-left: 60px;
+    padding-right: 60px;
+  }
+  .jumbotron h1,
+  .jumbotron .h1 {
+    font-size: 59px;
+  }
+}
+.thumbnail {
+  display: block;
+  padding: 4px;
+  margin-bottom: 18px;
+  line-height: 1.42857143;
+  background-color: #fff;
+  border: 1px solid #ddd;
+  border-radius: 2px;
+  -webkit-transition: border 0.2s ease-in-out;
+  -o-transition: border 0.2s ease-in-out;
+  transition: border 0.2s ease-in-out;
+}
+.thumbnail > img,
+.thumbnail a > img {
+  margin-left: auto;
+  margin-right: auto;
+}
+a.thumbnail:hover,
+a.thumbnail:focus,
+a.thumbnail.active {
+  border-color: #337ab7;
+}
+.thumbnail .caption {
+  padding: 9px;
+  color: #000;
+}
+.alert {
+  padding: 15px;
+  margin-bottom: 18px;
+  border: 1px solid transparent;
+  border-radius: 2px;
+}
+.alert h4 {
+  margin-top: 0;
+  color: inherit;
+}
+.alert .alert-link {
+  font-weight: bold;
+}
+.alert > p,
+.alert > ul {
+  margin-bottom: 0;
+}
+.alert > p + p {
+  margin-top: 5px;
+}
+.alert-dismissable,
+.alert-dismissible {
+  padding-right: 35px;
+}
+.alert-dismissable .close,
+.alert-dismissible .close {
+  position: relative;
+  top: -2px;
+  right: -21px;
+  color: inherit;
+}
+.alert-success {
+  background-color: #dff0d8;
+  border-color: #d6e9c6;
+  color: #3c763d;
+}
+.alert-success hr {
+  border-top-color: #c9e2b3;
+}
+.alert-success .alert-link {
+  color: #2b542c;
+}
+.alert-info {
+  background-color: #d9edf7;
+  border-color: #bce8f1;
+  color: #31708f;
+}
+.alert-info hr {
+  border-top-color: #a6e1ec;
+}
+.alert-info .alert-link {
+  color: #245269;
+}
+.alert-warning {
+  background-color: #fcf8e3;
+  border-color: #faebcc;
+  color: #8a6d3b;
+}
+.alert-warning hr {
+  border-top-color: #f7e1b5;
+}
+.alert-warning .alert-link {
+  color: #66512c;
+}
+.alert-danger {
+  background-color: #f2dede;
+  border-color: #ebccd1;
+  color: #a94442;
+}
+.alert-danger hr {
+  border-top-color: #e4b9c0;
+}
+.alert-danger .alert-link {
+  color: #843534;
+}
+@-webkit-keyframes progress-bar-stripes {
+  from {
+    background-position: 40px 0;
+  }
+  to {
+    background-position: 0 0;
+  }
+}
+@keyframes progress-bar-stripes {
+  from {
+    background-position: 40px 0;
+  }
+  to {
+    background-position: 0 0;
+  }
+}
+.progress {
+  overflow: hidden;
+  height: 18px;
+  margin-bottom: 18px;
+  background-color: #f5f5f5;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1);
+  box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1);
+}
+.progress-bar {
+  float: left;
+  width: 0%;
+  height: 100%;
+  font-size: 12px;
+  line-height: 18px;
+  color: #fff;
+  text-align: center;
+  background-color: #337ab7;
+  -webkit-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15);
+  box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15);
+  -webkit-transition: width 0.6s ease;
+  -o-transition: width 0.6s ease;
+  transition: width 0.6s ease;
+}
+.progress-striped .progress-bar,
+.progress-bar-striped {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-size: 40px 40px;
+}
+.progress.active .progress-bar,
+.progress-bar.active {
+  -webkit-animation: progress-bar-stripes 2s linear infinite;
+  -o-animation: progress-bar-stripes 2s linear infinite;
+  animation: progress-bar-stripes 2s linear infinite;
+}
+.progress-bar-success {
+  background-color: #5cb85c;
+}
+.progress-striped .progress-bar-success {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+}
+.progress-bar-info {
+  background-color: #5bc0de;
+}
+.progress-striped .progress-bar-info {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+}
+.progress-bar-warning {
+  background-color: #f0ad4e;
+}
+.progress-striped .progress-bar-warning {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+}
+.progress-bar-danger {
+  background-color: #d9534f;
+}
+.progress-striped .progress-bar-danger {
+  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
+}
+.media {
+  margin-top: 15px;
+}
+.media:first-child {
+  margin-top: 0;
+}
+.media,
+.media-body {
+  zoom: 1;
+  overflow: hidden;
+}
+.media-body {
+  width: 10000px;
+}
+.media-object {
+  display: block;
+}
+.media-object.img-thumbnail {
+  max-width: none;
+}
+.media-right,
+.media > .pull-right {
+  padding-left: 10px;
+}
+.media-left,
+.media > .pull-left {
+  padding-right: 10px;
+}
+.media-left,
+.media-right,
+.media-body {
+  display: table-cell;
+  vertical-align: top;
+}
+.media-middle {
+  vertical-align: middle;
+}
+.media-bottom {
+  vertical-align: bottom;
+}
+.media-heading {
+  margin-top: 0;
+  margin-bottom: 5px;
+}
+.media-list {
+  padding-left: 0;
+  list-style: none;
+}
+.list-group {
+  margin-bottom: 20px;
+  padding-left: 0;
+}
+.list-group-item {
+  position: relative;
+  display: block;
+  padding: 10px 15px;
+  margin-bottom: -1px;
+  background-color: #fff;
+  border: 1px solid #ddd;
+}
+.list-group-item:first-child {
+  border-top-right-radius: 2px;
+  border-top-left-radius: 2px;
+}
+.list-group-item:last-child {
+  margin-bottom: 0;
+  border-bottom-right-radius: 2px;
+  border-bottom-left-radius: 2px;
+}
+a.list-group-item,
+button.list-group-item {
+  color: #555;
+}
+a.list-group-item .list-group-item-heading,
+button.list-group-item .list-group-item-heading {
+  color: #333;
+}
+a.list-group-item:hover,
+button.list-group-item:hover,
+a.list-group-item:focus,
+button.list-group-item:focus {
+  text-decoration: none;
+  color: #555;
+  background-color: #f5f5f5;
+}
+button.list-group-item {
+  width: 100%;
+  text-align: left;
+}
+.list-group-item.disabled,
+.list-group-item.disabled:hover,
+.list-group-item.disabled:focus {
+  background-color: #eeeeee;
+  color: #777777;
+  cursor: not-allowed;
+}
+.list-group-item.disabled .list-group-item-heading,
+.list-group-item.disabled:hover .list-group-item-heading,
+.list-group-item.disabled:focus .list-group-item-heading {
+  color: inherit;
+}
+.list-group-item.disabled .list-group-item-text,
+.list-group-item.disabled:hover .list-group-item-text,
+.list-group-item.disabled:focus .list-group-item-text {
+  color: #777777;
+}
+.list-group-item.active,
+.list-group-item.active:hover,
+.list-group-item.active:focus {
+  z-index: 2;
+  color: #fff;
+  background-color: #337ab7;
+  border-color: #337ab7;
+}
+.list-group-item.active .list-group-item-heading,
+.list-group-item.active:hover .list-group-item-heading,
+.list-group-item.active:focus .list-group-item-heading,
+.list-group-item.active .list-group-item-heading > small,
+.list-group-item.active:hover .list-group-item-heading > small,
+.list-group-item.active:focus .list-group-item-heading > small,
+.list-group-item.active .list-group-item-heading > .small,
+.list-group-item.active:hover .list-group-item-heading > .small,
+.list-group-item.active:focus .list-group-item-heading > .small {
+  color: inherit;
+}
+.list-group-item.active .list-group-item-text,
+.list-group-item.active:hover .list-group-item-text,
+.list-group-item.active:focus .list-group-item-text {
+  color: #c7ddef;
+}
+.list-group-item-success {
+  color: #3c763d;
+  background-color: #dff0d8;
+}
+a.list-group-item-success,
+button.list-group-item-success {
+  color: #3c763d;
+}
+a.list-group-item-success .list-group-item-heading,
+button.list-group-item-success .list-group-item-heading {
+  color: inherit;
+}
+a.list-group-item-success:hover,
+button.list-group-item-success:hover,
+a.list-group-item-success:focus,
+button.list-group-item-success:focus {
+  color: #3c763d;
+  background-color: #d0e9c6;
+}
+a.list-group-item-success.active,
+button.list-group-item-success.active,
+a.list-group-item-success.active:hover,
+button.list-group-item-success.active:hover,
+a.list-group-item-success.active:focus,
+button.list-group-item-success.active:focus {
+  color: #fff;
+  background-color: #3c763d;
+  border-color: #3c763d;
+}
+.list-group-item-info {
+  color: #31708f;
+  background-color: #d9edf7;
+}
+a.list-group-item-info,
+button.list-group-item-info {
+  color: #31708f;
+}
+a.list-group-item-info .list-group-item-heading,
+button.list-group-item-info .list-group-item-heading {
+  color: inherit;
+}
+a.list-group-item-info:hover,
+button.list-group-item-info:hover,
+a.list-group-item-info:focus,
+button.list-group-item-info:focus {
+  color: #31708f;
+  background-color: #c4e3f3;
+}
+a.list-group-item-info.active,
+button.list-group-item-info.active,
+a.list-group-item-info.active:hover,
+button.list-group-item-info.active:hover,
+a.list-group-item-info.active:focus,
+button.list-group-item-info.active:focus {
+  color: #fff;
+  background-color: #31708f;
+  border-color: #31708f;
+}
+.list-group-item-warning {
+  color: #8a6d3b;
+  background-color: #fcf8e3;
+}
+a.list-group-item-warning,
+button.list-group-item-warning {
+  color: #8a6d3b;
+}
+a.list-group-item-warning .list-group-item-heading,
+button.list-group-item-warning .list-group-item-heading {
+  color: inherit;
+}
+a.list-group-item-warning:hover,
+button.list-group-item-warning:hover,
+a.list-group-item-warning:focus,
+button.list-group-item-warning:focus {
+  color: #8a6d3b;
+  background-color: #faf2cc;
+}
+a.list-group-item-warning.active,
+button.list-group-item-warning.active,
+a.list-group-item-warning.active:hover,
+button.list-group-item-warning.active:hover,
+a.list-group-item-warning.active:focus,
+button.list-group-item-warning.active:focus {
+  color: #fff;
+  background-color: #8a6d3b;
+  border-color: #8a6d3b;
+}
+.list-group-item-danger {
+  color: #a94442;
+  background-color: #f2dede;
+}
+a.list-group-item-danger,
+button.list-group-item-danger {
+  color: #a94442;
+}
+a.list-group-item-danger .list-group-item-heading,
+button.list-group-item-danger .list-group-item-heading {
+  color: inherit;
+}
+a.list-group-item-danger:hover,
+button.list-group-item-danger:hover,
+a.list-group-item-danger:focus,
+button.list-group-item-danger:focus {
+  color: #a94442;
+  background-color: #ebcccc;
+}
+a.list-group-item-danger.active,
+button.list-group-item-danger.active,
+a.list-group-item-danger.active:hover,
+button.list-group-item-danger.active:hover,
+a.list-group-item-danger.active:focus,
+button.list-group-item-danger.active:focus {
+  color: #fff;
+  background-color: #a94442;
+  border-color: #a94442;
+}
+.list-group-item-heading {
+  margin-top: 0;
+  margin-bottom: 5px;
+}
+.list-group-item-text {
+  margin-bottom: 0;
+  line-height: 1.3;
+}
+.panel {
+  margin-bottom: 18px;
+  background-color: #fff;
+  border: 1px solid transparent;
+  border-radius: 2px;
+  -webkit-box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05);
+  box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05);
+}
+.panel-body {
+  padding: 15px;
+}
+.panel-heading {
+  padding: 10px 15px;
+  border-bottom: 1px solid transparent;
+  border-top-right-radius: 1px;
+  border-top-left-radius: 1px;
+}
+.panel-heading > .dropdown .dropdown-toggle {
+  color: inherit;
+}
+.panel-title {
+  margin-top: 0;
+  margin-bottom: 0;
+  font-size: 15px;
+  color: inherit;
+}
+.panel-title > a,
+.panel-title > small,
+.panel-title > .small,
+.panel-title > small > a,
+.panel-title > .small > a {
+  color: inherit;
+}
+.panel-footer {
+  padding: 10px 15px;
+  background-color: #f5f5f5;
+  border-top: 1px solid #ddd;
+  border-bottom-right-radius: 1px;
+  border-bottom-left-radius: 1px;
+}
+.panel > .list-group,
+.panel > .panel-collapse > .list-group {
+  margin-bottom: 0;
+}
+.panel > .list-group .list-group-item,
+.panel > .panel-collapse > .list-group .list-group-item {
+  border-width: 1px 0;
+  border-radius: 0;
+}
+.panel > .list-group:first-child .list-group-item:first-child,
+.panel > .panel-collapse > .list-group:first-child .list-group-item:first-child {
+  border-top: 0;
+  border-top-right-radius: 1px;
+  border-top-left-radius: 1px;
+}
+.panel > .list-group:last-child .list-group-item:last-child,
+.panel > .panel-collapse > .list-group:last-child .list-group-item:last-child {
+  border-bottom: 0;
+  border-bottom-right-radius: 1px;
+  border-bottom-left-radius: 1px;
+}
+.panel > .panel-heading + .panel-collapse > .list-group .list-group-item:first-child {
+  border-top-right-radius: 0;
+  border-top-left-radius: 0;
+}
+.panel-heading + .list-group .list-group-item:first-child {
+  border-top-width: 0;
+}
+.list-group + .panel-footer {
+  border-top-width: 0;
+}
+.panel > .table,
+.panel > .table-responsive > .table,
+.panel > .panel-collapse > .table {
+  margin-bottom: 0;
+}
+.panel > .table caption,
+.panel > .table-responsive > .table caption,
+.panel > .panel-collapse > .table caption {
+  padding-left: 15px;
+  padding-right: 15px;
+}
+.panel > .table:first-child,
+.panel > .table-responsive:first-child > .table:first-child {
+  border-top-right-radius: 1px;
+  border-top-left-radius: 1px;
+}
+.panel > .table:first-child > thead:first-child > tr:first-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child {
+  border-top-left-radius: 1px;
+  border-top-right-radius: 1px;
+}
+.panel > .table:first-child > thead:first-child > tr:first-child td:first-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:first-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child td:first-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:first-child,
+.panel > .table:first-child > thead:first-child > tr:first-child th:first-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:first-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child th:first-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:first-child {
+  border-top-left-radius: 1px;
+}
+.panel > .table:first-child > thead:first-child > tr:first-child td:last-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:last-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child td:last-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:last-child,
+.panel > .table:first-child > thead:first-child > tr:first-child th:last-child,
+.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:last-child,
+.panel > .table:first-child > tbody:first-child > tr:first-child th:last-child,
+.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:last-child {
+  border-top-right-radius: 1px;
+}
+.panel > .table:last-child,
+.panel > .table-responsive:last-child > .table:last-child {
+  border-bottom-right-radius: 1px;
+  border-bottom-left-radius: 1px;
+}
+.panel > .table:last-child > tbody:last-child > tr:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child {
+  border-bottom-left-radius: 1px;
+  border-bottom-right-radius: 1px;
+}
+.panel > .table:last-child > tbody:last-child > tr:last-child td:first-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:first-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child td:first-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:first-child,
+.panel > .table:last-child > tbody:last-child > tr:last-child th:first-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:first-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child th:first-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:first-child {
+  border-bottom-left-radius: 1px;
+}
+.panel > .table:last-child > tbody:last-child > tr:last-child td:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:last-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child td:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:last-child,
+.panel > .table:last-child > tbody:last-child > tr:last-child th:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:last-child,
+.panel > .table:last-child > tfoot:last-child > tr:last-child th:last-child,
+.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:last-child {
+  border-bottom-right-radius: 1px;
+}
+.panel > .panel-body + .table,
+.panel > .panel-body + .table-responsive,
+.panel > .table + .panel-body,
+.panel > .table-responsive + .panel-body {
+  border-top: 1px solid #ddd;
+}
+.panel > .table > tbody:first-child > tr:first-child th,
+.panel > .table > tbody:first-child > tr:first-child td {
+  border-top: 0;
+}
+.panel > .table-bordered,
+.panel > .table-responsive > .table-bordered {
+  border: 0;
+}
+.panel > .table-bordered > thead > tr > th:first-child,
+.panel > .table-responsive > .table-bordered > thead > tr > th:first-child,
+.panel > .table-bordered > tbody > tr > th:first-child,
+.panel > .table-responsive > .table-bordered > tbody > tr > th:first-child,
+.panel > .table-bordered > tfoot > tr > th:first-child,
+.panel > .table-responsive > .table-bordered > tfoot > tr > th:first-child,
+.panel > .table-bordered > thead > tr > td:first-child,
+.panel > .table-responsive > .table-bordered > thead > tr > td:first-child,
+.panel > .table-bordered > tbody > tr > td:first-child,
+.panel > .table-responsive > .table-bordered > tbody > tr > td:first-child,
+.panel > .table-bordered > tfoot > tr > td:first-child,
+.panel > .table-responsive > .table-bordered > tfoot > tr > td:first-child {
+  border-left: 0;
+}
+.panel > .table-bordered > thead > tr > th:last-child,
+.panel > .table-responsive > .table-bordered > thead > tr > th:last-child,
+.panel > .table-bordered > tbody > tr > th:last-child,
+.panel > .table-responsive > .table-bordered > tbody > tr > th:last-child,
+.panel > .table-bordered > tfoot > tr > th:last-child,
+.panel > .table-responsive > .table-bordered > tfoot > tr > th:last-child,
+.panel > .table-bordered > thead > tr > td:last-child,
+.panel > .table-responsive > .table-bordered > thead > tr > td:last-child,
+.panel > .table-bordered > tbody > tr > td:last-child,
+.panel > .table-responsive > .table-bordered > tbody > tr > td:last-child,
+.panel > .table-bordered > tfoot > tr > td:last-child,
+.panel > .table-responsive > .table-bordered > tfoot > tr > td:last-child {
+  border-right: 0;
+}
+.panel > .table-bordered > thead > tr:first-child > td,
+.panel > .table-responsive > .table-bordered > thead > tr:first-child > td,
+.panel > .table-bordered > tbody > tr:first-child > td,
+.panel > .table-responsive > .table-bordered > tbody > tr:first-child > td,
+.panel > .table-bordered > thead > tr:first-child > th,
+.panel > .table-responsive > .table-bordered > thead > tr:first-child > th,
+.panel > .table-bordered > tbody > tr:first-child > th,
+.panel > .table-responsive > .table-bordered > tbody > tr:first-child > th {
+  border-bottom: 0;
+}
+.panel > .table-bordered > tbody > tr:last-child > td,
+.panel > .table-responsive > .table-bordered > tbody > tr:last-child > td,
+.panel > .table-bordered > tfoot > tr:last-child > td,
+.panel > .table-responsive > .table-bordered > tfoot > tr:last-child > td,
+.panel > .table-bordered > tbody > tr:last-child > th,
+.panel > .table-responsive > .table-bordered > tbody > tr:last-child > th,
+.panel > .table-bordered > tfoot > tr:last-child > th,
+.panel > .table-responsive > .table-bordered > tfoot > tr:last-child > th {
+  border-bottom: 0;
+}
+.panel > .table-responsive {
+  border: 0;
+  margin-bottom: 0;
+}
+.panel-group {
+  margin-bottom: 18px;
+}
+.panel-group .panel {
+  margin-bottom: 0;
+  border-radius: 2px;
+}
+.panel-group .panel + .panel {
+  margin-top: 5px;
+}
+.panel-group .panel-heading {
+  border-bottom: 0;
+}
+.panel-group .panel-heading + .panel-collapse > .panel-body,
+.panel-group .panel-heading + .panel-collapse > .list-group {
+  border-top: 1px solid #ddd;
+}
+.panel-group .panel-footer {
+  border-top: 0;
+}
+.panel-group .panel-footer + .panel-collapse .panel-body {
+  border-bottom: 1px solid #ddd;
+}
+.panel-default {
+  border-color: #ddd;
+}
+.panel-default > .panel-heading {
+  color: #333333;
+  background-color: #f5f5f5;
+  border-color: #ddd;
+}
+.panel-default > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #ddd;
+}
+.panel-default > .panel-heading .badge {
+  color: #f5f5f5;
+  background-color: #333333;
+}
+.panel-default > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #ddd;
+}
+.panel-primary {
+  border-color: #337ab7;
+}
+.panel-primary > .panel-heading {
+  color: #fff;
+  background-color: #337ab7;
+  border-color: #337ab7;
+}
+.panel-primary > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #337ab7;
+}
+.panel-primary > .panel-heading .badge {
+  color: #337ab7;
+  background-color: #fff;
+}
+.panel-primary > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #337ab7;
+}
+.panel-success {
+  border-color: #d6e9c6;
+}
+.panel-success > .panel-heading {
+  color: #3c763d;
+  background-color: #dff0d8;
+  border-color: #d6e9c6;
+}
+.panel-success > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #d6e9c6;
+}
+.panel-success > .panel-heading .badge {
+  color: #dff0d8;
+  background-color: #3c763d;
+}
+.panel-success > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #d6e9c6;
+}
+.panel-info {
+  border-color: #bce8f1;
+}
+.panel-info > .panel-heading {
+  color: #31708f;
+  background-color: #d9edf7;
+  border-color: #bce8f1;
+}
+.panel-info > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #bce8f1;
+}
+.panel-info > .panel-heading .badge {
+  color: #d9edf7;
+  background-color: #31708f;
+}
+.panel-info > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #bce8f1;
+}
+.panel-warning {
+  border-color: #faebcc;
+}
+.panel-warning > .panel-heading {
+  color: #8a6d3b;
+  background-color: #fcf8e3;
+  border-color: #faebcc;
+}
+.panel-warning > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #faebcc;
+}
+.panel-warning > .panel-heading .badge {
+  color: #fcf8e3;
+  background-color: #8a6d3b;
+}
+.panel-warning > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #faebcc;
+}
+.panel-danger {
+  border-color: #ebccd1;
+}
+.panel-danger > .panel-heading {
+  color: #a94442;
+  background-color: #f2dede;
+  border-color: #ebccd1;
+}
+.panel-danger > .panel-heading + .panel-collapse > .panel-body {
+  border-top-color: #ebccd1;
+}
+.panel-danger > .panel-heading .badge {
+  color: #f2dede;
+  background-color: #a94442;
+}
+.panel-danger > .panel-footer + .panel-collapse > .panel-body {
+  border-bottom-color: #ebccd1;
+}
+.embed-responsive {
+  position: relative;
+  display: block;
+  height: 0;
+  padding: 0;
+  overflow: hidden;
+}
+.embed-responsive .embed-responsive-item,
+.embed-responsive iframe,
+.embed-responsive embed,
+.embed-responsive object,
+.embed-responsive video {
+  position: absolute;
+  top: 0;
+  left: 0;
+  bottom: 0;
+  height: 100%;
+  width: 100%;
+  border: 0;
+}
+.embed-responsive-16by9 {
+  padding-bottom: 56.25%;
+}
+.embed-responsive-4by3 {
+  padding-bottom: 75%;
+}
+.well {
+  min-height: 20px;
+  padding: 19px;
+  margin-bottom: 20px;
+  background-color: #f5f5f5;
+  border: 1px solid #e3e3e3;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);
+}
+.well blockquote {
+  border-color: #ddd;
+  border-color: rgba(0, 0, 0, 0.15);
+}
+.well-lg {
+  padding: 24px;
+  border-radius: 3px;
+}
+.well-sm {
+  padding: 9px;
+  border-radius: 1px;
+}
+.close {
+  float: right;
+  font-size: 19.5px;
+  font-weight: bold;
+  line-height: 1;
+  color: #000;
+  text-shadow: 0 1px 0 #fff;
+  opacity: 0.2;
+  filter: alpha(opacity=20);
+}
+.close:hover,
+.close:focus {
+  color: #000;
+  text-decoration: none;
+  cursor: pointer;
+  opacity: 0.5;
+  filter: alpha(opacity=50);
+}
+button.close {
+  padding: 0;
+  cursor: pointer;
+  background: transparent;
+  border: 0;
+  -webkit-appearance: none;
+}
+.modal-open {
+  overflow: hidden;
+}
+.modal {
+  display: none;
+  overflow: hidden;
+  position: fixed;
+  top: 0;
+  right: 0;
+  bottom: 0;
+  left: 0;
+  z-index: 1050;
+  -webkit-overflow-scrolling: touch;
+  outline: 0;
+}
+.modal.fade .modal-dialog {
+  -webkit-transform: translate(0, -25%);
+  -ms-transform: translate(0, -25%);
+  -o-transform: translate(0, -25%);
+  transform: translate(0, -25%);
+  -webkit-transition: -webkit-transform 0.3s ease-out;
+  -moz-transition: -moz-transform 0.3s ease-out;
+  -o-transition: -o-transform 0.3s ease-out;
+  transition: transform 0.3s ease-out;
+}
+.modal.in .modal-dialog {
+  -webkit-transform: translate(0, 0);
+  -ms-transform: translate(0, 0);
+  -o-transform: translate(0, 0);
+  transform: translate(0, 0);
+}
+.modal-open .modal {
+  overflow-x: hidden;
+  overflow-y: auto;
+}
+.modal-dialog {
+  position: relative;
+  width: auto;
+  margin: 10px;
+}
+.modal-content {
+  position: relative;
+  background-color: #fff;
+  border: 1px solid #999;
+  border: 1px solid rgba(0, 0, 0, 0.2);
+  border-radius: 3px;
+  -webkit-box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5);
+  box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5);
+  background-clip: padding-box;
+  outline: 0;
+}
+.modal-backdrop {
+  position: fixed;
+  top: 0;
+  right: 0;
+  bottom: 0;
+  left: 0;
+  z-index: 1040;
+  background-color: #000;
+}
+.modal-backdrop.fade {
+  opacity: 0;
+  filter: alpha(opacity=0);
+}
+.modal-backdrop.in {
+  opacity: 0.5;
+  filter: alpha(opacity=50);
+}
+.modal-header {
+  padding: 15px;
+  border-bottom: 1px solid #e5e5e5;
+}
+.modal-header .close {
+  margin-top: -2px;
+}
+.modal-title {
+  margin: 0;
+  line-height: 1.42857143;
+}
+.modal-body {
+  position: relative;
+  padding: 15px;
+}
+.modal-footer {
+  padding: 15px;
+  text-align: right;
+  border-top: 1px solid #e5e5e5;
+}
+.modal-footer .btn + .btn {
+  margin-left: 5px;
+  margin-bottom: 0;
+}
+.modal-footer .btn-group .btn + .btn {
+  margin-left: -1px;
+}
+.modal-footer .btn-block + .btn-block {
+  margin-left: 0;
+}
+.modal-scrollbar-measure {
+  position: absolute;
+  top: -9999px;
+  width: 50px;
+  height: 50px;
+  overflow: scroll;
+}
+@media (min-width: 768px) {
+  .modal-dialog {
+    width: 600px;
+    margin: 30px auto;
+  }
+  .modal-content {
+    -webkit-box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
+    box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
+  }
+  .modal-sm {
+    width: 300px;
+  }
+}
+@media (min-width: 992px) {
+  .modal-lg {
+    width: 900px;
+  }
+}
+.tooltip {
+  position: absolute;
+  z-index: 1070;
+  display: block;
+  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+  font-style: normal;
+  font-weight: normal;
+  letter-spacing: normal;
+  line-break: auto;
+  line-height: 1.42857143;
+  text-align: left;
+  text-align: start;
+  text-decoration: none;
+  text-shadow: none;
+  text-transform: none;
+  white-space: normal;
+  word-break: normal;
+  word-spacing: normal;
+  word-wrap: normal;
+  font-size: 12px;
+  opacity: 0;
+  filter: alpha(opacity=0);
+}
+.tooltip.in {
+  opacity: 0.9;
+  filter: alpha(opacity=90);
+}
+.tooltip.top {
+  margin-top: -3px;
+  padding: 5px 0;
+}
+.tooltip.right {
+  margin-left: 3px;
+  padding: 0 5px;
+}
+.tooltip.bottom {
+  margin-top: 3px;
+  padding: 5px 0;
+}
+.tooltip.left {
+  margin-left: -3px;
+  padding: 0 5px;
+}
+.tooltip-inner {
+  max-width: 200px;
+  padding: 3px 8px;
+  color: #fff;
+  text-align: center;
+  background-color: #000;
+  border-radius: 2px;
+}
+.tooltip-arrow {
+  position: absolute;
+  width: 0;
+  height: 0;
+  border-color: transparent;
+  border-style: solid;
+}
+.tooltip.top .tooltip-arrow {
+  bottom: 0;
+  left: 50%;
+  margin-left: -5px;
+  border-width: 5px 5px 0;
+  border-top-color: #000;
+}
+.tooltip.top-left .tooltip-arrow {
+  bottom: 0;
+  right: 5px;
+  margin-bottom: -5px;
+  border-width: 5px 5px 0;
+  border-top-color: #000;
+}
+.tooltip.top-right .tooltip-arrow {
+  bottom: 0;
+  left: 5px;
+  margin-bottom: -5px;
+  border-width: 5px 5px 0;
+  border-top-color: #000;
+}
+.tooltip.right .tooltip-arrow {
+  top: 50%;
+  left: 0;
+  margin-top: -5px;
+  border-width: 5px 5px 5px 0;
+  border-right-color: #000;
+}
+.tooltip.left .tooltip-arrow {
+  top: 50%;
+  right: 0;
+  margin-top: -5px;
+  border-width: 5px 0 5px 5px;
+  border-left-color: #000;
+}
+.tooltip.bottom .tooltip-arrow {
+  top: 0;
+  left: 50%;
+  margin-left: -5px;
+  border-width: 0 5px 5px;
+  border-bottom-color: #000;
+}
+.tooltip.bottom-left .tooltip-arrow {
+  top: 0;
+  right: 5px;
+  margin-top: -5px;
+  border-width: 0 5px 5px;
+  border-bottom-color: #000;
+}
+.tooltip.bottom-right .tooltip-arrow {
+  top: 0;
+  left: 5px;
+  margin-top: -5px;
+  border-width: 0 5px 5px;
+  border-bottom-color: #000;
+}
+.popover {
+  position: absolute;
+  top: 0;
+  left: 0;
+  z-index: 1060;
+  display: none;
+  max-width: 276px;
+  padding: 1px;
+  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+  font-style: normal;
+  font-weight: normal;
+  letter-spacing: normal;
+  line-break: auto;
+  line-height: 1.42857143;
+  text-align: left;
+  text-align: start;
+  text-decoration: none;
+  text-shadow: none;
+  text-transform: none;
+  white-space: normal;
+  word-break: normal;
+  word-spacing: normal;
+  word-wrap: normal;
+  font-size: 13px;
+  background-color: #fff;
+  background-clip: padding-box;
+  border: 1px solid #ccc;
+  border: 1px solid rgba(0, 0, 0, 0.2);
+  border-radius: 3px;
+  -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
+  box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
+}
+.popover.top {
+  margin-top: -10px;
+}
+.popover.right {
+  margin-left: 10px;
+}
+.popover.bottom {
+  margin-top: 10px;
+}
+.popover.left {
+  margin-left: -10px;
+}
+.popover-title {
+  margin: 0;
+  padding: 8px 14px;
+  font-size: 13px;
+  background-color: #f7f7f7;
+  border-bottom: 1px solid #ebebeb;
+  border-radius: 2px 2px 0 0;
+}
+.popover-content {
+  padding: 9px 14px;
+}
+.popover > .arrow,
+.popover > .arrow:after {
+  position: absolute;
+  display: block;
+  width: 0;
+  height: 0;
+  border-color: transparent;
+  border-style: solid;
+}
+.popover > .arrow {
+  border-width: 11px;
+}
+.popover > .arrow:after {
+  border-width: 10px;
+  content: "";
+}
+.popover.top > .arrow {
+  left: 50%;
+  margin-left: -11px;
+  border-bottom-width: 0;
+  border-top-color: #999999;
+  border-top-color: rgba(0, 0, 0, 0.25);
+  bottom: -11px;
+}
+.popover.top > .arrow:after {
+  content: " ";
+  bottom: 1px;
+  margin-left: -10px;
+  border-bottom-width: 0;
+  border-top-color: #fff;
+}
+.popover.right > .arrow {
+  top: 50%;
+  left: -11px;
+  margin-top: -11px;
+  border-left-width: 0;
+  border-right-color: #999999;
+  border-right-color: rgba(0, 0, 0, 0.25);
+}
+.popover.right > .arrow:after {
+  content: " ";
+  left: 1px;
+  bottom: -10px;
+  border-left-width: 0;
+  border-right-color: #fff;
+}
+.popover.bottom > .arrow {
+  left: 50%;
+  margin-left: -11px;
+  border-top-width: 0;
+  border-bottom-color: #999999;
+  border-bottom-color: rgba(0, 0, 0, 0.25);
+  top: -11px;
+}
+.popover.bottom > .arrow:after {
+  content: " ";
+  top: 1px;
+  margin-left: -10px;
+  border-top-width: 0;
+  border-bottom-color: #fff;
+}
+.popover.left > .arrow {
+  top: 50%;
+  right: -11px;
+  margin-top: -11px;
+  border-right-width: 0;
+  border-left-color: #999999;
+  border-left-color: rgba(0, 0, 0, 0.25);
+}
+.popover.left > .arrow:after {
+  content: " ";
+  right: 1px;
+  border-right-width: 0;
+  border-left-color: #fff;
+  bottom: -10px;
+}
+.carousel {
+  position: relative;
+}
+.carousel-inner {
+  position: relative;
+  overflow: hidden;
+  width: 100%;
+}
+.carousel-inner > .item {
+  display: none;
+  position: relative;
+  -webkit-transition: 0.6s ease-in-out left;
+  -o-transition: 0.6s ease-in-out left;
+  transition: 0.6s ease-in-out left;
+}
+.carousel-inner > .item > img,
+.carousel-inner > .item > a > img {
+  line-height: 1;
+}
+@media all and (transform-3d), (-webkit-transform-3d) {
+  .carousel-inner > .item {
+    -webkit-transition: -webkit-transform 0.6s ease-in-out;
+    -moz-transition: -moz-transform 0.6s ease-in-out;
+    -o-transition: -o-transform 0.6s ease-in-out;
+    transition: transform 0.6s ease-in-out;
+    -webkit-backface-visibility: hidden;
+    -moz-backface-visibility: hidden;
+    backface-visibility: hidden;
+    -webkit-perspective: 1000px;
+    -moz-perspective: 1000px;
+    perspective: 1000px;
+  }
+  .carousel-inner > .item.next,
+  .carousel-inner > .item.active.right {
+    -webkit-transform: translate3d(100%, 0, 0);
+    transform: translate3d(100%, 0, 0);
+    left: 0;
+  }
+  .carousel-inner > .item.prev,
+  .carousel-inner > .item.active.left {
+    -webkit-transform: translate3d(-100%, 0, 0);
+    transform: translate3d(-100%, 0, 0);
+    left: 0;
+  }
+  .carousel-inner > .item.next.left,
+  .carousel-inner > .item.prev.right,
+  .carousel-inner > .item.active {
+    -webkit-transform: translate3d(0, 0, 0);
+    transform: translate3d(0, 0, 0);
+    left: 0;
+  }
+}
+.carousel-inner > .active,
+.carousel-inner > .next,
+.carousel-inner > .prev {
+  display: block;
+}
+.carousel-inner > .active {
+  left: 0;
+}
+.carousel-inner > .next,
+.carousel-inner > .prev {
+  position: absolute;
+  top: 0;
+  width: 100%;
+}
+.carousel-inner > .next {
+  left: 100%;
+}
+.carousel-inner > .prev {
+  left: -100%;
+}
+.carousel-inner > .next.left,
+.carousel-inner > .prev.right {
+  left: 0;
+}
+.carousel-inner > .active.left {
+  left: -100%;
+}
+.carousel-inner > .active.right {
+  left: 100%;
+}
+.carousel-control {
+  position: absolute;
+  top: 0;
+  left: 0;
+  bottom: 0;
+  width: 15%;
+  opacity: 0.5;
+  filter: alpha(opacity=50);
+  font-size: 20px;
+  color: #fff;
+  text-align: center;
+  text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6);
+  background-color: rgba(0, 0, 0, 0);
+}
+.carousel-control.left {
+  background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
+  background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
+  background-image: linear-gradient(to right, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
+  background-repeat: repeat-x;
+  filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#80000000', endColorstr='#00000000', GradientType=1);
+}
+.carousel-control.right {
+  left: auto;
+  right: 0;
+  background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
+  background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
+  background-image: linear-gradient(to right, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
+  background-repeat: repeat-x;
+  filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#00000000', endColorstr='#80000000', GradientType=1);
+}
+.carousel-control:hover,
+.carousel-control:focus {
+  outline: 0;
+  color: #fff;
+  text-decoration: none;
+  opacity: 0.9;
+  filter: alpha(opacity=90);
+}
+.carousel-control .icon-prev,
+.carousel-control .icon-next,
+.carousel-control .glyphicon-chevron-left,
+.carousel-control .glyphicon-chevron-right {
+  position: absolute;
+  top: 50%;
+  margin-top: -10px;
+  z-index: 5;
+  display: inline-block;
+}
+.carousel-control .icon-prev,
+.carousel-control .glyphicon-chevron-left {
+  left: 50%;
+  margin-left: -10px;
+}
+.carousel-control .icon-next,
+.carousel-control .glyphicon-chevron-right {
+  right: 50%;
+  margin-right: -10px;
+}
+.carousel-control .icon-prev,
+.carousel-control .icon-next {
+  width: 20px;
+  height: 20px;
+  line-height: 1;
+  font-family: serif;
+}
+.carousel-control .icon-prev:before {
+  content: '\2039';
+}
+.carousel-control .icon-next:before {
+  content: '\203a';
+}
+.carousel-indicators {
+  position: absolute;
+  bottom: 10px;
+  left: 50%;
+  z-index: 15;
+  width: 60%;
+  margin-left: -30%;
+  padding-left: 0;
+  list-style: none;
+  text-align: center;
+}
+.carousel-indicators li {
+  display: inline-block;
+  width: 10px;
+  height: 10px;
+  margin: 1px;
+  text-indent: -999px;
+  border: 1px solid #fff;
+  border-radius: 10px;
+  cursor: pointer;
+  background-color: #000 \9;
+  background-color: rgba(0, 0, 0, 0);
+}
+.carousel-indicators .active {
+  margin: 0;
+  width: 12px;
+  height: 12px;
+  background-color: #fff;
+}
+.carousel-caption {
+  position: absolute;
+  left: 15%;
+  right: 15%;
+  bottom: 20px;
+  z-index: 10;
+  padding-top: 20px;
+  padding-bottom: 20px;
+  color: #fff;
+  text-align: center;
+  text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6);
+}
+.carousel-caption .btn {
+  text-shadow: none;
+}
+@media screen and (min-width: 768px) {
+  .carousel-control .glyphicon-chevron-left,
+  .carousel-control .glyphicon-chevron-right,
+  .carousel-control .icon-prev,
+  .carousel-control .icon-next {
+    width: 30px;
+    height: 30px;
+    margin-top: -10px;
+    font-size: 30px;
+  }
+  .carousel-control .glyphicon-chevron-left,
+  .carousel-control .icon-prev {
+    margin-left: -10px;
+  }
+  .carousel-control .glyphicon-chevron-right,
+  .carousel-control .icon-next {
+    margin-right: -10px;
+  }
+  .carousel-caption {
+    left: 20%;
+    right: 20%;
+    padding-bottom: 30px;
+  }
+  .carousel-indicators {
+    bottom: 20px;
+  }
+}
+.clearfix:before,
+.clearfix:after,
+.dl-horizontal dd:before,
+.dl-horizontal dd:after,
+.container:before,
+.container:after,
+.container-fluid:before,
+.container-fluid:after,
+.row:before,
+.row:after,
+.form-horizontal .form-group:before,
+.form-horizontal .form-group:after,
+.btn-toolbar:before,
+.btn-toolbar:after,
+.btn-group-vertical > .btn-group:before,
+.btn-group-vertical > .btn-group:after,
+.nav:before,
+.nav:after,
+.navbar:before,
+.navbar:after,
+.navbar-header:before,
+.navbar-header:after,
+.navbar-collapse:before,
+.navbar-collapse:after,
+.pager:before,
+.pager:after,
+.panel-body:before,
+.panel-body:after,
+.modal-header:before,
+.modal-header:after,
+.modal-footer:before,
+.modal-footer:after,
+.item_buttons:before,
+.item_buttons:after {
+  content: " ";
+  display: table;
+}
+.clearfix:after,
+.dl-horizontal dd:after,
+.container:after,
+.container-fluid:after,
+.row:after,
+.form-horizontal .form-group:after,
+.btn-toolbar:after,
+.btn-group-vertical > .btn-group:after,
+.nav:after,
+.navbar:after,
+.navbar-header:after,
+.navbar-collapse:after,
+.pager:after,
+.panel-body:after,
+.modal-header:after,
+.modal-footer:after,
+.item_buttons:after {
+  clear: both;
+}
+.center-block {
+  display: block;
+  margin-left: auto;
+  margin-right: auto;
+}
+.pull-right {
+  float: right !important;
+}
+.pull-left {
+  float: left !important;
+}
+.hide {
+  display: none !important;
+}
+.show {
+  display: block !important;
+}
+.invisible {
+  visibility: hidden;
+}
+.text-hide {
+  font: 0/0 a;
+  color: transparent;
+  text-shadow: none;
+  background-color: transparent;
+  border: 0;
+}
+.hidden {
+  display: none !important;
+}
+.affix {
+  position: fixed;
+}
+@-ms-viewport {
+  width: device-width;
+}
+.visible-xs,
+.visible-sm,
+.visible-md,
+.visible-lg {
+  display: none !important;
+}
+.visible-xs-block,
+.visible-xs-inline,
+.visible-xs-inline-block,
+.visible-sm-block,
+.visible-sm-inline,
+.visible-sm-inline-block,
+.visible-md-block,
+.visible-md-inline,
+.visible-md-inline-block,
+.visible-lg-block,
+.visible-lg-inline,
+.visible-lg-inline-block {
+  display: none !important;
+}
+@media (max-width: 767px) {
+  .visible-xs {
+    display: block !important;
+  }
+  table.visible-xs {
+    display: table !important;
+  }
+  tr.visible-xs {
+    display: table-row !important;
+  }
+  th.visible-xs,
+  td.visible-xs {
+    display: table-cell !important;
+  }
+}
+@media (max-width: 767px) {
+  .visible-xs-block {
+    display: block !important;
+  }
+}
+@media (max-width: 767px) {
+  .visible-xs-inline {
+    display: inline !important;
+  }
+}
+@media (max-width: 767px) {
+  .visible-xs-inline-block {
+    display: inline-block !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .visible-sm {
+    display: block !important;
+  }
+  table.visible-sm {
+    display: table !important;
+  }
+  tr.visible-sm {
+    display: table-row !important;
+  }
+  th.visible-sm,
+  td.visible-sm {
+    display: table-cell !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .visible-sm-block {
+    display: block !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .visible-sm-inline {
+    display: inline !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .visible-sm-inline-block {
+    display: inline-block !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .visible-md {
+    display: block !important;
+  }
+  table.visible-md {
+    display: table !important;
+  }
+  tr.visible-md {
+    display: table-row !important;
+  }
+  th.visible-md,
+  td.visible-md {
+    display: table-cell !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .visible-md-block {
+    display: block !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .visible-md-inline {
+    display: inline !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .visible-md-inline-block {
+    display: inline-block !important;
+  }
+}
+@media (min-width: 1200px) {
+  .visible-lg {
+    display: block !important;
+  }
+  table.visible-lg {
+    display: table !important;
+  }
+  tr.visible-lg {
+    display: table-row !important;
+  }
+  th.visible-lg,
+  td.visible-lg {
+    display: table-cell !important;
+  }
+}
+@media (min-width: 1200px) {
+  .visible-lg-block {
+    display: block !important;
+  }
+}
+@media (min-width: 1200px) {
+  .visible-lg-inline {
+    display: inline !important;
+  }
+}
+@media (min-width: 1200px) {
+  .visible-lg-inline-block {
+    display: inline-block !important;
+  }
+}
+@media (max-width: 767px) {
+  .hidden-xs {
+    display: none !important;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  .hidden-sm {
+    display: none !important;
+  }
+}
+@media (min-width: 992px) and (max-width: 1199px) {
+  .hidden-md {
+    display: none !important;
+  }
+}
+@media (min-width: 1200px) {
+  .hidden-lg {
+    display: none !important;
+  }
+}
+.visible-print {
+  display: none !important;
+}
+@media print {
+  .visible-print {
+    display: block !important;
+  }
+  table.visible-print {
+    display: table !important;
+  }
+  tr.visible-print {
+    display: table-row !important;
+  }
+  th.visible-print,
+  td.visible-print {
+    display: table-cell !important;
+  }
+}
+.visible-print-block {
+  display: none !important;
+}
+@media print {
+  .visible-print-block {
+    display: block !important;
+  }
+}
+.visible-print-inline {
+  display: none !important;
+}
+@media print {
+  .visible-print-inline {
+    display: inline !important;
+  }
+}
+.visible-print-inline-block {
+  display: none !important;
+}
+@media print {
+  .visible-print-inline-block {
+    display: inline-block !important;
+  }
+}
+@media print {
+  .hidden-print {
+    display: none !important;
+  }
+}
+/*!
+*
+* Font Awesome
+*
+*/
+/*!
+ *  Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome
+ *  License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
+ */
+/* FONT PATH
+ * -------------------------- */
+@font-face {
+  font-family: 'FontAwesome';
+  src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?v=4.7.0');
+  src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.7.0') format('embedded-opentype'), url('../components/font-awesome/fonts/fontawesome-webfont.woff2?v=4.7.0') format('woff2'), url('../components/font-awesome/fonts/fontawesome-webfont.woff?v=4.7.0') format('woff'), url('../components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.7.0') format('truetype'), url('../components/font-awesome/fonts/fontawesome-webfont.svg?v=4.7.0#fontawesomeregular') format('svg');
+  font-weight: normal;
+  font-style: normal;
+}
+.fa {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+}
+/* makes the font 33% larger relative to the icon container */
+.fa-lg {
+  font-size: 1.33333333em;
+  line-height: 0.75em;
+  vertical-align: -15%;
+}
+.fa-2x {
+  font-size: 2em;
+}
+.fa-3x {
+  font-size: 3em;
+}
+.fa-4x {
+  font-size: 4em;
+}
+.fa-5x {
+  font-size: 5em;
+}
+.fa-fw {
+  width: 1.28571429em;
+  text-align: center;
+}
+.fa-ul {
+  padding-left: 0;
+  margin-left: 2.14285714em;
+  list-style-type: none;
+}
+.fa-ul > li {
+  position: relative;
+}
+.fa-li {
+  position: absolute;
+  left: -2.14285714em;
+  width: 2.14285714em;
+  top: 0.14285714em;
+  text-align: center;
+}
+.fa-li.fa-lg {
+  left: -1.85714286em;
+}
+.fa-border {
+  padding: .2em .25em .15em;
+  border: solid 0.08em #eee;
+  border-radius: .1em;
+}
+.fa-pull-left {
+  float: left;
+}
+.fa-pull-right {
+  float: right;
+}
+.fa.fa-pull-left {
+  margin-right: .3em;
+}
+.fa.fa-pull-right {
+  margin-left: .3em;
+}
+/* Deprecated as of 4.4.0 */
+.pull-right {
+  float: right;
+}
+.pull-left {
+  float: left;
+}
+.fa.pull-left {
+  margin-right: .3em;
+}
+.fa.pull-right {
+  margin-left: .3em;
+}
+.fa-spin {
+  -webkit-animation: fa-spin 2s infinite linear;
+  animation: fa-spin 2s infinite linear;
+}
+.fa-pulse {
+  -webkit-animation: fa-spin 1s infinite steps(8);
+  animation: fa-spin 1s infinite steps(8);
+}
+@-webkit-keyframes fa-spin {
+  0% {
+    -webkit-transform: rotate(0deg);
+    transform: rotate(0deg);
+  }
+  100% {
+    -webkit-transform: rotate(359deg);
+    transform: rotate(359deg);
+  }
+}
+@keyframes fa-spin {
+  0% {
+    -webkit-transform: rotate(0deg);
+    transform: rotate(0deg);
+  }
+  100% {
+    -webkit-transform: rotate(359deg);
+    transform: rotate(359deg);
+  }
+}
+.fa-rotate-90 {
+  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";
+  -webkit-transform: rotate(90deg);
+  -ms-transform: rotate(90deg);
+  transform: rotate(90deg);
+}
+.fa-rotate-180 {
+  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";
+  -webkit-transform: rotate(180deg);
+  -ms-transform: rotate(180deg);
+  transform: rotate(180deg);
+}
+.fa-rotate-270 {
+  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";
+  -webkit-transform: rotate(270deg);
+  -ms-transform: rotate(270deg);
+  transform: rotate(270deg);
+}
+.fa-flip-horizontal {
+  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";
+  -webkit-transform: scale(-1, 1);
+  -ms-transform: scale(-1, 1);
+  transform: scale(-1, 1);
+}
+.fa-flip-vertical {
+  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";
+  -webkit-transform: scale(1, -1);
+  -ms-transform: scale(1, -1);
+  transform: scale(1, -1);
+}
+:root .fa-rotate-90,
+:root .fa-rotate-180,
+:root .fa-rotate-270,
+:root .fa-flip-horizontal,
+:root .fa-flip-vertical {
+  filter: none;
+}
+.fa-stack {
+  position: relative;
+  display: inline-block;
+  width: 2em;
+  height: 2em;
+  line-height: 2em;
+  vertical-align: middle;
+}
+.fa-stack-1x,
+.fa-stack-2x {
+  position: absolute;
+  left: 0;
+  width: 100%;
+  text-align: center;
+}
+.fa-stack-1x {
+  line-height: inherit;
+}
+.fa-stack-2x {
+  font-size: 2em;
+}
+.fa-inverse {
+  color: #fff;
+}
+/* Font Awesome uses the Unicode Private Use Area (PUA) to ensure screen
+   readers do not read off random characters that represent icons */
+.fa-glass:before {
+  content: "\f000";
+}
+.fa-music:before {
+  content: "\f001";
+}
+.fa-search:before {
+  content: "\f002";
+}
+.fa-envelope-o:before {
+  content: "\f003";
+}
+.fa-heart:before {
+  content: "\f004";
+}
+.fa-star:before {
+  content: "\f005";
+}
+.fa-star-o:before {
+  content: "\f006";
+}
+.fa-user:before {
+  content: "\f007";
+}
+.fa-film:before {
+  content: "\f008";
+}
+.fa-th-large:before {
+  content: "\f009";
+}
+.fa-th:before {
+  content: "\f00a";
+}
+.fa-th-list:before {
+  content: "\f00b";
+}
+.fa-check:before {
+  content: "\f00c";
+}
+.fa-remove:before,
+.fa-close:before,
+.fa-times:before {
+  content: "\f00d";
+}
+.fa-search-plus:before {
+  content: "\f00e";
+}
+.fa-search-minus:before {
+  content: "\f010";
+}
+.fa-power-off:before {
+  content: "\f011";
+}
+.fa-signal:before {
+  content: "\f012";
+}
+.fa-gear:before,
+.fa-cog:before {
+  content: "\f013";
+}
+.fa-trash-o:before {
+  content: "\f014";
+}
+.fa-home:before {
+  content: "\f015";
+}
+.fa-file-o:before {
+  content: "\f016";
+}
+.fa-clock-o:before {
+  content: "\f017";
+}
+.fa-road:before {
+  content: "\f018";
+}
+.fa-download:before {
+  content: "\f019";
+}
+.fa-arrow-circle-o-down:before {
+  content: "\f01a";
+}
+.fa-arrow-circle-o-up:before {
+  content: "\f01b";
+}
+.fa-inbox:before {
+  content: "\f01c";
+}
+.fa-play-circle-o:before {
+  content: "\f01d";
+}
+.fa-rotate-right:before,
+.fa-repeat:before {
+  content: "\f01e";
+}
+.fa-refresh:before {
+  content: "\f021";
+}
+.fa-list-alt:before {
+  content: "\f022";
+}
+.fa-lock:before {
+  content: "\f023";
+}
+.fa-flag:before {
+  content: "\f024";
+}
+.fa-headphones:before {
+  content: "\f025";
+}
+.fa-volume-off:before {
+  content: "\f026";
+}
+.fa-volume-down:before {
+  content: "\f027";
+}
+.fa-volume-up:before {
+  content: "\f028";
+}
+.fa-qrcode:before {
+  content: "\f029";
+}
+.fa-barcode:before {
+  content: "\f02a";
+}
+.fa-tag:before {
+  content: "\f02b";
+}
+.fa-tags:before {
+  content: "\f02c";
+}
+.fa-book:before {
+  content: "\f02d";
+}
+.fa-bookmark:before {
+  content: "\f02e";
+}
+.fa-print:before {
+  content: "\f02f";
+}
+.fa-camera:before {
+  content: "\f030";
+}
+.fa-font:before {
+  content: "\f031";
+}
+.fa-bold:before {
+  content: "\f032";
+}
+.fa-italic:before {
+  content: "\f033";
+}
+.fa-text-height:before {
+  content: "\f034";
+}
+.fa-text-width:before {
+  content: "\f035";
+}
+.fa-align-left:before {
+  content: "\f036";
+}
+.fa-align-center:before {
+  content: "\f037";
+}
+.fa-align-right:before {
+  content: "\f038";
+}
+.fa-align-justify:before {
+  content: "\f039";
+}
+.fa-list:before {
+  content: "\f03a";
+}
+.fa-dedent:before,
+.fa-outdent:before {
+  content: "\f03b";
+}
+.fa-indent:before {
+  content: "\f03c";
+}
+.fa-video-camera:before {
+  content: "\f03d";
+}
+.fa-photo:before,
+.fa-image:before,
+.fa-picture-o:before {
+  content: "\f03e";
+}
+.fa-pencil:before {
+  content: "\f040";
+}
+.fa-map-marker:before {
+  content: "\f041";
+}
+.fa-adjust:before {
+  content: "\f042";
+}
+.fa-tint:before {
+  content: "\f043";
+}
+.fa-edit:before,
+.fa-pencil-square-o:before {
+  content: "\f044";
+}
+.fa-share-square-o:before {
+  content: "\f045";
+}
+.fa-check-square-o:before {
+  content: "\f046";
+}
+.fa-arrows:before {
+  content: "\f047";
+}
+.fa-step-backward:before {
+  content: "\f048";
+}
+.fa-fast-backward:before {
+  content: "\f049";
+}
+.fa-backward:before {
+  content: "\f04a";
+}
+.fa-play:before {
+  content: "\f04b";
+}
+.fa-pause:before {
+  content: "\f04c";
+}
+.fa-stop:before {
+  content: "\f04d";
+}
+.fa-forward:before {
+  content: "\f04e";
+}
+.fa-fast-forward:before {
+  content: "\f050";
+}
+.fa-step-forward:before {
+  content: "\f051";
+}
+.fa-eject:before {
+  content: "\f052";
+}
+.fa-chevron-left:before {
+  content: "\f053";
+}
+.fa-chevron-right:before {
+  content: "\f054";
+}
+.fa-plus-circle:before {
+  content: "\f055";
+}
+.fa-minus-circle:before {
+  content: "\f056";
+}
+.fa-times-circle:before {
+  content: "\f057";
+}
+.fa-check-circle:before {
+  content: "\f058";
+}
+.fa-question-circle:before {
+  content: "\f059";
+}
+.fa-info-circle:before {
+  content: "\f05a";
+}
+.fa-crosshairs:before {
+  content: "\f05b";
+}
+.fa-times-circle-o:before {
+  content: "\f05c";
+}
+.fa-check-circle-o:before {
+  content: "\f05d";
+}
+.fa-ban:before {
+  content: "\f05e";
+}
+.fa-arrow-left:before {
+  content: "\f060";
+}
+.fa-arrow-right:before {
+  content: "\f061";
+}
+.fa-arrow-up:before {
+  content: "\f062";
+}
+.fa-arrow-down:before {
+  content: "\f063";
+}
+.fa-mail-forward:before,
+.fa-share:before {
+  content: "\f064";
+}
+.fa-expand:before {
+  content: "\f065";
+}
+.fa-compress:before {
+  content: "\f066";
+}
+.fa-plus:before {
+  content: "\f067";
+}
+.fa-minus:before {
+  content: "\f068";
+}
+.fa-asterisk:before {
+  content: "\f069";
+}
+.fa-exclamation-circle:before {
+  content: "\f06a";
+}
+.fa-gift:before {
+  content: "\f06b";
+}
+.fa-leaf:before {
+  content: "\f06c";
+}
+.fa-fire:before {
+  content: "\f06d";
+}
+.fa-eye:before {
+  content: "\f06e";
+}
+.fa-eye-slash:before {
+  content: "\f070";
+}
+.fa-warning:before,
+.fa-exclamation-triangle:before {
+  content: "\f071";
+}
+.fa-plane:before {
+  content: "\f072";
+}
+.fa-calendar:before {
+  content: "\f073";
+}
+.fa-random:before {
+  content: "\f074";
+}
+.fa-comment:before {
+  content: "\f075";
+}
+.fa-magnet:before {
+  content: "\f076";
+}
+.fa-chevron-up:before {
+  content: "\f077";
+}
+.fa-chevron-down:before {
+  content: "\f078";
+}
+.fa-retweet:before {
+  content: "\f079";
+}
+.fa-shopping-cart:before {
+  content: "\f07a";
+}
+.fa-folder:before {
+  content: "\f07b";
+}
+.fa-folder-open:before {
+  content: "\f07c";
+}
+.fa-arrows-v:before {
+  content: "\f07d";
+}
+.fa-arrows-h:before {
+  content: "\f07e";
+}
+.fa-bar-chart-o:before,
+.fa-bar-chart:before {
+  content: "\f080";
+}
+.fa-twitter-square:before {
+  content: "\f081";
+}
+.fa-facebook-square:before {
+  content: "\f082";
+}
+.fa-camera-retro:before {
+  content: "\f083";
+}
+.fa-key:before {
+  content: "\f084";
+}
+.fa-gears:before,
+.fa-cogs:before {
+  content: "\f085";
+}
+.fa-comments:before {
+  content: "\f086";
+}
+.fa-thumbs-o-up:before {
+  content: "\f087";
+}
+.fa-thumbs-o-down:before {
+  content: "\f088";
+}
+.fa-star-half:before {
+  content: "\f089";
+}
+.fa-heart-o:before {
+  content: "\f08a";
+}
+.fa-sign-out:before {
+  content: "\f08b";
+}
+.fa-linkedin-square:before {
+  content: "\f08c";
+}
+.fa-thumb-tack:before {
+  content: "\f08d";
+}
+.fa-external-link:before {
+  content: "\f08e";
+}
+.fa-sign-in:before {
+  content: "\f090";
+}
+.fa-trophy:before {
+  content: "\f091";
+}
+.fa-github-square:before {
+  content: "\f092";
+}
+.fa-upload:before {
+  content: "\f093";
+}
+.fa-lemon-o:before {
+  content: "\f094";
+}
+.fa-phone:before {
+  content: "\f095";
+}
+.fa-square-o:before {
+  content: "\f096";
+}
+.fa-bookmark-o:before {
+  content: "\f097";
+}
+.fa-phone-square:before {
+  content: "\f098";
+}
+.fa-twitter:before {
+  content: "\f099";
+}
+.fa-facebook-f:before,
+.fa-facebook:before {
+  content: "\f09a";
+}
+.fa-github:before {
+  content: "\f09b";
+}
+.fa-unlock:before {
+  content: "\f09c";
+}
+.fa-credit-card:before {
+  content: "\f09d";
+}
+.fa-feed:before,
+.fa-rss:before {
+  content: "\f09e";
+}
+.fa-hdd-o:before {
+  content: "\f0a0";
+}
+.fa-bullhorn:before {
+  content: "\f0a1";
+}
+.fa-bell:before {
+  content: "\f0f3";
+}
+.fa-certificate:before {
+  content: "\f0a3";
+}
+.fa-hand-o-right:before {
+  content: "\f0a4";
+}
+.fa-hand-o-left:before {
+  content: "\f0a5";
+}
+.fa-hand-o-up:before {
+  content: "\f0a6";
+}
+.fa-hand-o-down:before {
+  content: "\f0a7";
+}
+.fa-arrow-circle-left:before {
+  content: "\f0a8";
+}
+.fa-arrow-circle-right:before {
+  content: "\f0a9";
+}
+.fa-arrow-circle-up:before {
+  content: "\f0aa";
+}
+.fa-arrow-circle-down:before {
+  content: "\f0ab";
+}
+.fa-globe:before {
+  content: "\f0ac";
+}
+.fa-wrench:before {
+  content: "\f0ad";
+}
+.fa-tasks:before {
+  content: "\f0ae";
+}
+.fa-filter:before {
+  content: "\f0b0";
+}
+.fa-briefcase:before {
+  content: "\f0b1";
+}
+.fa-arrows-alt:before {
+  content: "\f0b2";
+}
+.fa-group:before,
+.fa-users:before {
+  content: "\f0c0";
+}
+.fa-chain:before,
+.fa-link:before {
+  content: "\f0c1";
+}
+.fa-cloud:before {
+  content: "\f0c2";
+}
+.fa-flask:before {
+  content: "\f0c3";
+}
+.fa-cut:before,
+.fa-scissors:before {
+  content: "\f0c4";
+}
+.fa-copy:before,
+.fa-files-o:before {
+  content: "\f0c5";
+}
+.fa-paperclip:before {
+  content: "\f0c6";
+}
+.fa-save:before,
+.fa-floppy-o:before {
+  content: "\f0c7";
+}
+.fa-square:before {
+  content: "\f0c8";
+}
+.fa-navicon:before,
+.fa-reorder:before,
+.fa-bars:before {
+  content: "\f0c9";
+}
+.fa-list-ul:before {
+  content: "\f0ca";
+}
+.fa-list-ol:before {
+  content: "\f0cb";
+}
+.fa-strikethrough:before {
+  content: "\f0cc";
+}
+.fa-underline:before {
+  content: "\f0cd";
+}
+.fa-table:before {
+  content: "\f0ce";
+}
+.fa-magic:before {
+  content: "\f0d0";
+}
+.fa-truck:before {
+  content: "\f0d1";
+}
+.fa-pinterest:before {
+  content: "\f0d2";
+}
+.fa-pinterest-square:before {
+  content: "\f0d3";
+}
+.fa-google-plus-square:before {
+  content: "\f0d4";
+}
+.fa-google-plus:before {
+  content: "\f0d5";
+}
+.fa-money:before {
+  content: "\f0d6";
+}
+.fa-caret-down:before {
+  content: "\f0d7";
+}
+.fa-caret-up:before {
+  content: "\f0d8";
+}
+.fa-caret-left:before {
+  content: "\f0d9";
+}
+.fa-caret-right:before {
+  content: "\f0da";
+}
+.fa-columns:before {
+  content: "\f0db";
+}
+.fa-unsorted:before,
+.fa-sort:before {
+  content: "\f0dc";
+}
+.fa-sort-down:before,
+.fa-sort-desc:before {
+  content: "\f0dd";
+}
+.fa-sort-up:before,
+.fa-sort-asc:before {
+  content: "\f0de";
+}
+.fa-envelope:before {
+  content: "\f0e0";
+}
+.fa-linkedin:before {
+  content: "\f0e1";
+}
+.fa-rotate-left:before,
+.fa-undo:before {
+  content: "\f0e2";
+}
+.fa-legal:before,
+.fa-gavel:before {
+  content: "\f0e3";
+}
+.fa-dashboard:before,
+.fa-tachometer:before {
+  content: "\f0e4";
+}
+.fa-comment-o:before {
+  content: "\f0e5";
+}
+.fa-comments-o:before {
+  content: "\f0e6";
+}
+.fa-flash:before,
+.fa-bolt:before {
+  content: "\f0e7";
+}
+.fa-sitemap:before {
+  content: "\f0e8";
+}
+.fa-umbrella:before {
+  content: "\f0e9";
+}
+.fa-paste:before,
+.fa-clipboard:before {
+  content: "\f0ea";
+}
+.fa-lightbulb-o:before {
+  content: "\f0eb";
+}
+.fa-exchange:before {
+  content: "\f0ec";
+}
+.fa-cloud-download:before {
+  content: "\f0ed";
+}
+.fa-cloud-upload:before {
+  content: "\f0ee";
+}
+.fa-user-md:before {
+  content: "\f0f0";
+}
+.fa-stethoscope:before {
+  content: "\f0f1";
+}
+.fa-suitcase:before {
+  content: "\f0f2";
+}
+.fa-bell-o:before {
+  content: "\f0a2";
+}
+.fa-coffee:before {
+  content: "\f0f4";
+}
+.fa-cutlery:before {
+  content: "\f0f5";
+}
+.fa-file-text-o:before {
+  content: "\f0f6";
+}
+.fa-building-o:before {
+  content: "\f0f7";
+}
+.fa-hospital-o:before {
+  content: "\f0f8";
+}
+.fa-ambulance:before {
+  content: "\f0f9";
+}
+.fa-medkit:before {
+  content: "\f0fa";
+}
+.fa-fighter-jet:before {
+  content: "\f0fb";
+}
+.fa-beer:before {
+  content: "\f0fc";
+}
+.fa-h-square:before {
+  content: "\f0fd";
+}
+.fa-plus-square:before {
+  content: "\f0fe";
+}
+.fa-angle-double-left:before {
+  content: "\f100";
+}
+.fa-angle-double-right:before {
+  content: "\f101";
+}
+.fa-angle-double-up:before {
+  content: "\f102";
+}
+.fa-angle-double-down:before {
+  content: "\f103";
+}
+.fa-angle-left:before {
+  content: "\f104";
+}
+.fa-angle-right:before {
+  content: "\f105";
+}
+.fa-angle-up:before {
+  content: "\f106";
+}
+.fa-angle-down:before {
+  content: "\f107";
+}
+.fa-desktop:before {
+  content: "\f108";
+}
+.fa-laptop:before {
+  content: "\f109";
+}
+.fa-tablet:before {
+  content: "\f10a";
+}
+.fa-mobile-phone:before,
+.fa-mobile:before {
+  content: "\f10b";
+}
+.fa-circle-o:before {
+  content: "\f10c";
+}
+.fa-quote-left:before {
+  content: "\f10d";
+}
+.fa-quote-right:before {
+  content: "\f10e";
+}
+.fa-spinner:before {
+  content: "\f110";
+}
+.fa-circle:before {
+  content: "\f111";
+}
+.fa-mail-reply:before,
+.fa-reply:before {
+  content: "\f112";
+}
+.fa-github-alt:before {
+  content: "\f113";
+}
+.fa-folder-o:before {
+  content: "\f114";
+}
+.fa-folder-open-o:before {
+  content: "\f115";
+}
+.fa-smile-o:before {
+  content: "\f118";
+}
+.fa-frown-o:before {
+  content: "\f119";
+}
+.fa-meh-o:before {
+  content: "\f11a";
+}
+.fa-gamepad:before {
+  content: "\f11b";
+}
+.fa-keyboard-o:before {
+  content: "\f11c";
+}
+.fa-flag-o:before {
+  content: "\f11d";
+}
+.fa-flag-checkered:before {
+  content: "\f11e";
+}
+.fa-terminal:before {
+  content: "\f120";
+}
+.fa-code:before {
+  content: "\f121";
+}
+.fa-mail-reply-all:before,
+.fa-reply-all:before {
+  content: "\f122";
+}
+.fa-star-half-empty:before,
+.fa-star-half-full:before,
+.fa-star-half-o:before {
+  content: "\f123";
+}
+.fa-location-arrow:before {
+  content: "\f124";
+}
+.fa-crop:before {
+  content: "\f125";
+}
+.fa-code-fork:before {
+  content: "\f126";
+}
+.fa-unlink:before,
+.fa-chain-broken:before {
+  content: "\f127";
+}
+.fa-question:before {
+  content: "\f128";
+}
+.fa-info:before {
+  content: "\f129";
+}
+.fa-exclamation:before {
+  content: "\f12a";
+}
+.fa-superscript:before {
+  content: "\f12b";
+}
+.fa-subscript:before {
+  content: "\f12c";
+}
+.fa-eraser:before {
+  content: "\f12d";
+}
+.fa-puzzle-piece:before {
+  content: "\f12e";
+}
+.fa-microphone:before {
+  content: "\f130";
+}
+.fa-microphone-slash:before {
+  content: "\f131";
+}
+.fa-shield:before {
+  content: "\f132";
+}
+.fa-calendar-o:before {
+  content: "\f133";
+}
+.fa-fire-extinguisher:before {
+  content: "\f134";
+}
+.fa-rocket:before {
+  content: "\f135";
+}
+.fa-maxcdn:before {
+  content: "\f136";
+}
+.fa-chevron-circle-left:before {
+  content: "\f137";
+}
+.fa-chevron-circle-right:before {
+  content: "\f138";
+}
+.fa-chevron-circle-up:before {
+  content: "\f139";
+}
+.fa-chevron-circle-down:before {
+  content: "\f13a";
+}
+.fa-html5:before {
+  content: "\f13b";
+}
+.fa-css3:before {
+  content: "\f13c";
+}
+.fa-anchor:before {
+  content: "\f13d";
+}
+.fa-unlock-alt:before {
+  content: "\f13e";
+}
+.fa-bullseye:before {
+  content: "\f140";
+}
+.fa-ellipsis-h:before {
+  content: "\f141";
+}
+.fa-ellipsis-v:before {
+  content: "\f142";
+}
+.fa-rss-square:before {
+  content: "\f143";
+}
+.fa-play-circle:before {
+  content: "\f144";
+}
+.fa-ticket:before {
+  content: "\f145";
+}
+.fa-minus-square:before {
+  content: "\f146";
+}
+.fa-minus-square-o:before {
+  content: "\f147";
+}
+.fa-level-up:before {
+  content: "\f148";
+}
+.fa-level-down:before {
+  content: "\f149";
+}
+.fa-check-square:before {
+  content: "\f14a";
+}
+.fa-pencil-square:before {
+  content: "\f14b";
+}
+.fa-external-link-square:before {
+  content: "\f14c";
+}
+.fa-share-square:before {
+  content: "\f14d";
+}
+.fa-compass:before {
+  content: "\f14e";
+}
+.fa-toggle-down:before,
+.fa-caret-square-o-down:before {
+  content: "\f150";
+}
+.fa-toggle-up:before,
+.fa-caret-square-o-up:before {
+  content: "\f151";
+}
+.fa-toggle-right:before,
+.fa-caret-square-o-right:before {
+  content: "\f152";
+}
+.fa-euro:before,
+.fa-eur:before {
+  content: "\f153";
+}
+.fa-gbp:before {
+  content: "\f154";
+}
+.fa-dollar:before,
+.fa-usd:before {
+  content: "\f155";
+}
+.fa-rupee:before,
+.fa-inr:before {
+  content: "\f156";
+}
+.fa-cny:before,
+.fa-rmb:before,
+.fa-yen:before,
+.fa-jpy:before {
+  content: "\f157";
+}
+.fa-ruble:before,
+.fa-rouble:before,
+.fa-rub:before {
+  content: "\f158";
+}
+.fa-won:before,
+.fa-krw:before {
+  content: "\f159";
+}
+.fa-bitcoin:before,
+.fa-btc:before {
+  content: "\f15a";
+}
+.fa-file:before {
+  content: "\f15b";
+}
+.fa-file-text:before {
+  content: "\f15c";
+}
+.fa-sort-alpha-asc:before {
+  content: "\f15d";
+}
+.fa-sort-alpha-desc:before {
+  content: "\f15e";
+}
+.fa-sort-amount-asc:before {
+  content: "\f160";
+}
+.fa-sort-amount-desc:before {
+  content: "\f161";
+}
+.fa-sort-numeric-asc:before {
+  content: "\f162";
+}
+.fa-sort-numeric-desc:before {
+  content: "\f163";
+}
+.fa-thumbs-up:before {
+  content: "\f164";
+}
+.fa-thumbs-down:before {
+  content: "\f165";
+}
+.fa-youtube-square:before {
+  content: "\f166";
+}
+.fa-youtube:before {
+  content: "\f167";
+}
+.fa-xing:before {
+  content: "\f168";
+}
+.fa-xing-square:before {
+  content: "\f169";
+}
+.fa-youtube-play:before {
+  content: "\f16a";
+}
+.fa-dropbox:before {
+  content: "\f16b";
+}
+.fa-stack-overflow:before {
+  content: "\f16c";
+}
+.fa-instagram:before {
+  content: "\f16d";
+}
+.fa-flickr:before {
+  content: "\f16e";
+}
+.fa-adn:before {
+  content: "\f170";
+}
+.fa-bitbucket:before {
+  content: "\f171";
+}
+.fa-bitbucket-square:before {
+  content: "\f172";
+}
+.fa-tumblr:before {
+  content: "\f173";
+}
+.fa-tumblr-square:before {
+  content: "\f174";
+}
+.fa-long-arrow-down:before {
+  content: "\f175";
+}
+.fa-long-arrow-up:before {
+  content: "\f176";
+}
+.fa-long-arrow-left:before {
+  content: "\f177";
+}
+.fa-long-arrow-right:before {
+  content: "\f178";
+}
+.fa-apple:before {
+  content: "\f179";
+}
+.fa-windows:before {
+  content: "\f17a";
+}
+.fa-android:before {
+  content: "\f17b";
+}
+.fa-linux:before {
+  content: "\f17c";
+}
+.fa-dribbble:before {
+  content: "\f17d";
+}
+.fa-skype:before {
+  content: "\f17e";
+}
+.fa-foursquare:before {
+  content: "\f180";
+}
+.fa-trello:before {
+  content: "\f181";
+}
+.fa-female:before {
+  content: "\f182";
+}
+.fa-male:before {
+  content: "\f183";
+}
+.fa-gittip:before,
+.fa-gratipay:before {
+  content: "\f184";
+}
+.fa-sun-o:before {
+  content: "\f185";
+}
+.fa-moon-o:before {
+  content: "\f186";
+}
+.fa-archive:before {
+  content: "\f187";
+}
+.fa-bug:before {
+  content: "\f188";
+}
+.fa-vk:before {
+  content: "\f189";
+}
+.fa-weibo:before {
+  content: "\f18a";
+}
+.fa-renren:before {
+  content: "\f18b";
+}
+.fa-pagelines:before {
+  content: "\f18c";
+}
+.fa-stack-exchange:before {
+  content: "\f18d";
+}
+.fa-arrow-circle-o-right:before {
+  content: "\f18e";
+}
+.fa-arrow-circle-o-left:before {
+  content: "\f190";
+}
+.fa-toggle-left:before,
+.fa-caret-square-o-left:before {
+  content: "\f191";
+}
+.fa-dot-circle-o:before {
+  content: "\f192";
+}
+.fa-wheelchair:before {
+  content: "\f193";
+}
+.fa-vimeo-square:before {
+  content: "\f194";
+}
+.fa-turkish-lira:before,
+.fa-try:before {
+  content: "\f195";
+}
+.fa-plus-square-o:before {
+  content: "\f196";
+}
+.fa-space-shuttle:before {
+  content: "\f197";
+}
+.fa-slack:before {
+  content: "\f198";
+}
+.fa-envelope-square:before {
+  content: "\f199";
+}
+.fa-wordpress:before {
+  content: "\f19a";
+}
+.fa-openid:before {
+  content: "\f19b";
+}
+.fa-institution:before,
+.fa-bank:before,
+.fa-university:before {
+  content: "\f19c";
+}
+.fa-mortar-board:before,
+.fa-graduation-cap:before {
+  content: "\f19d";
+}
+.fa-yahoo:before {
+  content: "\f19e";
+}
+.fa-google:before {
+  content: "\f1a0";
+}
+.fa-reddit:before {
+  content: "\f1a1";
+}
+.fa-reddit-square:before {
+  content: "\f1a2";
+}
+.fa-stumbleupon-circle:before {
+  content: "\f1a3";
+}
+.fa-stumbleupon:before {
+  content: "\f1a4";
+}
+.fa-delicious:before {
+  content: "\f1a5";
+}
+.fa-digg:before {
+  content: "\f1a6";
+}
+.fa-pied-piper-pp:before {
+  content: "\f1a7";
+}
+.fa-pied-piper-alt:before {
+  content: "\f1a8";
+}
+.fa-drupal:before {
+  content: "\f1a9";
+}
+.fa-joomla:before {
+  content: "\f1aa";
+}
+.fa-language:before {
+  content: "\f1ab";
+}
+.fa-fax:before {
+  content: "\f1ac";
+}
+.fa-building:before {
+  content: "\f1ad";
+}
+.fa-child:before {
+  content: "\f1ae";
+}
+.fa-paw:before {
+  content: "\f1b0";
+}
+.fa-spoon:before {
+  content: "\f1b1";
+}
+.fa-cube:before {
+  content: "\f1b2";
+}
+.fa-cubes:before {
+  content: "\f1b3";
+}
+.fa-behance:before {
+  content: "\f1b4";
+}
+.fa-behance-square:before {
+  content: "\f1b5";
+}
+.fa-steam:before {
+  content: "\f1b6";
+}
+.fa-steam-square:before {
+  content: "\f1b7";
+}
+.fa-recycle:before {
+  content: "\f1b8";
+}
+.fa-automobile:before,
+.fa-car:before {
+  content: "\f1b9";
+}
+.fa-cab:before,
+.fa-taxi:before {
+  content: "\f1ba";
+}
+.fa-tree:before {
+  content: "\f1bb";
+}
+.fa-spotify:before {
+  content: "\f1bc";
+}
+.fa-deviantart:before {
+  content: "\f1bd";
+}
+.fa-soundcloud:before {
+  content: "\f1be";
+}
+.fa-database:before {
+  content: "\f1c0";
+}
+.fa-file-pdf-o:before {
+  content: "\f1c1";
+}
+.fa-file-word-o:before {
+  content: "\f1c2";
+}
+.fa-file-excel-o:before {
+  content: "\f1c3";
+}
+.fa-file-powerpoint-o:before {
+  content: "\f1c4";
+}
+.fa-file-photo-o:before,
+.fa-file-picture-o:before,
+.fa-file-image-o:before {
+  content: "\f1c5";
+}
+.fa-file-zip-o:before,
+.fa-file-archive-o:before {
+  content: "\f1c6";
+}
+.fa-file-sound-o:before,
+.fa-file-audio-o:before {
+  content: "\f1c7";
+}
+.fa-file-movie-o:before,
+.fa-file-video-o:before {
+  content: "\f1c8";
+}
+.fa-file-code-o:before {
+  content: "\f1c9";
+}
+.fa-vine:before {
+  content: "\f1ca";
+}
+.fa-codepen:before {
+  content: "\f1cb";
+}
+.fa-jsfiddle:before {
+  content: "\f1cc";
+}
+.fa-life-bouy:before,
+.fa-life-buoy:before,
+.fa-life-saver:before,
+.fa-support:before,
+.fa-life-ring:before {
+  content: "\f1cd";
+}
+.fa-circle-o-notch:before {
+  content: "\f1ce";
+}
+.fa-ra:before,
+.fa-resistance:before,
+.fa-rebel:before {
+  content: "\f1d0";
+}
+.fa-ge:before,
+.fa-empire:before {
+  content: "\f1d1";
+}
+.fa-git-square:before {
+  content: "\f1d2";
+}
+.fa-git:before {
+  content: "\f1d3";
+}
+.fa-y-combinator-square:before,
+.fa-yc-square:before,
+.fa-hacker-news:before {
+  content: "\f1d4";
+}
+.fa-tencent-weibo:before {
+  content: "\f1d5";
+}
+.fa-qq:before {
+  content: "\f1d6";
+}
+.fa-wechat:before,
+.fa-weixin:before {
+  content: "\f1d7";
+}
+.fa-send:before,
+.fa-paper-plane:before {
+  content: "\f1d8";
+}
+.fa-send-o:before,
+.fa-paper-plane-o:before {
+  content: "\f1d9";
+}
+.fa-history:before {
+  content: "\f1da";
+}
+.fa-circle-thin:before {
+  content: "\f1db";
+}
+.fa-header:before {
+  content: "\f1dc";
+}
+.fa-paragraph:before {
+  content: "\f1dd";
+}
+.fa-sliders:before {
+  content: "\f1de";
+}
+.fa-share-alt:before {
+  content: "\f1e0";
+}
+.fa-share-alt-square:before {
+  content: "\f1e1";
+}
+.fa-bomb:before {
+  content: "\f1e2";
+}
+.fa-soccer-ball-o:before,
+.fa-futbol-o:before {
+  content: "\f1e3";
+}
+.fa-tty:before {
+  content: "\f1e4";
+}
+.fa-binoculars:before {
+  content: "\f1e5";
+}
+.fa-plug:before {
+  content: "\f1e6";
+}
+.fa-slideshare:before {
+  content: "\f1e7";
+}
+.fa-twitch:before {
+  content: "\f1e8";
+}
+.fa-yelp:before {
+  content: "\f1e9";
+}
+.fa-newspaper-o:before {
+  content: "\f1ea";
+}
+.fa-wifi:before {
+  content: "\f1eb";
+}
+.fa-calculator:before {
+  content: "\f1ec";
+}
+.fa-paypal:before {
+  content: "\f1ed";
+}
+.fa-google-wallet:before {
+  content: "\f1ee";
+}
+.fa-cc-visa:before {
+  content: "\f1f0";
+}
+.fa-cc-mastercard:before {
+  content: "\f1f1";
+}
+.fa-cc-discover:before {
+  content: "\f1f2";
+}
+.fa-cc-amex:before {
+  content: "\f1f3";
+}
+.fa-cc-paypal:before {
+  content: "\f1f4";
+}
+.fa-cc-stripe:before {
+  content: "\f1f5";
+}
+.fa-bell-slash:before {
+  content: "\f1f6";
+}
+.fa-bell-slash-o:before {
+  content: "\f1f7";
+}
+.fa-trash:before {
+  content: "\f1f8";
+}
+.fa-copyright:before {
+  content: "\f1f9";
+}
+.fa-at:before {
+  content: "\f1fa";
+}
+.fa-eyedropper:before {
+  content: "\f1fb";
+}
+.fa-paint-brush:before {
+  content: "\f1fc";
+}
+.fa-birthday-cake:before {
+  content: "\f1fd";
+}
+.fa-area-chart:before {
+  content: "\f1fe";
+}
+.fa-pie-chart:before {
+  content: "\f200";
+}
+.fa-line-chart:before {
+  content: "\f201";
+}
+.fa-lastfm:before {
+  content: "\f202";
+}
+.fa-lastfm-square:before {
+  content: "\f203";
+}
+.fa-toggle-off:before {
+  content: "\f204";
+}
+.fa-toggle-on:before {
+  content: "\f205";
+}
+.fa-bicycle:before {
+  content: "\f206";
+}
+.fa-bus:before {
+  content: "\f207";
+}
+.fa-ioxhost:before {
+  content: "\f208";
+}
+.fa-angellist:before {
+  content: "\f209";
+}
+.fa-cc:before {
+  content: "\f20a";
+}
+.fa-shekel:before,
+.fa-sheqel:before,
+.fa-ils:before {
+  content: "\f20b";
+}
+.fa-meanpath:before {
+  content: "\f20c";
+}
+.fa-buysellads:before {
+  content: "\f20d";
+}
+.fa-connectdevelop:before {
+  content: "\f20e";
+}
+.fa-dashcube:before {
+  content: "\f210";
+}
+.fa-forumbee:before {
+  content: "\f211";
+}
+.fa-leanpub:before {
+  content: "\f212";
+}
+.fa-sellsy:before {
+  content: "\f213";
+}
+.fa-shirtsinbulk:before {
+  content: "\f214";
+}
+.fa-simplybuilt:before {
+  content: "\f215";
+}
+.fa-skyatlas:before {
+  content: "\f216";
+}
+.fa-cart-plus:before {
+  content: "\f217";
+}
+.fa-cart-arrow-down:before {
+  content: "\f218";
+}
+.fa-diamond:before {
+  content: "\f219";
+}
+.fa-ship:before {
+  content: "\f21a";
+}
+.fa-user-secret:before {
+  content: "\f21b";
+}
+.fa-motorcycle:before {
+  content: "\f21c";
+}
+.fa-street-view:before {
+  content: "\f21d";
+}
+.fa-heartbeat:before {
+  content: "\f21e";
+}
+.fa-venus:before {
+  content: "\f221";
+}
+.fa-mars:before {
+  content: "\f222";
+}
+.fa-mercury:before {
+  content: "\f223";
+}
+.fa-intersex:before,
+.fa-transgender:before {
+  content: "\f224";
+}
+.fa-transgender-alt:before {
+  content: "\f225";
+}
+.fa-venus-double:before {
+  content: "\f226";
+}
+.fa-mars-double:before {
+  content: "\f227";
+}
+.fa-venus-mars:before {
+  content: "\f228";
+}
+.fa-mars-stroke:before {
+  content: "\f229";
+}
+.fa-mars-stroke-v:before {
+  content: "\f22a";
+}
+.fa-mars-stroke-h:before {
+  content: "\f22b";
+}
+.fa-neuter:before {
+  content: "\f22c";
+}
+.fa-genderless:before {
+  content: "\f22d";
+}
+.fa-facebook-official:before {
+  content: "\f230";
+}
+.fa-pinterest-p:before {
+  content: "\f231";
+}
+.fa-whatsapp:before {
+  content: "\f232";
+}
+.fa-server:before {
+  content: "\f233";
+}
+.fa-user-plus:before {
+  content: "\f234";
+}
+.fa-user-times:before {
+  content: "\f235";
+}
+.fa-hotel:before,
+.fa-bed:before {
+  content: "\f236";
+}
+.fa-viacoin:before {
+  content: "\f237";
+}
+.fa-train:before {
+  content: "\f238";
+}
+.fa-subway:before {
+  content: "\f239";
+}
+.fa-medium:before {
+  content: "\f23a";
+}
+.fa-yc:before,
+.fa-y-combinator:before {
+  content: "\f23b";
+}
+.fa-optin-monster:before {
+  content: "\f23c";
+}
+.fa-opencart:before {
+  content: "\f23d";
+}
+.fa-expeditedssl:before {
+  content: "\f23e";
+}
+.fa-battery-4:before,
+.fa-battery:before,
+.fa-battery-full:before {
+  content: "\f240";
+}
+.fa-battery-3:before,
+.fa-battery-three-quarters:before {
+  content: "\f241";
+}
+.fa-battery-2:before,
+.fa-battery-half:before {
+  content: "\f242";
+}
+.fa-battery-1:before,
+.fa-battery-quarter:before {
+  content: "\f243";
+}
+.fa-battery-0:before,
+.fa-battery-empty:before {
+  content: "\f244";
+}
+.fa-mouse-pointer:before {
+  content: "\f245";
+}
+.fa-i-cursor:before {
+  content: "\f246";
+}
+.fa-object-group:before {
+  content: "\f247";
+}
+.fa-object-ungroup:before {
+  content: "\f248";
+}
+.fa-sticky-note:before {
+  content: "\f249";
+}
+.fa-sticky-note-o:before {
+  content: "\f24a";
+}
+.fa-cc-jcb:before {
+  content: "\f24b";
+}
+.fa-cc-diners-club:before {
+  content: "\f24c";
+}
+.fa-clone:before {
+  content: "\f24d";
+}
+.fa-balance-scale:before {
+  content: "\f24e";
+}
+.fa-hourglass-o:before {
+  content: "\f250";
+}
+.fa-hourglass-1:before,
+.fa-hourglass-start:before {
+  content: "\f251";
+}
+.fa-hourglass-2:before,
+.fa-hourglass-half:before {
+  content: "\f252";
+}
+.fa-hourglass-3:before,
+.fa-hourglass-end:before {
+  content: "\f253";
+}
+.fa-hourglass:before {
+  content: "\f254";
+}
+.fa-hand-grab-o:before,
+.fa-hand-rock-o:before {
+  content: "\f255";
+}
+.fa-hand-stop-o:before,
+.fa-hand-paper-o:before {
+  content: "\f256";
+}
+.fa-hand-scissors-o:before {
+  content: "\f257";
+}
+.fa-hand-lizard-o:before {
+  content: "\f258";
+}
+.fa-hand-spock-o:before {
+  content: "\f259";
+}
+.fa-hand-pointer-o:before {
+  content: "\f25a";
+}
+.fa-hand-peace-o:before {
+  content: "\f25b";
+}
+.fa-trademark:before {
+  content: "\f25c";
+}
+.fa-registered:before {
+  content: "\f25d";
+}
+.fa-creative-commons:before {
+  content: "\f25e";
+}
+.fa-gg:before {
+  content: "\f260";
+}
+.fa-gg-circle:before {
+  content: "\f261";
+}
+.fa-tripadvisor:before {
+  content: "\f262";
+}
+.fa-odnoklassniki:before {
+  content: "\f263";
+}
+.fa-odnoklassniki-square:before {
+  content: "\f264";
+}
+.fa-get-pocket:before {
+  content: "\f265";
+}
+.fa-wikipedia-w:before {
+  content: "\f266";
+}
+.fa-safari:before {
+  content: "\f267";
+}
+.fa-chrome:before {
+  content: "\f268";
+}
+.fa-firefox:before {
+  content: "\f269";
+}
+.fa-opera:before {
+  content: "\f26a";
+}
+.fa-internet-explorer:before {
+  content: "\f26b";
+}
+.fa-tv:before,
+.fa-television:before {
+  content: "\f26c";
+}
+.fa-contao:before {
+  content: "\f26d";
+}
+.fa-500px:before {
+  content: "\f26e";
+}
+.fa-amazon:before {
+  content: "\f270";
+}
+.fa-calendar-plus-o:before {
+  content: "\f271";
+}
+.fa-calendar-minus-o:before {
+  content: "\f272";
+}
+.fa-calendar-times-o:before {
+  content: "\f273";
+}
+.fa-calendar-check-o:before {
+  content: "\f274";
+}
+.fa-industry:before {
+  content: "\f275";
+}
+.fa-map-pin:before {
+  content: "\f276";
+}
+.fa-map-signs:before {
+  content: "\f277";
+}
+.fa-map-o:before {
+  content: "\f278";
+}
+.fa-map:before {
+  content: "\f279";
+}
+.fa-commenting:before {
+  content: "\f27a";
+}
+.fa-commenting-o:before {
+  content: "\f27b";
+}
+.fa-houzz:before {
+  content: "\f27c";
+}
+.fa-vimeo:before {
+  content: "\f27d";
+}
+.fa-black-tie:before {
+  content: "\f27e";
+}
+.fa-fonticons:before {
+  content: "\f280";
+}
+.fa-reddit-alien:before {
+  content: "\f281";
+}
+.fa-edge:before {
+  content: "\f282";
+}
+.fa-credit-card-alt:before {
+  content: "\f283";
+}
+.fa-codiepie:before {
+  content: "\f284";
+}
+.fa-modx:before {
+  content: "\f285";
+}
+.fa-fort-awesome:before {
+  content: "\f286";
+}
+.fa-usb:before {
+  content: "\f287";
+}
+.fa-product-hunt:before {
+  content: "\f288";
+}
+.fa-mixcloud:before {
+  content: "\f289";
+}
+.fa-scribd:before {
+  content: "\f28a";
+}
+.fa-pause-circle:before {
+  content: "\f28b";
+}
+.fa-pause-circle-o:before {
+  content: "\f28c";
+}
+.fa-stop-circle:before {
+  content: "\f28d";
+}
+.fa-stop-circle-o:before {
+  content: "\f28e";
+}
+.fa-shopping-bag:before {
+  content: "\f290";
+}
+.fa-shopping-basket:before {
+  content: "\f291";
+}
+.fa-hashtag:before {
+  content: "\f292";
+}
+.fa-bluetooth:before {
+  content: "\f293";
+}
+.fa-bluetooth-b:before {
+  content: "\f294";
+}
+.fa-percent:before {
+  content: "\f295";
+}
+.fa-gitlab:before {
+  content: "\f296";
+}
+.fa-wpbeginner:before {
+  content: "\f297";
+}
+.fa-wpforms:before {
+  content: "\f298";
+}
+.fa-envira:before {
+  content: "\f299";
+}
+.fa-universal-access:before {
+  content: "\f29a";
+}
+.fa-wheelchair-alt:before {
+  content: "\f29b";
+}
+.fa-question-circle-o:before {
+  content: "\f29c";
+}
+.fa-blind:before {
+  content: "\f29d";
+}
+.fa-audio-description:before {
+  content: "\f29e";
+}
+.fa-volume-control-phone:before {
+  content: "\f2a0";
+}
+.fa-braille:before {
+  content: "\f2a1";
+}
+.fa-assistive-listening-systems:before {
+  content: "\f2a2";
+}
+.fa-asl-interpreting:before,
+.fa-american-sign-language-interpreting:before {
+  content: "\f2a3";
+}
+.fa-deafness:before,
+.fa-hard-of-hearing:before,
+.fa-deaf:before {
+  content: "\f2a4";
+}
+.fa-glide:before {
+  content: "\f2a5";
+}
+.fa-glide-g:before {
+  content: "\f2a6";
+}
+.fa-signing:before,
+.fa-sign-language:before {
+  content: "\f2a7";
+}
+.fa-low-vision:before {
+  content: "\f2a8";
+}
+.fa-viadeo:before {
+  content: "\f2a9";
+}
+.fa-viadeo-square:before {
+  content: "\f2aa";
+}
+.fa-snapchat:before {
+  content: "\f2ab";
+}
+.fa-snapchat-ghost:before {
+  content: "\f2ac";
+}
+.fa-snapchat-square:before {
+  content: "\f2ad";
+}
+.fa-pied-piper:before {
+  content: "\f2ae";
+}
+.fa-first-order:before {
+  content: "\f2b0";
+}
+.fa-yoast:before {
+  content: "\f2b1";
+}
+.fa-themeisle:before {
+  content: "\f2b2";
+}
+.fa-google-plus-circle:before,
+.fa-google-plus-official:before {
+  content: "\f2b3";
+}
+.fa-fa:before,
+.fa-font-awesome:before {
+  content: "\f2b4";
+}
+.fa-handshake-o:before {
+  content: "\f2b5";
+}
+.fa-envelope-open:before {
+  content: "\f2b6";
+}
+.fa-envelope-open-o:before {
+  content: "\f2b7";
+}
+.fa-linode:before {
+  content: "\f2b8";
+}
+.fa-address-book:before {
+  content: "\f2b9";
+}
+.fa-address-book-o:before {
+  content: "\f2ba";
+}
+.fa-vcard:before,
+.fa-address-card:before {
+  content: "\f2bb";
+}
+.fa-vcard-o:before,
+.fa-address-card-o:before {
+  content: "\f2bc";
+}
+.fa-user-circle:before {
+  content: "\f2bd";
+}
+.fa-user-circle-o:before {
+  content: "\f2be";
+}
+.fa-user-o:before {
+  content: "\f2c0";
+}
+.fa-id-badge:before {
+  content: "\f2c1";
+}
+.fa-drivers-license:before,
+.fa-id-card:before {
+  content: "\f2c2";
+}
+.fa-drivers-license-o:before,
+.fa-id-card-o:before {
+  content: "\f2c3";
+}
+.fa-quora:before {
+  content: "\f2c4";
+}
+.fa-free-code-camp:before {
+  content: "\f2c5";
+}
+.fa-telegram:before {
+  content: "\f2c6";
+}
+.fa-thermometer-4:before,
+.fa-thermometer:before,
+.fa-thermometer-full:before {
+  content: "\f2c7";
+}
+.fa-thermometer-3:before,
+.fa-thermometer-three-quarters:before {
+  content: "\f2c8";
+}
+.fa-thermometer-2:before,
+.fa-thermometer-half:before {
+  content: "\f2c9";
+}
+.fa-thermometer-1:before,
+.fa-thermometer-quarter:before {
+  content: "\f2ca";
+}
+.fa-thermometer-0:before,
+.fa-thermometer-empty:before {
+  content: "\f2cb";
+}
+.fa-shower:before {
+  content: "\f2cc";
+}
+.fa-bathtub:before,
+.fa-s15:before,
+.fa-bath:before {
+  content: "\f2cd";
+}
+.fa-podcast:before {
+  content: "\f2ce";
+}
+.fa-window-maximize:before {
+  content: "\f2d0";
+}
+.fa-window-minimize:before {
+  content: "\f2d1";
+}
+.fa-window-restore:before {
+  content: "\f2d2";
+}
+.fa-times-rectangle:before,
+.fa-window-close:before {
+  content: "\f2d3";
+}
+.fa-times-rectangle-o:before,
+.fa-window-close-o:before {
+  content: "\f2d4";
+}
+.fa-bandcamp:before {
+  content: "\f2d5";
+}
+.fa-grav:before {
+  content: "\f2d6";
+}
+.fa-etsy:before {
+  content: "\f2d7";
+}
+.fa-imdb:before {
+  content: "\f2d8";
+}
+.fa-ravelry:before {
+  content: "\f2d9";
+}
+.fa-eercast:before {
+  content: "\f2da";
+}
+.fa-microchip:before {
+  content: "\f2db";
+}
+.fa-snowflake-o:before {
+  content: "\f2dc";
+}
+.fa-superpowers:before {
+  content: "\f2dd";
+}
+.fa-wpexplorer:before {
+  content: "\f2de";
+}
+.fa-meetup:before {
+  content: "\f2e0";
+}
+.sr-only {
+  position: absolute;
+  width: 1px;
+  height: 1px;
+  padding: 0;
+  margin: -1px;
+  overflow: hidden;
+  clip: rect(0, 0, 0, 0);
+  border: 0;
+}
+.sr-only-focusable:active,
+.sr-only-focusable:focus {
+  position: static;
+  width: auto;
+  height: auto;
+  margin: 0;
+  overflow: visible;
+  clip: auto;
+}
+.sr-only-focusable:active,
+.sr-only-focusable:focus {
+  position: static;
+  width: auto;
+  height: auto;
+  margin: 0;
+  overflow: visible;
+  clip: auto;
+}
+/*!
+*
+* IPython base
+*
+*/
+.modal.fade .modal-dialog {
+  -webkit-transform: translate(0, 0);
+  -ms-transform: translate(0, 0);
+  -o-transform: translate(0, 0);
+  transform: translate(0, 0);
+}
+code {
+  color: #000;
+}
+pre {
+  font-size: inherit;
+  line-height: inherit;
+}
+label {
+  font-weight: normal;
+}
+/* Make the page background atleast 100% the height of the view port */
+/* Make the page itself atleast 70% the height of the view port */
+.border-box-sizing {
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+.corner-all {
+  border-radius: 2px;
+}
+.no-padding {
+  padding: 0px;
+}
+/* Flexible box model classes */
+/* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */
+/* This file is a compatability layer.  It allows the usage of flexible box 
+model layouts accross multiple browsers, including older browsers.  The newest,
+universal implementation of the flexible box model is used when available (see
+`Modern browsers` comments below).  Browsers that are known to implement this 
+new spec completely include:
+
+    Firefox 28.0+
+    Chrome 29.0+
+    Internet Explorer 11+ 
+    Opera 17.0+
+
+Browsers not listed, including Safari, are supported via the styling under the
+`Old browsers` comments below.
+*/
+.hbox {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+.hbox > * {
+  /* Old browsers */
+  -webkit-box-flex: 0;
+  -moz-box-flex: 0;
+  box-flex: 0;
+  /* Modern browsers */
+  flex: none;
+}
+.vbox {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+}
+.vbox > * {
+  /* Old browsers */
+  -webkit-box-flex: 0;
+  -moz-box-flex: 0;
+  box-flex: 0;
+  /* Modern browsers */
+  flex: none;
+}
+.hbox.reverse,
+.vbox.reverse,
+.reverse {
+  /* Old browsers */
+  -webkit-box-direction: reverse;
+  -moz-box-direction: reverse;
+  box-direction: reverse;
+  /* Modern browsers */
+  flex-direction: row-reverse;
+}
+.hbox.box-flex0,
+.vbox.box-flex0,
+.box-flex0 {
+  /* Old browsers */
+  -webkit-box-flex: 0;
+  -moz-box-flex: 0;
+  box-flex: 0;
+  /* Modern browsers */
+  flex: none;
+  width: auto;
+}
+.hbox.box-flex1,
+.vbox.box-flex1,
+.box-flex1 {
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+}
+.hbox.box-flex,
+.vbox.box-flex,
+.box-flex {
+  /* Old browsers */
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+}
+.hbox.box-flex2,
+.vbox.box-flex2,
+.box-flex2 {
+  /* Old browsers */
+  -webkit-box-flex: 2;
+  -moz-box-flex: 2;
+  box-flex: 2;
+  /* Modern browsers */
+  flex: 2;
+}
+.box-group1 {
+  /*  Deprecated */
+  -webkit-box-flex-group: 1;
+  -moz-box-flex-group: 1;
+  box-flex-group: 1;
+}
+.box-group2 {
+  /* Deprecated */
+  -webkit-box-flex-group: 2;
+  -moz-box-flex-group: 2;
+  box-flex-group: 2;
+}
+.hbox.start,
+.vbox.start,
+.start {
+  /* Old browsers */
+  -webkit-box-pack: start;
+  -moz-box-pack: start;
+  box-pack: start;
+  /* Modern browsers */
+  justify-content: flex-start;
+}
+.hbox.end,
+.vbox.end,
+.end {
+  /* Old browsers */
+  -webkit-box-pack: end;
+  -moz-box-pack: end;
+  box-pack: end;
+  /* Modern browsers */
+  justify-content: flex-end;
+}
+.hbox.center,
+.vbox.center,
+.center {
+  /* Old browsers */
+  -webkit-box-pack: center;
+  -moz-box-pack: center;
+  box-pack: center;
+  /* Modern browsers */
+  justify-content: center;
+}
+.hbox.baseline,
+.vbox.baseline,
+.baseline {
+  /* Old browsers */
+  -webkit-box-pack: baseline;
+  -moz-box-pack: baseline;
+  box-pack: baseline;
+  /* Modern browsers */
+  justify-content: baseline;
+}
+.hbox.stretch,
+.vbox.stretch,
+.stretch {
+  /* Old browsers */
+  -webkit-box-pack: stretch;
+  -moz-box-pack: stretch;
+  box-pack: stretch;
+  /* Modern browsers */
+  justify-content: stretch;
+}
+.hbox.align-start,
+.vbox.align-start,
+.align-start {
+  /* Old browsers */
+  -webkit-box-align: start;
+  -moz-box-align: start;
+  box-align: start;
+  /* Modern browsers */
+  align-items: flex-start;
+}
+.hbox.align-end,
+.vbox.align-end,
+.align-end {
+  /* Old browsers */
+  -webkit-box-align: end;
+  -moz-box-align: end;
+  box-align: end;
+  /* Modern browsers */
+  align-items: flex-end;
+}
+.hbox.align-center,
+.vbox.align-center,
+.align-center {
+  /* Old browsers */
+  -webkit-box-align: center;
+  -moz-box-align: center;
+  box-align: center;
+  /* Modern browsers */
+  align-items: center;
+}
+.hbox.align-baseline,
+.vbox.align-baseline,
+.align-baseline {
+  /* Old browsers */
+  -webkit-box-align: baseline;
+  -moz-box-align: baseline;
+  box-align: baseline;
+  /* Modern browsers */
+  align-items: baseline;
+}
+.hbox.align-stretch,
+.vbox.align-stretch,
+.align-stretch {
+  /* Old browsers */
+  -webkit-box-align: stretch;
+  -moz-box-align: stretch;
+  box-align: stretch;
+  /* Modern browsers */
+  align-items: stretch;
+}
+div.error {
+  margin: 2em;
+  text-align: center;
+}
+div.error > h1 {
+  font-size: 500%;
+  line-height: normal;
+}
+div.error > p {
+  font-size: 200%;
+  line-height: normal;
+}
+div.traceback-wrapper {
+  text-align: left;
+  max-width: 800px;
+  margin: auto;
+}
+div.traceback-wrapper pre.traceback {
+  max-height: 600px;
+  overflow: auto;
+}
+/**
+ * Primary styles
+ *
+ * Author: Jupyter Development Team
+ */
+body {
+  background-color: #fff;
+  /* This makes sure that the body covers the entire window and needs to
+       be in a different element than the display: box in wrapper below */
+  position: absolute;
+  left: 0px;
+  right: 0px;
+  top: 0px;
+  bottom: 0px;
+  overflow: visible;
+}
+body > #header {
+  /* Initially hidden to prevent FLOUC */
+  display: none;
+  background-color: #fff;
+  /* Display over codemirror */
+  position: relative;
+  z-index: 100;
+}
+body > #header #header-container {
+  display: flex;
+  flex-direction: row;
+  justify-content: space-between;
+  padding: 5px;
+  padding-bottom: 5px;
+  padding-top: 5px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+body > #header .header-bar {
+  width: 100%;
+  height: 1px;
+  background: #e7e7e7;
+  margin-bottom: -1px;
+}
+@media print {
+  body > #header {
+    display: none !important;
+  }
+}
+#header-spacer {
+  width: 100%;
+  visibility: hidden;
+}
+@media print {
+  #header-spacer {
+    display: none;
+  }
+}
+#ipython_notebook {
+  padding-left: 0px;
+  padding-top: 1px;
+  padding-bottom: 1px;
+}
+[dir="rtl"] #ipython_notebook {
+  margin-right: 10px;
+  margin-left: 0;
+}
+[dir="rtl"] #ipython_notebook.pull-left {
+  float: right !important;
+  float: right;
+}
+.flex-spacer {
+  flex: 1;
+}
+#noscript {
+  width: auto;
+  padding-top: 16px;
+  padding-bottom: 16px;
+  text-align: center;
+  font-size: 22px;
+  color: red;
+  font-weight: bold;
+}
+#ipython_notebook img {
+  height: 28px;
+}
+#site {
+  width: 100%;
+  display: none;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  overflow: auto;
+}
+@media print {
+  #site {
+    height: auto !important;
+  }
+}
+/* Smaller buttons */
+.ui-button .ui-button-text {
+  padding: 0.2em 0.8em;
+  font-size: 77%;
+}
+input.ui-button {
+  padding: 0.3em 0.9em;
+}
+span#kernel_logo_widget {
+  margin: 0 10px;
+}
+span#login_widget {
+  float: right;
+}
+[dir="rtl"] span#login_widget {
+  float: left;
+}
+span#login_widget > .button,
+#logout {
+  color: #333;
+  background-color: #fff;
+  border-color: #ccc;
+}
+span#login_widget > .button:focus,
+#logout:focus,
+span#login_widget > .button.focus,
+#logout.focus {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #8c8c8c;
+}
+span#login_widget > .button:hover,
+#logout:hover {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+span#login_widget > .button:active,
+#logout:active,
+span#login_widget > .button.active,
+#logout.active,
+.open > .dropdown-togglespan#login_widget > .button,
+.open > .dropdown-toggle#logout {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+span#login_widget > .button:active:hover,
+#logout:active:hover,
+span#login_widget > .button.active:hover,
+#logout.active:hover,
+.open > .dropdown-togglespan#login_widget > .button:hover,
+.open > .dropdown-toggle#logout:hover,
+span#login_widget > .button:active:focus,
+#logout:active:focus,
+span#login_widget > .button.active:focus,
+#logout.active:focus,
+.open > .dropdown-togglespan#login_widget > .button:focus,
+.open > .dropdown-toggle#logout:focus,
+span#login_widget > .button:active.focus,
+#logout:active.focus,
+span#login_widget > .button.active.focus,
+#logout.active.focus,
+.open > .dropdown-togglespan#login_widget > .button.focus,
+.open > .dropdown-toggle#logout.focus {
+  color: #333;
+  background-color: #d4d4d4;
+  border-color: #8c8c8c;
+}
+span#login_widget > .button:active,
+#logout:active,
+span#login_widget > .button.active,
+#logout.active,
+.open > .dropdown-togglespan#login_widget > .button,
+.open > .dropdown-toggle#logout {
+  background-image: none;
+}
+span#login_widget > .button.disabled:hover,
+#logout.disabled:hover,
+span#login_widget > .button[disabled]:hover,
+#logout[disabled]:hover,
+fieldset[disabled] span#login_widget > .button:hover,
+fieldset[disabled] #logout:hover,
+span#login_widget > .button.disabled:focus,
+#logout.disabled:focus,
+span#login_widget > .button[disabled]:focus,
+#logout[disabled]:focus,
+fieldset[disabled] span#login_widget > .button:focus,
+fieldset[disabled] #logout:focus,
+span#login_widget > .button.disabled.focus,
+#logout.disabled.focus,
+span#login_widget > .button[disabled].focus,
+#logout[disabled].focus,
+fieldset[disabled] span#login_widget > .button.focus,
+fieldset[disabled] #logout.focus {
+  background-color: #fff;
+  border-color: #ccc;
+}
+span#login_widget > .button .badge,
+#logout .badge {
+  color: #fff;
+  background-color: #333;
+}
+.nav-header {
+  text-transform: none;
+}
+#header > span {
+  margin-top: 10px;
+}
+.modal_stretch .modal-dialog {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+  min-height: 80vh;
+}
+.modal_stretch .modal-dialog .modal-body {
+  max-height: calc(100vh - 200px);
+  overflow: auto;
+  flex: 1;
+}
+.modal-header {
+  cursor: move;
+}
+@media (min-width: 768px) {
+  .modal .modal-dialog {
+    width: 700px;
+  }
+}
+@media (min-width: 768px) {
+  select.form-control {
+    margin-left: 12px;
+    margin-right: 12px;
+  }
+}
+/*!
+*
+* IPython auth
+*
+*/
+.center-nav {
+  display: inline-block;
+  margin-bottom: -4px;
+}
+[dir="rtl"] .center-nav form.pull-left {
+  float: right !important;
+  float: right;
+}
+[dir="rtl"] .center-nav .navbar-text {
+  float: right;
+}
+[dir="rtl"] .navbar-inner {
+  text-align: right;
+}
+[dir="rtl"] div.text-left {
+  text-align: right;
+}
+/*!
+*
+* IPython tree view
+*
+*/
+/* We need an invisible input field on top of the sentense*/
+/* "Drag file onto the list ..." */
+.alternate_upload {
+  background-color: none;
+  display: inline;
+}
+.alternate_upload.form {
+  padding: 0;
+  margin: 0;
+}
+.alternate_upload input.fileinput {
+  position: absolute;
+  display: block;
+  width: 100%;
+  height: 100%;
+  overflow: hidden;
+  cursor: pointer;
+  opacity: 0;
+  z-index: 2;
+}
+.alternate_upload .btn-xs > input.fileinput {
+  margin: -1px -5px;
+}
+.alternate_upload .btn-upload {
+  position: relative;
+  height: 22px;
+}
+::-webkit-file-upload-button {
+  cursor: pointer;
+}
+/**
+ * Primary styles
+ *
+ * Author: Jupyter Development Team
+ */
+ul#tabs {
+  margin-bottom: 4px;
+}
+ul#tabs a {
+  padding-top: 6px;
+  padding-bottom: 4px;
+}
+[dir="rtl"] ul#tabs.nav-tabs > li {
+  float: right;
+}
+[dir="rtl"] ul#tabs.nav.nav-tabs {
+  padding-right: 0;
+}
+ul.breadcrumb a:focus,
+ul.breadcrumb a:hover {
+  text-decoration: none;
+}
+ul.breadcrumb i.icon-home {
+  font-size: 16px;
+  margin-right: 4px;
+}
+ul.breadcrumb span {
+  color: #5e5e5e;
+}
+.list_toolbar {
+  padding: 4px 0 4px 0;
+  vertical-align: middle;
+}
+.list_toolbar .tree-buttons {
+  padding-top: 1px;
+}
+[dir="rtl"] .list_toolbar .tree-buttons .pull-right {
+  float: left !important;
+  float: left;
+}
+[dir="rtl"] .list_toolbar .col-sm-4,
+[dir="rtl"] .list_toolbar .col-sm-8 {
+  float: right;
+}
+.dynamic-buttons {
+  padding-top: 3px;
+  display: inline-block;
+}
+.list_toolbar [class*="span"] {
+  min-height: 24px;
+}
+.list_header {
+  font-weight: bold;
+  background-color: #EEE;
+}
+.list_placeholder {
+  font-weight: bold;
+  padding-top: 4px;
+  padding-bottom: 4px;
+  padding-left: 7px;
+  padding-right: 7px;
+}
+.list_container {
+  margin-top: 4px;
+  margin-bottom: 20px;
+  border: 1px solid #ddd;
+  border-radius: 2px;
+}
+.list_container > div {
+  border-bottom: 1px solid #ddd;
+}
+.list_container > div:hover .list-item {
+  background-color: red;
+}
+.list_container > div:last-child {
+  border: none;
+}
+.list_item:hover .list_item {
+  background-color: #ddd;
+}
+.list_item a {
+  text-decoration: none;
+}
+.list_item:hover {
+  background-color: #fafafa;
+}
+.list_header > div,
+.list_item > div {
+  padding-top: 4px;
+  padding-bottom: 4px;
+  padding-left: 7px;
+  padding-right: 7px;
+  line-height: 22px;
+}
+.list_header > div input,
+.list_item > div input {
+  margin-right: 7px;
+  margin-left: 14px;
+  vertical-align: text-bottom;
+  line-height: 22px;
+  position: relative;
+  top: -1px;
+}
+.list_header > div .item_link,
+.list_item > div .item_link {
+  margin-left: -1px;
+  vertical-align: baseline;
+  line-height: 22px;
+}
+[dir="rtl"] .list_item > div input {
+  margin-right: 0;
+}
+.new-file input[type=checkbox] {
+  visibility: hidden;
+}
+.item_name {
+  line-height: 22px;
+  height: 24px;
+}
+.item_icon {
+  font-size: 14px;
+  color: #5e5e5e;
+  margin-right: 7px;
+  margin-left: 7px;
+  line-height: 22px;
+  vertical-align: baseline;
+}
+.item_modified {
+  margin-right: 7px;
+  margin-left: 7px;
+}
+[dir="rtl"] .item_modified.pull-right {
+  float: left !important;
+  float: left;
+}
+.item_buttons {
+  line-height: 1em;
+  margin-left: -5px;
+}
+.item_buttons .btn,
+.item_buttons .btn-group,
+.item_buttons .input-group {
+  float: left;
+}
+.item_buttons > .btn,
+.item_buttons > .btn-group,
+.item_buttons > .input-group {
+  margin-left: 5px;
+}
+.item_buttons .btn {
+  min-width: 13ex;
+}
+.item_buttons .running-indicator {
+  padding-top: 4px;
+  color: #5cb85c;
+}
+.item_buttons .kernel-name {
+  padding-top: 4px;
+  color: #5bc0de;
+  margin-right: 7px;
+  float: left;
+}
+[dir="rtl"] .item_buttons.pull-right {
+  float: left !important;
+  float: left;
+}
+[dir="rtl"] .item_buttons .kernel-name {
+  margin-left: 7px;
+  float: right;
+}
+.toolbar_info {
+  height: 24px;
+  line-height: 24px;
+}
+.list_item input:not([type=checkbox]) {
+  padding-top: 3px;
+  padding-bottom: 3px;
+  height: 22px;
+  line-height: 14px;
+  margin: 0px;
+}
+.highlight_text {
+  color: blue;
+}
+#project_name {
+  display: inline-block;
+  padding-left: 7px;
+  margin-left: -2px;
+}
+#project_name > .breadcrumb {
+  padding: 0px;
+  margin-bottom: 0px;
+  background-color: transparent;
+  font-weight: bold;
+}
+.sort_button {
+  display: inline-block;
+  padding-left: 7px;
+}
+[dir="rtl"] .sort_button.pull-right {
+  float: left !important;
+  float: left;
+}
+#tree-selector {
+  padding-right: 0px;
+}
+#button-select-all {
+  min-width: 50px;
+}
+[dir="rtl"] #button-select-all.btn {
+  float: right ;
+}
+#select-all {
+  margin-left: 7px;
+  margin-right: 2px;
+  margin-top: 2px;
+  height: 16px;
+}
+[dir="rtl"] #select-all.pull-left {
+  float: right !important;
+  float: right;
+}
+.menu_icon {
+  margin-right: 2px;
+}
+.tab-content .row {
+  margin-left: 0px;
+  margin-right: 0px;
+}
+.folder_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f114";
+}
+.folder_icon:before.fa-pull-left {
+  margin-right: .3em;
+}
+.folder_icon:before.fa-pull-right {
+  margin-left: .3em;
+}
+.folder_icon:before.pull-left {
+  margin-right: .3em;
+}
+.folder_icon:before.pull-right {
+  margin-left: .3em;
+}
+.notebook_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f02d";
+  position: relative;
+  top: -1px;
+}
+.notebook_icon:before.fa-pull-left {
+  margin-right: .3em;
+}
+.notebook_icon:before.fa-pull-right {
+  margin-left: .3em;
+}
+.notebook_icon:before.pull-left {
+  margin-right: .3em;
+}
+.notebook_icon:before.pull-right {
+  margin-left: .3em;
+}
+.running_notebook_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f02d";
+  position: relative;
+  top: -1px;
+  color: #5cb85c;
+}
+.running_notebook_icon:before.fa-pull-left {
+  margin-right: .3em;
+}
+.running_notebook_icon:before.fa-pull-right {
+  margin-left: .3em;
+}
+.running_notebook_icon:before.pull-left {
+  margin-right: .3em;
+}
+.running_notebook_icon:before.pull-right {
+  margin-left: .3em;
+}
+.file_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f016";
+  position: relative;
+  top: -2px;
+}
+.file_icon:before.fa-pull-left {
+  margin-right: .3em;
+}
+.file_icon:before.fa-pull-right {
+  margin-left: .3em;
+}
+.file_icon:before.pull-left {
+  margin-right: .3em;
+}
+.file_icon:before.pull-right {
+  margin-left: .3em;
+}
+#notebook_toolbar .pull-right {
+  padding-top: 0px;
+  margin-right: -1px;
+}
+ul#new-menu {
+  left: auto;
+  right: 0;
+}
+#new-menu .dropdown-header {
+  font-size: 10px;
+  border-bottom: 1px solid #e5e5e5;
+  padding: 0 0 3px;
+  margin: -3px 20px 0;
+}
+.kernel-menu-icon {
+  padding-right: 12px;
+  width: 24px;
+  content: "\f096";
+}
+.kernel-menu-icon:before {
+  content: "\f096";
+}
+.kernel-menu-icon-current:before {
+  content: "\f00c";
+}
+#tab_content {
+  padding-top: 20px;
+}
+#running .panel-group .panel {
+  margin-top: 3px;
+  margin-bottom: 1em;
+}
+#running .panel-group .panel .panel-heading {
+  background-color: #EEE;
+  padding-top: 4px;
+  padding-bottom: 4px;
+  padding-left: 7px;
+  padding-right: 7px;
+  line-height: 22px;
+}
+#running .panel-group .panel .panel-heading a:focus,
+#running .panel-group .panel .panel-heading a:hover {
+  text-decoration: none;
+}
+#running .panel-group .panel .panel-body {
+  padding: 0px;
+}
+#running .panel-group .panel .panel-body .list_container {
+  margin-top: 0px;
+  margin-bottom: 0px;
+  border: 0px;
+  border-radius: 0px;
+}
+#running .panel-group .panel .panel-body .list_container .list_item {
+  border-bottom: 1px solid #ddd;
+}
+#running .panel-group .panel .panel-body .list_container .list_item:last-child {
+  border-bottom: 0px;
+}
+.delete-button {
+  display: none;
+}
+.duplicate-button {
+  display: none;
+}
+.rename-button {
+  display: none;
+}
+.move-button {
+  display: none;
+}
+.download-button {
+  display: none;
+}
+.shutdown-button {
+  display: none;
+}
+.dynamic-instructions {
+  display: inline-block;
+  padding-top: 4px;
+}
+/*!
+*
+* IPython text editor webapp
+*
+*/
+.selected-keymap i.fa {
+  padding: 0px 5px;
+}
+.selected-keymap i.fa:before {
+  content: "\f00c";
+}
+#mode-menu {
+  overflow: auto;
+  max-height: 20em;
+}
+.edit_app #header {
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+}
+.edit_app #menubar .navbar {
+  /* Use a negative 1 bottom margin, so the border overlaps the border of the
+    header */
+  margin-bottom: -1px;
+}
+.dirty-indicator {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  width: 20px;
+}
+.dirty-indicator.fa-pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator.fa-pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator.pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator.pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-dirty {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  width: 20px;
+}
+.dirty-indicator-dirty.fa-pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-dirty.fa-pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-dirty.pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-dirty.pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-clean {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  width: 20px;
+}
+.dirty-indicator-clean.fa-pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-clean.fa-pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-clean.pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-clean.pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-clean:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f00c";
+}
+.dirty-indicator-clean:before.fa-pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-clean:before.fa-pull-right {
+  margin-left: .3em;
+}
+.dirty-indicator-clean:before.pull-left {
+  margin-right: .3em;
+}
+.dirty-indicator-clean:before.pull-right {
+  margin-left: .3em;
+}
+#filename {
+  font-size: 16pt;
+  display: table;
+  padding: 0px 5px;
+}
+#current-mode {
+  padding-left: 5px;
+  padding-right: 5px;
+}
+#texteditor-backdrop {
+  padding-top: 20px;
+  padding-bottom: 20px;
+}
+@media not print {
+  #texteditor-backdrop {
+    background-color: #EEE;
+  }
+}
+@media print {
+  #texteditor-backdrop #texteditor-container .CodeMirror-gutter,
+  #texteditor-backdrop #texteditor-container .CodeMirror-gutters {
+    background-color: #fff;
+  }
+}
+@media not print {
+  #texteditor-backdrop #texteditor-container .CodeMirror-gutter,
+  #texteditor-backdrop #texteditor-container .CodeMirror-gutters {
+    background-color: #fff;
+  }
+}
+@media not print {
+  #texteditor-backdrop #texteditor-container {
+    padding: 0px;
+    background-color: #fff;
+    -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+    box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  }
+}
+.CodeMirror-dialog {
+  background-color: #fff;
+}
+/*!
+*
+* IPython notebook
+*
+*/
+/* CSS font colors for translated ANSI escape sequences */
+/* The color values are a mix of
+   http://www.xcolors.net/dl/baskerville-ivorylight and
+   http://www.xcolors.net/dl/euphrasia */
+.ansi-black-fg {
+  color: #3E424D;
+}
+.ansi-black-bg {
+  background-color: #3E424D;
+}
+.ansi-black-intense-fg {
+  color: #282C36;
+}
+.ansi-black-intense-bg {
+  background-color: #282C36;
+}
+.ansi-red-fg {
+  color: #E75C58;
+}
+.ansi-red-bg {
+  background-color: #E75C58;
+}
+.ansi-red-intense-fg {
+  color: #B22B31;
+}
+.ansi-red-intense-bg {
+  background-color: #B22B31;
+}
+.ansi-green-fg {
+  color: #00A250;
+}
+.ansi-green-bg {
+  background-color: #00A250;
+}
+.ansi-green-intense-fg {
+  color: #007427;
+}
+.ansi-green-intense-bg {
+  background-color: #007427;
+}
+.ansi-yellow-fg {
+  color: #DDB62B;
+}
+.ansi-yellow-bg {
+  background-color: #DDB62B;
+}
+.ansi-yellow-intense-fg {
+  color: #B27D12;
+}
+.ansi-yellow-intense-bg {
+  background-color: #B27D12;
+}
+.ansi-blue-fg {
+  color: #208FFB;
+}
+.ansi-blue-bg {
+  background-color: #208FFB;
+}
+.ansi-blue-intense-fg {
+  color: #0065CA;
+}
+.ansi-blue-intense-bg {
+  background-color: #0065CA;
+}
+.ansi-magenta-fg {
+  color: #D160C4;
+}
+.ansi-magenta-bg {
+  background-color: #D160C4;
+}
+.ansi-magenta-intense-fg {
+  color: #A03196;
+}
+.ansi-magenta-intense-bg {
+  background-color: #A03196;
+}
+.ansi-cyan-fg {
+  color: #60C6C8;
+}
+.ansi-cyan-bg {
+  background-color: #60C6C8;
+}
+.ansi-cyan-intense-fg {
+  color: #258F8F;
+}
+.ansi-cyan-intense-bg {
+  background-color: #258F8F;
+}
+.ansi-white-fg {
+  color: #C5C1B4;
+}
+.ansi-white-bg {
+  background-color: #C5C1B4;
+}
+.ansi-white-intense-fg {
+  color: #A1A6B2;
+}
+.ansi-white-intense-bg {
+  background-color: #A1A6B2;
+}
+.ansi-default-inverse-fg {
+  color: #FFFFFF;
+}
+.ansi-default-inverse-bg {
+  background-color: #000000;
+}
+.ansi-bold {
+  font-weight: bold;
+}
+.ansi-underline {
+  text-decoration: underline;
+}
+/* The following styles are deprecated an will be removed in a future version */
+.ansibold {
+  font-weight: bold;
+}
+.ansi-inverse {
+  outline: 0.5px dotted;
+}
+/* use dark versions for foreground, to improve visibility */
+.ansiblack {
+  color: black;
+}
+.ansired {
+  color: darkred;
+}
+.ansigreen {
+  color: darkgreen;
+}
+.ansiyellow {
+  color: #c4a000;
+}
+.ansiblue {
+  color: darkblue;
+}
+.ansipurple {
+  color: darkviolet;
+}
+.ansicyan {
+  color: steelblue;
+}
+.ansigray {
+  color: gray;
+}
+/* and light for background, for the same reason */
+.ansibgblack {
+  background-color: black;
+}
+.ansibgred {
+  background-color: red;
+}
+.ansibggreen {
+  background-color: green;
+}
+.ansibgyellow {
+  background-color: yellow;
+}
+.ansibgblue {
+  background-color: blue;
+}
+.ansibgpurple {
+  background-color: magenta;
+}
+.ansibgcyan {
+  background-color: cyan;
+}
+.ansibggray {
+  background-color: gray;
+}
+div.cell {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+  border-radius: 2px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  border-width: 1px;
+  border-style: solid;
+  border-color: transparent;
+  width: 100%;
+  padding: 5px;
+  /* This acts as a spacer between cells, that is outside the border */
+  margin: 0px;
+  outline: none;
+  position: relative;
+  overflow: visible;
+}
+div.cell:before {
+  position: absolute;
+  display: block;
+  top: -1px;
+  left: -1px;
+  width: 5px;
+  height: calc(100% +  2px);
+  content: '';
+  background: transparent;
+}
+div.cell.jupyter-soft-selected {
+  border-left-color: #E3F2FD;
+  border-left-width: 1px;
+  padding-left: 5px;
+  border-right-color: #E3F2FD;
+  border-right-width: 1px;
+  background: #E3F2FD;
+}
+@media print {
+  div.cell.jupyter-soft-selected {
+    border-color: transparent;
+  }
+}
+div.cell.selected,
+div.cell.selected.jupyter-soft-selected {
+  border-color: #ababab;
+}
+div.cell.selected:before,
+div.cell.selected.jupyter-soft-selected:before {
+  position: absolute;
+  display: block;
+  top: -1px;
+  left: -1px;
+  width: 5px;
+  height: calc(100% +  2px);
+  content: '';
+  background: #42A5F5;
+}
+@media print {
+  div.cell.selected,
+  div.cell.selected.jupyter-soft-selected {
+    border-color: transparent;
+  }
+}
+.edit_mode div.cell.selected {
+  border-color: #66BB6A;
+}
+.edit_mode div.cell.selected:before {
+  position: absolute;
+  display: block;
+  top: -1px;
+  left: -1px;
+  width: 5px;
+  height: calc(100% +  2px);
+  content: '';
+  background: #66BB6A;
+}
+@media print {
+  .edit_mode div.cell.selected {
+    border-color: transparent;
+  }
+}
+.prompt {
+  /* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
+  min-width: 14ex;
+  /* This padding is tuned to match the padding on the CodeMirror editor. */
+  padding: 0.4em;
+  margin: 0px;
+  font-family: monospace;
+  text-align: right;
+  /* This has to match that of the the CodeMirror class line-height below */
+  line-height: 1.21429em;
+  /* Don't highlight prompt number selection */
+  -webkit-touch-callout: none;
+  -webkit-user-select: none;
+  -khtml-user-select: none;
+  -moz-user-select: none;
+  -ms-user-select: none;
+  user-select: none;
+  /* Use default cursor */
+  cursor: default;
+}
+@media (max-width: 540px) {
+  .prompt {
+    text-align: left;
+  }
+}
+div.inner_cell {
+  min-width: 0;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+}
+/* input_area and input_prompt must match in top border and margin for alignment */
+div.input_area {
+  border: 1px solid #cfcfcf;
+  border-radius: 2px;
+  background: #f7f7f7;
+  line-height: 1.21429em;
+}
+/* This is needed so that empty prompt areas can collapse to zero height when there
+   is no content in the output_subarea and the prompt. The main purpose of this is
+   to make sure that empty JavaScript output_subareas have no height. */
+div.prompt:empty {
+  padding-top: 0;
+  padding-bottom: 0;
+}
+div.unrecognized_cell {
+  padding: 5px 5px 5px 0px;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+div.unrecognized_cell .inner_cell {
+  border-radius: 2px;
+  padding: 5px;
+  font-weight: bold;
+  color: red;
+  border: 1px solid #cfcfcf;
+  background: #eaeaea;
+}
+div.unrecognized_cell .inner_cell a {
+  color: inherit;
+  text-decoration: none;
+}
+div.unrecognized_cell .inner_cell a:hover {
+  color: inherit;
+  text-decoration: none;
+}
+@media (max-width: 540px) {
+  div.unrecognized_cell > div.prompt {
+    display: none;
+  }
+}
+div.code_cell {
+  /* avoid page breaking on code cells when printing */
+}
+@media print {
+  div.code_cell {
+    page-break-inside: avoid;
+  }
+}
+/* any special styling for code cells that are currently running goes here */
+div.input {
+  page-break-inside: avoid;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+@media (max-width: 540px) {
+  div.input {
+    /* Old browsers */
+    display: -webkit-box;
+    -webkit-box-orient: vertical;
+    -webkit-box-align: stretch;
+    display: -moz-box;
+    -moz-box-orient: vertical;
+    -moz-box-align: stretch;
+    display: box;
+    box-orient: vertical;
+    box-align: stretch;
+    /* Modern browsers */
+    display: flex;
+    flex-direction: column;
+    align-items: stretch;
+  }
+}
+/* input_area and input_prompt must match in top border and margin for alignment */
+div.input_prompt {
+  color: #303F9F;
+  border-top: 1px solid transparent;
+}
+div.input_area > div.highlight {
+  margin: 0.4em;
+  border: none;
+  padding: 0px;
+  background-color: transparent;
+}
+div.input_area > div.highlight > pre {
+  margin: 0px;
+  border: none;
+  padding: 0px;
+  background-color: transparent;
+}
+/* The following gets added to the <head> if it is detected that the user has a
+ * monospace font with inconsistent normal/bold/italic height.  See
+ * notebookmain.js.  Such fonts will have keywords vertically offset with
+ * respect to the rest of the text.  The user should select a better font.
+ * See: https://github.com/ipython/ipython/issues/1503
+ *
+ * .CodeMirror span {
+ *      vertical-align: bottom;
+ * }
+ */
+.CodeMirror {
+  line-height: 1.21429em;
+  /* Changed from 1em to our global default */
+  font-size: 14px;
+  height: auto;
+  /* Changed to auto to autogrow */
+  background: none;
+  /* Changed from white to allow our bg to show through */
+}
+.CodeMirror-scroll {
+  /*  The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
+  /*  We have found that if it is visible, vertical scrollbars appear with font size changes.*/
+  overflow-y: hidden;
+  overflow-x: auto;
+}
+.CodeMirror-lines {
+  /* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */
+  /* we have set a different line-height and want this to scale with that. */
+  /* Note that this should set vertical padding only, since CodeMirror assumes
+       that horizontal padding will be set on CodeMirror pre */
+  padding: 0.4em 0;
+}
+.CodeMirror-linenumber {
+  padding: 0 8px 0 4px;
+}
+.CodeMirror-gutters {
+  border-bottom-left-radius: 2px;
+  border-top-left-radius: 2px;
+}
+.CodeMirror pre {
+  /* In CM3 this went to 4px from 0 in CM2. This sets horizontal padding only,
+    use .CodeMirror-lines for vertical */
+  padding: 0 0.4em;
+  border: 0;
+  border-radius: 0;
+}
+.CodeMirror-cursor {
+  border-left: 1.4px solid black;
+}
+@media screen and (min-width: 2138px) and (max-width: 4319px) {
+  .CodeMirror-cursor {
+    border-left: 2px solid black;
+  }
+}
+@media screen and (min-width: 4320px) {
+  .CodeMirror-cursor {
+    border-left: 4px solid black;
+  }
+}
+/*
+
+Original style from softwaremaniacs.org (c) Ivan Sagalaev <Maniac@SoftwareManiacs.Org>
+Adapted from GitHub theme
+
+*/
+.highlight-base {
+  color: #000;
+}
+.highlight-variable {
+  color: #000;
+}
+.highlight-variable-2 {
+  color: #1a1a1a;
+}
+.highlight-variable-3 {
+  color: #333333;
+}
+.highlight-string {
+  color: #BA2121;
+}
+.highlight-comment {
+  color: #408080;
+  font-style: italic;
+}
+.highlight-number {
+  color: #080;
+}
+.highlight-atom {
+  color: #88F;
+}
+.highlight-keyword {
+  color: #008000;
+  font-weight: bold;
+}
+.highlight-builtin {
+  color: #008000;
+}
+.highlight-error {
+  color: #f00;
+}
+.highlight-operator {
+  color: #AA22FF;
+  font-weight: bold;
+}
+.highlight-meta {
+  color: #AA22FF;
+}
+/* previously not defined, copying from default codemirror */
+.highlight-def {
+  color: #00f;
+}
+.highlight-string-2 {
+  color: #f50;
+}
+.highlight-qualifier {
+  color: #555;
+}
+.highlight-bracket {
+  color: #997;
+}
+.highlight-tag {
+  color: #170;
+}
+.highlight-attribute {
+  color: #00c;
+}
+.highlight-header {
+  color: blue;
+}
+.highlight-quote {
+  color: #090;
+}
+.highlight-link {
+  color: #00c;
+}
+/* apply the same style to codemirror */
+.cm-s-ipython span.cm-keyword {
+  color: #008000;
+  font-weight: bold;
+}
+.cm-s-ipython span.cm-atom {
+  color: #88F;
+}
+.cm-s-ipython span.cm-number {
+  color: #080;
+}
+.cm-s-ipython span.cm-def {
+  color: #00f;
+}
+.cm-s-ipython span.cm-variable {
+  color: #000;
+}
+.cm-s-ipython span.cm-operator {
+  color: #AA22FF;
+  font-weight: bold;
+}
+.cm-s-ipython span.cm-variable-2 {
+  color: #1a1a1a;
+}
+.cm-s-ipython span.cm-variable-3 {
+  color: #333333;
+}
+.cm-s-ipython span.cm-comment {
+  color: #408080;
+  font-style: italic;
+}
+.cm-s-ipython span.cm-string {
+  color: #BA2121;
+}
+.cm-s-ipython span.cm-string-2 {
+  color: #f50;
+}
+.cm-s-ipython span.cm-meta {
+  color: #AA22FF;
+}
+.cm-s-ipython span.cm-qualifier {
+  color: #555;
+}
+.cm-s-ipython span.cm-builtin {
+  color: #008000;
+}
+.cm-s-ipython span.cm-bracket {
+  color: #997;
+}
+.cm-s-ipython span.cm-tag {
+  color: #170;
+}
+.cm-s-ipython span.cm-attribute {
+  color: #00c;
+}
+.cm-s-ipython span.cm-header {
+  color: blue;
+}
+.cm-s-ipython span.cm-quote {
+  color: #090;
+}
+.cm-s-ipython span.cm-link {
+  color: #00c;
+}
+.cm-s-ipython span.cm-error {
+  color: #f00;
+}
+.cm-s-ipython span.cm-tab {
+  background: url();
+  background-position: right;
+  background-repeat: no-repeat;
+}
+div.output_wrapper {
+  /* this position must be relative to enable descendents to be absolute within it */
+  position: relative;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+  z-index: 1;
+}
+/* class for the output area when it should be height-limited */
+div.output_scroll {
+  /* ideally, this would be max-height, but FF barfs all over that */
+  height: 24em;
+  /* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
+  width: 100%;
+  overflow: auto;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
+  box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
+  display: block;
+}
+/* output div while it is collapsed */
+div.output_collapsed {
+  margin: 0px;
+  padding: 0px;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+}
+div.out_prompt_overlay {
+  height: 100%;
+  padding: 0px 0.4em;
+  position: absolute;
+  border-radius: 2px;
+}
+div.out_prompt_overlay:hover {
+  /* use inner shadow to get border that is computed the same on WebKit/FF */
+  -webkit-box-shadow: inset 0 0 1px #000;
+  box-shadow: inset 0 0 1px #000;
+  background: rgba(240, 240, 240, 0.5);
+}
+div.output_prompt {
+  color: #D84315;
+}
+/* This class is the outer container of all output sections. */
+div.output_area {
+  padding: 0px;
+  page-break-inside: avoid;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+div.output_area .MathJax_Display {
+  text-align: left !important;
+}
+div.output_area .rendered_html table {
+  margin-left: 0;
+  margin-right: 0;
+}
+div.output_area .rendered_html img {
+  margin-left: 0;
+  margin-right: 0;
+}
+div.output_area img,
+div.output_area svg {
+  max-width: 100%;
+  height: auto;
+}
+div.output_area img.unconfined,
+div.output_area svg.unconfined {
+  max-width: none;
+}
+div.output_area .mglyph > img {
+  max-width: none;
+}
+/* This is needed to protect the pre formating from global settings such
+   as that of bootstrap */
+.output {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: vertical;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: vertical;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: vertical;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: column;
+  align-items: stretch;
+}
+@media (max-width: 540px) {
+  div.output_area {
+    /* Old browsers */
+    display: -webkit-box;
+    -webkit-box-orient: vertical;
+    -webkit-box-align: stretch;
+    display: -moz-box;
+    -moz-box-orient: vertical;
+    -moz-box-align: stretch;
+    display: box;
+    box-orient: vertical;
+    box-align: stretch;
+    /* Modern browsers */
+    display: flex;
+    flex-direction: column;
+    align-items: stretch;
+  }
+}
+div.output_area pre {
+  margin: 0;
+  padding: 1px 0 1px 0;
+  border: 0;
+  vertical-align: baseline;
+  color: black;
+  background-color: transparent;
+  border-radius: 0;
+}
+/* This class is for the output subarea inside the output_area and after
+   the prompt div. */
+div.output_subarea {
+  overflow-x: auto;
+  padding: 0.4em;
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+  max-width: calc(100% - 14ex);
+}
+div.output_scroll div.output_subarea {
+  overflow-x: visible;
+}
+/* The rest of the output_* classes are for special styling of the different
+   output types */
+/* all text output has this class: */
+div.output_text {
+  text-align: left;
+  color: #000;
+  /* This has to match that of the the CodeMirror class line-height below */
+  line-height: 1.21429em;
+}
+/* stdout/stderr are 'text' as well as 'stream', but execute_result/error are *not* streams */
+div.output_stderr {
+  background: #fdd;
+  /* very light red background for stderr */
+}
+div.output_latex {
+  text-align: left;
+}
+/* Empty output_javascript divs should have no height */
+div.output_javascript:empty {
+  padding: 0;
+}
+.js-error {
+  color: darkred;
+}
+/* raw_input styles */
+div.raw_input_container {
+  line-height: 1.21429em;
+  padding-top: 5px;
+}
+pre.raw_input_prompt {
+  /* nothing needed here. */
+}
+input.raw_input {
+  font-family: monospace;
+  font-size: inherit;
+  color: inherit;
+  width: auto;
+  /* make sure input baseline aligns with prompt */
+  vertical-align: baseline;
+  /* padding + margin = 0.5em between prompt and cursor */
+  padding: 0em 0.25em;
+  margin: 0em 0.25em;
+}
+input.raw_input:focus {
+  box-shadow: none;
+}
+p.p-space {
+  margin-bottom: 10px;
+}
+div.output_unrecognized {
+  padding: 5px;
+  font-weight: bold;
+  color: red;
+}
+div.output_unrecognized a {
+  color: inherit;
+  text-decoration: none;
+}
+div.output_unrecognized a:hover {
+  color: inherit;
+  text-decoration: none;
+}
+.rendered_html {
+  color: #000;
+  /* any extras will just be numbers: */
+}
+.rendered_html em {
+  font-style: italic;
+}
+.rendered_html strong {
+  font-weight: bold;
+}
+.rendered_html u {
+  text-decoration: underline;
+}
+.rendered_html :link {
+  text-decoration: underline;
+}
+.rendered_html :visited {
+  text-decoration: underline;
+}
+.rendered_html h1 {
+  font-size: 185.7%;
+  margin: 1.08em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+}
+.rendered_html h2 {
+  font-size: 157.1%;
+  margin: 1.27em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+}
+.rendered_html h3 {
+  font-size: 128.6%;
+  margin: 1.55em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+}
+.rendered_html h4 {
+  font-size: 100%;
+  margin: 2em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+}
+.rendered_html h5 {
+  font-size: 100%;
+  margin: 2em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+  font-style: italic;
+}
+.rendered_html h6 {
+  font-size: 100%;
+  margin: 2em 0 0 0;
+  font-weight: bold;
+  line-height: 1.0;
+  font-style: italic;
+}
+.rendered_html h1:first-child {
+  margin-top: 0.538em;
+}
+.rendered_html h2:first-child {
+  margin-top: 0.636em;
+}
+.rendered_html h3:first-child {
+  margin-top: 0.777em;
+}
+.rendered_html h4:first-child {
+  margin-top: 1em;
+}
+.rendered_html h5:first-child {
+  margin-top: 1em;
+}
+.rendered_html h6:first-child {
+  margin-top: 1em;
+}
+.rendered_html ul:not(.list-inline),
+.rendered_html ol:not(.list-inline) {
+  padding-left: 2em;
+}
+.rendered_html ul {
+  list-style: disc;
+}
+.rendered_html ul ul {
+  list-style: square;
+  margin-top: 0;
+}
+.rendered_html ul ul ul {
+  list-style: circle;
+}
+.rendered_html ol {
+  list-style: decimal;
+}
+.rendered_html ol ol {
+  list-style: upper-alpha;
+  margin-top: 0;
+}
+.rendered_html ol ol ol {
+  list-style: lower-alpha;
+}
+.rendered_html ol ol ol ol {
+  list-style: lower-roman;
+}
+.rendered_html ol ol ol ol ol {
+  list-style: decimal;
+}
+.rendered_html * + ul {
+  margin-top: 1em;
+}
+.rendered_html * + ol {
+  margin-top: 1em;
+}
+.rendered_html hr {
+  color: black;
+  background-color: black;
+}
+.rendered_html pre {
+  margin: 1em 2em;
+  padding: 0px;
+  background-color: #fff;
+}
+.rendered_html code {
+  background-color: #eff0f1;
+}
+.rendered_html p code {
+  padding: 1px 5px;
+}
+.rendered_html pre code {
+  background-color: #fff;
+}
+.rendered_html pre,
+.rendered_html code {
+  border: 0;
+  color: #000;
+  font-size: 100%;
+}
+.rendered_html blockquote {
+  margin: 1em 2em;
+}
+.rendered_html table {
+  margin-left: auto;
+  margin-right: auto;
+  border: none;
+  border-collapse: collapse;
+  border-spacing: 0;
+  color: black;
+  font-size: 12px;
+  table-layout: fixed;
+}
+.rendered_html thead {
+  border-bottom: 1px solid black;
+  vertical-align: bottom;
+}
+.rendered_html tr,
+.rendered_html th,
+.rendered_html td {
+  text-align: right;
+  vertical-align: middle;
+  padding: 0.5em 0.5em;
+  line-height: normal;
+  white-space: normal;
+  max-width: none;
+  border: none;
+}
+.rendered_html th {
+  font-weight: bold;
+}
+.rendered_html tbody tr:nth-child(odd) {
+  background: #f5f5f5;
+}
+.rendered_html tbody tr:hover {
+  background: rgba(66, 165, 245, 0.2);
+}
+.rendered_html * + table {
+  margin-top: 1em;
+}
+.rendered_html p {
+  text-align: left;
+}
+.rendered_html * + p {
+  margin-top: 1em;
+}
+.rendered_html img {
+  display: block;
+  margin-left: auto;
+  margin-right: auto;
+}
+.rendered_html * + img {
+  margin-top: 1em;
+}
+.rendered_html img,
+.rendered_html svg {
+  max-width: 100%;
+  height: auto;
+}
+.rendered_html img.unconfined,
+.rendered_html svg.unconfined {
+  max-width: none;
+}
+.rendered_html .alert {
+  margin-bottom: initial;
+}
+.rendered_html * + .alert {
+  margin-top: 1em;
+}
+[dir="rtl"] .rendered_html p {
+  text-align: right;
+}
+div.text_cell {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+}
+@media (max-width: 540px) {
+  div.text_cell > div.prompt {
+    display: none;
+  }
+}
+div.text_cell_render {
+  /*font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;*/
+  outline: none;
+  resize: none;
+  width: inherit;
+  border-style: none;
+  padding: 0.5em 0.5em 0.5em 0.4em;
+  color: #000;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+a.anchor-link:link {
+  text-decoration: none;
+  padding: 0px 20px;
+  visibility: hidden;
+}
+h1:hover .anchor-link,
+h2:hover .anchor-link,
+h3:hover .anchor-link,
+h4:hover .anchor-link,
+h5:hover .anchor-link,
+h6:hover .anchor-link {
+  visibility: visible;
+}
+.text_cell.rendered .input_area {
+  display: none;
+}
+.text_cell.rendered .rendered_html {
+  overflow-x: auto;
+  overflow-y: hidden;
+}
+.text_cell.rendered .rendered_html tr,
+.text_cell.rendered .rendered_html th,
+.text_cell.rendered .rendered_html td {
+  max-width: none;
+}
+.text_cell.unrendered .text_cell_render {
+  display: none;
+}
+.text_cell .dropzone .input_area {
+  border: 2px dashed #bababa;
+  margin: -1px;
+}
+.cm-header-1,
+.cm-header-2,
+.cm-header-3,
+.cm-header-4,
+.cm-header-5,
+.cm-header-6 {
+  font-weight: bold;
+  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+}
+.cm-header-1 {
+  font-size: 185.7%;
+}
+.cm-header-2 {
+  font-size: 157.1%;
+}
+.cm-header-3 {
+  font-size: 128.6%;
+}
+.cm-header-4 {
+  font-size: 110%;
+}
+.cm-header-5 {
+  font-size: 100%;
+  font-style: italic;
+}
+.cm-header-6 {
+  font-size: 100%;
+  font-style: italic;
+}
+/*!
+*
+* IPython notebook webapp
+*
+*/
+@media (max-width: 767px) {
+  .notebook_app {
+    padding-left: 0px;
+    padding-right: 0px;
+  }
+}
+#ipython-main-app {
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  height: 100%;
+}
+div#notebook_panel {
+  margin: 0px;
+  padding: 0px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  height: 100%;
+}
+div#notebook {
+  font-size: 14px;
+  line-height: 20px;
+  overflow-y: hidden;
+  overflow-x: auto;
+  width: 100%;
+  /* This spaces the page away from the edge of the notebook area */
+  padding-top: 20px;
+  margin: 0px;
+  outline: none;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  min-height: 100%;
+}
+@media not print {
+  #notebook-container {
+    padding: 15px;
+    background-color: #fff;
+    min-height: 0;
+    -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+    box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  }
+}
+@media print {
+  #notebook-container {
+    width: 100%;
+  }
+}
+div.ui-widget-content {
+  border: 1px solid #ababab;
+  outline: none;
+}
+pre.dialog {
+  background-color: #f7f7f7;
+  border: 1px solid #ddd;
+  border-radius: 2px;
+  padding: 0.4em;
+  padding-left: 2em;
+}
+p.dialog {
+  padding: 0.2em;
+}
+/* Word-wrap output correctly.  This is the CSS3 spelling, though Firefox seems
+   to not honor it correctly.  Webkit browsers (Chrome, rekonq, Safari) do.
+ */
+pre,
+code,
+kbd,
+samp {
+  white-space: pre-wrap;
+}
+#fonttest {
+  font-family: monospace;
+}
+p {
+  margin-bottom: 0;
+}
+.end_space {
+  min-height: 100px;
+  transition: height .2s ease;
+}
+.notebook_app > #header {
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+}
+@media not print {
+  .notebook_app {
+    background-color: #EEE;
+  }
+}
+kbd {
+  border-style: solid;
+  border-width: 1px;
+  box-shadow: none;
+  margin: 2px;
+  padding-left: 2px;
+  padding-right: 2px;
+  padding-top: 1px;
+  padding-bottom: 1px;
+}
+.jupyter-keybindings {
+  padding: 1px;
+  line-height: 24px;
+  border-bottom: 1px solid gray;
+}
+.jupyter-keybindings input {
+  margin: 0;
+  padding: 0;
+  border: none;
+}
+.jupyter-keybindings i {
+  padding: 6px;
+}
+.well code {
+  background-color: #ffffff;
+  border-color: #ababab;
+  border-width: 1px;
+  border-style: solid;
+  padding: 2px;
+  padding-top: 1px;
+  padding-bottom: 1px;
+}
+/* CSS for the cell toolbar */
+.celltoolbar {
+  border: thin solid #CFCFCF;
+  border-bottom: none;
+  background: #EEE;
+  border-radius: 2px 2px 0px 0px;
+  width: 100%;
+  height: 29px;
+  padding-right: 4px;
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+  /* Old browsers */
+  -webkit-box-pack: end;
+  -moz-box-pack: end;
+  box-pack: end;
+  /* Modern browsers */
+  justify-content: flex-end;
+  display: -webkit-flex;
+}
+@media print {
+  .celltoolbar {
+    display: none;
+  }
+}
+.ctb_hideshow {
+  display: none;
+  vertical-align: bottom;
+}
+/* ctb_show is added to the ctb_hideshow div to show the cell toolbar.
+   Cell toolbars are only shown when the ctb_global_show class is also set.
+*/
+.ctb_global_show .ctb_show.ctb_hideshow {
+  display: block;
+}
+.ctb_global_show .ctb_show + .input_area,
+.ctb_global_show .ctb_show + div.text_cell_input,
+.ctb_global_show .ctb_show ~ div.text_cell_render {
+  border-top-right-radius: 0px;
+  border-top-left-radius: 0px;
+}
+.ctb_global_show .ctb_show ~ div.text_cell_render {
+  border: 1px solid #cfcfcf;
+}
+.celltoolbar {
+  font-size: 87%;
+  padding-top: 3px;
+}
+.celltoolbar select {
+  display: block;
+  width: 100%;
+  height: 32px;
+  padding: 6px 12px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #555555;
+  background-color: #fff;
+  background-image: none;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+  width: inherit;
+  font-size: inherit;
+  height: 22px;
+  padding: 0px;
+  display: inline-block;
+}
+.celltoolbar select:focus {
+  border-color: #66afe9;
+  outline: 0;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+  box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+}
+.celltoolbar select::-moz-placeholder {
+  color: #999;
+  opacity: 1;
+}
+.celltoolbar select:-ms-input-placeholder {
+  color: #999;
+}
+.celltoolbar select::-webkit-input-placeholder {
+  color: #999;
+}
+.celltoolbar select::-ms-expand {
+  border: 0;
+  background-color: transparent;
+}
+.celltoolbar select[disabled],
+.celltoolbar select[readonly],
+fieldset[disabled] .celltoolbar select {
+  background-color: #eeeeee;
+  opacity: 1;
+}
+.celltoolbar select[disabled],
+fieldset[disabled] .celltoolbar select {
+  cursor: not-allowed;
+}
+textarea.celltoolbar select {
+  height: auto;
+}
+select.celltoolbar select {
+  height: 30px;
+  line-height: 30px;
+}
+textarea.celltoolbar select,
+select[multiple].celltoolbar select {
+  height: auto;
+}
+.celltoolbar label {
+  margin-left: 5px;
+  margin-right: 5px;
+}
+.tags_button_container {
+  width: 100%;
+  display: flex;
+}
+.tag-container {
+  display: flex;
+  flex-direction: row;
+  flex-grow: 1;
+  overflow: hidden;
+  position: relative;
+}
+.tag-container > * {
+  margin: 0 4px;
+}
+.remove-tag-btn {
+  margin-left: 4px;
+}
+.tags-input {
+  display: flex;
+}
+.cell-tag:last-child:after {
+  content: "";
+  position: absolute;
+  right: 0;
+  width: 40px;
+  height: 100%;
+  /* Fade to background color of cell toolbar */
+  background: linear-gradient(to right, rgba(0, 0, 0, 0), #EEE);
+}
+.tags-input > * {
+  margin-left: 4px;
+}
+.cell-tag,
+.tags-input input,
+.tags-input button {
+  display: block;
+  width: 100%;
+  height: 32px;
+  padding: 6px 12px;
+  font-size: 13px;
+  line-height: 1.42857143;
+  color: #555555;
+  background-color: #fff;
+  background-image: none;
+  border: 1px solid #ccc;
+  border-radius: 2px;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
+  -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
+  height: 30px;
+  padding: 5px 10px;
+  font-size: 12px;
+  line-height: 1.5;
+  border-radius: 1px;
+  box-shadow: none;
+  width: inherit;
+  font-size: inherit;
+  height: 22px;
+  line-height: 22px;
+  padding: 0px 4px;
+  display: inline-block;
+}
+.cell-tag:focus,
+.tags-input input:focus,
+.tags-input button:focus {
+  border-color: #66afe9;
+  outline: 0;
+  -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+  box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
+}
+.cell-tag::-moz-placeholder,
+.tags-input input::-moz-placeholder,
+.tags-input button::-moz-placeholder {
+  color: #999;
+  opacity: 1;
+}
+.cell-tag:-ms-input-placeholder,
+.tags-input input:-ms-input-placeholder,
+.tags-input button:-ms-input-placeholder {
+  color: #999;
+}
+.cell-tag::-webkit-input-placeholder,
+.tags-input input::-webkit-input-placeholder,
+.tags-input button::-webkit-input-placeholder {
+  color: #999;
+}
+.cell-tag::-ms-expand,
+.tags-input input::-ms-expand,
+.tags-input button::-ms-expand {
+  border: 0;
+  background-color: transparent;
+}
+.cell-tag[disabled],
+.tags-input input[disabled],
+.tags-input button[disabled],
+.cell-tag[readonly],
+.tags-input input[readonly],
+.tags-input button[readonly],
+fieldset[disabled] .cell-tag,
+fieldset[disabled] .tags-input input,
+fieldset[disabled] .tags-input button {
+  background-color: #eeeeee;
+  opacity: 1;
+}
+.cell-tag[disabled],
+.tags-input input[disabled],
+.tags-input button[disabled],
+fieldset[disabled] .cell-tag,
+fieldset[disabled] .tags-input input,
+fieldset[disabled] .tags-input button {
+  cursor: not-allowed;
+}
+textarea.cell-tag,
+textarea.tags-input input,
+textarea.tags-input button {
+  height: auto;
+}
+select.cell-tag,
+select.tags-input input,
+select.tags-input button {
+  height: 30px;
+  line-height: 30px;
+}
+textarea.cell-tag,
+textarea.tags-input input,
+textarea.tags-input button,
+select[multiple].cell-tag,
+select[multiple].tags-input input,
+select[multiple].tags-input button {
+  height: auto;
+}
+.cell-tag,
+.tags-input button {
+  padding: 0px 4px;
+}
+.cell-tag {
+  background-color: #fff;
+  white-space: nowrap;
+}
+.tags-input input[type=text]:focus {
+  outline: none;
+  box-shadow: none;
+  border-color: #ccc;
+}
+.completions {
+  position: absolute;
+  z-index: 110;
+  overflow: hidden;
+  border: 1px solid #ababab;
+  border-radius: 2px;
+  -webkit-box-shadow: 0px 6px 10px -1px #adadad;
+  box-shadow: 0px 6px 10px -1px #adadad;
+  line-height: 1;
+}
+.completions select {
+  background: white;
+  outline: none;
+  border: none;
+  padding: 0px;
+  margin: 0px;
+  overflow: auto;
+  font-family: monospace;
+  font-size: 110%;
+  color: #000;
+  width: auto;
+}
+.completions select option.context {
+  color: #286090;
+}
+#kernel_logo_widget .current_kernel_logo {
+  display: none;
+  margin-top: -1px;
+  margin-bottom: -1px;
+  width: 32px;
+  height: 32px;
+}
+[dir="rtl"] #kernel_logo_widget {
+  float: left !important;
+  float: left;
+}
+.modal .modal-body .move-path {
+  display: flex;
+  flex-direction: row;
+  justify-content: space;
+  align-items: center;
+}
+.modal .modal-body .move-path .server-root {
+  padding-right: 20px;
+}
+.modal .modal-body .move-path .path-input {
+  flex: 1;
+}
+#menubar {
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+  margin-top: 1px;
+}
+#menubar .navbar {
+  border-top: 1px;
+  border-radius: 0px 0px 2px 2px;
+  margin-bottom: 0px;
+}
+#menubar .navbar-toggle {
+  float: left;
+  padding-top: 7px;
+  padding-bottom: 7px;
+  border: none;
+}
+#menubar .navbar-collapse {
+  clear: left;
+}
+[dir="rtl"] #menubar .navbar-toggle {
+  float: right;
+}
+[dir="rtl"] #menubar .navbar-collapse {
+  clear: right;
+}
+[dir="rtl"] #menubar .navbar-nav {
+  float: right;
+}
+[dir="rtl"] #menubar .nav {
+  padding-right: 0px;
+}
+[dir="rtl"] #menubar .navbar-nav > li {
+  float: right;
+}
+[dir="rtl"] #menubar .navbar-right {
+  float: left !important;
+}
+[dir="rtl"] ul.dropdown-menu {
+  text-align: right;
+  left: auto;
+}
+[dir="rtl"] ul#new-menu.dropdown-menu {
+  right: auto;
+  left: 0;
+}
+.nav-wrapper {
+  border-bottom: 1px solid #e7e7e7;
+}
+i.menu-icon {
+  padding-top: 4px;
+}
+[dir="rtl"] i.menu-icon.pull-right {
+  float: left !important;
+  float: left;
+}
+ul#help_menu li a {
+  overflow: hidden;
+  padding-right: 2.2em;
+}
+ul#help_menu li a i {
+  margin-right: -1.2em;
+}
+[dir="rtl"] ul#help_menu li a {
+  padding-left: 2.2em;
+}
+[dir="rtl"] ul#help_menu li a i {
+  margin-right: 0;
+  margin-left: -1.2em;
+}
+[dir="rtl"] ul#help_menu li a i.pull-right {
+  float: left !important;
+  float: left;
+}
+.dropdown-submenu {
+  position: relative;
+}
+.dropdown-submenu > .dropdown-menu {
+  top: 0;
+  left: 100%;
+  margin-top: -6px;
+  margin-left: -1px;
+}
+[dir="rtl"] .dropdown-submenu > .dropdown-menu {
+  right: 100%;
+  margin-right: -1px;
+}
+.dropdown-submenu:hover > .dropdown-menu {
+  display: block;
+}
+.dropdown-submenu > a:after {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  display: block;
+  content: "\f0da";
+  float: right;
+  color: #333333;
+  margin-top: 2px;
+  margin-right: -10px;
+}
+.dropdown-submenu > a:after.fa-pull-left {
+  margin-right: .3em;
+}
+.dropdown-submenu > a:after.fa-pull-right {
+  margin-left: .3em;
+}
+.dropdown-submenu > a:after.pull-left {
+  margin-right: .3em;
+}
+.dropdown-submenu > a:after.pull-right {
+  margin-left: .3em;
+}
+[dir="rtl"] .dropdown-submenu > a:after {
+  float: left;
+  content: "\f0d9";
+  margin-right: 0;
+  margin-left: -10px;
+}
+.dropdown-submenu:hover > a:after {
+  color: #262626;
+}
+.dropdown-submenu.pull-left {
+  float: none;
+}
+.dropdown-submenu.pull-left > .dropdown-menu {
+  left: -100%;
+  margin-left: 10px;
+}
+#notification_area {
+  float: right !important;
+  float: right;
+  z-index: 10;
+}
+[dir="rtl"] #notification_area {
+  float: left !important;
+  float: left;
+}
+.indicator_area {
+  float: right !important;
+  float: right;
+  color: #777;
+  margin-left: 5px;
+  margin-right: 5px;
+  width: 11px;
+  z-index: 10;
+  text-align: center;
+  width: auto;
+}
+[dir="rtl"] .indicator_area {
+  float: left !important;
+  float: left;
+}
+#kernel_indicator {
+  float: right !important;
+  float: right;
+  color: #777;
+  margin-left: 5px;
+  margin-right: 5px;
+  width: 11px;
+  z-index: 10;
+  text-align: center;
+  width: auto;
+  border-left: 1px solid;
+}
+#kernel_indicator .kernel_indicator_name {
+  padding-left: 5px;
+  padding-right: 5px;
+}
+[dir="rtl"] #kernel_indicator {
+  float: left !important;
+  float: left;
+  border-left: 0;
+  border-right: 1px solid;
+}
+#modal_indicator {
+  float: right !important;
+  float: right;
+  color: #777;
+  margin-left: 5px;
+  margin-right: 5px;
+  width: 11px;
+  z-index: 10;
+  text-align: center;
+  width: auto;
+}
+[dir="rtl"] #modal_indicator {
+  float: left !important;
+  float: left;
+}
+#readonly-indicator {
+  float: right !important;
+  float: right;
+  color: #777;
+  margin-left: 5px;
+  margin-right: 5px;
+  width: 11px;
+  z-index: 10;
+  text-align: center;
+  width: auto;
+  margin-top: 2px;
+  margin-bottom: 0px;
+  margin-left: 0px;
+  margin-right: 0px;
+  display: none;
+}
+.modal_indicator:before {
+  width: 1.28571429em;
+  text-align: center;
+}
+.edit_mode .modal_indicator:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f040";
+}
+.edit_mode .modal_indicator:before.fa-pull-left {
+  margin-right: .3em;
+}
+.edit_mode .modal_indicator:before.fa-pull-right {
+  margin-left: .3em;
+}
+.edit_mode .modal_indicator:before.pull-left {
+  margin-right: .3em;
+}
+.edit_mode .modal_indicator:before.pull-right {
+  margin-left: .3em;
+}
+.command_mode .modal_indicator:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: ' ';
+}
+.command_mode .modal_indicator:before.fa-pull-left {
+  margin-right: .3em;
+}
+.command_mode .modal_indicator:before.fa-pull-right {
+  margin-left: .3em;
+}
+.command_mode .modal_indicator:before.pull-left {
+  margin-right: .3em;
+}
+.command_mode .modal_indicator:before.pull-right {
+  margin-left: .3em;
+}
+.kernel_idle_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f10c";
+}
+.kernel_idle_icon:before.fa-pull-left {
+  margin-right: .3em;
+}
+.kernel_idle_icon:before.fa-pull-right {
+  margin-left: .3em;
+}
+.kernel_idle_icon:before.pull-left {
+  margin-right: .3em;
+}
+.kernel_idle_icon:before.pull-right {
+  margin-left: .3em;
+}
+.kernel_busy_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f111";
+}
+.kernel_busy_icon:before.fa-pull-left {
+  margin-right: .3em;
+}
+.kernel_busy_icon:before.fa-pull-right {
+  margin-left: .3em;
+}
+.kernel_busy_icon:before.pull-left {
+  margin-right: .3em;
+}
+.kernel_busy_icon:before.pull-right {
+  margin-left: .3em;
+}
+.kernel_dead_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f1e2";
+}
+.kernel_dead_icon:before.fa-pull-left {
+  margin-right: .3em;
+}
+.kernel_dead_icon:before.fa-pull-right {
+  margin-left: .3em;
+}
+.kernel_dead_icon:before.pull-left {
+  margin-right: .3em;
+}
+.kernel_dead_icon:before.pull-right {
+  margin-left: .3em;
+}
+.kernel_disconnected_icon:before {
+  display: inline-block;
+  font: normal normal normal 14px/1 FontAwesome;
+  font-size: inherit;
+  text-rendering: auto;
+  -webkit-font-smoothing: antialiased;
+  -moz-osx-font-smoothing: grayscale;
+  content: "\f127";
+}
+.kernel_disconnected_icon:before.fa-pull-left {
+  margin-right: .3em;
+}
+.kernel_disconnected_icon:before.fa-pull-right {
+  margin-left: .3em;
+}
+.kernel_disconnected_icon:before.pull-left {
+  margin-right: .3em;
+}
+.kernel_disconnected_icon:before.pull-right {
+  margin-left: .3em;
+}
+.notification_widget {
+  color: #777;
+  z-index: 10;
+  background: rgba(240, 240, 240, 0.5);
+  margin-right: 4px;
+  color: #333;
+  background-color: #fff;
+  border-color: #ccc;
+}
+.notification_widget:focus,
+.notification_widget.focus {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #8c8c8c;
+}
+.notification_widget:hover {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+.notification_widget:active,
+.notification_widget.active,
+.open > .dropdown-toggle.notification_widget {
+  color: #333;
+  background-color: #e6e6e6;
+  border-color: #adadad;
+}
+.notification_widget:active:hover,
+.notification_widget.active:hover,
+.open > .dropdown-toggle.notification_widget:hover,
+.notification_widget:active:focus,
+.notification_widget.active:focus,
+.open > .dropdown-toggle.notification_widget:focus,
+.notification_widget:active.focus,
+.notification_widget.active.focus,
+.open > .dropdown-toggle.notification_widget.focus {
+  color: #333;
+  background-color: #d4d4d4;
+  border-color: #8c8c8c;
+}
+.notification_widget:active,
+.notification_widget.active,
+.open > .dropdown-toggle.notification_widget {
+  background-image: none;
+}
+.notification_widget.disabled:hover,
+.notification_widget[disabled]:hover,
+fieldset[disabled] .notification_widget:hover,
+.notification_widget.disabled:focus,
+.notification_widget[disabled]:focus,
+fieldset[disabled] .notification_widget:focus,
+.notification_widget.disabled.focus,
+.notification_widget[disabled].focus,
+fieldset[disabled] .notification_widget.focus {
+  background-color: #fff;
+  border-color: #ccc;
+}
+.notification_widget .badge {
+  color: #fff;
+  background-color: #333;
+}
+.notification_widget.warning {
+  color: #fff;
+  background-color: #f0ad4e;
+  border-color: #eea236;
+}
+.notification_widget.warning:focus,
+.notification_widget.warning.focus {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #985f0d;
+}
+.notification_widget.warning:hover {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #d58512;
+}
+.notification_widget.warning:active,
+.notification_widget.warning.active,
+.open > .dropdown-toggle.notification_widget.warning {
+  color: #fff;
+  background-color: #ec971f;
+  border-color: #d58512;
+}
+.notification_widget.warning:active:hover,
+.notification_widget.warning.active:hover,
+.open > .dropdown-toggle.notification_widget.warning:hover,
+.notification_widget.warning:active:focus,
+.notification_widget.warning.active:focus,
+.open > .dropdown-toggle.notification_widget.warning:focus,
+.notification_widget.warning:active.focus,
+.notification_widget.warning.active.focus,
+.open > .dropdown-toggle.notification_widget.warning.focus {
+  color: #fff;
+  background-color: #d58512;
+  border-color: #985f0d;
+}
+.notification_widget.warning:active,
+.notification_widget.warning.active,
+.open > .dropdown-toggle.notification_widget.warning {
+  background-image: none;
+}
+.notification_widget.warning.disabled:hover,
+.notification_widget.warning[disabled]:hover,
+fieldset[disabled] .notification_widget.warning:hover,
+.notification_widget.warning.disabled:focus,
+.notification_widget.warning[disabled]:focus,
+fieldset[disabled] .notification_widget.warning:focus,
+.notification_widget.warning.disabled.focus,
+.notification_widget.warning[disabled].focus,
+fieldset[disabled] .notification_widget.warning.focus {
+  background-color: #f0ad4e;
+  border-color: #eea236;
+}
+.notification_widget.warning .badge {
+  color: #f0ad4e;
+  background-color: #fff;
+}
+.notification_widget.success {
+  color: #fff;
+  background-color: #5cb85c;
+  border-color: #4cae4c;
+}
+.notification_widget.success:focus,
+.notification_widget.success.focus {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #255625;
+}
+.notification_widget.success:hover {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #398439;
+}
+.notification_widget.success:active,
+.notification_widget.success.active,
+.open > .dropdown-toggle.notification_widget.success {
+  color: #fff;
+  background-color: #449d44;
+  border-color: #398439;
+}
+.notification_widget.success:active:hover,
+.notification_widget.success.active:hover,
+.open > .dropdown-toggle.notification_widget.success:hover,
+.notification_widget.success:active:focus,
+.notification_widget.success.active:focus,
+.open > .dropdown-toggle.notification_widget.success:focus,
+.notification_widget.success:active.focus,
+.notification_widget.success.active.focus,
+.open > .dropdown-toggle.notification_widget.success.focus {
+  color: #fff;
+  background-color: #398439;
+  border-color: #255625;
+}
+.notification_widget.success:active,
+.notification_widget.success.active,
+.open > .dropdown-toggle.notification_widget.success {
+  background-image: none;
+}
+.notification_widget.success.disabled:hover,
+.notification_widget.success[disabled]:hover,
+fieldset[disabled] .notification_widget.success:hover,
+.notification_widget.success.disabled:focus,
+.notification_widget.success[disabled]:focus,
+fieldset[disabled] .notification_widget.success:focus,
+.notification_widget.success.disabled.focus,
+.notification_widget.success[disabled].focus,
+fieldset[disabled] .notification_widget.success.focus {
+  background-color: #5cb85c;
+  border-color: #4cae4c;
+}
+.notification_widget.success .badge {
+  color: #5cb85c;
+  background-color: #fff;
+}
+.notification_widget.info {
+  color: #fff;
+  background-color: #5bc0de;
+  border-color: #46b8da;
+}
+.notification_widget.info:focus,
+.notification_widget.info.focus {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #1b6d85;
+}
+.notification_widget.info:hover {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #269abc;
+}
+.notification_widget.info:active,
+.notification_widget.info.active,
+.open > .dropdown-toggle.notification_widget.info {
+  color: #fff;
+  background-color: #31b0d5;
+  border-color: #269abc;
+}
+.notification_widget.info:active:hover,
+.notification_widget.info.active:hover,
+.open > .dropdown-toggle.notification_widget.info:hover,
+.notification_widget.info:active:focus,
+.notification_widget.info.active:focus,
+.open > .dropdown-toggle.notification_widget.info:focus,
+.notification_widget.info:active.focus,
+.notification_widget.info.active.focus,
+.open > .dropdown-toggle.notification_widget.info.focus {
+  color: #fff;
+  background-color: #269abc;
+  border-color: #1b6d85;
+}
+.notification_widget.info:active,
+.notification_widget.info.active,
+.open > .dropdown-toggle.notification_widget.info {
+  background-image: none;
+}
+.notification_widget.info.disabled:hover,
+.notification_widget.info[disabled]:hover,
+fieldset[disabled] .notification_widget.info:hover,
+.notification_widget.info.disabled:focus,
+.notification_widget.info[disabled]:focus,
+fieldset[disabled] .notification_widget.info:focus,
+.notification_widget.info.disabled.focus,
+.notification_widget.info[disabled].focus,
+fieldset[disabled] .notification_widget.info.focus {
+  background-color: #5bc0de;
+  border-color: #46b8da;
+}
+.notification_widget.info .badge {
+  color: #5bc0de;
+  background-color: #fff;
+}
+.notification_widget.danger {
+  color: #fff;
+  background-color: #d9534f;
+  border-color: #d43f3a;
+}
+.notification_widget.danger:focus,
+.notification_widget.danger.focus {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #761c19;
+}
+.notification_widget.danger:hover {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #ac2925;
+}
+.notification_widget.danger:active,
+.notification_widget.danger.active,
+.open > .dropdown-toggle.notification_widget.danger {
+  color: #fff;
+  background-color: #c9302c;
+  border-color: #ac2925;
+}
+.notification_widget.danger:active:hover,
+.notification_widget.danger.active:hover,
+.open > .dropdown-toggle.notification_widget.danger:hover,
+.notification_widget.danger:active:focus,
+.notification_widget.danger.active:focus,
+.open > .dropdown-toggle.notification_widget.danger:focus,
+.notification_widget.danger:active.focus,
+.notification_widget.danger.active.focus,
+.open > .dropdown-toggle.notification_widget.danger.focus {
+  color: #fff;
+  background-color: #ac2925;
+  border-color: #761c19;
+}
+.notification_widget.danger:active,
+.notification_widget.danger.active,
+.open > .dropdown-toggle.notification_widget.danger {
+  background-image: none;
+}
+.notification_widget.danger.disabled:hover,
+.notification_widget.danger[disabled]:hover,
+fieldset[disabled] .notification_widget.danger:hover,
+.notification_widget.danger.disabled:focus,
+.notification_widget.danger[disabled]:focus,
+fieldset[disabled] .notification_widget.danger:focus,
+.notification_widget.danger.disabled.focus,
+.notification_widget.danger[disabled].focus,
+fieldset[disabled] .notification_widget.danger.focus {
+  background-color: #d9534f;
+  border-color: #d43f3a;
+}
+.notification_widget.danger .badge {
+  color: #d9534f;
+  background-color: #fff;
+}
+div#pager {
+  background-color: #fff;
+  font-size: 14px;
+  line-height: 20px;
+  overflow: hidden;
+  display: none;
+  position: fixed;
+  bottom: 0px;
+  width: 100%;
+  max-height: 50%;
+  padding-top: 8px;
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  /* Display over codemirror */
+  z-index: 100;
+  /* Hack which prevents jquery ui resizable from changing top. */
+  top: auto !important;
+}
+div#pager pre {
+  line-height: 1.21429em;
+  color: #000;
+  background-color: #f7f7f7;
+  padding: 0.4em;
+}
+div#pager #pager-button-area {
+  position: absolute;
+  top: 8px;
+  right: 20px;
+}
+div#pager #pager-contents {
+  position: relative;
+  overflow: auto;
+  width: 100%;
+  height: 100%;
+}
+div#pager #pager-contents #pager-container {
+  position: relative;
+  padding: 15px 0px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+div#pager .ui-resizable-handle {
+  top: 0px;
+  height: 8px;
+  background: #f7f7f7;
+  border-top: 1px solid #cfcfcf;
+  border-bottom: 1px solid #cfcfcf;
+  /* This injects handle bars (a short, wide = symbol) for 
+        the resize handle. */
+}
+div#pager .ui-resizable-handle::after {
+  content: '';
+  top: 2px;
+  left: 50%;
+  height: 3px;
+  width: 30px;
+  margin-left: -15px;
+  position: absolute;
+  border-top: 1px solid #cfcfcf;
+}
+.quickhelp {
+  /* Old browsers */
+  display: -webkit-box;
+  -webkit-box-orient: horizontal;
+  -webkit-box-align: stretch;
+  display: -moz-box;
+  -moz-box-orient: horizontal;
+  -moz-box-align: stretch;
+  display: box;
+  box-orient: horizontal;
+  box-align: stretch;
+  /* Modern browsers */
+  display: flex;
+  flex-direction: row;
+  align-items: stretch;
+  line-height: 1.8em;
+}
+.shortcut_key {
+  display: inline-block;
+  width: 21ex;
+  text-align: right;
+  font-family: monospace;
+}
+.shortcut_descr {
+  display: inline-block;
+  /* Old browsers */
+  -webkit-box-flex: 1;
+  -moz-box-flex: 1;
+  box-flex: 1;
+  /* Modern browsers */
+  flex: 1;
+}
+span.save_widget {
+  height: 30px;
+  margin-top: 4px;
+  display: flex;
+  justify-content: flex-start;
+  align-items: baseline;
+  width: 50%;
+  flex: 1;
+}
+span.save_widget span.filename {
+  height: 100%;
+  line-height: 1em;
+  margin-left: 16px;
+  border: none;
+  font-size: 146.5%;
+  text-overflow: ellipsis;
+  overflow: hidden;
+  white-space: nowrap;
+  border-radius: 2px;
+}
+span.save_widget span.filename:hover {
+  background-color: #e6e6e6;
+}
+[dir="rtl"] span.save_widget.pull-left {
+  float: right !important;
+  float: right;
+}
+[dir="rtl"] span.save_widget span.filename {
+  margin-left: 0;
+  margin-right: 16px;
+}
+span.checkpoint_status,
+span.autosave_status {
+  font-size: small;
+  white-space: nowrap;
+  padding: 0 5px;
+}
+@media (max-width: 767px) {
+  span.save_widget {
+    font-size: small;
+    padding: 0 0 0 5px;
+  }
+  span.checkpoint_status,
+  span.autosave_status {
+    display: none;
+  }
+}
+@media (min-width: 768px) and (max-width: 991px) {
+  span.checkpoint_status {
+    display: none;
+  }
+  span.autosave_status {
+    font-size: x-small;
+  }
+}
+.toolbar {
+  padding: 0px;
+  margin-left: -5px;
+  margin-top: 2px;
+  margin-bottom: 5px;
+  box-sizing: border-box;
+  -moz-box-sizing: border-box;
+  -webkit-box-sizing: border-box;
+}
+.toolbar select,
+.toolbar label {
+  width: auto;
+  vertical-align: middle;
+  margin-right: 2px;
+  margin-bottom: 0px;
+  display: inline;
+  font-size: 92%;
+  margin-left: 0.3em;
+  margin-right: 0.3em;
+  padding: 0px;
+  padding-top: 3px;
+}
+.toolbar .btn {
+  padding: 2px 8px;
+}
+.toolbar .btn-group {
+  margin-top: 0px;
+  margin-left: 5px;
+}
+.toolbar-btn-label {
+  margin-left: 6px;
+}
+#maintoolbar {
+  margin-bottom: -3px;
+  margin-top: -8px;
+  border: 0px;
+  min-height: 27px;
+  margin-left: 0px;
+  padding-top: 11px;
+  padding-bottom: 3px;
+}
+#maintoolbar .navbar-text {
+  float: none;
+  vertical-align: middle;
+  text-align: right;
+  margin-left: 5px;
+  margin-right: 0px;
+  margin-top: 0px;
+}
+.select-xs {
+  height: 24px;
+}
+[dir="rtl"] .btn-group > .btn,
+.btn-group-vertical > .btn {
+  float: right;
+}
+.pulse,
+.dropdown-menu > li > a.pulse,
+li.pulse > a.dropdown-toggle,
+li.pulse.open > a.dropdown-toggle {
+  background-color: #F37626;
+  color: white;
+}
+/**
+ * Primary styles
+ *
+ * Author: Jupyter Development Team
+ */
+/** WARNING IF YOU ARE EDITTING THIS FILE, if this is a .css file, It has a lot
+ * of chance of beeing generated from the ../less/[samename].less file, you can
+ * try to get back the less file by reverting somme commit in history
+ **/
+/*
+ * We'll try to get something pretty, so we
+ * have some strange css to have the scroll bar on
+ * the left with fix button on the top right of the tooltip
+ */
+@-moz-keyframes fadeOut {
+  from {
+    opacity: 1;
+  }
+  to {
+    opacity: 0;
+  }
+}
+@-webkit-keyframes fadeOut {
+  from {
+    opacity: 1;
+  }
+  to {
+    opacity: 0;
+  }
+}
+@-moz-keyframes fadeIn {
+  from {
+    opacity: 0;
+  }
+  to {
+    opacity: 1;
+  }
+}
+@-webkit-keyframes fadeIn {
+  from {
+    opacity: 0;
+  }
+  to {
+    opacity: 1;
+  }
+}
+/*properties of tooltip after "expand"*/
+.bigtooltip {
+  overflow: auto;
+  height: 200px;
+  -webkit-transition-property: height;
+  -webkit-transition-duration: 500ms;
+  -moz-transition-property: height;
+  -moz-transition-duration: 500ms;
+  transition-property: height;
+  transition-duration: 500ms;
+}
+/*properties of tooltip before "expand"*/
+.smalltooltip {
+  -webkit-transition-property: height;
+  -webkit-transition-duration: 500ms;
+  -moz-transition-property: height;
+  -moz-transition-duration: 500ms;
+  transition-property: height;
+  transition-duration: 500ms;
+  text-overflow: ellipsis;
+  overflow: hidden;
+  height: 80px;
+}
+.tooltipbuttons {
+  position: absolute;
+  padding-right: 15px;
+  top: 0px;
+  right: 0px;
+}
+.tooltiptext {
+  /*avoid the button to overlap on some docstring*/
+  padding-right: 30px;
+}
+.ipython_tooltip {
+  max-width: 700px;
+  /*fade-in animation when inserted*/
+  -webkit-animation: fadeOut 400ms;
+  -moz-animation: fadeOut 400ms;
+  animation: fadeOut 400ms;
+  -webkit-animation: fadeIn 400ms;
+  -moz-animation: fadeIn 400ms;
+  animation: fadeIn 400ms;
+  vertical-align: middle;
+  background-color: #f7f7f7;
+  overflow: visible;
+  border: #ababab 1px solid;
+  outline: none;
+  padding: 3px;
+  margin: 0px;
+  padding-left: 7px;
+  font-family: monospace;
+  min-height: 50px;
+  -moz-box-shadow: 0px 6px 10px -1px #adadad;
+  -webkit-box-shadow: 0px 6px 10px -1px #adadad;
+  box-shadow: 0px 6px 10px -1px #adadad;
+  border-radius: 2px;
+  position: absolute;
+  z-index: 1000;
+}
+.ipython_tooltip a {
+  float: right;
+}
+.ipython_tooltip .tooltiptext pre {
+  border: 0;
+  border-radius: 0;
+  font-size: 100%;
+  background-color: #f7f7f7;
+}
+.pretooltiparrow {
+  left: 0px;
+  margin: 0px;
+  top: -16px;
+  width: 40px;
+  height: 16px;
+  overflow: hidden;
+  position: absolute;
+}
+.pretooltiparrow:before {
+  background-color: #f7f7f7;
+  border: 1px #ababab solid;
+  z-index: 11;
+  content: "";
+  position: absolute;
+  left: 15px;
+  top: 10px;
+  width: 25px;
+  height: 25px;
+  -webkit-transform: rotate(45deg);
+  -moz-transform: rotate(45deg);
+  -ms-transform: rotate(45deg);
+  -o-transform: rotate(45deg);
+}
+ul.typeahead-list i {
+  margin-left: -10px;
+  width: 18px;
+}
+[dir="rtl"] ul.typeahead-list i {
+  margin-left: 0;
+  margin-right: -10px;
+}
+ul.typeahead-list {
+  max-height: 80vh;
+  overflow: auto;
+}
+ul.typeahead-list > li > a {
+  /** Firefox bug **/
+  /* see https://github.com/jupyter/notebook/issues/559 */
+  white-space: normal;
+}
+ul.typeahead-list  > li > a.pull-right {
+  float: left !important;
+  float: left;
+}
+[dir="rtl"] .typeahead-list {
+  text-align: right;
+}
+.cmd-palette .modal-body {
+  padding: 7px;
+}
+.cmd-palette form {
+  background: white;
+}
+.cmd-palette input {
+  outline: none;
+}
+.no-shortcut {
+  min-width: 20px;
+  color: transparent;
+}
+[dir="rtl"] .no-shortcut.pull-right {
+  float: left !important;
+  float: left;
+}
+[dir="rtl"] .command-shortcut.pull-right {
+  float: left !important;
+  float: left;
+}
+.command-shortcut:before {
+  content: "(command mode)";
+  padding-right: 3px;
+  color: #777777;
+}
+.edit-shortcut:before {
+  content: "(edit)";
+  padding-right: 3px;
+  color: #777777;
+}
+[dir="rtl"] .edit-shortcut.pull-right {
+  float: left !important;
+  float: left;
+}
+#find-and-replace #replace-preview .match,
+#find-and-replace #replace-preview .insert {
+  background-color: #BBDEFB;
+  border-color: #90CAF9;
+  border-style: solid;
+  border-width: 1px;
+  border-radius: 0px;
+}
+[dir="ltr"] #find-and-replace .input-group-btn + .form-control {
+  border-left: none;
+}
+[dir="rtl"] #find-and-replace .input-group-btn + .form-control {
+  border-right: none;
+}
+#find-and-replace #replace-preview .replace .match {
+  background-color: #FFCDD2;
+  border-color: #EF9A9A;
+  border-radius: 0px;
+}
+#find-and-replace #replace-preview .replace .insert {
+  background-color: #C8E6C9;
+  border-color: #A5D6A7;
+  border-radius: 0px;
+}
+#find-and-replace #replace-preview {
+  max-height: 60vh;
+  overflow: auto;
+}
+#find-and-replace #replace-preview pre {
+  padding: 5px 10px;
+}
+.terminal-app {
+  background: #EEE;
+}
+.terminal-app #header {
+  background: #fff;
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
+}
+.terminal-app .terminal {
+  width: 100%;
+  float: left;
+  font-family: monospace;
+  color: white;
+  background: black;
+  padding: 0.4em;
+  border-radius: 2px;
+  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4);
+  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4);
+}
+.terminal-app .terminal,
+.terminal-app .terminal dummy-screen {
+  line-height: 1em;
+  font-size: 14px;
+}
+.terminal-app .terminal .xterm-rows {
+  padding: 10px;
+}
+.terminal-app .terminal-cursor {
+  color: black;
+  background: white;
+}
+.terminal-app #terminado-container {
+  margin-top: 20px;
+}
+/*# sourceMappingURL=style.min.css.map */
+    </style>
+<style type="text/css">
+    .highlight .hll { background-color: #ffffcc }
+.highlight  { background: #f8f8f8; }
+.highlight .c { color: #408080; font-style: italic } /* Comment */
+.highlight .err { border: 1px solid #FF0000 } /* Error */
+.highlight .k { color: #008000; font-weight: bold } /* Keyword */
+.highlight .o { color: #666666 } /* Operator */
+.highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
+.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
+.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
+.highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
+.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
+.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
+.highlight .gd { color: #A00000 } /* Generic.Deleted */
+.highlight .ge { font-style: italic } /* Generic.Emph */
+.highlight .gr { color: #FF0000 } /* Generic.Error */
+.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
+.highlight .gi { color: #00A000 } /* Generic.Inserted */
+.highlight .go { color: #888888 } /* Generic.Output */
+.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
+.highlight .gs { font-weight: bold } /* Generic.Strong */
+.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
+.highlight .gt { color: #0044DD } /* Generic.Traceback */
+.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
+.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
+.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
+.highlight .kp { color: #008000 } /* Keyword.Pseudo */
+.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
+.highlight .kt { color: #B00040 } /* Keyword.Type */
+.highlight .m { color: #666666 } /* Literal.Number */
+.highlight .s { color: #BA2121 } /* Literal.String */
+.highlight .na { color: #7D9029 } /* Name.Attribute */
+.highlight .nb { color: #008000 } /* Name.Builtin */
+.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
+.highlight .no { color: #880000 } /* Name.Constant */
+.highlight .nd { color: #AA22FF } /* Name.Decorator */
+.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
+.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
+.highlight .nf { color: #0000FF } /* Name.Function */
+.highlight .nl { color: #A0A000 } /* Name.Label */
+.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
+.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
+.highlight .nv { color: #19177C } /* Name.Variable */
+.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
+.highlight .w { color: #bbbbbb } /* Text.Whitespace */
+.highlight .mb { color: #666666 } /* Literal.Number.Bin */
+.highlight .mf { color: #666666 } /* Literal.Number.Float */
+.highlight .mh { color: #666666 } /* Literal.Number.Hex */
+.highlight .mi { color: #666666 } /* Literal.Number.Integer */
+.highlight .mo { color: #666666 } /* Literal.Number.Oct */
+.highlight .sa { color: #BA2121 } /* Literal.String.Affix */
+.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
+.highlight .sc { color: #BA2121 } /* Literal.String.Char */
+.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */
+.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
+.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
+.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
+.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
+.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
+.highlight .sx { color: #008000 } /* Literal.String.Other */
+.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
+.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
+.highlight .ss { color: #19177C } /* Literal.String.Symbol */
+.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
+.highlight .fm { color: #0000FF } /* Name.Function.Magic */
+.highlight .vc { color: #19177C } /* Name.Variable.Class */
+.highlight .vg { color: #19177C } /* Name.Variable.Global */
+.highlight .vi { color: #19177C } /* Name.Variable.Instance */
+.highlight .vm { color: #19177C } /* Name.Variable.Magic */
+.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
+    </style>
+
+
+<style type="text/css">
+/* Overrides of notebook CSS for static HTML export */
+body {
+  overflow: visible;
+  padding: 8px;
+}
+
+div#notebook {
+  overflow: visible;
+  border-top: none;
+}@media print {
+  div.cell {
+    display: block;
+    page-break-inside: avoid;
+  } 
+  div.output_wrapper { 
+    display: block;
+    page-break-inside: avoid; 
+  }
+  div.output { 
+    display: block;
+    page-break-inside: avoid; 
+  }
+}
+</style>
+
+<!-- Custom stylesheet, it must be in the same directory as the html file -->
+<link rel="stylesheet" href="custom.css">
+
+<!-- Loading mathjax macro -->
+<!-- Load mathjax -->
+    <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS_HTML"></script>
+    <!-- MathJax configuration -->
+    <script type="text/x-mathjax-config">
+    MathJax.Hub.Config({
+        tex2jax: {
+            inlineMath: [ ['$','$'], ["\\(","\\)"] ],
+            displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
+            processEscapes: true,
+            processEnvironments: true
+        },
+        // Center justify equations in code and markdown cells. Elsewhere
+        // we use CSS to left justify single line equations in code cells.
+        displayAlign: 'center',
+        "HTML-CSS": {
+            styles: {'.MathJax_Display': {"margin": 0}},
+            linebreaks: { automatic: true }
+        }
+    });
+    </script>
+    <!-- End of mathjax configuration -->
+
+
+
+<link rel="stylesheet" href="https://code.jquery.com/ui/1.11.4/themes/smoothness/jquery-ui.css">
+
+
+<!-- stylesheet from CDN -->
+<link rel="stylesheet" type="text/css" href="https://rawgit.com/jfbercher/jupyter_latex_envs/master/src/latex_envs/static/latex_envs.css">
+
+<!-- Custom stylesheet, it must be in the same directory as the html file -->
+<link rel="stylesheet" href="custom.css"> 
+
+<!-- Load mathjax 
+<script src="https://rawgit.com/ipython-contrib/jupyter_contrib_nbextensions/master/src/jupyter_contrib_nbextensions/nbextensions/latex_envs/thmsInNb4.js"></script>
+-->
+<script type="text/javascript"  src="https://rawgit.com/jfbercher/jupyter_latex_envs/master/src/latex_envs/static/thmsInNb4.js"> </script>
+
+
+
+<script>
+$( document ).ready(function(){
+
+        //Value of configuration variables, some taken from the notebook's metada. 
+        eqNum = 0; // begins equation numbering at eqNum+1
+        eqLabelWithNumbers = "True"=="True" ? true : false; //if true, label equations with equation numbers; 
+                                       //otherwise using the tag specified by \label
+        conversion_to_html = false;
+        current_cit=1;
+        cite_by='key';  //only number and key are supported
+        //var document={}
+        document.bibliography={};
+
+        // Read environment map config
+        initmap();
+        // Read user envs config, if specified
+        
+                environmentMap = $.extend(true,{}, environmentInitialMap)        
+        
+
+        // fire the main function with these parameters
+        var html_to_analyse = $('body').html()
+        var html_converted = thmsInNbConv(marked,html_to_analyse);
+        html_converted = html_converted.replace(/%[\S\t ]*<\/p>/gm,"</p>")
+        $('body').html(html_converted)
+        // Show/hide anchors
+        var labels_anchors = "False"=="True" ? true : false;
+        $('.latex_label_anchor').toggle(labels_anchors)
+        // Number all environments
+        report_style_numbering = "False"=="True" ? true : false;
+        reset_counters();
+        renumberAllEnvs();
+    });
+</script></head>
+
+
+
+
+<body>
+  <div tabindex="-1" id="notebook" class="border-box-sizing">
+    <div class="container" id="notebook-container">
+
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="Quadratically-constrained-quadratic-programming-and-its-applications-in-portfolio-optimization">Quadratically constrained quadratic programming and its applications in portfolio optimization<a class="anchor-link" href="#Quadratically-constrained-quadratic-programming-and-its-applications-in-portfolio-optimization">&#182;</a></h1>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="Introduction">Introduction<a class="anchor-link" href="#Introduction">&#182;</a></h1>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Quadratically constrained quadratic programming (QCQP) is a type of optimization problem in which both the objective function and the constraints involve quadratic functions. A general QCQP problem has the following form</p>
+\begin{equation}
+\begin{array}{ll}
+\underset{x\in\Re^n}{\mbox{minimize}} &amp;  \frac{1}{2}x^TP_0x+q_0^Tx+r_0\\[0.6ex]
+\mbox{subject to} &amp; \frac{1}{2}x^TP_ix+q_i^Tx+r_i\leq0,\quad i=1,\ldots,p.
+\end{array}
+\end{equation}<p>It appears in applications such as modern portfolio theory, machine learning, engineering and control. Convex QCQP is usually handled through conic optimization, or, more precisely, second-order cone programming (SOCP) due to its computational efficiency and ability to detect infeasibility. However, using SOCP to solve convex QCQP is nontrivial task which requires extra amount of effort to transform problem data and add auxiliary variables. In this notebook, we are going to demonstrate how to use the <em>NAG Optimization Modelling Suite</em> in the NAG Library to define and solve QCQP in portfolio optimization.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="Data-Preparation">Data Preparation<a class="anchor-link" href="#Data-Preparation">&#182;</a></h1>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>We consider daily prices for the 30 stocks in the DJIA from March 2018 to March 2019. In practice, the estimation of the mean return $r$ and covariance $V$ is often a nontrivial task. In this notebook, we estimate those entities using simple sample estimates.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[1]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Import necessary libraries</span>
+<span class="kn">import</span> <span class="nn">pickle</span> <span class="k">as</span> <span class="nn">pkl</span>
+<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
+<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[3]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Load stock price data from stock_price.plk</span>
+<span class="c1"># Stock_price: dict = [&#39;close_price&#39;: [data], &#39;date_index&#39;: [data]]</span>
+<span class="n">stock_price</span> <span class="o">=</span> <span class="n">stock_price</span> <span class="o">=</span> <span class="n">pkl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="nb">open</span><span class="p">(</span><span class="s1">&#39;./data/stock_price.pkl&#39;</span><span class="p">,</span> <span class="s1">&#39;rb&#39;</span><span class="p">))</span>
+<span class="n">close_price</span> <span class="o">=</span> <span class="n">stock_price</span><span class="p">[</span><span class="s1">&#39;close_price&#39;</span><span class="p">]</span>
+<span class="n">date_index</span> <span class="o">=</span> <span class="n">stock_price</span><span class="p">[</span><span class="s1">&#39;date_index&#39;</span><span class="p">]</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[4]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Size of data, m: number of observations, n: number of stocks</span>
+<span class="n">m</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">date_index</span><span class="p">)</span>
+<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">close_price</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[5]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Extract stock closing prices to a numpy array</span>
+<span class="n">data</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">n</span><span class="p">))</span>
+<span class="n">i</span> <span class="o">=</span> <span class="mi">0</span>
+<span class="k">for</span> <span class="n">stock</span> <span class="ow">in</span> <span class="n">close_price</span><span class="p">:</span>
+    <span class="n">data</span><span class="p">[:,</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">close_price</span><span class="p">[</span><span class="n">stock</span><span class="p">]</span>
+    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">m</span><span class="p">),</span> <span class="n">data</span><span class="p">[:,</span><span class="n">i</span><span class="p">])</span>
+    <span class="n">i</span> <span class="o">+=</span> <span class="mi">1</span>
+<span class="c1"># Plot closing prices</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Time (days)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Closing price ($)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+
+
+<div class="output_png output_subarea ">
+<img src="
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>For each stock $i$, we first estimate the $j$th daily relative return as $$relative~return_{i,j} = \frac{closing~price_{i,j+1}-closing~price_{i,j}}{closing~price_{i,j}}.$$</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[6]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Relative return</span>
+<span class="n">rel_rtn</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">))</span>
+<span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">):</span>
+    <span class="n">rel_rtn</span><span class="p">[</span><span class="n">j</span><span class="p">,:]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">divide</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">j</span><span class="o">+</span><span class="mi">1</span><span class="p">,:]</span> <span class="o">-</span> <span class="n">data</span><span class="p">[</span><span class="n">j</span><span class="p">,:],</span> <span class="n">data</span><span class="p">[</span><span class="n">j</span><span class="p">,:])</span>
+<span class="c1"># Plot relative return</span>
+<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
+    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">),</span><span class="n">rel_rtn</span><span class="p">[:,</span><span class="n">i</span><span class="p">])</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Time (days)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Relative return&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+
+
+<div class="output_png output_subarea ">
+<img src="
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Simply take arithmetic mean of each column of relative return to get mean return $r$ for each stock, followed by estimating covariance $V$ using numpy.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[7]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Mean return</span>
+<span class="n">r</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
+<span class="n">r</span> <span class="o">=</span> <span class="n">rel_rtn</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
+<span class="n">r</span> <span class="o">=</span> <span class="n">r</span> <span class="o">/</span> <span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
+<span class="c1"># Covariance matrix</span>
+<span class="n">V</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">cov</span><span class="p">(</span><span class="n">rel_rtn</span><span class="o">.</span><span class="n">T</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="Classic-Mean-Variance-Model">Classic Mean-Variance Model<a class="anchor-link" href="#Classic-Mean-Variance-Model">&#182;</a></h1><h2 id="Efficient-Frontier">Efficient Frontier<a class="anchor-link" href="#Efficient-Frontier">&#182;</a></h2>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>One of the major goals of portfolio management is to achieve a certain level of return under a specific risk measurement. Here we demonstrate how to use NAG Library to build efficient frontier by solving classical Markowitz model with long-only constraint (meaning, buy to hold and short selling is not allowed):</p>
+\begin{equation}\label{MV_model}
+\begin{array}{ll}
+\underset{x\in\Re^n}{\mbox{minimize}} &amp; -r^Tx+\mu x^TVx\\[0.6ex]
+\mbox{subject to} &amp; e^Tx = 1,\\[0.6ex]
+     &amp; x\geq0,
+\end{array}
+\end{equation}<p>where $e\in\Re^n$ is vector of all ones and $\mu$ is a scalar controling trade-off between return and risk. Note one could build the efficient frontier by varying $\mu$ from $0$ to a certain value.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[8]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Import the NAG Library</span>
+<span class="kn">from</span> <span class="nn">naginterfaces.base</span> <span class="kn">import</span> <span class="n">utils</span>
+<span class="kn">from</span> <span class="nn">naginterfaces.library</span> <span class="kn">import</span> <span class="n">opt</span>
+<span class="kn">from</span> <span class="nn">naginterfaces.library</span> <span class="kn">import</span> <span class="n">lapackeig</span>
+<span class="c1"># Import necessary math libraries</span>
+<span class="kn">from</span> <span class="nn">scipy.sparse</span> <span class="kn">import</span> <span class="n">coo_matrix</span>
+<span class="kn">import</span> <span class="nn">math</span> <span class="k">as</span> <span class="nn">mt</span>
+<span class="kn">import</span> <span class="nn">warnings</span> <span class="k">as</span> <span class="nn">wn</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[9]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Input for quadratic objective</span>
+<span class="c1"># Sparsity pattern of upper triangular V</span>
+<span class="n">irowq</span><span class="p">,</span> <span class="n">icolq</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nonzero</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">triu</span><span class="p">(</span><span class="n">V</span><span class="p">))</span>
+<span class="n">v_val</span> <span class="o">=</span> <span class="n">V</span><span class="p">[</span><span class="n">irowq</span><span class="p">,</span> <span class="n">icolq</span><span class="p">]</span>
+<span class="c1"># Convert to 1-based</span>
+<span class="n">irowq</span> <span class="o">=</span> <span class="n">irowq</span> <span class="o">+</span> <span class="mi">1</span>
+<span class="n">icolq</span> <span class="o">=</span> <span class="n">icolq</span> <span class="o">+</span> <span class="mi">1</span>
+<span class="c1"># Sparsity pattern of r, which is actually dense in this application</span>
+<span class="n">idxr</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+
+<span class="c1"># Input for linear constraint: e&#39;x = 1</span>
+<span class="n">irowa</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
+<span class="n">icola</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">)</span>
+<span class="n">bl</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">)</span>
+<span class="n">bu</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">)</span>
+
+<span class="c1"># Input for bound constraint: x &gt;= 0</span>
+<span class="n">blx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
+<span class="n">bux</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mf">1.e20</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>The input data is ready, we can easily build the efficient frontier as follows.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[10]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Set step for mu</span>
+<span class="n">step</span> <span class="o">=</span> <span class="mi">2001</span>
+
+<span class="c1"># Initialize output data: absolute risk and return</span>
+<span class="n">ab_risk</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span>
+<span class="n">ab_rtn</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span>
+
+<span class="k">for</span> <span class="n">mu</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">2000.0</span><span class="p">,</span> <span class="n">step</span><span class="p">):</span>
+    <span class="c1"># Create problem handle</span>
+    <span class="n">handle</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">handle_init</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
+    
+    <span class="c1"># Set quadratic objective function</span>
+    <span class="c1"># In qcqp standard form q should be 2*mu*V</span>
+    <span class="n">q</span> <span class="o">=</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">mu</span> <span class="o">*</span> <span class="n">v_val</span>
+    <span class="n">idqc</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_set_qconstr</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="n">idqc</span><span class="p">,</span> <span class="n">idxr</span><span class="p">,</span> <span class="o">-</span><span class="n">r</span><span class="p">,</span> <span class="n">irowq</span><span class="p">,</span> <span class="n">icolq</span><span class="p">,</span> <span class="n">q</span><span class="p">)</span>
+    
+    <span class="c1"># Set linear constraint e&#39;x = 1</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_set_linconstr</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">bl</span><span class="p">,</span> <span class="n">bu</span><span class="p">,</span> <span class="n">irowa</span><span class="p">,</span> <span class="n">icola</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span>
+    
+    <span class="c1"># Set bound constraint</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_set_simplebounds</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">blx</span><span class="p">,</span> <span class="n">bux</span><span class="p">)</span>
+    
+    <span class="c1"># Set options</span>
+    <span class="k">for</span> <span class="n">option</span> <span class="ow">in</span> <span class="p">[</span>
+            <span class="s1">&#39;Print Options = NO&#39;</span><span class="p">,</span>
+            <span class="s1">&#39;Print Level = 1&#39;</span><span class="p">,</span>
+            <span class="s1">&#39;Print File = -1&#39;</span><span class="p">,</span>
+            <span class="s1">&#39;SOCP Scaling = A&#39;</span>
+    <span class="p">]:</span>
+        <span class="n">opt</span><span class="o">.</span><span class="n">handle_opt_set</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">option</span><span class="p">)</span>
+        
+    <span class="c1"># Call socp interior point solver</span>
+    <span class="c1"># Mute warnings and do not count results from warnings</span>
+    <span class="n">wn</span><span class="o">.</span><span class="n">simplefilter</span><span class="p">(</span><span class="s1">&#39;error&#39;</span><span class="p">,</span> <span class="n">utils</span><span class="o">.</span><span class="n">NagAlgorithmicWarning</span><span class="p">)</span>
+    <span class="k">try</span><span class="p">:</span>
+        <span class="n">slt</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">handle_solve_socp_ipm</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span>
+
+        <span class="c1"># Compute risk and return from the portfolio</span>
+        <span class="n">ab_risk</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">ab_risk</span><span class="p">,</span> <span class="n">mt</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">]</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">V</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">]))))</span>
+        <span class="n">ab_rtn</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">ab_rtn</span><span class="p">,</span> <span class="n">r</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">]))</span>
+    <span class="k">except</span> <span class="n">utils</span><span class="o">.</span><span class="n">NagAlgorithmicWarning</span><span class="p">:</span>
+        <span class="k">pass</span>
+    
+    <span class="c1"># Destroy the handle:</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_free</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[11]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># plot the result</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ab_risk</span><span class="o">*</span><span class="mf">100.0</span><span class="p">,</span> <span class="n">ab_rtn</span><span class="o">*</span><span class="mf">100.0</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Total Expected Return (%)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Absolute Risk (%)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+
+
+<div class="output_png output_subarea ">
+<img src="
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h2 id="Maximizing-the-Sharpe-ratio">Maximizing the Sharpe ratio<a class="anchor-link" href="#Maximizing-the-Sharpe-ratio">&#182;</a></h2>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>The Sharpe ratio is defined as the ratio of return of portfolio and standard deviation of the portfolio's excess return. It is usually used to measure the efficiency of a portfolio. Find the most efficient portfolio is equivalent to solve the following optimization problem.</p>
+\begin{equation}\label{sr_model}
+\begin{array}{ll}
+\underset{x\in\Re^n}{\mbox{minimize}} &amp; \frac{\sqrt{x^TVx}}{r^Tx}\\[0.6ex]
+\mbox{subject to} &amp; e^Tx = 1,\\[0.6ex]
+     &amp; x\geq0.
+\end{array}
+\end{equation}<p>By replacing $x$ with $\frac{y}{\lambda}, \lambda\gt0$, model (\ref{sr_model}) is equivalent to</p>
+\begin{equation}\label{sr_model_eq}
+\begin{array}{ll}
+\underset{y\in\Re^n, \lambda\in\Re}{\mbox{minimize}} &amp; y^TVy\\[0.6ex]
+\mbox{subject to} &amp; e^Ty = \lambda,\\[0.6ex]
+     &amp; r^Ty=1, \\
+     &amp; y\geq0, \\
+     &amp; \lambda\geq0.
+\end{array}
+\end{equation}<p>Problem (\ref{sr_model_eq}) is similar to problem (\ref{MV_model}) in the sense that they both have a quadratic objective function and linear constraints.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[12]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Input for linear constraint: e&#39;y = lambda</span>
+<span class="n">irowa</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
+<span class="n">icola</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="o">+</span><span class="mi">2</span><span class="p">)</span>
+<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">),</span> <span class="o">-</span><span class="mf">1.0</span><span class="p">)</span>
+<span class="n">bl</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
+<span class="n">bu</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
+
+<span class="c1"># Inpute for linear constraint: r&#39;y = 1</span>
+<span class="n">irowa</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">irowa</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">))</span>
+<span class="n">icola</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">icola</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span>
+<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">r</span><span class="p">)</span>
+<span class="n">bl</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">bl</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
+<span class="n">bu</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">bu</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
+
+<span class="c1"># Input for bound constraint: x &gt;= 0</span>
+<span class="n">blx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+<span class="n">bux</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="mf">1.e20</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>Now we can call the NAG SOCP solver as follows.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[13]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Create problem handle</span>
+<span class="n">handle</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">handle_init</span><span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+
+<span class="c1"># Set quadratic objective function</span>
+<span class="c1"># In qcqp standard form q should be 2*V</span>
+<span class="n">q</span> <span class="o">=</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">v_val</span>
+<span class="n">idqc</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
+<span class="n">opt</span><span class="o">.</span><span class="n">handle_set_qconstr</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="n">idqc</span><span class="p">,</span> <span class="n">irowq</span><span class="o">=</span><span class="n">irowq</span><span class="p">,</span> <span class="n">icolq</span><span class="o">=</span><span class="n">icolq</span><span class="p">,</span> <span class="n">q</span><span class="o">=</span><span class="n">q</span><span class="p">)</span>
+
+<span class="c1"># Set linear constraints</span>
+<span class="n">opt</span><span class="o">.</span><span class="n">handle_set_linconstr</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">bl</span><span class="p">,</span> <span class="n">bu</span><span class="p">,</span> <span class="n">irowa</span><span class="p">,</span> <span class="n">icola</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span>
+    
+<span class="c1"># Set bound constraint</span>
+<span class="n">opt</span><span class="o">.</span><span class="n">handle_set_simplebounds</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">blx</span><span class="p">,</span> <span class="n">bux</span><span class="p">)</span>
+    
+<span class="c1"># Set options</span>
+<span class="k">for</span> <span class="n">option</span> <span class="ow">in</span> <span class="p">[</span>
+        <span class="s1">&#39;Print Options = NO&#39;</span><span class="p">,</span>
+        <span class="s1">&#39;Print Level = 1&#39;</span><span class="p">,</span>
+        <span class="s1">&#39;Print File = -1&#39;</span><span class="p">,</span>
+        <span class="s1">&#39;SOCP Scaling = A&#39;</span>
+<span class="p">]:</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_opt_set</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">option</span><span class="p">)</span>
+        
+<span class="c1"># Call socp interior point solver</span>
+<span class="n">slt</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">handle_solve_socp_ipm</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span>
+
+<span class="n">sr_risk</span> <span class="o">=</span> <span class="n">mt</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">]</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">V</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">])))</span><span class="o">/</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
+<span class="n">sr_rtn</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">])</span><span class="o">/</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
+<span class="n">sr_x</span> <span class="o">=</span> <span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">]</span><span class="o">/</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
+
+<span class="c1"># Destroy the handle:</span>
+<span class="n">opt</span><span class="o">.</span><span class="n">handle_free</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[14]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># plot result.</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ab_risk</span><span class="o">*</span><span class="mf">100.0</span><span class="p">,</span> <span class="n">ab_rtn</span><span class="o">*</span><span class="mf">100.0</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Efficient frontier&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">sr_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">],</span> <span class="p">[</span><span class="n">sr_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">],</span> <span class="s1">&#39;rs&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Portfolio with maximum Sharpe ratio&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">sr_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">],</span> <span class="p">[</span><span class="n">sr_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">],</span> <span class="s1">&#39;r-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Capital market line&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">([</span><span class="nb">min</span><span class="p">(</span><span class="n">ab_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">),</span> <span class="nb">max</span><span class="p">(</span><span class="n">ab_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">),</span> <span class="nb">min</span><span class="p">(</span><span class="n">ab_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">),</span> <span class="nb">max</span><span class="p">(</span><span class="n">ab_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">)])</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Total Expected Return (%)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Absolute Risk (%)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+
+
+<div class="output_png output_subarea ">
+<img src="
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="Portfolio-optimization-with-tracking-error-constraint">Portfolio optimization with tracking-error constraint<a class="anchor-link" href="#Portfolio-optimization-with-tracking-error-constraint">&#182;</a></h1>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>To avoid taking unnecessary risk when beating a benchmark, the investors commonly impose a limit on the volatility of the deviation of the active portfolio from the benchmark, which is also known as tracking-error volatility (TEV) \cite{J03}. The model to build efficient frontier in excess-return space is</p>
+\begin{equation}\label{er_tev}
+\begin{array}{ll}
+\underset{x\in\Re^n}{\mbox{maximize}} &amp; r^Tx\\
+\mbox{subject to} &amp; e^Tx = 0,\\
+     &amp; x^TVx\leq tev,
+\end{array}
+\end{equation}<p>where $tev$ is a limit on the track-error. Roll \cite{R92} noted that problem (\ref{er_tev}) is totally independent of the benchmark and leads to the unpalatable result that the active portfolio has systematically higher risk than the benchmark and is not optimal. Therefore, in this section we solve a more advanced model by taking absolute risk into account as follows.</p>
+\begin{equation}\label{tev_model}
+\begin{array}{ll}
+\underset{x\in\Re^n}{\mbox{minimize}} &amp; -r^Tx+\mu (x+b)^TV(x+b)\\
+\mbox{subject to} &amp; e^Tx = 0,\\
+     &amp; x^TVx\leq tev,\\
+     &amp; x+b\geq0,
+\end{array}
+\end{equation}<p>where $b$ is a benchmark portfolio. In this demonstration, it is generated synthetically. Note here we use the same covariance matrix $V$ for tev and absolute risk measurement for demonstration purpose. In practice one could use different covariance matrices from different markets.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[15]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Generate a benchmark portfolio from efficient portfolio that maximiz the Sharpe ratio</span>
+<span class="c1"># Perturb x</span>
+<span class="n">b</span> <span class="o">=</span> <span class="n">sr_x</span> <span class="o">+</span> <span class="mf">1.e-1</span>
+<span class="c1"># Normalize b</span>
+<span class="n">b</span> <span class="o">=</span> <span class="n">b</span><span class="o">/</span><span class="nb">sum</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
+
+<span class="c1"># Set limit on tracking-error</span>
+<span class="n">tev</span> <span class="o">=</span> <span class="mf">0.000002</span>
+
+<span class="c1"># Compute risk and return at the benchmark</span>
+<span class="n">b_risk</span> <span class="o">=</span> <span class="n">mt</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">b</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">V</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">b</span><span class="p">)))</span>
+<span class="n">b_rtn</span> <span class="o">=</span> <span class="n">r</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[16]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Input for linear constraint: e&#39;x = 0</span>
+<span class="n">irowa</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
+<span class="n">icola</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
+<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">)</span>
+<span class="n">bl</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
+<span class="n">bu</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
+
+<span class="c1"># Input for bound constraint: x &gt;= -b</span>
+<span class="n">blx</span> <span class="o">=</span> <span class="o">-</span><span class="n">b</span>
+<span class="n">bux</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">full</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mf">1.e20</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[17]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Initialize output data: TEV risk and return</span>
+<span class="n">tev_risk</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span>
+<span class="n">tev_rtn</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">float</span><span class="p">)</span>
+
+<span class="k">for</span> <span class="n">mu</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">2000.0</span><span class="p">,</span> <span class="n">step</span><span class="p">):</span>
+    <span class="c1"># Create problem handle</span>
+    <span class="n">handle</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">handle_init</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
+    
+    <span class="c1"># Set quadratic objective function</span>
+    <span class="c1"># In qcqp standard form q should be 2*mu*V</span>
+    <span class="n">q</span> <span class="o">=</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">mu</span> <span class="o">*</span> <span class="n">v_val</span>
+    <span class="n">r_mu</span> <span class="o">=</span> <span class="mf">2.0</span><span class="o">*</span><span class="n">mu</span><span class="o">*</span><span class="n">V</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">b</span><span class="p">)</span><span class="o">-</span><span class="n">r</span>
+    <span class="n">idqc</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_set_qconstr</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="n">idqc</span><span class="p">,</span> <span class="n">idxr</span><span class="p">,</span> <span class="n">r_mu</span><span class="p">,</span> <span class="n">irowq</span><span class="p">,</span> <span class="n">icolq</span><span class="p">,</span> <span class="n">q</span><span class="p">)</span>
+    
+    <span class="c1"># Set quadratic constraint</span>
+    <span class="c1"># In qcqp standard form q should be 2*V</span>
+    <span class="n">q</span> <span class="o">=</span> <span class="mf">2.0</span> <span class="o">*</span> <span class="n">v_val</span>
+    <span class="n">idqc</span> <span class="o">=</span> <span class="mi">0</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_set_qconstr</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="o">-</span><span class="n">tev</span><span class="p">,</span> <span class="n">idqc</span><span class="p">,</span> <span class="n">irowq</span><span class="o">=</span><span class="n">irowq</span><span class="p">,</span> <span class="n">icolq</span><span class="o">=</span><span class="n">icolq</span><span class="p">,</span> <span class="n">q</span><span class="o">=</span><span class="n">q</span><span class="p">)</span>
+    
+    <span class="c1"># Set linear constraint e&#39;x = 1</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_set_linconstr</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">bl</span><span class="p">,</span> <span class="n">bu</span><span class="p">,</span> <span class="n">irowa</span><span class="p">,</span> <span class="n">icola</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span>
+    
+    <span class="c1"># Set bound constraint</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_set_simplebounds</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">blx</span><span class="p">,</span> <span class="n">bux</span><span class="p">)</span>
+    
+    <span class="c1"># Set options</span>
+    <span class="k">for</span> <span class="n">option</span> <span class="ow">in</span> <span class="p">[</span>
+            <span class="s1">&#39;Print Options = NO&#39;</span><span class="p">,</span>
+            <span class="s1">&#39;Print Level = 1&#39;</span><span class="p">,</span>
+            <span class="s1">&#39;Print File = -1&#39;</span><span class="p">,</span>
+            <span class="s1">&#39;SOCP Scaling = A&#39;</span>
+    <span class="p">]:</span>
+        <span class="n">opt</span><span class="o">.</span><span class="n">handle_opt_set</span><span class="p">(</span><span class="n">handle</span><span class="p">,</span> <span class="n">option</span><span class="p">)</span>
+        
+    <span class="c1"># Call socp interior point solver</span>
+    <span class="c1"># Mute warnings and do not count results from warnings</span>
+    <span class="n">wn</span><span class="o">.</span><span class="n">simplefilter</span><span class="p">(</span><span class="s1">&#39;error&#39;</span><span class="p">,</span> <span class="n">utils</span><span class="o">.</span><span class="n">NagAlgorithmicWarning</span><span class="p">)</span>
+    <span class="k">try</span><span class="p">:</span>
+        <span class="n">slt</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">handle_solve_socp_ipm</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span>
+
+<span class="c1">#       Compute risk and return from the portfolio</span>
+        <span class="n">tev_risk</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tev_risk</span><span class="p">,</span> <span class="n">mt</span><span class="o">.</span><span class="n">sqrt</span><span class="p">((</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">]</span><span class="o">+</span><span class="n">b</span><span class="p">)</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">V</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">]</span><span class="o">+</span><span class="n">b</span><span class="p">))))</span>
+        <span class="n">tev_rtn</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tev_rtn</span><span class="p">,</span> <span class="n">r</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">slt</span><span class="o">.</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">n</span><span class="p">]</span><span class="o">+</span><span class="n">b</span><span class="p">))</span>
+    <span class="k">except</span> <span class="n">utils</span><span class="o">.</span><span class="n">NagAlgorithmicWarning</span><span class="p">:</span>
+        <span class="k">pass</span>
+    
+    <span class="c1"># Destroy the handle:</span>
+    <span class="n">opt</span><span class="o">.</span><span class="n">handle_free</span><span class="p">(</span><span class="n">handle</span><span class="p">)</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[18]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Plot the result</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mf">7.5</span><span class="p">,</span> <span class="mf">5.5</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ab_risk</span><span class="o">*</span><span class="mf">100.0</span><span class="p">,</span> <span class="n">ab_rtn</span><span class="o">*</span><span class="mf">100.0</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Classic efficient frontier&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">sr_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">],</span> <span class="p">[</span><span class="n">sr_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">],</span> <span class="s1">&#39;rs&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Portfolio with maximum Sharpe ratio&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">sr_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">],</span> <span class="p">[</span><span class="n">sr_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">],</span> <span class="s1">&#39;r-&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Capital market line&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">b_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">,</span> <span class="n">b_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">,</span> <span class="s1">&#39;r*&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Benchmark portfolio&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">tev_risk</span><span class="o">*</span><span class="mf">100.0</span><span class="p">,</span> <span class="n">tev_rtn</span><span class="o">*</span><span class="mf">100.0</span><span class="p">,</span> <span class="s1">&#39;seagreen&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Efficient frontier with tev constraint&#39;</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">([</span><span class="nb">min</span><span class="p">(</span><span class="n">ab_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">),</span> <span class="nb">max</span><span class="p">(</span><span class="n">ab_risk</span><span class="o">*</span><span class="mi">100</span><span class="p">),</span> <span class="nb">min</span><span class="p">(</span><span class="n">tev_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">),</span> <span class="nb">max</span><span class="p">(</span><span class="n">ab_rtn</span><span class="o">*</span><span class="mi">100</span><span class="p">)])</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Total Expected Return (%)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Absolute Risk (%)&#39;</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+<div class="output_wrapper">
+<div class="output">
+
+
+<div class="output_area">
+
+    <div class="prompt"></div>
+
+
+
+
+<div class="output_png output_subarea ">
+<img src="
+"
+>
+</div>
+
+</div>
+
+</div>
+</div>
+
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="Conclusion">Conclusion<a class="anchor-link" href="#Conclusion">&#182;</a></h1>
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<p>In this notebook, we demonstrated how to use NAG Library to solve various quadratic models in portfolio optimization. Conic optimization is usually a good choice to solve convex QCQP. It is worth pointing out that the versatility of SOCP is not just limited to the QCQP models mentioned here. It covers a lot more problems and constraints. For example, DeMiguel et al. \cite{DGNU09} discussed portfolio optimization with norm constraint, which can be easily transformed into an SOCP problem. We refer readers to the NAG Library documentation \cite{NAGDOC} on SOCP solver and \cite{AG03, LVBL98} for more details.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="References">References<a class="anchor-link" href="#References">&#182;</a></h1><p>[<a id="cit-J03" href="#call-J03">1</a>] Jorion Philippe, ``<em>Portfolio optimization with tracking-error constraints</em>'', Financial Analysts Journal, vol. 59, number 5, pp. 70--82,  2003.</p>
+<p>[<a id="cit-R92" href="#call-R92">2</a>] Roll Richard, ``<em>A mean/variance analysis of tracking error</em>'', The Journal of Portfolio Management, vol. 18, number 4, pp. 13--22,  1992.</p>
+<p>[<a id="cit-DGNU09" href="#call-DGNU09">3</a>] DeMiguel Victor, Garlappi Lorenzo, Nogales Francisco J <em>et al.</em>, ``<em>A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms</em>'', Management science, vol. 55, number 5, pp. 798--812,  2009.</p>
+<p>[<a id="cit-NAGDOC" href="#call-NAGDOC">4</a>] Numerical Algorithms Group, ``<em>NAG documentation</em>'',  2019.  <a href="https://www.nag.com/numeric/fl/nagdoc_latest/html/frontmatter/manconts.html">online</a></p>
+<p>[<a id="cit-AG03" href="#call-AG03">5</a>] Alizadeh Farid and Goldfarb Donald, ``<em>Second-order cone programming</em>'', Mathematical programming, vol. 95, number 1, pp. 3--51,  2003.</p>
+<p>[<a id="cit-LVBL98" href="#call-LVBL98">6</a>] Lobo Miguel Sousa, Vandenberghe Lieven, Boyd Stephen <em>et al.</em>, ``<em>Applications of second-order cone programming</em>'', Linear algebra and its applications, vol. 284, number 1-3, pp. 193--228,  1998.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing code_cell rendered">
+<div class="input">
+<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
+<div class="inner_cell">
+    <div class="input_area">
+<div class=" highlight hl-ipython3"><pre><span></span> 
+</pre></div>
+
+    </div>
+</div>
+</div>
+
+</div>
+    </div>
+  </div>
+</body>
+</html>
diff --git a/local_optimization/SOCP/static/portfolio_optimization_qcqp.pdf b/local_optimization/SOCP/static/portfolio_optimization_qcqp.pdf
new file mode 100644
index 0000000..dfcb20e
Binary files /dev/null and b/local_optimization/SOCP/static/portfolio_optimization_qcqp.pdf differ
diff --git a/local_optimization/SOCP/static/portfolio_optimization_using_socp.html b/local_optimization/SOCP/static/portfolio_optimization_using_socp.html
index 1f984cc..f6773ab 100644
--- a/local_optimization/SOCP/static/portfolio_optimization_using_socp.html
+++ b/local_optimization/SOCP/static/portfolio_optimization_using_socp.html
@@ -13164,6 +13164,21 @@ <h1 id="Modelling-techniques-in-portfolio-optimization-using-second-order-cone-p
 <div class="text_cell_render border-box-sizing rendered_html">
 <h1 id="Correct-Rendering-of-this-notebook">Correct Rendering of this notebook<a class="anchor-link" href="#Correct-Rendering-of-this-notebook">&#182;</a></h1><p>This notebook makes use of the <code>latex_envs</code> Jupyter extension for equations and references.  If the LaTeX is not rendering properly in your local installation of Jupyter , it may be because you have not installed this extension.  Details at <a href="https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html">https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/latex_envs/README.html</a></p>
 <p>The notebook is also not rendered well by GitHub so if you are reading it from there, you may prefer the <a href="./static/portfolio_optimization_using_socp.pdf">pdf version instead</a>.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
+<h1 id="Note-for-the-users-of-the-NAG-Library-Mark-$27.1$-onwards">Note for the users of the NAG Library Mark $27.1$ onwards<a class="anchor-link" href="#Note-for-the-users-of-the-NAG-Library-Mark-$27.1$-onwards">&#182;</a></h1><p>At Mark $27.1$ of the NAG Library, NAG introduced two new additions to help users easily define a Quadratically Constrained Quadratic Programming (QCQP) problem. All the models in this notebook then can be solved in a much simpler way without the need of a reformulation or any extra effort. It's recommended that the users of the NAG Library Mark $27.1$ or newer should look at the <a href="./portfolio_optimization_qcqp.ipynb">notebook on QCQP instead</a>.</p>
+
+</div>
+</div>
+</div>
+<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
+</div><div class="inner_cell">
+<div class="text_cell_render border-box-sizing rendered_html">
 <h1 id="Introduction">Introduction<a class="anchor-link" href="#Introduction">&#182;</a></h1>
 </div>
 </div>
@@ -13413,7 +13428,6 @@ <h1 id="Classic-Mean-Variance-Model">Classic Mean-Variance Model<a class="anchor
 <span class="kn">from</span> <span class="nn">naginterfaces.library</span> <span class="kn">import</span> <span class="n">opt</span>
 <span class="kn">from</span> <span class="nn">naginterfaces.library</span> <span class="kn">import</span> <span class="n">lapackeig</span>
 <span class="c1"># Import necessary math libraries</span>
-<span class="kn">from</span> <span class="nn">scipy.sparse</span> <span class="kn">import</span> <span class="n">coo_matrix</span>
 <span class="kn">import</span> <span class="nn">math</span> <span class="k">as</span> <span class="nn">mt</span>
 <span class="kn">import</span> <span class="nn">warnings</span> <span class="k">as</span> <span class="nn">wn</span>
 </pre></div>
diff --git a/local_optimization/SOCP/static/portfolio_optimization_using_socp.pdf b/local_optimization/SOCP/static/portfolio_optimization_using_socp.pdf
index 7092358..74d3674 100644
Binary files a/local_optimization/SOCP/static/portfolio_optimization_using_socp.pdf and b/local_optimization/SOCP/static/portfolio_optimization_using_socp.pdf differ
diff --git a/local_optimization/images/dfo_calib.png b/local_optimization/images/dfo_calib.png
new file mode 100644
index 0000000..5c60f93
Binary files /dev/null and b/local_optimization/images/dfo_calib.png differ
diff --git a/local_optimization/images/nlls.png b/local_optimization/images/nlls.png
new file mode 100644
index 0000000..3639624
Binary files /dev/null and b/local_optimization/images/nlls.png differ
diff --git a/local_optimization/images/screenshot.png b/local_optimization/images/screenshot.png
new file mode 100644
index 0000000..fc4d241
Binary files /dev/null and b/local_optimization/images/screenshot.png differ
diff --git a/local_optimization/images/xmas_tree.png b/local_optimization/images/xmas_tree.png
new file mode 100644
index 0000000..e4088ec
Binary files /dev/null and b/local_optimization/images/xmas_tree.png differ
diff --git a/local_optimization/python-nag-opt-solvers-links.md b/local_optimization/python-nag-opt-solvers-links.md
new file mode 100644
index 0000000..9175958
--- /dev/null
+++ b/local_optimization/python-nag-opt-solvers-links.md
@@ -0,0 +1,114 @@
+[![NAG Logo](../nag_logo.png)](https://www.nag.com)
+
+# Local Optimization<a name=top></a>
+
+See full offering of solvers at 
+https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/indexes/optimization.html </br>
+(https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html)
+NOMS solvers are identified with "handle_solve" prefix.
+
+**Abbreviations used**
+
+|Abbreviation     | Description  |
+|--------|--------------|
+| (FD)   | Indicates the solver does not require the user to provide 1st order derivativas and in which case it will use a Finite-Difference method to estimate them |
+| (no-FD)| Indicates that the solver requires the user to provide 1st or 2nd order derivatives|
+| AS     | Active-Set Method
+| DFNO   | Derivative-Free Nonlinear Programming 
+| IPM    | Interior-Point Method
+| LP     | Linear Programming
+| NLP    | Nonlinear Programming
+| QCQP   | Quadratically-constrained Quadratic Programming
+| QP     | Quadratic Programming
+| SOCP   | Second-Order Cone Programming
+| SQP    | Sequential Quadratic Programming
+
+## LP
+
+### Sparse LP
+
+ * IPM: `e04mt (handle_solve_lp_ipm)`</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_lp_ipm.html#naginterfaces.library.opt.handle_solve_lp_ipm</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_lp_ipm_ex.main</br>
+   Demo: https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Modelling/LP_demo.ipynb</br>
+   Demo: https://github.com/numericalalgorithmsgroup/NAGPythonExamples/blob/master/local_optimization/Modelling/production_planning.ipynb </br>
+
+ * Primal-Simplex AS `e04nc (qpconvex2_sparse_solve)`</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.qpconvex2_sparse_solve.html#naginterfaces.library.opt.qpconvex2_sparse_solve</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.qpconvex2_sparse_solve_ex.main</br>
+
+### Dense LP
+
+ * AS `e04mf (lp_solve)`</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.lp_solve.html#naginterfaces.library.opt.lp_solve</br>
+
+ * AS `e04nc (lsq_lincon_solve)` (also solves convex QP)</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.lsq_lincon_solve.html#naginterfaces.library.opt.lsq_lincon_solve</br>
+
+
+## QP
+
+### Sparse QP
+
+ * AS `e04nq (qpconvex2_sparse_solve)` (convex)</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.qpconvex2_sparse_solve.html#naginterfaces.library.opt.qpconvex2_sparse_solve</br>
+
+ * IPM `e04st (handle_solve_ipopt)` (convex, possibly also nonconvex)</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_ipopt.html#naginterfaces.library.opt.handle_solve_ipopt</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_ipopt_ex.main</br>
+
+### Convex QCQP (SOCP)
+
+ * Solver of choice: `e04pt (handle_solve_socp_ipm)`</br>
+   Doc:     https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_socp_ipm.html#naginterfaces.library.opt.handle_solve_socp_ipm</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_socp_ipm_ex.main</br>
+   Demo:    https://github.com/numericalalgorithmsgroup/NAGPythonExamples/tree/master/local_optimization/SOCP</br>
+
+### Dense QP
+
+ * AS `e04nf (qp_dense_solve)` (convex, possibly also nonconvex)</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.qp_dense_solve.html#naginterfaces.library.opt.qp_dense_solve</br>
+
+ * AS `e04nc (lsq_lincon_solve)` (convex)</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.lsq_lincon_solve.html#naginterfaces.library.opt.lsq_lincon_solve</br>
+
+
+## NLP
+
+### Sparse
+
+ * SQP AS (FD) `e04sr (handle_solve_ssqp)` (Mark 28.3 / 28.4)</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_ssqp.html#naginterfaces.library.opt.handle_solve_ssqp</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/_modules/naginterfaces/library/examples/opt/handle_solve_ssqp_ex.html#main</br>
+
+ * SQP AS (FD) `e04vh (nlp2_sparse_solve)`</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.nlp2_sparse_solve.html#naginterfaces.library.opt.nlp2_sparse_solve</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.nlp2_sparse_solve_ex.main</br>
+
+ * IPM (no-FD) `e04st (handle_solve_ipopt)`</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_ipopt.html#naginterfaces.library.opt.handle_solve_ipopt</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_ipopt_ex.main</br>
+
+ * Conjugate Gradient AS (FD) (only bound constraints) `e04kf (handle_solve_bounds_foas)` (also works on dense)</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_bounds_foas.html#naginterfaces.library.opt.handle_solve_bounds_foas</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_bounds_foas_ex.main</br>
+   Demo: https://github.com/numericalalgorithmsgroup/NAGPythonExamples/tree/master/local_optimization/FOAS</br>
+
+ * DFNO Model-based `e04jd (handle_solve_dfno)` (no derivatives required, solver of choice is problem is noisy)</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.handle_solve_dfno.html#naginterfaces.library.opt.handle_solve_dfno</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.handle_solve_dfno_ex.main</br>
+   Demo: https://github.com/numericalalgorithmsgroup/NAGPythonExamples/tree/master/local_optimization/DFO</br>
+
+ * SQP AS `e04ug (nlp1_sparse_solve)`
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.nlp1_sparse_solve.html#naginterfaces.library.opt.nlp1_sparse_solve</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.nlp1_sparse_solve_ex.main</br>
+
+### Dense
+
+ * SQP AS (FD) `e04uc (nlp1_solve)`</br>
+   Doc: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.nlp1_solve.html#naginterfaces.library.opt.nlp1_solve</br>
+   Example: https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.opt.html#naginterfaces.library.examples.opt.nlp1_solve_ex.main</br>
+
+
+
+
diff --git a/multivariate_methods/k-means.ipynb b/multivariate_methods/k-means.ipynb
index 68b92e1..9c724b4 100644
--- a/multivariate_methods/k-means.ipynb
+++ b/multivariate_methods/k-means.ipynb
@@ -28,7 +28,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2dfXAUZb7vv09CfEeWTbJAApjNhIDCCc5JFE5YNln1Il5gF6y75V1WalEOYs7xsornropbZZVVi7W1JZ5LcW54WRfORS09uxK2AIWsugksWYHEMZFIwJls1GQAJyyVdVE0JM/9Y9JNT0/Pe8909+T7qUqRmel++ume8O1f/57fi5BSghBCiHPJsXoChBBCUoNCTgghDodCTgghDodCTgghDodCTgghDmeMFQctKCiQJSUlVhyaEEIcS1tbW7+UslD/viVCXlJSgtbWVisOTQghjkUI8bHR+3StEEKIw6GQE0KIwzFFyIUQ3xBC/E4I0SWEOCmE+CczxiWEEBIbs3zk/wfAASnl/xBCXAXgOpPGJYQQEoOUhVwIMQ7AdwGsBAAp5dcAvk51XEIIIfFhhmvl2wACAHYIITxCiF8LIa7XbySEeEgI0SqEaA0EAiYclhDiNLY0+9Di6w95r8XXjy3NPotmlB2YIeRjAPwjgHoppRvARQBP6jeSUm6TUlZJKasKC8PCIAkho4CKyePwyCseVcxbfP145BUPKiaPs3hmzsYMH3kvgF4p5dGR17+DgZATQki1qwCbl7vxyCse3D9nKl46+gk2L3ej2lVg9dQcTcoWuZTyLIBPhRDTR966E8CHqY5LCMlOql0FuH/OVGx6x4v750yliJuAWXHk/wvAy0KIDgC3Athg0riEkCyjxdePl45+grV3lOGlo5+E+cxJ4pgSfiilfB9AlRljEUKyF8UnrrhT5rryQ16T5GBmJyEkY3T0DoSItuIz7+gdsHhmzkZY0bOzqqpKsmgWIYQkhhCiTUoZ5v2gRU4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk6IQ9nS7EOLrz/kvRZfP7Y0+yyaEbEK04RcCJErhPAIIfaZNSYhJDIVk8fhkVc8qpi3+PrxyCseVEweZ/HMSKYZY+JYPwVwEsCNJo5JCIlAtasAm5e78cgrHtw/ZypeOvoJNi93o9pVYPXUSIYxxSIXQkwGsAjAr80YjxASH9WuAtw/Zyo2vePF/XOmUsRHKWa5Vv4dwM8ADEfaQAjxkBCiVQjRGggETDosIaObFl8/Xjr6CdbeUYaXjn4S5jO3CvrvM0vKQi6EWAzgMyllW7TtpJTbpJRVUsqqwsLCVA9LiKMxQ+gUn/jm5W6sWzBddbPYQczpv88sZljk8wB8XwjRA+BVAHcIIV4yYVxCshYzhK6jdyDEJ674zDt6B9Iy50TQ+u83Np5Sbzh0/aQHIaU0bzAhagH8m5RycbTtqqqqZGtrq2nHJcSJKOKdzQuVGxtPYdM7Xqy9owzrFky3ejqORwjRJqWs0r/POHJCLCLbFyrt6r/PRkwVcillUyxrnBASJJuFzs7++2yEFjkhFpDtQmdn/302QiEnxAKyXegernGFuYqU1wxLNB8KOSEWEEnoHq5xWTQj84gWWsmwxPRAISeEmEo0sWZYYnqgkBOSAsxgDCeWWGd7tI4VUMgJSQG6CoyJJtbZHK1jFWZWPyRk1MEKhMboxXquKx/VroKQaJ1qVwHmuvLpXjEBWuSEpEi2ugqSdRtFC63M9mgdq6CQE5Ii2eoqSNZtFE2sszlax0pMrbUSL6y1QrIFvatA/9rppKsejBKKqPedK2JPjGGtFULSgJNcBbFcJUafA8CMiWNNdxuZtUjMqKEgFHJCUsBJroJY4mn0+Zpdbfigb8B0t5FZ8eR2ihqy8qZCISdklBBPfLf28zW7gr1itq6oTEs9GDMWiRO9IaRTbK28qVDICbGQTFtxscRT+3lF8ThsXVGZNreRWYvEidwQ0im2VmatUsgJsZBMW3GxxFP7+cmzn4ftn6rbSLlxaReF57rycffMCUlb+4ncENIttpaFokopM/5TWVkpCSFBjngD0v1so3z+YJd0P9soj3gDSY9V3+RV91d+P+INqL/PeuaAfPL19pDjKtvHem0GyphPvt6uzk05hjJPo3PR7q/dJtk5P3+wS970xD75/MEu085Ne3wzvksjALRKA02lRU6IxZhpxWkt/IrJ47BmVxvW7GpDxeRx2NvuBwAsmV2kHvfumRPU95UIHCBoOZvpSlEscWXMg53n8NvWT7FqZ6tqEeut/XieVpQ5d/QOhIyvvDZyUaUr7t/KGvMUckIsxkxh0boO3vWdV99/13ceBzvPhfi8gaCoH+w8hxZfvyqiWrE0KwJHK8rVrgLUlBegwePHwlkTIt644nGDKFFD+vGV13oXVTrF1spQVCYEEWIhZiUU6RNslKbH1a58VN00PmoD5GSTfhJN6lGOU1NeiD2ePix1F6H5dH/M48XbwDme83B6IhITggixIWZZcVqLtMXXjx0tPbgmLweeTy5gR0tPVGs/WddOogu1QUu8EA2ePix1F+OF+9y4e+YErNnVpo6xpdmH7Yd9WLnjWMi5VLvysfVQNx7ceSxkTK37JJ7zSHfcv1Wx5BRyQizELGFRbgBrdrXhwZ3HAQCPLyjHmNzgf/G5rvyIbgQj1048WaAAwuLO7555xVWiH6PF1483PjiDmUU3ovl0AC2+ftVfr/jpc3OADfu7UPyNa7BmVxv++T+DT+7fm1GIHAH8sSuA7Yd96njaG4cdat5YFUtOISckS6h2FaCieBwuDQ7jgeoSDA0Hk3m2rqhER++AobUfyWecm4O4skABqFbw4NCwKszabRTLes2uNkgJLHUXqccBgLV3lmGPx4+NjadQ39SN9Ytm4M0T5zD1m9fhi6+HcNfN30J9UzdeXHkb1i+agY2NH4X5zO3SzNqqWHL6yAmxOVq/rvI7ANWvq/h4FeFMxNcdzWdsNJ7yviKea3a14dLgEKQErr0qN2wxVRHYmyeORUffANbeWYb6pm41OmZvux8HO8+pLhfFD674xW8vGY9jPRdC/ONGPnO7+b7j9esnCn3khDiUaCGFilAqFnSiFmk0146Rz1nvOrg0OITBIYklsydh64rKsGMqYxzxnccD1SVYPd8VElVzsPMc6mpL0Xw6oLpEth/24aWjn2CZuxjHey5gmbtIdZVEcp/YqeaNFS4eCjkhNidaSKEi3kPDMD307andHYYLpUoW5i/2n8TlIYllI9EnAAxdN3pR094gasoLVAt93YLpqKstxYb9Xbhn1gQ0nw5g/aIZaD7dj7raUvUGlin3STILl1a5eNjqjRAHoBW/tXeUAYD6u5JMY7RPsr7ZFl8/9nWcARBcKJ3ryg8ponVpcBgNnj4scxfjhftuDREwxQrWh1Iqbd3qaktVcd9++C9Yt2CaOs+hYWD9ohk44j2v7tcduIjuwEUsrpiknpe225Di/zcb5enDyA8fiWhRSOn0k9NHTogD0MZI72jpAQA8UF2Sth6hWl+89riLKyZhyewirNrZioWzJqL5dCBE6LQ+aSO/9fbDPmxs/AgvrqyKO27eyuYd6WqskSyRfOQUckJsjt4SVCzjxRWTUFp4PeqbunH3zAlqxIh+ETSasMazIKhduNM3S05UVJOdg5WCmq6Fy2TgYichCWCnzjPax/WO3gE1pBAA6pu6UVdbCgCGi6Da+OVkYpz1Pu697f6UfPGJLkpqa7Ro/eqZ6sBkh9j0eKCQE2KAnTrPaMVP+b3aVYDn7q3A5uVubGz8CJcGh9Tt3/WdD0vOAa4UyVqzqy0kxhlAxOJSyjbXXT0GdbWlONh5LuRzpbhWuqJDlO/hSiRLEfZ4/MjNgHLZJTY9HijkhBhgZZOARKh2FWDhrAlo8Phx183fwgPVJYbJOYplu2R2EQaHhkcs20LsbfdHvEFpnwQqJo9TrX+lsmAmbmzVrgI1kqWmvBDNp/uxftEM1Dd1p11QndSPNWUhF0JMEUL8UQjxoRCiUwjxUzMmRojVWNYkIAFafP1oPt2vWqpbmn24Ji8HeTqTVbFsO/0DyMvNwVW5Ag2ePuzx9EW8QWmfBBQRq2/qxhdfXQ67saXTFTU0DCx1F6PB04f750xVY9G1gmp0/Kd2d+Cp3R1Jz8lOsemxMMMivwzgcSnlLQDmAvhXIcQtJoxLiKXY3T+qffT/YdUU5OUKfD0kcc+s8OQcrWV7183fQk6OAAAkEuoQ7caWTldUxeRxIQlDis88Vu3yfR1nsK/jjC3cY+kmZSGXUp6RUr438vvnAE4CKE51XEKsxI7+Ub3V2dE7oLo69rb7cXVeLpa5i3HgxFkA4ck5Qcu2CA2eYIGqtXeUIS83Ry1YFYtoN7Z0uaLi/R6Mjq8sCtvdPWYGpvrIhRAlANwAjpo5LiGZxo7+Ub3VWTF5HDY2foRP/3pRbRrxwn23Yt2CaVi1Mxjeq7da3zr5mep6mevKx9YVlWpjiWjEI6hai33GxLGGYyTqaknkezB6YnCCe8wMTBNyIcQNAF4H8KiU8m8Gnz8khGgVQrQGAgGzDktIWrCjf9TI6ly3YBp2v+dHXW2pGtdd39SNdQumGVY5XFwxCb9ZeZtqqQLhlrsR8Qiq1mL/oG8gpM64WW6NLc0+dPpD56otu6t/YrC7e8wsTEkIEkLkAdgH4KCUcmOs7ZkQREjyaBNUrrt6DHJzgI2NH2HhrAlqXZKh4aAFriTapLs6oFH2pZK4pM9ATWQu+nG3H/Zhw/4urF80A6vnu9TP62pL1Zot+uMrFRkzmRGaLtKWECSEEABeBHAyHhEnhCSP3sLMzQkmBVXeNB4NHj9umXQj6pu61WqIigWc6hNGrKgUI4t964pKVBSPC3NrJLIwqn8KUeqV1zd1h/i9jYqGLa6YhMUVk2zlHksXZhTNmgdgBYAPhBDvj7y3Xkr5hgljEzIqiMdK1VuUgb9/hU1ve/H92ZPwytFPMWPCDfiTtx8l+deFWKdmEKuAVKQbwsmzn6s3nbmufNVvrYizknJ/98wJYftqz19bMGz1fBc+//JyzKJhz91bEfZeKoXE7IwZUSt/klIKKWWFlPLWkR+KOCEJEI+Vqrd6l8wuwtCwxG9bg42Mu879HTkC6Dn/BWrKC00VLK34Lt/+rlpOVjmGfiEz1uKofhFyyeyiiOevfwpRsjyz3e+dCCxjS4gNMLJS9Ra13uqtdhXgB7cW4ffv+/HmibPIyxW4PCTxnbJ8HDhxFj+s6jddzBXxvSbvig1oVN41VjlXvTgH/v4V6mpLQ86/rrZU7SCkjDX22jEhPnJ9Ea/RCqsfEpImkllgTLTSXouvHw/uPI5Lg8O4Ji8Hjy8oV1PpzXavmFVKN9rC6F03fwsNHr/arEKp6qjNIM3NCcbEa11Oit/bTu3e0gGrHxIShXSkmCea7ZhMqNzedj/ycnMwz5WPvNwczCwaF7L4l+jCXqTr8NTujhBXydYVlWrNFmUhM95rGGlh9LaS8djj8eP2kX/rakvx3L0VYU8lq+e7QoRZWbS1U6GzTEMhJwTpSTFPJNsx0UzSLc0+bD/sUxOBXl49F2vvLAtJBEom7j3SdQAQNnflBqLcdCLt+/H5iyHnoa2PruX9Twew1F2MYz0XsNRdHFYYK9aNwimFztIBhZwQpE8E4s0sTDST9OPzF/GrA6dDEoE2ve3FP7m+mVJ4XaTroLWMFYFWbiBKaVwA6u+PvfY+Vu1sxeblbpQWXo9VO1tjLuRqmzA3nw6o5QcU4rnZhtYtLwxzs1hRTz4TUMgJGSEd6dzxuksSjfNeMrsIV+flYNPbXmxsPKUK6T/PLzXcJxHXUbTrsKXZh18e6FJvIABQWng9vvx6CL880IUls4vw1eAQGjx9WDhrIgComabRbpJKmVztE0l9U3eYSMe62SrXe5m7GHs8fdh+2Ke+n81uFgo5ISOYnc6dzsJbil9Z8VMPDg2rGYxGJOI6inYdKiaPQ3fgIja97VVT4De97cVVY3LQHbiI37Z+isEhiatyBfa2+7Fq53FsXu7G6vmukDos+nnG+0QS7Sajvd7TJ47F8jlTsGF/Fx57zaNmf2ZjMhBAIScEQHpE106Ft+J1HcUT/711RSW+ujyMn/zmGB7ceRwA8OufVGH25HFo8Pix1F2Eh2tcuDws8eXgMDr9wUYUO1p6cE1eDj7oGwi7rvE+kUS7yegbYbx54hzmlRWgweNHTXlhmIWfDqxqEcjwQ0KQfFNgq9DXMlHCAaNZ5UDs8MZ4r8Njr3lCyuGOvXYMfrG/C98py0d77wC+ujyMRf8wEQdOnMXgkMSYXAGBYIMIJfkn0TUIo7DFaOModVluKxmP4z0X1NjzdNLi68eqna1Yt2BaWC0YbchksjD8kJAo2LHaYTSUGuJbV1Sq4YDa942Ix3UUz3Vo8fXjrZOfIS832Jzi/zYFBfPpRTPwL98rAwDkCuCtk59h3YJyAMClwWFIQI0JT+bJJJEnHKUK5FJ30UgUTFFG2sNVuwqwbsG0MJdOup8GaJETkkHMsvwTHSdRazbS8QCoTwJr7yzDHo8fnf6/YUyOwP9bdTs6egfU7fa2+7Gv4wy+GhzCsASuvSo35hODWSiJQ/VN3SGZomZYxfGgPLHcXjIe3sBF08IgaZETYgPMildP9AkiVX+9Mu+97X4srpiEtXeWYdPbXnzy1y+wzF2M3Jzg4qYyr2pXgdro+eshiX+pdYW1n0sn8UTBpIsWX7CP6u0l43Gs54LpdW+MoJCTjGLVYpBdsCppJVXXkRLnfbDzHApvuBqb3vZiaFhiccUkvHDfrdjxwG1hnYaUrFPFlQMkl22aDFYtNGt94t7AxbAwyHRBIScZZTSnUSukI1493SgWbk15ATa940X+9VchN0dgyewidZu7Z05QhbLF169mnWqjX4DMuDasWvNQbnjK08AL992K9YtmYGPjR2l9EqGQk4wymtOoFZzYfqzaVYC62lLs8fgxfeJY9Jz/At+fPSnE375kdpEqlHYKvcwkD9e4wppcrJ7vwosrq9J67lzsJJaQaJW/bCHVRUerUOZZU16IBk8fvlOWjyPe81g6UqXQ7vPPFrjYSWyDEy1Ss0jUUrXLmoK+FsqHZz7HvLJ8NHj8jnEPZTMU8lGAXcRAOW660tadQKK+20ytKcT6G9FHgdTVluKI9zyWuYscfzO20/+PZKGQjwLstMA4Wn2nyZKpNYVYfyPa701Jtlm/aAamT7zR8TdjO/3/SBb6yEcJ2u4uiXZ0IdaTiTWFeP9GnFbOIB6c8v+DPvJRjhND3rKFVB/dM7WmEO/fiNPKGWiJ9F1sO9SNmvLCkHN3knuFQj5KGM0LjFaTyqN7JtcURsPfSKTvovgb12CPpw/L3MV46egn2H7Y5yj3Cl0rowCnhrxlE8k+umfKjTGa/kb034WSwKP8W1NegD0ef0aqJSZKJNcKhXwUkIgYZKP/0y7YOXZ+tH3v2u/iuqvHqOeuvL/MXYTpE2+03bnTRz6KScSnmQ0r+HbE7m4Lq/3emQwB1H8Xiohr328+3e+sv3kpZcZ/KisrJbEvR7wB6X62UT5/sEu6n22UR7wBq6fkaJTrqVxH/WuSuWsU6TjbDnkd8R0BaJUGmkrXCjHEzm4ApzHa3BbJkokQwEjfxbZD3Xjou6W2/47oIydx45SYWpJ90ICIDn3kJC7MCnfLhrRnklnsvo5gZyjkJASzUui5aEoSIdtr8KTbsKFrhaQNumhIvGT7OoJZcfr0kRNLoM+TjBZi3YzMMGzS6iMXQiwUQpwSQniFEE+aMSZxPvR5ktFELHdiOusdpSzkQohcAP8B4B4AtwD4kRDillTHJc4m232ehOiJVXI4nYaNGRb57QC8UspuKeXXAF4F8AMTxiUOJtaiKaNaSDYSyepOt2FjhpAXA/hU87p35L0QhBAPCSFahRCtgUDAhMOObuwuhLFSvhnVQrKRSFZ3uhuqZCz8UEq5TUpZJaWsKiwszNRhsxanC2GmOt8QkimiWd3prmVjhpD3AZiieT155D2SRrJBCNnsgmQTVrYxHGPCGMcBTBNCfBtBAf+fAJabMC6JgVYI195R5jgh1D+GznXlO+4cCFEwsq6rXQUZ+ZtO2SKXUl4G8AiAgwBOAvgvKWVnquOS2Dg5vI9RLYSYhxkWOaSUbwB4w4yxSHzoM8PmuvId5V6J9hjqhPkTYidYa8VGJBKJYqY/LtkImHj2i7SNMmctTmngS4jdoJDbiEQiUcxcBU82Aiae/ZweXUOIE2CtFZthVaGpFl8/Vu1sxcJZE9B8uj+kuE+0wkXxzJfFswgxB9YjdwhWheRVuwqwcNYENHj8qCkvCKnQFs16jme+DDMkJL2YsthJzMOqkLwWXz+aT/djmbsIezx+AALNpwMxred45mu0TUfvQFaXLSUkk9AitxFWheRpj/vCfW4sdRejwdOHmvJCVWiNFi23H/Zh1c7WqPONdE65OaDvnBCToJDbCKsyw7THDVrmASxzF+PAibOq0BotWm5s/AjrFkyLOt9I5zQ0DMdnphJiF7jYSVRidTFJx6IlG08QEj9c7CQxifVEYPaipZMzUwmxE1zsJCqxakWYuRDr9MxUQuwELfIsIp01ys1eiLWyUhwh2QaFPItIJosyXvHXC29H7wDqaktDhDeRm0a66zMTMpqgkGcRydQojyT+H5+/GCLwisAqQl0xeRzqm7rVm4TZ4YN274BEiJ2gkGcZiS5IRhL/JbOLYnYET2f4IGu0EBI/jljs3NLsYxZgHGxp9iE3ByELkmOvHYOhYeOFTIVIDSoUodaGG2ojWLT7zTM5A1V7o2CNFkKi4wiLPNutM7PcCLk5wIb9XairLcW6BdNRV1uKDfu7kBvjW44UBqi37jt6B0IyMlt8/dh+uBtjcgQ6+gZMDx9kjRZC4sMRQp4N/SmjYdaNamgYWL9oBuqburGx8RTqm7qxftEMDA1H3idaNIpe4HNzgPqmbtTVlmLNrjas/M0xXBocxhP3TMfWFZWmlxNQjj/PlY8dLT1hqf/x3OjoayejAUe4VgDn96eMhlluBMV98vmXl9XrtHr+FZeKkYtqb7sfd8+cEBYGuLfdj4Od58LivOtqS1Hf1I1x1+ah99JlLHMXq8cws8OP9gYDAGt2tWHNrjZsXVEJACGfRUO5SRplqxKSLTjCIgecnwUYyzI0y40Q7ToZWf4HO89hyeyikDGqXQW4Kf/6iDVSasoL0HvhS9xeMh7NpwMhrhiz1iy04Y7VrgJVwDe/403oiSzbn+YIAQBIKTP+U1lZKRPhiDcg3c82yiPegOFrJxDrHJTXzx/sinhu9U3esPePeAOyvskb1zHiPU40th3yypIn9slHX31Pup9tlNsOeTP2XTx/sEve9MQ++fzBrozuS4hdANAqDTTVERZ5NmQBRrMM482ajOZL39Lsw952f5i1effMCSHXKRXLX6l4uH7RDLxwnxubl7tVn3m6v4tUnsic/jRHSEyM1D3dP4la5NmEYhl+95fvyG2Hgpa0YmlvO+SVP/nNUSllqKWtRW9RP/l6uzziDYRY30e8Afnk6+2GlnIqFnmsJ4J0kcoTWbz7WnVuhCQCIljkFPIMohXRGT9/Q5Y8sU8Vc8VlobyOhtZNoBfwWc8ckNN//oac9cyBiCLuNBdVKiIb775OvTZkdBFJyFmPPEMozY3XLZiG1fNdI6+P48vBYUwefy36LnyJ9YtmhESZRBpHH90CQH1v2+FuXBocNqzvrUStaNusKYlVyvv6xcpMJmNZnfjFJtHE7rAeucV09A5g3YJpqG/qRouvH9WuAqxbUA4BoPfCl7itZHzcIq73pQNQ/d4AYvqCtb72ve1+HPvL+ZC4dW00jXbbLc0+bD/si7htKihZqdo1AKWVXKYSv5iARJwKhTxDPFzjwur5rpAFz42NpyEBTJ84Fsd7LmD74aAgRhLHSIu+e9v92NHSg2vycpCXm4O5rnzDBdOKyeOwamcrOv3BcdbsasPv2nrxTlcAt04ZF7LwalRT5dTZz9XMUaNtgeQTcJQiXHW1pXjkFQ8ee+19bNjfFdJKLt1wUZQ4FcckBGULWqsPAH48ZwrePHEOy+dMwYb9Xejpv4g3T5yLO2Gl0z+APR4/lrqL1HhwxWrXJ+gEnwKmYcP+Lix1F2FwaBiDQxJ5uQLHey5gY+MpQ5eCds7L3MXY2PgRPvR/jubTgZDIG8VFk0wCjvaGUVZ4PRo8fSHJRumGjS6Ik6FFniDxWJzRtlGsvpu+eR2uzcvBoooibF7uxpsnzmFeWT5eO94bUTyiNUB+7t4KNXlGK+B63/Lq+S4sdRehwePH4NAwrsnLwTV5ubjr5gkRXQpaS7X5dACVN41Hg6cPNeWFYZZ5Kgk41a4C1JQX4FjPhbBko3TT0TuAu2dOCJmL8rTDdH5idyjkCRJPXZRI2yg+4M3L3Wj+2ffw4srbQnzcf/Kex5xvfzPsmMpNwEgkX1xZFWa1RsuwbPH1462TnyE3J1ib5Z5Zk7D2zjLsGbGA9S4FvV++rrYUR7z9+E5ZAfZ4+vDYa54wsY7ma452k9t+2Ic9Hj+WuYvgDVxU3SyZEPOHa1xhpXsB4GDnuawpzkayF0atJEE80Q1G22ijRbTbKXVN7p8zFTtaegAAW1dUGnayB0I7z1939Zi4Iz2UsW6dMg7Hey7grpsnoMHTh+uuysVj/20ahobDa5NoI0mU/etqSzE0DJw6+zc0jAjvC/e5w45jdH3056MdU3m6UKJ6tMfKVLliRq4QOxMpaoVx5Enyo21/Dkv51scnx5MWbhS/POuZA3LWMwcMk3b0CT36FPlo8c/1Td6w7R/YcVROW/9G2DGMYrS1MdnKcR599T054+dvxiw9EKtMgJ0ScpjOT+wK0r9hqRQAAA13SURBVJEQBOBXALoAdABoAPCNePZzupAbJd4kUztFysgJK5FuFEbHUMQ5nmxNMwQzmljHO75dxTLVWjSEpJN0CfkCAGNGfv8lgF/Gs5/dhDwRcYsnkzLVLMFIYhJtnpkQRuX4estcef2T3xxNKIvSbmLJ7E5id9Ii5CEDAcsAvBzPtnYT8kT+A+vFVBHQ5dv+HHEbZcx4rN5kxCRTwhhrbom4VewolnZy7xBiRCQhN22xUwixF8BrUsqXInz+EICHAGDq1KmVH3/8sSnHNYtkFrnSsTCWaJp6pMXDdC3SRTtnJTuzvqlb/Vy/WGl1Gj4hTibSYmdMIRdCvAVgosFHT0spfz+yzdMAqgDcK+O4M9g1akUbDaKvU6In0wIaiWTqp6RKpOukXIOa8kI1oUebNEQISY2ka61IKe+SUs4y+FFEfCWAxQB+HI+I25VE07PtUiP94RoXql0FIbHr2tdKDHSqiUza15GuU7WrAHW1pdjj6cPtJeOxx9OnpvNnCvboJKORlBKChBALAfwMwPellF+YM6XME29jBy2KgGoxs9WZIkhaYdK+XrnjmKGIrtrZaphRqU9Semp3B9bsagtJdsnNAVbtbMVTuzvU5svKzaDF14+ndndEvU4tvn7UN3VjqbsIx3ouYKm7SC0SlinMamRNiJNINbNzM4CxAP4ghHhfCLHFhDllHLtY11oUQVKyQR/ceQxrdrWpr+eV5WPNrjY8tbsDwBURXThromFGpT4rdF/HmZDjKfuvWzAN+zrO4MGdx7FmV1tImVwAUa9TR+8A6mpL0Xy6fySdvz8j3YO0sEcnGY2kVDRLSllm1kSsxMiKVuqWxIvZi3haQaopL8Aejx95uQKb3vaqjYgBYF/HGRTecLW6sFjf1K26Pea68iMWv1p7R5laGEq/cPn5l5fVol7v+s4bLmoq56r8tPj68fH5izjYec6w8FQm0Z8nRZxkO6y1YhLpeKRXBKnB48dtJePx9ZDE4NAw3vUF64dvXVGJB6pLsOkdL2rKC7Cx8SPU1ZaGuD22H/ap/mG9fxtAWE0U7TYADK37SOcKRLfYMwXL0ZLRBmutmIjZ4YhP7e7Avo4zuOvmb42Uqi3G/g/O4OvLw2EW9fbDf8G9/1iklsCtdhVg+2EfNjZ+hBdXBhe59VE2a3a1AQAeqC4JseiVqn97PH2QAPJyc9SnAOUJw641SYw6MVlRs4WQdMAOQUmSSBREsh1mjI6x/bAPr7/Xh8tDw3jr5GdYv2gGDpwIivhVY3Kw/XC36sNet2A6XlxZhTdPnFMrBm5sPIX6pm68uLIK1a6CsHUAhcUVk1QLXrHogaDLZkxuDh5fUI7FFZOwZldbyOKoXbvpGHViUgpyccGTZCsU8hgk4jJJ9pE+Up3x/313OZa6iwEAH/r/hkuDw7hjRiF2PnAbyieODRlDcWMMDYe7S4DwKJuO3gFsXVGJ5+6tUPd/cWUVhoavfLZ1RSXqm7pReMPVAIKir61iaEf3hVEnJu0NjZCsxCjdM90/dkvRj0U8KfDpqq8i5ZUyAI+++l7YPumuY2JUw0U5xpOvt4cVDLNTSrtdC3MRkiyIkKJPizwO4mmUoHVdaF/Hu9AX6Rih3Xn6w2LHtT7fZOLho2FkdW9p9mFvux+bl7vVRgyd/mB3nb3tftvEbNv1iYGQdEAhj4NooqDNoDRqexbv4prRMRIV5mjx8IlmPEY6dm5OsGuOMn5dbSk27O/CpcGhkNBDKzH7hkaI3WHUSgziqamSagSHdsyO3gG18NTdMyeoDZW10SLxxqZH6+6j7wQUbV/tPLUNlpXzrSkvQIPHH1eNmmRJJE6fhblItsIOQUmSiUYJRp13th3yqu8n6+vW77vtkFeWPLFPPvqqJ2X/+RW/vSeqT96s0rB2Ln9LSKYAfeTJEU9NlVT9sdpjKO6Q+qZufPHV5ZRSzPXp6sE6KMVo8PSlFDKonO8yd7FaGCuSC8MoImfVzlbk5oSPGa2wFVPvCYkMhTxF0uGPNTNGWztWTXkBmk8HUloA1J7v9IljsX7RjJCYbf0Cr5EAa+O8tWPGWiS1a+w6IVaTUq0VEn2BMVWLN1LNlGTGWuYuwh6PH+sXzcDq+a6QOiiJjK09X2W/mUXj1PM1qlGjr32yer4LM4vGJbyuYOZ1ISSrMPK3pPvHST7yTGOmL1jfFFlp0qzvtylletucRYptT2RdgT5yQiL7yCnkNsNMQU22qbTR62SJNK5yU4k3cYn9NAmJLOQMPyRquB4QbCyxcNYEvHXyMyyumITn7q1IKXTPKBRQW8zLyjZ5hDgNFs2yEXZrR6ZElgDAwlkT0ODx49LgEJbMLkq5HK9R1M/QMEJqn9ihkQchToZCbgF2a0emCOmaXW1488RZ5OUKXB6S+G1rb0iiklk3n4drXNh2qBvbD1/Zt9pVgNwcYOWOYymfDyGjDQq5Bdg1JnpwaBiXBodRV+NS481rygvDmjsDqd985pXlY8P+LlXMtx/2YcP+LswryzftfAgZLTD8MM1ESxe3Uzuyve1+5OXm4KH5pdjR0gMAWOYuxoETZ/HDqv6Qm48ZzSRWzw/62zfs78IfOs/heM8FNTSSEJIYtMjTTCRLNjcHhpUFrfCdt/j6cbDzHLauqMRc1xWL+IdVk/Hiyip1/mYn5Kye78JtJeNxrOcCbisZn5KI223dgZBMQiFPM0ZuFG1LNX1lQTPcF4mKmjbJp6N3AIsrJmHtnWVqko/S+u2p3R2mlobdftiH4z0XcHvJeBzvuRDiM08Uu607EJJRjGIS0/0zGuPItckv0WKilTjr5dv+LGc9cyBku3jjps1qcqHdf9YzB0Lmk2qcuVLAa9shr+HrZDC7qQYhdgMR4sjpI88A+tRyI9+yNrVdcV9ck5cTMoayKBqLVP3ZRvsvrpiEJbOLTCtFcMR7PsQnrvx7xHs+aReLvhSA1esOhGQKJgSlmXjqmRttf/+cqeqio9LlPtHFxY2Np1RRS6ZOeKr7Z5pU68ITYneYEGQR0Ypq6dFXUty6ohKDQ8NJLS6mWlrXaa3S2BWIjGYo5GkmnnrmCnrRB4C83BxUu/ITEtNURc2JopjIDZOQbIOuFZuSqEtGS6qtzuLZn+3UCMk8kVwrFHKbYnehTOVGQwhJDgo5MR0uLhKSWbjYSVJGn2hU7SpATXkhW68RYjEUchIXW5p9YZmnTzd0oMHTh2XuYkdEthCSrZgi5EKIx4UQUghBkyxL0FvfFZPHYdPbXtw6ZaTX5q/fxctHP8WP50zBC/fd6ojIFkKylZSFXAgxBcACAJ+kPh1iF/S1SxSO91xAWeH1+JP3PL5Tlo9fLKsAwHA/QqzEDIv8BQA/A5D5VVOSNoyKfW1dUYm7bp6AYyOFrj4883mYz9wOETWEjDZSEnIhxA8A9Ekp2+PY9iEhRKsQojUQCKRyWJIh9GVrO/0D2DPiE/cGLqKutpTuFEJsQMyiWUKItwBMNPjoaQDrEXSrxERKuQ3ANiAYfpjAHIlFaNP0d7T04KvBYbXQlRJ6WFdbmnThLEKIOcQUcinlXUbvCyH+AcC3AbQLIQBgMoD3hBC3SynPmjpLknH0CT6Bv3+FfR1nMLMoWN9b6xOnO4UQazEtIUgI0QOgSkoZ8zmbCUH2x+6ZpYSMRiIlBLEeOTHESKy1NdMJIfbBNCGXUpaYNRYhhJD4YWYnIYQ4HAo5IYQ4HAo5IYQ4HAo5IYQ4HEvqkQshAgA+zviBI1MAgOmJV+D1CIfXJBRej1AydT1uklIW6t+0RMjthhCi1Sg2c7TC6xEOr0kovB6hWH096FohhBCHQyEnhBCHQyEPss3qCdgMXo9weE1C4fUIxdLrQR85IYQ4HFrkhBDicCjkhBDicCjkOthIOogQ4ldCiC4hRIcQokEI8Q2r52QFQoiFQohTQgivEOJJq+djJUKIKUKIPwohPhRCdAohfmr1nOyAECJXCOERQuyzag4Ucg1sJB3CHwDMklJWADgN4CmL55NxhBC5AP4DwD0AbgHwIyHELdbOylIuA3hcSnkLgLkA/nWUXw+FnwI4aeUEKOShsJH0CFLKRinl5ZGX7yLYAWq0cTsAr5SyW0r5NYBXAfzA4jlZhpTyjJTyvZHfP0dQvIqtnZW1CCEmA1gE4NdWzoNCPkIijaRHIQ8CeNPqSVhAMYBPNa97McqFS0EIUQLADeCotTOxnH9H0PgbtnISo6pDkFmNpLOFaNdDSvn7kW2eRvCR+uVMzo3YFyHEDQBeB/ColPJvVs/HKoQQiwF8JqVsE0LUWjmXUSXkbCQdSqTroSCEWAlgMYA75ehMOOgDMEXzevLIe6MWIUQegiL+spRyt9XzsZh5AL4vhPjvAK4BcKMQ4iUp5f2ZnggTggxIpJF0tiKEWAhgI4AaKWXA6vlYgRBiDIILvXciKODHASyXUnZaOjGLEEEr5z8B/FVK+ajV87ETIxb5v0kpF1txfPrISSQ2AxgL4A9CiPeFEFusnlCmGVnsfQTAQQQX9v5rtIr4CPMArABwx8jfxPsj1iixGFrkhBDicGiRE0KIw6GQE0KIw6GQE0KIw6GQE0KIw6GQE0KIw6GQE0KIw6GQE0KIw/n/T8+hY+cuEzcAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtd0lEQVR4nO2dfXAUZb7vv09CfEeWTbJAApjNhIDCCc5JFE5YNln1Il5gF6y75V1WalEOYs7xsornropbZZVVi7W1JZ5LcW54WRfORS09uxK2AIWsugksWYHEMZFIwJls1GQAJyyVdVE0JM/9Y9JNT0/Pe8909+T7qUqRmel++ume8O1f/57fi5BSghBCiHPJsXoChBBCUoNCTgghDodCTgghDodCTgghDodCTgghDmeMFQctKCiQJSUlVhyaEEIcS1tbW7+UslD/viVCXlJSgtbWVisOTQghjkUI8bHR+3StEEKIw6GQE0KIwzFFyIUQ3xBC/E4I0SWEOCmE+CczxiWEEBIbs3zk/wfAASnl/xBCXAXgOpPGJYQQEoOUhVwIMQ7AdwGsBAAp5dcAvk51XEIIIfFhhmvl2wACAHYIITxCiF8LIa7XbySEeEgI0SqEaA0EAiYclhDiNLY0+9Di6w95r8XXjy3NPotmlB2YIeRjAPwjgHoppRvARQBP6jeSUm6TUlZJKasKC8PCIAkho4CKyePwyCseVcxbfP145BUPKiaPs3hmzsYMH3kvgF4p5dGR17+DgZATQki1qwCbl7vxyCse3D9nKl46+gk2L3ej2lVg9dQcTcoWuZTyLIBPhRDTR966E8CHqY5LCMlOql0FuH/OVGx6x4v750yliJuAWXHk/wvAy0KIDgC3Athg0riEkCyjxdePl45+grV3lOGlo5+E+cxJ4pgSfiilfB9AlRljEUKyF8UnrrhT5rryQ16T5GBmJyEkY3T0DoSItuIz7+gdsHhmzkZY0bOzqqpKsmgWIYQkhhCiTUoZ5v2gRU4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk4IIQ6HQk6IQ9nS7EOLrz/kvRZfP7Y0+yyaEbEK04RcCJErhPAIIfaZNSYhJDIVk8fhkVc8qpi3+PrxyCseVEweZ/HMSKYZY+JYPwVwEsCNJo5JCIlAtasAm5e78cgrHtw/ZypeOvoJNi93o9pVYPXUSIYxxSIXQkwGsAjAr80YjxASH9WuAtw/Zyo2vePF/XOmUsRHKWa5Vv4dwM8ADEfaQAjxkBCiVQjRGggETDosIaObFl8/Xjr6CdbeUYaXjn4S5jO3CvrvM0vKQi6EWAzgMyllW7TtpJTbpJRVUsqqwsLCVA9LiKMxQ+gUn/jm5W6sWzBddbPYQczpv88sZljk8wB8XwjRA+BVAHcIIV4yYVxCshYzhK6jdyDEJ674zDt6B9Iy50TQ+u83Np5Sbzh0/aQHIaU0bzAhagH8m5RycbTtqqqqZGtrq2nHJcSJKOKdzQuVGxtPYdM7Xqy9owzrFky3ejqORwjRJqWs0r/POHJCLCLbFyrt6r/PRkwVcillUyxrnBASJJuFzs7++2yEFjkhFpDtQmdn/302QiEnxAKyXegernGFuYqU1wxLNB8KOSEWEEnoHq5xWTQj84gWWsmwxPRAISeEmEo0sWZYYnqgkBOSAsxgDCeWWGd7tI4VUMgJSQG6CoyJJtbZHK1jFWZWPyRk1MEKhMboxXquKx/VroKQaJ1qVwHmuvLpXjEBWuSEpEi2ugqSdRtFC63M9mgdq6CQE5Ii2eoqSNZtFE2sszlax0pMrbUSL6y1QrIFvatA/9rppKsejBKKqPedK2JPjGGtFULSgJNcBbFcJUafA8CMiWNNdxuZtUjMqKEgFHJCUsBJroJY4mn0+Zpdbfigb8B0t5FZ8eR2ihqy8qZCISdklBBPfLf28zW7gr1itq6oTEs9GDMWiRO9IaRTbK28qVDICbGQTFtxscRT+3lF8ThsXVGZNreRWYvEidwQ0im2VmatUsgJsZBMW3GxxFP7+cmzn4ftn6rbSLlxaReF57rycffMCUlb+4ncENIttpaFokopM/5TWVkpCSFBjngD0v1so3z+YJd0P9soj3gDSY9V3+RV91d+P+INqL/PeuaAfPL19pDjKtvHem0GyphPvt6uzk05hjJPo3PR7q/dJtk5P3+wS970xD75/MEu085Ne3wzvksjALRKA02lRU6IxZhpxWkt/IrJ47BmVxvW7GpDxeRx2NvuBwAsmV2kHvfumRPU95UIHCBoOZvpSlEscWXMg53n8NvWT7FqZ6tqEeut/XieVpQ5d/QOhIyvvDZyUaUr7t/KGvMUckIsxkxh0boO3vWdV99/13ceBzvPhfi8gaCoH+w8hxZfvyqiWrE0KwJHK8rVrgLUlBegwePHwlkTIt644nGDKFFD+vGV13oXVTrF1spQVCYEEWIhZiUU6RNslKbH1a58VN00PmoD5GSTfhJN6lGOU1NeiD2ePix1F6H5dH/M48XbwDme83B6IhITggixIWZZcVqLtMXXjx0tPbgmLweeTy5gR0tPVGs/WddOogu1QUu8EA2ePix1F+OF+9y4e+YErNnVpo6xpdmH7Yd9WLnjWMi5VLvysfVQNx7ceSxkTK37JJ7zSHfcv1Wx5BRyQizELGFRbgBrdrXhwZ3HAQCPLyjHmNzgf/G5rvyIbgQj1048WaAAwuLO7555xVWiH6PF1483PjiDmUU3ovl0AC2+ftVfr/jpc3OADfu7UPyNa7BmVxv++T+DT+7fm1GIHAH8sSuA7Yd96njaG4cdat5YFUtOISckS6h2FaCieBwuDQ7jgeoSDA0Hk3m2rqhER++AobUfyWecm4O4skABqFbw4NCwKszabRTLes2uNkgJLHUXqccBgLV3lmGPx4+NjadQ39SN9Ytm4M0T5zD1m9fhi6+HcNfN30J9UzdeXHkb1i+agY2NH4X5zO3SzNqqWHL6yAmxOVq/rvI7ANWvq/h4FeFMxNcdzWdsNJ7yviKea3a14dLgEKQErr0qN2wxVRHYmyeORUffANbeWYb6pm41OmZvux8HO8+pLhfFD674xW8vGY9jPRdC/ONGPnO7+b7j9esnCn3khDiUaCGFilAqFnSiFmk0146Rz1nvOrg0OITBIYklsydh64rKsGMqYxzxnccD1SVYPd8VElVzsPMc6mpL0Xw6oLpEth/24aWjn2CZuxjHey5gmbtIdZVEcp/YqeaNFS4eCjkhNidaSKEi3kPDMD307andHYYLpUoW5i/2n8TlIYllI9EnAAxdN3pR094gasoLVAt93YLpqKstxYb9Xbhn1gQ0nw5g/aIZaD7dj7raUvUGlin3STILl1a5eNjqjRAHoBW/tXeUAYD6u5JMY7RPsr7ZFl8/9nWcARBcKJ3ryg8ponVpcBgNnj4scxfjhftuDREwxQrWh1Iqbd3qaktVcd9++C9Yt2CaOs+hYWD9ohk44j2v7tcduIjuwEUsrpiknpe225Di/zcb5enDyA8fiWhRSOn0k9NHTogD0MZI72jpAQA8UF2Sth6hWl+89riLKyZhyewirNrZioWzJqL5dCBE6LQ+aSO/9fbDPmxs/AgvrqyKO27eyuYd6WqskSyRfOQUckJsjt4SVCzjxRWTUFp4PeqbunH3zAlqxIh+ETSasMazIKhduNM3S05UVJOdg5WCmq6Fy2TgYichCWCnzjPax/WO3gE1pBAA6pu6UVdbCgCGi6Da+OVkYpz1Pu697f6UfPGJLkpqa7Ro/eqZ6sBkh9j0eKCQE2KAnTrPaMVP+b3aVYDn7q3A5uVubGz8CJcGh9Tt3/WdD0vOAa4UyVqzqy0kxhlAxOJSyjbXXT0GdbWlONh5LuRzpbhWuqJDlO/hSiRLEfZ4/MjNgHLZJTY9HijkhBhgZZOARKh2FWDhrAlo8Phx183fwgPVJYbJOYplu2R2EQaHhkcs20LsbfdHvEFpnwQqJo9TrX+lsmAmbmzVrgI1kqWmvBDNp/uxftEM1Dd1p11QndSPNWUhF0JMEUL8UQjxoRCiUwjxUzMmRojVWNYkIAFafP1oPt2vWqpbmn24Ji8HeTqTVbFsO/0DyMvNwVW5Ag2ePuzx9EW8QWmfBBQRq2/qxhdfXQ67saXTFTU0DCx1F6PB04f750xVY9G1gmp0/Kd2d+Cp3R1Jz8lOsemxMMMivwzgcSnlLQDmAvhXIcQtJoxLiKXY3T+qffT/YdUU5OUKfD0kcc+s8OQcrWV7183fQk6OAAAkEuoQ7caWTldUxeRxIQlDis88Vu3yfR1nsK/jjC3cY+kmZSGXUp6RUr438vvnAE4CKE51XEKsxI7+Ub3V2dE7oLo69rb7cXVeLpa5i3HgxFkA4ck5Qcu2CA2eYIGqtXeUIS83Ry1YFYtoN7Z0uaLi/R6Mjq8sCtvdPWYGpvrIhRAlANwAjpo5LiGZxo7+Ub3VWTF5HDY2foRP/3pRbRrxwn23Yt2CaVi1Mxjeq7da3zr5mep6mevKx9YVlWpjiWjEI6hai33GxLGGYyTqaknkezB6YnCCe8wMTBNyIcQNAF4H8KiU8m8Gnz8khGgVQrQGAgGzDktIWrCjf9TI6ly3YBp2v+dHXW2pGtdd39SNdQumGVY5XFwxCb9ZeZtqqQLhlrsR8Qiq1mL/oG8gpM64WW6NLc0+dPpD56otu6t/YrC7e8wsTEkIEkLkAdgH4KCUcmOs7ZkQREjyaBNUrrt6DHJzgI2NH2HhrAlqXZKh4aAFriTapLs6oFH2pZK4pM9ATWQu+nG3H/Zhw/4urF80A6vnu9TP62pL1Zot+uMrFRkzmRGaLtKWECSEEABeBHAyHhEnhCSP3sLMzQkmBVXeNB4NHj9umXQj6pu61WqIigWc6hNGrKgUI4t964pKVBSPC3NrJLIwqn8KUeqV1zd1h/i9jYqGLa6YhMUVk2zlHksXZhTNmgdgBYAPhBDvj7y3Xkr5hgljEzIqiMdK1VuUgb9/hU1ve/H92ZPwytFPMWPCDfiTtx8l+deFWKdmEKuAVKQbwsmzn6s3nbmufNVvrYizknJ/98wJYftqz19bMGz1fBc+//JyzKJhz91bEfZeKoXE7IwZUSt/klIKKWWFlPLWkR+KOCEJEI+Vqrd6l8wuwtCwxG9bg42Mu879HTkC6Dn/BWrKC00VLK34Lt/+rlpOVjmGfiEz1uKofhFyyeyiiOevfwpRsjyz3e+dCCxjS4gNMLJS9Ra13uqtdhXgB7cW4ffv+/HmibPIyxW4PCTxnbJ8HDhxFj+s6jddzBXxvSbvig1oVN41VjlXvTgH/v4V6mpLQ86/rrZU7SCkjDX22jEhPnJ9Ea/RCqsfEpImkllgTLTSXouvHw/uPI5Lg8O4Ji8Hjy8oV1PpzXavmFVKN9rC6F03fwsNHr/arEKp6qjNIM3NCcbEa11Oit/bTu3e0gGrHxIShXSkmCea7ZhMqNzedj/ycnMwz5WPvNwczCwaF7L4l+jCXqTr8NTujhBXydYVlWrNFmUhM95rGGlh9LaS8djj8eP2kX/rakvx3L0VYU8lq+e7QoRZWbS1U6GzTEMhJwTpSTFPJNsx0UzSLc0+bD/sUxOBXl49F2vvLAtJBEom7j3SdQAQNnflBqLcdCLt+/H5iyHnoa2PruX9Twew1F2MYz0XsNRdHFYYK9aNwimFztIBhZwQpE8E4s0sTDST9OPzF/GrA6dDEoE2ve3FP7m+mVJ4XaTroLWMFYFWbiBKaVwA6u+PvfY+Vu1sxeblbpQWXo9VO1tjLuRqmzA3nw6o5QcU4rnZhtYtLwxzs1hRTz4TUMgJGSEd6dzxuksSjfNeMrsIV+flYNPbXmxsPKUK6T/PLzXcJxHXUbTrsKXZh18e6FJvIABQWng9vvx6CL880IUls4vw1eAQGjx9WDhrIgComabRbpJKmVztE0l9U3eYSMe62SrXe5m7GHs8fdh+2Ke+n81uFgo5ISOYnc6dzsJbil9Z8VMPDg2rGYxGJOI6inYdKiaPQ3fgIja97VVT4De97cVVY3LQHbiI37Z+isEhiatyBfa2+7Fq53FsXu7G6vmukDos+nnG+0QS7Sajvd7TJ47F8jlTsGF/Fx57zaNmf2ZjMhBAIScEQHpE106Ft+J1HcUT/711RSW+ujyMn/zmGB7ceRwA8OufVGH25HFo8Pix1F2Eh2tcuDws8eXgMDr9wUYUO1p6cE1eDj7oGwi7rvE+kUS7yegbYbx54hzmlRWgweNHTXlhmIWfDqxqEcjwQ0KQfFNgq9DXMlHCAaNZ5UDs8MZ4r8Njr3lCyuGOvXYMfrG/C98py0d77wC+ujyMRf8wEQdOnMXgkMSYXAGBYIMIJfkn0TUIo7DFaOModVluKxmP4z0X1NjzdNLi68eqna1Yt2BaWC0YbchksjD8kJAo2LHaYTSUGuJbV1Sq4YDa942Ix3UUz3Vo8fXjrZOfIS832Jzi/zYFBfPpRTPwL98rAwDkCuCtk59h3YJyAMClwWFIQI0JT+bJJJEnHKUK5FJ30UgUTFFG2sNVuwqwbsG0MJdOup8GaJETkkHMsvwTHSdRazbS8QCoTwJr7yzDHo8fnf6/YUyOwP9bdTs6egfU7fa2+7Gv4wy+GhzCsASuvSo35hODWSiJQ/VN3SGZomZYxfGgPLHcXjIe3sBF08IgaZETYgPMildP9AkiVX+9Mu+97X4srpiEtXeWYdPbXnzy1y+wzF2M3Jzg4qYyr2pXgdro+eshiX+pdYW1n0sn8UTBpIsWX7CP6u0l43Gs54LpdW+MoJCTjGLVYpBdsCppJVXXkRLnfbDzHApvuBqb3vZiaFhiccUkvHDfrdjxwG1hnYaUrFPFlQMkl22aDFYtNGt94t7AxbAwyHRBIScZZTSnUSukI1493SgWbk15ATa940X+9VchN0dgyewidZu7Z05QhbLF169mnWqjX4DMuDasWvNQbnjK08AL992K9YtmYGPjR2l9EqGQk4wymtOoFZzYfqzaVYC62lLs8fgxfeJY9Jz/At+fPSnE375kdpEqlHYKvcwkD9e4wppcrJ7vwosrq9J67lzsJJaQaJW/bCHVRUerUOZZU16IBk8fvlOWjyPe81g6UqXQ7vPPFrjYSWyDEy1Ss0jUUrXLmoK+FsqHZz7HvLJ8NHj8jnEPZTMU8lGAXcRAOW660tadQKK+20ytKcT6G9FHgdTVluKI9zyWuYscfzO20/+PZKGQjwLstMA4Wn2nyZKpNYVYfyPa701Jtlm/aAamT7zR8TdjO/3/SBb6yEcJ2u4uiXZ0IdaTiTWFeP9GnFbOIB6c8v+DPvJRjhND3rKFVB/dM7WmEO/fiNPKGWiJ9F1sO9SNmvLCkHN3knuFQj5KGM0LjFaTyqN7JtcURsPfSKTvovgb12CPpw/L3MV46egn2H7Y5yj3Cl0rowCnhrxlE8k+umfKjTGa/kb034WSwKP8W1NegD0ef0aqJSZKJNcKhXwUkIgYZKP/0y7YOXZ+tH3v2u/iuqvHqOeuvL/MXYTpE2+03bnTRz6KScSnmQ0r+HbE7m4Lq/3emQwB1H8Xiohr328+3e+sv3kpZcZ/KisrJbEvR7wB6X62UT5/sEu6n22UR7wBq6fkaJTrqVxH/WuSuWsU6TjbDnkd8R0BaJUGmkrXCjHEzm4ApzHa3BbJkokQwEjfxbZD3Xjou6W2/47oIydx45SYWpJ90ICIDn3kJC7MCnfLhrRnklnsvo5gZyjkJASzUui5aEoSIdtr8KTbsKFrhaQNumhIvGT7OoJZcfr0kRNLoM+TjBZi3YzMMGzS6iMXQiwUQpwSQniFEE+aMSZxPvR5ktFELHdiOusdpSzkQohcAP8B4B4AtwD4kRDillTHJc4m232ehOiJVXI4nYaNGRb57QC8UspuKeXXAF4F8AMTxiUOJtaiKaNaSDYSyepOt2FjhpAXA/hU87p35L0QhBAPCSFahRCtgUDAhMOObuwuhLFSvhnVQrKRSFZ3uhuqZCz8UEq5TUpZJaWsKiwszNRhsxanC2GmOt8QkimiWd3prmVjhpD3AZiieT155D2SRrJBCNnsgmQTVrYxHGPCGMcBTBNCfBtBAf+fAJabMC6JgVYI195R5jgh1D+GznXlO+4cCFEwsq6rXQUZ+ZtO2SKXUl4G8AiAgwBOAvgvKWVnquOS2Dg5vI9RLYSYhxkWOaSUbwB4w4yxSHzoM8PmuvId5V6J9hjqhPkTYidYa8VGJBKJYqY/LtkImHj2i7SNMmctTmngS4jdoJDbiEQiUcxcBU82Aiae/ZweXUOIE2CtFZthVaGpFl8/Vu1sxcJZE9B8uj+kuE+0wkXxzJfFswgxB9YjdwhWheRVuwqwcNYENHj8qCkvCKnQFs16jme+DDMkJL2YsthJzMOqkLwWXz+aT/djmbsIezx+AALNpwMxred45mu0TUfvQFaXLSUkk9AitxFWheRpj/vCfW4sdRejwdOHmvJCVWiNFi23H/Zh1c7WqPONdE65OaDvnBCToJDbCKsyw7THDVrmASxzF+PAibOq0BotWm5s/AjrFkyLOt9I5zQ0DMdnphJiF7jYSVRidTFJx6IlG08QEj9c7CQxifVEYPaipZMzUwmxE1zsJCqxakWYuRDr9MxUQuwELfIsIp01ys1eiLWyUhwh2QaFPItIJosyXvHXC29H7wDqaktDhDeRm0a66zMTMpqgkGcRydQojyT+H5+/GCLwisAqQl0xeRzqm7rVm4TZ4YN274BEiJ2gkGcZiS5IRhL/JbOLYnYET2f4IGu0EBI/jljs3NLsYxZgHGxp9iE3ByELkmOvHYOhYeOFTIVIDSoUodaGG2ojWLT7zTM5A1V7o2CNFkKi4wiLPNutM7PcCLk5wIb9XairLcW6BdNRV1uKDfu7kBvjW44UBqi37jt6B0IyMlt8/dh+uBtjcgQ6+gZMDx9kjRZC4sMRQp4N/SmjYdaNamgYWL9oBuqburGx8RTqm7qxftEMDA1H3idaNIpe4HNzgPqmbtTVlmLNrjas/M0xXBocxhP3TMfWFZWmlxNQjj/PlY8dLT1hqf/x3OjoayejAUe4VgDn96eMhlluBMV98vmXl9XrtHr+FZeKkYtqb7sfd8+cEBYGuLfdj4Od58LivOtqS1Hf1I1x1+ah99JlLHMXq8cws8OP9gYDAGt2tWHNrjZsXVEJACGfRUO5SRplqxKSLTjCIgecnwUYyzI0y40Q7ToZWf4HO89hyeyikDGqXQW4Kf/6iDVSasoL0HvhS9xeMh7NpwMhrhiz1iy04Y7VrgJVwDe/403oiSzbn+YIAQBIKTP+U1lZKRPhiDcg3c82yiPegOFrJxDrHJTXzx/sinhu9U3esPePeAOyvskb1zHiPU40th3yypIn9slHX31Pup9tlNsOeTP2XTx/sEve9MQ++fzBrozuS4hdANAqDTTVERZ5NmQBRrMM482ajOZL39Lsw952f5i1effMCSHXKRXLX6l4uH7RDLxwnxubl7tVn3m6v4tUnsic/jRHSEyM1D3dP4la5NmEYhl+95fvyG2Hgpa0YmlvO+SVP/nNUSllqKWtRW9RP/l6uzziDYRY30e8Afnk6+2GlnIqFnmsJ4J0kcoTWbz7WnVuhCQCIljkFPIMohXRGT9/Q5Y8sU8Vc8VlobyOhtZNoBfwWc8ckNN//oac9cyBiCLuNBdVKiIb775OvTZkdBFJyFmPPEMozY3XLZiG1fNdI6+P48vBYUwefy36LnyJ9YtmhESZRBpHH90CQH1v2+FuXBocNqzvrUStaNusKYlVyvv6xcpMJmNZnfjFJtHE7rAeucV09A5g3YJpqG/qRouvH9WuAqxbUA4BoPfCl7itZHzcIq73pQNQ/d4AYvqCtb72ve1+HPvL+ZC4dW00jXbbLc0+bD/si7htKihZqdo1AKWVXKYSv5iARJwKhTxDPFzjwur5rpAFz42NpyEBTJ84Fsd7LmD74aAgRhLHSIu+e9v92NHSg2vycpCXm4O5rnzDBdOKyeOwamcrOv3BcdbsasPv2nrxTlcAt04ZF7LwalRT5dTZz9XMUaNtgeQTcJQiXHW1pXjkFQ8ee+19bNjfFdJKLt1wUZQ4FcckBGULWqsPAH48ZwrePHEOy+dMwYb9Xejpv4g3T5yLO2Gl0z+APR4/lrqL1HhwxWrXJ+gEnwKmYcP+Lix1F2FwaBiDQxJ5uQLHey5gY+MpQ5eCds7L3MXY2PgRPvR/jubTgZDIG8VFk0wCjvaGUVZ4PRo8fSHJRumGjS6Ik6FFniDxWJzRtlGsvpu+eR2uzcvBoooibF7uxpsnzmFeWT5eO94bUTyiNUB+7t4KNXlGK+B63/Lq+S4sdRehwePH4NAwrsnLwTV5ubjr5gkRXQpaS7X5dACVN41Hg6cPNeWFYZZ5Kgk41a4C1JQX4FjPhbBko3TT0TuAu2dOCJmL8rTDdH5idyjkCRJPXZRI2yg+4M3L3Wj+2ffw4srbQnzcf/Kex5xvfzPsmMpNwEgkX1xZFWa1RsuwbPH1462TnyE3J1ib5Z5Zk7D2zjLsGbGA9S4FvV++rrYUR7z9+E5ZAfZ4+vDYa54wsY7ma452k9t+2Ic9Hj+WuYvgDVxU3SyZEPOHa1xhpXsB4GDnuawpzkayF0atJEE80Q1G22ijRbTbKXVN7p8zFTtaegAAW1dUGnayB0I7z1939Zi4Iz2UsW6dMg7Hey7grpsnoMHTh+uuysVj/20ahobDa5NoI0mU/etqSzE0DJw6+zc0jAjvC/e5w45jdH3056MdU3m6UKJ6tMfKVLliRq4QOxMpaoVx5Enyo21/Dkv51scnx5MWbhS/POuZA3LWMwcMk3b0CT36FPlo8c/1Td6w7R/YcVROW/9G2DGMYrS1MdnKcR599T054+dvxiw9EKtMgJ0ScpjOT+wK0pEQBOBXALoAdABoAPCNePZzupAbJd4kUztFysgJK5FuFEbHUMQ5nmxNMwQzmljHO75dxTLVWjSEpJN0CfkCAGNGfv8lgF/Gs5/dhDwRcYsnkzLVLMFIYhJtnpkQRuX4estcef2T3xxNKIvSbmLJ7E5id9Ii5CEDAcsAvBzPtnYT8kT+A+vFVBHQ5dv+HHEbZcx4rN5kxCRTwhhrbom4VewolnZy7xBiRCQhN22xUwixF8BrUsqXInz+EICHAGDq1KmVH3/8sSnHNYtkFrnSsTCWaJp6pMXDdC3SRTtnJTuzvqlb/Vy/WGl1Gj4hTibSYmdMIRdCvAVgosFHT0spfz+yzdMAqgDcK+O4M9g1akUbDaKvU6In0wIaiWTqp6RKpOukXIOa8kI1oUebNEQISY2ka61IKe+SUs4y+FFEfCWAxQB+HI+I25VE07PtUiP94RoXql0FIbHr2tdKDHSqiUza15GuU7WrAHW1pdjj6cPtJeOxx9OnpvNnCvboJKORlBKChBALAfwMwPellF+YM6XME29jBy2KgGoxs9WZIkhaYdK+XrnjmKGIrtrZaphRqU9Semp3B9bsagtJdsnNAVbtbMVTuzvU5svKzaDF14+ndndEvU4tvn7UN3VjqbsIx3ouYKm7SC0SlinMamRNiJNINbNzM4CxAP4ghHhfCLHFhDllHLtY11oUQVKyQR/ceQxrdrWpr+eV5WPNrjY8tbsDwBURXThromFGpT4rdF/HmZDjKfuvWzAN+zrO4MGdx7FmV1tImVwAUa9TR+8A6mpL0Xy6fySdvz8j3YO0sEcnGY2kVDRLSllm1kSsxMiKVuqWxIvZi3haQaopL8Aejx95uQKb3vaqjYgBYF/HGRTecLW6sFjf1K26Pea68iMWv1p7R5laGEq/cPn5l5fVol7v+s4bLmoq56r8tPj68fH5izjYec6w8FQm0Z8nRZxkO6y1YhLpeKRXBKnB48dtJePx9ZDE4NAw3vUF64dvXVGJB6pLsOkdL2rKC7Cx8SPU1ZaGuD22H/ap/mG9fxtAWE0U7TYADK37SOcKRLfYMwXL0ZLRBmutmIjZ4YhP7e7Avo4zuOvmb42Uqi3G/g/O4OvLw2EW9fbDf8G9/1iklsCtdhVg+2EfNjZ+hBdXBhe59VE2a3a1AQAeqC4JseiVqn97PH2QAPJyc9SnAOUJw641SYw6MVlRs4WQdMAOQUmSSBREsh1mjI6x/bAPr7/Xh8tDw3jr5GdYv2gGDpwIivhVY3Kw/XC36sNet2A6XlxZhTdPnFMrBm5sPIX6pm68uLIK1a6CsHUAhcUVk1QLXrHogaDLZkxuDh5fUI7FFZOwZldbyOKoXbvpGHViUgpyccGTZCsU8hgk4jJJ9pE+Up3x/313OZa6iwEAH/r/hkuDw7hjRiF2PnAbyieODRlDcWMMDYe7S4DwKJuO3gFsXVGJ5+6tUPd/cWUVhoavfLZ1RSXqm7pReMPVAIKir61iaEf3hVEnJu0NjZCsxCjdM90/dkvRj0U8KfDpqq8i5ZUyAI+++l7YPumuY2JUw0U5xpOvt4cVDLNTSrtdC3MRkiyIkKJPizwO4mmUoHVdaF/Hu9AX6Rih3Xn6w2LHtT7fZOLho2FkdW9p9mFvux+bl7vVRgyd/mB3nb3tftvEbNv1iYGQdEAhj4NooqDNoDRqexbv4prRMRIV5mjx8IlmPEY6dm5OsGuOMn5dbSk27O/CpcGhkNBDKzH7hkaI3WHUSgziqamSagSHdsyO3gG18NTdMyeoDZW10SLxxqZH6+6j7wQUbV/tPLUNlpXzrSkvQIPHH1eNmmRJJE6fhblItsIOQUmSiUYJRp13th3yqu8n6+vW77vtkFeWPLFPPvqqJ2X/+RW/vSeqT96s0rB2Ln9LSKYAfeTJEU9NlVT9sdpjKO6Q+qZufPHV5ZRSzPXp6sE6KMVo8PSlFDKonO8yd7FaGCuSC8MoImfVzlbk5oSPGa2wFVPvCYkMhTxF0uGPNTNGWztWTXkBmk8HUloA1J7v9IljsX7RjJCYbf0Cr5EAa+O8tWPGWiS1a+w6IVaTUq0VEn2BMVWLN1LNlGTGWuYuwh6PH+sXzcDq+a6QOiiJjK09X2W/mUXj1PM1qlGjr32yer4LM4vGJbyuYOZ1ISSrMPK3pPvHST7yTGOmL1jfFFlp0qzvtylletucRYptT2RdgT5yQiL7yCnkNsNMQU22qbTR62SJNK5yU4k3cYn9NAmJLOQMPyRquB4QbCyxcNYEvHXyMyyumITn7q1IKXTPKBRQW8zLyjZ5hDgNFs2yEXZrR6ZElgDAwlkT0ODx49LgEJbMLkq5HK9R1M/QMEJqn9ihkQchToZCbgF2a0emCOmaXW1488RZ5OUKXB6S+G1rb0iiklk3n4drXNh2qBvbD1/Zt9pVgNwcYOWOYymfDyGjDQq5Bdg1JnpwaBiXBodRV+NS481rygvDmjsDqd985pXlY8P+LlXMtx/2YcP+LswryzftfAgZLTD8MM1ESxe3Uzuyve1+5OXm4KH5pdjR0gMAWOYuxoETZ/HDqv6Qm48ZzSRWzw/62zfs78IfOs/heM8FNTSSEJIYtMjTTCRLNjcHhpUFrfCdt/j6cbDzHLauqMRc1xWL+IdVk/Hiyip1/mYn5Kye78JtJeNxrOcCbisZn5KI223dgZBMQiFPM0ZuFG1LNX1lQTPcF4mKmjbJp6N3AIsrJmHtnWVqko/S+u2p3R2mlobdftiH4z0XcHvJeBzvuRDiM08Uu607EJJRjGIS0/0zGuPItckv0WKilTjr5dv+LGc9cyBku3jjps1qcqHdf9YzB0Lmk2qcuVLAa9shr+HrZDC7qQYhdgMR4sjpI88A+tRyI9+yNrVdcV9ck5cTMoayKBqLVP3ZRvsvrpiEJbOLTCtFcMR7PsQnrvx7xHs+aReLvhSA1esOhGQKJgSlmXjqmRttf/+cqeqio9LlPtHFxY2Np1RRS6ZOeKr7Z5pU68ITYneYEGQR0Ypq6dFXUty6ohKDQ8NJLS6mWlrXaa3S2BWIjGYo5GkmnnrmCnrRB4C83BxUu/ITEtNURc2JopjIDZOQbIOuFZuSqEtGS6qtzuLZn+3UCMk8kVwrFHKbYnehTOVGQwhJDgo5MR0uLhKSWbjYSVJGn2hU7SpATXkhW68RYjEUchIXW5p9YZmnTzd0oMHTh2XuYkdEthCSrZgi5EKIx4UQUghBkyxL0FvfFZPHYdPbXtw6ZaTX5q/fxctHP8WP50zBC/fd6ojIFkKylZSFXAgxBcACAJ+kPh1iF/S1SxSO91xAWeH1+JP3PL5Tlo9fLKsAwHA/QqzEDIv8BQA/A5D5VVOSNoyKfW1dUYm7bp6AYyOFrj4883mYz9wOETWEjDZSEnIhxA8A9Ekp2+PY9iEhRKsQojUQCKRyWJIh9GVrO/0D2DPiE/cGLqKutpTuFEJsQMyiWUKItwBMNPjoaQDrEXSrxERKuQ3ANiAYfpjAHIlFaNP0d7T04KvBYbXQlRJ6WFdbmnThLEKIOcQUcinlXUbvCyH+AcC3AbQLIQBgMoD3hBC3SynPmjpLknH0CT6Bv3+FfR1nMLMoWN9b6xOnO4UQazEtIUgI0QOgSkoZ8zmbCUH2x+6ZpYSMRiIlBLEeOTHESKy1NdMJIfbBNCGXUpaYNRYhhJD4YWYnIYQ4HAo5IYQ4HAo5IYQ4HAo5IYQ4HEvqkQshAgA+zviBI1MAgOmJV+D1CIfXJBRej1AydT1uklIW6t+0RMjthhCi1Sg2c7TC6xEOr0kovB6hWH096FohhBCHQyEnhBCHQyEPss3qCdgMXo9weE1C4fUIxdLrQR85IYQ4HFrkhBDicCjkhBDicCjkOthIOogQ4ldCiC4hRIcQokEI8Q2r52QFQoiFQohTQgivEOJJq+djJUKIKUKIPwohPhRCdAohfmr1nOyAECJXCOERQuyzag4Ucg1sJB3CHwDMklJWADgN4CmL55NxhBC5AP4DwD0AbgHwIyHELdbOylIuA3hcSnkLgLkA/nWUXw+FnwI4aeUEKOShsJH0CFLKRinl5ZGX7yLYAWq0cTsAr5SyW0r5NYBXAfzA4jlZhpTyjJTyvZHfP0dQvIqtnZW1CCEmA1gE4NdWzoNCPkIijaRHIQ8CeNPqSVhAMYBPNa97McqFS0EIUQLADeCoxVOxmn9H0PgbtnISo6pDkFmNpLOFaNdDSvn7kW2eRvCR+uVMzo3YFyHEDQBeB/ColPJvVs/HKoQQiwF8JqVsE0LUWjmXUSXkbCQdSqTroSCEWAlgMYA75ehMOOgDMEXzevLIe6MWIUQegiL+spRyt9XzsZh5AL4vhPjvAK4BcKMQ4iUp5f2ZnggTggxIpJF0tiKEWAhgI4AaKWXA6vlYgRBiDIILvXciKODHASyXUnZaOjGLEEEr5z8B/FVK+ajF07EVIxb5v0kpF1txfPrISSQ2AxgL4A9CiPeFEFusnlCmGVnsfQTAQQQX9v5rtIr4CPMArABwx8jfxPsj1iixGFrkhBDicGiRE0KIw6GQE0KIw6GQE0KIw6GQE0KIw6GQE0KIw6GQE0KIw6GQE0KIw/n/T8+hY5Eml4EAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 1 Axes>"
       ]
@@ -58,7 +58,7 @@
     "X = np.concatenate((X1, X2))\n",
     "\n",
     "# Plot the combined dataset\n",
-    "plt.plot(X[:,0], X[:,1], 'x');"
+    "_ = plt.plot(X[:,0], X[:,1], 'x')"
    ]
   },
   {
@@ -80,7 +80,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3wUVffGn0lvEEpC712aCJEuHaQo2HsvqC+++rNh11exd1HsXVFUkCLSS6gCht57Dz1ASC97fn88O85sNj2bbDac7+ezn+zcnZ25s+gzd557zrmGiEBRFEXxXfy83QFFURSlZKiQK4qi+Dgq5IqiKD6OCrmiKIqPo0KuKIri4wR446RRUVHSqFEjb5xaURTFZ1m9evVJEYnO2e4VIW/UqBHi4uK8cWpFURSfxTCM/bm1q7WiKIri46iQK4qi+DgeEXLDMKoYhjHRMIxthmFsNQyjmyeOqyiKohSMpzzyDwHMEpFrDMMIAhDmoeMqiqIoBVDiEblhGJEAegH4GgBEJENEzpT0uIqiVDxOnABylnc6ccI7falIeMJaaQzgBIBvDcNYaxjGV4ZhhOfcyTCMkYZhxBmGEXdC/+UU5bzj2DHgoouAJ5+0xHzjRqB1a2DsWO/2zdfxhJAHAOgI4FMRuQhAMoCncu4kIl+ISIyIxERHu4VBKopSwalRA7jiCuDttynmGzcC/foBwcHA0KHe7p1v4wkhPwTgkIisdG5PBIVdURTlXwwD+OgjYNQoinn79hTx2FigWTNv9863KbGQi8hRAAcNw2jpbOoPYEtJj6soSsXDMICRI63tzp2Bpk2915+KgqfiyP8LYLxhGBsAdADwmoeOqyhKBWLjRqB/f6BOHWDwYGDyZFfPXCkeHgk/FJF1AGI8cSxFUSomR49annhsLEfi//0vbZaoKGD0aG/30HfxSq0VRVHOP2rWBJ54ArjqKssT/+gjtt94o3f75usY3lizMyYmRrRolqIoStEwDGO1iLi5H1prRVEUxcdRIVcURfFxVMgVRVF8HBVyRVEUH0eFXFEUxcdRIVcURfFxVMgVRVF8HBVyRVEUH0eFXFEUxcdRIVcURfFxVMgVRVF8HBVyRVEUH0eFXFEUxcdRIVcURfFxVMgVRVF8HBVyRVEUH0eFXFEUxcdRIVcURfFxVMgVRVF8HBVyRVEUH0eFXFEUxcdRIVcURfFxVMgVRVF8HBVyRVEUH0eFXFEUxcdRIVcURfFxVMgVRVF8HBVyRfFBNm4EbrwRSE212lauBO64A8jI8Fq3FC8R4O0OKIpSdDZsAH79FTh5Epg2jduDBgFRUUBCAlCrlrd7qJQlHhNywzD8AcQBOCwil3nquIqiuHPzzUBmJnDXXRTt1FSgfn0gNlZF/HzEk9bKwwC2evB4iqLkwx13APffDyQmUtRnzqSYK+cfHhFywzDqARgG4CtPHE9RlIJZuRIYP97aHjXK1TP3JosWAUeOuLbNnUvbR/E8nhqRfwBgNABHXjsYhjHSMIw4wzDiTpw44aHTKorvER8P/PCDa9uePfS8C8vKlZYnfuAA8O23wPz5wPDh3hfzpCTgmmuAfv0sMZ8yBRg6FHjqKe/2raJSYiE3DOMyAMdFZHV++4nIFyISIyIx0dHRJT2tovgsb74J3H478PHH3N6zB+jTB3jwQeDs2cIdIz4eqF2bnnj9+rRZvvkGOHaMQupNIiKAP/4ADh6kmH/2GXDttUBMDPD2297tW0XFEJGSHcAwXgdwK4AsACEAKgP4Q0Ruyes7MTExEhcXV6LzKoqvkpEBXHcdMHUq8MgjwMSJQHIyMG8ecNFFhT9OZiYQGFhwm7dYsgTo1YvvGzUC1q0DIiO92iWfxzCM1SISk7O9xCNyEXlaROqJSCMANwBYkJ+IK8r5TlAQ8NtvQLt2wPvvc+RaVBEHchfs8iLiAHDqlPU+PR1ISfFeXyo6mhCkKF7g0CHAPlW0bJn3+lIaTJlCO6VrV2D6dEbW2D1zxbN4VMhFJFZjyBUlf0xPPCODk5YjRgD//a/lmfs6ycnAfffRE581Cxg2jKGRBw8C//uft3tXMdERuaKUMZ98YnninTvTZhkxAnjttcJPdpZnwsN5bbNmWZ74JZcAixcDAwcCmza57v/778CuXWXfz4pEiSc7i4NOdirnM9nZwL59QNOmVltGBiNRGjXyVq88x7JlQNu2rhObixYB7dsDHTsyqmbhQu7z00+M4LnxRr5X8qfUJjsVRSka/v6uIg5wArQiiHhCAjBkCDB4sPV0MWUKMGAA8MorwOzZvNa+fRlTfvvtQO/ewOefe7ffvo6OyBWlBGRnU5gLajufMCc6Y2KABx4A7r7b8ssjI4EdO4CWLblvdDSwdy/tGKVgdESuKB4mLQ24/HKGEJokJQH9+zM553zliivoe69YwRF3ixaufvmqVda+yckUcqVkqJArSjHx9+dI8tFHKeZJSUxDX7pUR5h5YXriffsCa9cCVarwfc4JUKVoqJArSjEJDAR+/pl1RR59FKhUCVi+nIWsrr/e270rGYcPA6+/Dtid1z17gPfec23LDXsM+fff00oZPBg4fhx4+WV64n/+CXTowEnPoCDg3XdL93oqOrqwhKKUgMBA4MsvmWYPABdf7PsiDnDk/MwzwNGjwAcf0P7o04dWyI03ss5LbiQkcMRt98QrV6awv/kmhbtKFeuJpUUL3vy0hnrJ0BG5opSApCRWHDRZscLVM/dVRo9mHZixYxnj3rs3RXz+/LxFHACqVQNmzHD1xK+4gnHlY8YAdesCYWE87unT/LxhQ94Q33vP+wW/fBYRKfNXp06dRFF8neRkkUsuEfH3F5kwQSQjQ+Saa0QAkQ8+8HbvXPnnH5Evv3Rti40VGT+e7zMzRW69VeSvv6zPU1NF6tTh9QAia9Z4pi+bN4sEBYl06iSSkCCSnS1y7708x1dfFe1YDof7ds62igSAOMlFU3VErijFJCSEYXSmJ2565jffDDRv7u3eufLBB8C99wKffsrtRYs4Mfv666yYmJwMbNkCXHklR9Tp6YwHj4+3jvHddwX744WhdWtg8mQuID1gAH+7L78EnnuOS9cVlrffps2TlcVtEeD551kewJHnygilQ3Y2I5Wys622zEy2lUmEd27qXtovHZErStmSliZy2WUc9d5wg0hYmMgFF4gcOWLtk5DAUbI5AgdEwsNF1q4VeeQRbj/0kOdGvNOnW+cZNarox33rLX73+uv5RPHss9y+916O8nMjLa1wbUVl2jSe+7bbRLKy+HR29dVsW7Cg5Mc3QR4jchVyRfESDofIwYOubVlZIocPl8750tJEKlWyxNMu4iZHjlifBwZSxM2+PvKISO3auX+vqNjtFMCyWYqKKebmKz8R37tXpHFjkd9/t9o2bRJp0EBkzpxiXYYLY8awDzfeKHLllaVjsamQK0o544UXRKKiRDZs4HZWFkd0deuKnDpVvGPmNqo122JjRQICLNH75BPX/dLSRIYOdRVyu2fucIgcPVq8fpkcP+4q4s89J/Lzz66eeVFwOPhds8/p6Xnvm5go0qMH5zR+/50iHh3Nm9P27SW7LpMXX7T68u67njmmHRVyRSln7NjBycSoKJF16yjigMhLLxXveKdPi/TtK7Jkicgvv9CuOHKEE7JffEHBq15dZN8+y2Yxxdwu4l98YdksQUGuYl4SfvtNJCJC5Pvvae0895zIe++JVKki8tlnPNf331v7nznjfgx7m8Nh2Snmy7RZ8sIUc3N/T4q43U6x2yyeRIVcUcohO3aI1Kpl/c9fXBEXEYmPF2nZkmJ5yy08XtWqIiEhIm3bcrt/fwqO6Zl36sTtc+dEevemiGdk8HgJCSJduvCmUBKys0Xi4nhTueACiviPP4o8+ij7dNVVPOeePdZ3vv6av8uWLVbb66/TBomP57Yp4nffLfLUUyLPPGOJeWqqyBNP8AkgJ3//bf3er75asmszsYv4Bx9YNounxVyFXFHKIVlZIt26WcJi2izFxRRz+yjVz49/BwygwJksWiRSv77lg2dl0Stu0oQ3GLOtpLz2Gm2aKVMo5q1aWX0bPNi6cdjZupVCXrMmxfz117n/TTdZffrsM5GRI/l5pUoizZpRzB95xPKof/jB9bimnVKpEv+aNktJMSdu7Z74mDEihkFLy1OokCtKOcP0xAHGcJs2S3HEfPlykRMn+H7dOksoQ0Ks9ykprt/ZvZtCXq0axXzOHO7fvr11rLzIznY/XkZG7h71mTMc2QcGikyc6HqjmTs373OYYm7uaxfx3K6/UiWRhg1FOnd2F1URkZ07XT1xu2c+bVr+11sY1q0rXFtJUCFXlHLGU0+Ji51ieubR0UWb7ExMpPd94YUcnbZp4zoiN1/33+8e0WGKublPYURchJOV/foxKUqEIn7ttSIjRuQeNXLmjGtoY+PGIk2bigQHu45YU1JE5s0TWb2aTxd33GF9p1MnkT//tPY9e5a+/urV3F60yNr3iSfc+5CSwhun3RNPTBS5+WaR/fsLvuaCOHlSZNIk17b4eNc+lxQVckUpZxw4IDJ2rGvbjh3uGZiFYfZsimJICCcNTTslLIyx4DffnLeYf/656wh52TKRmTNd95kzR2TxYr4/c0akTx/u368fBXX4cHHznO3x2RkZlk8PcGT+2Wfyb3TM5s2chK1cmW3R0Xw6AXg9YWHyr020eDHP2bUro3CmTOHxTTsFoM2SM7SztPm//6OV8vXX3DZtripVOBHtCVTIFaWC8/vvlpBVqSIycCAnELt0EVmxQuTJJ0Wuu841qsO0UypVEgkN5eRox468KZhiPns29+nRg5EisbEU10aNXEf8AQG0OET43YYNaY/YSxcEB/PJITCQo9drr2X7Cy9Yo2/DEBkyxHpfqRLP5+/Pl/18f/zhKuIffGDZLGUt5qmpIpdeyj6/+qo18bxkiefOoUKuKD6KOUFpZi+ePGm1paWJPP00LQJ7pmSDBlbMtxlH7nC4eswLF7p64qbNUqUKo0uCgzlxaO7z8ccMFxRhSKI9fhtwtRA2b+ZEZa1aIg8/bIlySAhvKF26WLaKOdoGRB5/XKRnT9fjmjemJUtE7rvPanv0UZ5r505aS3ZPfPlykchIkV9/9fg/R76kpvJGZfbRkyIuokKuKD7JqVMi7dqJvP02veDgYHrgTZrQmjBjv595xkqq+fVXCuaFF+bvdx86xJA5+z67d3OUvHevq5AeP86wPjPRJSODNwv7PnbPXMQSc/Pznj35RGCOwD/9lMlPwcHWPi+9xOvMTci3b6edYraFh1t2z8mT7teXW1tRyC+5Ki/i4/kkYvbRtFk8hQq5ovggmZmW/fD224y/Ngx6xabn/OGHHJHaMyNNO+S++4p33vHjXYV05kzXKJLwcNfPTZtlwABXD96e6RgXxyeCm26y2kwRf/JJK4InIsI12ubRR602f3/aKfHxDGO0i7knWbqUiVT2m8Hs2YzDP3s29+/Y4/jnzbNsFk+KuQq5ovgodjEH6GWb719/nfv88497evvy5Uz0KSqzZ1sTpg0a8AkgKIgTkNWquQr4jBmWzdKokau9MWEChTcqioJbqxZvBtu3ux7jmWc40t2507q2qlUpil278hjPPsv+9OzJY2dnUzgvusgzdVJy+w2Cg0U6dKCYmzfGCy/Me6T/2GOunrjpmVevrpOdiqKIq9Vhj602hcZTOBwcVbdvLzJrFqNIDEP+nVw0QybNl1lP5K+/KNhxcdyePJkCfMklvJmYNktUFPtfpYoVJmlGuqSmMiN13DjGXx89Smupbl1aMStW8GaVnMyJ3O++y7tAlicwxdy81vxEXIR208aNrm2pqa7ZqSVFhVxRfJSDBxlzHRJiWQ4DBjCW2xw17t4tsnIlRdDEXpfkxAn3ibdDh0RWrXI/X2Ki5Zv//LMlZHffzb8jRogcO2Y9Jbz7rohkZsq5Q2f+nU3ds4cWiv2JYNEiTmxWr06httssOcMwTdLTrYiUsWMp4v378+aSM2uzNHj8cev6PVWTpSSokCtKITl61D2xY/9+RoWUNSdOUMQrVaJwVarkmlhz660U84gIvpo2FUlK4ijXXpfkxhtpW8ybx+1Dh0SaN+doN6963Lt2uSYLVaokMmiQlb2ZcS5Nxnb+UQ5UaSsOw6C/Yhg073/80e3A2dkio0e7ZjtmZTGqJS+RXLWKn9ljxPMTfk9i2iml9fRTHFTIFaWQPPAA9cisxLd/P6NEoqI4Wi1LsrMpdH//ze3jx+mZ33uvlYRjJs74+VGo//Mfbt9wgxVueOyYSOvWFP0ffqCIR0RwEjO3Ubkp4uboee5cCnmTJs7Y7JUrJbtqNXFERLgqrPmKiKChntvBC0lGBjNAGzYUWb/eOrSfHwttlSZmfL1pp+T0zL2FCrmiFJKUFFoXhiHyyisUr8jIEmlSqZCV5bqmpinoZlTJgQPWvnPmWBURzdeYMRzdV6/ufoPasIFRIevWMd48MlLk/fcZX77v91WSGZwjbCWvV3h4iX64NWusCo72w3qqamFeLFnCidWcUStmJqu3UCFXlCKQkuJa3Km8ibgIPXH7gNie9WhPsd+2jaPY3r1d9zG/k5dlZI7mT51idEhwsMiMyWmSFpEjdKWgV7VqxV5PLSXFKoJl3hfM2PmPPnLvqx37jcykKKsvFSeOvLTJS8hLvPiyYRj1DcNYaBjGFsMwNhuG8XBJj6ko3ubECSAx0dreutV7fcmNVauAgQOBGjWAffuA6Ghr4d9q1YDbb+diygAXiH75ZS64DADh4dZxXngBGDYs93P4+1vHmzePiyaPv/J3pCdlFK2zGRnAxIlF+46ToCCgalVr2+EA3n8fuO46oF49tqWmAoMHc4Fpk3XrgMaNgREjrLbFi4EWLbiIdGEwjMK1lQtyU/eivADUBtDR+b4SgB0AWuf3HR2RK+UZ0xOPjGSkhWmz2FevKWscDib+mI/1Tz7JPj7/vLVAg/nq0oWhfjVqcFJThJOd9lA6ux1T2MHyZ5+JbEBb94MU5tW2bbGue+FCTtK2acNwyKpV6Znv3WvtY1/U4f33rYJaZtjkiy9aETOtWnlmzVFvgbKyVgBMBTAwv31UyJXyzIMPunripmdeq1bZT3aarFvHOO6uXSlUWVmWeIWGMt57+3Yu4mAYIt27s5SraQWcPs3rMnW1XTtOfgYG0vstiN9+Ewn0y5JsGMUScodhyMljRVulIiODN6s2bThZK2J55ldf7b6vfZm1gAAWEbvzTqvN10VcpIyEHEAjAAcAVM5vPxVypTyTnu6exJGSYq2a4y3++IMC1bmzq2jVqsURqpm2HhHBv/aFkj/8UP6N+LjnHr6/9FIm/uQ22Wlnzhx66Zd2PSOOwByVsgr5yvQLlPaNzhRpceWUFGZ0muK7e7fIsGEs5GUeZ/Nm/hbnztHLN0/Zqxc/X7jQaituuYLyRKkLOYAIAKsBXJXH5yMBxAGIa9CgQdlctaJUMCZOtITpwQe5TJy/P5c8a96ck4ELF/Jm9PvvTKAxJzsvu8xakefjj3mM11+3Ss/mRWIiQyATT2dZfkURX9kw5MnHs8ThEHnjDdfkJIeDmZtr1rie97vv+PV772UY5pQp1ukXLaKI16jBG9maNdaSeWYt9gcfpJ3SooVVFvfFFz35r1H2lKqQAwgEMBvAo4XZX0fkilJ0srNdrYIuXTjyNBdjADhq79HDijEfM4bfnT/ffRm2uXMLvybnv/u1LZ5HfiSqrTgcHDm3aGHVJHE4WKMEYPq/HYdD5Lnn+NkNN9Au8vPjU0lICG2hWrVYLbFbN7ZPmkSbZdAgfq9mTY7o7b/dZ5+V6J/Bq5SakAMwAPwA4IPCfkeFXFFcsS+KnFubXYhefJGJk2ZBKrtmBgdbo1ZzdfqSsns3/fRly4QnzisJKI/XWUTIkXd++vd4hw9TzMPDrbK0vXu73lSSk7lykZkQZR7ut99E3nnH2l6+nN+7917XbNz0dIZM/vKL6284ZkzRltErb5SmkPcEIAA2AFjnfA3N7zsq5Ipi8dNPnNSzR2J8/DGTb44f5/b69RyFmtbA0KGc9LNbCfZX//6eEXERS3gjIkSWL0yTzMiixZGfMqpJ4zppLnMMhw9bu5h1zUeOpNgmJ4v07Wst69ajh7XvNdewCqO53bGjbwtzUSmzqJXCvFTIFcUiLo7VABs1opib/vWIEa52yO7d1ntT2AEWrcqpnx06uBbNKimmmAMiMVglSShcZqcjPFx2/rxKoqJY1yUhwdVOAazwQoDZp3368Kmif39mnvr7c27AXB0oNJST0TNmsLzL+STmKuSKUsbkFp+dV8y2KeamuOUU8dxYuTJ3/ezfn/5x586eFfO5c61zdPVfJemVqklWWO42S1pQhDhstVY2bGCMt13ER41inHvjxtYycOYhzGxOPz+KuAgnOKtWpXhv2MC2GTMYobNvn1WPxiQri79RRUKFXFHy4cgRdyvi0KHCTwbmJDZWpF4910iMadNoI+QVxmifyCxMqOO+fa76OWiQVWr2+usp5kWpSfL115a9YfLBBxTejRsZIWKey89PJAhpchN+kq2BrH6Y5R/IKoht24r89JOkJ6bJm2+63pDOnWMhqlGjrBj3w4f5u+QsH/D22+6/Q0aGe1tmJsv3GgYjXUT473brrZwA3bq18L9BeUeFXFHyICmJHvXVV1tivmMHC1I98kjxjrlnD8WpWjWK+bRp1ig5t9ViTDulXj1OApo2S15Mn86StQEBXH0+MpLx4DNnMuxu5kyuGlSUG9Hzz7MP99xDMf/gA24PHEgRr12bSUeHD7OfpuB+8YVI7PwsicQZGdQ/S5KTKd6XX87PX3rJ9Tz797uu6pOczAUockY25ryp5JbMY7YlJ1sZuF9/TREHRF5+2drX23VSPIEKuaLkw/vv8/+Gq69mfHKdOowIybniS1EwxdxuF+Qm4l9+KS52it0zz028kpIo4AAjO0Qs0Q0PL/5ThD3cz3xddRUTjYYMsWqGr17NG4e/P0MfAwNFnn6aJQwMg6LcqpV1E7CXN0hIEImJYT/NxSt++YX7dOlinTc8nNdoPtHExTEm3LxeEZGpU+mXz5jBbXOS1DzGrbda+545Q6H39Kr2ZY0KuaIUgCnmAIW0JCJuYmZUAkzUyY3NmzkKtlsQcXG0H3IT5fXrKWr+/uznmDHWaNY+ArUze7b7YhmTJrmn5zscrDtu9tnu6Tsc7FNEhFXv5OhRCjnAmi/2RZnbt+c1m5bJ2LEU8cBAkT//tI6bmSkyeDD3eecd12Xhtm3jPmlpVtXDzz+niOd8wsnKYlSLef6AANZnOXOGYY4BAUwq8mVUyBWlAHbssESgZcuSh++Zdkp0NEewps3iCZYvdw/n/uqr3Pd1OFhHOyDAmjicOJHb/fq5Wg7myN58mTaLCEXbjFu//HIK58iR3DZvJGFh1ncrV6awN2nimkf0+++u/TM98nfesdo2b2ayj71QmV3Mcz7hmJ44QE+/eXPX6wgI4E3I11EhV5R8MD3xqChrwtDumReV2bNdR4x2z3zzZs/0+fXXXcVq7dq89z171sp+vOkm/u3WzXWRBFPEzUQi02axi/mWLdaou3Zt+dcGscd221+GIbJgASNTzDZ7HXF7/wrT9ttv1nHeestq/+gj64nEfArKuehGcDBXPipNli519+KXLvXc8VXIFSUPkpI4eWf3xE2bpbijuMOHKZh2T3zPHo4ak5JK3md73RFzxFmlSsFibhfZnEL51luu2aCmZ37HHa4WzzffuB6nRg2rzkl+r+hoptkbBhNEi4ppp1x4oZUkZHrm6ekUebPf997rfv5XXin6OYuCWaBr+HBrUYtXXmHbI49YyV0lQYVcUfLhhx/cPfEvvhDZudM7/cmP06ctC+OrryybJSCAMeR5YS+4BVg2ix17lIgIRdHelp1tPbGYr+rVrb/Tplk3mN69Xfdr2pRi1rcv+2tOdhaGlStdn3DsNsvUqa77mp64/UbXtClH5LNmFf6cRcXhELnrLvl3juWJJ/j+4ovl3zmEkqJCrijlAE8sH7Z5M0e3dk98+XIKaU5RMzE98W7dGB9v2iy5iXlu/Rs9mrVWTE88LMy1NEBwMG96kZHM4PT3Z0SJOREKsP30aUaXFHXpvMxMVki0P+GkpTFkMucTTmIi19u02zmjRvFpwKz+WFo4HHyqMc9rzg1cfnnBCV6FQYVcUbzM1KmsVmjPthw/nok8yclFO9a5c+5teVk2DgfDB+2euOmZDxlS8I3k1CmRZs04iq5Rg554zsWQAdaB+ekn3ig++cT1s6uuyj+O3pO4rDE6w1pQ47HHyiaW3LRTzFfHjp4RcZG8hbzEa3YqSpFIPQKIw7UtJZ7/zVdwHA5g+XKuL3n2LPDzz8Ctt3JJy6JefkSEe5t9LU47hgFMmgTMmgVUrsy2ypW5PWlSwetQVqoEXH451wdNTgbCwoC0NH7Wty9fABAQANx8M1C3LtCsGRASYh3j/fd5ruxsIDOzaNdaVCZM4HqlU6YAQ4YAY8cCDz4IfPYZsGdP6Z771VeB554DLr7Yatu5Ezh2rHTPqyNypexIOykyuZ7IintEHE7j9fRGkYlRIhvHeLdvZcTkyVYyD8ACUZ6Y/CxNliyhVdKpk/sofMoUWhxmHPisWZwYveMOy1KIjGQI4v797h58aeBwWMlL9rbSXuHJnOw0PfHLLxe54gq+r1VL5ODBkp8Daq0oXsfhEFn3rMh4UMwT1lPE/6gjcnZ7wd+vIFx7rSWE8fHe7k3h+PVX9xT60aP52Sef0LN/+ml62Y88ws/N1PxVqywxL+83rZLgcLDWS3S05Yk7HLRaKle2fq+SoEKulA/sYj4eIpNqnVciPn686yRh166erVBYGmRlidx2m6uIGwa9cjMywz6Zt3Gja3KPCMV83Liy77s32LHD3RPftq34pRPs5CXkBj8rW2JiYiQuLq7Mz6uUE85sAma04/savYH+CwCj4k/X/PILcMstQK9ewPTpwNy5wLXXAjExwOzZln9tZ+tWoEoVoHZtq239eqBePaB69bLp9+nTQM+eQHo6sHs324KC6O0D9M8nTmSbLyLiPk+QW1t5wDCM1SISk7O94oPTQWUAACAASURBVP/fowDZ6e4TjFmp3plgPLMJmN8XCK0DNLgWOL4IWHWfe/8qIFFRwKWXUsTDw4ErrgB+/x2oUwcIDnbfPysLGD4c6NMHOHKEbWvWcHLx7rs916/0dOChh6xzAJzUfPBBICGBk5a1a3Oi8Ouv2Wf7hOWTT/quiE+ZAgwbBqSkWG0//cQbrHmj8glyG6aX9kutlTIkO0Nk/iCRFXdbE4wZiSKzu4useaJs+5J2UmRitOWJ222Wdc+VbV+8RFHjyJcsYdhfixYsXVu1qlWwylOsW0ebpFUrevZJSdZSa9OmccGG0FCWhxWxQgsNg9mwkZFFjwsvL5gVGwcMYAjojz9yu1+/ooeElgVQj/w8xeGgSI4HxTz9DEX8Z3+R/b8X/H1Ps32cqyfucIhseVckaX/Z98VHWLLE8qaDgjwr4iaLF1PM69fnWqF+fowJNzEnZcePtzzxffsYidKkCcU8Z6SIr2CKufkbl1cRF1EhP7+xi/l4iPzs5x0RP0+ZN89dfKdPL3zEyurVlsgEB5depMusWdZ5ck5Wmhw9KvJ//+c6mbd/v8jjjzNipbyT1xNR//7WtZ88yfa8luXzJnkJuXrk5wOGAbQebW0HVALqX+W9/pxHpKYy6adPH2DfPrZNmgSMGAE89VTB31+zBhgwAGjYkN5tYKCrZ+4pkpOBN9+0tr/6Kvdz1KzJ5B67J96gAfD220wIKs/Mns2J5tOnrbZJk4DWrYH58622G27gv1VMDDBuXJl3s1iokJ8PZJ4DFg4GDH+gcisg8yywamTuE4zmwCRnm1IsQkM5uZmYSAF+913g+uuBLl2Ajz7K/7tZWcB11zGaJTaWWZMzZwLx8cADD3iuj8nJjDxZtIg3i8WLgYMHgX79PH/D8CZZWcCqVcDAgRTzSZP4+27bxqxVALjqKop627bArl1Aq1be7XOhyW2YXtovtVbKkOwMkTk9LE/cbrOs+o/rvg6HyNqnRNY9Yz2DOrJFVj0gsvnNsu97BcJuj9Spk3ut7dxYs8bdlvn7b8/aK5s2cdLS7okvXsyJ1ZwrCPk606dznsH8t2jZkrZKYqK1MAXAOYKZM73dW3egHvl5zJZ3XD1xh0Nkw/9EDuf4L9WRLbLiXmcUyTOWiI+HyBoPpKWdx9hLyFatWjoTliUht6Skwt5sPEFsrLt/nVubJzBLzQL0981zHDlitffu7fnzegIVcqVw2MXcfK0ZXTGWIPcSEyeyVkn37qzHURohhL7MsmVUogcesP4ze+01tv36q2fPZZbzNQW7UycuCH3sGEvOBgWx3C6Q9/qn3kSFXCk82VmuQq4iXmxSUrj6UPfu1gh39WqK+Z13erdv5QWz3rkp5q++yvc33eSZtHaTSZMo4ua/hWmzdOjAkMvQUEYY2df/fLOcOYp5CXk5n2dWyhxxAKv/69q24Tmg/SvlM2e5nBMaCixYwGgPMwW/Y0dg6VKgcWPv9q28YBjAG2/w/Vtv8e9NNwE//AD4+3vuPNWqMSt24kT+WwwbBvzxB8vbNmnCLNr+/bnvt9+yfG+vXp47f2miQq5YiABxDwI7PwUuGA10eB1YdT+w+TV+fuGrhT/W6Q1AUBUgvIHVdnIVEN4QCK3p2X6Xc5o3d29r3brs+1GeMQzWlDGJiAD8PBxT16cP0Lu363hk2DBg6FD3MYq/v++EHgIq5EpOAsKdIv4G/+vu/JnVXlgcWcCSqzi6HxBLMT+xnCGQtfoBvaaUStcV3+X114FnnuFIvHZthmmaYurJB8HcjlXaD5qJiQzxtBc+O3WKfz1V+EyFXLEwDKDDW9Z7gFUJO39etP/a/QKA7j8DCwcB8/pwZL/yXiCkJhDjQ8McpUxYvtwS8R9+4Ejc3582S+/ejLv3Za69lglGCxeyQNqpU7RwQkN57Z64kWgZW6X0OLkKmNOF7/2CgeG7gbC63u2TUi6ZOhW47DLLExdh2/DhnrdYSoupU4GWLV2TiCZMYMbrnXdSxCdOZKbvtm3AtGnAoEFFO0deZWx1RK6UHpJl3wAk22tdUco3I0a4bhsGy/z6CqmpwKhRXJN04UKK+bffstzwnXdyfdSePYH27bn/7NlFF/H88Mi9zjCMwYZhbDcMY5dhGIWoIKFUeExPPKIZcMlkwD+UNkvyAW/3TFE8TmgoMGcOF9ju25d1dO6+m3VyPv7YPdW/bVvPnr/EQm4Yhj+AcQCGAGgN4EbDMHRO/nzGkQX8fRs98QGxQP0rgL5zgIwEYPVD3Of4Yka22ImfDSTuLPPuKoonaN2ao/GjR1mArH592i0pKfTEg4OBF15gRE7fvqyZ4yk8MSLvDGCXiOwRkQwAEwCMKOA7SknITAI2/A9w2JZpyTgNbBwDOMqBfeEXAPSaShE3PfGozlzSrfNXFPpVI4EF/S0xPzwDWDwcWPuY17qtKCVl5Urr/dmzwP79VmGuadOAl16izRIfT//fU1OUnhDyugAO2rYPOdtcMAxjpGEYcYZhxJ04ccIDpz2POTIT2PQSsPR6innGaWD+AGDzK8CZDQV/vyyo0sZ9YrNaRyAkyin0f3ICdEF/YMubwJIrgci2QNfvvNJdRSkppic+cCAQF8cReN++9M7//NPyxHv0oJh/+KHnQh9LHLViGMY1AAaLyD3O7VsBdBGRB/P6jkateIDtY4HVDwM1+tCySNxGL7ruUG/3rPAk7gSmt+B7v0DgyqNAcDXv9klRikFqKq2V5s1pp4SGAlu2UMivvJLZo56gNKNWDgOob9uu52xTSpOWDzntlP9xu9cU3xJxADhn88MlG0g5pEKu+CShoaznHh3N9wCFfcUKoF690j+/J6yVfwA0NwyjsWEYQQBuADDNA8dV8iPjNHDI9jPv+d7VMy/vHJ5BO6VqR2DQSiCktqtnrig+RoMGloibNG7MVZ1KmxILuYhkAXgQwGwAWwH8JiKbS3pcJR9MT/zsJqD3X0CnD4FDky3PvLzjyALWPUFPvN9c50ToQnrm5hOGoiiFxiNx5CIyQ0RaiEhTESlCZSXlX0SAHZ8wIuXfNgew/WMgO81132OLgMQtlife8iGK+dE5wNmtRTtvdhqw5GqGA5pkngNiLwdO5TOP4cgEzmx0P9bZLTn2y849kqbPLIq4aaVUbg4MXAJ0+6Fo/VcURdfsLDecXsfysYuGUczFwRC91f8FDkx03bf+FcDwPa6eeMuHgMt3AlXbF+28mYkU/4VDKOaZ54DYoYyMSd6f9/fWPwPM6WbdALLTgMVXAnMv4RMDwJvTqnuAFXdYYu7IBJbdwEiVoKqux4xoDARGFK3/iqKokJcbql3EQlMnlgKxQ4DlNwO7vwbaPg80utl9/9DahWsriJAajO8OqwfM6w38Xhk4+TfQ4xegxiXAlrdyD3Zt9RgQVt8p+nMp4kdmARe9ZQm0YTCzc99PFPPsNGDZjcDBSUClZlrfXFE8hNZaKU80vJ4j8eU3cbvlI0C7l0pf8EJrAY1vBzY8y+1m9wM1egPz+wFJe4B6VwCVW7h/p/9CYE53VjkEgC5fAU3vdt2vrfOYG56joANAx/eBVv9XetejKOcZOiIvT4gDODbf2j69GshKLv3zZp6jlWKy81NgdmeKeJ8Z7iJuElQFCIq0tivlsoICALQe7brd7AFg/bNA2nGrLTsdWPcUkHGmeNegKOcxKuTlBdMTN+2UHhNos5ieeWlheuIn/wZ6/gY0uROAg/74ha8BNfuwb+ufd/XMM5OA6a3p7bd/BajcisexT5oCTk/8Rr4PjubfpVcD297niD/tOEV8yTX0zY/OLb1rVZQKigp5eeHMBmDvjxTxdi/RZun+M3BiGXB4eumdV7Iotj1+oZ1yapX1WfwMinjyPmDHx87qhfsZPjgrBkjeS0um7bO0WcLqA4uGu052LruJnnjH94Grj1P04/8ContyxD+3JzCvFxA/Hbj4E6DBtaV3rYpSQdGFJcoTiduBSi1cPfHE7UDllqV7Xkc2kHHK8sT7zACOLQQ2vcwRepevgNNrGbseWIkToyf/BhrdCnS3hQumHgVO/QPUu9xq2/4xbxZ2T3zza0BILSC0Did2Ad682r1QutepKD5OXin6KuQK2fM98M9/gD5/0U4BgI0vAdveAy6NY5z3yZXAnK78rMWDQMxHxT+faafEO582ItsweiakRokuQ1EqMnkJuVorCmlyO3D5DkvEAaDdi8CwLRRxRxaw/QPrs8PT848zzw+7iF/8CdBvPp8ETM9cUZQioUJeUTi3i5OF9iesM5uAbR8W/hi5racZVte5UMStwP4JXJx5cByjS0zPvDh9PbGEIt78AaBWP6C388Zw8u+iH09RznNUyCsKe75j+N76ZyjmZzYB8/sCW9/KO6QvOwPY+o5rfZasFGDre65p9SmHgGMLKOKtnwCqdQL6zmJW6PEl1n6FrfNSpQ1w+S6KuEmtfsDwvUA9XZNEUYqKJgRVFNq/DKSfAra8QRE/tQLwCwL6xzLeOzeOzALWPuHM5JxAIV40nLHshyazFop/CBDRCLjwDeDIbO6z+yuGSV66CqjUlMfa/DqjXPrOAgLCC+5vSFTebY5M2i/2dH2z3ox/SGF/EUU5b9AReUXB8AMuHsewvvjpQPpJinjlPJJ0AKDecKDjB8DBP4BFIxhBcmwB0PQehj0uvoICemAisOpeIPUQBTa8EQtmLb0OSE+giK9/BghrAPh5QGj/vh2IHcwYd8Cq47L4SoZDKorigm+MyEXc09RzazufEaG1cnaT1bb7a47Gm96VdzRIq4eB7FRg/dPc7vI194/qBqy8B/jVWWA5ugfQZyZX8qkzhAtZLL4CmFSdnze8iZUL/fxLfi31r2JhrdghrPD49218eujyFW9YiqK4UP7/r8g440wYmWW1pR13Vt5bkvf3fInk/e4jzaR9RVuZ9eh8+t2Z55ic0/Q+YOubFOg93+f9vawU4Og8azv+L1obTe+iYJtcMhk4/Ccw/QJOVtYZAkR1tT5v/ZRnRBwAGlzjzGxdBvxRwxLxnHVcFEUB4AtCLg7WG1l8BcU87Tgn8c5sYKKJr5NyGJjZEYh70BLzE8uBGe2Yxl5YTq0AgqsD/mHAiruA9KNsD4ykVZIbWSlOT3wBR9OmzbLsBkaoHJlt7bvsBmDtU0DaUUarrHncNR3/79tos3iKupe5blfLETp7cAonYfMjO4OZpccWWW1ZKay/nl+tdUXxMcq/kAdXA/rNAyJb81H7j5pA0l5n4kpfb/eu5ITWAZrdy0JVcQ9yFLrwUpakbXhD4Y/T5lnGfPebx9T5Q1OB+tcAl+0EgqsCZ7cBK++luJns+poi3vVboPGttFk6fsDvLr+FI+5rE2m3HFsAGKANk3Yc2PYuj2EEABe9y4UuFgy0fO2SYHriAFBrIP/O7gycXs/3+yawXsuG5/M/TuZZ1oKJHUoxz0oBFl0GHJwMnNtR8n4qSjmh/As5QDHv/rO13eK/viXi6QnOut42+yT1qDXivvB1oPWTFPO5PZm+3j8WCKtT+HMYBhAcZZWKBYCE1YAjle9PLme0ydJrKOYJa4FN/+MNwxRLgGLe6UMg+hJ64oGVaLN0+Rqo3AZodh8gtjDD7j8BFzxKz7zGJYWLWCmIZTdadkq/OcBF7wCODGB2F2DTK8DfN7N/MR/nf5yQaGaLhjcE5vdhrfVjsXz6aHRTyfupKOUE30jRN+0Ucxkxv2AKR53BpdNBT7P9Y6700/wBio95PSkHgaEbuTLOieXA3B7cv94I4JI/3Cf2tn3IFYDMm5gIsOV1oGZ/oHpnYPXDwI6PgFaPAg2uZ53w4Or0zMMbcCm5uFEsbpVxGgiqBgxYCEQ0ce9zXhPM294H1j7GbcOPiyYPiOVCEZ4ifhaQGs8biMnWd4G1j/N9WH3gsq2Fv2kk7QGmOcMkm94DdPnSc31VlDLEd1P0TdFL2svR1dWnaLOYnrkv0GKUNeJecg1HhykHWZzKFPGFl7Ked6NbaW3YPXOAdsPuL4HYYSxoJcKFitc/C+z/hcWq9v1MEb/oHS5o3OVrxpYfmursx3+Apvfy3FlJHO3mJuJA7hFBOz6miBsBtF3EAWQkODM8D3ju96oz2FXEASDUlnWalcQnmsKQlcLoG5N9P7t65opSASj/Qu4fCoTWszxx0zOP6sYRpS9gGLRPGt/ORJvE7UCPX4EavTjZaXril0wDun1vif6Wt6xj+IfwRhbRhGI+rzerE1brzBH5ijuAkJpAqyeBTWOAveP5FBDVBWj5Xx4jYS1LypqsfcLVM88PM17cLwgYsAgYuBxoPoqeeUhN2kGlxb4JtFNq9OZ5DT/eDM/tzv97pid+LBbo9iNw5RHaLKZnbie3J1MvPK0qSnEo/0IeWInZgnZPPLgaRS2qs/f6VVTSjgGnVlrbiy4HNvyPtUwuehtoNhKY2Q7Y+TlFv9OH7tEm5vqa2amsVRLemH710muBRrcASbt5jI0vcpEKyWYdcIAivmAAEBABDN8NxIxjOKHpmRdEUFU+WQxaAUR3580p5iOgzXNAj58B/yCP/VQuZKUC60Y7Pfu/gOhuQD/nb7Dljfy/60jnAhjdfgAa3+Jcnm4Bn3wybWULzm4DZnXkItQmCWuBWZ34JKgo5RzfSAjK7THfl5KBUo9anviARRwt7/4C2PQSR30R9Tk6hsEJOsMAWj7kfhwRYMc423HjgU7vs9zsppc42jy3k59lpwGD/6ENBQCJ24DAypzAPDIHaH4/23eMBVIPM5a86T3uv2v6KYq44Wetv5l2kt67YQAXjvHMbyTCKJQG13EeAGC9l40vMKomqqvliVdtz5F5eMP8jxlUFRj0t2t8e2gtYPBq95h389+o/0L+duZNT1F8gPI/Iq8IHJ4GJB8EwhoCqUeAzp8BTUfys80vMywQBtDzd6DB1bkfw/TEN70MNLmLNkGlZozwaPcCozpMEQcoVMG2bM56VzCh5tQ/wD8PAKvuZzZmjQE8/6r7nFEu2UCiMzQv8xwnYFfew/ZjsUxUmh1D0RXxjN8sQotp7/fAgv7A6Q1Adhaw8i4mOZ3Z6D6xWbkF4B9c8LFzS1LK2RbZigIOA/irNUfnARGcxI1oXNyrUpQyQ4W8LGg2kqVfg6sDy28GDvzGIleBtmJWtQZQxJMPAqseYE0TO450IH4mRbzLl5ZNEN4Y2PJ2jvPdDxj+HFWmnWRb/HSK785xQOtnOHE6pR6waxyLZHX7Hqh6EcVz9sVASjxtrQY3AHu+5bHm9wVmXsSqh/Wu5ITs/D6crDU5scwqcGVybBFL4ebFhheAFbcDvWdwLmB+H2BKHWDvD0DbF11XFyotIltZNhQAXPypirjiM6iQlxWRrRilEtWdWZKTa7n6tEfnAmseo4jt/5lp8Hb8Q4De0yjiZlhicDRQewBjxAMjGUde+QIKb5vngXPbKcwA18KsdwV9+gO/cXIyO5mfZQM4exZYfgfFs9XjVgx7+/9RTI/HcjvzDLMs93wD7PwEuOAJZlgensGb0Px+zJw0xXzvT8CCfiynmxeVWzASZ83/Ab3/ZGhk+gkue9fuxWL/5EUiYS1DM01W3uXqmStKOUaFvCiIuNf2dmRzhGrnxDL32tzHlzACp9t3ru0tHna+MbisWsphoO9c1uy2k57AEfGmV622czs5ORrVgwszDFgEDFxKXzzrHND7L6CTbVWfnhOBKhcCSbuAc0eBpQCeBHA7gJj/Ar1+Al6sAaxvDKTbngia3GG9NwJ40zFFvFoMsPwm9j2sHidA42dQzHd/zZF2jd5Ay4eRJ41v5RPBsQUc8ZtkJNBWKW1Or7NNBO8Bhm0FYDhzF1TMlfKPCnlRWP80i3WlHuG2IxtYdQ/jqLOcGZRJe7i99HpLzPd8z3DBza8yWuVfDEZhdHgLgDPUrdHN7hmdByczsqR6Z07+bRzDQlsLL+XNoeN7QI2eFPDgasCAxcCFr3GxBnuceHYKk6l2AxgF4FsAh5ynznb+3XUceOABoE4d4J9/6InP78OJw7qXu9a3iZ9JEY/qBvSazMnPZiOBzp9TzFfeA1TvylF2QDiw6yvgnwddw/q2vgusewaofwNgBFrtQzbwKcT0zEuTwCqMCIpowjBQ0zMPqMxJ6MIumKEoXkKFvCjUGcrIk/n9OHJedQ9X5qk7HAhwlnuNaMKEnEOTKea7vgJW3Mn09f2/OBObFgLXJLJ2+PKbgW3vWOfY+wNF3ywItecHjm43jwG6fAM0vo1iPrURLYj6VwHVOlrfTz3qrIOSIwY68xywcDDwzyrgVQDJAHJY2f+SlAQkJAB9+gCfdeMTR9+5zKi0c3YTQxz7zKCfbuIfZr33C6RfDzifIMbRwhCxsjXP7QT+cab+B4QDMJw2i9MzP7kcpUpEIz5dHF9k1WA/tgBI2sm+azy5Us7xjRT98sTxxSwO5XDGXrd9kT7ynu8ZDtjGWdd724cUI4DWwiV/MDKkxShrgeOz2xirDIMTl0l7OMI1/Bha1/RuYP1zQM1+9McDwngjmOYcZVe9CDi9lun43X/iYhJmmOOlcRxZmhycAiy8BngQwDnbMm4FERkGbJ0PZBwAll1PwUs94lrTpd1LjJwB6Imbdkrd4cCaR3gDvGQSnwbWPQlstU3ONriWaf47xgLNHwRixvLYf9/O3IGev3GSuCzY/Y0zC9T5/0Td4YwkKq0YeUUpInml6PtGHHlpU5SFK6J6cJRoCnmzkRTxFXcCtfpT6PwCXJdX8w/liPWS312PlbyfI9De05ncZCY4xY2iqK9/Fqjc0hLx5P18GgioxNopp9cCtQYBB35lednUeL76zHAVcQCofwVw+AogcxKKRLYfsGA3cNNNzOp0ZPBmE90T6PELsGAQQyIrt3IuRnEXRdy0UwLCeAPb9h7Q5hmgw5t8YjDLD3T7iTZMQCgToQyDnjnAtP+yEnGAZQF2fgokOAcZ3X9UEVd8ghKNyA3DeBvA5QAyQOf1ThHJY6Vfi3I1Ik89ypFmzDigSlu2Je1jfe2u37gWgzI98T3fsfZH6mHno3c2wwd7TaMg2YW9Zn966/WuBHr+SqvBTmaS69qUALDrS2ZmAixze+lKLqE2+2JOtvaba4UK7v2BwnncGc/df0HelSHbtQM2bcr9s/xo2xbYuBFwOIDFIxi5YtopGeeARUOBgEig91RaEtHdKeLmf1tHZvGpwj/YtfgV4CwkNq58JHiZRcVMal/K4my6TqhSTiitollzAbQVkfYAdgB4uoTHK3syzzHUb35fLlqctM/5fiPrWdtZ8yhFvO2LwBUH+T+4OG2K7r9SxJP2ACvvpoj3mgq0ecpZ43sysH2s+/lzivieHziCrdkf6Def/ZvXhynpDa+niFePYVJLl29YBMtesGrn57nHbGdnA5s3F+832rwZSDvNMMKmd1rlbdNOArGXMi69ajvWe6nZzxLx1Q8x1rz2YFcRb3AtcEMGn152fmp55t7E7Efd4cD16Sw4dmSO5ZkrSjmmRNaKiMyxba4AcE3JuuMFKjfn5OP8vlyVB2AUQ7+5QLVOrvs2uY0RJa2f5Kjb/j/41jeBDm9wsrPXNPrgAc5Jv1YPs732pfn3JTMRWPeEqyfebw7ti61v0z+2k36CNVfSjzP08ORK1iUB6Jn72f55k5KAwEAgo5BFsuwEBADnEll1cNmN9Lurd2VEybkdPE9AOL3tjFO8/jWPsFpiDWf54Spt+Hs1uBboPp5PJh3edF7HKdCX9uKoPDgKqH816977B1nVF4/FukbTKEo5xGOTnYZh/AngVxH5KY/PRwIYCQANGjTotH//fo+c12Mcmcv63QBre9hjp3Nit056TeUoc+enwAWjKeYlsQkStzM6JMAW+XFmMws95fRr903g6va9pnKtzQse52Tj5tco7Hu+Adq+wJDE7GwKeXH+vQ0DyMwEshM50Zuwmu3+ITx37UGsNDi5rmuSU/QlvNE0HwVc7FwEQhyuddZFAIjnFlUuyULdusi3Us4ptrViGMY8wzA25fIaYdvnWQBZAMbndRwR+UJEYkQkJjo6urjXUTok7bM8aYCxw2fy8ZLP7XCKuHPUHDOOXu+5nZbVUlwqt3QVcYCj2dwm3RrdwEqGwVHArs85Edr4FmDoOl7D9rFWRua+H4Dm9YrXpzZtAH9/xpJ3/8VqbzqSIg6wz4PXuH7vxBIuV2dPSsop2IbhORF3ZNPW2v21rS2TTxH7fyv4+75enE05bynQWhGRAfl9bhjGHQAuA9BfvBHLWFKS99NWyTgDXPoPKwTO72tVwjMnQO20f4UCYYqrYVDMJcvVzigJKYeYKWmOYEU4uRpWD8hKY/XE5v9hIktIDa5yv+gyJiwFRtLj7/IV48wd2RydDzgEHA4Bkovg+Yb6AaOfoG0TVJUlc012fQbUHsiFkkWA7e+5fjegEtDlO8/9JgUhWQyNNBeSaHwbyyEc/IMTsIpSQSnRUMgwjMEARgMYLiIpnulSWWMwxM2cRKzcggIeVj/vkaJhuI+QDcM9IqW47PwMmN6KGZzzegPpZ5hC/mdzLjYxpyuXdZvZkUuvZaXSQ3dk8MZ0ZgNw4SuWz+vnzyiTIV0Ao4gTd6GRQJ+6HO3P7synkb6zgWsSgCrtmKx0+C/nMnMf004xyToHLL3SdaWj0sQ/mBmmtQdTzCcEUcQ7fpB7WWBFqSCUNPxwF4BgAKecTStE5P6Cvleuwg8Bz3ijjmz38qi5tRWG1CPO5e32cZQZXANIc5YFgEE7w5HJUL+wBkBEU+D4QiCyLbMtAcZ191/AlHOTzHPAG5WZ2ZmjuGKuBBvAb68Aaa8xDDK0LhOeMk4zuadmbwp5+1dYJ/3MRuDsRtop7V8BZsVwgnPQUveJ49Ik8xwXWgZ4sxlayin+ilJGlEr4oYg0E5H6ItLB+SpQxMslJfVGM06zbrfdh009xrjvwzOK3p/Q2nwqiGhEz/1fEQcAAY7Op4hX7QCkD+izVAAAE3dJREFUHKCIV24DnN3MsLkBi6xSAvYVbnZ/AzQF8CyAcABheSS7hDg/f1aApGcZKz9gEW8MtQZw5L30Wpan7TefUSn7fwaS91LEu/0IVGoKDFnLcrv7fi76b1BcHJkMgzQ5s9HVM1eUCojWWvEERiCzHpffRDFPPcYRdeJ29zjxwhJck7XGc8MsXBUUZbWd28a0/vpXcy3Q3n8xpn3xCNY2N0sG1L8KGH0KmNAVuCMTqAdG/fk7/zYKBT4ZB/zciaIP8OnEkcUbheHHTNRqMRTzRZczcqb2EFYN7Paj5YlHNGIy00U56qWXFo5MyxPv+AFwfapls+z8vGz6oCheQIU8P3IrWysO97K1gRG2WuPXs9Z48n6g70yKakG4LSLhYGXDI7NoneTFsXlA1+8Yjy3ZPOeCgezzgV/pmdcZCsCfafD1rwJ6TGA4YvdxwCUBwDshwI7vgC+CgJ8CgTUrgDabgKTVgF8oENmGFtFfbeiRJx8AgiK5jqpkMewRAHr9AYTXc5/YDKnhuaiUwpB8iLVbGt7gDI+czGvY8ob7v6WiVBBUyPPj37K1R7ktDo7u5vW1ytaaBEYw/tykyZ2FE/Etb9OWyTjtPIcwW/LYPCYmpRwAKrUEDJsNUqmF9T75ANB6NMXc8AMS1gATqzKuvfWTrF/iH8BU8x4TOCErwusIrAIMWgk0ux0YsQwIDGd24+E/WRIA2cxirdGDE5cRTVnjBQAO5KgbEz+rUD9pqeIXCFz0JjNyF/Tjk9Ge7/gkUaUda94oSgVEhTw/6gylUM7vy6XPVt7D1XfqXm6VrTVJPeZaa3zXZ4WLXa7Slj7u/AEU8/XPciHk6l2Brj9wFaBz2wHJ4IRjj4mcOByyAWh8O7M7RSjmw7YAYbbJzdZPW15/QKgVVWMYzPzsv9Ba6Lh6DNDfueRbn+nAkDUcyS67jgtJNHuAPjnA0ryr7gWqdgKuOsa+Lr2W5QWOzC3eb+0pavbh01HSPj4Z/fMA/716/l64NT4VxQfRMrYFcXwxbQ4zHd8sW2siDqaYz+tt2SlVOjCm++RyjoIbFFC5IH4ma3r8W1HxfuDicXy//BbWMQc4kWmGFAK0PAw/CrMIR9M7P+Vyb0m7WFir7xxaIUXFkU1/3bROev/JePGsFGDRcCBpN58Wun7PCdCFw4CUvfTSR+yjfeNNlt1k/W4jDgDh9fPfX1F8gNIqmlXxie7JsDuT5rbAnKS9wMwOjNqIbEMRD46iVdLhLaDOMCC8UcHnqD2Yq/uYXPgK/668h2J0wWig1kDnE8F31n5+/taIe81jlp0ybDOXdTu9lmUHstNzX7Isr2XMHNmsKR7/l7Wc25KrWdN88QhnRcZ/WHXx79uc9tMBinzP370v4js/4+8WWJlL08UO5hOTolRQVMjzw/TEk3azNKx/GG0W0zP3C6R4LR4OXPAYRXx+Py7wEFSFZV2ru908c5xDaKecXseoEyOARbK2vU8bp+2LQPsxrGlSawCw4i7eOHJSdxjQ9nmrpnedocBF73KC8/RaFgTb8KIl3ru/4QTmwcnux9r6NrBvPHDhq8BFb7FwV5X2XPEosg2w70cW5+r2E33n5H285l5TgToFFAYrLrk9OebWtusry0656jjQbx5tlgX9nMW5FKUCIiJl/urUqZP4BP88JDIeIutf5PaxRSITwkT+vEAkM4VtyQdFpjblfuMhMqmWyJmthT/H+hf5vZX3iyTuFplUW+TnAJEZF4ns/k7kzGaRKQ1FjszjOfdPLNxx1z7Fvh5bJJKdJbLsZp5nQojItg9FxhsiCy4VyUp1/27GOZE9P7q2pSeI7Jsg4nCIrH/Bul77K+d3HA6R5MM52rJFUuIL++uQk6tEZnYSSTpgtR1dKDKri0jqMfd9l90ikpVm2zdWZMXdItmZRTuvopQzAMRJLpqqI/L8aHwrR7imJ16jF+2T5g9Yk51h9YCLP7W+0+EN99V58qNWP6DlI/TEQ6I4Koew7G21GD4BZKfzPAGhQIOrC3fclg8zwmThECYPZThrq2enMZ2+9qC8F00IjGDxLTtBVVkP3TD49GGn50Q+say4ndUXTTa9TOvpjLMOuvmEMysGSD3ueoz0hLxT+SWbBcnm9wWSD7K0bOwwhoHmHJVXv9i5so9tYrNmb9adKauaL4pSxuhkZ0k5u4V2SprTgw2szFokUV2Ld7zMRGDBpcCpFdwOqQUMiGVVxKKSepR+fdIebje8iRmYANDmWcuLL2r/Fg5mES04S9A2uRPoNJYWU8IaYPge+uSJOyi+jkxGxJh2UXBNoFZfK3ko9QgXz6gzFOj0fu7nPbmCk85mDH/lCxh1E1qz6NegKD6KrtlZGpzdRhGHwazGwAgK0sJLueq8uQZnUQisTDGb043bLR8unogDHEUHVQfgFPL9v3DSNKgqsPlV1ktp93zhj+fIpIif+oeLQ0Q04YToppc5su89HUjcZk12mgXI5vUGZjjDHNu+yJK3657kdoe3WBAsNZ5ZqXkR1ZVrfq57itvdf1QRVxQnKuQlIbgaJwE7jbXslAGxXHQipEbxjnl2CyNDAsKZ9r/heQp5/SuLdpzsdMZ2J/zDEfOebwEYjEKp2Y/Cu/EFIPIChkemHXfvc842v0Cu8NPqMcviqX4xJ2ijulCgq3V0PUalZnylOSeIG1zL+uoAxXz/BPal71ygRs+8r+dYLLDxZWt76fW8SWhYoaKoR14iQmowosPuiYfVY0nciEZFP565dij8gMGrGY9dLQZYeh1LxRaFDc8zQzNmHOPPO7xBQV16DVfx6fINcPEnQL0RQPxsYGpj4NA06/u7vwGmNQFO5bDAWj3i6tMbBkf15gITdkxP/MRS2jqhdZzroW7m/INJcHT+VtSxRfTEwxsCVx4FBv3NRKj5fVm3XVHOc1TIyxOhdWh9mJ54YGWg32xaDrktcJEfrZ9iMlKL/1BsWz/JzMyu37H+up8/J239AjmqjmxDkd/yDrD5Ta60E9WD7ceXMLO1qGx43gqh7DGeI2i/QGB+H2DuJUBABBc7TjkI/H1r7otGA7SCqsdYnnhUV85DhDfkk4uinOfoZGdZk5UKnF4DRPew2jLPMb67OJ56SclMYmmBxrcCOz4BTjvX4wyoxNoxQVWZpVpnCBddLgrJB4BDU1wXdTizkYW9spKBPjNpp2x5izZLs/uAzp/lfixdT1NRNLOz3LD+WU6QHp7O7cxznEBcOMgqnFXmOFg7xZ5dmnWO5QkWXQZENKbPbifjLHByVf6HDW/gvjJPlXYcoYfWBQ5NZVvr0UCHd1hjZtNruR9L19NUlDxRIS9tcj7xtHseiHQukbZvgjMKZCV97KCqZd+/wAjWLo9oxoxNOzvGspZL9a7sb/xMtmec5Y0ndrAVn14UavZhSOS2d4A1T/ApZcdYZtAmnKdPaopSAlTIS5PsDPrO+3+12vyCGe0SHA0sv9FZWOvXwif6lAbHY7kWp0mNvtZ7RybQfBSXkVt8hfPmM4hp/12/LV5BrsgL6NcbgRTz38JYgKt2MewbRVFUyEsVRwaQdgJYfjPF3KwceHQemEzjxMxCdGRROO1kZ5T+4sVVOzDxyOT4QlofDW/khOSSK4HOX3JB6uU3AqdWsThWvRHFP2d0N0b82OnzV/HtknO73H+nxJ2512NRlAqGCnlp4rJy0A3Ab+FMl49oykzQzl9alQUP/clKgstussQ8O52frRpZNEHKzihcG8BVcxaNADISgEumMnLGCGCCTr0rWHQq4zSfLOwr/fjlsd5nYclKBf6+3bVt7ejiHSvlEDCrE7DqPkvMj8UCMy8Etr1Xom4qii+gQl7aBEa42gXhjbhIcY9fgWb3WJUF/74FqNwaODgRWHojvecl1wDx060V6B3ZBZ8vcQcwvZVz1O8kYS0wvSXT3HPiH8IwvksmA/WHA41v4xJuIbVo/6SfoOimHmUVwa7fAlU70mYxPfOikpXKPpp2ysDlls2y5omiHy+0LjNgd39FMT+6AIgdysxTe7y6olRQNLOztMlKAZbdaG2nHGCMt+mJB1WlmJ/ZyKJcAWHA2seAiU7xv/gTLjSx+iGOnrt+xxjwvAiqBgRWYkhh7z+Zor9gAC2SkFxS2v1DuN6mSYfX2ad1TwJLr2ZUTVAka5xc4rRT6g5nCOGym5i0VFSfPOUQbxC1h1h2yoBFjC9PP17g190wDKDdS3y/aQwFPbI10H9B8TNsFcWH0Djy0sT0xI8t4BJq9a7kSPHkctYqaXi9+3ey04FfbRUJrz3HtUN3fMzU+IveLthHTjsJLOgPnNnA7bAGTDKKaFz4vs8fABybz/eX7QJSDzLaxCQ9AUjc6hoPXxTST7Nmu/1a0k8DwSWI3DkW68yMBW82vSaX7cLPilLKaBy5NzD8OOLt9j0f8U3PvEYfRq/kJDuddgpAWwMAfq9UNBEHWA6347vWdtvniibiR+Ywrd5kw7NcKclOcLXiizhAwc55LSUV8dihzERtdh9weJqrZ64oFRi1VkoT/xDaG3bBCoxgLZbcshSXXkdP3LRTfvHHv9Et7V8tfERHwloWlfIPY5nY1Q9RyGsNKPi7R+bwKaJyK0507vnGqlTY/afyWdM75RBrsUQ0oZ0SHE1LZdMYTiy3ecrbPVSUUqUc/l9ZwShsRqJhAPWGA3UGW544hBEkkgUsvx7o8RvgX0C0yJlNlic+OI6p9gv60zPvM4uLLORH8n7Gefedy5F9a2ckyaEpXJTCL4Lbjix3Uc+trSwIqwfEfMzl7kxPvN1LzhDKXOwrRalgqEdeHln9f8D2Dy07ZecnQNyDnGjsOSn/yc6Ms0y37/CmZaekneQ6lp0+BMLqFHz+7Az3G4a9LeUQJzs7vAXUu5xtiTuBRcOAzl+4eumKongMXVjCl6jakXXDO7zJkXqLUWzPOJ2/iAOMIOn5m2tbSBQjTgpLbqN+e1tABEf6S6/mjaVyK0acODK4ALWiKGWKjsiVwuPItm4kGWeABYO4cAVAAe+/sOjldhVFKTQataIUH3EAW9+j156VzLaACKb2m7R6VEVcUbyECrniTuJ24MQya3vVfcCuL4Djixjil3EWmH4BsPtLAH6Afyiw8UWWGVAUpczxiJAbhvGYYRhiGIYapBWBfx7gAtLHnbHkobWBc9sBvxDWKJ9YBUjaxYiawWuAK+OBKh3omRc3bV9RlGJTYiE3DKM+gEEADpS8O0q5oPt4hvTFDgZ2jOMrqCrgSHPdb+ASoNqFzNDsNweocxlQqbl3+qwo5zGeGJG/D2A0XOqyKj5NaG1OXGYlM+wxIwEY+Lf7fuuetDzzoCqs2VKpWdn2VVGUkgm5YRgjABwWkfWF2HekYRhxhmHEnThxoiSnVcqCtBzFq2KH8G9AZf6t0oGLMscOZTVDRVG8RoFCbhjGPMMwNuXyGgHgGQAvFOZEIvKFiMSISEx0dHRJ+62UJqfXc13RsPrAwKWMGU/eC1S+ALgmgUk/Z9YxaqVKB5YiUBTFaxSYECQiuRboMAyjHYDGANYbTDmvB2CNYRidReSoR3uplC1rHwcCwmmvVGrKxKSNLzI6xTCAZvda+9rfK4riFTyWEGQYxj4AMSJysqB9NSGonJN+ivXH7RUTU48wnjysrvf6pSjnOZqirxSe4Op82Qmt7Z2+KIpSIB4TchFp5KljKYqiKIVHMzsVRVF8HBVyRVEUH0eFXFEUxcdRIVcURfFxvFKP3DCMEwD2l/mJ8yYKQIFhk+cR+nu4o7+JK/p7uFJWv0dDEXHLqPSKkJc3DMOIyy0283xFfw939DdxRX8PV7z9e6i1oiiK4uOokCuKovg4KuTkC293oJyhv4c7+pu4or+HK179PdQjVxRF8XF0RK4oiuLjqJAriqL4OCrkOdCFpIlhGG8bhrHNMIwNhmFMNgyjirf75A0MwxhsGMZ2wzB2GYbxlLf7400Mw6hvGMZCwzC2GIax2TCMh73dp/KAYRj+hmGsNQxjurf6oEJuQxeSdmEugLYi0h7ADgBPe7k/ZY5hGP4AxgEYgv9v7+5Zo4rCII7/BxQs1FowgvV2NkFIoRgQ0UVrRUFsFQxol+8gFhYWNoIBERSsxJcPoEgkjaQRGxVBwUI7CY7FPQsJJEKafXK986v27C7scFiGs3u5PDACzksa1aYqtQbcsD0CjgJXB74fE9eB1coAKfKNMki6sf3C9lpbvqabADU0s8AH2x9t/wYeAueKM5Wx/dX2u/b4F115DXrSiKQZ4AxwrzJHirzZziDpAboCPKsOUeAg8Gnd+jMDL64JSYeBI8Cb2iTlbtMd/v5UhhjUhCBJr4ADm7y0SDdI+uR0E9X6137Yftres0j3k3ppmtli55K0F3gMLNj+WZ2niqQx8M32sqTjlVkGVeQZJL3RVvsxIekyMAbmPcwbDr4Ah9atZ9pzgyVpN12JL9l+Up2n2BxwVtJpYA+wX9ID2xenHSQ3BG1iO4Ok/1eSTgG3gGO2v1fnqSBpF92F3nm6An8LXLD9vjRYEXWnnPvAD9sL1Xl2knYiv2l7XPH5+Y88tnIH2Ae8lLQi6W51oGlrF3uvAc/pLuw9GmqJN3PAJeBE+06stNNoFMuJPCKi53Iij4jouRR5RETPpcgjInouRR4R0XMp8oiInkuRR0T0XIo8IqLn/gICGH6UBbqHjQAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTZElEQVR4nO2ddXwUV/fGnxsPBE9w92KlkOLFoUgLdaFutP21b/vWqLdv3d1daWkLRUpxCVqguHvR4BBCXPb8/nh2OrNx2WSz4Xw/n/2wc3d25s4Cz9x57jnnGhGBoiiK4r8E+LoDiqIoSvFQIVcURfFzVMgVRVH8HBVyRVEUP0eFXFEUxc8J8sVJIyMjpXHjxr44taIoit+yatWq4yISlbXdJ0LeuHFjrFy50henVhRF8VuMMXtzaldrRVEUxc9RIVcURfFzvCLkxpiqxpjxxpitxpgtxpju3jiuoiiKkj/e8sjfAzBDRK4wxoQAqOCl4yqKoij5UOwRuTGmCoDeAL4CABFJE5G44h5XUZTyx7FjQNbyTseO+aYv5QlvWCtNABwD8I0xZo0x5ktjTMWsOxljRhtjVhpjVh7TvzlFOes4cgQ47zzg0UdtMd+wAWjTBnj/fd/2zd/xhpAHAegE4BMROQ9AIoDHsu4kIp+LSLSIREdFZQuDVBSlnFOzJnDJJcAbb1DMN2wA+vcHQkOBYcN83Tv/xhtCfgDAARFZ7t4eDwq7oijKvxgDfPABcM89FPMOHSjiMTFA8+a+7p1/U2whF5HDAPYbY1q5mwYA2Fzc4yqKUv4wBhg92t7u0gVo1sx3/SkveCuO/D8Axhpj1gPoCOBlLx1XUZRyxIYNwIABQN26wJAhwMSJnp65UjS8En4oImsBRHvjWIqilE8OH7Y98ZgYjsT/8x/aLJGRwJgxvu6h/+KTWiuKopx91KoFPPIIcNlltif+wQdsv/Za3/bN3zG+WLMzOjpatGiWoihK4TDGrBKRbO6H1lpRFEXxc1TIFUVR/BwVckVRFD9HhVxRFMXPUSFXFEXxc1TIFUVR/BwVckVRFD9HhVxRFMXPUSFXFEXxc1TIFUVR/BwVckVRFD9HhVxRFMXPUSFXFEXxc1TIFUVR/BwVckVRFD9HhVxRFMXPUSFXFEXxc1TIFUVR/BwVckVRFD9HhVxRFMXPUSFXFEXxc1TIFUVR/BwVckVRFD9HhVxRFMXPUSFXFEXxc1TIFUVR/BwVckVRFD9HhVxR/JANG4BrrwWSk+225cuBm28G0tJ81i3FRwT5ugOKohSe9euBX34Bjh8Hpkzh9uDBQGQkcPIkULu2r3uolCZeE3JjTCCAlQAOishF3jquoijZue46ID0duPVWinZyMtCgARAToyJ+NuJNa+V+AFu8eDxFUfLg5puBu+4C4uMp6tOnU8yVsw+vCLkxpj6A4QC+9MbxFEXJn+XLgbFj7e177vH0zH3JggXAoUOebbNn0/ZRvI+3RuTvAhgDwJXbDsaY0caYlcaYlceOHfPSaRXF/4iNBb7/3rNt92563gVl+XLbE9+3D/jmG2DuXGDECN+LeUICcMUVQP/+tphPmgQMGwY89phPu1ZuKbaQG2MuAnBURFbltZ+IfC4i0SISHRUVVdzTKorf8tprwE03AR9+yO3du4G+fYF77wVOny7YMWJjgTp16Ik3aECb5euvgSNHKKS+JCIC+P13YP9+ivmnnwJXXglERwNvvOHbvpVXjIgU7wDGvALgBgAZAMIAVAbwu4hcn9t3oqOjZeXKlcU6r6L4K2lpwFVXAZMnAw88AIwfDyQmAnPmAOedV/DjpKcDwcH5t/mKRYuA3r35vnFjYO1aoEoVX/bI/zHGrBKR6KztxR6Ri8jjIlJfRBoDuAbAvLxEXFHOdkJCgF9/Bdq3B955hyPXwoo4kLNglxURB4ATJ+z3qalAUpLv+lLe0YQgRfEBBw4AzqmiJUt815eSYNIk2indugFTpzKyxumZK97Fq0IuIjEaQ64oeWN54mlpnLQcORL4z39sz9zfSUwE7ryTnviMGcDw4QyN3L8f+N//fN278omOyBWllPn4Y9sT79KFNsvIkcDLLxd8srMsU7Eir23GDNsTv+ACYOFCYNAgYONGz/1/+w3YubP0+1meKPZkZ1HQyU7lbCYzE9izB2jWzG5LS2MkSuPGvuqV91iyBGjXznNic8ECoEMHoFMnRtXMn899fvyRETzXXsv3St6U2GSnoiiFIzDQU8QBToCWBxE/eRIYOhQYMsR+upg0CRg4EHjxRWDmTF5rv36MKb/pJqBPH+Czz3zabb9HR+SKUgwyMynM+bWdTVgTndHRwN13A7fdZvvlVaoA27cDrVpx36go4J9/aMco+aMjckXxMikpwMUXM4TQIiEBGDCAyTlnK5dcQt972TKOuFu29PTLV6yw901MpJArxUOFXFGKSGAgR5IPPkgxT0hgGvrixTrCzA3LE+/XD1izBqhale+zToAqhUOFXFGKSHAw8NNPrCvy4INApUrA0qUsZHX11b7uXfE4eBB45RXA6bzu3g28/bZnW044Y8i/+45WypAhwNGjwPPP0xP/4w+gY0dOeoaEAG+9VZJXU/7RhSUUpRgEBwNffME0ewA4/3z/F3GAI+cnngAOHwbefZf2R9++tEKuvZZ1XnLi5EmOuJ2eeOXKFPbXXqNwV61qP7G0bMmbn9ZQLx46IleUYpCQwIqDFsuWeXrm/sqYMawD8/77jHHv04ciPndu7iIOANWrA9OmeXril1zCuPIXXgDq1QMqVOBxT53i540a8Yb49tu+L/jlt4hIqb86d+4siuLvJCaKXHCBSGCgyLhxImlpIldcIQKIvPuur3vnyd9/i3zxhWdbTIzI2LF8n54ucsMNIn/+aX+enCxSty6vBxBZvdo7fdm0SSQkRKRzZ5GTJ0UyM0XuuIPn+PLLwh3L5cq+nbWtPAFgpeSgqToiV5QiEhbGMDrLE7c88+uuA1q08HXvPHn3XeCOO4BPPuH2ggWcmH3lFVZMTEwENm8GLr2UI+rUVMaDx8bax/j22/z98YLQpg0wcSIXkB44kL/dF18ATz3FpesKyhtv0ObJyOC2CPD00ywP4Mp1ZYSSITOTkUqZmXZbejrbSiXCOyd1L+mXjsgVpXRJSRG56CKOeq+5RqRCBZFzzhE5dMje5+RJjpKtETggUrGiyJo1Ig88wO377vPeiHfqVPs899xT+OO+/jq/e/XVfKJ48klu33EHR/k5kZJSsLbCMmUKz33jjSIZGXw6u/xyts2bV/zjWyCXEbkKuaL4CJdLZP9+z7aMDJGDB0vmfCkpIpUq2eLpFHGLQ4fsz4ODKeJWXx94QKROnZy/V1icdgpg2yyFxRJz65WXiP/zj0iTJiK//Wa3bdwo0rChyKxZRboMD154gX249lqRSy8tGYtNhVxRyhjPPCMSGSmyfj23MzI4oqtXT+TEiaIdM6dRrdUWEyMSFGSL3scfe+6XkiIybJinkDs9c5dL5PDhovXL4uhRTxF/6imRn37y9MwLg8vF71p9Tk3Nfd/4eJGePTmn8dtvFPGoKN6ctm0r3nVZPPus3Ze33vLOMZ2okCtKGWP7dk4mRkaKrF1LEQdEnnuuaMc7dUqkXz+RRYtEfv6ZdsWhQ5yQ/fxzCl6NGiJ79tg2iyXmThH//HPbZgkJ8RTz4vDrryIRESLffUdr56mnRN5+W6RqVZFPP+W5vvvO3j8uLvsxnG0ul22nWC/LZskNS8yt/b0p4k47xWmzeBMVckUpg2zfLlK7tv2fv6giLiISGyvSqhXF8vrrebxq1UTCwkTateP2gAEUHMsz79yZ22fOiPTpQxFPS+PxTp4U6dqVN4XikJkpsnIlbyrnnEMR/+EHkQcfZJ8uu4zn3L3b/s5XX/F32bzZbnvlFdogsbHctkT8tttEHntM5IknbDFPThZ55BE+AWTlr7/s3/ull4p3bRZOEX/3Xdtm8baYq5ArShkkI0Oke3dbWCybpahYYu4cpQYE8M+BAylwFgsWiDRoYPvgGRn0ips25Q3GaisuL79Mm2bSJIp569Z234YMsW8cTrZsoZDXqkUxf+UV7j9qlN2nTz8VGT2an1eqJNK8OcX8gQdsj/r77z2Pa9kplSrxT8tmKS7WxK3TE3/hBRFjaGl5CxVyRSljWJ44wBhuy2YpipgvXSpy7Bjfr11rC2VYmP0+KcnzO7t2UcirV6eYz5rF/Tt0sI+VG5mZ2Y+XlpazRx0Xx5F9cLDI+PGeN5rZs3M/hyXm1r5OEc/p+itVEmnUSKRLl+yiKiKyY4enJ+70zKdMyft6C8LatQVrKw4q5IpSxnjsMfGwUyzPPCqqcJOd8fH0vs89l6PTtm09R+TW6667skd0WGJu7VMQERfhZGX//kyKEqGIX3mlyMiROUeNxMV5hjY2aSLSrJlIaKjniDUpSWTOHJFVq/h0cfPN9nc6dxb54w9739On6euvWsXtBQvsfR95JHsfkpJ443R64vHxItddJ7J3b/7XnB/Hj4tMmODZFhvr2efiokKuKGWMfftE3n/fs2379uwZmAVh5kyKYlgYJw0tO6VCBcaCX3dd7mL+2WeeI+QlS0SmT/fcZ9YskYUL+T4uTqRvX+7fvz8FdcQIyeY5O+Oz09Jsnx7gyPzTT+Xf6JhNmzgJW7ky26Ki+HQC8HoqVJB/baKFC3nObt0YhTNpEo9v2SkAbZasoZ0lzX//Syvlq6+4bdlcVatyItobqJArSjnnt99sIataVWTQIE4gdu0qsmyZyKOPilx1lWdUh2WnVKokEh7OydFOnXhTsMR85kzu07MnI0ViYiiujRt7jviDgmhxiPC7jRrRHnGWLggN5ZNDcDBHr1deyfZnnrFH38aIDB1qv69UiecLDOTLeb7ff/cU8XfftW2W0hbz5GSRCy9kn196yZ54XrTIe+dQIVcUP8WaoLSyF48ft9tSUkQef5wWgTNTsmFDO+bbiiN3uTw95vnzPT1xy2apWpXRJaGhnDi09vnwQ4YLijAk0Rm/DXhaCJs2caKydm2R+++3RTksjDeUrl1tW8UabQMiDz8s0quX53GtG9OiRSJ33mm3Pfggz7VjB60lpye+dKlIlSoiv/zi5b+MfEhO5o3K6qM3RVxEhVxR/JITJ0Tatxd54w16waGh9MCbNqU1YcV+P/GEnVTzyy8UzHPPzdvvPnCAIXPOfXbt4ij5n388hfToUYb1WYkuaWm8WTj3cXrmIraYW5/36sUnAmsE/sknTH4KDbX3ee45XmdOQr5tG+0Uq61iRdvuOX48+/Xl1FYY8kquyo3YWD6JWH20bBZvoUKuKH5IerptP7zxBuOvjaFXbHnO773HEakzM9KyQ+68s2jnHTvWU0inT/eMIqlY0fNzy2YZONDTg3dmOq5cySeCUaPsNkvEH33UjuCJiPCMtnnwQbstMJB2SmwswxidYu5NFi9mIpXzZjBzJuPwT5/O+TvOOP45c2ybxZtirkKuKH6KU8wBetnW+1de4T5//509vX3pUib6FJaZM+0J04YN+QQQEsIJyOrVPQV82jTbZmnc2NPeGDeOwhsZScGtXZs3g23bPI/xxBMc6e7YYV9btWoUxW7deIwnn2R/evXisTMzKZznneedOik5/QahoSIdO1LMrRvjuefmPtJ/6CFPT9zyzGvU0MlORVHE0+pwxlZbQuMtXC6Oqjt0EJkxg1Ekxsi/k4tWyKT1suqJ/PknBXvlSm5PnEgBvuAC3kwsmyUykv2vWtUOk7QiXZKTmZH60UeMvz58mNZSvXq0YpYt480qMZETud9+m3uBLG9gibl1rXmJuAjtpg0bPNuSkz2zU4uLCrmi+Cn79zPmOizMthwGDmQstzVq3LVLZPlyiqCFsy7JsWPZJ94OHBBZsSL7+eLjbd/8p59sIbvtNv45cqTIkSP2U8Jbb4lIerqcORD372zq7t20UJxPBAsWcGKzRg0KtdNmyRqGaZGaakekvP8+RXzAAN5csmZtlgQPP2xfv7dqshQHFXJFKSCHD2dP7Ni7l1Ehpc2xYxTxSpUoXJUqeSbW3HADxTwigq9mzUQSEjjKddYlufZa2hZz5nD7wAGRFi042s2tHvfOnZ7JQpUqiQwebGdvpp1Jkfe7/CD7qrYTlzH0V4yhef/DD9kOnJkpMmaMZ7ZjRgajWnITyRUr+JkzRjwv4fcmlp1SUk8/RUGFXFEKyN13U4+sSnx79zJKJDKSo9XSJDOTQvfXX9w+epSe+R132Ek4VuJMQACF+v/+j9vXXGOHGx45ItKmDUX/++8p4hERnMTMaVRuibg1ep49m0LetKk7Nnv5csmsVl1cERGeCmu9IiJoqOd08AKSlsYM0EaNRNatsw8dEMBCWyWJFV9v2SlZPXNfoUKuKAUkKYnWhTEiL75I8apSpViaVCJkZHiuqWkJuhVVsm+fve+sWXZFROv1wgsc3deokf0GtX49o0LWrmW8eZUqIu+8w/jyPb+tkPTQLGErub0qVizWD7d6tV3B0XlYb1UtzI1FizixmjVqxcpk9RUq5IpSCJKSPIs7lTURF6En7hwQO7MenSn2W7dyFNunj+c+1ndys4ys0fyJE4wOCQ0VmTYxRVIisoSu5PeqXr3I66klJdlFsKz7ghU7/8EH2fvqxHkjsyjM6ktFiSMvaXIT8mIvvmyMaWCMmW+M2WyM2WSMub+4x1QUX3PsGBAfb29v2eK7vuTEihXAoEFAzZrAnj1AVJS98G/16sBNN3ExZYALRD//PBdcBoCKFe3jPPMMMHx4zucIDLSPN2cOF00ee+lvSE1IK1xn09KA8eML9x03ISFAtWr2tssFvPMOcNVVQP36bEtOBoYM4QLTFmvXAk2aACNH2m0LFwItW3IR6YJgTMHaygQ5qXthXgDqAOjkfl8JwHYAbfL6jo7IlbKM5YlXqcJIC8tmca5eU9q4XEz8sR7rH32UfXz6aXuBBuvVtStD/WrW5KSmCCc7naF0TjumoIPlTz8VWY922Q9SkFe7dkW67vnzOUnbti3DIatVo2f+zz/2Ps5FHd55xy6oZYVNPvusHTHTurV31hz1FSgtawXAZACD8tpHhVwpy9x7r6cnbnnmtWuX/mSnxdq1jOPu1o1ClZFhi1d4OOO9t23jIg7GiPTowVKulhVw6hSvy9LV9u05+RkcTO83P379VSQ4IEMyYYok5C5j5PiRwq1SkZbGm1XbtpysFbE988svz76vc5m1oCAWEbvlFrvN30VcpJSEHEBjAPsAVM5rPxVypSyTmpo9iSMpyV41x1f8/jsFqksXT9GqXZsjVCttPSKCfzoXSn7vPfk34uP22/n+wguZ+JPTZKeTWbPopV/YLU5cwVkqZRXwlR4QLB0axxVqceWkJGZ0WuK7a5fI8OEs5GUdZ9Mm/hZnztDLt07Zuzc/nz/fbitquYKyRIkLOYAIAKsAXJbL56MBrASwsmHDhqVz1YpSzhg/3hame+/lMnGBgVzyrEULTgbOn8+b0W+/MYHGmuy86CJ7RZ4PP+QxXnnFLj2bG/HxDIGMP5Vh+xWFfGXCyKMPZ4jLJfLqq57JSS4XMzdXr/Y877ff8ut33MEwzEmT7NMvWEARr1mTN7LVq+0l86xa7PfeSzulZUu7LO6zz3rxL8MHlKiQAwgGMBPAgwXZX0fkilJ4MjM9rYKuXTnytBZjADhq79nTjjF/4QV+d+7c7MuwzZ5d8DU5/92vXdE88kOR7cTl4si5ZUu7JonLxRolANP/nbhcIk89xc+uuYZ2UUAAn0rCwmgL1a7Naondu7N9wgTaLIMH83u1anFE7/ztPv20WH8NPqXEhByAAfA9gHcL+h0VckXxxLkock5tTiF69lkmTloFqZyaGRpqj1qt1emLy65d9NOXLBGeOLckoFxepxEhh9788d/jHTxIMa9Y0S5L26eP500lMZErF1kJUdbhfv1V5M037e2lS/m9O+7wzMZNTWXI5M8/e/6GL7xQuGX0yholKeS9AAiA9QDWul/D8vqOCrmi2Pz4Iyf1nJEYH37I5JujR7m9bh1HoZY1MGwYJ/2cVoLzNWCAd0RcxBbeiAiRpfNTJL1K4eLIT5jq0qRuisccw8GD9i5WXfPRoym2iYki/frZy7r17Gnve8UVrMJobXfq5N/CXFhKLWqlIC8VckWxWbmS1QAbN6aYW/71yJGedsiuXfZ7S9gBFq3Kqp8dO3oWzSoulpgDItFYIQkoWGanq2JF2fHTComMZF2Xkyc97RTADi8EmH3aty+fKgYMYOZpYCDnBqzVgcLDORk9bRrLu5xNYq5CriilTE7x2bnFbFtibolbVhHPieXLc9bPAQPoH3fp4l0xnz3bPke3wBWSWqm6ZFTI2WZJCYkQl6PWyvr1jPF2ivg99zDOvUkTexk46xBWNmdAAEVchBOc1apRvNevZ9u0aYzQ2bPHrkdjkZHB36g8oUKuKHlw6FB2K+LAgYJPBmYlJkakfn3PSIwpU2gj5BbG6JzILEio4549nvo5eLBdavbqqynmhalJ8tVXtr1h8e67FN4NGxghYp0rIEAkBCkyCj/KlmBWP8wIDGYVxHbtRH78UVLjU+S11zxvSGfOsBDVPffYMe4HD/J3yVo+4I03sv8OaWnZ29LTWb7XGEa6iPDv7YYbOAG6ZUvBf4Oyjgq5ouRCQgI96ssvt8V8+3YWpHrggaIdc/duilP16hTzKVPsUXJOq8VYdkr9+pwEtGyW3Jg6lSVrg4K4+nyVKowHnz6dYXfTp3PVoMLciJ5+mn24/XaK+bvvcnvQIIp4nTpMOjp4kP20BPfzz0Vi5mZIFcTJ4AEZkphI8b74Yn7+3HOe59m713NVn8RELkCRNbIx600lp2Qeqy0x0c7A/eorijgg8vzz9r6+rpPiDVTIFSUP3nmH/xsuv5zxyXXrMiIk64ovhcESc6ddkJOIf/GFeNgpTs88J/FKSKCAA4zsELFFt2LFoj9FOMP9rNdllzHRaOhQu2b4qlW8cQQGMvQxOFjk8cdZwsAYinLr1vZNwFne4ORJkeho9tNavOLnn7lP1672eStW5DVaTzQrVzIm3LpeEZHJk+mXT5vGbWuS1DrGDTfY+8bFUei9vap9aaNCrij5YIk5QCEtjohbWBmVABN1cmLTJo6CnRbEypW0H3IS5XXrKGqBgeznCy/Yo1nnCNTJzJnZF8uYMCF7er7LxbrjVp+dnr7LxT5FRNj1Tg4fppADrPniXJS5Qwdes2WZvP8+RTw4WOSPP+zjpqeLDBnCfd5803NZuK1buU9Kil318LPPKOJZn3AyMhjVYp0/KIj1WeLiGOYYFMSkIn9GhVxR8mH7dlsEWrUqfvieZadERXEEa9ks3mDp0uzh3F9+mfO+LhfraAcF2ROH48dzu39/T8vBGtlbL8tmEaFoW3HrF19M4Rw9mtvWjaRCBfu7lStT2Js29cwj+u03z/5ZHvmbb9ptmzYx2cdZqMwp5lmfcCxPHKCn36KF53UEBfEm5O+okCtKHlieeGSkPWHo9MwLy8yZniNGp2e+aZN3+vzKK55itWZN7vuePm1nP44axT+7d/dcJMEScSuRyLJZnGK+ebM96q5TR/61QZyx3c6XMSLz5jEyxWpz1hF39q8gbb/+ah/n9dft9g8+sJ9IrKegrItuhIZy5aOSZPHi7F784sXeO74KuaLkQkICJ++cnrhlsxR1FHfwIAXT6Ynv3s1RY0JCcXvsWXfEGnFWrZq/mDtFNqtQvv66Zzao5ZnffLOnxfP1157HqVnTrnOS1ysqimn2xjBBtLBYdsq559pJQpZnnppKkbf6fccd2c//4ouFP2dhsAp0jRhhL2rx4otse+ABO7mrOKiQK0oefP99dk/8889FduzwTX/y4tQp28L48kvbZgkKYgx5bjgLbgG2zeLEGSUiQlF0tmVm2k8s1qtGDfvPKVPsG0yfPp77NWtGMevXj/21JjsLwvLlnk84Tptl8mTPfS1P3Hmja9aMI/IZMwp+zsLiconceqv8O8fyyCN8f/758u8cQnFRIVeUMoA3lg/btImjW6cnvnQphTSrqFlYnnj37oyPt2yWnMQ8p/6NGcNaK5YnXqGCZ2mA0FDe9KpUYQZnYCAjSqyJUIDtp04xuqSwS+elp7NCovMJJyWFIZNZn3Di47neptPOuecePg1Y1R9LCpeLTzXWea25gYsvzj/BqyCokCuKj5k8mdUKndmWY8cykScxsXDHOnMme1tulo3LxfBBpydueeZDh+Z/IzlxQqR5c46ia9akJ551MWSAdWB+/JE3io8/9vzsssvyjqP3Jh5rjE6zF9R46KHSiSW37BTr1amTd0RcJHchL/aanYpSKJIPAeLybEuK5b/5co7LBSxdyvUlT58GfvoJuOEGLmlZ2MuPiMje5lyL04kxwIQJwIwZQOXKbKtcmdsTJuS/DmWlSsDFF3N90MREoEIFICWFn/XrxxcABAUB110H1KsHNG8OhIXZx3jnHZ4rMxNITy/ctRaWceO4XumkScDQocD77wP33gt8+imwe3fJnvull4CnngLOP99u27EDOHKkZM+rI3Kl9Eg5LjKxvsiy20VcbuP11AaR8ZEiG17wbd9KiYkT7WQegAWivDH5WZIsWkSrpHPn7KPwSZNocVhx4DNmcGL05pttS6FKFYYg7t2b3YMvCVwuO3nJ2VbSKzxZk52WJ37xxSKXXML3tWuL7N9f/HNArRXF57hcImufFBkLivnJdRTx3+uKnN6W//fLCVdeaQthbKyve1Mwfvklewr9mDH87OOP6dk//ji97Ace4OdWav6KFbaYl/WbVnFwuVjrJSrK9sRdLlotlSvbv1dxUCFXygZOMR8LkQm1zyoRHzvWc5KwWzfvVigsCTIyRG680VPEjaFXbkVmOCfzNmzwTO4RoZh/9FHp990XbN+e3RPfurXopROc5Cbkhp+VLtHR0bJy5cpSP69SRojbCExrz/c1+wAD5gGm/E/X/PwzcP31QO/ewNSpwOzZwJVXAtHRwMyZtn/tZMsWoGpVoE4du23dOqB+faBGjdLp96lTQK9eQGoqsGsX20JC6O0D9M/Hj2ebPyKSfZ4gp7aygDFmlYhEZ20v//97FCAzNfsEY0aybyYY4zYCc/sB4XWBhlcCRxcAK+7M3r9ySGQkcOGFFPGKFYFLLgF++w2oWxcIDc2+f0YGMGIE0LcvcOgQ21av5uTibbd5r1+pqcB999nnADipee+9wMmTnLSsU4cThV99xT47JywffdR/RXzSJGD4cCApyW778UfeYK0blV+Q0zC9pF9qrZQimWkicweLLLvNnmBMixeZ2UNk9SOl25eU4yLjo2xP3GmzrH2qdPviIwobR75oEcP+WrZk6dpq1eyCVd5i7VraJK1b07NPSLCXWpsyhQs2hIezPKyIHVpoDLNhq1QpfFx4WcGq2DhwIENAf/iB2/37Fz4ktDSAeuRnKS4XRXIsKOapcRTxnwJF9v6W//e9zbaPPD1xl0tk81siCXtLvy9+wqJFtjcdEuJdEbdYuJBi3qAB1woNCGBMuIU1KTt2rO2J79nDSJSmTSnmWSNF/AVLzK3fuKyKuIgK+dmNU8zHQuSnAN+I+FnKnDnZxXfq1IJHrKxaZYtMaGjJRbrMmGGfJ+tkpcXhwyL//a/nZN7evSIPP8yIlbJObk9EAwbY1378ONtzW5bPl+Qm5OqRnw0YA7QZY28HVQIaXOa7/pxFJCcz6advX2DPHrZNmACMHAk89lj+31+9Ghg4EGjUiN5tcLCnZ+4tEhOB116zt7/8Mudz1KrF5B6nJ96wIfDGG0wIKsvMnMmJ5lOn7LYJE4A2bYC5c+22a67h31V0NPDRR6XezSKhQn42kH4GmD8EMIFA5dZA+mlgxeicJxitgUnWNqVIhIdzcjM+ngL81lvA1VcDXbsCH3yQ93czMoCrrmI0S0wMsyanTwdiY4G77/ZeHxMTGXmyYAFvFgsXAvv3A/37e/+G4UsyMoAVK4BBgyjmEybw9926lVmrAHDZZRT1du2AnTuB1q192+cCk9MwvaRfaq2UIplpIrN62p6402ZZ8X+e+7pcImseE1n7hP0M6soUWXG3yKbXSr/v5QinPVK3bs61tnNi9erstsxff3nXXtm4kZOWTk984UJOrGZdQcjfmTqV8wzW30WrVrRV4uPthSkAzhFMn+7r3mYH6pGfxWx+09MTd7lE1v9P5GCWf6muTJFld7ijSJ6wRXwsRFZ7IS3tLMZZQrZatZKZsCwOOSUlFfRm4w1iYrL71zm1eQOr1CxAf986x6FDdnufPt4/rzdQIVcKhlPMrdfqMeVjCXIfMX48a5X06MF6HCURQujPLFlCJbr7bvuf2csvs+2XX7x7LqucryXYnTtzQegjR1hyNiSE5XaB3Nc/9SUq5ErByczwFHIV8SKTlMTVh3r0sEe4q1ZRzG+5xbd9KytY9c4tMX/pJb4fNco7ae0WEyZQxK2/C8tm6diRIZfh4Ywwcq7/+VoZcxRzE/IyPs+slDriAlb9x7Nt/VNAhxfLZs5yGSc8HJg3j9EeVgp+p07A4sVAkya+7VtZwRjg1Vf5/vXX+eeoUcD33wOBgd47T/XqzIodP55/F8OHA7//zvK2TZsyi3bAAO77zTcs39u7t/fOX5KokCs2IsDKe4EdnwDnjAE6vgKsuAvY9DI/P/elgh/r1HogpCpQsaHddnwFULEREF7Lq90u67Rokb2tTZvS70dZxhjWlLGIiAACvBxT17cv0KeP53hk+HBg2LDsY5TAQP8JPQRUyJWsBFV0i/ir/Nfd5VO7vaC4MoBFl3F0PzCGYn5sKUMga/cHek8qiZ4rfswrrwBPPMGReJ06DNO0xNSbD4I5HaukHzTj4xni6Sx8duIE//RW4TMVcsXGGKDj6/Z7gFUJu3xWuH/tAUFAj5+A+YOBOX05sl9+BxBWC4j2o2GOUiosXWqL+PffcyQeGEibpU8fxt37M1deyQSj+fNZIO3ECVo44eG8dm/cSLSMrVJyHF8BzOrK9wGhwIhdQIV6vu2TUiaZPBm46CLbExdh24gR3rdYSorJk4FWrTyTiMaNY8brLbdQxMePZ6bv1q3AlCnA4MGFO0duZWx1RK6UHJLh3AAk02ddUco2I0d6bhvDMr/+QnIycM89XJN0/nyK+TffsNzwLbdwfdRevYAOHbj/zJmFF/G88Mq9zhgzxBizzRiz0xhTgAoSSrnH8sQjmgMXTAQCw2mzJO7zdc8UxeuEhwOzZnGB7X79WEfntttYJ+fDD7On+rdr593zF1vIjTGBAD4CMBRAGwDXGmN0Tv5sxpUB/HUjPfGBMUCDS4B+s4C0k8Cq+7jP0YWMbHESOxOI31HavVUUr9CmDUfjhw+zAFmDBrRbkpLoiYeGAs88w4icfv1YM8dbeGNE3gXAThHZLSJpAMYBGJnPd5TikJ4ArP8f4HIs05J2CtjwAuAqA/ZFQBDQezJF3PLEI7twSbcuX1LoV4wG5g2wxfzgNGDhCGDNQz7rtqIUl+XL7fenTwN799qFuaZMAZ57jjZLbCz9f29NUXpDyOsB2O/YPuBu88AYM9oYs9IYs/LYsWNeOO1ZzKHpwMbngMVXU8zTTgFzBwKbXgTi1uf//dKgatvsE5vVOwFhkW6h/4MToPMGAJtfAxZdClRpB3T71ifdVZTiYnnigwYBK1dyBN6vH73zP/6wPfGePSnm773nvdDHYketGGOuADBERG53b98AoKuI3JvbdzRqxQtsex9YdT9Qsy8ti/it9KLrDfN1zwpO/A5gaku+DwgGLj0MhFb3bZ8UpQgkJ9NaadGCdkp4OLB5M4X80kuZPeoNSjJq5SCABo7t+u42pSRpdZ/bTvkft3tP8i8RB4AzDj9cMoGkAyrkil8SHs567lFRfA9Q2JctA+rXL/nze8Na+RtAC2NME2NMCIBrAEzxwnGVvEg7BRxw/My7v/P0zMs6B6fRTqnWCRi8HAir4+mZK4qf0bChLeIWTZpwVaeSpthCLiIZAO4FMBPAFgC/isim4h5XyQPLEz+9EejzJ9D5PeDARNszL+u4MoC1j9AT7z/bPRE6n5659YShKEqB8UocuYhME5GWItJMRApRWUn5FxFg+8eMSPm3zQVs+xDITPHc98gCIH6z7Ym3uo9ifngWcHpL4c6bmQIsupzhgBbpZ4CYi4ETecxjuNKBuA3Zj3V6c5b9MnOOpOk7gyJuWSmVWwCDFgHdvy9c/xVF0TU7ywyn1rJ87ILhFHNxMURv1X+AfeM9921wCTBit6cn3uo+4OIdQLUOhTtvejzFf/5Qinn6GSBmGCNjEvfm/r11TwCzuts3gMwUYOGlwOwL+MQA8Oa04nZg2c22mLvSgSXXMFIlpJrnMSOaAMERheu/oigq5GWG6uex0NSxxUDMUGDpdcCur4B2TwONr8u+f3idgrXlR1hNxndXqA/M6QP8Vhk4/hfQ82eg5gXA5tdzDnZt/RBQoYFb9GdTxA/NAM573RZoY5jZuedHinlmCrDkWmD/BKBSc61vriheQmutlCUaXc2R+NJR3G71AND+uZIXvPDaQJObgPVPcrv5XUDNPsDc/kDCbqD+JUDlltm/M2A+MKsHqxwCQNcvgWa3ee7Xzn3M9U9R0AGg0ztA6/+W1NUoylmHjsjLEuICjsy1t0+tAjISS/686WdopVjs+ASY2YUi3ndadhG3CKkKhFSxtyvlsIICALQZ47nd/G5g3ZNAylG7LTMVWPsYkBZXlCtQlLMaFfKyguWJW3ZKz3G0WSzPvKSwPPHjfwG9fgWa3gLARX/83JeBWn3Zt3VPe3rm6QnA1Db09ju8CFRuzeM4J00Btyd+Ld+HRvHPxZcDW9/hiD/lKEV80RX0zQ/PLrlrVZRyigp5WSFuPfDPDxTx9s/RZunxE3BsCXBwasmdVzIotj1/pp1yYoX9Wew0injiHmD7h+7qhXsZPjgjGkj8h5ZMuydps1RoACwY4TnZuWQUPfFO7wCXH6Xox/4JRPXiiH92L2BObyB2KnD+x0DDK0vuWhWlnKILS5Ql4rcBlVp6euLx24DKrUr2vK5MIO2E7Yn3nQYcmQ9sfJ4j9K5fAqfWMHY9uBInRo//BTS+AejhCBdMPgyc+Buof7Hdtu1D3iycnviml4Gw2kB4XU7sArx5tX+mZK9TUfyc3FL0VcgVsvs74O//A/r+STsFADY8B2x9G7hwJeO8jy8HZnXjZy3vBaI/KPr5LDsl1v20UaUto2fCahbrMhSlPJObkKu1opCmNwEXb7dFHADaPwsM30wRd2UA2961Pzs4Ne8487xwivj5HwP95/JJwPLMFUUpFCrk5YUzOzlZ6HzCitsIbH2v4MfIaT3NCvXcC0XcAOwdx8WZh6xkdInlmRelr8cWUcRb3A3U7g/0cd8Yjv9V+OMpylmOCnl5Yfe3DN9b9wTFPG4jMLcfsOX13EP6MtOALW961mfJSAK2vO2ZVp90ADgyjyLe5hGgemeg3wxmhR5dZO9X0DovVdsCF++kiFvU7g+M+Aeor2uSKEph0YSg8kKH54HUE8DmVyniJ5YBASHAgBjGe+fEoRnAmkfcmZzjKMQLRjCW/cBE1kIJDAMiGgPnvgocmsl9dn3JMMkLVwCVmvFYm15hlEu/GUBQxfz7GxaZe5srnfaLM13fqjcTGFaw30NRziJ0RF5eMAHA+R8xrC92KpB6nCJeOZckHQCoPwLo9C6w/3dgwUhGkByZBzS7nWGPCy+hgO4bD6y4A0g+QIGt2JgFsxZfBaSepIivewKo0BAI8ILQ/nUTEDOEMe6AXcdl4aUMh1QUxQP/GJGLZE9Tz6ntbEaE1srpjXbbrq84Gm92a+7RIK3vBzKTgXWPc7vrV9w/sjuw/HbgF3eB5aieQN/pXMmn7lAuZLHwEmBCDX7eaBQrFwYEFv9aGlzGwloxQ1nh8a8b+fTQ9UvesBRF8aDs/69Ii3MnjMyw21KOuivvLcr1a35F4t7sI82EPYVbmfXwXPrd6WeYnNPsTmDLaxTo3d/l/r2MJODwHHs79k9aG81upWBbXDAROPgHMPUcTlbWHQpEdrM/b/OYd0QcABpe4c5sXQL8XtMW8ax1XBRFAeAPQi4u1htZeAnFPOUoJ/Hi1jPRxN9JOghM7wSsvNcW82NLgWntmcZeUE4sA0JrAIEVgGW3AqmH2R5chVZJTmQkuT3xeRxNWzbLkmsYoXJopr3vkmuANY8BKYcZrbL6Yc90/L9upM3iLepd5LldPUvo7P5JnITNi8w0ZpYeWWC3ZSSx/npetdYVxc8o+0IeWh3oPweo0oaP2r/XAhL+cSeu9PN174pPeF2g+R0sVLXyXo5C51/IkrSNrin4cdo+yZjv/nOYOn9gMtDgCuCiHUBoNeD0VmD5HRQ3i51fUcS7fQM0uYE2S6d3+d2l13PEfWU87ZYj8wAD2jApR4Gtb/EYJgg47y0udDFvkO1rFwfLEweA2oP458wuwKl1fL9nHOu1rH867+Okn2YtmJhhFPOMJGDBRcD+icCZ7cXvp6KUEcq+kAMU8x4/2dst/+NfIp560l3X22GfJB+2R9znvgK0eZRiPrsX09cHxAAV6hb8HMYAoZF2qVgAOLkKcCXz/fGljDZZfAXF/OQaYOP/eMOwxBKgmHd+D4i6gJ54cCXaLF2/Aiq3BZrfCYgjzLDHj8A5D9Izr3lBwSJW8mPJtbad0n8WcN6bgCsNmNkV2Pgi8Nd17F/0h3kfJyyK2aIVGwFz+7LW+pEYPn00HlX8fipKGcE/UvQtO8VaRiwglMJRd0iJ9M/rbPuQK/20uJviY11P0n5g2AaujHNsKTC7J/evPxK44PfsE3tb3+MKQNZNTATY/ApQawBQowuw6n5g+wdA6weBhlezTnhoDXrmFRtyKbmV97C4VdopIKQ6MHA+ENE0e59zm2De+g6w5iFumwAumjwwhgtFeIvYGUByLG8gFlveAtY8zPcVGgAXbSn4TSNhNzDFHSbZ7Hag6xfe66uilCL+m6JviV7CPxxdXX6CNovlmfsDLe+xR9yLruDoMGk/i1NZIj7/QtbzbnwDrQ2nZw7Qbtj1BRAznAWtRLhQ8bongb0/s1jVnp8o4ue9yQWNu37F2PIDk939+D+g2R08d0YCR7s5iTiQc0TQ9g8p4iaItou4gLST7gzPfd77veoO8RRxAAh3ZJ1mJPCJpiBkJDH6xmLPT56euaKUA8q+kAeGA+H1bU/c8swju3NE6Q8YQ/ukyU1MtInfBvT8BajZm5Odlid+wRSg+3e26G9+3T5GYBhvZBFNKeZz+rA6YfUuHJEvuxkIqwW0fhTY+ALwz1g+BUR2BVr9h8c4uYYlZS3WPOLpmeeFFS8eEAIMXAAMWgq0uIeeeVgt2kElxZ5xtFNq9uF5TQBvhmd25f09yxM/EgN0/wG49BBtFsszd5LTk6kPnlYVpSiUfSEPrsRsQacnHlqdohbZxXf9KiwpR4ATy+3tBRcD6//HWibnvQE0Hw1Mbw/s+Iyi3/m97NEm1vqamcmsVVKxCf3qxVcCja8HEnbxGBue5SIVksk64ABFfN5AICgCGLELiP6I4YSWZ54fIdX4ZDF4GRDVgzen6A+Atk8BPX8CAkO89Ut5kpEMrB3j9uz/BKK6A/3dv8HmV/P+riuVC2B0/x5ocr17ebp5fPJJj7P3O70VmNGJi1BbnFwDzOjMJ0FFKeP4R0JQTo/5/pQMlHzY9sQHLuBoedfnwMbnOOqLaMDRMQwn6IwBWt2X/TgiwPaPHMeNBTq/w3KzG5/jaPPMDn6WmQIM+Zs2FADEbwWCK3MC89AsoMVdbN/+PpB8kLHkzW7P/rumnqCImwB7/c2U4/TejQHOfcE7v5EIo1AaXsV5AID1XjY8w6iayG62J16tA0fmFRvlfcyQasDgvzzj28NrA0NWZY95t/6OBsznb2fd9BTFDyj7I/LywMEpQOJ+oEIjIPkQ0OVToNlofrbpeYYFwgC9fgMaXp7zMSxPfOPzQNNbaRNUas4Ij/bPMKrDEnGAQhXqyOasfwkTak78Dfx9N7DiLmZj1hzI86+40x3lkgnEu0Pz0s9wAnb57Ww/EsNEpZnRFF0R7/jNIrSY/vkOmDcAOLUeyMwAlt/KJKe4DdknNiu3BAJD8z92TklKWduqtKaAwwB/tuHoPCiCk7gRTYp6VYpSaqiQlwbNR7P0a2gNYOl1wL5fWeQquKq9T+2BFPHE/cCKu1nTxIkrFYidThHv+oVtE1RsAmx+I8v57gJMIEeVKcfZFjuV4rvjI6DNE5w4nVQf2PkRi2R1/w6odh7Fc+b5QFIsba2G1wC7v+Gx5vYDpp/Hqof1L+WE7Ny+nKy1OLbELnBlcWQBS+HmxvpngGU3AX2mcS5gbl9gUl3gn++Bds96ri5UUlRpbdtQAHD+Jyriit+gQl5aVGnNKJXIHsySnFjb06c9PBtY/RBFbO9PTIN3EhgG9JlCEbfCEkOjgDoDGSMeXIVx5JXPofC2fRo4s43CDHAtzPqX0Kff9ysnJzMT+VkmgNOngaU3UzxbP2zHsHf4H8X0aAy30+OYZbn7a2DHx8A5jzDD8uA03oTm9mfmpCXm//wIzOvPcrq5UbklI3FW/xfo8wdDI1OPcdm79s8W6ecuNCfXMDTTYvmtnp65opRhVMgLg0j22t6uTI5QnRxbkr0299FFjMDp/q1ne8v73W8Ml1VLOgj0m82a3U5ST3JEvPElu+3MDk6ORvbkwgwDFwCDFtMXzzgD9PkT6PyuvX+v8UDVc4GEncCZw8BiAI8CuAlA9H+A3j8Cz9YE1jUBUh1PBE1vtt+bIN50LBGvHg0sHcW+V6jPCdDYaRTzXV9xpF2zD9DqfuRKkxv4RHBkHkf8FmknaauUNKfWOiaCdwPDtwAw7twFFXOl7KNCXhjWPc5iXcmHuO3KBFbczjjqDHcGZcJubi++2hbz3d8xXHDTS4xW+RfDKIyOrwNwh7o1vi57Ruf+iYwsqdGFk38bXmChrfkX8ubQ6W2gZi8KeGh1YOBC4NyXuViDM048M4nJVLsA3APgGwAH3KfOdP+58yhw991A3brA33/TE5/blxOH9S72rG8TO50iHtkd6D2Rk5/NRwNdPqOYL78dqNGNo+ygisDOL4G/7/UM69vyFrD2CaDBNYAJttuHrudTiOWZlyTBVRkRFNGUYaCWZx5UmZPQBV0wQ1F8hAp5Yag7jJEnc/tz5Lzidq7MU28EEOQu9xrRlAk5ByZSzHd+CSy7henre392JzbNB66IZ+3wpdcBW9+0z/HP9xR9qyDU7u85ut30AtD1a6DJjRTzyY1pQTS4DKjeyf5+8mF3HZQsMdDpZ4D5Q4C/VwAvAUgEkMXK/peEBODkSaBvX+DT7nzi6DebGZVOTm9kiGPfafTTLQIr2O8DgunXA+4niI9oYYjY2ZpndgB/u1P/gyoCMG6bxe2ZH1+KEiWiMZ8uji6wa7AfmQck7GDfNZ5cKeP4R4p+WeLoQhaHcrljr9s9Sx9593cMB2zrruu99T2KEUBr4YLfGRnS8h57gePTWxmrDMOJy4TdHOGaAIbWNbsNWPcUUKs//fGgCrwRTHGPsqudB5xaw3T8Hj9yMQkrzPHClRxZWuyfBMy/ArgXwBnHMm75UaUCsGUukLYPWHI1BS/5kGdNl/bPMXIGoCdu2Sn1RgCrH+AN8IIJfBpY+yiwxTE52/BKpvlvfx9ocS8Q/T6P/ddNzB3o9SsniUuDXV+7s0Dd/yfqjWAkUUnFyCtKIcktRd8/4shLmsIsXBHZk6NES8ibj6aIL7sFqD2AQhcQ5Lm8WmA4R6wX/OZ5rMS9HIH2mcrkJivBaeU9FPV1TwKVW9kinriXTwNBlVg75dQaoPZgYN8vLC+bHMtX32meIg4ADS4BDl4CpE9AocgMAObtAkaNYlanK403m6heQM+fgXmDGRJZubV7MYpbKeKWnRJUgTewrW8DbZ8AOr7GJwar/ED3H2nDBIUzEcoYeuYA0/5LS8QBlgXY8Qlw0j3I6PGDirjiFxRrRG6MeQPAxQDSQOf1FhGJy+97ZWpEnnyYI83oj4Cq7diWsIf1tbt97VkMyvLEd3/L2h/JB92P3pkMH+w9hYLkFPZaA+it178U6PULrQYn6Qmea1MCwM4vmJkJsMzthcu5hNrM8znZ2n+2HSr4z/cUzqPueO4B83KvDNm+PbBxY86f5UW7dsCGDYDLBSwcycgVy05JOwMsGAYEVQH6TKYlEdWDIm792zo0g08VgaGexa8AdyGxj8pGgpdVVMyizoUszqbrhCplhJIqmjUbQDsR6QBgO4DHi3m80if9DEP95vbjosUJe9zvN7CetZPVD1LE2z0LXLKf/8HFbVP0+IUinrAbWH4bRbz3ZKDtY+4a3xOBbe9nP39WEd/9PUewtQYA/eeyf3P6MiW90dUU8RrRTGrp+jWLYDkLVu34LOeY7cxMYNOmov1GmzYBKacYRtjsFru8bcpxIOZCxqVXa896L7X62yK+6j7GmtcZ4iniDa8Erknj08uOT2zP3JdY/ag3Arg6lQXHDs2yPXNFKcMUy1oRkVmOzWUArihed3xA5RacfJzbj6vyAIxi6D8bqN7Zc9+mNzKipM2jHHU7/4NveQ3o+ConO3tPoQ8e5J70a30/2+tcmHdf0uOBtY94euL9Z9G+2PIG/WMnqcdYcyX1KEMPjy9nXRKAnnmA4683IQEIDgbSClgky0lQEHAmnlUHl1xLv7tGN0aUnNnO8wRVpLeddoLXv/oBVkus6S4/XLUtf6+GVwI9xvLJpONr7us4AfrSPhyVh0YCDS5n3fvAELv64pEYz2gaRSmDeG2y0xjzB4BfROTHXD4fDWA0ADRs2LDz3r17vXJer3FoNut3A6zt4YydzorTOuk9maPMHZ8A54yhmBfHJojfxuiQIEfkR9wmFnrK6tfuGcfV7XtP5lqb5zzMycZNL1PYd38NtHuGIYmZmRTyovx9GwOkpwOZ8ZzoPbmK7YFhPHedwaw0OLGeZ5JT1AW80bS4BzjfvQiEuDzrrIsAEO8tqlychbp1kW+ljFNka8UYM8cYszGH10jHPk8CyAAwNrfjiMjnIhItItFRUVFFvY6SIWGP7UkDjB2Oy8NLPrPdLeLuUXP0R/R6z+ywrZaiUrmVp4gDHM3mNOnW+BpWMgyNBHZ+xonQJtcDw9byGra9b2dk7vkeaFG/aH1q2xYIDGQseY+f7fZmoyniAPs8ZLXn944t4nJ1zqSkrIJtjPdE3JVJW2vXV462dD5F7P01/+/7e3E25awlX2tFRAbm9bkx5mYAFwEYIL6IZSwuiXtpq6TFARf+zQqBc/vZlfCsCVAnHV6kQFjiagzFXDI87YzikHSAmZLWCFaEk6sV6gMZKaye2OL/mMgSVpOr3C+4iAlLwVXo8Xf9knHmrkyOzgceAA6GAYmF8HzDA4Axj9C2CanGkrkWOz8F6gziQskiwLa3Pb8bVAno+q33fpP8kAyGRloLSTS5keUQ9v/OCVhFKacUayhkjBkCYAyAESKS5J0ulTaGIW7WJGLllhTwCg1yHykak32EbEz2iJSisuNTYGprZnDO6QOkxjGF/I8WXGxiVjcu6za9E5dey0imh+5K440pbj1w7ou2zxsQyCiToV0BU8iJu/AqQN96HO3P7MKnkX4zgStOAlXbM1np4J/uZeY+pJ1ikXEGWHyp50pHJUlgKDNM6wyhmI8LoYh3ejfnssCKUk4obvjhTgChAE64m5aJyF35fa9MhR8C3vFGXZnZy6Pm1FYQkg+5l7fbw1FmaE0gxV0WAIZ2hiudoX4VGgIRzYCj84Eq7ZhtCTCue8A8ppxbpJ8BXq3MzM4sxRVzJNQAv74IpLzMMMjwekx4SjvF5J5afSjkHV5knfS4DcDpDbRTOrwIzIjmBOfgxdknjkuS9DNcaBngzWZYCaf4K0opUSLhhyLSXEQaiEhH9ytfES+TFNcbTTvFut1OHzb5COO+D04rfH/C6/CpIKIxPfd/RRwABDg8lyJerSOQtI8iXrktcHoTw+YGLrBLCThXuNn1NdAMwJMAKgKokEuyS5j78ycFSHiSsfIDF/DGUHsgR96Lr2R52v5zGZWy9ycg8R+KePcfgErNgKFrWG53z0+F/w2KiiudYZAWcRs8PXNFKYdorRVvYIKZ9bh0FMU8+QhH1PHbsseJF5TQWqw1nhNW4aqQSLvtzFam9Te4nGuB9vmTMe0LR7K2uVUyoMFlwJgTwLhuwM3pQH0w6i/Q/WfjcODjj4CfOlP0AT6duDJ4ozABzEStHk0xX3AxI2fqDGXVwO4/2J54RGMmM52XpV56SeFKtz3xTu8CVyfbNsuOz0qnD4riA1TI8yKnsrXiyl62NjjCUWv8atYaT9wL9JtOUc2PbItIuFjZ8NAMWie5cWQO0O1bxmNLJs85bxD7vO8XeuZ1hwEIZBp8g8uAnuMYjtjjI+CCIODNMGD7t8DnIcCPwcDqZUDbjUDCKiAgHKjSlhbRn23pkSfuA0KqcB1VyWDYIwD0/h2oWD/7xGZYTe9FpRSExAOs3dLoGnd45ERew+ZXs/9dKko5QYU8L/4tW3uY2+Li6G5OP7tsrUVwBOPPLZreUjAR3/wGbZm0U+5zCLMlj8xhYlLSPqBSK8A4bJBKLe33ifuANmMo5iYAOLkaGF+Nce1tHmX9ksAgppr3HMcJWRFeR3BVYPByoPlNwMglQHBFZjce/IMlAZDJLNaaPTlxGdGMNV4AYF+WujGxM/K/1pImIBg47zVm5M7rzyej3d/ySaJqe9a8UZRyiAp5XtQdRqGc249Lny2/navv1LvYLltrkXzEs9b4zk8LFrtctR193LkDKebrnuRCyDW6Ad2+5ypAZ7YBksYJx57jOXE4dD3Q5CZmd4pQzIdvBio4JjfbPG57/UHhdlSNMcz8HDDfXui4RjQwwL3kW9+pwNDVHMkuuYoLSTS/mz45wNK8K+4AqnUGLjvCvi6+kuUFDs0u2m/tLWr15dNRwh4+Gf19N/++ev1WsDU+FcUP0TK2+XF0IW0OKx3fKltrIS6mmM/pY9spVTsypvv4Uo6CG+ZTuSB2Omt6/FtR8S7g/I/4fun1rGMOcCLTCikEaHmYAAqzCEfTOz7hcm8JO1lYq98sWiGFxZVJf92yTvr8wXjxjCRgwQggYRefFrp9xwnQ+cOBpH/opY/cQ/vGlywZZf9uI/cBFRvkvb+i+AElVTSr/BPVi2F3Fi0cgTkJ/wDTOzJqo0pbinhoJK2Sjq8DdYcDFRvnf446Q7i6j8W5L/LP5bdTjM4ZA9Qe5H4i+NbeLyDQHnGvfsi2U4Zv4rJup9aw7EBmas5LluW2jJkrkzXFY/+0l3NbdDlrmi8c6a7I+DerLv51o9t+2keR7/Wb70V8x6f83YIrc2m6mCF8YlKUcooKeV5YnnjCLpaGDaxAm8XyzAOCKV4LRwDnPEQRn9ufCzyEVGVZ1xrZbp5ZziG0U06tZdSJCWKRrK3v0MZp9yzQ4QXWNKk9EFh2K28cWak3HGj3tF3Tu+4w4Ly3OMF5ag0Lgq1/1hbvXV9zAnP/xOzH2vIGsGcscO5LwHmvs3BX1Q5c8ahKW2DPDyzO1f1H+s6Je3jNvScDdfMpDFZUcnpyzKlt55e2nXLZUaD/HNos8/q7i3MpSjlEREr91blzZ/EL/r5PZCxE1j3L7SMLRMZVEPnjHJH0JLYl7heZ3Iz7jYXIhNoicVsKfo51z/J7y+8Sid8lMqGOyE9BItPOE9n1rUjcJpFJjUQOzeE5944v2HHXPMa+HlkgkpkhsuQ6nmdcmMjW90TGGpF5F4pkJGf/btoZkd0/eLalnhTZM07E5RJZ94x9vc5X1u+4XCKJB7O0ZYokxRb01yHHV4hM7yySsM9uOzxfZEZXkeQj2fddcr1IRopj3xiRZbeJZKYX7ryKUsYAsFJy0FQdkedFkxs4wrU88Zq9aZ+0uNue7KxQHzj/E/s7HV/NvjpPXtTuD7R6gJ54WCRH5RCWva0ezSeAzFSeJygcaHh5wY7b6n5GmMwfyuShNHdt9cwUptPXGZz7ognBESy+5SSkGuuhG8OnDye9xvOJZdlNrL5osfF5Wk9x7jro1hPOjGgg+ajnMVJP5p7KL5ksSDa3H5C4n6VlY4YzDDTrqLzG+e6VfRwTm7X6sO5MadV8UZRSRic7i8vpzbRTUtwebHBl1iKJ7Fa046XHA/MuBE4s43ZYbWBgDKsiFpbkw/TrE3Zzu9EoZmACQNsnbS++sP2bP4RFtOAuQdv0FqDz+7SYTq4GRuymTx6/neLrSmdEjGUXhdYCavezk4eSD3HxjLrDgM7v5Hze48s46WzF8Fc+h1E34bUKfw2K4qfomp0lwemtFHEYZjUGR1CQ5l/IVeetNTgLQ3Blitms7txudX/RRBzgKDqkBgC3kO/9mZOmIdWATS+xXkr7pwt+PFc6RfzE31wcIqIpJ0Q3Ps+RfZ+pQPxWe7LTKkA2pw8wzR3m2O5Zlrxd+yi3O77OgmDJscxKzY3Iblzzc+1j3O7xg4q4orhRIS8OodU5Cdj5fdtOGRjDRSfCahbtmKc3MzIkqCLT/tc/TSFvcGnhjpOZytjuk39zxLz7GwCGUSi1+lN4NzwDVDmH4ZEpR7P3OWtbQDBX+Gn9kG3x1DifE7SRXSnQ1Tt5HqNSc75S3BPEDa9kfXWAYr53HPvSbzZQs1fu13MkBtjwvL29+GreJDSsUFHUIy8WYTUZ0eH0xCvUZ0nciMaFP561digCgCGrGI9dPRpYfBVLxRaG9U8zQzP6I8afd3yVgrr4Cq7i0/Vr4PyPgfojgdiZwOQmwIEp9vd3fQ1MaQqcyGKBtX7A06c3hqN6a4EJJ5YnfmwxbZ3wuu71UDdx/sEiNCpvK+rIAnriFRsBlx4GBv/FRKi5/Vi3XVHOclTIyxLhdWl9WJ54cGWg/0xaDjktcJEXbR5jMlLL/6PYtnmUmZndvmX99YBATtoGBHNUXaUtRX7zm8Cm17jSTmRPth9dxMzWwrL+aTuEsudYjqADgoG5fYHZFwBBEVzsOGk/8NcNOS8aDdAKqhFte+KR3TgPUbERn1wU5SxHJztLm4xk4NRqIKqn3ZZ+hvHdRfHUi0t6AksLNLkB2P4xcMq9HmdQJdaOCanGLNW6Q7nocmFI3AccmOS5qEPcBhb2ykgE+k6nnbL5ddosze8Eunya87F0PU1F0czOMsO6JzlBenAqt9PPcAJx/mC7cFap42LtFGd2acYZlidYcBEQ0YQ+u5O008DxFXkftmLD7CvzVG3PEXp4PeDAZLa1GQN0fJM1Zja+nPOxdD1NRckVFfKSJusTT/ungSruJdL2jHNHgSynjx1SrfT7FxzB2uURzZmx6WT7+6zlUqMb+xs7ne1pp3njiRlix6cXhlp9GRK59U1g9SN8Stn+PjNoT56lT2qKUgxUyEuSzDT6znt/sdsCQhntEhoFLL3WXVjrl4In+pQER2O4FqdFzX72e1c60OIeLiO38BL3zWcw0/67fVO0glxVzqFfb4Ip5r9WYAGuOkWwbxRFUSEvUVxpQMoxYOl1FHOrcuDhOWAyjRsrC9GVQeF0kplW8osXV+vIxCOLo/NpfTS6lhOSiy4FunzBBamXXgucWMHiWPVHFv2cUd0Z8eOk759Ft0vO7Mz+O8XvyLkei6KUM1TISxKPlYOuAX6tyHT5iGbMBO3yhV1Z8MAfrCS4ZJQt5pmp/GzF6MIJUmZawdoArpqzYCSQdhK4YDIjZ0wQE3TqX8KiU2mn+GThXOknIJf1PgtKRjLw102ebWvGFO1YSQeAGZ2BFXfaYn4kBph+LrD17WJ1U1H8ARXykiY4wtMuqNiYixT3/AVofrtdWfCv64HKbYD944HF19J7XnQFEDvVXoHelZn/+eK3A1Nbu0f9bk6uAaa2Ypp7VgLDGMZ3wUSgwQigyY1cwi2sNu2f1GMU3eTDrCLY7RugWifaLJZnXlgyktlHy04ZtNS2WVY/UvjjhddjBuyuLynmh+cBMcOYeeqMV1eUcopmdpY0GUnAkmvt7aR9jPG2PPGQahTzuA0syhVUAVjzEDDeLf7nf8yFJlbdx9Fzt28ZA54bIdWB4EoMKezzB1P05w2kRRKWQ0p7YBjX27To+Ar7tPZRYPHljKoJqcIaJxe47ZR6IxhCuGQUk5YK65MnHeANos5Q204ZuIDx5alH8/16NowB2j/H9xtfoKBXaQMMmFf0DFtF8SM0jrwksTzxI/O4hFr9SzlSPL6UtUoaXZ39O5mpwC+OioRXnuHaods/ZGr8eW/k7yOnHAfmDQDi1nO7QkMmGUU0KXjf5w4Ejszl+4t2Asn7GW1ikXoSiN/iGQ9fGFJPsWa781pSTwGhxYjcORLjzowFbza9J5buws+KUsJoHLkvMAEc8Xb/jo/4lmdesy+jV7KSmUo7BaCtAQC/VSqciAMsh9vpLXu73VOFE/FDs5hWb7H+Sa6U5CS0etFFHKBgZ72W4op4zDBmoja/Ezg4xdMzV5RyjForJUlgGO0Np2AFR7AWS05Ziouvoidu2Sk/B+Lf6JYOLxU8ouPkGhaVCqzAMrGr7qOQ1x6Y/3cPzeJTROXWnOjc/bVdqbDHj2WzpnfSAdZiiWhKOyU0ipbKxhc4sdz2MV/3UFFKlDL4v7KcUdCMRGOA+iOAukNsTxzCCBLJAJZeDfT8FQjMJ1okbqPtiQ9ZyVT7eQPomfedwUUW8iJxL+O8+83myL6NO5LkwCQuShEQwW1XRnZRz6mtNKhQH4j+kMvdWZ54++fcIZQ52FeKUs5Qj7wssuq/wLb3bDtlx8fAyns50dhrQt6TnWmnmW7f8TXbTkk5znUsO78HVKib//kz07LfMJxtSQc42dnxdaD+xWyL3wEsGA50+dzTS1cUxWvowhL+RLVOrBve8TWO1Fvew/a0U3mLOMAIkl6/eraFRTLipKDkNOp3tgVFcKS/+HLeWCq3ZsSJK40LUCuKUqroiFwpOK5M+0aSFgfMG8yFKwAK+ID5hS+3qyhKgdGoFaXoiAvY8ja99oxEtgVFMLXfovWDKuKK4iNUyJXsxG8Dji2xt1fcCez8HDi6gCF+aaeBqecAu74AEAAEhgMbnmWZAUVRSh2vCLkx5iFjjBhj1CAtD/x9NxeQPuqOJQ+vA5zZBgSEsUb5+KpAwk5G1AxZDVwaC1TtSM+8qGn7iqIUmWILuTGmAYDBAPYVvztKmaDHWIb0xQwBtn/EV0g1wJXiud+gRUD1c5mh2X8WUPcioFILn3RZUc5mvDEifwfAGHjUZVX8mvA6nLjMSGTYY9pJYNBf2fdb+6jtmYdUZc2WSs1LtauKohRTyI0xIwEcFJF1Bdh3tDFmpTFm5bFjx4pzWqU0SMlSvCpmKP8Mqsw/q3bkoswxw1jNUFEUn5GvkBtj5hhjNubwGgngCQDPFOREIvK5iESLSHRUVFRx+62UJKfWcV3RCg2AQYsZM574D1D5HOCKk0z6iVvLqJWqHVmKQFEUn5FvQpCI5FigwxjTHkATAOsMU87rA1htjOkiIoe92kuldFnzMBBUkfZKpWZMTNrwLKNTjAGa32Hv63yvKIpP8FpCkDFmD4BoETme376aEFTGST3B+uPOionJhxhPXqGe7/qlKGc5mqKvFJzQGnw5Ca/jm74oipIvXhNyEWnsrWMpiqIoBUczOxVFUfwcFXJFURQ/R4VcURTFz1EhVxRF8XN8Uo/cGHMMwN5SP3HuRALIN2zyLEJ/j+zob+KJ/h6elNbv0UhEsmVU+kTIyxrGmJU5xWaerejvkR39TTzR38MTX/8eaq0oiqL4OSrkiqIofo4KOfnc1x0oY+jvkR39TTzR38MTn/4e6pEriqL4OToiVxRF8XNUyBVFUfwcFfIs6ELSxBjzhjFmqzFmvTFmojGmqq/75AuMMUOMMduMMTuNMY/5uj++xBjTwBgz3xiz2RizyRhzv6/7VBYwxgQaY9YYY6b6qg8q5A50IWkPZgNoJyIdAGwH8LiP+1PqGGMCAXwEYCiANgCuNca08W2vfEoGgIdEpA2AbgDuOct/D4v7AWzxZQdUyD3RhaTdiMgsEclwby4DV4A62+gCYKeI7BaRNADjAIz0cZ98hogcEpHV7vdnQPE6q1caMcbUBzAcwJe+7IcKuZvCLCR9FnIrgOm+7oQPqAdgv2P7AM5y4bIwxjQGcB6A5T7uiq95Fxz8uXzZibNqhSBjzBwAtXP46ElwIenBpdsj35LX7yEik937PAk+Uo8tzb4pZRdjTASACQD+KyLxvu6PrzDGXATgqIisMsb09WVfzioh14WkPcnt97AwxtwM4CIAA+TsTDg4CKCBY7u+u+2sxRgTDIr4WBH53df98TE9AYwwxgwDEAagsjHmRxG5vrQ7oglBOVCYhaTLK8aYIQDeBtBHRI75uj++wBgTBE70DgAF/G8Ao0Rkk0875iMMRznfATgpIv/1cXfKFO4R+cMicpEvzq8euZIbHwKoBGC2MWatMeZTX3eotHFP9t4LYCY4sffr2SribnoCuAFAf/e/ibXu0ajiY3REriiK4ufoiFxRFMXPUSFXFEXxc1TIFUVR/BwVckVRFD9HhVxRFMXPUSFXFEXxc1TIFUVR/Jz/BwIYfpQ838WfAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 432x288 with 1 Axes>"
       ]
@@ -94,13 +94,13 @@
    "source": [
     "colours = ['orange', 'blue']\n",
     "plt.scatter(X[:,0], X[:,1], marker='x', c=kmeans.inc, cmap=matplotlib.colors.ListedColormap(colours))\n",
-    "plt.scatter(kmeans.cmeans[:,0], kmeans.cmeans[:,1], color='red', s=200);"
+    "_ = plt.scatter(kmeans.cmeans[:,0], kmeans.cmeans[:,1], color='red', s=200)"
    ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -114,7 +114,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   }
  },
  "nbformat": 4,
diff --git a/nag_logo.png b/nag_logo.png
index ee152a2..7954c3d 100644
Binary files a/nag_logo.png and b/nag_logo.png differ
diff --git a/nearest_correlation_matrices/ncm_nag.ipynb b/nearest_correlation_matrices/ncm_nag.ipynb
index 42cf310..9797e34 100644
--- a/nearest_correlation_matrices/ncm_nag.ipynb
+++ b/nearest_correlation_matrices/ncm_nag.ipynb
@@ -276,8 +276,8 @@
    "source": [
     "def cov_bar(P):\n",
     "    \"\"\"Returns an approximate sample covariance matrix\"\"\"\n",
-    "    # P.shape returns a tuple (m, n) that we unpack to m and n\n",
-    "    m, n = P.shape\n",
+    "    # P.shape returns a tuple (m, n) that we unpack to _m and n\n",
+    "    _m, n = P.shape # pylint: disable=unused-variable\n",
     "    # Initialize an n-by-n zero matrix\n",
     "    S = np.zeros((n, n))\n",
     "    for i in range(n): \n",
@@ -484,7 +484,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Sorted eigenvalues of X [-0.0000 -0.0000 0.0380 0.1731 0.6894 1.7117 1.9217 3.4661 ]\n"
+      "Sorted eigenvalues of X [-0.0000 0.0000 0.0380 0.1731 0.6894 1.7117 1.9217 3.4661 ]\n"
      ]
     }
    ],
@@ -653,7 +653,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Sorted eigenvalues of X [0.0010-0.0000j 0.0010+0.0000j 0.0305+0.0000j 0.1646+0.0000j 0.6764+0.0000j 1.7716+0.0000j 1.8910+0.0000j 3.4639+0.0000j ]\n"
+      "Sorted eigenvalues of X [0.0010 0.0010 0.0305 0.1646 0.6764 1.7716 1.8910 3.4639 ]\n"
      ]
     }
    ],
@@ -829,7 +829,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Sorted eigenvalues of X [0.0010 0.0010 0.0375 0.1734 0.6882 1.7106 1.9224 3.4660 ]\n"
+      "Sorted eigenvalues of X [0.0010-0.0000j 0.0010+0.0000j 0.0375+0.0000j 0.1734+0.0000j 0.6882+0.0000j 1.7106+0.0000j 1.9224+0.0000j 3.4660+0.0000j ]\n"
      ]
     }
    ],
@@ -1138,7 +1138,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   },
   "nbpresent": {
    "slides": {
diff --git a/operations_research/nag_rugby_tsm.ipynb b/operations_research/nag_rugby_tsm.ipynb
index 4816b1c..508ce88 100644
--- a/operations_research/nag_rugby_tsm.ipynb
+++ b/operations_research/nag_rugby_tsm.ipynb
@@ -362,7 +362,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -376,7 +376,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   }
  },
  "nbformat": 4,
diff --git a/random_number_generation/rand_corr_mat.ipynb b/random_number_generation/rand_corr_mat.ipynb
index 2077a02..d3b0d86 100644
--- a/random_number_generation/rand_corr_mat.ipynb
+++ b/random_number_generation/rand_corr_mat.ipynb
@@ -120,9 +120,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "import numpy as np\n",
-    "import pandas as pd\n",
-    "from naginterfaces.library import rand as nag_rand"
+    "import pandas as pd"
    ]
   },
   {
@@ -274,7 +272,7 @@
    "outputs": [],
    "source": [
     "seed_pd = [1]\n",
-    "statecomm_pd = nag_rand.init_repeat(1,seed_pd)"
+    "statecomm_pd = nirand.init_repeat(1,seed_pd)"
    ]
   },
   {
@@ -417,7 +415,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "c_df = nag_rand.matrix_corr(df[0],statecomm_pd)"
+    "c_df = nirand.matrix_corr(df[0],statecomm_pd)"
    ]
   },
   {
@@ -623,7 +621,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.5"
   }
  },
  "nbformat": 4,
diff --git a/roots/Anderson_Acceleration_Poisson.ipynb b/roots/Anderson_Acceleration_Poisson.ipynb
index b5867fc..1670c53 100644
--- a/roots/Anderson_Acceleration_Poisson.ipynb
+++ b/roots/Anderson_Acceleration_Poisson.ipynb
@@ -3,11 +3,19 @@
   {
    "cell_type": "code",
    "execution_count": 1,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:38:59.077059Z",
+     "iopub.status.busy": "2024-08-14T18:38:59.076364Z",
+     "iopub.status.idle": "2024-08-14T18:39:01.881442Z",
+     "shell.execute_reply": "2024-08-14T18:39:01.880323Z"
+    }
+   },
    "outputs": [],
    "source": [
     "import numpy as np\n",
-    "from numba import jit, jitclass, float64, int64\n",
+    "from numba import jit, float64, int64\n",
+    "from numba.experimental import jitclass\n",
     "import matplotlib.pyplot as plt\n",
     "%matplotlib inline\n",
     "np.set_printoptions(precision=16, suppress=True)\n",
@@ -52,12 +60,19 @@
   {
    "cell_type": "code",
    "execution_count": 2,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:01.885397Z",
+     "iopub.status.busy": "2024-08-14T18:39:01.885034Z",
+     "iopub.status.idle": "2024-08-14T18:39:01.894826Z",
+     "shell.execute_reply": "2024-08-14T18:39:01.893627Z"
+    }
+   },
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "(88, 0.7390851332151603)"
+       "(88, np.float64(0.7390851332151603))"
       ]
      },
      "execution_count": 2,
@@ -99,7 +114,14 @@
   {
    "cell_type": "code",
    "execution_count": 3,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:01.965655Z",
+     "iopub.status.busy": "2024-08-14T18:39:01.964974Z",
+     "iopub.status.idle": "2024-08-14T18:39:01.985335Z",
+     "shell.execute_reply": "2024-08-14T18:39:01.983931Z"
+    }
+   },
    "outputs": [
     {
      "data": {
@@ -135,7 +157,14 @@
   {
    "cell_type": "code",
    "execution_count": 4,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:01.989441Z",
+     "iopub.status.busy": "2024-08-14T18:39:01.988966Z",
+     "iopub.status.idle": "2024-08-14T18:39:02.002859Z",
+     "shell.execute_reply": "2024-08-14T18:39:02.001056Z"
+    }
+   },
    "outputs": [
     {
      "data": {
@@ -163,7 +192,14 @@
   {
    "cell_type": "code",
    "execution_count": 5,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:02.007575Z",
+     "iopub.status.busy": "2024-08-14T18:39:02.007166Z",
+     "iopub.status.idle": "2024-08-14T18:39:02.026844Z",
+     "shell.execute_reply": "2024-08-14T18:39:02.025595Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -230,18 +266,23 @@
   {
    "cell_type": "code",
    "execution_count": 6,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:02.033981Z",
+     "iopub.status.busy": "2024-08-14T18:39:02.033537Z",
+     "iopub.status.idle": "2024-08-14T18:39:02.250758Z",
+     "shell.execute_reply": "2024-08-14T18:39:02.250109Z"
+    }
+   },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAX6klEQVR4nO3de7Rd473G8e9jbyESEUFDk7iUUJy6jOYo1Z6qVkvrlDGOFlVioKheaKmq3lw7OD0VPaMtVRxxqUuVUtWWk8ZRtIiiSFrikgqJFAmSXjT8zh/vu2NmZa2999pJ9lpv1vMZY4/M25rzN2/PmvOdc+8oIjAzs/Ks1uoCzMxsYBzgZmaFcoCbmRXKAW5mVigHuJlZoRzgZmaFWqEBLukXkib2Mv58SV/r57xuk3TEiquueZKekvT+3H2ypAt7mfYgSbcMXnW9kzRU0s8kvSTpx62upx1JukTSGW1Qx6GS7uhlfMvPBVvxJD0iabcG43aTNLuvefQZ4NUQ60tE7BURk/PnljkoI+LoiDi9P/NqNxHxzYg4AkDSppJCUndl/BUR8YHWVbiM/YDRwHoR8dFWF2PWSOV8Wlj5+Vpl/BqSLpb0sqS5kr6wgpa7m6TXa5Y7sTJ+lKTrJS2SNEvSx1fEcntExLYRcdvyzKO770msUJsAj0bE4pW9IEldEfHayl5OqSR1D8Z+WAWMbLCdTgHGk47pDYGpkqZHxC9XwDKfjYixDcZ9D3iVdCG0A/BzSQ9GxCPLs8AVeTw01YTSc1Ut6b8kzZf0pKS9KuNvk3SEpK2B84Fd8rfagjx+yS2rpHUl3STpL3leN0lqtCFr6+jKTRqPS3pF0n2SxuVx75R0b246uFfSO2vqO13Snflzt0havzL+4PxN+4Kkr9Qs8xRJl+fe2/O/C/L67VJ7xzHQOiStKenyXMOC/NnRDbbD1nleC/Lt2Efy8FOBrwP75/oOr/PZNSSdK+nZ/HOupDXyuGXunvIV0ha5+xJJ50m6WdIi4L115r+OpIskzZH0jKQz8n4bIukBSZ+t7Ms7JX099+8k6bd5neZI+q6kITV1HCPpsbztTpe0uaS7lK7QrumZXvk2NB8rzyvdTR5Ub1vm6ffOtS3I89uul2lD0uckPZHn/S1Jq1W2352SJkl6ATglb49L8/E+S9JXe6Z/Y5b6bj5e/ijpfb0s+zBJM5TOm19J2mQg26fOfFfLdc2SNC/Xu04e13OVPFHSn/M6f6XefPL0H5Z0f17m05JOaTRtP0wETo+I+RExA/ghcGiD5Z4n6SeV/rMlTZGkZhYoaRjwH8DXImJhRNwB3Agc3GD6oZIm530yQ9KJqjSB5GPvS5L+ACyS1K2lm2iH5vNqvqTpwL/2q9CI6PUHeAp4f+4+FPgn8EmgC/gU8CygPP424IjKtHfUzOsS4IzcvV7eQGsBawM/Bn5amXbJvOrU9EXgIWArQMD2eX6jgPl5I3cDB+b+9SrzfBzYEhia+8/K47YBFgL/BqwBnAMsrqz7KcDluXtTIIDuSk1L1nc56zgK+FneLl3A24ERdbbB6sBM4GRgCLA78AqwVW29DbbhacDvgDcBGwB3kU6SRvsugC0q+/ElYFfSRcCadeZ/PfADYFhexj3AUXncv+TtsTXwlVxHVx73dmDnvN02BWYAx9XUcQMwAtgW+AcwBXgLsA4wHZiYp90t78Nz8j59D7Coso0u4Y3jcUdgHvCOvN0nko79NRpsvwCm5n29MfAoSx/7i4HP5vUYClya6147r9ejwOE1038+79f98/YdVee82ifv963zvL8K3DWQ7VNnnQ7L834LMBy4Dris5pj/YV6f7fO8t24wr92At5GOj+2A54B9G0zbM+9ngNnA/wDr53Hr5nGjK9PvBzzUYF5r5W17KPBu4HlgbC81vpprexKYBAyrHA9/rZn+BOBnDeZ1FvB/ud6xwB+A2TU5+gAwDhhaJ1vPAn5DOp7GAQ9XP9/wPB5AgM+s2VgBbNhsgNdZzg7A/H4G+J+AfeoMPxi4p2bYb4FDK/P8amXcMcAvc/fXgasq44blnTuQAF+eOg4jhel2feyXdwNzgdUqw64ETqmtt8HnHwc+VOn/IPBUL/uuNsAv7WXeo0kn99DKsAOBqZX+4/N+nA+M72VexwHX19Sxa6X/PuBLlf5vA+dWTtDF5JMyD7uGdFW11PEInEf+Aqs5zt7ToK4A9qzZh1Mq2+/PlXFd+VjapjLsKOC2yvRLLoTysHuAg+ucV78gB3/uXw34K7BJs9unzjpNAY6p9G9FumDr+TINKmGYazygt+O0Mu25wKQG44YDE/JyRgPXAr/K48bl5a5ZmX4P8rHaYH7vAF4EZgEH9jLdhqQLt9WAzUh31j+onl8103+yZ5/VmdcTwAcr/UewbIAfVvOZp3gjX56oOZ6OpB8BPpC3UOb2dETEX3Pn8GZnImktST/It2svkzbeSEld/fj4OFIA1XozaadVzQLGVPrnVrr/yhu1vxl4umdERCwCXuhHLfUsTx2XAb8CrlJq2vhPSas3WMbTEfF6L8topsZZeVh/Pd3LuE1IV5JzcnPEAtLV+Jsq00zO090cEY/1DJS0pVJz2tx8XHwTWJ+lPVfp/lud/urxOD/vyx6N1nMT4PieenPN4xpM26O6DWrnWx23Pml71G7v6r56JvKZ2486v1Op8UXSXWh1Xs1sn6p6x0RPqPZodNwuRdI7JE3NTUYvAUez7H4EIFITxbSIWBwRzwGfAT4gaW3SXTGkOwoq3a80WAci4m5SIIr0hd1ourkRMT0iXo+IJ4ETSa0C5OWOqPlIb8tdKj+of370ds7Ufr42P+pame+BRx/jjyd9w78jIkaQmi4gbfS+PA1sXmf4s6QDvGpj0q1ZX+aQTthUhLQWqVmmnr7WbcB1RMQ/I+LUiNgGeCewN3BIg2WMq2lH7e+61qtx4zwMUjPDWj0jJG1Yr9Re5v006Qp8/YgYmX9GRMS2lWm+D9wEfFDSuyrDzwP+SLoqH0FqImqq/bLGurk9s0d1PWtrPrNS78iIWCsiruxl3uMq3bXzrW6f50lXsrXbu7qvxtS00/ZW51E1dQ6NiLt6qbO/6h0Ti1n6C6C/fkRqMx4XEeuQnon1dz/2bLvVImI+6dzcvjJ+e6Dhg0RJnyY1mT1LCuX+Ct7IxEeBbknj+7ncOaSmkx7j6kzT2zmzVP6Qtn2fVmaAPweMbfTAhNQW+DfSg8BRwDeamPeFwOmSxivZTtJ6wM3AlpI+nh8S7E+6RbqpH/O8Fthb0rtyzafRePv8BXid1FZYz4DrkPReSW/LdyIvk0781+tMejfpCuhESasrvU/678BVfS0juxL4qqQNlB6gfh3oeUj7ILCtpB0krUlqjum3iJgD3AJ8W9KI/HBsc0nvyet4MKmt+1Dgc8BkST1XcmuT1nuhpLeSnrMsr1OVHp6+m/SFWO+9+B8CR+crR0kalh/Erd3LfL+o9DB+HHAscHW9iSK9oXMNcKaktZUeOn6BN7Y3pLuTz+V9+VFSG/fNdWZ3PvBlSdvCkofFK+o10SuBz0vaLO+PbwJXx8DemFgbeDEi/i5pJ6DhK3h5m2+Vj5P1gP8mNVW8lCe5lHSsrpuPiU+Smr/qzWtL4AzgE6SmzBMl7dBg2vdK2iTv73GkdugbYMkd+HXAaflY2JX0/OGyBqtxDWm/rCtpDOkuohnVz48lPT/p08oM8F+Tvq3mSnq+zvhzSQ9Dnic9xGrmlaBzSCt8C+lkv4jU3voC6QQ9ntT8cSKwd0TUW/5SIr0a9GnSlcMcUtts3Rfpc9PRmcCd+VZ255rxA66D1C53bV6vGaQHI8scNBHxKimw9yJtw+8Dh0TEH/uxDEgH+TTSw5aHgN/nYUTEo6QvsP8FHgMa/pJJLw4hPVydTtqW1wIbSdqYtO8PybfOP8p1TMqfO4F0sr9CCtW6odiEuXn5zwJXAEfX20YRMY0UDN/N08+kwZsOFTeQ2pgfAH5OOg4b+SzpzuYJ0vb8EXBxZfzdpFflnicdW/vl46i2zuuBs0lNbC+THnbtVTvdAF1MOtZuJz3U+zv9DJI6jiGF3yuki4OGTRmkC6Ffkvb5w6S7twMr479BajKdRTofvhV1XiFU+r2My4GzI+LB3DR3MnCZ8htWNXYkPW9alP99iHRBUV2HoaSH21cCn4rGrxCeRsqLJ0nnzbV5Pfrr1Lx+T5JyrdEXxVJ63h4xW+Xku5LLo/F7vssz7yA188xc0fO28kn6FOkB73tW5nL8t1DMzJaTpI0k7ZqbgbYi3X1fv7KX69/ENDNbfkNIb1ptBiwgPYv6/speqJtQzMwK1fFNKJL2lPQnSTMlndTqeszM+qujr8Dzq3qPkn6zazZwL+k3t6bXm75r+LDoHjVqECs06zyvPj37+YjYoNV1lKDT28B3Iv1pgCcAJF1FetezboB3jxrFm48/bhDLM+s8Tx13Qr9+C9HchDKGpX99dTb9/1V0M7OW6vQA75OkIyVNkzTttYWL+v6Amdkg6fQAf4al//7AWGr+lkhEXBAREyJiQtfwYZiZtYtOD/B7gfH5bz8MAQ4g/QEeM7O219EPMSNisaTPkP58axdwcS9/68DMrK10dIADRMTN1P+rb2Zmba3Tm1DMzIrlADczK5QD3MysUA5wM7NCOcDNzArlADczK5QD3MysUA5wM7NCOcDNzArlADczK5QD3MysUA5wM7NCOcDNzArlADczK5QD3MysUA5wM7NCOcDNzArlADczK5QD3MysUA5wM7NCOcDNzArlADczK5QD3MysUA5wM7NCOcDNzArlADczK5QD3MysUA5wM7NCOcDNzArlADczK5QD3MysUA5wM7NCOcDNzArlADczK5QD3MysUB0R4JIuljRP0sOVYaMk3Srpsfzvuq2s0cysWR0R4MAlwJ41w04CpkTEeGBK7jczK0ZHBHhE3A68WDN4H2By7p4M7DuoRZmZLaeOCPAGRkfEnNw9FxhdbyJJR0qaJmnaawsXDV51ZmZ96OQAXyIiAogG4y6IiAkRMaFr+LBBrszMrLFODvDnJG0EkP+d1+J6zMya0skBfiMwMXdPBG5oYS1mZk3riACXdCXwW2ArSbMlHQ6cBewh6THg/bnfzKwY3a0uYDBExIENRr1vUAsxM1uBOiLArb7H9z9/mWGbX310Cyqx/tri879bZtjMSTu3oBJrBx3RhGJmtipygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoXqiACXNE7SVEnTJT0i6dg8fJSkWyU9lv9dt9W1mpn1V0cEOLAYOD4itgF2Bj4taRvgJGBKRIwHpuR+M7MidESAR8SciPh97n4FmAGMAfYBJufJJgP7tqZCM7PmdUSAV0naFNgRuBsYHRFz8qi5wOgWlWVm1rSOCnBJw4GfAMdFxMvVcRERQNT5zJGSpkma9trCRYNUqZlZ3zomwCWtTgrvKyLiujz4OUkb5fEbAfNqPxcRF0TEhIiY0DV82OAVbGbWh44IcEkCLgJmRMQ5lVE3AhNz90TghsGuzcxsoLpbXcAg2RU4GHhI0gN52MnAWcA1kg4HZgEfa1F9ZmZN64gAj4g7ADUY/b7BrMXMbEXpiCYUM7NVkQPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0J1RIBLWlPSPZIelPSIpFPz8M0k3S1ppqSrJQ1pda1mZv3VEQEO/APYPSK2B3YA9pS0M3A2MCkitgDmA4e3sEYzs6Z0RIBHsjD3rp5/AtgduDYPnwzs24LyzMwGpCMCHEBSl6QHgHnArcDjwIKIWJwnmQ2MqfO5IyVNkzTttYWLBq9gM7M+dEyAR8RrEbEDMBbYCXhrPz93QURMiIgJXcOHrdQazcya0TEB3iMiFgBTgV2AkZK686ixwDMtK8zMrEkdEeCSNpA0MncPBfYAZpCCfL882UTghtZUaGbWvO6+J1klbARMltRF+tK6JiJukjQduErSGcD9wEWtLNLMrBkdEeAR8QdgxzrDnyC1h5uZFacjmlDMzFZFDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0J1t7oAa53Nrz661SVYk2ZO2rnVJVgb8RW4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFapjAlxSl6T7Jd2U+zeTdLekmZKuljSk1TWamTWjYwIcOBaYUek/G5gUEVsA84HDW1KVmdkAdUSASxoLfBi4MPcL2B24Nk8yGdi3NdWZmQ1MRwQ4cC5wIvB67l8PWBARi3P/bGBMvQ9KOlLSNEnTXlu4aOVXambWT6t8gEvaG5gXEfcN5PMRcUFETIiICV3Dh63g6szMBq4T/kOHXYGPSPoQsCYwAvgOMFJSd74KHws808IazcyatspfgUfElyNibERsChwA/DoiDgKmAvvlySYCN7SoRDOzAVnlA7wXXwK+IGkmqU38ohbXY2bWlE5oQlkiIm4DbsvdTwA7tbIeM7Pl0clX4GZmRXOAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEUEa2uoRiS/gLMyr3rA8+3sJxmlFQrlFVvSbVCGfVuEhEbtLqIEjjAB0jStIiY0Oo6+qOkWqGsekuqFcqr13rnJhQzs0I5wM3MCuUAH7gLWl1AE0qqFcqqt6Raobx6rRduAzczK5SvwM3MCuUANzMrlAO8SZL2lPQnSTMlndTqempJuljSPEkPV4aNknSrpMfyv+u2ssYeksZJmippuqRHJB2bh7drvWtKukfSg7neU/PwzSTdnY+JqyUNaXWtPSR1Sbpf0k25v21rteY5wJsgqQv4HrAXsA1woKRtWlvVMi4B9qwZdhIwJSLGA1NyfztYDBwfEdsAOwOfztuzXev9B7B7RGwP7ADsKWln4GxgUkRsAcwHDm9hjbWOBWZU+tu5VmuSA7w5OwEzI+KJiHgVuArYp8U1LSUibgderBm8DzA5d08G9h3UohqIiDkR8fvc/QopaMbQvvVGRCzMvavnnwB2B67Nw9umXkljgQ8DF+Z+0aa12sA4wJszBni60j87D2t3oyNiTu6eC4xuZTH1SNoU2BG4mzauNzdJPADMA24FHgcWRMTiPEk7HRPnAicCr+f+9WjfWm0AHOAdJtJ7o2317qik4cBPgOMi4uXquHarNyJei4gdgLGkO7K3trikuiTtDcyLiPtaXYutPN2tLqAwzwDjKv1j87B295ykjSJijqSNSFePbUHS6qTwviIirsuD27beHhGxQNJUYBdgpKTufGXbLsfErsBHJH0IWBMYAXyH9qzVBshX4M25Fxifn+QPAQ4AbmxxTf1xIzAxd08EbmhhLUvkNtmLgBkRcU5lVLvWu4Gkkbl7KLAHqd1+KrBfnqwt6o2IL0fE2IjYlHSc/joiDqINa7WB829iNilf0ZwLdAEXR8SZLS5pKZKuBHYj/dnQ54BvAD8FrgE2Jv053I9FRO2DzkEn6V3Ab4CHeKOd9mRSO3g71rsd6cFfF+ni55qIOE3SW0gPtEcB9wOfiIh/tK7SpUnaDTghIvZu91qtOQ5wM7NCuQnFzKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCvX/vHM/sQGJLFgAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAGzCAYAAAAogL7TAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA15ElEQVR4nO3de1yUZf7/8TcIM6AcFEWQECW0PGuLJ8wilSTXLJOyslY8fNMSz1utlpWlpWWpqXho81C2bq6WqW15WCv6VuoqZmvrxlraSimYtqBSQsn1+6PfzNeRQcDSkavX8/GYx8O57mvu+zMX99zvuU+jnzHGCAAAWMvf1wUAAIALi7AHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWO6ihr2fn58mT55cqb6NGzfWoEGDqryML7/8Un5+flq2bFmVX+tLgwYNUuPGjT3aLsZ4XWo2bNigdu3aKSgoSH5+fiooKPB1Sb9q1Xm9uu6669SqVasK+1XXbQbsM3nyZPn5+VWqb1XyQapi2C9btkx+fn7auXNnVV5Wro8++kiTJ09mg15Jto/XsWPH1L9/fwUHByszM1PLly9XrVq1fF0WAC9ceeDtkZeXV6b/unXr9Jvf/EZBQUGKi4vTY489ph9//PGC11lejdOnTy/T9+uvv1b//v1Vu3ZthYWF6eabb9b+/fsveI0XQ8DFXNj333+vgID/W+RHH32kxx9/XIMGDVLt2rU9+ubk5Mjf/9d9luHXNl47duzQiRMnNGXKFKWkpPi6HACV8MQTTyg+Pt6j7ezt09tvv62+ffvquuuu09y5c7Vnzx5NnTpVR44c0YIFCy54jddff70GDhzo0XbVVVd5PD958qS6deumwsJCPfTQQwoMDNSsWbOUnJys3bt3q27duhe8zkmTJmnChAkXZN4XNeyDgoIq3dfpdF7ASqqHX9t4HTlyRFLZDYWvGGN06tQpBQcH+7oUSCoqKuJIzyWoV69eat++/Tn73H///WrTpo02bdrk3oEJCwvTU089pTFjxqhZs2YXtMYrrrhCd9999zn7zJ8/X/v27dPf//53dejQQdJP761Vq1Z67rnn9NRTT12w+lzrdkBAgMcO3i/pZ+8KDho0SCEhIfr666/Vt29fhYSEKDIyUvfff79Onz7t0ffMcwyTJ0/WAw88IEmKj493H1r58ssvJZU9V/jtt9/q/vvvV+vWrRUSEqKwsDD16tVLn3zyyXnXXlBQoHHjxqlx48ZyOp2KjY3VwIEDdfToUXefI0eOaOjQoYqKilJQUJDatm2rl156yWM+rnN+zz77rF544QUlJCTI6XSqQ4cO2rFjR5nlvvHGG2rVqpWCgoLUqlUrrVmzxmt9P2e8JGn//v267bbbFBERoZo1a6pz587661//6tHnvffek5+fn/7yl7/oySefVGxsrIKCgtSjRw99/vnnHn337duntLQ0RUdHKygoSLGxsbrjjjtUWFhY4VivWrVKiYmJCg4OVr169XT33Xfr66+/dk+/7rrrlJ6eLknq0KGD/Pz8KjxX/PHHH6tXr14KCwtTSEiIevTooW3btnn0Ke8cmOsQpGv8pJ/G8MYbb9TGjRvVvn17BQcHa9GiReesYfv27brhhhsUHh6umjVrKjk5WR9++KF7+r/+9S8FBweX2av44IMPVKNGDf3hD39wt61du1a9e/dWTEyMnE6nEhISNGXKlDKfI9e56H/84x9KTk5WzZo11aRJE61evVqSlJWVpU6dOik4OFhXXnml/va3v3kdk88++0z9+/dXWFiY6tatqzFjxujUqVPnfL/ST5+bsWPHqmHDhnI6nWrSpImefvpplZaWVvha1xhv2rTJfW1GixYt9Prrr3v0c/19srKyNGLECNWvX1+xsbHu6fPnz1fLli3ldDoVExOjjIyMck9vZWdnq0uXLgoODlZ8fLwWLlxYYZ2S9Nlnn+nWW29VRESEgoKC1L59e61bt85rnR988IFGjx6tyMhI1a5dW8OHD1dJSYkKCgo0cOBA1alTR3Xq1NGDDz6oyv5Ho5V5j651Ye/everWrZtq1qypyy67TM8880yllrF06VJ1795d9evXl9PpVIsWLc5rT/vEiRNl1lOXvXv3au/evRo2bJhHkI0YMULGGPd6640xRt26dVNkZKR7Z0CSSkpK1Lp1ayUkJKioqKhSNX7//ffnXL9Xr16tDh06uINekpo1a6YePXroL3/5S6XmP3r0aNWrV0+hoaG66aab9PXXX5c5t+76/O3du1cDBgxQnTp11LVrV49pZyouLta4ceMUGRnpnu9XX31VqffswVTB0qVLjSSzY8cOd1t6eroJCgoyLVu2NEOGDDELFiwwaWlpRpKZP3++x+slmccee8wYY8wnn3xi7rzzTiPJzJo1yyxfvtwsX77cnDx50hhjTKNGjUx6err7tTt27DAJCQlmwoQJZtGiReaJJ54wl112mQkPDzdff/21u9+BAweMJLN06dJzvpcTJ06YVq1amRo1aph77rnHLFiwwEyZMsV06NDBfPzxx8YYY7777jvTvHlzExgYaMaNG2fmzJljrrnmGiPJzJ49u8wyr7rqKtOkSRPz9NNPm2eeecbUq1fPxMbGmpKSEnffjRs3Gn9/f9OqVSszc+ZM8/DDD5vw8HDTsmVL06hRo19svPLy8kxUVJQJDQ01Dz/8sJk5c6Zp27at8ff3N6+//rq737vvvuuuPTEx0cyaNctMnjzZ1KxZ03Ts2NHdr7i42MTHx5uYmBgzdepU8+KLL5rHH3/cdOjQwXz55ZfnHGvXetOhQwcza9YsM2HCBBMcHGwaN25s/vvf/xpjjNm0aZMZNmyYkWSeeOIJs3z5cvPRRx+VO89PP/3U1KpVyzRo0MBMmTLFTJ8+3cTHxxun02m2bdvm7vfYY48Zb6u5q6YDBw642xo1amSaNGli6tSpYyZMmGAWLlxo3n333XJr2LJli3E4HCYpKck899xzZtasWaZNmzbG4XCY7du3u/vNmDHDSDJr1641xhhz8uRJk5CQYFq0aGFOnTrl7te3b1/Tv39/M2PGDLNgwQJz2223GUnm/vvv91hucnKyiYmJMQ0bNjQPPPCAmTt3rmnRooWpUaOGefXVV010dLSZPHmymT17tvszcvz48TJj0rp1a9OnTx8zb948c/fddxtJ5ne/+53Hss5er4qKikybNm1M3bp1zUMPPWQWLlxoBg4caPz8/MyYMWPKHasz53fFFVeY2rVrmwkTJpiZM2ea1q1bG39/f7Np06Yyf58WLVqY5ORkM3fuXDN9+nSP+lNSUszcuXPNyJEjTY0aNUyHDh08Pmuucapfv74ZOXKkmTNnjunatauRZBYvXuzu522b8emnn5rw8HDTokUL8/TTT5t58+aZa6+91vj5+Xl8flx1tmvXztxwww0mMzPT/O53vzOSzIMPPmi6du1qBgwYYObPn29uvPFGI8m89NJLFY5TVd9jw4YNzZgxY8z8+fNN9+7djSTz1ltvVbicDh06mEGDBplZs2aZuXPnmp49expJZt68eRW+1vXeQ0JCjCTjcDhMnz59zL///W+Pfq+88oqR5PGZcImNjTX9+vU753L2799vQkJCzC233OJumzBhgvHz8zNZWVkV1inJ1KpVy/j5+RlJpnnz5uZPf/qTR5/Tp08bp9Np7rvvvjKvnzRpkpHk8Rnypn///u7PUGZmpunfv79p27atx3bcmP/727Zo0cLcfPPNZv78+SYzM9Nj2plcn80BAwaYefPmmX79+pk2bdqUmW+F41Dpnqb8sHdtoM/kCg+PhZ1VnGsjeOYG1+XsjcypU6fM6dOnPfocOHDAOJ1Oj2VXNuwfffRRI8njg+tSWlpqjDFm9uzZRpJ55ZVX3NNKSkpMUlKSCQkJcf/xXcusW7eu+fbbb919165daySZ9evXu9vatWtnGjRoYAoKCtxtmzZtMpLOGfbGVG28xo4daySZ//3f/3W3nThxwsTHx5vGjRu7x9IV9s2bNzfFxcXuvs8//7yRZPbs2WOMMebjjz82ksyqVavKLPtcSkpKTP369U2rVq3M999/725/8803jSTz6KOPutu8rV/l6du3r3E4HOaLL75wtx06dMiEhoaaa6+91t1W1bCXZDZs2FDh8ktLS03Tpk1Namqqe30x5qcviPHx8eb66693t50+fdp07drVREVFmaNHj5qMjAwTEBBQ5n1+9913ZZYzfPhwU7NmTY8vBcnJyUaSWbFihbvts88+M5KMv7+/x5edjRs3lvk8uMbkpptu8ljWiBEjjCTzySefeIzJmevVlClTTK1atcps0CdMmGBq1KhhDh48WN6Quecnybz22mvutsLCQtOgQQNz1VVXudtcf5+uXbuaH3/80d1+5MgR43A4TM+ePT22B/PmzTOSzJIlS8qM03PPPeduKy4uNu3atTP169d3h6a3bUaPHj1M69atPca9tLTUdOnSxTRt2rRMnWevB0lJScbPz8/ce++97rYff/zRxMbGmuTk5HOO0fm8x5dfftnjPUZHR5u0tLRzLscY7+tcamqqufzyyyt87cqVK82gQYPMSy+9ZNasWWMmTZpkatasaerVq+exHri2W97WjQ4dOpjOnTtXuKxFixa5t8Xbtm0zNWrUMGPHjq3wdcYY06VLFzN79myzdu1as2DBAtOqVasyO6PffPON1xwzxpjMzEwjyXz22WflLiM7O9tIKlPToEGDyg37O++8s8x8zt5e7d6920gyI0aM8Og3YMCAKof9L3ZF17333uvx/JprrvlFr2J0Op3uC9BOnz6tY8eOKSQkRFdeeaV27dpV5fm99tpratu2rW655ZYy01yHUd566y1FR0frzjvvdE8LDAzU6NGjdfLkSWVlZXm87vbbb1edOnXcz6+55hpJco/D4cOHtXv3bqWnpys8PNzd7/rrr1eLFi2q/B7O5a233lLHjh3dh4ckKSQkRMOGDdOXX36pvXv3evQfPHiwHA5HubW76t24caO+++67Stexc+dOHTlyRCNGjPC4BqF3795q1qxZmdMKlXH69Glt2rRJffv21eWXX+5ub9CggQYMGKAPPvhAx48fr/J8pZ9OkaSmplbYb/fu3dq3b58GDBigY8eO6ejRozp69KiKiorUo0cPvf/+++7D2v7+/lq2bJlOnjypXr16af78+Zo4cWKZ85xnXhtw4sQJHT16VNdcc42+++47ffbZZx59Q0JCdMcdd7ifX3nllapdu7aaN2+uTp06udtd//b2WczIyPB4PmrUKEk/rTvlWbVqla655hrVqVPH/Z6PHj2qlJQUnT59Wu+///45x02SYmJiPD53YWFhGjhwoD7++OMyV3Hfc889qlGjhvv53/72N5WUlGjs2LEeF6Tec889CgsLK7M+BQQEaPjw4e7nDodDw4cP15EjR5Sdne21vm+//VbvvPOO+vfv7/47HD16VMeOHVNqaqr27dvncQpKkoYOHepx+LVTp04yxmjo0KHutho1aqh9+/YVbher+h5DQkI8zkc7HA517NixUtvfM9e5wsJCHT16VMnJydq/f3+Fp+f69++vpUuXauDAgerbt6+mTJmijRs36tixY3ryySfd/b7//ntJ3q8rCgoKck8/l2HDhik1NVWjRo3S7373OyUkJFT6HPqHH36oMWPG6KabbtK9996r7OxstWrVSg899JB72RXVeGYfbzZs2CDpp1MTZ3J9prw5OzO9cX0WR48e7dE+duzYCl97tl8k7IOCghQZGenRVqdOHf33v//9JWYvSSotLdWsWbPUtGlTOZ1O1atXT5GRkfrHP/5RqXPGZ/viiy8qvAf3P//5j5o2bVrmKvfmzZu7p58pLi7O47kr+F3j4OrftGnTMsu68sorq1B9xf7zn/94nef51h4fH6/x48frxRdfVL169ZSamqrMzMwKx961HG+1NGvWrEwdlfHNN9/ou+++K/f9lZaWKjc3t8rzlVTmquLy7Nu3T5KUnp6uyMhIj8eLL76o4uJij7FJSEjQ5MmTtWPHDrVs2VKPPPJImXn+85//1C233KLw8HCFhYUpMjLSvRE/e5xjY2PLnNsLDw9Xw4YNy7RJ8vpZPHs9TEhIkL+/v8d1DN7e94YNG8q8Z9fdE2eeVy1PkyZNytR+xRVXSFKZZZ/99yhvfXI4HLr88svLrE8xMTFlLuorb1kun3/+uYwxeuSRR8q8z8cee0xS2fd59ufHNe7e/h4VbRer+h69rQuV3f5++OGHSklJUa1atVS7dm1FRkbqoYceklR2nauMrl27qlOnTh7Xibi+UBQXF5fpX5ULYBcvXqzvvvtO+/bt07Jly877wlmHw6GRI0eqoKDA/YWvohrP7OPNf/7zH/n7+5dZX5s0aVLuayqzrXHNNyEhwaP9fPLiF7ns78xv3hfKU089pUceeURDhgzRlClTFBERIX9/f40dO7ZSFwZdDOWNg6nkBTm+VJnan3vuOQ0aNEhr167Vpk2bNHr0aE2bNk3btm3zuHjqUlLeD1SUdzFRZTcgrnVuxowZateundc+ISEhHs83bdokSTp06JCOHTum6Oho97SCggIlJycrLCxMTzzxhBISEhQUFKRdu3bpD3/4Q5l1vLy/189ZByvzYx6lpaW6/vrr9eCDD3qd7grSX4ov7oRwjfX9999f7lGeszfiVfl7/NLbg/P9m3/xxRfq0aOHmjVrppkzZ6phw4ZyOBx66623NGvWrPPerjZs2FA5OTnu5w0aNJD005HNs7/8HD58WB07dqzUfN977z13GO/Zs0dJSUnnVZ+rRumnoziSFBERIafTqcOHD5fp62qLiYk57+V5c7HX7Yt6693ZKvtLQdJPV0p269ZNixcv9mgvKChQvXr1qrzshIQEffrpp+fs06hRI/3jH/9QaWmpx96965Bqo0aNqrRMV3/XXuGZzvxwlKcq49WoUSOv8zzf2l1at26t1q1ba9KkSfroo4909dVXa+HChZo6dWq5dUg/vb/u3bt7TMvJyTmvOiIjI1WzZs1y35+/v7/7w+w6QlFQUOBxS9/5HFE4k+ubdlhYWKV+E2DhwoXavHmznnzySU2bNk3Dhw/X2rVr3dPfe+89HTt2TK+//rquvfZad/uBAwd+Vp3nsm/fPo+9i88//1ylpaVlfsnxTAkJCTp58uTP+h0E157zmevzv//9b0k657Ilz/XpzFM4JSUlOnDgQJm6Dh06VOaWvYqW5ZpvYGCgT37voarv8XytX79excXFWrdunceRiXffffdnzXf//v0eR3pdX4Z37tzpEeyHDh3SV199pWHDhlU4z8OHD2vUqFHq2bOnHA6H+4vY+W7HXKc4XHX6+/urdevWXn8wbvv27br88ssVGhpa7vwaNWqk0tJSHThwwOOI2dl3NFWVa75ffPGFx958ZfLibD79FRbXB7AyvwhXo0aNMt9UV61aVebcWWWlpaXpk08+8Xrbm2s5v/3tb5WXl6eVK1e6p/3444+aO3euQkJClJycXKVlNmjQQO3atdNLL73kcYhs8+bNZc6he1OV8frtb3+rv//979q6dau7raioSC+88IIaN25c5WsEjh8/XubXrlq3bi1/f3+vh75c2rdvr/r162vhwoUe/d5++23961//Uu/evatUh/TTutCzZ0+tXbvW41Bsfn6+VqxYoa5duyosLEzS/4XymeeSi4qKytw+WVWJiYlKSEjQs88+q5MnT5aZ/s0337j/feDAAT3wwANKS0vTQw89pGeffVbr1q3Tyy+/7PGeJM+9sZKSEs2fP/9n1XkumZmZHs/nzp0r6ad7i8vTv39/bd26VRs3biwzraCgoFK/iHbo0CGPz93x48f18ssvq127dh5HO7xJSUmRw+HQnDlzPMZq8eLFKiwsLLM+/fjjjx63T5aUlGjRokWKjIxUYmKi12XUr19f1113nRYtWuR1T+/Mv+2FUNX3eL68rXOFhYVaunRppV7vbRzeeustZWdn64YbbnC3tWzZUs2aNdMLL7zgcURtwYIF8vPz06233lrhsu655x6VlpZq8eLFeuGFFxQQEKChQ4dWePTCW40nTpzQ7NmzVa9ePY914NZbb9WOHTs8Aj8nJ0fvvPOObrvttnMux3UE6OzPq+szdb5cn8U5c+Z4tM+ePbvK8/Lpnr1roB9++GHdcccdCgwMVJ8+fbz+cMaNN96oJ554QoMHD1aXLl20Z88e/elPf/L45lsVDzzwgFavXq3bbrtNQ4YMUWJior799lutW7dOCxcuVNu2bTVs2DAtWrRIgwYNUnZ2tho3bqzVq1frww8/1OzZs8/5Ta8806ZNU+/evdW1a1cNGTJE3377rebOnauWLVt6DY0zVWW8JkyYoD//+c/q1auXRo8erYiICL300ks6cOCAXnvttSr/2t4777yjkSNH6rbbbtMVV1yhH3/8UcuXL1eNGjWUlpZW7usCAwP19NNPa/DgwUpOTtadd96p/Px8Pf/882rcuLHGjRtXpTpcpk6dqs2bN6tr164aMWKEAgICtGjRIhUXF3vcY9yzZ0/FxcVp6NCheuCBB1SjRg0tWbJEkZGROnjw4HktW/ppT+DFF19Ur1691LJlSw0ePFiXXXaZvv76a7377rsKCwvT+vXrZYzRkCFDFBwc7L5/efjw4Xrttdc0ZswYpaSkKCYmRl26dFGdOnWUnp6u0aNHy8/PT8uXL7+gp4AOHDigm266STfccIO2bt2qV155RQMGDFDbtm3Lfc0DDzygdevW6cYbb9SgQYOUmJiooqIi7dmzR6tXr9aXX35Z4ZG2K664QkOHDtWOHTsUFRWlJUuWKD8/v1IhExkZqYkTJ+rxxx/XDTfcoJtuukk5OTmaP3++OnToUOaHU2JiYvT000/ryy+/1BVXXKGVK1dq9+7deuGFFxQYGFjucjIzM9W1a1e1bt1a99xzjy6//HLl5+dr69at+uqrr37W73v80u/xfLn2kvv06aPhw4fr5MmT+uMf/6j69et7/ZJzti5duuiqq65S+/btFR4erl27dmnJkiVq2LCh+7y/y4wZM3TTTTepZ8+euuOOO/Tpp59q3rx5+p//+R/3dUTlWbp0qf76179q2bJl7tOFc+fO1d13360FCxaUuSjuTJmZmXrjjTfUp08fxcXF6fDhw1qyZIkOHjyo5cuXe1yUPGLECP3xj39U7969df/99yswMFAzZ85UVFSUfv/735+zxsTERKWlpWn27Nk6duyYOnfurKysLPdRpKoclT1Tu3btdOedd2r+/PkqLCxUly5dtGXLlvM7YlDp6/ZN+bfe1apVq0xfb7c8ycutAlOmTDGXXXaZ8ff397gVytutd7///e9NgwYNTHBwsLn66qvN1q1bTXJyssetLJW99c4YY44dO2ZGjhxpLrvsMuNwOExsbKxJT083R48edffJz883gwcPNvXq1TMOh8O0bt26zLxdy5wxY0aZZXh7z6+99ppp3ry5cTqdpkWLFub111836enpFd56V5XxMsaYL774wtx6662mdu3aJigoyHTs2NG8+eabHn1ct96dfUvd2eO4f/9+M2TIEJOQkGCCgoJMRESE6datm/nb3/5WdmC9WLlypbnqqquM0+k0ERER5q677jJfffWVR5+q3HpnjDG7du0yqampJiQkxNSsWdN069bN67352dnZplOnTsbhcJi4uDgzc+bMcm+96927d6WW7fLxxx+bfv36mbp16xqn02kaNWpk+vfvb7Zs2WKM+b9bGM+81cwYYw4ePGjCwsLMb3/7W3fbhx9+aDp37myCg4NNTEyMefDBB923zp15v39ycrJp2bJlmVrKq1+SycjIcD93fTb37t1rbr31VhMaGmrq1KljRo4c6XF7pGueZ69XJ06cMBMnTjRNmjQxDofD1KtXz3Tp0sU8++yzHveAe+OqcePGjaZNmzbG6XSaZs2alVn/KloX5s2bZ5o1a2YCAwNNVFSUue+++9y/2eDiGqedO3eapKQkExQUZBo1alTmHvLythlffPGFGThwoImOjjaBgYHmsssuMzfeeKNZvXp1hXW6xvibb77xaC9ve/lz3+PZvG1PvFm3bp1p06aNCQoKMo0bNzZPP/20WbJkSbm3+J7p4YcfNu3atTPh4eEmMDDQxMXFmfvuu8/k5eV57b9mzRrTrl0743Q6TWxsrJk0aVKF60tubq4JDw83ffr0KTPtlltuMbVq1TL79+8v9/WbNm0y119/vftvWLt2bdOzZ0/359Pb8m699VYTFhZmQkJCzI033mj27dt3zhpdioqKTEZGhomIiDAhISGmb9++Jicnx0hy/0aEMeWvG2dOO9P3339vRo8eberWrWtq1apl+vTpY3Jzc6t8652fMdXg6jEAv5jJkyfr8ccf1zfffHNe17v8HI0bN1arVq305ptvXtTlAr6we/duXXXVVXrllVd01113+bSW6v0/pwAAcAnwdh/+7Nmz5e/v73HRra/49Jw9AAA2eOaZZ5Sdna1u3bopICBAb7/9tt5++20NGzaszC2HvkDYAwDwM3Xp0kWbN2/WlClTdPLkScXFxWny5Ml6+OGHfV2aJIlz9gAAWI5z9gAAWI6wBwDAcpyzP0tpaakOHTqk0NDQ8/4hBACA7xhjdOLECcXExFT5B8RsZW3YZ2ZmasaMGcrLy1Pbtm01d+7cSv2HC4cOHbokrpwEAPw8ubm5l+x/0nWxWRn2K1eu1Pjx47Vw4UJ16tRJs2fPVmpqqnJyclS/fv1zvtb1E7ixkyfJ/4z/fx0AUD2UnjqlryZPPa+fNLeVlWE/c+ZM3XPPPRo8eLCkn/7Hsb/+9a9asmSJJkyY4NG3uLjY4z9oOXHihCTJPyiIsAeAaoxTsf/HupMZJSUlys7O9vhvIP39/ZWSkuLxP8C5TJs2TeHh4e4Hh/ABALaxLuyPHj2q06dPKyoqyqM9KipKeXl5ZfpPnDhRhYWF7kdubu7FKhUAgIvCysP4VeF0OuV0On1dBgAAF4x1e/b16tVTjRo1lJ+f79Gen5+v6OhoH1UFAIDvWBf2DodDiYmJ2rJli7uttLRUW7ZsUVJSkg8rAwDAN6w8jD9+/Hilp6erffv26tixo2bPnq2ioiL31fkAAPyaWBn2t99+u7755hs9+uijysvLU7t27bRhw4YyF+0BAPBrYGXYS9LIkSM1cuRIX5cBAIDPWXfOHgAAeCLsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMtVq7B///331adPH8XExMjPz09vvPGGx3RjjB599FE1aNBAwcHBSklJ0b59+3xTLAAAl4hqFfZFRUVq27atMjMzvU5/5plnNGfOHC1cuFDbt29XrVq1lJqaqlOnTl3kSgEAuHQE+LqAqujVq5d69erldZoxRrNnz9akSZN08803S5JefvllRUVF6Y033tAdd9xxMUsFAOCSUa327M/lwIEDysvLU0pKirstPDxcnTp10tatW8t9XXFxsY4fP+7xAADAJtaEfV5eniQpKirKoz0qKso9zZtp06YpPDzc/WjYsOEFrRMAgIvNmrA/XxMnTlRhYaH7kZub6+uSAAD4RVkT9tHR0ZKk/Px8j/b8/Hz3NG+cTqfCwsI8HgAA2MSasI+Pj1d0dLS2bNnibjt+/Li2b9+upKQkH1YGAIBvVaur8U+ePKnPP//c/fzAgQPavXu3IiIiFBcXp7Fjx2rq1Klq2rSp4uPj9cgjjygmJkZ9+/b1XdEAAPhYtQr7nTt3qlu3bu7n48ePlySlp6dr2bJlevDBB1VUVKRhw4apoKBAXbt21YYNGxQUFOSrkgEA8Dk/Y4zxdRGXkuPHjys8PFxx06fKny8JAFDtlJ46pYMTJqmwsJDrsP4/a87ZAwAA7wh7AAAsR9gDAGA5wh4AAMtVq6vxYY8vbl9Y7rSElfdexEqAC6PJuG3lTvt8VueLWAnAnj0AANYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALBctQr7adOmqUOHDgoNDVX9+vXVt29f5eTkePQ5deqUMjIyVLduXYWEhCgtLU35+fk+qhgAAN+rVmGflZWljIwMbdu2TZs3b9YPP/ygnj17qqioyN1n3LhxWr9+vVatWqWsrCwdOnRI/fr182HVAAD4VoCvC6iKDRs2eDxftmyZ6tevr+zsbF177bUqLCzU4sWLtWLFCnXv3l2StHTpUjVv3lzbtm1T586dfVE2AAA+Va327M9WWFgoSYqIiJAkZWdn64cfflBKSoq7T7NmzRQXF6etW7d6nUdxcbGOHz/u8QAAwCbVNuxLS0s1duxYXX311WrVqpUkKS8vTw6HQ7Vr1/boGxUVpby8PK/zmTZtmsLDw92Phg0bXujSAQC4qKpt2GdkZOjTTz/Vq6+++rPmM3HiRBUWFrofubm5v1CFAABcGqrVOXuXkSNH6s0339T777+v2NhYd3t0dLRKSkpUUFDgsXefn5+v6Ohor/NyOp1yOp0XumQAAHymWu3ZG2M0cuRIrVmzRu+8847i4+M9picmJiowMFBbtmxxt+Xk5OjgwYNKSkq62OUCAHBJqFZ79hkZGVqxYoXWrl2r0NBQ93n48PBwBQcHKzw8XEOHDtX48eMVERGhsLAwjRo1SklJSVyJDwD41apWYb9gwQJJ0nXXXefRvnTpUg0aNEiSNGvWLPn7+ystLU3FxcVKTU3V/PnzL3KlAABcOqpV2BtjKuwTFBSkzMxMZWZmXoSKAAC49FWrc/YAAKDqCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWq1Zhv2DBArVp00ZhYWEKCwtTUlKS3n77bff0U6dOKSMjQ3Xr1lVISIjS0tKUn5/vw4oBAPC9ahX2sbGxmj59urKzs7Vz5051795dN998s/75z39KksaNG6f169dr1apVysrK0qFDh9SvXz8fVw0AgG8F+LqAqujTp4/H8yeffFILFizQtm3bFBsbq8WLF2vFihXq3r27JGnp0qVq3ry5tm3bps6dO/uiZAAAfK5a7dmf6fTp03r11VdVVFSkpKQkZWdn64cfflBKSoq7T7NmzRQXF6etW7eWO5/i4mIdP37c4wEAgE2qXdjv2bNHISEhcjqduvfee7VmzRq1aNFCeXl5cjgcql27tkf/qKgo5eXllTu/adOmKTw83P1o2LDhBX4HAABcXNUu7K+88krt3r1b27dv13333af09HTt3bv3vOc3ceJEFRYWuh+5ubm/YLUAAPhetTpnL0kOh0NNmjSRJCUmJmrHjh16/vnndfvtt6ukpEQFBQUee/f5+fmKjo4ud35Op1NOp/NClw0AgM9Uuz37s5WWlqq4uFiJiYkKDAzUli1b3NNycnJ08OBBJSUl+bBCAAB8q1rt2U+cOFG9evVSXFycTpw4oRUrVui9997Txo0bFR4erqFDh2r8+PGKiIhQWFiYRo0apaSkJK7EBwD8qlWrsD9y5IgGDhyow4cPKzw8XG3atNHGjRt1/fXXS5JmzZolf39/paWlqbi4WKmpqZo/f76PqwYAwLeqVdgvXrz4nNODgoKUmZmpzMzMi1QRAACXvmp/zh4AAJwbYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsFyArwvAr1PCynt9XQJwQX0+q7OvSwDc2LMHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxXrcN++vTp8vPz09ixY91tp06dUkZGhurWrauQkBClpaUpPz/fd0UCAOBj1Tbsd+zYoUWLFqlNmzYe7ePGjdP69eu1atUqZWVl6dChQ+rXr5+PqgQAwPeqZdifPHlSd911l/74xz+qTp067vbCwkItXrxYM2fOVPfu3ZWYmKilS5fqo48+0rZt23xYMQAAvlMtwz4jI0O9e/dWSkqKR3t2drZ++OEHj/ZmzZopLi5OW7du9Tqv4uJiHT9+3OMBAIBNAnxdQFW9+uqr2rVrl3bs2FFmWl5enhwOh2rXru3RHhUVpby8PK/zmzZtmh5//PELUSoAAJeEarVnn5ubqzFjxuhPf/qTgoKCfpF5Tpw4UYWFhe5Hbm7uLzJfAAAuFdUq7LOzs3XkyBH95je/UUBAgAICApSVlaU5c+YoICBAUVFRKikpUUFBgcfr8vPzFR0d7XWeTqdTYWFhHg8AAGxSrQ7j9+jRQ3v27PFoGzx4sJo1a6Y//OEPatiwoQIDA7VlyxalpaVJknJycnTw4EElJSX5omQAAHyuWoV9aGioWrVq5dFWq1Yt1a1b190+dOhQjR8/XhEREQoLC9OoUaOUlJSkzp07+6JkAAB8rlqFfWXMmjVL/v7+SktLU3FxsVJTUzV//nxflwUAgM/4GWOMr4u4lBw/flzh4eGKmz5V/r/QRYAAgIun9NQpHZwwSYWFhVyH9f9Vqwv0AABA1RH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUIewAALEfYAwBgOcIeAADLEfYAAFiOsAcAwHKEPQAAliPsAQCwHGEPAIDlCHsAACxH2AMAYDnCHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcoQ9AACWI+wBALAcYQ8AgOUCfF3ApcYYI0kqPXXKx5UAAM6Ha/vt2p5D8jOMhoevvvpKDRs29HUZAICfKTc3V7Gxsb4u45JA2J+ltLRUhw4dUmhoqPz8/HT8+HE1bNhQubm5CgsL83V5lyzGqXIYp8phnCqHcfLOGKMTJ04oJiZG/v6crZY4jF+Gv7+/12+CYWFhfJgqgXGqHMapchinymGcygoPD/d1CZcUvvIAAGA5wh4AAMsR9hVwOp167LHH5HQ6fV3KJY1xqhzGqXIYp8phnFBZXKAHAIDl2LMHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9ifQ2Zmpho3bqygoCB16tRJf//7331dks+9//776tOnj2JiYuTn56c33njDY7oxRo8++qgaNGig4OBgpaSkaN++fb4p1kemTZumDh06KDQ0VPXr11ffvn2Vk5Pj0efUqVPKyMhQ3bp1FRISorS0NOXn5/uoYt9YsGCB2rRp4/71t6SkJL399tvu6YyRd9OnT5efn5/Gjh3rbmOsUBHCvhwrV67U+PHj9dhjj2nXrl1q27atUlNTdeTIEV+X5lNFRUVq27atMjMzvU5/5plnNGfOHC1cuFDbt29XrVq1lJqaqlO/ov9FMCsrSxkZGdq2bZs2b96sH374QT179lRRUZG7z7hx47R+/XqtWrVKWVlZOnTokPr16+fDqi++2NhYTZ8+XdnZ2dq5c6e6d++um2++Wf/85z8lMUbe7NixQ4sWLVKbNm082hkrVMjAq44dO5qMjAz389OnT5uYmBgzbdo0H1Z1aZFk1qxZ435eWlpqoqOjzYwZM9xtBQUFxul0mj//+c8+qPDScOTIESPJZGVlGWN+GpPAwECzatUqd59//etfRpLZunWrr8q8JNSpU8e8+OKLjJEXJ06cME2bNjWbN282ycnJZsyYMcYY1idUDnv2XpSUlCg7O1spKSnuNn9/f6WkpGjr1q0+rOzSduDAAeXl5XmMW3h4uDp16vSrHrfCwkJJUkREhCQpOztbP/zwg8c4NWvWTHFxcb/acTp9+rReffVVFRUVKSkpiTHyIiMjQ7179/YYE4n1CZXD/3rnxdGjR3X69GlFRUV5tEdFRemzzz7zUVWXvry8PEnyOm6uab82paWlGjt2rK6++mq1atVK0k/j5HA4VLt2bY++v8Zx2rNnj5KSknTq1CmFhIRozZo1atGihXbv3s0YneHVV1/Vrl27tGPHjjLTWJ9QGYQ9cAFlZGTo008/1QcffODrUi5JV155pXbv3q3CwkKtXr1a6enpysrK8nVZl5Tc3FyNGTNGmzdvVlBQkK/LQTXFYXwv6tWrpxo1apS5mjU/P1/R0dE+qurS5xobxu0nI0eO1Jtvvql3331XsbGx7vbo6GiVlJSooKDAo/+vcZwcDoeaNGmixMRETZs2TW3bttXzzz/PGJ0hOztbR44c0W9+8xsFBAQoICBAWVlZmjNnjgICAhQVFcVYoUKEvRcOh0OJiYnasmWLu620tFRbtmxRUlKSDyu7tMXHxys6Otpj3I4fP67t27f/qsbNGKORI0dqzZo1eueddxQfH+8xPTExUYGBgR7jlJOTo4MHD/6qxsmb0tJSFRcXM0Zn6NGjh/bs2aPdu3e7H+3bt9ddd93l/jdjhYpwGL8c48ePV3p6utq3b6+OHTtq9uzZKioq0uDBg31dmk+dPHlSn3/+ufv5gQMHtHv3bkVERCguLk5jx47V1KlT1bRpU8XHx+uRRx5RTEyM+vbt67uiL7KMjAytWLFCa9euVWhoqPu8aXh4uIKDgxUeHq6hQ4dq/PjxioiIUFhYmEaNGqWkpCR17tzZx9VfPBMnTlSvXr0UFxenEydOaMWKFXrvvfe0ceNGxugMoaGh7us9XGrVqqW6deu62xkrVMjXtwNcyubOnWvi4uKMw+EwHTt2NNu2bfN1ST737rvvGkllHunp6caYn26/e+SRR0xUVJRxOp2mR48eJicnx7dFX2TexkeSWbp0qbvP999/b0aMGGHq1KljatasaW655RZz+PBh3xXtA0OGDDGNGjUyDofDREZGmh49ephNmza5pzNG5Tvz1jtjGCtUjP/PHgAAy3HOHgAAyxH2AABYjrAHAMByhD0AAJYj7AEAsBxhDwCA5Qh7AAAsR9gDAGA5wh4AAMsR9gAAWI6wBwDAcv8P9KLuXTmThQkAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
+       "<Figure size 640x480 with 1 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -268,7 +309,7 @@
     "\n",
     "x0 = init_problem(50)\n",
     "plt.title('Initial conditions of our example problem on a 50 x 50 grid')\n",
-    "plt.imshow(x0);"
+    "_ = plt.imshow(x0)"
    ]
   },
   {
@@ -304,7 +345,14 @@
   {
    "cell_type": "code",
    "execution_count": 7,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:02.260006Z",
+     "iopub.status.busy": "2024-08-14T18:39:02.259729Z",
+     "iopub.status.idle": "2024-08-14T18:39:02.275710Z",
+     "shell.execute_reply": "2024-08-14T18:39:02.274429Z"
+    }
+   },
    "outputs": [],
    "source": [
     "@jit\n",
@@ -339,7 +387,14 @@
   {
    "cell_type": "code",
    "execution_count": 8,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:02.282956Z",
+     "iopub.status.busy": "2024-08-14T18:39:02.282614Z",
+     "iopub.status.idle": "2024-08-14T18:39:02.296215Z",
+     "shell.execute_reply": "2024-08-14T18:39:02.294561Z"
+    }
+   },
    "outputs": [],
    "source": [
     "# This spec is required for Numba jit compilation\n",
@@ -352,7 +407,7 @@
     "class solverinfo:\n",
     "    \"\"\"A class used to get information to/from a solver\n",
     "    \"\"\"\n",
-    "    def __init__(self, w=1):\n",
+    "    def __init__(self, _w=1):\n",
     "        self.iterations = 0\n",
     "        self.w = 1 # Used for SOR and ignored for everything else\n",
     "\n",
@@ -383,7 +438,14 @@
   {
    "cell_type": "code",
    "execution_count": 9,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:02.304620Z",
+     "iopub.status.busy": "2024-08-14T18:39:02.304003Z",
+     "iopub.status.idle": "2024-08-14T18:39:07.089796Z",
+     "shell.execute_reply": "2024-08-14T18:39:07.088311Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -395,14 +457,12 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD7CAYAAACscuKmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO29Xax1TVIe9tTa53wzYayYb0g0msyMwkQgW8iSgzUiIKLIAlshjmV8gRC2ZY0sorlxYrAt2ZBcOJFyESSLn4sIaQSxSIQC9hgFRCz/ZAwXuZkwBBTbDJgJ2GZGw49liKNRhu+cvSoX3dVdVV3dq9fe+5yz3+/d9eq8a63+W929+umnqrrX2sTMuMlNbvL2l+WlK3CTm9zkeeQG9pvc5DWRG9hvcpPXRG5gv8lNXhO5gf0mN3lN5Ab2m9zkNZGzwE5E30BEv0REnyai77hUpW5yk5tcXujUdXYiOgD4pwD+KIDPAPgZAH+KmX/hctW7yU1ucim5OyPvVwH4NDP/CgAQ0Y8A+EYAXbAf3vUuvnv3u8+45U1ucpORPP6rf4Xj5z9PUdw5YH8fgF9T158B8B/4RET0EQAfAYDDm2/ifX/p28+45U1ucpORfPa7v7cbdw7Yp4SZPwrgowDwjg98ILQZOJyHrkguWb8r351M11K/a6nHuXJFY/scsH8WwAfU9ftz2C55UqBfUUcXuVSdnggM8jyeDPRvFxDPykx7n2mcngP2nwHw5UT0QSSQfwuAP72ngJOBfonOucaJwMtooOyp/wkAOwv0lwD01at7kzLTgZd6zhtyMtiZ+ZGI/nMAfw/AAcD/wMz/ZDr/nkac0uALddJTjbkpEM3c+5Ryrom1z+jglzY5pqo+SrRnIrjAODzLZmfmvwPg7+zON1Px2cbt6IRrIou9demOi6icrTEkeS4FltlydjT6bCBfqm3nYnXUZB85KvACoH9yB91JMmrQRGOnx9RLU8OWqIb02hQ2YZbJLwH6rbwbD2P6EbzUo9p730n8ht2iA7sZ4/vMyPWB/USgbwJ8D7CfUwMY2msuMmjkFDlsgZo26tGTUZ5zQX7tk0CveTOTL2z7h8C/ICFdF9ijRnc6dTiWRh30BObBk0uZzbdpYkgOI9B3AM/UuW2vizsPpvtILgD6535UXP4biK5U7znI5Qj4PdBzW86WXA/YL2F790bUJuvP3/viMqNyjwYOUNvtOqZLDj0mP5Xh/Q071WvT7wyX8qYrtLPsyYKnrCQd2MvQYfxpM3Qn4K8D7BOMHnbAHnBfEPC8Q7WiS3oFew83Yv6A7SkagBdz0rUVm9YITpmj99Z7Jv0p9jBNaPQzGlagkZkuvYBafx1gv5R0GX9HWiV7QH1KGeFEMKP+zTB1QBFdlXyv+DIuDPTuo9kD2HPk1JUPr573iosm7SBsF8tPyPWBfYvRo1HUpNkuN5V9Adv+DOGNkUlhpbE9UDzTO5ZvGH50fYI03bp1jaC7T1Dxn3pxZVj8wDQKtfiRluVYvmF4o8Fheqy+PNjPAdWlQT5Tl1Pre8ISmdTTaAA9FXB4zc8G+L1AD7tzYnLo3q8ne9rTecZjR1onb8TYvjrRZD0C/Iny8mDXoho0ZPQtkDfawaSu+JRsfsYkoetfgN8bHH7QaZYfAX5Hfex1LXMI9C2Qz7D/nlWB2fgTZdNO1wkDs6uZs6Pn1r3JaQ/vusDek1mgb4H8uQG+V0aOm6KRd9i+C3JYwKdCyoGidLMyopsO0PeCfN+yX786u2TGZp91rm04/YYsr84vwe4vC/YOUE2jekCfBfmMqh/W7YkNQKD/9CZs8gb0Q5C7OFeFSzSVOuDuAn0A8k1ToBcW5b2Q8MAmD5nbq/yD5xKy/BbgT3hwV8fs/TX07fMhk2+BfFbVv5RwcM8Z8LuBEIJ+C+Q9mjjRVp9ZR+8CfcTkp7B+SXvBh0cc3quZADpsbth+A/Rhk0Yq/Q65OrAb2QJgD+izIJ9R87fK2CtDR84E+P2MH6n3XZDr+5+pF0Z5e2zbS9Nj870gH7TjHKY3LBoU2mVvIAazYWa0z1Jn64yT8LFNTgbXAfbQluY2LjjfDfItgI/qchGZBJgG/9Z6vKRH6o+G5TsTRMkaaYQnsryuS1NNDuJn1P8NcI8ZfhC3IV3/WIDAWbV9yPIjhr8Au18H2GfkXKDvVfEvrdZrRjXhA5tbrrdAH6j2oVrf5D3f6zO9VeESQJ8B+Ra4R/GdCdTHt8C2EVMMfgZDm5vvIKKrAntp/MQICoG+BdquljChzp+ryg/tZ5euC0A/yoKyM7i7DN8MvjTqyriZZf5B1bpxEYg3JwGKw6N79syIWTwM5tSeWHeKqquqDOvEEcv7eOqo81zznTJHXxXYG/EgHoFwFuiN2t7TOTtlRvlG0th7Ej4I00+zpxKGdUIf8D7NU0lgfXkZzuUzQJ8A+TmWV9d10ntmoU1e0VzCOyzfiAf8heTlwV6YWq7daCGfbgeAIyafVf2D0UKnsHsup/ktjiGDA/HICuJ7YPaA3zNyvCbgq5Tv2WNnatKront5ApCfZs8jlj1t90EBMNlfOGssBddZYMji0WTwBPJyv/V2KbV4ppw9QCc26YjqX1su9/980qgcn5Y67Rr5Dy7hW5AJ6QkHmrrNhso/ADqjD3QXZ8L20GMvT3DvLZ9BbW+gofQmu97EeQF5eWYfSY/VZxm9py1EcQgAPbs0F0mjC6oorerltJb5AxXee+4MCwQsr07lhZvuizVPIbODeUtbiNJ24kVO9s777omUJ8e++hGMV0otyxsm7zG8Vue7aeUiqL+T6wR7NCYvBfQOYzaMu1EfmjAKuQO+xjPPVO6fHqoaZc3D74Be4vbS86UMwydgIlNuj+mVTKv0G/eqBdpywy2w6nxkm3tw9oC9Wb8zOvgqwG7s9Y6tbmQP0HvgRwfgGp9nqsgmvy6K3ESgIjX7shlVLrmMlmgy6HjhQ4ddufG+iSJi4J6tTtwJA7bt/1OYfqbeTsKmR5MJdaNTGh83YONocpiy308E/fXsjT81vQbpFptHQN8Cecjq0zUGoFSwEmDvUVQ8x+pEiulHwPbhprJB3KXYXLWnJ2OVeifQd4J8j0c+SjucAMgx/qxK3gM8OnnzvS4hV8HsAOLeFgxEDK3zjMIcqHsgjwC+acNPCsnDVeWzuV26iEAvTN9leTEWDRv0Wdp45wH4iWBzTX2W/TkG6wyj72J5JTOTwB5mD73wgSrfeNprVDfc2NuSqMfonMZQU84+ZeyKwK5Fq0pdD/oko8+CPAK4GxnnTLD+JR2rrkvYGPQhyyMI84AfMf85EpXFg/ByroA+weYjkPcAvtd+964QnS/cvxQgOQR3xPKwDE/gfrwtqtUSd8h1gh2Ya1Co1qvwCOg7QN4Q+4nMDqB5cuaDFIW95ToGfQj4WmJ/EpDGFPbubKc9xcFX6owYUB0AhorcDqBHIN9k9q3H1zGDGnUdAeil/I4aPgyD6/ozAD2SFwe76SwNVAzCvVrfUecjNu+CPAB4TetYeceDEHWdzIiRWTqDvFHZpYoO9OBYrY8YXgryAHYD7mymH6nLIWjJAjhidA7KQJAuuPbnu+ZnlTYCnlbrvSLgmT5i+SZMAJ9P0rm9n75u6rpzQngZsM+afRrUs+Vo8EOd+0kFfaDPgnzE9AJknccvq/kJIAQ9p/twAXFHv5MMk+zceObPAP70mNP3iwB5LtBHIN/TNrL5NTh7YA5BP2LqKKO/afcmQXkT8uLMDqB9MmTV3C6r++sM9K7arkG+AXANUgrCTHVd/VkDuYTV/JwfLLuBE4Kecl7D8h2GTwGWgiTQM75pgA3T80rY3hFw2MXLtbfTO4weMbUO2+O82w141z9axZY+2nrVgVQ+cNzlURqjzpdEwCmg7sl1gB3Y36iGwf11PW+A7m7ZA3oP5Fu2ewx+OdfxFrAa9Cz16b0QMzPyuhV0ZZ3I6I04kE+X69OeCfRN292Hd/rNsHWH0XXakf29paJrdd6U68qKvPKzcj1gj4QQs7hXySO1nDSIbRxhDHAP9vZ8vgkW3FW9F/YXxmcmA3rKaVjqkyeAIcPriUFGWQG1mxwo5Zn+xZqIJXug8mANWH2a0TsgP0ul9xLEG4BrzZH7SpJoACbeTRTmVs0EXstpJoKeVtmZJCK5LrB7IJs4P+0ymomgV6ZKExVPamJoWT0G+bxnvmYS4Feg140zpFRvDVwzHgS7PYYvoy24/aXYe0O6j2GGYQOgm7gRk4/Y3d9nSxR2uhtjatJ42QxAdyxDpWtA3gGuKv9UuS6wawlRKX/swtjY4YXVNxjdg9wDfAj8iSawyuNV+XSscRyuy+TRIDY+AEKf4VmPQKlBzwyIBn/PPBhIUSKCxoeAk/AOsLtqOwdxG+w+pc5HIs9J406FFTzmebU3x5q4HOC73lxrdcDPKFGenRPAs4N9ZhxN/cZapL7n8MbW1kB34I4A3QO5vs0yyeyrYV0MWF3fgeve+Vx3vZc+ZHiW8Igu+vogUzUFzmX/sEtkqW12QvDhwQQRgXgr/pS2Naq4xqACL2p0C2Q/3rkT7uJC1V2D+wSmf1Fm3wS+AmvI6lDX2k4PVHcBurfNPcjNdS5iUWHm1huAZyYcFMgBYJU4A3iZAATk1Z4XWz4xKBlPvTA8KwrK+7Fq5/lRKKPo0up9CDBq0mi73eczNnrA4ptMDzTlkt6XPNNW1VecB4u22UtXk22e0+QbJcoDvDEFoDLrNFHBJ6rzm2Anog8A+B8BvCff6qPM/H1E9G4APwrgSwH8MwDfzMy/vbsGGshQrD5qkAK+WUbz9nUAdK+2d6/RglyOS1A3ra7rtq1ugMnXQlYBeNOwUBk0gIeEkouNBrMZbUH8SII8mwqNY9dNcMOm86y8NQGYe5j7c/deTT+QjauWT36mKsEmk/tEQAv4ALxaYzCszkHYiTLzpZpHAH+Zmb8CwFcD+PNE9BUAvgPAx5n5ywF8PF/Py2zFZ8Cv46kPdEBAXYEt18uyFjY/EGPJ8RJ+WBgLAYeF8/Vq/pacR4dJPv1Xy0t5pI62PtEklNtkNBlu2m4mQK0Z7enzSSnFTU4iDRP3AOgAbiYMF67jaGUQczquOX5Nf1DnxO5v7aRbbblgJNVM5/N1CLQO3fahNqLPz0V2IJvMzsyfA/C5fP7/EtGnALwPwDcC+MM52Q8B+GkAf/Ws2pA7NuFKC3CD2jjkOoyumX1ZKlsLyAXgEr6UCYIblp+x2fWyFjNhZcKBAGYUxj9kdX7N+iERY12XXMe1qPURwwu7l76B0yygs3JV30M6CtL2xANVh9eqTKrZbdoe0Eva1adlW17E+EBcZyd+mQ2m+7mccx4ctLbd2pC3b7tX53OGhvm1o+4C7L7LZieiLwXwlQA+AeA9eSIAgF9HUvOjPB8B8BEAOLz55qn13KhXZUFgQglQwNVA1/GLnhiE5ZWKr8UDX5xyB6Wmr1DABrCAsKrRt+R8rOpnd+J1AO9BnCKq7R4BHLbI4qSbZGgjEVhz3cx1lNaFDxk9KksBvas1RPf094/UeAGYSm7UdLbZGRtpFVjJ3aOr1vcGsk6/Q6bBTkS/B8DfBvDtzPyvSbnAmZmp461i5o8C+CgAvOMDH5igw871gNVLOse+tFQW94y+LIkeDmSvBeQa4HILAXXPYSdyQGVYAX55lpQ2sjBTYf7jmieeHJ41RSyLlLMNeOOwqyi2o2aGuXsTQ77XLvEM64DYZe+pMMXma+c+vg7qOhSvWVKdK+vYk788IS9pkqQll73EDB+GaUb3dZDLzsQwekw9mQI7Ed0jAf2HmfnHcvBvENF7mflzRPReAL+5897z0htjPbUfaICvz/1Smna8eaCn8BjkmtHlXC+1rUyNU2RlwkKc2V2uU9yRc9lM9blSXYbzG3K2pHzpRhrrR96lxbO6DjurPHsUD7uea4cTCmAnAF1+UFVHsuEuuKplc/Laq75twL3F5kpEa59W23ew/Iw3ngD8IIBPMfN3q6ifAPBhAP9dPv743C17N0LriW+YG5bVAbsujprP2+kRo1MBdczmiwoDgDthf/RBL2CXt9RWVIZfmbDkYxoElc2RS14ZOBRbXTM88pq8AD/3wYo+uzdAF7bPJQ9UfLOhZEMa0GGQd4PVxSm2xegzGoAFPZv76zqW+VksDzlZari4Tpik7/UfG4Zv2Hx1EwajmQBKtJ9pgHaiQJtmRmaY/WsB/FkA/4iIfj6H/ZdIIP+bRPStAP45gG+ev+1lhIJR5pffrGe7MrpfRhsBvTC7Arlne5ElM3phdkcXwuiAZXlhbG3Laztet9mze5fpZQJ4akbfEg2+KA4WmP00bNLOAF2DvKfKkwsuPa6XOd3R2+BQDB+llXoP9jfV+ui4PbPuhsx44/939OePr79ILXpquGZ4OSUfB3jve+NpV6DvMfphWUOQL8RY4K5z2FLcwgrkWVZesIJK2OO64EDAkZfE7AHLY10yW6fjca0Tg2zCWcst01Cqgydg92hkRaOMgF0vxYhogAaM2QN4xLzbLM82HADWAcjXzsRg6seFzrVtXhdAWJjBMXmgpq+oDC/hrhh9XdqMjnrvSMKweMToE5PCC39dlttK98abUt11WO+bcf6lFb0jDmjt86JIB0A/ZPVd1Pg7Opa0fbt9xQLgEYeSd2VK++E7LK81EOOJVyCkrILL7jttlzfkrdV1nyBi+jPZ3zwed+6ZO1L9+2ktcH26iM2lTL1MJwxs78dqV1xGsXO2iVlkNGnpVgXYwvBQ/a37QgroALfL9grII41gS673RRgRPyHka/9Sit3THrA6MjiXdcjoZYOMA7kw+UKsQC8e/BUHYhyZsHKC72M+LplhHtcDVqKiARzXBStl5l+XNFGsyVDgrKFgXbDmehyF9XOL7XJjGgyybVbYvTBZZu5CXxdQ6c14M+BRE5MDbRM2BCwqMDYYvWx+Ya6e+VWXw43HXm+j5czcxWekgE8E8II6DhdL65wnBs3QZXJYU3yZJFS75dovmPiJ4Rxwe7lesDeM347OZlcZKsglvl0rh7kOVXentguT3+WJQEB+vxyLHZ/CgZXX5JSTgbkk1r5bjliZCtNjWbO6ns6L/e4YfgHhyNVM4NJGWJudREXUWsBgG630aWjr47zJIMrrw/xE0LkuLD2YILSa7ycGWjlW78VEIKA4VpbciVklx5L7e0UBNq3WNpd6sbou2gCRBbRmdGkLHNBHLL9XI3ByNWAPvzcnLCSXhblzWqcLWnZXW1DddaOqB4wuoF5oNUy+EBeQ3y1HHPJkIGB85AOOTHUS4AUrL3jMtjrWpOCv4lVngijzLGaBYvgVwGFBsd/LxJ++aAEiqh/AAFvbXXcPVeYpfRuBcgboPTD7JTfRLByI96jjGsBwKrndzirnEmdBXbbQrqrMNXVcYu4EZl5QQS9oJMreUmHqjC4Buu4zVl2owhClofaacvXMuM/1PZfhrwbsQ6HOuVwWdT2HBeq7sLqcl800jtE10O+Wo2HydxweG5Df0xF3y4p7OuKBD3hcjzhiwVtZrccKrMQZ5JSZnvG4HnC3rHhc0yhaSpxl+DzGattY77KjcjRfsRUPPgnDoI4UmST1yNnD5BvpGgXMzseNrW4ADjRAb9Io1vbMr4FemP2Yn/Mj17zMWB7THnpeCOtdHjxZ3V8LKrJ6vzBolQkAZSLwDM+oYE1hWZ3XAGYFaD3xdvpy9J34vQrYdYA9Utk9qDWT52cT9UGzB14BXTO73iDjVXdhdON9J7HbGfc5XgP9ncsDDrziC7jHwpzscywZwOn4sB4K498tRwP45KxLcWI7FjLLG2/WfP9oOU5s97qJJqCCkb53iuruwKvDt64Nu+t0XiNwf3rCMMyvGV1NGEVd1xPBMb8s88jAIWtMh9QJTAAdUSdF8dYvdUuxAFUYvl5Xdd7Y73nFJWRnDX6y5YQD3GsFO+Q6wN6TEPR6JDgWd38Hd11sc9RJQJxvPUZfiPGO5dGo7+9YHkr4gVa8gx7xzuUBD5zA/JBGTlbb7wuzLwtj4aU46ySNOO74mGawVRg9szyyg25BUtGtOi/HNFK07V4+chGNtDKQa/jwhx9HEgC+x9gazCWvZ26vvjuG90BuGF2d0zGVtRwZUKo8Pa4Z9JT0qpWxHgi0pO3KWWXM9nxm53yuGb568mu7km2PunVW2usmhOiRxN54IO2q5HCy6DG/l6v+bnxNXxkd0AM8jYDeHnUR/faaVeujNXTxsCtGN8yuXmfN7H6/POI+O/EeKAOdCEdacERyzB0p2eYHcAI/V6ebUdslHHbtfslmQXHeieedrG2uuzjsFQH5XhbfEK+ib4pjd583Ut8r6NldIyFITwTHmo4YCeie2Tl/8PPI4EMG9Mqg4pgTcCtHJ9vVjma7bA6vLvi23eUYaQM+7Q4wb8mLMXvTMJK/zojxgPfRhd0rqA3LL14tt4467YyT6/vlWI49Rr9fHvFOekxxnCaKwuy5lo9rUuMf+VAW18WeF6N8LSq/2Pm5hfl11yPSNlpZjrOee30E6jJbVj3zYDV75SefUXec9cpxIDasFrC0edyOsUP1XV871b2wtnLECaMvmeHpcVXMvoKWZEIVhidgxZoZnvISXWV4AGWSNZ57zfgLwCvSyzGrNAyFpZpn4CeHC4NcZObjFU8roeGNOZoo4K5Al+zeKSfiWV3b7353XPGobzD6PT3igBUHiK2/4pDzp7C23IO/p9IotPjrWdnSdp5DpqvggK3zhuq7mUxYTQZ2otCM7vOmuJo/bbZpNQHrE2BTL3Mf355eO13bTtawTsh35TY7CqChAd0ZRVtOuQNZoGub3drpK+6z7V6PR8PoB1rxTnrEfbbX30kP+ALfAytwAGeH3B3WhbAwp/BlBdb74rQ7LsfivEsvyqQ1+sOyJjV9SVqBAP6Y2zi23VPH6S2a0jeF3ZXNCWA8cLYcd9Fg90UE7N6z1T3AIvXdL7lV9Twz+qritI3OSGx+ZOBxBR2PAC9YiPIWWTHAl2T7rWzYuqHfnIeR70tIa+u5rYXduW+7Z8WrseOzpeeOpBLul5dl9jPUlMgxJ+Fbt/IvuEiYXMtnqQ6ZcYWdC1tTZfA0ceRzVPv+AMb98qjSVwY/mPvo/fVVm4jqpU2PzTYbanRhWx00KVYFJzOYh2n3lCvXAYtGE4dhT/lMVZlEOAFYWLwwe40vGkJOqyeqsH2jOvl8E22dkhO1gatg9tGno+3ed3NQaeqg97a63zhTt77W3XH13Nrpfh39npLtLuf3dMQb9Ig36Ig36JgYel1wwIqVkvdcvPRHyi/G6Ncn1/zFGlpV3Iq7JW2jNd55smvvTOntuMI1mRaKV/7UHRh6YuiUMSx5BI6GyS2rR8A1W2FNWGV5zeoSR8VG5wLyxOqW2RkHEK3JQfcI8GEBjqncJd8mbZmlxN7HbL+rl2MSs+dzMd1zXYWVxVQw6+6+r3pOvQvJy9vsXryKCcB43NXR74fXojfQiA1v4+O32OwxTxJYDavf07EwfgX+Y2JzOhbmPxgbfY3vR9YfIHGpTdavENnvspTo9xdoR6Xt18uy+7RssZEGP+x5yV8mB7Zpsz2d0rGbQDRbo7B5Ye51LZNDUfNFC/CTktTT77s3zO4mrab+g47QQ9y3f5B+Vq6C2RuJAK+jXS9Eu+Uknfe66zV1w/B5V5xW3+8z64s3/n4RQOd192yz39Mj7nHEkR5xzJW+pyNWrOl6AdY1baHVzL6uickP2W27UH55hlbcIXnkZbONrL3Lspy33fXrtd7rXq4Lc+QLYe8Bi58kTq1tAKyOocqrmV0BNcprt7/m9GpprajzRwbWNYE7n5f3hZclfUtsTd55XjOJiKp/LK0BkHbdkWHptF5fX4rhatYwGv+J2OzFlsfgEfi8Z8j1MPvEWNO75rQXXqTatorhTHidCAyzIgO8w+qiuh9UHlHfD5m1D7SW63t6xBt5QhC29+x+wIo7Opb71vv79f0a7tsTvQBk7PhNapjr92lxwPZx/TyeHe3EoCcDawJwZXVhWVHfmTOohcXXyurrCmSVvl5nYK9rLe9YPfRi62uTw2/pDbtc1Z9cW3R7ff/1+nbmkfbkesDeE+JiG5kwfekHOeJ3zUMwwQJKb4U9INnuopqLyp4mgLrEdo88EWAt6vyCNQO+dda1y3HtUeqs619e4oEFfKvp2EmgrGicKeFgZQBM+wahZmgVZsov93TLZfr6aMuq6bhujxWnnCydHQW0+U/UeAF93nWn1X6tWZR7rEGduf0jF9cDfHg+6NNTQH+dajyArbV2z2RRmF1vbx12LYtWoGv1vbXTq1PuPi/D3dMjAOABBwCPeIMOOGZWX7GmjTbLY1LdZSNN3ip7vxzxsB7KMS0FrliPadltzTreQpzehFOOOjEb0opb3VHnP2wh/VOseGLJNScnqPkRM0dgbliuB5rGHlfsLjvjOKvw4nXP4BbbHJrV1zX113EtbaQ1ff+PjsgvwKC+bSfdwFR215X31fPOulrn9MzMm2yqzfIciKuJpc9t3wfXJ0zeL8/sjWsdfZAHLAZUe13EqOuKQcu1Y/iDOVY1G4BZZqtLcKLuJ9aWP2FxyQOglFM2zcDVpdTTppNzX3/JV88xZPaoLy/B8gC6zBMz9DiNvq4syiauq1n4OrnNMmXGK2/LCauzPVdLcSb/iqZuci/7AUyudfB/vTZ3+se0ZyB7HuV1MXvUYr2ZRoKKB96Hp400QPtBCrtrrrXVy1Gp2HqJTXvaRVUXZk9/R4CBB3oE+C4txQF5TzxwzPPqmpfg7pcjjuuCexzLG3JrfnvijlY8IrH6wlzYfeSo00tzftktkVFAB+IlutBe+QjkUbxn7x6bexu9qOtuS6zZ717UdFSb/MjJ/s6s3qrxS3HeMZa8Vz7l58NSNYoV9UUjItAib7TVN9v05pjC7nCszYD5ArB7NNJW8xhHz2eS6V+e2U8UA3JYtuttrOltPdXs6pfaahph5sr4AAyzy3VJI2EqbXEAomoPpi7C+qh18nFRm71EtjwCLcDHX1q2JoBN2WI2HW/Y17K5WZpzjC4fuihLcjmflCNAj+5nbHcfr+sYxUdayRPKdTB7NMgca0NU9cBOFzEfkZPLOKkAACAASURBVITf617Vdr1FtrwAozbXVNa3Trlkn1tG1zvp7nEsNvRD4ma8QQe8xWkp7gHAgblsopE8KxEeIMBe1FEAz4XJ5VjbrBk+T/KkP2YRjCHytFHllNdcG0CzO8o5t2k1q5P5804xu6nGb6DRP+oY2urMxlbHcQWOx9RBa3pliRdxplDuQ8ovK3G5LxOl+y3qzbesHKT43LdeS1HrZ8S1CwqLuzS6f0yQ+vjkXnmFmb1OBtpG92m8RJ5uEW2ne7tbbHXxxKfwrAU4dpe4ci7agnpRRu6j66V9B6auaD30MqHNiPdppLDJzE8lmn1deBvWOuZEwnHPNZ8uI3zlTzF+ZNsbMwJOQ+i0wdri3K/nM8t1MLsXZ4fba5fUsbxfmmrt9bFjTtbEF6g1cgdWWW4ry2r5xZkjCPd5B8ZbfMAbBDxkW/5AK45YErPnco+8VCcdZ7OB1B6A7IFPqn/2xmcb3nvlSz/ksOSNz5tATAe6fo4G4Y6JYHMQa3ZW12G81ggc41tnGFebWNnt4bq6rJWLra5YnY/5JeRlSR/6E/ZfFvARiQop5WeGvIlU6lReJc51Mptscrjes1RYOg9pM0+odtav3HQVsNpPO57V9b0Is2GHpqO97olXg5t4WMecFs26xYan1dnnlaXTNZfjQbF39dy3zK432tj79zWQkXYyevZDNt9DPb2kbOOaIj3jBeVo23dYpYhtRcoPRCjW1kc551Wdc5NOttvKhGLqvrK91hPV6Nhpy5ZYbWEc35NXRo1v1VDL6NFaOmAdXt4L78PF2y4ALWvrepktn5fdc6IBZG3gDayK8R9VvrqhRu+qsysAaveeU93lOto8pF/nrf2h+qhj5pSOfW6V3g/ciMHhw9A6xPQ755FDTRxu+S+xf7LZOYexAnR6PXa1+Vy5dYeeq7van6+1mKgdPZMk6p9u+I65WeS6wO7V9YnpajRONfjlWo4aTCYOdk272vEV6MLa5WUXYXSqzO7Zu+66q3ESbzWQyvwa/L6O+tq3eVMuvZuuFw9YlRzYZCiTB1BsW4HuB70GtHmF1eRXzA3kdXX5W2288taTDg80iMgkkbZtaidKuv25o4wtuS6wR0JK/aRg/zdgmE2vr2vRm1rSdQWWBlMFp9YEKlh13CEDMU0EqNeojrt0TzVhqE02enmv+gTaicnUv/Pku+/x94B9qREEtACcuaWbDKLBroFTw4TNrYPMagBs/9SOurq2rv8c+3uAa1W+TADthGYmI6OdOMZ3fRD1y9ZkeopcP9g7MuNN7n52ynvBM9AOhUnrjrkUrpi6AN3tnkPqTA14v6PugNWo8pr9dT0jr7zeRadNFuuMzH0Db+bIyWX2yE/LjDrqxLzhhr7Ka8Cg19I1SFfYXXLeNpd0QMzuyo3jTYSRV75R4/W5npRg8zX5w/7px23JdYI9GJBbG2X0fngd7tMBLZii9ALadN4ulUn8koF+AHAgNCaA3lLr71V9AD6PTmsdh1tqem8PwslenT3SUTmHzOWBbcqzAcYLr8trVHSd3gFc2euixnO0ROfs9nCC8O3tsfhMNz8Bk3t5ObDn3ig/+1Se+EY2ioAtRwd8x4gNqyvnWLk2anrrhdde9ep4Aw5ECfQRq6tyvFde1PmQ3VHrpetuNv8odp/dazAlZ2gAmnUb270nPp26Dlm9+eQU4k9OAY09b0DOqw0PtAPy+XW9SvltW6yGwtZcYdc3um2j/jlDrpPZgdxTLsivvw9kxOzaGy9xArh0rScEtz2WVsPS4b0dk4sc1H39Ul+PzQ+DdnTv3wG+yPQEMJPupLfhOuWyT6fOO865Jn2wPbam1+dr/XgFK7aP0uryuar0AIyTLlyCw0Y3PiG4vVwv2LNseeXNshv8m2SOEREvucl1yiMsLoxbGX3BalhbQF3t9QroHrsD1Uav2kKdAPwWX9sOde38EdHHJ/1+BNluXC+C4yUlemyGsZ1jDa0X29jmcq294HqJrdyDzR+J150HbK6OFHnjQ79A7KQLGZ/btmjpmjrhNTVpZ+TqwV4kAPzUMlOQtrXP1WQQMXKwvbV62gXkVK51Gr81Nnr5xZdt6j3xNGf6YXpDzZYZtXmnJ5SGyV2AXypT4UVWG89R2mAJri1H5Vl3IA6B+u7B/EQyDXYiOhDRzxHRT+brDxLRJ4jo00T0o0T0xtm1mRhJ/rVWLz1mLHGKwTVj2n3qdskNAIZLbkRYiHAg6i7BFe0gsNvrKkC8hz7abDPa99910j2hbKmqmq3DvKIaFwCwYUsdbhhS0oX2drDkBlR7XV0XtV5rA1IOvN0OFRa0X7XXay46TdhvT/i49jD7twH4lLr+LgDfw8xfBuC3AXzrJSu2JfFaewCAoPe8h1tEv/xiy+ikd2X3OtOX6e3wkYxYW37owqZPx2dl4EAF7V7rsJ5aO6PqAs3SWBMeetDds1zjZ2vyREl6S20bk95LyhTYiej9AP5TAD+QrwnA1wH4WE7yQwD+5MVq1Rnge95T9x+i9DY6UDeyAO2SmV5fbzz0St2v9jq568ruKXw1zr3RervUWf+YRG1LMBl1JrotVj93zd0Xrwd9n8XZptUSlGdeflHpdDnm3XWtggMt2xebXTnl9MYavd4uTC551+B+pU6u8l4T0X0UaTp7GX7Qxz2ZZfbvBfBXUJv3JQB+h5kf8/VnALwvykhEHyGiTxLRJ4+f//yuyvkltl58T4asqEHvtr+W8GBKN+vlTRypuH45+rr3umtU3z1r7DbcBwyLuZicYkEYx9xWmR3vOXlwA2MGL0VslBfW0zJ8+b05YJrJ9bsAuuyR+n+KbIKdiP44gN9k5p895QbM/FFm/hAzf+jwrnfNZ1S7vlI9trOUvfDBMlafKSvT6jD9dRkAxn7Xtr8455bclbK5RvKaPfKo5co+eXsPNo68ReU37VR2+6yTsnyMcyLt6Bd6TpKBum7s9SyNA6uUIWzO1mbXb7lFKnyOZ7XGXtfb1xrmyjPlBOV1N9cgmCC8dqLbNSMXeCQz77N/LYA/QUR/DMA7AfybAL4PwBcT0V1m9/cD+OzsTYdLs5ubauyg9RtqIrGeePtBCgAKuDG4Dm7yqKq4v096h1k218gPNzS2Pa1A/llnXy+pr/7RB/+xSe/81f0hDkwpozdJmi/NniKnDD7NXDsGOUVAwwTL9zzp4X0y6OWhSl71CxskS3cS5n+XfdCGkmZCPX8qzWuT2Zn5O5n5/cz8pQC+BcA/ZOY/A+CnAHxTTvZhAD/+NFXclp5nurdsZVTs7pJX9ZRLOv/1mXSsnni51vfx36bzL8Xod+IjVb7uj29/9PEicgqL78iyp/ihDevim9dgvUTgNgy/FmdduPzW5O3Xp1lXV5NaVLeTFaczH/856+x/FcBfIqJPI9nwP3hWTaaW3fx1DPL4V2LkN9fauBKvXn4xZarrWZvdawM2XVtvrcr38tm6xm3X8lzLbrukVyWtum+pu90y7Dq7Xj4rgHbeeGunr+a69wZc2K0ba+2h7T3TpgvKrs9SMfNPA/jpfP4rAL7q8lV6HokcdFr0zjnAg3xgMiDZ7bvq4Yo7YMWqSonSlPBLCvGGjbVDLsD+xtkVpe1tctGyWjDXrJx+0y3/xlvDJCubB6l/2CEVAKQfdmBwZCuF2gZiUntC1V3Lq7ODbkP8a51aPDh7n2cW8eCP9syn5be67LbkfzafWnpTL7yk/GvgBAw0kuIfsNtjdbotT/1TMvw5RY9s91ClX1twN6+1Rja6t/m1Z94z8topT4u/h1LbjY+hXOt2Oe2Lg/OeaXKmvG3A7sW/4bYlWy+37E3nt82aMgb12lqC27wvcXFaPqt0Bm0T5sJ7ZYxk+LPHQOst12GniFtrP1teyLq6vg9ORsnUSJFXXPXW0BlPfGHGYP3beuO5xPk34Q6aZUsZwupUrouzDrZusa0evGk3sX9gds3dfKSzqy/jMmrkFktPAH6XU2vEmBHg3VZa/cHJzbfeGkbO10XDCOrXqetU+iDPrryBvDLMvkcVnX0N9NJyGGwGODjbX/bIz8geDWVG9Jdrrlo2AH5SkQ2I1/Z6YgPOllzskV3wEV032Gk/4cx4qXu750p8s+OttaVT3gG4VdTm++/B0ls/bVwXYK6vXtpD32PobrWUXR8657SNrbfLmjRrC+oZYfUijZSvyy31UnVR4V5Cj/xWmgvKdYN9Q17ENsUEeDfyjxhdv9sOqB2Ag910Ly1XpyCM1PGeyE66jXxb/oKr6wsl1wV2ZV+ewkAj1ttKn65XAzL5WAUgL8doVoc6JxxoyfnsDHSO46/37vusvOi75yIbzR8yurnWzrYo/UQ/C5jL12XV9ROI/hJukQ6bjyaRS00g1wX2M2RGfe/JjPrcv28fUr0PWci1fIv+XDnJ/3ANM8GZg3jIsrOMPiu+vGB//FPKJQD/SoH9HLbXn4gGzmfNVKa/3u7OGafc1gRwzsR2zdKw4KXEaAVuB51fkuutrT+VPOOtXimwP5e0H3k8b2LYAmK0/Daqz5a8tBPubBlUP9yUMvN4TgHwOcAftmF/nkvIaw/2vQ6uUzbVPIX06v0qAL23lt6kG4A4XovnKSfbxWVisrmGx/LKg12+KnuuzIIY2O60w0aNLmGnvy5SnFx75GQW7zwX/R490H6uGnK9/7bPKa882CN5O9ivN7mQXNrT/pz2/KxMVultCfaXlC1Wv8kZci7O9myseaLluJeUG9ivVG7ayU0uLTew3+Qmr4ncwH6lsl7qIxI3uUmWG9gvLMcr2Kv+tpVz5z/aMdyXtx803n4two0Vb6Lk0qA995c1nkImq/TKg31lugiXHnfQxpafdovdj/zKd/uzCRPt/yzeKYAk6jN/Lq98a26BvYZc77/tc8prP+rWnbrh7KTw1As3vXrztY84JFDMVHM0J0b5OX0wvwY8FwtPoOgaHstrC/bjoOlH92TWM5l4y6yQuvTu4+uzJa8C4IcyqH7IpjOP52S2P7Evh23Yn+cS8kqB/ZRBLEBbQVh5ORu4puzmepvPV9XlPRBvqfnR5PF28FNw+kTw5QvWZTobnvwXUM4B+CnyjLd6pcA+Ej/YV6ZpAJxjQ6+D7ZMa+sc82ejrc+9d63DCiLmGRYMzB3r4vfZS9oVR5Msrv40tx8vezssl5vLrAntuUXqz8HQWPzX9yotRqVcsFZTqHACOCixHZhzzVkwP/lkbP0o3MjVm5BrwvNX8aZXWsHOUfqKfyw8DLskZR+r6CaQ4F3XdQl/DeOK6lNJ2XWDfKed8Crwta74rtgC8pcyvg25f1eSi67U6zcCnf0m5OgvCgGt2XWrZdu4tG9oErrAvlFw32Hk/O83Ys/o6UqM9GDW4bV7H4uraMP/W5JDrMKPS6/v7ds301Us778Lbj7zz6pv2Jk1hZWVjL4iBLky+V4jAunxfbqmXqosK99K0scPyTyXXDXYlewbpjDp/KYfW7I45YWoBvpgJM3JJpyKg3tK8ZhoCYtCcWWVqgLu01xdQ67ce2XTXX/ARvSzYJ2lbA13s+bXY931HXPK+iyMspdNqb1GVi+pcyzpiwZGXwrbJnldl6ftgxZobcwQXhtflybWXaNltayKacT6y6p90RH+EMS5j4HeYq9yWBmmlKh2W72kENd5pOd6Bps9lPV6ATpQmgZH63yz5KW2iV79OXadlVkOYlFeG2ffKXuY+x5EW3n+QZ6SuH3eAPrwv00V9GdNigNdG8wTQZwHRtZsbdVo79c6gSF3eJRDzQgrV2wbs6cOkHYZ3vWtYNGJbE2/ZvaQB4YgE6iM4s/vqyiGjtmtN4Qh9Tk1d9P4AKSti9LUTruUp7fRzimZljw/LlXMNWL1ltcfePkzK0Gq6nwS0jd5bc/f30BoMqcmoXOt2eQ0hOB/5MM6Qtw3Y98qWk04DFXBOusHUnMB/Wj3qvZbNNKPwk+WS5e0oqmtdEDW2b+ikA/oj2XjYayIiqhtqvCfe50OgTVAn3MVvho3CLyzXA/YJ1bP9Yc22l1YmE14YkhesILNrzXq2l7LO3oANltFruBXtrLMe/L5334etRROIl9pqXeO2a3lpz3soWwOe0GHTmTLIML2224tjzjnkjMOOFnNdPPGO6cNu3TATQk/8TJsuKNcD9jOkB/oeAxsnXQ9QWIrqLensphpRrxkrK6ecmpFWVO3gCEplileeqUwso6W3o5usLi6nTAgXYO3NtBt2v1aVY+ddEJgBSURmOa710Ed5+/VhMxnUuu9yNs7ImY//RcA+/LxaJ67+tHZibklWfr5r0IOewQFkkDm7uLNxxbN09cr7+3Auz+5790webo4ZOOYiW16L7g/pn7pa0SQv6c6SU7I723YqPTlVWTFoV6WPbO6tzTUUbKpxeTkqb2CCmHZE52E9NuLPkCmwE9EXE9HHiOgXiehTRPQ1RPRuIvoHRPTL+fjmRWt2wlqwqPCrA6fEVTZuweO94Mei0suEoLfSkpogqoOuXOe668lDNIPi7FOTjVbhtQNvtGtudaDeEj9JjoQurf73wE0V+Boc3WU2AzoJpwJS1t7yYIIgSSvquTjrllqGLs+UE004W9pF09Yg0WxXX+CRzDL79wH4u8z8+wH8QQCfAvAdAD7OzF8O4OP5+qJS1og34nsyy/bRWroWPRHM2uzRen50HanwPXt8dm29DfcBw2IuJqfMGVU1niiz43HniNknNsqQL89/tCKsp52kjFNxsv3stIShV/4M0G/2ABH9XgD/EYAfBABmfouZfwfANwL4oZzshwD8ydOr4aQ7aOPwnmqr4+srrhaEfmONDj8qJ5mwtLB9ZeO6/GavEziNZmBMgFqWBnx1KPY0kcgEiCeCrcnw3N878MXPLB1xAVAQGZQnLO7VYl2O2eASrbV78OddcqSv5XxZ3CShGT+4X6mTq7zSPJrlNQrs+b2gntEmnMww+wcB/BaAv0FEP0dEP0BE7wLwHmb+XE7z6wDeE9aJ6CNE9Eki+uTx85/fV7uBtDvE4gEfObX6H4mI33fvbWtNarlOF0vjjZ+sZ8o70E5ADaDLLwl3cz2B7B20alLYs0TVdMXSiYtU+Y43fsj4Eah9HOwkNwTpBVTxc2QG7HcA/hCA72fmrwTweTiVnZm7Gy6Z+aPM/CFm/tDhXe8a32lq+Y2GjFQ2mYAMS5Y4tclFb0ixanSOU8wvrLyWI4Ue+SNbVteagHj4pdyy3Kf9Ci6u1Ae2Xb0VCOkj3V/PIcPbREzm8yoWT3moOugWtEzp00XLZAvZ5TMB9kLVIw/JuxhW99tti3NuqXXU9fUszepvpI5fUk3fkhmwfwbAZ5j5E/n6Y0jg/w0iei8A5ONvPk0VswwG94yM3hbTqvzIZo9sd9lEo9V4ncbb5L131PtLgNttnOmHocpu9MyNcjbv9ITSqPledbbr7Dq8iHuLLVx20yq8m0BCFV6vEEwgymgC6vjU8/Jm1Zj51wH8GhH9vhz09QB+AcBPAPhwDvswgB9/igoOX+CAXWpiWPu1MrcCs8Q5G14zfmFkXspOOlkjN+xeGFuDnmoe5YHX227FNq+MnzUEKG0DUTuoifds7l8aMnFQfVlWO9zxktJR0asd3jKfYUSoeP3CyaLs4GynW5uezB8rDzwVm10ztT1qbaAyOmz5pS1qKVEzfqkHTNopE8WDv7nmJu2M3E2m+y8A/DARvQHgVwD8OaTm/00i+lYA/xzAN8/fdkKY4EegZidmwmjBfmXCgey1/H6agL5cZzV+AeOejmlyoGNOq5iZsjpPhAUJ2PfRvXsagpps2l16WvNQGsQJ031PzReZVu1n0hHjYrpnw9zuEUcqL7v06cGAidJPKhPVgeN2yxU1npSzrsS3bbLONcX+Jd6C2+TrSS/uCVh+CuzM/PMAPhREff3Jd85gJiYkkz8/2Y2xI6+4ErHZWHMgATiXiUAYfyXNkAsOBciJweXXPWWde6E1sTItAGfw0ZoBnGzqA6e19cTOnNfaMWT1yF7XL8hopj5q/wKchuJYXjSaCMQn2+xnMD2rMV/OB6wGiWeVzjAiQe8QSKCm9NgIAHHC5kLAShX0bBm+eOsz03dZ3tj93l4nU6+SrsPMVUMhy+4qbmpiuAD4r3O7bDDQtpbd/Jr8+Os0GYxDO96+257yRTY7VRWe2yU8Uf2jr93UycDniVk+qqeXrnMuyndpI5EmbqNVUjfoW2eVDSjM6XeneVbWb8TBxeslNw16fc9IhQ89+5FjjrptHsrWZHgBuU6wT8jMGrG3a70NL2F1XX1RtvyC2fV2a7dXT7xhd6736K2v2w9t1MlI2+mp7dUjL6ye0uW+QWy7g8crGReXE1hKPtLY2OyOPY39G73uKiDVbG3+8t740fq6W9orH5Bc7ERi1HrAMrZn72aCaztjNAefMz9fP9jZD1ZqnFFp8FcQRCqtdtKl6wpqu5Glbn7xS3B6Y4xfgustuaV72pdfpD6a1euSW62LPS7muummbnivXy9II5OsFLKdHvwUp7cKSv1iqwYZm3IcsHtLcAD012qKM89PGnrJrTB+C+qyROi0j+5GoqB9jeZzQbkusBsHHKYG5Iio/P5xv94eLccltbyGHzVQnVdde+X1yy/Nnniuk4VMMnonndU84vV1X0d97dt8VqdNytZgbNgtBG6QkfwflXADJpWeHbCNdz5S5YG6H172x3eW3MKXX1QZrRpf26Y1lK5sgXumjEmZ9ca/uHi/XWIyVufZ44464A9IwJAjeMHKK0Ao3vgaTnjAAQszFjBWXvCAA+6hPPGSlha8xcA9PWKBXUJ7S16NBeGB76rNLlqDUuFlYjmqScBvnpF2+c00us1as5E48+39QNMxHftcqj25I6wDT56xdshxxhojH5OvVDnpxDmXCYIIIC4OOqb6fTleCHRIEymRjSvsn4Gv7XWtwvOhsrrxOyjVnn07VVo2551nEgQ3k8EJE8DLMns0yAbTmPl4orruibfVm/gMwuKVV2KdcYuyu/U76nZ7rX533a6pt154ifP2er1/zN7aDxHuhx/0x/TGmi3pJXUDssvcaG1wn2eTFQ2LtoxrwiNmFru9nLcMHu2aK+FbS269Y6cteyTql5nHd53M7tbTzbIL22eWXmlFWXJbc/aVM6MzYRGAkGbLBcCqjgn0D3zAgda6Vs4H3PMjQHnrLFemf4OPONKKB15wACftgA+F0d/iAx74oCaLqgU88MEAV7zwMvkYlncTgga5cdYZZnfsHvRt/3XCHY8qxmwVxWSyZm7yZNaGC9N/kl4YvzC/OOGYE2vnuvMK0JKeKw6pH2hdgONa7XU+pHX4wwE4KDX+sCTwHshu2JEwVadq41fAW3+C8jHAaQK6jaqf2F0PZeckcV02+w7xe+Rn15gjwIiYffCagbOaLQ624nCD3fsu1xJXyuV4z3v7Dn3rhQcQ2+08/7v00Xvsz+qVj6SnxobaQN0PH3rle2VEjrag7CZevUij1e90P+sgjORU5n1quQ5mjzbSMIHBNZgJTLIJByBS9nrZCYfC4gslpqXM6CSqLxY8rsByYDyuBxyIcQfgkQ+4w7Hax5TYFwCWbOc/8B2AR7yVww/gxOhYsGJNbM3C6Hc45vMVS4kTFT9diyZwMCsD/iUdvcLgVxo0q9dz1Y07TaVTPlzRsDtBGeAqjNq03mavjJ6fq2gFyM8f2VEHAphBKyE/jiRi0x8orYUSJZYnTqy9Lul+Bwb4APHO82FRH7NYnApPhsWLY07atOgjqTaoP9cH1Zxx9rg+R2Srnz5Lv8LMrs7RqraR9DzVWrUv6+7NZhZZuvMvtpCz48kwv0+rvyUXvRSjd83p++qwqM1e2E0Kkmno53gCtm8Gq8jsnLKRrsei7Y84VAa3y3D2DTedz6jhem++qlsBOrXxflkwyr+nrefKdTC7CGsqkDAkfmcuWlbd8mzTJ5udi61OAJbMeAtk40t6Qtorb45YsDAX+x1IzL6Ci/19z0esWBuGfwuZ0UGF3dPfofyJifCwVmZ/5AOOTHjMKvyjZna0rK6ZXjzxotaH5kzp2yCC6WIg37LfOeOrKHLCdFAatmPE4oVXx+QcY4AJtHIFKwAckF5rIAYflhR/SBoLYwEduA4gWXMXdl+WBPJDZvLDUrQMlkmieO21nU4V8GRt78ZeB2oe3V7XT83j6k2aGIQ7eXlmb4xJ9NXMiK3Q2qRa1fW7zzSAypq3OVaHGYCu7Q7AbIWNdsxJnnTfuqnHbuyxDG73vy9N/SWunrcA39omezF7vf+YwgE8ShOptvGGGXfvCBRGnabQFm/2wsuOOe2Zl/wLmrrJvbxjrtTB//Xa3Okf056B7HmU18XsWooBFzfH2qZ2vT2tt3JRdQ27q0mgHjPTZwfaAwCsSOvsy7Go4dZ2z9dQzJ6Z+4HvQlv9Yc0sv1Yv/apZPh8jVpe6rqWNdulNWL0uS7agZs3ie21z4t15tD1uXnIxb6oFL7kADVgSs2c/DmVt78DAkYBFOX0YeZuss92XJXnfFxkrDMpefByWur4uR2H3Rf0d6iSQwmCAXicppf4jAjmFE8C0ybPz0YlcL9hFRFXXTjwm46goTCZvvKE65w7qNVZx1KXrvOSWR5IcH3hJG2mIEyuvwLJwyfMA4J6OOJTNM4wj1XfeRY1PS293BujyVl303npvM42IUeVVXGSbNy/DmInxvEdBGrgFwMmVOj0GNYBVWFHn3WQAccwRoB11ZjLIR5kIaOGyyYYy+Hkl4JDHgFPjWYCe1Xi/D14DubHVFdM3k5SLC7WT3vmgQ/fO1cA1gT3yyPskOQ1BM1cdHdULn7zyzGlgrBn0wu4wO+es7b7ygjWnXZkAWor9fo9HIHvSAWDJ36W55wUPSGwuO+cS0O2aunjgxUwQW92ur7dr63oC8ECvfRO8NzAzIi7plFMAdvNxX0kTlqa68lIAEWgGxnanzOqcXnlOjAzQMa/FH1I+s+6+JlDTgdOr7JV1BQAAHyNJREFU1QJyWVcXT/ySJobCwuU12NhWN5OBa1/I3OrI0XnUT5OPtCfXA3Yt7I4+Wh5uuQaACmzijqMOSO+2r0v6cAVV4DyuB2A5pu2vTFiyCn6PIx7WpM4/rHdYacU9H/EA4IA7HIjxwHc40No45NY8MYj6LktuD3zA45qdcvlol9uW4qTbcsxFH9ps1XffrxktRs+8oChgF8ZldQ6nrvu8ctSgzs/L5+UlOekK2zIScDmfE6dttQcCYUnbbbGmxEtajoOo58uS2by+ZCPqu6jtsVOuqvQS12gCjrk9cLdAfgm5PrB7FREoaijJiMnHNIjFBmuLSkyOMgksLs4ciRSrK3YH4UjZQ09UmD2p+un8gBWHrL4LqOtbcUtR31t7XL3w4uJSmzzbt09de+H1jjk5d26N8ch5gqW3Ij1mV/GiqJmJwa/TA8V2L2nzPnj5Mo2262varD3oPfOLtdGZAD4s1dmmgKq1jchWF2GVr1HNZZIY9RE6E8Qg/axcBdgpq9uRmO2xWpUzafKXa/JEoAf8msuX9I/rgrtlLbb7I+eXX4jxmG10ZI2vzA75/MArFjAOnL5QIw66BSsWXvGF9R5vKWY/gvCF9d6o8LLU9rAe4qU2XvC4LtDqu7bVK8NbMBdwB975XSKMOChjaHE5Zm7te6+KC1vLFlhbBuf9MFrV1+AuG2z0jThvtFkZfEegVYJlLzzXuedA4LsM+HxEZvL1QOr12MzYB2F8x9yG2VtWF00BKrz50/33BPKyYJ+w07tZmSBGvPbK975N55fmZN1dhwGpPsccL+r8kRgLc94Tv5pXXFesWGkp++HLch6sU84v9QH1IxW1Du2PN9rlOavGRx+ZrA1WNPFErG66OtvMzc65KO2ecuUaaCZ6YwroP1EA5dNVCzLAE3hTfHbcye44xdIsm2v0K6w9QDoGNkD2+Tpt3S0nYuYqmL0rmWEYXGd3zg8tArQCRXrVlRNo1wVYMgtztd0XTky/UFIB7pYjHnnBwlTYfc1sIN+xW4iBBbjHEV/IqjvWqtJ/ge/xwAf87npfNs9oO/2BFzyuyWFXj2kyeJS1+XUp4cLkRwVwbatz+Fe7z/dN+cK//tt6BiOhbSCXeHIAlfxAUbuLo05Yfa1pkNm/2OYSwVw32oiqIHXPDjzcyTuwC5gYpYgDYb1Lm2f4LnvhRaUX211eaz2g2u7Frpe6Uqv2O/bXfyUMrQbgw+qRz2L+lwd7xO6iRm5RQZ4IioOOuZCLcdSp8utEQNnmq4xePfDVK7/AvvMO1O2vS3L744BkBvgffrDvqtu32ZpPTqnNNFpGW2KHXXOOKn8hmWZzz4TWNVPx6ycElV975/UEod95L3ll0nGbb4yaHex/H77B1muPD0cL5JPkhHwvBvZmj0YZFJ0RUp4+WnWO0wgxR2e7C7uXMZXjRJ1/5CUty62VvRNjC6OvwHqfjqhp1rVqAV/gu8Lov7ve4Yh0XJnyMXnZZfPMY7bPH7M9L0wuNvxxXQyrp2vF6rnt1l6HoYdiw0vczmfUj9TPzIYX9nb2emyr13zp2gK2lKnSlGvD8MqTl9UIWtNETQulHRWS6ZhNjrJZZklsLox+J175zODaTpfXXmWv/FLj6qRQ+0G0ADMpRJODPz7BXP0yYN9rq3ugi3nI2fG2QR/yqWm97u7V+WIXY8FC9e03YMEjMxYmHA7cZfjDwoXR69JbVdXLSzaG5S27a++7BrSkAVBV9XLe7+JuX55gn29JYeDZshX4o/poRteqv1bn7SRARc1lUNlVR8yG4ctHJ8oaO5mvz2hG98ttVQNQbdBbZFW9dZhvdzmSnRjCtBcE/cur8T3RM7ZqcFlj1+ztHHVyPCJ9mkrCxDMvr79KD4vNvipGX2gFFmAB1+vjXflhifRtecLdsuKoNt58Yb03TP6Q1frfXQ9m/dxOBJ2XXoDC8CNbXdpXd8vVsK53XUCvwk/+XfYAsEyVxcvjkrRAnfAde5clMwVmrQ0IpllmiTIbQr0gg5owF7IiAR4rp4FBC3DgaqPLWjrB2ugBowtja8Bqtd4zvAn3eVyfdfuXuD8hTMp1gN0zfWDsJcxXhjdqnUmXbHcgTQreWSdfs5F8EcM/YsFdzgPIxyMOmdmRv0yTS1BLdckJt5jdcZ7ZPdDFOac3zei/6nREw/a2zY7lo5ExAvMpbK/A7MNNecF18Igt+KMJgmp4ulaTQlkuVZtsSIggDxvx7RCwPObbLIT1jqpqnkEucRXY1IC6fsiitsmr681PXUV96Ce9EaP3ypmQ6wD7SJQpVq7LeVLL0+uLbNR7KNtdO+uI5aebUBheO+yQbXtZcxeGB1CYfQVhAeO4EB7pgDs+4nfpLtvhFuQPaxo5wugJ3Jbhj8pGB+xGmcbjLk1na6tDh6u+a7bNhiy/43kELG6K8iBW6b2q36jqCuDlE1SwaeTZV9KmYuNrwJuBw8B6h+wHSDc5lklB29tkbezCzi2j13fgLbNb5iYMwTwCtWtvGN+PCuVqwC6AtQwPp8JD2eo+bd1RJ2mqz8Y565hwWFbD8FiT9/1uWct5UuMJZUFeqfUACuh/F1W9F3Xcg7wwut4fvy7wO+TErpeykmOODPClHf4tNwjQPcuXeNe3kcyMoAjwWdUsEwnVdGYCEG1AylDXrIoO1fnF5ikOupXyEptug1YRUACb/atpcuAKagDWkSbg1+AtO+e0Xa/bD5O/AbRPo/pOriOAd7WCnXI1YG9kh2qfniXnMIJsrRW1rVHnqd1KC8AwvFmDzyB/1J56AOsx2f8LrWWgyRKarJk/rnJ0H5hUQI8YXdqylnI9q7tNNeoaKl2r87s+7fX9OdKbDDzj63t1rs1SmwCdanGU05qJQZe1UJ4ZJYPMHLUy0ccn4ACtJwCpnwFhw/D52TgQ90Bu+gCdR7MnbSDXC3aRrJJr1R3Ir1QKwCWcBfCAHj1anceaNlUc8s5YrEspp+6TT+vmC/KbUVnu8u6rldMPQy45XXUDopQjZT1mA7DH5tpW94wudvpxXZT3XS2nlbB6XVjdqPawI+JcMMPNxRrIit0FlKYuOiwAbgNkoAEw5f0xZY4VhmfKnKBuuKYCmHPVig1f+6MCVtngcCD3E4JzwGmGL2nda7A94DeAdxPIpeSFt8s6IAP2KftzbfDlsKISSnmF4Wu4ft9dpHycEigMT1CbbiQhoUwIwvSPOKTNNgyz7q43wPhfcxGG7wHdM7ocW7bW8WV+q11kEgNdkEeAP3MS8Oq6M5sN8HXaUM03afMS2tZEUY5U1fo8EZTqEIXf4fAMbY/UhDfpIeFkASt9QcE57HkX2EYL6aSZkOtgdq+yA93RULzy+glyctSBU8y6Zm2N2xukz5Mlm/3I6Q1HYVT5GeiVk3rOxIXlwcAdrSl/YXRgkZcrlOj18+JNH4DcLLc5RtflVDtdb5ah0kLN6maS6J2r7jlp2c1Pyv5xCXDdJGJAqkHjiixAXTPgV7X8pBge4V9OuGptT9g9bocGMICisrfgR/0Apdtc4+323rG02d1zZlJosCIN25DrAPuJYt5rzyNMh3l1Hqi/6y7pZJ+FZnTN0prly/54ThNE8QUYjcGys//e3CzQC3sHbdZHf24TK0fdTtae3hwzVVitQm+ZzrN2Y99zy/CREmiOOU8qgks6ydQwfAG9AnkOj8DaMPogrSnPnbf312GXexDXA/bM2Kx2yhU73Dx8Eou9gLtO2/nAsmjTDok1q+TC8MLglB8YletUwpHrp60EVFRYvT4Ir8YDjtk126MFOQAcVznaffLr6jbKyFFYHnKOyuqRyl5Gpzs/UyIlzKjmWhy4u2y+IL2xRoAsm3iGl998S5pJy/J6cinPTtWpmUg9s2vQSnjI1n1G9/Z8r9wG/NHEMEgzI9cD9pFEar4OH5gBlunre+8CZh3u7XjP8iL6NXcRnyYCuVRZAz3FtfnYXZu4SZWbQ8BPZT1NLKU6FMM+q5l6NFSNhuHRuV10a33dvR86IBwBXd/AAz0ocySR5jCUHYCfAjsR/UUA/xlSX/0jAH8OwHsB/AiALwHwswD+LDO/NX/rjnjgapZXj65+4lAxv1d98yaKdaXyfcFkzzuGB9JmGqBhedl8oyeHBvyBGq+rL+F6AtDLaqzALyYGkF+yUfFmbX2L1ZtRpiozGkUjNESerQnRKnqjBaAFZ8j4muFVO+sHLFAY3djlvUnOmwmuviU8YmAP8h6jb4WhjY/6ztRRHmubdFNa75ITInofgL8A4EPM/AeQ1pm+BcB3AfgeZv4yAL8N4FtPuP9FpFFxp9NXwGiQetu5bm5Rb6GhaoxHpvLnw0Nb3ZXvt8H6NfQtoJtGl/ggrumIdCCv9u+RHnMJommQ1oWPQKLjbVqy5eZ8eu+6qNJM6m9Rfy4chPKt+Aiopi4boI7a3QPwsI+i/tops2r8HYB/g4geAHwRgM8B+DoAfzrH/xCA/xrA959WjSw9tXyC3WVTRUpqvfMSyozyI57C8CmcsCxrcrpxtuOZiu0OpuroyYNYGH8kfgJJYXayiTfLSB2zttEDOtQE1xsdkb0exUdpeyJFsRt3+fEIexcWz3MJ+eerFQUyh3YoEMBqJ6ModCDH8jlTUUJU+7Z8XabZATCjX3Ep3vgN9jbH6J5hejthnqBUGdkEOzN/loj+OoB/AeD/A/D3kdT232Hm/DoBPgPgfVF+IvoIgI8AwOHNN1XBmJuhysjZSK8HEGLA2+U4PaxQ1HoQJ9AjjynO6jyjAF82UR1V75sfmlSiVXV91DZ8d4MMYqCXftFtL4UpVt8C+qXEgaonDfh1ncidwwGe43CVPIGxRNoxYywQX1c3rjzoQpBHgB4APWL1Btz6/KLLIUk2wU5EbwL4RgAfBPA7AP4WgG+YvQEzfxTARwHgHR/4QNsCPf1SUim5B27/lDW7B8tuPYa3hfnCpWi7/KblKNU1rl1b2XDrKvoglzpbFb7P6BJv7PRIejbrjAR5CmB7ErG7Lk89P12WpCvAzmVtKXv+vMZTHk9cym9mh6jupq0dkEvdVHhzrfJ1mV6dc3QPH3+mzKjxfwTArzLzbwEAEf0YgK8F8MVEdJfZ/f0APrv35pv+Hq++y7kHmdLZyh5p1Lwt4EskdM/Lrrvyso3ejguYjSei6m+JBne6RwtwuQ5BntvobfRm84wJzyiJgK5Z/pLk4cEkqNV9RK7HHWIN4HWVg+KT+u4i87nRAnR7ZwHTYeUImCHTBxOAHyqR2u9lyPwnyKaDDkl9/2oi+iIiIgBfD+AXAPwUgG/KaT4M4MdnbjijnUzt5lKD1S8xeSCBlZc7//lPObWqdAWgduTJX/TuefT2WsljwBwD3del1L3REmrbS1+U8GhUBedZinPuAsAPHxtxdzBHIGjCPSCCuHJvFd+kOeGP3X3NfdCmCYHu+6XX5lEeFQ/kR3UC6Gds9k8Q0ccA/J8AHgH8HJJa/r8C+BEi+m9z2A/uv72/GbZ0sywyfaO03P7amHXYpRSV4XMJCViEvGVTzIDK6vXtuZxHfeCfJm0qb3/rsAj05VpPDsCA0SWt6ycP/GByaCvr8kwIA/GnpaiSuw4reVQBRdVXioAuUg+JEke1IGKVV4WZpuyZzKL5MWJyaedg8gmB7vP6yVA75kaPYyfgp7zxzPzXAPw1F/wrAL5q3+1mboa4EZH6Lqp9FB+Vl1X6Zg4xUyU7wAvQuQCqfiBjojnsr/tA15qIrr4pqwG1G5m+Cy6trm9I9zF0wkP1X9LDxUlZUKq6nixg05Rb7FHhEcx3EdAD0Jv8wf1GSlfN13lYJzC5l+veQddM7Wo0BNN93TWb0nEeBQT5Rc/M8DqbYvHq5Mtx6qjBPcvqpRkBu+twD3LjiDOTwIDRPYt74Dcja9JcEvHsHdJte865/9NEG2drrh3g/bwOFWZYXDO9KrjbzNEkELG7Co8YP5wEXFkti7d18JPF6DENJwgn1wP2nbNvMVycOh+/Kee89L5zJT7nsZ+3KoW3r8xmsT8yGTdiFuT1bkADYH0e3Sdi8WgczKj0p4gH/Gz5g4mjPEZqGd0wu7uGTgtXvr9v53oW5D5tN9+A/XugbcyAJsW8XAfYGxUd1cbO1w27R2wPAMpSJzVqOPdU2fYq9jlQGb2EV6YHKgj9JNFbW++HuTa7dB7kWm3fZHQNdGH1KE0kLpy4DTPJKRyXObMCpb4O2F1u7dfQIZcK8BIWMrhjdmlDY7PPkkkP9BPgD210id9KI3HR/S4gV/3d+PC7dLoMBOX0GN6pdqL2E9U0ZewIuGtFUjYxEzoMH0nz7rRR6WMm9/u6PdDbm6hCJlXzRoU/gzKmcaQR2GFvKbCx2X26gNEj1Z1642SrTQGw9fkQ5J08TbxJ42fcUdqgvAl5cWYPdzaFAFbhmlrYRJg0luFTvLjnzPvNKo0wPQDD9gCMKbBXmuUzczEBcmnTiK17LO9uTFHeU8UrVuq2Baya7SmvlLgZwjO8ymrqqkEW2uquTg27b7VlEDZU63vhEaP7MBlXDtT+erOuG/LiYO/KDF1EacwDzYytGVyr9QhAX9KhsH0t+3S9qhlnkdOuB/KcflN1D/L0KxCEn9m+3hJcw+DuXN/eM7WZBEbpXXTTkln1I1KcZkAexc0AfXCPS8t1gt3YXgPbXdTzIo7hFetHLJ/+d6B399B2umb9/W1yzG5AJmF9wE4zuhwjoF+CybX0wB3dS6ctLxfFc3UEeF20V+39raPba1s+ku481wPkKN4dI5u/hvE4XtfRpdkr1wP2cKpHJmdlu/cAH44afawsD/RBn+LYFOPr6R11m03zhfhmngLyUfiAoY0KH0wCm3PZ5h5nSbcFXAX4LXC7alIUiJYde+v9szJMewrIm3Dd8W25Oi56LHsVsRf+uiz2zVQhqCcZXgEegFPtpfCUTm+kiRjqFJu9C3AfF6r3O4Deu2+gSVxMIoaXW3VAl/L1AS9OtsgBpxWEriaBPhgi82FatlTvnUAfmghK5b+EXAWzV0dLfqruoXdZu1w7htfg7uqZgLbISY8kv6QW6IczG2s23zHX9UekAQzAvDUBBHHDTTQ7aaIBItRjiUDr8+dj9ZnkCbabLqiDvogmlb0quxeXbmhXD1T2TaCPtISJes3KVYC9kQDgzauvewDvw+HiALusphx0pT6SR263V4fa0MOiNXiTr8fmUdy59TpFBNi4EBn1WN7HAXWycY9te4Zw9+tIz+Puz88C+kynndmx1wl2EQfcKcCXjFo2dD2DLWsEGvu8KXaAlAHwRmvv5j4jJjfpgntxjW+W2kZq/6Vkr0ruGT6YNbpM7hS47jCQtHvasBE2AriN5yDMHrvhw7Rs8wzk5cB+LgWM1PxuWjVCPDOUc0sPGpiNY24Hk4Z2fg/kzXkHzFtxsyI+iqcEP2LVvxFvxwPtc1ZM3rC4LrdnE/Rkh+q8y3s/sM+ngH4heXlmL6yNareH6rikS71wGsPDJlT2eWwWuKqagTT5GGbtdh/WdeBNlttj9RnpMX/pawdIz+L5NAKbyRPcktQzsSsknar6icOr8r7+J8hQjXfXFtADNlfnU3b6BeTlwT6SDuCHaUxcwOQNE7g0Jk6VdQarN/XdCtsC+la5Huhb97+keMAHMvLQW7bm0hdDFg+el276Xo1lhrWjsFOAPrrPpR/VVYG9YfdIvP2uwkLXrVbLe73nWVwzvg7zZe+R0b1H6bbU+SZNOlA0YUSM7VX4oJ5TYBmq5mieUY/hfRXsngebuMnaqQP7Z9ur45ZsqfIRwH2+UM1v4zlI32gCO+WqwD6UwMbu765D+/C2POwR44u4N/LOkunluIk8Op1KHwJ9T112yMS8nCuFPuBhw/tpVCDaR1ry+kpgED+S3qMagLyJ3wL6qXUL7rsl1wH2kQruB0AA+JQ8SAv0QQ+M2d7IBY2pLsNHYftADmwweuc+4Zg5Z1JTz6gLeInXgO1M1i1eHbgGz+ecJ9dX59vO2b08N0oT3rNTlx1yHWDvSUQbnUHRsDwwBr2UL+Lz6jxPYefuBXeUby+bz2oLMxJtm+30Vwh4d94FfVBuu57e190voLx0GXSP465JvwX0Wa1ikNbL1YG9u/W6N/M7wAPoq/ZAv2OagTvL+mfI7EgcqPjD99Jn/QRb6Tekq8prMGMAeHXvKdDnsKgZwwngDDnVadfk7Z1j0P0XUiyvZ2+8Aa3qoNHaOBAOnFC192lh87R1u6Dqvlcm1OrNj0/MgB6Xw8SU/a2CdrF3ZId3COFJH9sOwM+q9YB7PIN8PW//rFwds4fSA7y/HoFexyPIo8NeSi4Ncn/t8tLkhNCV0RtwHcDLrQzLA5ugN/X1z9+X5WVv22bGwayavVHWsGo9oJ8o1wV2x+6AY3iJ6AyMHoA9QBrG3yOndvrM/TppptbLN68HQN8jXjvqrYX7tB7ELrg7ges8kdp+Sp1n0m/IOWo9oursmSROfHgvD/aeSjabF+iDvhPWML5P68vopTlXNsqa3hRzLtC3rnfIEPDBdehKifJ06ja9eeYCzDhk1z0q/laakc1/hrw82L00qngO9gxvIm2e0C4PBgKNRgAHk8EFZfonrmbDw7D2Hk8JdH3bcO17MBk3yTs2+fCR7WXwvbL1yHqq/WzaKdvf23UbdVJyfWDvyMg8LBLSBIYOnXqD6J7xDfdMArt+iMHXaTbuVKCfKgNVXt++uV/PQdpRsJoWDBg+TBMVOiN7HtmYL+bzzAD9TLkOsPc8rrDhQ5Y3CVxZF57xdwN4j2zVswv4fp0uvmmmd5MA8M39N0wsHTfE895H0NP6onrtlM2u3GPfo/MoLzBTXwfYgV22e38tPhpdOM0Wf0I8d+95aroO0LvjY2/4rHQezMw6fBjXqdNZj+oStvu599kyRWZlZ1uuB+zAmOFh4xo8U+/CZZh5Uk9t+2nZc5+JkTAkgBPiuuX1+qhRv8LLeBktqs+E6fZcj8rILNDO8ewD/QdwwqR1XWAHxgw/iDPvqoxYv5fJ3+ca5Fxwl3LOjO/efJC3A/pyy44SZso2GSbTvbRM1mfz0T6Bc/j6wA5sA17LDgwDExrAlcquZ38p82BGtrSgjVm4uyfnEmbV2WbJmfmxVy2fqPAZdXoRsO/yrAPjBu6c8S/2IYMz5WIT9ynlXNw5N1nu4IWVyeDN4myC7TLOkbPHxp5BcIG2vBizTwFe5JRZ/kID4QmX2rflJSeEU2QW9CZPz5TafkCvhGJ27gC6YBtfVI3fBXgts/13ikbwqsgT1/+sMXqJfn/RWfaZ5ZkmrRe32U8G/Iw8lbp6irwiY/fJMXaqNveqyhVpHy8OduAVmsRflXq+HeSKQPJ2keWlK3CTm9zkeYT4pF8pPPFmRL8F4PMA/uWz3fQ8+bfw6tQVeLXq+yrVFXh16vvvMvO/HUU8K9gBgIg+ycwfetabniivUl2BV6u+r1JdgVevvpHc1Pib3OQ1kRvYb3KT10ReAuwffYF7niqvUl2BV6u+r1JdgVevvo08u81+k5vc5GXkpsbf5CavidzAfpObvCbybGAnom8gol8iok8T0Xc8131nhYg+QEQ/RUS/QET/hIi+LYe/m4j+ARH9cj6++dJ1FSGiAxH9HBH9ZL7+IBF9IvfxjxLRGy9dRxEi+mIi+hgR/SIRfYqIvuZa+5aI/mIeA/+YiP5nInrnNfftrDwL2InoAOC/B/CfAPgKAH+KiL7iOe69Qx4B/GVm/goAXw3gz+c6fgeAjzPzlwP4eL6+Fvk2AJ9S198F4HuY+csA/DaAb32RWsXyfQD+LjP/fgB/EKneV9e3RPQ+AH8BwIeY+Q8AOAD4Flx3384JMz/5H4CvAfD31PV3AvjO57j3GXX+cQB/FMAvAXhvDnsvgF966brlurwfCSBfB+AnkXaT/0sAd1Gfv3Bdfy+AX0V2CKvwq+tbAO8D8GsA3o307shPAviPr7Vv9/w9lxovHSjymRx2lUJEXwrgKwF8AsB7mPlzOerXAbznharl5XsB/BUAa77+EgC/w8yP+fqa+viDAH4LwN/IZscPENG7cIV9y8yfBfDXAfwLAJ8D8P8A+Flcb99Oy81B54SIfg+Avw3g25n5X+s4TtP6i69VEtEfB/CbzPyzL12XSbkD8IcAfD8zfyXS+xFGZb+ivn0TwDciTVD/DoB3AfiGF63UheS5wP5ZAB9Q1+/PYVclRHSPBPQfZuYfy8G/QUTvzfHvBfCbL1U/JV8L4E8Q0T8D8CNIqvz3AfhiIpLXlq+pjz8D4DPM/Il8/TEk8F9j3/4RAL/KzL/FzA8Afgypv6+1b6flucD+MwC+PHs030ByePzEM917SoiIAPwggE8x83erqJ8A8OF8/mEkW/5FhZm/k5nfz8xfitSX/5CZ/wyAnwLwTTnZVdQVAJj51wH8GhH9vhz09QB+AVfYt0jq+1cT0RflMSF1vcq+3SXP6Pj4YwD+KYD/G8B/9dLOiqB+/yGSGvl/Afj5/PfHkGzhjwP4ZQD/G4B3v3RdXb3/MICfzOf/HoD/A8CnAfwtAO946fqpev77AD6Z+/d/AfDmtfYtgP8GwC8C+McA/icA77jmvp39u22XvclNXhO5OehucpPXRG5gv8lNXhO5gf0mN3lN5Ab2m9zkNZEb2G9yk9dEbmC/yU1eE7mB/SY3eU3k/wc9Q6ssS2R7TAAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGgCAYAAADsNrNZAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHbUlEQVR4nO2df4xc1XXHz8zsLwP2Gky9a5c1bCIkEyAKscEsRv0RVrVSkkKx0iI5rUOi0iTrgLEUgil2VYJZkkqJQ+RAQalDVAiNpUJSohKhJUEiMRg7hcalMa5A8TbJLo1ae/nl/THv9o9NZ+89d9+5c+a9mTuz/n6klfbO/fHu3Hmzd9/5nntOwRhjCAAAAGgwxdgTAAAAcGqCDQgAAEAUsAEBAACIAjYgAAAAUcAGBAAAIArYgAAAAEQBGxAAAIAoYAMCAAAQBWxAAAAAooANCAAAQBTqtgHt2bOHzjvvPOrq6qJ169bRgQMH6nUpAAAALUihHrHg/vEf/5H+/M//nO6//35at24d7d69m/bt20dHjhyh5cuXi32TJKFf/vKXtHjxYioUCnlPDQAAQJ0xxtAbb7xBK1eupGJReM4xdeCyyy4zQ0NDlXK5XDYrV640w8PDwb6jo6OGiPCDH/zgBz8t/jM6Oir+vW+jnJmamqJDhw7R9u3bK68Vi0UaHByk/fv3e+0nJydpcnKyUja/eSDr23kHFbu68p4eAACAOpOcPEmjd95FixcvFtvlvgH9+te/pnK5TD09Pc7rPT099LOf/cxrPzw8TH/zN3/jvV7s6sIGBAAALUxIRsl9A9Kyfft22rZtW6U8MTFBfX19qe1NK8hCrTDHhYaJPQGZQpPPj4iafg2Bghb5G5T7BnT22WdTqVSi8fFx5/Xx8XHq7e312nd2dlJnZ2fe0wAAANDk5O6G3dHRQWvWrKGRkZHKa0mS0MjICA0MDOR9OQAAAC1KXUxw27Zto82bN9PatWvpsssuo927d9Nbb71FN9xwQ03j1c3slte4TfK424zmyYaZnuz3Xq9rZhiXfza5rUs917dBN1RLmCdrpGHfSb6Ita5pg/+G1GUD+tM//VP67//+b9q5cyeNjY3R+973PnryySc9xwQAAACnLnVzQtiyZQtt2bKlXsMDAABocRALDgAAQBSiu2HnThYbZo19c7XzLjCDeM1rk2FRM30c0vKHBm7UR6e5TpZ1bAWdqlr4HBqkdYhrmGEO3seq+ZylSYU+q5zXDU9AAAAAooANCAAAQBSwAQEAAIhC62tAGpukoq3KdK4xlkfQqJoGjRaQ4VyDxj7ufXTSGmvt4zE0lMCNq9J16tVWoGG3eJ10KdWwGXQpzTqp9KIGa9B4AgIAABAFbEAAAACi0PomOInAc6porQg9itbJ9JfNNTO+v2tBfLwPdNa4rGayddg1CpNVvUxsnEaZ3ELXqZdlOcu6xbjF8zSNKUy8eb3V4NeukFagsCk8o80UT0AAAACigA0IAABAFLABAQAAiELraUAhm6NQH3Sttu2dGa6jc/duQRduKZKH5v0I9mRRS2JtQ3PSTYLXzl0o6LIt1eepXWjcyjNoQOInkKOLdt2kS5Xbfz7jBP/GSJoiQ8pmbTRHAgL3rb3+jU7pgicgAAAAUcAGBAAAIArYgAAAAESh9TQgBSrNh0in64hak2CgzaItNQv1SmXu2KJ1hyIKeU3Ks5cbq6qQVvX/k5DHsqs0Kbrz0nxYfXDFatSPgppOhBA/db2Oo11W39Y796PQFCV9iIhpRBqt0huoXrnkZ8ETEAAAgChgAwIAABAFbEAAAACi0PoaEDNRquK7KXQd/zoKnSfT+Z0MelIzoNE2NBqcZz83qXWePqQ4i5GbjpMjWVIqqM72aHSeLOeNGpRiPDcEfTLLOaA8M77bGpF3Zkj4LmXJ9F0LeAICAAAQBWxAAAAAotD6JjiJeprcCim/a+cUuG7VddWM3Qg0ZjVuG8jLXMe7soFrd9kO+c1GIGAKy2Jyc24njXt3sK3CrbzKa9YVVUbR0Fi2Wz8fVx6r1shO3GU7aJLToDFnzwOegAAAAEQBGxAAAIAoYAMCAAAQhYWtAWmxXRcz6UdZQvy0eBgfKU580B3U/gB424BeZPcNhSmxOntpHzLklvZC9VTftXEIuo7oWh1q6/QLhCxSzEmiUZJnOKSX9avmHg9896W3F7qO2DekCaUP66ewz/gh4AkIAABAFLABAQAAiAI2IAAAAFFoPQ0oFHpHSqsdKBtN37Rrhvpq9KFQX960CTQgMVVwyJhud5Y0nvk7p7eVUmfwM0JNcbYnoKFI2ow3Vno5GE5HbCvMUZmOQdaTaqzLkeD3SkzNkt42pK/4Oo91hiiUzluaQxOBJyAAAABRwAYEAAAgCq1hgqv1EVJjcuP1mrA3fBvPa1xij/9Zwvjwpgr3SaN4hteYU8SQIPyaobA9jgt3KMRP+vvJFLYni0koL3NSlvA6YtsMZkGFqY9Ts3kuT0KWY+H7LblLe5bi0N8r64WCdwRA6Bv6s6GJnJ0zeAICAAAQBWxAAAAAooANCAAAQBRaQwPSoEqNoOhblHSd2t2wfbtv+lhB3UaKEp/BluvZm2u0y/N+kmsv12LCH6wiLryqqRC2h+OFC6qTAV04LcDJotUUEiE0Ul7a0nztBWJkHAldsiDcT5rMDcHrOG152Kf072jwOmLKFEXbGsATEAAAgChgAwIAABAFbEAAAACi0PoakCJ9QTDFgjSuJuQP04vEszzeWQBJAwrMMX3YXCkI0oCH4nyOY7cO6ASeDmVfJwkYru3PJ+EfgHBdjQzFppRJu9BoboowOKHwOqqzPYk0rjwlzVmfhp0LkkLmCBqvED3Hb6s9B1RMrfLTJAhCrdfXvicCaR3yljnxBAQAACAK2IAAAABEoeVMcJrshKo6ItmsJpnOJJMbq5dMbPP2tdp7Vd5YwmN3jjY5ycWTf0DOjEK2DCEatufCnfDr2KGR2LiSSS5kU3DMK+xzjhRmWGM5VoXXSdy2ormOtZXcsHVzIhlpTnVCZSoLhtOxqgKWYsMeD+zPx6tjQ1H6VymbmTln8AQEAAAgCtiAAAAARAEbEAAAgCi0nAakQeV2zeul0DusXtJ8ZuuttoHUDZLOUxDG5YQ0H006Bo6dnsH39uQhQdLbmkQwZHPDO9NxfPu4EMbHWwzB71SKPRIKS6KNrZKC6qNRaCazZSukv0abkTQf1tcP6ROaU3XjzlsvjZsFVQoVoa33fU9v691ebN0cN2yhbvYFIXWDdB9r4gHlAJ6AAAAARAEbEAAAgChgAwIAABCF1teANCkVvL6CzhMYtyDoRVxfsXUfr85rK+hHgbA9UltOtpTcxqqT2zpHe7wjN64h2zg6DoOf7WGDOUcZ+BkhrufZ9RrdJovGk6VvhrbiUbEcw+sUpLYZ9CPet9pxMqP4WyC25XOy/+UP6EWSJuRrPqytcw5I/u44bbUaT8Z4U3gCAgAAEAVsQAAAAKKADQgAAEAUWl8DktDGjRNiwXFtRorvxs/6uGd5ElbHhhU0IKnOu447LBVzDJyVmHStxteA5soJ12a4NCNWSgcqyPk8fNs5u66YHiNwOMMZh68/v2myGNcFFOdmNCkWNDHa+DkU8cxQSAPSaE2K+WdCSIMipWMQz/0wpFhv841lUgv+usnxGtPbho7QiWeIagBPQAAAAKKADQgAAEAUWs8EFwivYwQzWjjLqdS2+vA6vklu7tmam9FCZrWiYOoriW7YbBzhUZm39d2uXeyoOJLJbbatFRKEPc9zk5xdz+sSbteRTHL8/Yifc3r6BX+s6s1zsQhm6LC/HgFTmdhWMqOFTHCK6/imJiPUyX3dxkIdcTMt78vNv+nXDKZNSLvmfG3tsXgoHtbUia5TEi4aGTwBAQAAiAI2IAAAAFFQbUDDw8N06aWX0uLFi2n58uV07bXX0pEjR5w2J0+epKGhIVq2bBmdccYZtHHjRhofH8910gAAAFoflQb0zDPP0NDQEF166aU0MzNDt99+O/3BH/wBvfzyy3T66acTEdEtt9xC3/ve92jfvn3U3d1NW7Zsoeuuu45+9KMf1T7LvDxYFZqQmHbXa5uu+RC5Ok5IAyqyviVB1ykJ+lGJz6FObthlpsVwDahsaTlFXudpQtX/PyRqQp7g5cUAmu/XWSS37JxdUFMJSJWiK3UAjRuzI6eGwutk0YCcvulhYry+dXTDdj72gMbruCaze09yj/bmy7Qaz+VZkCNV1/Fc862/MXwcqi+qDejJJ590yt/4xjdo+fLldOjQIfqd3/kdOnHiBH3961+nRx55hD7wgQ8QEdHevXvpggsuoOeee44uv/xyb8zJyUmanJyslCcmJmp5HwAAAFqMTBrQiRMniIjorLPOIiKiQ4cO0fT0NA0ODlbarF69mlatWkX79++fd4zh4WHq7u6u/PT19WWZEgAAgBah5g0oSRLaunUrrV+/ni666CIiIhobG6OOjg5aunSp07anp4fGxsbmHWf79u104sSJys/o6GitUwIAANBC1HwOaGhoiA4fPkzPPvtspgl0dnZSZ2dnpjEcVOkYeDnd6O2lSRDO50g6j0bz4fVc8+E6j92Xaz68rXMN1jYJnAOydR8+3zLrW7AOSXnni8rs/x9njrr/jWxNyE/1nR62x9d1QocxBOqlCUloQu+wclAW1ITXkTSgMm/LvktCXzEEUCA8kFOXLgP+pkF6fTj9tf0704e4JpQ+xUz3mvdRSuF1hHtCHGee62alpiegLVu20BNPPEE/+MEP6Jxzzqm83tvbS1NTU3T8+HGn/fj4OPX29maaKAAAgIWFagMyxtCWLVvoscceo6effpr6+/ud+jVr1lB7ezuNjIxUXjty5AgdO3aMBgYG8pkxAACABYHKBDc0NESPPPIIfec736HFixdXdJ3u7m5atGgRdXd30yc+8Qnatm0bnXXWWbRkyRL6zGc+QwMDA/N6wOWC9EioCb1DrvXFz0ya3jXU1jXBuc/zbdyMJpjZeFu/rxXyxwvbU7tbNjfJ2WaFGWaP4G7ZM9Z1ZgJu1nbU6hmvVu5rm/c8k6IUpZrViW7Z3r0WSjsrV8sXFoYVPrpwdOz0OtGspmmrMLmF+wptE25XY20VPsSe5dK6x0PZRyWzpmEmucS6KbzDAgHrr2gWZC7ckru9597tVAp11dQrUW1A9913HxER/d7v/Z7z+t69e+ljH/sYERF9+ctfpmKxSBs3bqTJyUnasGEDfe1rX8tlsgAAABYOqg2I7+bz0dXVRXv27KE9e/bUPCkAAAALH8SCAwAAEIUWTMeQoT4Uq16RykFOscBD8Viu1IFwOm0l1whut29ndVwDai+WU+vamHG9KLhsc82Hl2csg3OJ6TrTBdcYzV3U5Tq7rzt/rgkZZpi3P4OyF02Hucbaug/PdOtNtzDvr/O19TKk5uWzmkHzCaZnqHIsTXidoOYj6DwhDahofbjhNA9CiJlAigVj3RcJD5HDXKtt/SVkJCpai5qw+yOUjNcJD8T1IslVPKgLFtIrm9ENGwAAAMgKNiAAAABRwAYEAAAgCq2nAWkIpVQQ2ntneRSpsrkmZOs4bSWmzQiaD5Gr+3QUy6l1s/VzSgnXgHjfTqttSAOaTNzbZMbMjTVVdg3k3jrxGPN2nXguyO3HPTAN127sUDxMH0pYXyc1uJR+gVTHc0SC6ZZVgwkDS21ZOagf2bdQIESOmJKb6zqCzlNkAh5va9/GntYknD/idfzcDD/r49Tzc3Aldi9axaSkOM8VuPe8myQR6iT9KKBL2dOowtE5V/AEBAAAIArYgAAAAESh5U1w3PXVIRQpxQvFI9gnuIut7cnL3bDFiNZy9GvfrFZOresqTae27Sy5jsuLWNtFxanUunfK7W456UitL1Lgvdtl5ks95RYd059h68SjrvDsqrZrtZ/Nln92c2Ujhenhg2ntZrXa2UJuszn1DUaelr4Ongt09e7Roms1N7nNsPvJNsExc11xmpvk5sqlKfei5Q6WybeNHT2wy14oG9bWMtfx7wN3tTaCmV9lDta43wfaam4vKTtvLdY7PAEBAACIAjYgAAAAUcAGBAAAIAotrwGpCNpchaaCXuRlNRVSLPC6kLu0rftImg+Rq+V4mk/JVVzOKE1Wfl9cOunUvVHocsrcNda2c3Obt4TGRdXz8uWaj3HXzTF5ezb7dLfsQpZ0DKGbpF5UL1XK5YCuI7pWS+F2Am7Ykqu1pPkQuTpPgbedZiGwrPriJPfDdotJ2cvHQGn4rspzffkSesc5rGkkgfvJc913csCwtmKWVqGOlUOu+Xl7aeMJCAAAQBSwAQEAAIgCNiAAAABRaD0NKGiH1xjIWdHx0ZfD6ziheNgUpLTaoXM/XCOyw+tImg8vS5oPkav7dJfepkbAdRyv3lpJ76yFpwHxshXmXrKdE4n3iB8Sv0G6Tr2QbPo56kUFUS+Sy/ZtLWk+RK7uI2k+RK7uU5xih9C8j5WHjLLHLqbWEPG/G+7AXO+y08Nzbcz/e8QPv9nfD9aWT8qasqfbZDlnljN4AgIAABAFbEAAAACigA0IAABAFFpCA8orJL4Y+43IMXoXilwbSC9z3Ya3LQltSwX5HFBHKT2+m1cuzmlApzEN6DSmAZ1WnCufXnTrplms+jIzTttajZe+W2rL69jhhRlrLRKW9pin/uax4sqW8MPPZSVMFLLt9IEs22IaZHW6jxrRaDOa0PuadAz83I/Ulus4wbQJTiy49Hhus2NbGhDXfKZY2vnpuXKBnQMq+n8MWNm632b4m6X0MqtL2LhOzDx+Bo1rZTxFRJJe58ers9pqzvbwm7zO+RnwBAQAACAK2IAAAABEoSVMcCqEx2GxLe8qmNyI3DQDnslNCLfDQ+/4ZddU0GbZNmyX7PnKthv2aUVmgvPKk/P+TkQ05ZngeCibuXK5VBTblq1H+rIXxj7dXMfdrMvc5Mbqbdf3MnfzZebUJEn/7HxTjEmvC1GjSU7VTetSW2uIFoVrtRimJ1DPzWqeSc6qL8ww0zcv2ya4aeaGze69QpGbae3fNW2JtWXlRGgrhEKaHctaC2ZWVoXiYTgZUeWmubts4wkIAABAFLABAQAAiAI2IAAAAFFofQ1IMpgHUzOzakfX4XVuuei4Vqe7XfNxudt1W8ANu9PSedpZ206mAXVZbti2SzYRUVfBLZ9uaUK+G3abXC6WrLoSa+uWbTftmcStm/HWYu69zxTd/41KzEeVu2WX7fQYbP0T6XMPheLR3F+NQphUKPqUmMpBStGtCMUTauuF27F1H95WSLlQ9DQfhQbU5t6LBX6UwtI2i0xUNDyqjyX0FFhEH8/l3D4CwI96eOGlWF9rGqLmQ7KrvuRZze+JekfpwRMQAACAKGADAgAAEAVsQAAAAKLQ+hoQJ4vNXjjbw8O7FATNgZflc0DlqsuersPKdj3XfHjbLksD8tu6Z4a6TLtTtnUeWw/idUREM5ZW4703Zsi2y21M85lO5DW2z16V+TkNw89tpIdD8UWTQnV1IbL01QzLkepD6Rjs81KZzgzxcz/pZS9dt9DWD9vDBJcZq8zrmCZUYOeCijNz9yIPC8XPlZmSPSd+Zsi9bEFcJ7nsfF0Cn52j8+R4j+QNnoAAAABEARsQAACAKLSeCU5juQjZJwQXXC8UD+tqu157Ea6FiNfc7Zqb5LirtV3225ZTy57JjZvZCra5bqbqtkSu2e0kM8/xOdlz7mT+q5JbdpE9+3P3db7GdmieIreqESsL94XU1suOmqNZTbxVNWYQzS0fioZtl4PmIiPUsTLPBGqHpxFC78zWW40DoXgosduyi7azvuy6xh6rzf0/3Y/ubb33EqsTQxalR8qenQQ3Jdu/s/kKbVXhdertd83AExAAAIAoYAMCAAAQBWxAAAAAotB6GlAGQrqOFIqHu/06bUlua5eldAvz1ltlSfMhcrUar467VjsaUPo48/W1dR9JHyJy3bJnWPgc/l6LSVtqHXfZ5m7ZUioN/7NLb+shhNoPerc690h+cXtEHUdqy9qrXKtDLtuOe7E2HYOpqo6I6S3ctbrMNaF0N+wC04RMidVbug8P+VPmqRysWz6kdzmhekIaHHfDlkIjKdywcw23k1EzwhMQAACAKGADAgAAEAVsQAAAAKKw8DQgQcfxjnFozgEJuoImFA+va2daB0/lYGs5IQ3IbeueuWknqW3gfJHXdya9LSvb53m8c0wJK1trMcXOCHlryuY8LXwe0mcppeT4zStUNXmdC8rzLIYiTD8/W6I6M2SfbxFC+szb19Z1eFuvPHchfnaH2P1ka0KG60M8b7vX16TWFcrp54I8zUpaJ64XCWd5vL6S5kMk6ndemgdTXd2818kInoAAAABEARsQAACAKCw8E1ydkMw4XmRm9mztmKGEutl6yVQWMsHNmcY6WJ1XtuKftLM5dLC4K9JYnqlPmGOJjVsUssOG1ol/HnZongJz95ZNcLLNwTbRGa9tg1KihtylaySTG7ZgVtNGeXbKXoRrIWQON43xcDtOKB6WxjRxQ0iJJjlucuOmSsc1nK1LKd13X5WRlpdDJlFNKJ6I4AkIAABAFLABAQAAiAI2IAAAAFFY2BqQYM+fv17QBhhFoa3vlp3uhs1Dzngaih2Kp8j1FrcsazO8bGlAbF18t+z0sbg+xHUee87txr3d2hO376RinYqCm7a//k4xx6A4TUDAbVajH4l9FaF4fBdt2ZfX1lSCWpOjzUixasgNv2O4m7WgF/GxPTdsNn87I2oGN+ywW3zB+l1u66QOabBrtQY8AQEAAIgCNiAAAABRwAYEAAAgCi2nAflnMXi59rHlFAvplwmF4nH1CZ6uO9DXMuCWmDHXC3tj6zpC6J3Z8lzbDiaOaULz8PcjnQPiZ3n881Pp66RZY1UKbo1O2KhzPzmi0XWkvmFtydZxqg+9Q8R0k5BeZPf1NB/3njFCKB4vdYN0DohrNVwvslOFBDQs57YOhN5RnQPiSKF4hG65pmqoAjwBAQAAiAI2IAAAAFHABgQAACAKLacBZSJk77cIhfSX2kplT/MJ6iL2eR2euiE9Zhuv4/qRXW5n/4fwszy8r30d7xyQcF1fs0pfC65DTQXWuNo6Xp9J1gmk+2gEQd1AIoPmoDkHFDyr5KQZEDQfIldrCqVUsM+Z8XM//FyQp1vZZ3uYtsTOoDnpGPg4nqZVSG/rrZNwQ2WJBae6R/gc8lWF8AQEAAAgCtiAAAAARKE1THABk0p6P2VzhUnOca3mZjTBrObXcZNVuluz55rM0xtQurnOd62258DdsImV09Mo8DlIruHcPMfb2uF2iol7awbX2CqHTKIqt+zUllVQL5NcBjOb9FWS6wL+ubbbr5fpU56Ta1YLxImxy565i5vgTHqd55bt3ou2ec8IoYOIiIxzHWJt3bLGrJnlszOpheYCT0AAAACigA0IAABAFDJtQPfccw8VCgXaunVr5bWTJ0/S0NAQLVu2jM444wzauHEjjY+PZ50nAACABUbNGtALL7xAf/d3f0fvfe97nddvueUW+t73vkf79u2j7u5u2rJlC1133XX0ox/9KPNkq0Jhd9doARwpHYPXVqFPSKkcuD4kuUCHXKmLTl0htW6+vvbYvtt1etkPQ1R9W2ldiGr/LEOfndS2UaZ1jQSqays3Fl2rNW0DGorbN6AB2dpNqK2RdJzq3bCD4YHE+btFJ7xRMB1Den0wZI70eWW4cfMO1VPTE9Cbb75JmzZtogcffJDOPPPMyusnTpygr3/96/SlL32JPvCBD9CaNWto79699OMf/5iee+65eceanJykiYkJ5wcAAMDCp6YNaGhoiK6++moaHBx0Xj906BBNT087r69evZpWrVpF+/fvn3es4eFh6u7urvz09fXVMiUAAAAthnoDevTRR+knP/kJDQ8Pe3VjY2PU0dFBS5cudV7v6emhsbGxecfbvn07nThxovIzOjqqnRIAAIAWRKUBjY6O0s0330xPPfUUdXV15TKBzs5O6uzszGWsECF5SBe2XwoFk65fhM79SKFsQjqI3dbXfLiOY9fxUDwufl/hOsJ7D80pCxpNTv6cc5tSc6LRBjRnhhx9QtBI5r2OdLan+rZc5yEpzUMi9y1Ic5LC9ng6jtQ3w82m+KwyjVtnVE9Ahw4dotdff53e//73U1tbG7W1tdEzzzxD9957L7W1tVFPTw9NTU3R8ePHnX7j4+PU29ub57wBAAC0OKonoKuuuop++tOfOq/dcMMNtHr1avrc5z5HfX191N7eTiMjI7Rx40YiIjpy5AgdO3aMBgYG8ps1AACAlke1AS1evJguuugi57XTTz+dli1bVnn9E5/4BG3bto3OOussWrJkCX3mM5+hgYEBuvzyy/ObtU2dTCYa91yVK7UiAyqHm+u8eYguz8yMZtmaSszu5JfT3w8PxSO5bPM5ccSo4QG37GrH5ejMdTwtLu8r3Iya+1RjBtG4R2e4jm9GU3TmWUFDYX3EtjWa1ZjbtWdyk8bKYBbUmDzDoXgU5rsaXegbbIHLPxbcl7/8ZSoWi7Rx40aanJykDRs20Ne+9rW8LwMAAKDFybwB/fCHP3TKXV1dtGfPHtqzZ0/WoQEAACxgEAsOAABAFFojHUONhO371Y8V0nlqRcqAOlsvhb1J7ytlQCUiKlo2ZO6GHQ7FY2s1sq4j1fvv1XI5995bSGdLd1fnFBe6q3WtZArRUruQ4PSV9BWOEHpndiwrFA/XoXh6Bik0TygdQ2rBxwnF482/kNqWjy1mpG0h8AQEAAAgCtiAAAAARAEbEAAAgCgsaA1Ii+bsj01IHyoJ2kYIrr+448qakDyurQEVUutm66sPxSNqPnUMxSOhkXxqvQfUF8pAlrM9Nad20JxZCbUVZMNgigjpfI6YvjuQfkFD6FyQhfd+HC0qjhipSamQd/oFDp6AAAAARAEbEAAAgCicUiY4XXidOk7EgofXkcxSPOyNPC43dzUGPkcpPBBHzIgaePjXuGHXzAJz324a110eBscmZGbLCynCNQ/xIwwjumh716xualmptxktC3gCAgAAEAVsQAAAAKKADQgAAEAUFp4GVCfDdl7m/5AOomnv6S12moRgOBo7HUMxtW62nve19Rbd+3HHrb1vXjrPApN1fLKkXKjXHDThdSR4OB0vpYJV77lD137vSaF5vNkrLhNKU1GwQ/UoUjeYJr7L8QQEAAAgCtiAAAAARAEbEAAAgCgsPA1IQZawK9K5E02abY6cvqD2+XIdp1FkmXO9yBRu51RCCP/PsW9b7fKK7aUzQnmi0Y804zCa/tZr8PzwBAQAACAK2IAAAABEARsQAACAKJzSGhDIn2Y425MrzTinZiDWstQrFhyIAp6AAAAARAEbEAAAgCjABNfCZDF3xYCnngDglAbWRDwBAQAAiAM2IAAAAFHABgQAACAK2IAAAABEARsQAACAKGADAgAAEAVsQAAAAKKAc0AtTNm01v8PZfy/A8AczZspu2HgLwIAAIAoYAMCAAAQBZjgQK5kMQsmpgltEs04p2Yg1rIU8HksJPAEBAAAIArYgAAAAEQBGxAAAIAonNIakMlg37f1Cq5deGWFwVzSUMoZ5luOFPo9y5zrRZbP/ZTCWqbQktm3rXZ57fZe12KDPit+naL1hjS6U2C+TX/rNXh+eAICAAAQBWxAAAAAooANCAAAQBQWngZUJyNrXhJKojwnI7VP2P8PdlvvTA0rJmbuHZVNklo3W8/72vpX7f/DNMOZoQWfFVmxTHXTJ/i4kqai0lvY/aPRcXhfDWwsI81ZcRlvHO86dh2fU2CsJgVPQAAAAKKADQgAAEAUFp4JTkDjfps0yDbDI0RLLtvc5CaPy13BG4NnFiTbLCjPvyy0DbmyS27xubHA7HUBK23jkFyXA2ap3BCuYxSu4CrTV4MWvJldv/EEBAAAIArYgAAAAEQBGxAAAIAonFIaUIhaQ7SEQvHY4Wg0YXmIfC3HHdf9/0Fq6487J2gkTNwoszLXj+zr8GuKoYQ8XaoxxmmNdJMpTE+DNCIxdE0oZI7UV2jru/kK1w21Ff7t5RoK72rrMYWQPmSXC0W5rQbPpTu9qacJNSq0kIDmFq+3foQnIAAAAFHABgQAACAK2IAAAABEYUFrQL4937D66scK6Ty14utF6eF1QpqPXe/VCeeCEqbySJoPL4fC6cjpJfh7TdfKeFoH6fMIfTaNOuPVcmSRvxy9RbfAdl8u1ajC9vDOVridghSmZ76+zvtRhN5RaHB+6J30trye1zXzWR8JPAEBAACIAjYgAAAAUcAGBAAAIAqtrwHVyZ6vixsX0idsHaf29N08bpw3DyGWGr+unYKh7KVf4GUh7QMFdClFLDh7Lfx1SteLQkhtQ5+zWK86UFF9U5UWo9AcvOZZzoN4OojwBouyhiJJKn5bq+zpOultDdN4vDNE0lihcz+CXiSuseZsFWWIM6e8RxoJnoAAAABEARsQAACAKLS+CU5ByAoimVt4ndRWMhd5pjFuwhJcrSXTHm8bCntTduqS1Lr5+wrXEd57PUPx2NfJYlbTuOa3JAqTkNRWdhHmJjeT2na2nI+5i5vVnDQKCnNdcE5S6oaQ2SyvdBKKzyrTuHUGT0AAAACigA0IAABAFNQb0C9+8Qv66Ec/SsuWLaNFixbRxRdfTAcPHqzUG2No586dtGLFClq0aBENDg7S0aNHc500AACA1kelAf3v//4vrV+/nn7/93+f/uVf/oV+67d+i44ePUpnnnlmpc0Xv/hFuvfee+mhhx6i/v5+2rFjB23YsIFefvll6urqyv0NeChs+BrNh6PRHBJRx1G4cLP/F6ZMySmXhbZSKB5N+gU+tq9ZpZd91/Dq24b0r1o/S427faZUDRnQpM7WtZVdqaV0DOJ1Ay7bvkaU3tYrl4rVt7Vcr32NJ5CeQXL3Vs3fLTqheDx9K70trw/eihqtT0HeXwHVBvSFL3yB+vr6aO/evZXX+vv7K78bY2j37t10xx130DXXXENERN/85jepp6eHHn/8cbr++uu9MScnJ2lycrJSnpiYUL8JAAAArYfKBPfd736X1q5dSx/5yEdo+fLldMkll9CDDz5YqX/ttddobGyMBgcHK691d3fTunXraP/+/fOOOTw8TN3d3ZWfvr6+Gt8KAACAVkK1Ab366qt033330fnnn0/f//736VOf+hTddNNN9NBDDxER0djYGBER9fT0OP16enoqdZzt27fTiRMnKj+jo6O1vA8AAAAthsoElyQJrV27lu6++24iIrrkkkvo8OHDdP/999PmzZtrmkBnZyd1dnbKjRzDo0bk0c1FOgMihv8PnG8R2wY0lGlL5/F0EUovTzN9aNrwce05mNS6+fpKoXj4daV0ErztTGK/18CaCuWQrqY675XasgrqdaZIY4cXdAVPARLkC/88S/rZHq5thELMOOdoShnO5/AUC845IFZX4mX3XjSC1iSm2da8d4XmM299lXWNPtujQfUEtGLFCnrPe97jvHbBBRfQsWPHiIiot7eXiIjGx8edNuPj45U6AAAAgEi5Aa1fv56OHDnivPbKK6/QueeeS0SzDgm9vb00MjJSqZ+YmKDnn3+eBgYGcpguAACAhYLKBHfLLbfQFVdcQXfffTf9yZ/8CR04cIAeeOABeuCBB4ho9nF569atdNddd9H5559fccNeuXIlXXvttfWYvw7PFJPeVGO20bhWe1GeBXPdbPt0sxo3adlu2cHsqVZ5mtmKQtlU7etIruDedTzzXPpa+GY/eZ2qreP1mULv8L4Rwvh4ZrMM5jmxHDAHyW7Ycl/732DPRVswyRlmRit4JjjrfmMmNo0btvHGdYt2yB/RPEckhiwS3bs5Gcx1OhNufW9q1QZ06aWX0mOPPUbbt2+nO++8k/r7+2n37t20adOmSptbb72V3nrrLbrxxhvp+PHjdOWVV9KTTz7ZmDNAAAAAWgZ1MNIPfehD9KEPfSi1vlAo0J133kl33nlnpokBAABY2CAWHAAAgCi0XDqGQkjHyWDUt3UePkrCXjBOXfUaUChTqaSLcC1GcnmeJu6Gne6WPWXKgbasTOmu4VLfsN6Vvk6aNfZvCYXbtdfZNtqnDtO0iBpRQAtw3rrGldqrYyF+mK5jynPlQijsjdXXc9HmmpBdlurmqXfctvm/6VwTclzD3SrDs8EWhbYZNDkP6bMTaHS0KTwBAQAAiAI2IAAAAFHABgQAACAKLacBqfDs+1zIST/rkyUdg5Q6gNfZ4WeIiKaLrGzVTxfcj4uX7TM504a19crT1u9cA+K6TvpY3jkgHponabN+l7UlzTrJOhuvc4qtKOWkE9ARvHNBinAukl6kOQfEdRA+JyPoR17fYrqu46dusO4Zfu6HnwuSQvWwOk/Dss8Bcc3Hez/z/z47R9ZWOBcUTP0tjivXNxI8AQEAAIgCNiAAAABRWNgmuBzx3XXTTT48HI3tfjwj1M3Wp5upgu7RgmnMK9uRs3monUDmVdnUlz5Hbp7jrtb22oTWiX8e5aSYWieVPVOr5JbttaXGUCeTicZcFzKN2a7WXjRsTZmbt0rc/DWXr5eH3jFt7r1XmLFMy23sT51nVmNlq94zuQmu4byt9y++uKbpbb1yllA8TQSegAAAAEQBGxAAAIAoYAMCAAAQhYWnATn2fddIzyOLS2FYQjqC7PbLXYgt92JmO+euyR3FGbdepQEJ2owQmsd3u04PvcPHDs3J0b8Sfh3usi1kROVrKoTqCaXScDUgEtuqyMvwnqf9XtAGJHfo2bJJbeu7Ws9/jdm6dL2IiGkoZbetF5pH0Ga8dAyWrqMKvUPkalGZ3LAzuGwr1ljShFSZVhvsso0nIAAAAFHABgQAACAK2IAAAABEYeFpQAKeFsAOckjagKQr+Kkb0vULHlJmppi4ZV5fmKv3wvQwveWkaa/83mWF2iEiOpl0uOXCXP1J4+pO9jjz9bWvy9tOJrzvXJnPVwqv461Dkq75ELmfQSg0kqT1eTht5aYcnjokLyQdR2rL22c6BySU/RQE7Hvm6TpS3/QzNzycTqHkfpfsc0EF1pafGSJWts8BJW2CPkRyeB12y7v1Cl3Nq9doNfU8I5RxLDwBAQAAiAI2IAAAAFHABgQAACAKracBaezwnrEzlI7B/j1dYyAiKicF63eWZpudcyhb9mR+fsU7G8POHLTZ8dG8tuma0EmmxbQX3JQLtnZzkutFXAPyNKF0XcfXeebmPJnwuHHpseB47DceX4+vuXsOyKnSpehWtM3TmO7oOrxScxmFJhQ822O3DcZzs8+3cM2HtWW6iCVz+mds2ljZ+twLbew6ZZZ2e8Yqc80ncLaHbN1HoUsFNSxnnUhsK30eXvqFLDqPFGOuzuAJCAAAQBSwAQEAAIhC65ngQkgmupD5Tspyykw+dpgSTSieErNlzBRk12TbDXuy4JrC2hLX7dQ2s3GTW3vCTHCFDuv3gMs2d622THKS2zWRa5LzXavTzXUht2svBYYd7oh/VopQPKLtohnC9ASGVZnvQmYb21zE7Jqiy3bAtCSlY0i4ea4smLC42Yy7ZbdZ348ZNnC7+6fPsL626zU3AyZSKB7J7Zq4u3qgbZ3csD0U90je4AkIAABAFLABAQAAiAI2IAAAAFFofQ1Io/l4WkD1oXik0Dy2SzYRUZnZvNvstoLrMRHRFDOCFy2tqa3o6jjcrbnd0og8DYiV37J0nvbCTGodkRxuh2s+fE52WXK7ni1b6bu5azsvK1KkS2k3xBTcRNk0xXrhuPmz+Qdcq6VQPPzfUds9OhQmxi4XErkt13nsiZSY1pS0CRdmH1aR9TX2hcpM82HhdUx7ult2wtN1876SG7aXYtz63Ut/QS7Smitc6DUpFRqdyhtPQAAAAKKADQgAAEAUsAEBAACIQutrQByT8nuoLe+qSMnN67heMeOkNnYvGjwXZKVrmGL6SomN9Q4lVp1riC+ycslq28H0obeTTlbuSC2/U3Y1ID5Hu+zVlXnZOjMUCFnkr7n1eZBLkqR/ll6oHUk31Go+NWpEvJtollfY9736UF/hzIr33RFSKnCtRkrXwDWfoqDFGn5PiBoQq2svBcrp54C8sz5tQp2glWnPAdmakXhGiJcV4ZmC5KwR4QkIAABAFLABAQAAiEJLmOBsS1MWz9dQ2BXnOtxsw80Gjhu2u4+XmN3AdhkucndiFpXXc8Muz5nKiuzdS+ViWW5bssrcRdszwZV5ec4Ex0PxTDKzml22TWxEvpnNdlEPuV3zescNOxiKx/qdZIxk0tW4bGdAcqMNRbQWxxJctImYmYd/V7i5SwinU+TrX1Icf2Au3c5luYs2cfuXPQfm3t3BQu8wN2w73A43C3plx2U7FHZIMKMJYXt4fShDrSabrduPfQAIxQMAAGAhgg0IAABAFLABAQAAiEJLaEAOQTu84Dbrp7tMLfrpGJgN3DKYMxnHC81TsFyti8zGOs10Ea7VTBXmPiLet168Ue5yym8yDeidcrobtu+WXbJ+ZxlRuSZkaTfToVA8PPyRIoySFKdEzIDaiijcczVak+iWLbhoE80T1sq+DbxbnLll2/28/5+ZYMQ1Ibsl14C4rtNhpfdoD4XXSdd1JE0o7LIthOoJhUbSpFiIeMvjCQgAAEAUsAEBAACIAjYgAAAAUWg9DSgLofTLlnE6IBeJ507cUzVu+J0iC73jmWML6XZrDQkb2Stb859mxmhP12GheOx6fu6Hn2OydR+u+fC2dn1Q8+Epu4WU3HIoHnJR6EV+mRqDJtR+Bl3HORen+O5wqZJrHfxetHVPXicFJirwf5/ZC855IzZsuYO1Fc76cH2Ia0D2bRzSdZy2oRTcijA+qlA8eZ0ZygE8AQEAAIgCNiAAAABRaHkTXIG70dqP7AGTiGRW8DyehWyqkov2bL0VYsYLf8IuVK7dBGeb1XiYm2lm7poszn30EzMsTAl7rzzLqT02D68juVpzk5sUbkcysc03R6MwFxnRVV8wqzUoGnYmN1lFX8nkRiS7/Xr/ujpmTSHM/Dxl2+zGjyF4JjnbhBhwW7bDBfFQO76pLD3itedKLZjZQm1JMKP5UcJZX4VZTWM51hD6umjBExAAAIAoYAMCAAAQBWxAAAAAotDyGpCINly+oCNwzYEs3Ye7s3JNqGw3KAf2/BJz4hY0Icm1uo3FsecZRU8KIX74e+XlGcuwzcflWpMTXoe9F55iYcZxw04PtUPkr7Hrhi2H15FCLgXdsmsk1yhKjhYQyJ8qudzyKsEt29dEWdnWNrTv1bouv6f9dBOWuzfXXoXwQKK+Nc+FpPQSkl7k6TqCXhTSfDztRtKPNKF3GKLWV2fwBAQAACAK2IAAAABEARsQAACAKLSeBqTQcfyoHoHQKc6ZD9lobGzNocDDwLNwO3bXotuW27F5CHlT5GPbUxTC67CUySUW4keT2sE/c5N+3oif37E1IK4XSeF2eNtQmm1H9wmlWLDfOl9/yZgeWDJ+Ji03pCl558rkeuccTUAXsccS0y+EJhVcuOrrEmtSPC04v4zm8/D1FutcUyBkjlMOtHXOCWUIxRNKx6ALxSN8PgjFAwAAYCGCDQgAAEAUsAEBAACIQutpQByNLToQo8pI2gC3k9r2cX7uhJ+rceqZRuKO6sXRss3cXIvhZ2NKlk7CNZ6SoCWFzgFxbO0mNCe7LddiZtiZKLtvKKWCf9bHqguc7ckvHQPJaM7DFCTxMn1KIZnTP0eTfhlPR3AqWVn1r6tSE7Jb8nh19m3M3qwnxdp1wXNAQn1gncTzOeysjxQLLqgJSZocQ7ptNZqbul4JnoAAAABEARsQAACAKLS+CY5TvSUjYG5hVcLjvedq6blWS7DO3FTmmLDcSXGTVtmyM3CTGzeNZcE2cXFXam9OSSG9znOlTg+nEzTB2fMImcoEl211+KZa2+ZFyKWW2+CEty5G9eHmoSqnNy887I1tUmSTEOfEv6N5/jstmbvEEDlyKCTZXFd9WZUJN+CanyWMT1bwBAQAACAK2IAAAABEQbUBlctl2rFjB/X399OiRYvo3e9+N33+8593TEPGGNq5cyetWLGCFi1aRIODg3T06NHcJw4AAKC1UWlAX/jCF+i+++6jhx56iC688EI6ePAg3XDDDdTd3U033XQTERF98YtfpHvvvZceeugh6u/vpx07dtCGDRvo5Zdfpq6urtpmmZdtPZh+2cz3KxHJ4ei9UC/chZgEAYkPywy/pmiFny9wDYjZy616ns6Am6bT+s2OKxt+E+G9S+GBvDQPQtoElebD+nK9znOTl9Jsa1yt66X5BE4PFAT7fghXbwlcV6jz0mHrppF+Xa4P8fdetG8+VqfR7wLrJrph84WT5EfB1TqYUkHhPi32DeqEwjh1RrUB/fjHP6ZrrrmGrr76aiIiOu+88+hb3/oWHThwgIhm/yDu3r2b7rjjDrrmmmuIiOib3/wm9fT00OOPP07XX3+9N+bk5CRNTk5WyhMTEzW/GQAAAK2DygR3xRVX0MjICL3yyitERPTSSy/Rs88+Sx/84AeJiOi1116jsbExGhwcrPTp7u6mdevW0f79++cdc3h4mLq7uys/fX19tb4XAAAALYTqCei2226jiYkJWr16NZVKJSqXy7Rr1y7atGkTERGNjY0REVFPT4/Tr6enp1LH2b59O23btq1SnpiYwCYEAACnAKoN6Nvf/jY9/PDD9Mgjj9CFF15IL774Im3dupVWrlxJmzdvrmkCnZ2d1NnZWX2HQHgdOwQ710iCxnVHG5C1ADdsD6vkgot9voXpQVwzKRbTdR6vjp+ZsNMVuzNQpV8IYWs5ntld0IRCqbIT58wQGzdw3khKsy0efFCF4qGmJ6QjiCkWeFfrVvXaMp3N1oSCy8TnmAh1mrN6dUt7nj4FXq87M1R9W35ddRifJkW1AX32s5+l2267raLlXHzxxfTzn/+choeHafPmzdTb20tEROPj47RixYpKv/HxcXrf+96X36wBAAC0PKp98u2336Zi0e1SKpUoSWb/henv76fe3l4aGRmp1E9MTNDzzz9PAwMDOUwXAADAQkH1BPThD3+Ydu3aRatWraILL7yQ/vVf/5W+9KUv0cc//nEiIioUCrR161a666676Pzzz6+4Ya9cuZKuvfbaesxfJmCBkx/vmbmLmY+ciCCeeUIwyTFTEneJ5A7bjsmER/+VTHDsvZa9cRURiQXfTCnSNC8H2wpheySTG+/LI5mLEa+1Ea4tvIybIZfuvJDC6WhD86SMy8f2vjqCSS7ooq0Ir8O/EE6krSxhk0JIrsmSCS7k2q7IaqpxrRbNgoq2oiv+PPVZUW1AX/3qV2nHjh306U9/ml5//XVauXIl/eVf/iXt3Lmz0ubWW2+lt956i2688UY6fvw4XXnllfTkk0/WfgYIAADAgqRgfKU+KhMTE9Td3U3n3n0XFX+zaYnCXZE/bVht+b9Inugn1PNxvYN4JrWt92RSFOq8ttU/1WiegDin9BOQ0NZ7BBVE70Kor1XvLTcX8e0niMC4BakuWJbeT/ocQ08bBaktn4MwVqhvteNkpsmfgEKBS+XDscLfzNAcpHpr3OTkSfr57XfQiRMnaMmSJZRGi/hKAAAAWGi0fjoG6b+gkL1ScukO/DdlN+X/sYqaEHPR9szh5XSdx3864rMqCHWsZQa3bDGjqKKt51rtFPjTUfq4ROQ8bYhPPPxCmmXI8h92lr4h7VJoK/0X7Q3rPeVbddJTGLF7XjYeBDQ5VsfnJH1FG/UEpGkrPTFotBmSn57kjK7yB5JJqsx4vANPQAAAAKKADQgAAEAUsAEBAACIQutrQAL8nIbn8CfZ1rluwD1HbM2BazOSJsTPCAkpk/mUJH1o9oV0e6ykF2kRdR/JCy7Y1i7wa6ZrPn5fxfmc0Nkd8b0GyjUSTJXtVAbmIJwLMsTvp/ShvLM9gibkTZf/myvctmFNcf5+9SRXLzjpaxfwitOE/HE+59D8xXGEtjmAJyAAAABRwAYEAAAgCi1nguOP3d7jpeSGHQzNIxgSpAt5Jrd0k1z4cV4w0YWsQ9bgGs/dLATHlVy2JTNbwDTmj2UfLpX7iqF4OI7Jp872iCoRb3HZosvC67BwU+yIgBMNm40jmeSC957m5pTMdYG2mRA+ak3YG2lcbQZU8RCr6IZd/ZwaDZ6AAAAARAEbEAAAgChgAwIAABCFltOAPCSfVc/rWuGWHci8Kjqeck1IsMd6rq+SHdjzO003+Hstc7Tzym7YUr/q3aNFjWfevoq23MVealvtNechNzdhjc7JEW4ZvypwREAa1g7bEwpcyrW/1KtQ48RMAZX0p/o+K9qyst9W+FumuE5oefOWQfEEBAAAIArYgAAAAEQBGxAAAIAotL4GxMliH7fhfbluYNtcixpDdeA8i6ARac4YcHxNqHpjupSQLnghpy7w3oW2Qf1FPEMkXUcuq87+NOqckP1WQ9GlAueCnLb8Bfs8G08H753hSh9IbDvvhYW+YsyfOhE6KlbjmRv1OSBBD1adTcqgaeUNnoAAAABEARsQAACAKGADAgAAEIXW0IA0uk5av3nwzgWJxmg+th17TJFiIZAe19NJFPZlzVkfHoo/L1S6jlef8vt8fTXngBTX8TQfcU7yZVTkpW0o3rpGIvXixvFUDtI4AYlUkiNrPXOWK1m01yzngLzr1CfFghHq6g2egAAAAEQBGxAAAIAotIYJziZkwcpgy7BNcqI5jl84ZGNwqgJ+sVKckoCNrSmyBWQxmUiu1KGxpDcvmM6aJcWCA3ex1Zi7qo+mE8xOIrcV3IADLtueCUgycwqTipYRlaMxf0njKlyrQ9dpxtt6PvAEBAAAIArYgAAAAEQBGxAAAIAotJ4GVE9sbSAvF202bjAWvWS0V7hpRiNL2J4sLtyKcUXdR3TvlufkLb/UNxZ5aUKC7CnqQ/O9YBU1t7Doop0neUZjklypQ9etNSxX4ASDLnVDvouOJyAAAABRwAYEAAAgCtiAAAAARGFha0Ca8zlEYjgUURMKGc/FM0MMbyzFdZrR+T8vXUc1rlsUw+uExtWE+IlB6HaSzs1pbkUu2yiOuon3NCsGl9huEOvjEN58lvTddUv7ELpuFjKOhScgAAAAUcAGBAAAIAqtb4ITTAxB988MvrHcJOeOKoXTCQ7M+ir8ZludDGF8VK7VUp1iTWN5vTtWqNAchLA33opl8HQXXakDXzvRbBUw3zUFWcxuFllcq72xqrwmr2+0lRlPQAAAAKKADQgAAEAUsAEBAACIQutrQAJe1BuNJpRBLpL0Id/+HQjN4w5cO3nadvMyw0vRjbTG6Fr1I0WKiKD8UC/9SLiRQ9k9JNf9UCgbTYZd55JBN2xWrNc9r1rjDNexL5mTHhSqD761GlNE+G3rq7nhCQgAAEAUsAEBAACIAjYgAAAAUWg9DUhzxiBga5Y1oQy2T1Va4ZARXxiXV4vxUeS+eZEpxbVmjnm1DcxXNIHnqAmpEGLXaG6nEKJGpLlOlnNAnAi6TqzQNeJbzVFrihlhCk9AAAAAooANCAAAQBRazwSnIYP7p9HEugi5KmpC8WRwSc1k/moEWUxSmfqmr4vKyzRWBk7xnpDtWZ5JTnMvKlBlJ82Q9DdaBOwqyXSL5OnCbaFzDVdkDMgBPAEBAACIAjYgAAAAUcAGBAAAIAqtrwEpXJ6DBlpNmHtn2Lx8KwMXbsJI9HUjg56VKXpIrL4SddSENJetubHqu1QnNH8nGkWWEwuZwnI1zx8SPAEBAACIAjYgAAAAUcAGBAAAIAqtrwFxspxHqNE0mqs5OYNxtxmPAUUxN9frms1iOtdEjMrwAai0TXEOgepGrGuk70bDvpN5LSJScgMAADgVwAYEAAAgCtiAAAAARKElNCAh+nw26pVaOpK9uYnc+xtPk7/3un029fw+NOiGakbtsuVpkTXFExAAAIAoYAMCAAAQhZYwwdm0hJmpFeYIAKdFzDZg4YAnIAAAAFHABgQAACAKTWeCM79JrZicPBl5JgAAAGrh//9+m0Cq3IIJtWgw//Vf/0V9fX2xpwEAACAjo6OjdM4556TWN90GlCQJ/fKXvyRjDK1atYpGR0dpyZIlsafVtExMTFBfXx/WKQDWqTqwTtWBdZIxxtAbb7xBK1eupGIxXelpOhNcsVikc845hyYmJoiIaMmSJfiAqwDrVB1Yp+rAOlUH1imd7u7uYBs4IQAAAIgCNiAAAABRaNoNqLOzk/76r/+aOjs7Y0+lqcE6VQfWqTqwTtWBdcqHpnNCAAAAcGrQtE9AAAAAFjbYgAAAAEQBGxAAAIAoYAMCAAAQBWxAAAAAotC0G9CePXvovPPOo66uLlq3bh0dOHAg9pSiMTw8TJdeeiktXryYli9fTtdeey0dOXLEaXPy5EkaGhqiZcuW0RlnnEEbN26k8fHxSDNuDu655x4qFAq0devWymtYp1l+8Ytf0Ec/+lFatmwZLVq0iC6++GI6ePBgpd4YQzt37qQVK1bQokWLaHBwkI4ePRpxxo2nXC7Tjh07qL+/nxYtWkTvfve76fOf/7wTYBPrlBHThDz66KOmo6PD/P3f/73593//d/MXf/EXZunSpWZ8fDz21KKwYcMGs3fvXnP48GHz4osvmj/8wz80q1atMm+++WalzSc/+UnT19dnRkZGzMGDB83ll19urrjiioizjsuBAwfMeeedZ9773veam2++ufI61smY//mf/zHnnnuu+djHPmaef/558+qrr5rvf//75j//8z8rbe655x7T3d1tHn/8cfPSSy+ZP/qjPzL9/f3mnXfeiTjzxrJr1y6zbNky88QTT5jXXnvN7Nu3z5xxxhnmK1/5SqUN1ikbTbkBXXbZZWZoaKhSLpfLZuXKlWZ4eDjirJqH119/3RCReeaZZ4wxxhw/fty0t7ebffv2Vdr8x3/8hyEis3///ljTjMYbb7xhzj//fPPUU0+Z3/3d361sQFinWT73uc+ZK6+8MrU+SRLT29tr/vZv/7by2vHjx01nZ6f51re+1YgpNgVXX321+fjHP+68dt1115lNmzYZY7BOedB0JripqSk6dOgQDQ4OVl4rFos0ODhI+/fvjziz5uHEiRNERHTWWWcREdGhQ4doenraWbPVq1fTqlWrTsk1GxoaoquvvtpZDyKs0//z3e9+l9auXUsf+chHaPny5XTJJZfQgw8+WKl/7bXXaGxszFmn7u5uWrdu3Sm1TldccQWNjIzQK6+8QkREL730Ej377LP0wQ9+kIiwTnnQdNGwf/3rX1O5XKaenh7n9Z6eHvrZz34WaVbNQ5IktHXrVlq/fj1ddNFFREQ0NjZGHR0dtHTpUqdtT08PjY2NRZhlPB599FH6yU9+Qi+88IJXh3Wa5dVXX6X77ruPtm3bRrfffju98MILdNNNN1FHRwdt3ry5shbzfQdPpXW67bbbaGJiglavXk2lUonK5TLt2rWLNm3aRESEdcqBptuAgMzQ0BAdPnyYnn322dhTaTpGR0fp5ptvpqeeeoq6urpiT6dpSZKE1q5dS3fffTcREV1yySV0+PBhuv/++2nz5s2RZ9c8fPvb36aHH36YHnnkEbrwwgvpxRdfpK1bt9LKlSuxTjnRdCa4s88+m0qlkueZND4+Tr29vZFm1Rxs2bKFnnjiCfrBD37gZBns7e2lqakpOn78uNP+VFuzQ4cO0euvv07vf//7qa2tjdra2uiZZ56he++9l9ra2qinpwfrREQrVqyg97znPc5rF1xwAR07doyIqLIWp/p38LOf/SzddtttdP3119PFF19Mf/Znf0a33HILDQ8PExHWKQ+abgPq6OigNWvW0MjISOW1JEloZGSEBgYGIs4sHsYY2rJlCz322GP09NNPU39/v1O/Zs0aam9vd9bsyJEjdOzYsVNqza666ir66U9/Si+++GLlZ+3atbRp06bK71gnovXr13tu/K+88gqde+65RETU399Pvb29zjpNTEzQ888/f0qt09tvv+1l8yyVSpQkCRFhnXIhthfEfDz66KOms7PTfOMb3zAvv/yyufHGG83SpUvN2NhY7KlF4VOf+pTp7u42P/zhD82vfvWrys/bb79dafPJT37SrFq1yjz99NPm4MGDZmBgwAwMDEScdXNge8EZg3UyZtZFva2tzezatcscPXrUPPzww+a0004z//AP/1Bpc88995ilS5ea73znO+bf/u3fzDXXXHPKuRdv3rzZ/PZv/3bFDfuf/umfzNlnn21uvfXWShusUzaacgMyxpivfvWrZtWqVaajo8Ncdtll5rnnnos9pWgQ0bw/e/furbR55513zKc//Wlz5plnmtNOO8388R//sfnVr34Vb9JNAt+AsE6z/PM//7O56KKLTGdnp1m9erV54IEHnPokScyOHTtMT0+P6ezsNFdddZU5cuRIpNnGYWJiwtx8881m1apVpqury7zrXe8yf/VXf2UmJycrbbBO2UA+IAAAAFFoOg0IAADAqQE2IAAAAFHABgQAACAK2IAAAABEARsQAACAKGADAgAAEAVsQAAAAKKADQgAAEAUsAEBAACIAjYgAAAAUcAGBAAAIAr/B0etEYe1GnM8AAAAAElFTkSuQmCC",
       "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
+       "<Figure size 640x480 with 1 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -414,7 +474,7 @@
     "jacobi_sol = solve_poisson(u, tol, jacobi_info, jacobi)\n",
     "print(f\"Gauss-Seidel on a {N} by {N} grid\")\n",
     "print(f\"Solution found in {jacobi_info.iterations} iterations\")\n",
-    "plt.imshow(jacobi_sol);"
+    "_ = plt.imshow(jacobi_sol)"
    ]
   },
   {
@@ -427,18 +487,23 @@
   {
    "cell_type": "code",
    "execution_count": 10,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:07.097946Z",
+     "iopub.status.busy": "2024-08-14T18:39:07.097654Z",
+     "iopub.status.idle": "2024-08-14T18:39:07.272995Z",
+     "shell.execute_reply": "2024-08-14T18:39:07.270246Z"
+    }
+   },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAEICAYAAACZA4KlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e6wtTXYf9FvVe59z7/2+b+abGTvjx3g84xcBCzkJQ4xtyQpYRAQcHAExQZZlE4MBKSgRRLFjIcQ/QIzywOIpk+AYyWAsJ8EmCgmOwYAT5Hj8kOJkYo9tPC+Px/P097r3nr27Fn9UrapVq1Z1997nfOfcyZwlnbN3V1d3V9dvrfVbtaq6NzEz7uVe7uUffgl33YB7uZd7uR25N/Z7uZfPELk39nu5l88QuTf2e7mXzxC5N/Z7uZfPELk39nu5l88QuTf2TxMhom8lop+8pWt9ExH97zd4vv+NiL5lY10moi8Z7Lu1PviHUe6N/RkSIvo1InpMRK+ov//yBs//jmxMu6V6zPwDzPx7zzj/XySiK9P+f5WZfx8zf//5Lb+Xm5BF0O/lTuT3M/PfvKuLE9GOmY/XOMV/xsz/wY016F5uTO6Z/dNUiOi3E9GPEdEniOgXiegb1b6HRPRniOh9RPRbRPSTRPQQwP+dq3wqs+5X5dD4bxHRnyOijwP4j2y4TERfrq71ESL6rhPb+hNE9G+o7T9MRO8hok8S0d8goi8cHPcWIvpRInqJiP4OgC8+5br30sq9sX8aChE9B+DHAPyPAH4bgD8E4L8mon8sV/nTAP4JAF8N4M0A/gSACOBr8/4Xmfl5Zv5/8/ZXAvhVAG8F8B+ba70A4G8C+OsAPg/AlwD48Wu0/RsAfBeAfwnAZwP4fwD8T4Pq/xWAJwA+F8Afzn/3cqbcG/uzJ/8LEX1K/f2bTp2vB/BrzPx9zHxk5p8D8JcA/EEiCkhG8UeZ+UPMPDPz32bmpwvX/HVm/i/yuR471/oNZv4zzPyEmV9m5p9aONcfV23/mLP/3wbwnzLze/Jw4T8B8DssuxPRBOBfBvAfMvOrzPwLAO7H/deQe2N/9uQPMPOL6u+/c+p8IYCv1E4BwDcB+BwAnwXgAYBfOeGaH1jY9wUnnutPq7Z/lrP/CwF8j2r3JwAQgM839T4bKaek2/a+E9pxL0bujf3TUz4A4P8yTuF5Zv53AHwMKfT1xrejRxyXHn38AIAvul5zu/P9W6btD5n5b5t6HwVwRHI2Im+/wXZ8xsm9sX96yl8F8GVE9M1EtM9//yQR/aPMHAH89wD+LBF9HhFNORF3iWRAEacZ718F8LlE9MeI6JKIXiCir7xG2/9bAH+SiL4cAIjojUT0B20lZp4B/GWkhOGjnI/YNFd/L77cG/uzJ/+rmaf+K7YCM78M4PciJeZ+HcBvAPhuAJe5yh8H8HcB/DRSmPzdAAIzv4aUgPtbOYz+p9Yak6/1zwL4/fk67wXwT597c8z8V3J7fpCIXgLwCwB+36D6HwHwfL7uXwTwfede914Aun95xb3cy2eG3DP7vdzLZ4jcG/u93MtniFzL2Inon8urt36ZiL7zphp1L/dyLzcvZ4/Z86KHX0JK3nwQKRn0rzHz37+55t3LvdzLTcl1HoT53QB+mZl/FQCI6AcBfAOAobFf0CU/wHNpg8o/EFGtJN9LETV1+/LBNjU7we1mt1+fZlVGx45kzaEuzn7XnWTr2fPq+qwKuang1FN1mPNXex5pRPqXPqgpa7DR5epjFTd9XmnSVuya69ywrK5QOBMnu93hZsrVuSpRV/ye4FVc8VO3F65j7J+PdnXTB5HWWDdCRN8O4NsB4AEe4Svp64AwgQIBFIBAoGlKAIYAmkIqn/IIY5qSM5A6RECgUp/lO1E9JgQwURqk5H3NNpCOA4CQ91FpcNpP9bsd7PCJxk4a7Cgn4byvfhfAaI7tPmYg5vMMt+t3mmMtZwby+TDPyZhlO87puHlOihOj+s4AR/A8qxsJCTfBJASAMn65PPVX2qYQSp2CW95ucNPYWaxWsCt4ePihLdssCi+yRiYY5T5q9i/hBKT+VTiBGRRzvxsMCw7S/3PMeMRSn+e54hQZiDN+isePLbzuCTpm/l5mfhczv2uPy2roQFKIYlChZXggGf1ITgXwBOmYpNl3ekRwqnMQJR4KKSX3rrd2/NL1NA4Umr/ioHU7gsHomrg09+Sdq2P9108PbkSsCp+KjbEBUn1O4kCBhE2YTmrKKfIhtEsZ35bLxkKohr5kyPqQDYC/noa/Sch8vk5ytmLb405QOApU/tpz3BBPDJ3nDXXmHejGyThdt43ZlpIzHle7DmI/DeBLieidRHSBtJrrR1dalUP0qbK6hIKaTTwGKS3exnrXruNIByLBGW86ZQttaIYLC/UWkdriEL1yzQwKizKcEhwEs2kCTZn5pV4ZVgXVVkKXh5GwfUub1b2WEH6LbME1DP4G5ylRnnfuQOPhApHCeCNhhfb4pg+VTbj9P015/7gPzjb2/HjiHwHwNwC8B8APMfPfWz0wK4JVrnJDpm4Rp8N4Zf8WWQ0bz5XRqc7pca+N3nk8BWoURh3U9F1oDVQpkhh9g1kXugf/+1b23xppbBxCLQ3Dxm0471qr59lyzrV65OCmHXPBZvn813otFTP/NQB/bWt9kmROLejZoSTfWsUr3+VTf9fngzJgm+Cx9Z3O6Ty5a1SbbjfVk7wOUZuo6+rmylIlEFgngJaOY073ElndnzowUEoMMqf+Zk7JHwoAYrrHOdfjfMMx1rFh1060uMk1NPPY+mqbg4PdmjhDEY8xh0y7xe/k7vDOSYza12jxZEKan9g6jS3nIQIHgGbu98l3jWsAEAMQIigCHEKHkzvszXL776CzCQagN/SR0thQUO+z39eYr2E2+OfN57hWEsgzeFEqchRE1R+fUwwcyUid83CgpERWebKSpctkg+dZ9XlW4KCMXotO4FncpEyu1dSjAU7G8JVTHhqzx2BeVFPa3FcfijZ4Dx9gHSONCwCAK/bi1C0uRcSwkyFTdgiIyjErg8c01Sk4i5XTrNsVG3ZohQF6Q5dwxROrUBtlNcxbCuG6kJHcv+44K824tD9ns6+M0UzU0p1zoPA2UrL1LUN7YXv+W3TQS9GY3I839PIistLGwb2Wc6hzr/RzrbeClz6mtM0/TzfUtPeiz+fpqhOxlHJLihLO6763WC3I7TI75TEg0DY872vGjjZkN/OyPGCTxTlaahMqzfws/Ln1qoDmuBWROiV0zw69L08e3oaCTJSj7OXQP4WYiim0owhI3l/KtQONMTVJs8ZEqRMiA3m0RWzYYgtudm5d4VaP2WDozr02/UvOvkFkt4aZ3t9EX3JOi1HGU/piOOQaRWEh9zVzisJ0N9tr52skmQDODI+pYsUxtW3hPm+f2SW7C/QKA+XFAN9TWUNfUxJP7HjPKNJ1DV1Lex3bDucA44C6fU4bthhKup5hDR1hCSYdW4X2z57HMvpSO+y+tRB+kGc5Nal69jBsZB2OXnT7nSisw0lHAqPIVLF7u/7BYqrwGcgtMzvqSimgU56OGYBmVRyAfuWV2t7E6ktjdaVgi4Z+iu5YNlcMXxkkAw7FDgQwErtz5Moo0n3inQLX7ZKoU5cXdhfRrKEYHhOBhdUJ5iAjS7ilgvSpVzR2hj029PZaYigYYtewejM8WnC0I7F4yfksRoXtc12Lk2qDHqu7Y3eXuGJq9BzTtFpe4UhTyGP0qUZ9GquF+7xlZqeWJWTMDkdhUqH/eU1ZDN9Nc6X++QtazHXNefu2DdqChXI5l3WA+pgRqyjH2uVRRn9Aj5s+p9rfOVPn02XAoLftfa73zVmGbuoOVyhq5+KeQ/rW1BuN3TW7L+m8XZPiYbVws7fO7DQZ/1IarlhBh5Kq/CZYvVcsNGAMDdI6h623zOZYefgnT7OlsblkUxUrCBModk/FrQFU4BkcqV4qyA1xYVXK25jyp8wIZJaS7G9t+NKNKXysYk4tltfBrcjS0GslImvKNwipVHvBS2MEzfC1XoMTRrg4OI0iMc3wsm5ewnrJvDOnXEtt/FDuZurNiqcwFtg1hVHHrI9hnbLQ7+8N3zvOKYw6jMuncJM3aEP63OZROF/mW9em77rrGCciYaROAOqoKsbad93UoGEaXe5kpl3c9HlWYstNQ6/F4539tsjcYosHeoxU27YmVRfD+ZHBNwlX9vt+ZbpNyy0bO8GdStNhiTVcwxJrzJDO0563YfWsLJYVtGEvGvnSQhw5pVenePy8vcLwmdNL5rcbvwPbWEPGfUTgrFGF4YGcgefWkcjCJ3eO2TE0O7duw9ItDrqsooSqAxONYTOjr+VXNGZeFValwvQJA4fhVWp+hFNz0SB1Q3UgjsEDVJ6ALNHSCKvFu0ly+8zuZdi9bK5VqlMYvSlDZ+hNHcPoWwx9LYxvFElNzyDm6RsJ/8TItaJYhndWZjUruoQlShuNwTvTcl3SDlCJKN0f/bVtaN2UaSOX7RGj62tqJ60Nvbkuhti5jlqOgdTBUFy8qv0qFlYYKeMcMXxj8GyTc8Aaw9up1CIeVs49W7n9bPxoQYGnMNroR4yuj9XblhkGrDBi9FJPtfecZ6RZxYjC+Essb9lDM0cJ59NBSSYkRdrC8DLuA8CZ0UmH8Xr8x1rrHTF4lZDd7hs56EkdZ6IzHbpvxa7UbbZVezcuumIVgusjLEYAEk4nMrzFKdUdMDwRmDjjpBozxGpZ7iaM74oHjKD2DUN3OGP0gaG351OKBPsd9Zp62xj4GsNX9gVkUQYwMHo7RvcYXr7pc8k11kL6fM+WDUq4qENDfa9LzO7hZj9HDlruzTN0aZs1dOvUpb82GvkmvHR9wceLxNaGXhgwfMYl3f7ICaCLsMToF7HSneDI7TO7NZjR8klt5EBxEotj9HzsIqPn+qIgrqIMjNwNLUfCdlw4MHoJ7XFNhgfOM/isNFz6kCrbq3t3b3GLkedt66A9Q0/tU7isYDeMxprzmEYv3Y/J1C1FYnrolfZx55irQ1gZw+eyghVR8jAyY6Lbzlyisg4r3UhHbn3MznbqDXDZwj480YXtHsOr9d0jVuBJKwedZuTbHGjdr3AoX4nKuJCRQjFiUQYpJzdcLIpEQFnFSitTPXk9BiJ6RZLQXrOEKFNp+AKz622LWy4rxuhNr0GXYZyMWwrbtZF7Bq7au8rsBlQxfs/oGyNH0qv0qirKDxhRea1YMy1HdWksT6i4AKdhpQ1/o9x+GO95Vl3mhPKLhu4cvxr+aUaAY+gjIzdNX5q7LavlrGTGt49MyvpquUxhDx0uisFLWKn6a3FsqMq621hK9rg3NjD2EW5yDY2bPlYZei1HZ+h631Ju5TrRmB35Sg96Rt845iZs58X1Es1jyDnRV7BS4/bzsRrf4N0uly3l1H33FKWUr7GCNVw1Pu8UxdQdGfipK7JKfTUWb5fL5n1E6ZO5ZRBCUpp8XAnrY374RdghpPM0oWJmhBFLcKTMPHoKRymgFhsm2kSXYfYOt7xviOekjhs46E3YAS1+uZ77fSTVgut5M0ZUMMt9xUgvnJS2c8UJU+7qPFfeRGNqqpPKgjHBSudquEQFpbzcvw4Zn+Ewfo3ZG6Xw9g0MPZVB1UVn6PV6rcfvlqiODF0fs7IYBMgGqRSorKM28b1M3TQMIgaPNqxPBl/bLyzfZH91YtBjdMkC23I71SNr7bsb650z4GCX9/sMj/Y462xz/U3YwRw7MPItq+iaiKxJzJ0WjZX79aIxrsfWqT6qEZnGQbF/bZ/at+GeRG79EVd259nbOvpzzPBoQ3Y5vzVyoLIC6ePsMWjropaxCv+1rIXxrNc7iMOOlQkK2xfWyAwChz0yO9TjkIxeyCHmhzJEGQ3Ld4yeGpmaVhMKXYjYrxoz97yGXcfwctyGKVHtbJWR82Svg00OGlh20gWbUjmXs+onHY3l80vOJdN8jtTyX8Py+bsmrJyEK45EWB7omR4wRN7jtWT8d7CoZlC+ZOR6P4yhq+OrIunz9obuHqPr5u9ABmaJHby+5baeZotqnLVeYXrF8mmbKwPk/eWajMIcMN5eZ4BTdenLAaOXdnM3LnQdmsVwDbu8bzR/3pxnydBH2C04asAxcHtL3NfTUVkZlxs/UBKtpKIxaccSy4OK1TbZeh2RWUaHIxqvDfJMrKBrFMoat/begDt3bhM5zRjPKEozNleM0ChYMOXQ26bxA2M3N9jsK6yvPHgadxsG0cOTzPKFOcRpZKov40O5zzLW5JoFNgv1NYOkYtXwMrVnx4T9DQ8dsxeFyf3IvlCPXTNy7sbo6Azci8K2Oui2TjvUkj7SbJ9wUuUEhanCqvgAjZVyFnZ4ELGKVW2mbfhYbtXYmZyOB1ZCQaljGEGds2OUrYZuj/Gy9Z6R2+sbGRBH2ddN2+Tlq105evZgHdari/XZ+lRLz8l3TC9iGL+01RkTLuK35qClvaOxOSyGcqy+fr1njTMwcNJAB8g2zJQDVLpREqNQERnE1lX/G6yI9bPvFStA8NBTretYletGi09/byK3z+zevKAN0YHWuAEF8IYlr2tG7rGBxyjQ5QttNaKNNBUYlpBN8fyUD5DyObVBs4dkgwt55LCvMGNElwUuWeQS/svNcJkCakJH82ieSxqesS85Zsj9tVi4UViua42cdYSzAbumLaj7u3J9r7CYyYfMl8u56pBLIrJUrJieAZu1L+VAg1VJtgrTs8q9AA3bp+uYG1h9/XCVO59n7zp/wchLfRU2tp5d1RFlsUkcywbygJdj5ItztgsetKlbwmnZ5GzIGfvyXa3KmirTa5Yv/ZPD9Wa+N1A7RQdKiiRjRHWWND0k9dE85trozkKyp7tPaRvOd9DlfAq7LUzuzrsvOOnVe+GKEdDjlDa5eaCowYpQHTSWsUpGr5i+YKCwAmp0BrTToU1uSN24I7c+z+6t+BmGXAMDL8csGXk+/mwjt04COMnY683ZT6rb2mtnBUm+QI3pZTwvWXvpl8jD+V75E6Mvq+2EPQiVQRgl2irGL+K97NJ9xNcYd25jZ2g3ZeTnOOiteOmDCmbK6ruoLIfbc+3/kr2Xdujx/MrcvGZ61NPXKEvhJdJeb3xbt79cdvT00YjxT1WUfMzQyENbxrrcHivnvlFjh1qgkb1/MMq0xehL+O4YPagqF6Nlj2zoNYSXdtUxZWnr0lJMu8sb3jjhev8dvZHL+c9w0GNmH99KJysOWkdlxeinPrzvHLQ2egA0V4dbxvSi4nI65ah1eSqTSGLbzd35gzCANSK1oRUlHz9aKtmwsU20EbqQr62DdSPXiqrvZ0kyuOUpNQ02V13RIR8IPtOrJF6TGAp9uNiEnHJ9HTJKiC+GD6BJBCkH0MkSfiPs1ow8HzuaIdmMnS6z3/V9LUnjAKEwNEY7MHqLlfS/GL1ePIWJeqbvwneJ/qj2W7MU1ziAhXt8NphdZeM9Y1o0cKA3VJXQWWPypi61n+XaA5ZYynzW3+1GTfLk7eKRJawWRSiZVZ/pi3bpxFDk4jA6RZUwXCeH5NMyCOCsuabe4Bey8UPsjIGX7wtM7jpsjQ8WsLPXb7b75pcmN6wpXa4MteCRTlTL2Mcqn0cz/abpOqgyg1fXTlVlTZ6JRTUjtnSBGj2wogx0MWSn9timLnQdo6QrLMHUgtAk6OSzsLliAX0qpcSFraF1ghrm6PoLlaGF6QF0D26kw1oGARSLaDFTO4v4DbDb4qCXojAPOy/y8pz0KIzXWOrpzfQFlc2bsXUl8TIcQ2XrYrfK+bpMH1ldpl0mvfj6Mt23IwtfCOnvYLlsbczSYgetIM32iA3ydjMV0ziGXlH6zxGDmPYNWKKJpoxnblY9iqJwnRprXkgRUZleMwdQja/8JhuV1XjlQpphpF90mzSD6DZCLc8UWVmh5bO5HLsdu7K0eME591HZyjFemxxbYPPFJsUsVkCOqMo+gJhUpNYzfTJ4FX4rB1LqIBk8mDu86ry/1/DFoiK3u6gGYxYvdRYUpd1Wx2sl0ArUsAZON3TDFiOmGLKEYgjdB+R9knoRgb4eWu9f91WPX99GavqjbOb+QLvgo7S3sfsxM7iy0UGX7aYvqdWBBUNv793cp+vU0ZQ19Z1bbF4LrRx1Ze90XH3akFq2bz5bpi+XU3rqLaKCOj59r4xf9g9em7VFbn/qbec3sQNgNHWijPl1YXL9OWIQ057mPsq/WkCKmQtrM0qmVRRIXlNEVJleM0fVKBkPqA4qyypbpi/jxNwxhTE8BhFZ+n05EZN7aYc4Y8e8NCYHYIZTCTuLQ8FZl1sj75J4uq2+DpaopjC0wkoislD3d5EZw2V6lmSezIAI04teqKW4le2l8WgxyriVKk372/u0cvsJulFjhlNv7efSooqzmLxTpOX6bVtMG4HGlVeWpwpkUGwR2voto1c+X2MO3X9Liz10E4GeQcqptr6c0THwpnyLg7aJ03IMDYdPXaSlDdorg8FPn6M0WuGEOnuimT1X8yOzE/Cq56o5GGDM9nLd2nQfH4ujlWcjG2+LNEB6e8QGGlx1jaZ+8xKEWr/UCR6zq/Oo80Ozz0DKtIwwgmECMEBlySvq3DuE2QfMocbz6VOF98L0C8yR2iZRgOpwO9RY0Js+Cuu/u9iNHLacc8U5jxyzjcbK+e15vLaaKAxAiaIarHJfFjwKDlAM3uJVZjdivlj5ERdWkYNajmsz+KpNqV2K0V18jEMzcgfz7E6ZEjezOwijrzUm16wxUJYlpUptde4HKAYu37XSFOOP2Zkw5+eo86m4XqcoFFoWaByEk7mHOAsBP3sezfYo9YyzKDg49zUSa+C6bGntuuOgXexG+0YO2jnHJsygsAKScSpDTkbI5fjybDqjro2IFS+E7GyljgwBQBnfarwk/SORhXoqsuCms/ClDctsruXumd0a++gRRQ1W3r9JURwjb0K+YOrm7cbA7TFGUT0hBVRlBxQFqkm1mmUmUm80yUyvjxHWbrO9zj6ocqh9zaR6Fj21tl1vzM3mw4NT5hh4/T7OsHtGa6OwbmpVR2COI7DOuhEVskPlUtpIDHnMDIBqpFXuVxw1V2w7vNT56xhe5U402+d2lSgN6hxld32B5ZqsGjsRfQGA/wHAW/OlvpeZv4eI3gzgfwbwDgC/BuAbmfmTS+diQvv2luZCup7DEAuKssnIleG6TB6cOlKmlctcz7ZdwCihnRhyeVlFKhc2l6dICxObJFGzJloZtiymkfM0++S63iov1cbmbTpGidYUaOmFEKsPpmydRrMGq+omPMZGrjG05y/t0M1Xfa1zKRKqF/ot35UDtVFBh5kxej1Gz7h0mCnnoef7dT+XsF7Z1BIBbWH2I4B/n5l/loheAPAzRPRjAL4VwI8z858iou8E8J0AvmP1bALmYF/XaAvOipEDaMbaQ2O3DKINe2DkZW22DeuBxrKLhzaenzkrkoTtYvRI9RPWgjKqYuX9Jfwn3VmpQm/0KOFix/ZagVDLUtt7BVqSxXl2Y+D1OwYYUoeVF4U1L7zwsCKDFdA5eeugi1EDYGH0PFTSrF2+F2yoACjnKKpQIjL5842+qaOW41ac1PWl2zR+jYytfdXYmfnDAD6cv79MRO8B8PkAvgHA78nVvh/AT2DN2IkQNz5coY273TaGPVKUkZGXbcfIRUksq0y2Dg8Up4ZrZfHMnB3AjDLdRqSMPqR9rOoUwIsWogwHxEmUEB+1f8gL73Xnle3KRk1509Hr0lV1HHPZ7vDK22vTaI6RF0O2WAVdt+5DxqwL56WZKrxODphqEk79oC3FyvJhRjVAw/TFyWvHAP2Z74MNZoD6Tm25HABVz5MF+E4asxPROwD8TgA/BeCt2REAwG8ghfneMd8O4NsB4OLRi8PGNIozmMYZG/zA0B0F6kI/HbIHU1eUaTJG7k7PJQvUTysRpFwaXfHvGDt7+iZsF8Aj1+SORAUSEZSkD6Cnf8qF2MYAPePrrteBxaIYHD38PCPX30910PrPGrQdelXsuHEEVo/EnyJHXcwAzeptP/l6pF/umaO2BkMpj2o6TZJ1JkHnYkaqrDgQcw1S+lVA3QJWks3GTkTPA/hLAP4YM79E2iCZmcifrGHm7wXwvQDw/Ju/gG2Cbp0d+u3xmmnDCA0z+EYeJ3TlRXkCwCGNa7VCxZ0y+sBVCZWXppnKJ0WAppR1p5CZIyqmIKikjs8ahQWsIhjWkOmfEgrmD3KUU5xJJiRfNjwIY7EqZSPslMF1Y2oz9BLnXLACWka3hp5xi1NykDzlrhDMJEoj1ZfSZ4KJYBe5bAtWBTdCjdQYgERnEfVBJeK27zusxHGoxTZAswjLfvZYGTx6eIpsMnYi2iMZ+g8w81/OxR8hos9l5g8T0ecC+M0t5xoZd7d/aPTkMET7acv0vGvDClBlOvmjDV0rzFQVBoHLNkR5ypgsl0XlrkHqXuUNo8rrUwWxlIk+5sw950qNvZv+aX0B5bL2gRutK14Zmv0rzlmdpGX3MXbaEdhPz9B1jsRj9sbwJyQjMyG+OGxMDG4cNJLVRUqvAwu5N5hU/9beK9NtubgEbqGqAAQvydzLY6y6DixWKDrgvaFId+1S9LXE81uy8QTgLwB4DzP/WbXrRwF8C4A/lT9/ZO1cJbwa7GsvLOW1Z/ykjqrbhe2tslgWcNliQmVzCd932eh3mS12MSnFLibGDukPTIgzpZdEHELSmSOBIoEOwggEmpBCxczygrY4/obZdSZYs7w8iKGNhetfYQCunVsf7Kg00TGF0ZbFIHHVURvsBhh2znYQhXUhut7ObF6/AwiMuEufvM+Wuc9YBUaYGBwBjpRe3HgIKQw/Unr45EgKM045lbyuAUc0MymQxTUZu5JTMZGZHAOgY3g9RmeuzsXFbjNIVbYw+9cA+GYAf5eIfj6XfReSkf8QEX0bgPcB+MYtFxzmfzrFoaZ8mOQZsETH5jaDbpmnOAOuLKEZIyAxeQCwy8qyjwiBEaaIaYqIkTDTBGZKNiqGT9mSiRJqwiAMFBZRCR0W+9csQTVAABJrNO8yl3LVDQ1rNOVZkQx7ODAsyhYHXepZx2xZWh9r9rlMTrV/JAor3wk16hImnxJmtIsIEyOEiJAxizGAZzKa8CQAACAASURBVELkbOQI2cnmRk0A5nwtiQIkUy/MLpjJWD1A5W1qv5NKopRsP5awsts9QnZp7Ui2ZON/EmMd+LpNVxEhYG257HoYr+p3ypB3mHHf2hRNDfPU+HxKCsMTwPvM5PvE5NPFjDBFPLg84HJ/xIPdEY/2V3g67/Dq1QUOxwmPn+4R54Dj1QSeA5hCeq48EOiINA7M3l8W05AkYObKGsX49XdGCevTdn1oBuavZXjpZNvZtawo10LiZ9OjydaZauysw1XOeThn7mXad9WwC24She2zkV8k7KbLGSFEXD444GJ3xMP9EQ/3Bzw97vDq1R7HecKTjNl8NYHnvDx3JvAxMTbNhBAAjpyfR6kYNpiJoRvMJMoqYbx6TBYGo8L2MDgavNJXBcCCt76D33prN89J0I3C945JdGbdYQjNDpoZkBNvPCEzAgor0MTY7WdMU8TDiwMe7g944eIpXrx4Da8cLgEAV9OEYwyYAyPGgEgxsTyoJI0oz6OxZgHJxussblaa5jtQM7pUGaOJ9nUfS3neWVhCUYmFYfiCBEeZruOgi6EHs98ausZcbZdILNeVCEwzO02MaZcwe5CN/A2XT/CG/RO8drxAoId4ctxhLpgl78qzfhsNAZx/i02Gg8zlGYWO2TVmGdey/DljN3pMtunXXNjMt6OWnSJ3sFw2f3oeaIHhR+M996EHO3bXY3XLFHlqprIEeka/iKApYnd5xDQxnn/4FJe7Iz7nuZfwpovH+PLnP4Tf9fDX8N6nn4O/8/I78VuHh/h1eiOeHHd4BcDxGHAEwMeQFZsQKbOCJN4CECE/9EcpjFQLcsqiGQHcjuVl2aust1bjQPtQTsMSOow8UXkanBRWQ+wUhjoKE6y0kWtn7eZVSLG44LjLZRMD+whMjN1lisKee/gUl/sj3vroFbzp8jX8489/CF/x8H1479PPwU+/9E68fLzEr4c34mnGbNaYIZT2BAAcqeTxCma0gFmHVa4SUdfcD2ZO7JgdQIOZrtP0uSO3/zx78Hd5SuMxQ8volD/RfHYMbg1ds4ANGyfD6BODpoiwY+x2EbvdjIf7Ax7tr/CWy1fxOZcv4Xc8eD++9gHwBnofPnj1ZlyGI166eoApRDw97ECUGR4Ax6zNE/J73XsG0GzLSPvqGB+NIrCKAuTBmMTeg/n2vG1Zo/TtVoM3SuUZeIfXFgettrsxesGOK5OTcs4yQ5LH6GEXMe1m7HYpCnu0P+Atl6/irZcv4Ssevg+/58EBL4b/Dx8+vIiPXz2Pl64eYBcinh4nEE0Zs5gSeACIqWb7mU7HTPIysi3RGVej13PupZ6i/GZFn+17LMN3+2+qGRj71nG7fa6claKMWMJfKMNmG03ozrukMNjFnIiLuNwfsd/NeMPlEzy/f4ovePBJvP3iY3jz9BqAB3ghHPAlDz6CR9OL+MTVc3gpPMDjwx5PDzscj4meYiSwfkHBnLZBpNi3WmajPApwqUtQyqaZXJSHjdGjfi6xxibxHDQsXlA4OkZuWNzFTYxeZd/bsD3jKZhNNXl6cXHEfprxwsVTPL9/irc9/CTefvFxvBgeI2LCC+GAL778CJ6fnuATV4/wynSJJ8cdnhJjngOACXNMllvwoWXMGoPWjll3Fy/gpnFQc+562u4knLLcWRjvyqLBG0UBGuXQ57ZTNa7C2KSdYvLCDruY2GFKjC7JuDfsn+DFi8d4+8XH8GUXH8GbwxEA8EIgfPH+N/GADvjAxZsRKOLlq0sQMQ5zMnbeUTauUF84kzM4whbC+oV55SujzMEXIweUomBo9Kket/UdxTk1lF8L4z3n3DiBhSisYfiQF8pYRhfs8pQbppRbmaaIaRdxuZtxuTviDRdP8Mb9E7z94uP40svfwJvDFYCHeIEYX3bxETwIB3zg8s0IxHh5n3IvBTOWyDuU6bUhZlDjePVsg0T6dkjl4aZxcPEDMDR2GpTjWXieHSOFoWa7DwXRKMuQJUxIqEPAYvw5OZeSPdmSgsyfI02vBcYUIqYQsQszdjQjIuAKE3758Ab84oEw4QUEiphBCMTYU8QuREyUpnqmiTDPAVSuQ+XahPS9XWzDdZonb5ZlsrovVYjYPgOPGqYz0Cyy0UxPOD2U9xyzxW9k5EAfhXl4KkNvygpuMFNvrHDLfR4SBjuK2IcZMwIOPOG9hzfhFw8BAQ9wQTMih4RZmFP9kKK5EEI53yJm0m2cdQfychEFRrbbJmGX92mj11GABAtp6EVmBxZnTazcObMPp3FcllD7RkYO80lKYfQcuuwr4TzXTPwugnaMsGOEacZuN2M/zbiYZlxOR1yGGXuaMXPAk7jHu1/7IvzCy5+Hdzz6OL7mhV/CgXe4DEc8Dql+ZMJ+2oGZME0J4chcftABLHPx4vo1qLmOJICAzhi7J6MsU3QRAPXnsUqzpEMGskXHnLeXnHMXhWljJsXo3pBLxukTA7s0Tg8TY7ebsZsiLqaE3eV0TA6aCU94j3e/+kX4ey9/Lt753MfxtS/8A8wI2NOMi3DsMIuRxpixeErt/dK/8gyCYGKfgnOwsszfYpS7syF4e92x3ME76AbGbbbdcTv12y4rAI0SlVBRM7pRrPSd1Vr31PMpec4gYgQT484IeMJ7fPL4CB95/AJe2D/BgXc48ITIlBi9/NXzQK6TV90xcXrZZEB6CWVQjKDukTSbW7aQ/m13lTI45ZX+jdIAGC3UcB+rXDDysr1k6Aq3zoF7+BKXTzT7OfdTxS0Qy2gbQMYsXuCTx0f46OPn8UaFGYDTMNPLeWVeXWEICemp+Icm4pIpVsFIwVHLVaFX1uHgwCNyBz/suLwfUMoiZcaIO8MPZr8d/ylG7x5Ttevc87wsTRJ6p1BwP6VQcBfqWx1eixd4OT7E+157Mz7wsRexDzM+9YZHeDVeptVYSGmdiSJ204w5Ullph4kQ86KKssouD+zqO+SpU2ToUA7o2GI0dgcqedsFG6WrR4yxIGtj9hF2oxmU5uk09WxCDevrAhrkDLwk5RJmeUVjiNjlzyljFjlkzB7g/a++CR/62Iu4CDM+9caEmchmzMBt/xPU+nrpi+zItTWr5+VZ+n0hGhNsWG3Dfh8XFbn9RTXA0Pt4irNk6Owol8cMzTEwxzfsUFmdCPkve3YA+sG+GQGR0/jvybzHfJjw5LjHk7hHzBo8c3ujpM4rkUNdgkXl2kx5FEioq7LUfcg+uXfRIf0JU2a7fanMSpPM63aq48mU6b4HOift1VvCrWV5Tg5S9SWVP3RRmEjkgCve4cm8x/FqwuPjHle8Q+RQHLRIUOfrMAuch13qHiR5aqfdKL0hsNi8sn1wjyHQ4+Phdarc/tTbymuprMEvKdBiVl4zgzC6XJ+4Puo4oYbvKrlDxCoxx4UdAhiR0zrqJ3GPl+eH+MTjR+CXLvDJFx7i5figOAEx+kCMidJ5JOnDMSd85NVQ8iKL/NBEYow87hPlKdohN52VZMAK+i04rwtbrLD6KMdS6lmmL59OJCZZd0KbX5Fk2ZQfLCp9nBhdQvKZCYfM7Pt5xm89fQC8vMen3vgAr8wPcOAJMwJmJgRKxxFQMJumhEv6yfGY1ksA9cWQjPwLPvnVn5KhL32uTFkxfDNO156ZHXwk+BsBor2FI89ENh7wWd0qSynzDN0p8xmdG1av7NDuJ8UUnohBHzgtjaUD4TiHztDdbigMIdcj1U7OLEKlnWWYzO29ECorlN3CFIqNXze28Fg9l2vDXnTQ3R8v4lYdh+lDQLH7uMlzxufquEuYHROGc2Z2jZs4iubWvHab+5EnIHVUJu0rJ1H9Z1ledo3w8TTS5gg9ufNsPOAbumvw8JVFL6rhzOgNWxCabHxhhFyuky+k/kJIQAvgEhpGJJZ4GnfY0x6vXe0xPSZcPd3jtXiRFAeE40BxSmiYXzVcfp9djD5kZQZVFEvSRzw+Z2avc7pNVt4yOVdda9+Gg1Z7hjTuiGfsFp/Rd4OdZnQpt7jVOi2zF7xyNEY5uSaOWoz4GKeC2WPB7GqXhl4gHHNitblFqucNgfPDTFXHyjvhpW2CFbKla4YvFmxid/PXML0c6kRlWsrmgsE/G78I4xj7kpGXbeNd/QwtegVzvDKEQTMGoiglG5slgspYXOZs5zkgHIDDTDjkhdx2vC4SyhiQKzMXh8TNOLCwelAuX+ZojULYl49attjKFCvkUI/xHHT+vsVB9+zPrfNWdeo2q+EMGqzLmBpwI7LIhIg0/KqYEY7HUDLxQMIXqM5Zn6/mcCjNu0cAgdJjsZQcr0RqLM6GKsO3Wfk8jpf+VLfVkLQ4aMFZ9/8pjhl3EcZvZPbOVhwj7zO7DqPLdjN+bxfP1DBRA4pGYQJx8frCEscYcKAJh8OE3VNCvErMEYhxjBNmpWCAVhp1HWHx5GFS22T8R1zWuheDn1GeqCoMnztIZ+K776oPvbF7weKGmH0Y1tvvOaoZPsegMdXTprlc8isjzETESR94wo4jjocJF08BPoSC2UEwU8m60GAmOpKsNxkwQ94ln37ppZpxvrP0nVEX00g/l9eYDbBzMGrg2eqZs9wts9PCPlNnmZnbcV7/p/brVxKpsvK2mS6z22u/sIQwe5wnhCOAY1KmAM5G7o/bG8XJ7r4oTg4tOOR9MSkTA+kXREKvOBLnLTGFkI4eF0pZwxLCIAtGv+iITflw7B7UMUsOuuzj0i+F0fN3CoZ9nTaXUJ4nHOOMOBPCAQWziWMXwttbLPmAfK3URlK/EkOF0Aqb5/l2cdSF8BhqtaPBLuNRxuFc4Sk4NoAMm93IMzFm78QauFdWFKMP/9rtOk7vHYJSnPwnBCthNmAYQkJ4JhzjhAmxKk4UA4+ZIXrl0dN4dSpmQXFIhfqiJEAfGoZcGFuDb4xcb+cKlpELg2xgjWGdBSP3cFt00CWnUiM32d8kv4CG2S1m8ifsznNIDlreUEPBddAElB+slfPn6jl8z0Bkr8sBKSoL2YDLA0w1Aij9J9GZw/Klf8X/e5g547Il3D595tm7bec94GqBRlGYJknnsQNQmRwdm7vMnpVC2J2PAdMVQMeUuJvUfm3wZQwI5VBCBOKUvLuEhDnBwwGQ596K4kiYb0NDeUstjNI4Rl6m6ixL8LKyuOIp2sDIARO2y+eagw7tOfTQS0dJtp+tCG5HTm+iCRmzI08IzMVBy7hdO+ZAjFh0BJCxOYk+MUq+pURlMgzLfVs6WJ5nJyd0V0YPGMzKebAp+27lTt5Us8QIzSccZRkZunaaVskKOIA31WanRwTQ8cKMBGph74j0Asm5Mnupt6VLSDG1Ct2kvVTfX2WSPC3Dl3MBXWgIuESwnpxbqTBy0GWfxkjX158OTtqpF9zQ7td64TlqLTXfkhOskRJmMW+vQNUurFKLnkiNz717kqw8+m398kk77NIjfn1qqDqnyu0uqhHPDZykOAV0OAqkDX2UqFNPtTXsH/QYTJSlVRr9yjxW4aAeAyKH8XQEjhywQ/qUeqxuTNZbW5agQHVaR7K8Msajeh+F0eW9c4rh0zTeCksIe2uGgCpvAHFwWtgeM7uDnTdmR/3OOnzPnzrfUhNzFS9vpWNkQpBIiyMOHBDySz9TNAYc4wSEuURjI5FryBQcAy1e0t/RPMGoO1cxvE7EuSwP1C9lu7bP9WsLTutO30G3lJBr2EHXJ6eOrU/9Z9MJOuwTppBdKyG8iIToM6eLpFcIp+2wMb7SLFHuoRiYtEs9KNMcDGiq3soSpCsoHexavBQmmnKXraV85KQBF5fO4ds6qOf0tpd6XrN7+UEI9Su2er833+75uYKbZDrLPVNh/abTNeOX8CzvdfCDrsrqXpl8+1mQu0/QDRWHzTZa49X7lhid0LJD+USdvnGYYdHQ1dgucgDNhOnACDmMj8SuwpRbdq4lYKdRgLZAztn4/ASVnnPn8q8wPOQ8I5ZwxoOyq26gw6W/if77ZuyoGkldEFUTciW/0kxLssIrbVPJt6BGSY5E1CnQxOJIb4o9pD49cCjjaG99fCDGLOG06Evg/FoqyklVqmN3KZNoTcJ2rfsGO8Bh+VqlTp9axj9Bnonlsq03dxRFf8Iv58G5R/U9ZS3j9wXRylBYnJF/9keNCZ36XZMUY2uiLtmXphAtK+hxoCIJO5iz5Wm7Mr2+HKTeVsZQ9VxDV33tGbru9zYSYx8n1Pqg8e5NojATsQlVK8noTTukETJ2H2KGyv66XLN2bVqCl506utzcz5rcAbP7rdqU6MllWlmaJI5ZegnL8CUDz5URgjdez9WF8fOlIwgTOI//uLA4ZkLI7xYvmXqu0zh6HEjkICXXIPkRgfz4JGHMErpPGPkd5FRfgIjqD1jeYiMGvzQePMV6TPTjhedughUOo5c/Lt+7hU9qvl0vcNF/3YpHprIgKiI00Vg4pqTqMU6YpmVrkUmSdvEOtUYuTjjkfTGH85nx0xiewbqTGZBfimmm3ZQf0QYvx3QwLDnHLHcy9baajVffO2VB3dbK1Soaq+NVz8g+oE6fXFNmlh/9S9MtcaPBUG6DNv7yqLoe/53CEiYDr9+BiHyqjh288aCIB9TIwNV1FrFr6nGPYcGWN/XjSNaGYcLsUk2vi/DG6+22+g7knArKe+mKZ9XvHvCw07jkbwxqjNc67o7VecGejDzDY/b204Z+DaMXJlDHNIxe69pt/Zzy2pNuWmRMHigpjbBEk61Hm4kvt+woD+cBtrBEfbpKQvbMEjrpQ1U5pA8Kw0t/mu7keqp2hZbHGkv94Bk5lMGqctdBG0avDwOpP2kDoY3GBLu83y6TtVLwoOqME7PHhJm6gfVhF5dfggGyruRkWXnaTRhe2i2/x26xy/Py+r2CmuXdaMx2+wkO8Rkcs7efDRssGLpm7daoa137WUJBtN56STgbcZpNz6E6I/08kCR5TkBAK1C7Q9pKxSDl3tJjsFSomkG1/VkJuzl27u/ROoKTxBq4Laceuy47D1Xe1HPwgnbMWDXwkUhYT5wddKxLabWhWzzaCKzHrK6RUGG9ZvlsvAU71PvSwGiWT/+pdI0VzwEs9cgztTa+USBbZpSlD/tsXW62teGPDLtgQPUdZGsSOf9K68wlQZfKQ1PHisy1l1/rFJuWkFAaXxRcLF6Xo32cEio6JDUOzNfsQkIpN84kHz6U7naWHHT+HDnoUl7m3Ue41eN1Aytm1QhHYqfeYBJ0a1KeVCzbKGTB0vEFJoWZwa6usEPZbsbrqusWjV43ZoPc/ph9YW18027X87PZzvt1CAirMNx86gcZSkSllMQawtLrjSKnN5qUFXSxlqc6695CpowS83JRmjZRVxVDNIFLe6sCgVWCrnRBTghlgpE5XT3t60mXVS4NHm8PjRxYNnTjqNsorWV36bOyD1g0cBGdqJNDw6yZvXfSI2n1RTCSEF0tdjJOUFsxIy2kqp2mojGyGMrBgovqdOucF1TubtbGY+CQqP++auhWSUbfdVkuP0dpgKo4QArZCcnYmzonBsdEFexqNDX880LChgJY1c/314SEMq6EOo7rtbpop6UX1dC+yDNyYIOhAw0uLqvr9mX2LrMX8DGzqx7dMIUrZqPEnCfyiisrJO0XD6rx8LADnD52EnTq/E3jm81tC2xu/x10o0ZpgDpWHhi57NchoD6XnXLLilIM3WF0CdVGj7ZqIy/bOUEXZnRztdbo2wUakuzhopTp2uqXQQmV3b2QUFxEWS47CAmJxebrfuVZCts7eCzKuQ5aMzo50ZjFDWLo6nIaM+UArLQr43K2RUVjABaTdIHSQ0pMVH6Fq0nQKUNOtqzYvSToFHYyftdTckW4YNREY8ZBNOq5kaS2PHD6+ojDuExwDb07xp7H+3TqNOygd29VbEdiNhxSv8ml93mimWc0fKgVHCA7Bl0AW/epksWIaKk/HNy0EVdDZhe7LrQdtUOV2WlS7YzPxi4zO/G20H2r0FIfDvS3ezgLaHEfOFT7tybPzK+4ejfnh3qqrmWGMvWmO8+wurpeYTxUdmia5LG7ZvRaCDq247+1kFCmbNoyYXE1/oO8EaXtmy4klPuNaV+3SEPIpYSXZvzXscVi84u0CdfWQfdJU7TYwCg6sBiNFcMv/bWN0YAazseshCmpGtMzDVAZ+ZUbF9zKcw2Z4fXISvY3Y3dCWWQDWVarrtXMn8iJBMfSmYJfOai9xxVHfXfMDiggjfHCUW5Yxap/Q2ZT7KJDvqUOOWc6hxgJyBMPLbe45ZpOokrfXzeEgZTD70PtNPKxW1miq2cMsjJ8vZZ7zjNZ2T6/vtUBdA54Q7d7CVpb1j2j1DjgnmRc0Qy/ICMb2CKbmZ2IJgDvBvAhZv56InongB8E8BYAPwPgm5n5avVEpyyXVd8bVpByGwIBjdK17N6yA0HYHF1IaJdceqLZm2JeoBG3JXm0VIaoTJEIN43xmvFfN3ZHk+QZPcGus7w6KdeyeXu/dYwoXnKspN0x5nOUdW/DV+3wq2PTQ68unG+wO83TpoVQGbON1mLn2uVTFtkw0pRagx3qvso4UEyvOgpSD2lqTi6nojHARGToTjGUU5j9jwJ4j9r+bgB/jpm/BMAnAXzbCecq0jFJZ8wmdG/2rSvgVjmH0Rtxxuwi219iccL9LJU5Hr8bEnkRlHtOw0z6WqcYujnWjURG3zfKaJrUSgrlAcQ4xMzKuU6lHo+WkID+Hi0GXp920dT29mwydiJ6G4B/AcCfz9sE4J8B8MO5yvcD+ANbztUkFfTrhsyfm+xp9g+SGt0xPju0D1Jsabkv5dloxez1QZj1sTvQMlTaVqv61L01yZ/BmDZljW1/pTpNeO309RompxzT4mf3GZaHf192TYTOs5yLmZ5nJ2eefYt0WCk9stg1Qw4byejvph98HAd/8oOTK4a/ldn/cwB/AnW90VsAfIqZj3n7gwA+3zuQiL6diN5NRO+eX321N1Bzk8BCRn503Or3bd5vafrGE8niEgOnPl88YgivvCtbYsAltlBj86au6Vcv0zvM/DrfO/zUNboHkwb1tsrmZxnsSQfM7r4kdOHa44bZe+K23Pa91wee0ev9WxuaZdXYiejrAfwmM//MWl1PmPl7mfldzPyu6fnnNjFFl7QDVm7eYf9c3iXmTKfr5Zb1ntn9Pr5JAGrOdqsMEz1N5CFl6Ptl+N2JfByD91j+On9r0Vi9UdMeR+H1OvjEkPmrZtATQ+pmLbuZZwdOfKZBtbPJ/ah2tZEZWiwBDPEs2/XvJKYfyJYE3dcA+BeJ6J8H8ADAGwB8D4AXiWiX2f1tAD604VxF/Oys5/XNp3y3x1uWGLGPrqodwQnSTb0xQJklvKfcrOhpt03qRSgMVJI9Mtej9jX1URNG/YVqpqfJv1FfZdgeXbXp63E0Ngzf7XFnjIubU64cX9j7hDG7SCBg3nCMhqVdNJUTrRWkWplygadDJLuyI9HTrlvbvlaBmf8kM7+Nmd8B4A8B+D+Y+ZsA/J8A/pVc7VsA/MiWC7pTO52HQ/2ePxvP1h2rvqvjmuyt9qwbZSnho9dSEwOYIyiH8ucsle0iDDU+lTpDI3GYUcTPbehjDdPr868whzv91py/fvcN3amv9ynWvI5oB1wMXWG2dbyufw7KE3nOQUePHaF44XyH7WBYY/pT/21q/6ZavnwHgH+PiH4ZaQz/FzYdVUI87hXEuSlfwdW5RvXVuZuwHNa4ah152g3ApifeiuTx36lhvJXRqjAyiuCGg7Jt+4RG42S4fbVlvL5o5I5jGDpp2x57f6Z+HybbqdP+ScXhewDNmP3UKdPuRzq7Idk4Su3wkwY1faf6FUCn453jFaMfG/5JK+iY+ScA/ET+/qsAfvcpx3figtp+dlM0ndJ4xzod7V1qxVOvSXquXUJiPjkkvJaooUDaxuL1y4sTmkJznPTDFsW3fTY4xHU0dtsbegF9NNPsW2/imqS3C22rO3oAZvH8yPevl9flz/r8e67M+qCVk9r6G+VOXyXtlhlv1ZR5nlC+m+PJnNM++HKTQgzQcQZxDeHt++JPPqd4d1YPxaCO/SCfzuIa6DF9U6Seo+7GilDn2dhHQ+PNp/IiL8DHTuPmhLU3YNtF0jsIMIzGzsWtRoxU8yqohq3H7mg+y5V73JqVNPpiTgNWYLvj5bJYZ4QRo8Mpd8Ik17hv2uAZZzH7aJpteUpnVL5y8XMipQ3nK9+3nm8hvF2/h5vG7WbON8JscSrXjt1t+aj+YkOWd9+usTvjOVveJByGCuQle9Q+/amOaaoPxlqybyR2bBdBNUG3MmaXMR5QcwLdTwK7B6oFNaWN6qTuhcZG5fbvaEw4+gOGGHTJVM8BrDjx8nKRLrTvy4Dtq+eKRADHuXm7ULvbb1ibH/AennL0R+GnhyY2+mx02O1vM44/UZ5ZZl809FHduxJh9iynJntOFieCSZ/jMW43XB+Mk89i9qXjbPiOwbZ20hvacM50aV94Xkb1pOTtitj1/mf140a5fWN3mL2bQlgLVa23K2Utq7vs4DL5Ssi1Jgzw8XjtbHwnLnOYyGXJaFcc43hMveHP1sVg4cfo+mt5FnuJBdy2in6xCDHAJ86grF2rXYyFFj83mjLOzu6zEazV4xOZ/m6ZHSZbC7hh4VAGCrB27E1kcrtmxO2dvumcWnFOPlh/XxgjLx136nVW625gr7VT3CRuGbObSgOc0rZrJYldB8qtcxjILRt7uxDgJENfZLD1K3eHLY0VTxUGEOezHnH1rj+eZx4d5EQ3wwu0nx0Oa/25EJl553ev7VyrH5I4Ie5Ck04VypjppOr4zULbGT1t++1bxdXLc7jRLM666Ttn9iInMfqgeOW46067LRryGS+vOFe60BA42wmKuI53KXz3jhsZ+hqrj4YqXtWbouIbZnaRre1bfInKyOC9eidg/GwY+1ZDXxp7LyndoLNuSnFSNn4G3dBUzvLFzjlmEEGZc21ddnlufbcNTdk2nG4Et4zZdR300F5t/qiUzZfuqQAAIABJREFUj+pf44JLORIlz242vqk3YIZNLLFy6jPD+YblGeAbWEHnLpNd8urOManwhPHxmQa/OARbu85N0+mJItgxM9LPLZ039FpP2I122G1nVqI75vo5j2ciG9/s68pWMvSjywxZ4rTzeCLK0T5UMV9Lh2+ErZac5wnGuWbwZ+VaRnJHhk+G2csv7l531ePJB52w/5oG/2yE8cBpje8SSnfLFMQA30BIeGcyGIvrxNumJ6xOzbWcizl853iSw2Sk5bJnYnbKtdwci1tPb2w58cZ6WZ4dY/90l9ch2SNyNuvfQBQDXHNsbmVLmLpW94aEbyPHchNyQzh+Rhr7TSd8KN4ts9/I/PO559jKQM+Y2DD+2uc7VYcWE9EnDl031ns2jP0ZVIZ7eTbk9VaNOx4Bni4rCdsleTaM/V7u5V5ed3k2jP3Tzbvey63J660ar/czSzcuowZv6Khnw9hvWey86nVeMgEAHACapjsbjtxInuncc2w57hl05kwAbhCzk3VoqU/0lO51z6XkM9LYXxcJ234j+xw52xndVPLpJm9syEzu/N/NXdcRuuknol4vuSEcnx1jP+WGzOq1u47FmO6W2WtDbu44Yip/3vZZ17f7z8UcvgM8ySkSgBDOVp1TrlXqrhzTRGhe39jjeVBvILdv7IxxI5du8ERFHoFxEyFvfduMmiKZpmv5nOsOJeqJRuWOogxkjcm7/UtKunZfd+SobRgf8oPtJ7/xRp/znENPdZBbj3Pkbpl9q2eyTO599+piHYDR/jXjC2YVH8lPllxDbFvkN9b9yv4xqXDQXwvnEdkasi8a/Np17jgSC/mJMyICE529zmJNR4a6t+QQtwxzzvRHz0YYv2bAbr3uCY6+Hg/qSvENKR0XZr8FJT6LPQaGeaahn1vfbUNTtg2nG4uCbmDoNbRnE7qXLh+SyzUuuBQtK3k2jB3YbvAL+9dZ/HrILoZ44frMvlXcMaA3Hj7BMbhM7f0tHTdwIqusdIIx35ihEzYnVU95OGZr+5hpPURfIatnfMxOTaLnrLHfmUrdHXZm+O4KAQgTOFxvzCfXH4Xm47BQ9c3qGLn97HBY60/H8JtzjAzeK1Pn4U7BV4YxC6fdIpwx0w76XOz6yMPsH5RLQ+q9U99/Dbbov58gd87s10r2uBnZwbFenRsSzixxo+dU93Zyc0fDnbW+OfVCp9S/gTHnjeJ2ArNvkVPadq3oZBQZlb/xobf/izC6MfmetcGnn8up+5rv9hwE1F/WyAXEpYxZ/WZmOR9164uZUX+p4xwhgHY78E27Tu5/VaYL4RcjHm/uun7t2NipMxSNT96W83GXDDDn1ripsvSrKYMmc59I44z51gRbQP0tPyaAQjgJs/WEnNLj3P89XqifNjHn7RuR3xkO49nNxq+FrFvq3pYQGi29bii/KsPQd8M4MMu1DP3c4xaTqsootgzLTlR2F5Nwnvrf5IuEu6HKFvzOjAxu19hHyR5Vtmn8Jwrheb3RAgamtnoeK526OMMqTQDnbPw6S7A6tyiM/CYc88Jvw8m4Tl16cbgyUiA1Tu/KvTHh0h8wxKBgOMSvb1N3C/l4bzrSC5lPfsNMALCbgEGeJQwaJhgxk/t7fq5OKfx0Yq5bRGOddtffdLahp3u6S1lg9k0JH1vuMJ5rQDc1UBMRZj/xtCNHs8hap0Q8znHrjnT5NG69JeP1HLXdZx318Jo3jdvNnG+EGRuCaXeOSWmx/mJDlnc/E2N2t5F5DNiM4Vkfkwtk/AfUsbsd/5ViyuP3mw2zmQDepRV0wgiBGHF0b1vOyUZZtOMahbyFCXyDHhr6kkGOpORJZLs/D0HhJ3XK+RV2Fjeo/bl++snpm5FAnKKwwZi9/NrqiVIjNDR9KOSzmG+xuK05wDP06tlgdjccT3+bQsLu2G2ZXx2SnSNNqHcDK+hOkqVZDEdKH3qhuD7n1r6wddciNK+OxasL2cfj95vIzPMJ2fhzXkTJwNDxstHz9qCVk7oOfv3YO2B2p9Os97ffheULG6BnBVO/sJ5k5SULK21gzr+bTY0njwAmYsTsaKYtUQBhyBKnSHU+tlxvENzEnGw77LC68EXtP+mdjV5U5UiZE9HQG0bXuDGcX7/JUQ5BojbBjBsMIzMmdewoWZryLHpt/Lj9nsTcnlHuhxf63M232DzUkjO3EVRTdyHfNNzzOgmxo1CaJTzW0UrrHqu+q/pNOMU3wwYiokSBYk3QZQ0dJXdGohfS6AUWmhk6ltP3bMNAJR2jd8dSrmdwsYzhsEdzjMUQti51xy/Vl/saLjI6QfSwrXl4KaS18VtnT6LGwpGSPFRh+rYQ3mJrHIUTBWx6CtHI7TN7Ftu/m1hCM3zerieAOwZs9tmqDRDbNapTDgI4hNS+DYpz8oIZVck6sOHQhR1Gd+p2Bn5ie2RpQzmtx9ilnoOdG6VRryAnNGnLQ0yco7FTh15bp93c9ujxvHbQjTE7DbJO07vIBtnE7ET0IhH9MBH9AyJ6DxF9FRG9mYh+jIjemz/ftOmKA7Yg9TdkCcvwllU6BjOe1XjdVI7ms9R1vg+FAEx0chhvx4ENq+d7YqsIo5Adut7SGN0w+Q3+dfgNIoIeO3M/0hdqn/zgjg6bT821NI6YADaYnRKRleZz2yaodjXTpQwMh19S5jlnw+SbsBjIVvX8HgB/nZl/O4CvAPAeAN8J4MeZ+UsB/HjeXpalRjU3JmVjg2+OW/2+TSkWp0ockWegmXBygm4cCvbl/bwt+r7R+7q68r0aelPX9Kt2vKM/93oj/NQ1/PzBIALZIFuNvjPkAbN7If2oOctTpANDHun0wNA7I9f7tzY0y2oYT0RvBPC1AL4VAJj5CsAVEX0DgN+Tq30/gJ8A8B2r5zPKMeqvGuXpeE/vVyGhHCDheOlQBnK9FCESwFyn4KTKqfGQkkAMBIB36a0ngRiBIgKFsn8tk2sTPOJ0WmZQC2sa0FvlaabXjCK5Ro4F412Q5o40jrljW/wWsOvgrRgyMlacUCxTcGywP0H0cllh9oTZCaxusSp/PXbC9vWiqJgsGPrieojOoW9jmS3M/k4AHwXwfUT0c0T054noOQBvZeYP5zq/AeCt3sFE9O1E9G4ievf86qv9fo8pGs+mQkNTZ5icOEMPrv3o5AKzb1Wk8Qq6E8uc6MkN2WEcgHtOqn/2Wvb8Tls67PI+d7nuGU5Hy9bpsQAeMvtIrjtNax13+rSV4PeBh9EIlwXZYuw7AL8LwH/DzL8TwKswITuzXczZ7PteZn4XM79reu45IFL900Yd7bi9/StKY48TDxl1J9jj2zGkN/5LbU2n8JZBdh2X2SAt0GDEfTjrEVerROXHYHN7m7G7zjt0DO+N09Oxtj9LP0evj/IxMf819Wt5qavwKBjG/nqlbhy1V2NUPzVDeotVzjVCDkDcZcw2epYRo0tbmhmUgh1g8w9FX53cBuW+L/1UPg02DINN7vcF2WLsHwTwQWb+qbz9w0jG/xEi+lwAyJ+/ueFcrVjvNGIcmDJdV7OEe/78tXwSlrA9a+XUGWN2QNnqlmtqQ7BlGDAllOPU283Fa/+7Y/KBrE27NdcdnfMM9gaqA6zbZt9AvFmUNfGihWFi1W5rJ1Z2jqM3d2rZyDAK3iCrxs7MvwHgA0T0j+SirwPw9wH8KIBvyWXfAuBHVq+mPFDvmXq2aJgie7i2br1ZYs0amnFo2OnFCwONl6733gOjH5NUheBdO/5bY3g/EVfbWbO7QDNW16wArxxAYWDVP+L5FUs0DBGdc43+2JxXs7fCxZ7Xi84Kk0l3FVYzuBWGX+7DkZSXhCLlVDgweArgKe0vuZYVy+FGX9Bn4d2IDO09jfR3iCMZ/AY4SNlAts6z/7sAfoCILgD8KoB/HclR/BARfRuA9wH4xo3nSmIbRdVrMeV/3nw51LaUkfNpr0UJGEnU6bz7dRZtyJwtO8w+Mng9VztaNVcrLCi0ZfVBnZYNKovrc3Tfl0TXo7pdYVKAGewEWhc3fRJ1TLNeXv5zTvOdix0hJeiozqrchKw/jdiX+QufqD3OfD9xtAhgo7Ez888DeJez6+tOuRhBGXR3ERSgqSgAFcUgSorDkG0AlPdHRvPyBM5KFgkIytLVCUSBGMhLLVGWzzLVpZhatPE2DB+AuCPEqWf+AEZUGqxDwG68yTWr2zCZM5btGCHrq2bJosNyjPSto5Cduxgpk+NIHb+dd1GPXW4Dh1wQOB+jl0NTwjRkDDjv495JF8wYGP20dF3tKDMl6UEYPc+uGT0QY+YWs/RXu0bP9TcPLVlW9yLMXI+iE50xuUnTxRmTjRHO3a2gc8o8L12ZIAHfMEOzv5Y1LDHytBI0qBNsXUlnjZmRFKepY4x8TYrhN4VaGXplqftUfXu/K4ZeWjhiog0i69gtfi52eQdxi2NZYSeOWq5vmJ5B+dh8PgczHTkNVzRSxUw7g7UVcqOMv0QbdUNvO9hZ/AaG7kdgfRu2MP3tG7uOmEyb9cMPWnGE6UVd6nbeHyUCyCzBhiVEs0gxOqPO9mYPLQzfNHcArjBE2oCas42N8qyJfhkDK2Voss9aIfJ+O5+uWaJVGJONx8DAraGOms6urqVjHKPvsFOXako6pa6sXqKyvLM8vlwwXXfSLbunoVd05tlTSD8tnsvOrfd5FrMmwjHukmMqZS1ObiIVDi5r20pu3di9cKQoj/LkruLkyqm+ozjaGKBYwig/w382WhtdRGKIaaDYIjL1xhM1bz0JFBFz9sczeju9p6fcmhkDy+qeEqn6pMo6loDaVp+LIaIjpHBqDsnlBNSRkxyD1llzyG0KuVwNxZon5BpDUWAq5w0AOqwesXnjhLODPuVRMLvCsn/PnGnrALsmfEc79CqGPjLyE7HScrvGrm9CiYnU2n0Do/eYooZJogHtEQ1LMDchYfOyiwUh4vqCCqQxYAoJ4Y7/1mS43DMzRNdnwgpKGbrw3CkjmDq4GQUCxvhZ7CpiALFiaSg71o5a46aisoQdFg17JO0KOihmj81qx/7lltR872du5Itm9T58t9hJueesyzaADrvB/S2p8O0ze6z3WETRM6nvQK5LErY1VVESQCG/QTaiYRSKBA7qCGbT0VqB9AMWWB0E6dCPc4KOpzrtFogRmJPSdIrhKIoJ/1yF0coiRi2JOcvoms0ta5iycrwVzwmZDGs/7kZjow124lAJ4CjDK2lnOxRrHDVzSnQRoBN1CabkGJZC+YIH6idPXDFTxy0NvewimhLK5/ZytEk5dNOMDXYaJ1uOui/3gumXwfaC3EmCzutPqzQlJOT2fkgbszquZ3iuYaFWUMsSg97a2oeTZHaDTONsOzIxk2UM1UavEaz/HKXwDF2dZz3LuyG0MXWa7Hi7o8WOFEbFIRCIucWwtEvhdoaw5Gockd9641BvZ8oOITJ1zzMMWbzcjw7l1ecQv5bRTxp62e9Y5aUid8DsvUI1uGQNKcav2ULqqvBQT8FRUNpFdexHEIZ3WCJPz3EO8ZklhBTPXU9Z3y8X20UYhSVqaC/79XFyTq8D6gKaNulTFmPElhlEQWQhRenXqNhcG7Rn4F7S5xT7Kt5WYajxU9iVbTlWorCYE6MydhbgWUVmEgVkrBHUEAwKJ05TZHrdQTftlvFhhdkuzM27Az0p027C5gqnEo0Ji5uFQWVMnstKNKYWgblJVG34GAy77PYCfnc/ZjcOuIzpckXLFk2hjQCUU3CvTc6nPp8y9JFoZRA2EJaQBJ1+lZWds22aJIpi79Mbq0slNvstUxghcx5S9YdGvsXgnfCdxfiJW1Y31fvMamZ4iK/ITtniVNpXT3A29yvMRNamS7uZmYaht0VjXTl6ZraGflO5lTsZs2ux/VeSZPKlbHNldcE6A8XiKfO4j5DryjgQDAoEloUaOfNbWB3UhmajpFmWdgyYWGLeh7SoprDHeMlsO/bTL6qg7kGfwuplCbF8YpHR/WkcJ5lXu9c0cnj7+QBVVaDaiJ2OzmT6iZEZPh9eErBBJeskGgh5DWSU/WimMK0E1PH6LszYUwTv6sNLe4rYhRmY9x1msqCm3GuOINL4nMBROW1ZBmujsQGja+xKd3WYwXcKW4ZcRu78VdINqxM6JVORYjcGLKwuhwkZOJ8tk2eDqnRU26BZYynpk5VnooQMT+l8k3IEq10hBl8K1KeE8dyG77B11X0PDV0zuTH0TaGhFhsN+UWl3MOulOsCoDK8jtQsdrleM326kembqbfM7DWBi2bMbo3ee7FJg5tleY2bPciJBFz89H7lsJvtE+RWjZ0yI/FAO5qpL+mLwgiKLQZMUQ3eYXhw+USe40WUsT4Ke+gsK9Cvxmqy7RSxozmN2fcA74AdRTVmz0kfhUxk/SswotCJIZAZo7JD+yePPooBE6MyumUNXcdTnC3s7mBko1xttJXZe+yKAee8SjmNhNFqJoUi8jx8isKIclQm7BDSRdo8SxstldMTZ9wSJvuMDybGfJExy2wfKCIsMKZcI0YVjXVsno1RPabqRmOCqfSx56RLBztOeWTsC07gTphdJ9zMrk4st+bgrky96DpN4i5/lp1ZMcqSTHVS1m1imcpJRumtuRCvX8bssoJuSgojY/btL61oP1sDJNX+qhDlEzDK4Ri6x+K2zFx33Nh2k8a7uqG5rjR8YEQn6DhhDVaIZxztfTRO2ul3zeoTcRq+TQQOcdPrwrv3Dsg9qLwLbP8q3LztzdGYPTfcW1yVO1sb7ylWzcin/ToEdJnesDyj1hOGB1KmlxhlbrcsrwUn7xt6lijNdDx9ybiDMSGCdjGzRGUOYQlt8NEoShrzhXSvErbrDK2wg37EMfaM3ihKHBj5yOhHGGwQO8rR+FnsOEdhdTYm45YZvWX4jBty1BVRozFCfcBJRUekGjNc4owajdHEiBcA7xk7mosTiGoIpg3ci8Yg380LWSpzt4+mFobvDFt/X4jG1Hb3fYPcbYLOCwmB9gaVkTfjc9nFlJNsRnFKSGgUp+k0AYVLhzeGmKtGpo6tp5zs2YWIkMN4hBouiuJYsc9Dl7JmuqZlA085GkZnUajRQg3Vn6ZJI8NfMvrGkHM36nIdvY2MXtpaxsz2ejJ+F+OXcF6mV3ME1uR8xGnmsbescNdDqokYe5pBU0TcIWOWnHZZEambAT3tVp2yJObszEmdZmvfJ1AcOWrZ2pDLi8SafteNHO1T8kytje+MW9UR5bZj9bMUR8/HZ2BYxlp5rGjHgVokATchYk8zwjQnxdknRdKZek+6DLxhi8ICOqurvwOV0dXruDpDt6vrLAaWNby+c8QaecHF4ucZfb5Eccy6bYbhGZTWTkTkR2JVVBY54QaAIyMS5SGafws6x9I46J3CjAYHSzMLs9Oyg1bRFumZFNSyIZszOqNv+nwDPiO5/Xl2R/+9xJz9bPTLGH1zsPTKkuKAWoeRQ8JkdNyAKiJZWiBNrwmr72nGfj9jvmSE/YzLcASQkj4xUvN8u12Q0S2gKYxgwkAeKwyVhBA6NtdK033XnbqRGbQ0Ibzq9pIw1YYPNEbfJFaVx2CJ3OQ9kBmrNPQSrOS6OXTL/UkMFzORgMrqe5qx28+YLwHax4LZPsw4coB+O3D3k9qeg85vjpFptpJI1d+BxkEvGrlldSUn51iU3C2zZ/HabIjd3S7fY1WwsiDDnLgZs3OtUurlMnHuNRvfJn1EaQAUxZmmiMMeCBNjH2bMHIZJn6gNHVBKg5LJtWFeu9ZascbIuAeGvinZs1GBtDGL87X7GqyE6WHKY61A4DYbL+cy2XkZppVknTY8KOZVotfGC2ZXe0bYJYcti2lkvK7n1z0HbbPwfiLVOOgGmxVDHxm5h9lGufNFNYBSBl0AFE8PzeDCCujZQvQvratG0oC8SoojmgU56TVSXBNCsrhDltJSmmIJAeVH/AT8gJSI29OMB+GARxcHvPqQ8eDygEfhCgeeEMDYqZsV5RFHIgrD3tt2MyOUhJxmBMXoLUtIee4mx9hHzH42W3gRGRQmCq8l3Cq2CZxyrOAmoBEKVvUxWCqYxSCYpbfKiMGXED6kyOtBOODhxQGPM2YPwgEzB+xoxoHaZ9klORdjnXJrMaOCGSKB5p7RaUaLjZmK8wx8ayTW7Hf2abn75bJZyFSTsiZclDKzr5QJoStvKqxZHqDJB0kUkD65ti2zxdKYHUihvDD7xTQjXkTs8tTbHsvvNWsTO8rIOYeCeuzueHwy323o5zK5w+xuqHgGYwCK5DUmCjuNG9T3cjmuJxCG73BTEZuMzyWU1yH90ornKeN2sTuC94xpSttAdQoi2kFL25qFPuav4tIyutYtGhznYbIpErP9tyC3u6gG2cvJhhGdxJH9RIr1LRtIBBBqh5VxH2VGKAqBxPIz0pLZmev5gixqSecCUXpsNXvzOVIdw6GusHoQDnhheowXHzzGh1444E2PHuOF8AQH3mFPM55mxYlMmDmdJ8aQzpsZgiMBc2pIYYMZdZwuY/bCDlS3U4M6w18M51H3NWWAqzDFgfo+r8GxYXONnYnK3D9t/cHgNmXcQCm/Mue1EnKxyOC88IZLHwfMVA02jdcjHoUrPD89wRsvn+DDLxzw4sMneH56gqdxjwkx/1x3KEYumM1zLpsJPIfC7DRnw55zBCbbTRQGSP5FM/pwqDXCbANezw6zIzXWsnXZp76zU27ZgFTlhlHMp8/wUoeqUmXFQagLa0YrsybEwu4PpgN2FzMe7HJIGJNjsOP2fp7WY/fB8+gNc9RO2GLoHkN4rL40DhztG+Gky9j5bg1cR2cj3PR2mYEpzF6xkgVRngSKuKAjHu2usLuY8XB3wAUdcaDJXRc/xMx9WeToj8Y4YQE7mDq2cxfw8uROsvENDBYT8j81o5cQUZhZjFgytUqJEus7DJ9PVF4uQUhTd3Me7xMhhoB5Bo4xgGbGkQOmWNfUPQpXeCE8xhc++gQ++VmP8EUvfBwvTq8BqPPxEYSZA47zhFkYIgbEObFEop/M2PLdsoMaw4/YYWjkI6UCFhWHFmJhVtMnmskXPwdMLt1fFj7ldqaMfMateD1Ury6wSX4mtysGAs0Bcww4zpz6vPzuXsyYPcHbHn0KH/+s5/AOhZnIyZixYnbRcZuNl3KNh823OFhpbLaMzUcBGHAnzN620n8bXM8ShRVESerXet+2cjaKJsx3DICL4dhxYDuvatliQsQDOuBNu9fw2Q9ewZv3r2JPxzJvO0tyh6lZE5+yuFRXXKkkz2hM55XLPa8ZejcOdIy9M+4F1rCPhFgMh9jBx62wuBg/Ki52IZREY8TcRmUMtAxfQ3j92OqEiAfhCm/avYa3PnoZb1GYATgdM3HK0gZr6A4mm6OwgWNeHLMv4Hbn2Xh5WEUVFGGi5uGKjtEHbFHOE+t2UqDKCqXOnE8sD8MQgGN6sjkSAZhwPKYDruYU6j2NEw48YaKIB+GAr37uvfjq594LILHHq/EST+MOxzjh6bzD0+MOh3nCPGeWOLYMgVkztxrbNeW1TPdjw/R622OJss21U+Aoz4LCFGkw467cYtfkV5D6m/J2F50JljlSC6jLm8vxTG1Uli8VKQCIOB5TVr1gNu/wcErfH9ABX/Xce/FVz70XE0VMYLyMhzjwhKu4azA7HqdlzBRGbr4l9piUT42Z9LuHncbEYLMUgVl5JrLx5YaUu08KwI3yNIyeDTsl2NAoRzlXyHWjKtNr6pNelPXXhAQQE5dVdRxZJepyeBgnHHlCQMQFZrxt/wretnsevzm/il89PMCEtFzzwAHHGBJb5HCwmW5jUZQaFkIZb0nGlUUbtb8ahdnA7um4auReSLg0ZnexLDi1+GnsJOQXvOobatJneW9gqOctGMv8umJ4UsdTzM2ISEtpCQq33OcxYXDkgEOcyqrHL9r9Ft62e4iPzY/xvuPD/DZgwiFOqX5O8sWYk3JrmIlhG0N3ozAnqbotjFcAnYJVljtn9roDQwWyytMxRnXwRXRmmAPqCiwdEWhCmlNIyEQ1gjiG5MSnlKx7utshMuGlwwNEEN5/9VkAgEfhg3gbgJcj41cOvw2/fngRH3v6PF45XuLxYY+nhx0Oh8QQfAzAMQBzHu/NiR1gGb0YPKrioCpUydI7c7WtAjE6Yx6xhv2+Jo6hl+8Fn9Zh22isRGj6HPJsQ0CdddAML+fM4+XE7BKVERghY0Z4up8QGXjp6gEiE95/9RYAwHMP3p8wY8IvXb0VHz68qWD26tUFDscpYXacEDVmRyrz6S5mM7XOmVvMGgxHuAEVOw+vJZwW8Lv9qbeBsetQvgO/CdOV8gRZE48y1pPDJLTzQslSIaAcqEPD9EClnC8gBgZ2hKeHHWYmvPT0AY4x4AP7N+HAE96+/wSAiJfjHr/85K34+OE5fOrqIR4f93h8tcexhO8BfKRi6ElxoBJzUMzRGnrH5E7SZ9HINZuPjF7vWxPjLPX0aGFxjZ1cSDtsMvtTd1eDl+tYRz2r4+Qa+STJSQMxBGAXcXW1Q9wFvHx1iZkDPvj4TTjECe+4+CgCDng57vErT9+Kj189j088fYQnxz2eHHYpfD9OiEdqDL1Jop6BGaC2R7hZbK6Dk5JbD+O1sTcGXkBDYWoBsgnZ9fc8v1oeqpAQTyt2cQz5qyTsYj1/GQoIiMjvQckvqeQ5ICLiGCYwEx7v9piZ8NEnz+MYJ/z87u0A3o9funonPvjkTfitwwO8cnWJJ8cdDscJx6MYemKIxOj1enVZrM/oZBVGf2qFQuqT0teekS+w+rlhfIPfEnZSzFx+641Ce66SoFNDL417MxSTpbOzumAeumEmRAQcp4zZ1R5zDPjo7nkcOOBn9+/AzO/Hr159AT74OGH28tUlro47HA47zMc8Tl+JwvQ6iCYTP8IM6LCzRn7KmN3iRv3uIncaxpdwuangfzYLNtQfQb2ZNEhlczyrMjU2lBNSAGKKExOxcJpnjwjAxGAEcCAcAczJQ3x/AAAgAElEQVRzwCsApikpzyd2z+GjT5/Hz168Ha8cLvHJp4/w5LjDK08uMc8BV0/3SWmuphoGzoRwNOwQgSDTOMfWiBs294xcMfk4JMRYgXSZFq+M+k0eYNZgJ06hGG99hbQMnQjJURecODnmMLxGdshTriDtjQAjAMfsU6eAVwE8mSLmGPCp/UN87Mnz+LmLt+OV4yU+9eQhruYJrzy5xPEYcLjapXH60ykZ9iFHYjMSu2eMwEA4ZszmBcw6rNBFYJujr3Mwy3K376CDYXS1m9a2G4Y3TK/YQSfwWI4Tds8nZEnwlHgeABFoNgx/TFmiY5gQI+FxSAYfmXA1T3hy3OPVqwsc54DDYUIsWdxQs7j/f3vXF3rbVpW/sfdRU4vu1UJu90oaSXEJypBQ7CHUyCTyxQcrQsLwJdAkCKUHC3oJJPMhDEkiIrqlScoN+mc+39KMMv+kZei9aF4hk8S65+w1ephzjDnGmGPOtfY55+79O5w94Pfbe831Z841vzHGN+aYc62txk1tLG4SPTH5ln43LDE1dKsoiSLNwsJhlrcapzvW7etZnsw+tF3mk3V9u0Ag026oSTh9Ug61vzT8rxVKZKcr7VDWTdzYgZlx2O/BC+F/99dwWMqKxuvLHv934xq+/sRTcP2wxxNP7MHLDsv1sEJOsu4H8zzCAnUwQ5xGQ60QhU0d9Ea8tsgZwvhBK8l9tCyuYQeIPgjwBL/QZlcVR7Sj7mfpcJmzlXBRlKsew7Jyrh7HC4EPAC/lLaRcncSNQ3EAN67vsdsxvrZfsNvVrP1hB2bC4YmqMNdLXOnYQZdWVoUw25mS2ISPT8hxFxpGJZkxehwfumMmIvPsWVRGBruIV5c3EXwIgL6LIOBmsYLBSrDb1UhsKS/9ZBbMKp5L+S2+w4FwEMz2jP/ZLdjtlzrTsgMfCMv1fTFEGWrdMHgpVmhTbjzAbJpE5eCoA25DrPx2wysUXCVmHylTLFaFqtpB5hjLDBLquYtwNXqNI9FCRPNdr2k8sa7LFMWshgZAs79MBOzKjz/yvhg57dhPq93YmSkZcmun7bjczqtnTJyFfs5pWiXIFCZlCA7bEyAmEm294ZNjl2Go15G8C+e4yTHW6UtUVrapTJnWSI6X+kDNoSVxJbxfFtaVdmCA65QoJNOuiVNj4Ozxis51ZOgzzDKjXzPyY4w7yunfLnuIhe4jGZuxbitrRMZg/ylMQCTjwnpOZWYm6K/yyg/FaCphgT4Ywwdh+fpoas0CL9f2pZL9rvyCK6FVKqDZ8G9BGeuhKo5hB5g+2VmWGLH5woOQ0HRXZ/Q8VyRTFvGK0rG5w8qX6YIpg519OEaisXLzrR0RN4uvY/a92d4Bu6U+0ERcNJtKHzMR+EbN7eyLQ1DctF+p5FQYdTxOBQ/L5kn0NY3G1jCbOuiJQx7gtSZnZ/bYZgrl/Xbz/ImdK9P7sp4tlElkXG8ch4b9UiBTPXW13Q5cQ/7CIsWKm6GrsddPm50VxXGLZzoGQM7mzJ2CqC80hpwpzE0l6GrfeXx6a49YxbKInS1DaIvmWwBgKf2ssy0IzF6dt/aZyK7kW/QlF7UhtBTG553HWx9UEWaW+fsQfcVEaRqBuTE7ezyskQM9jsE5x2MVg4mhZ75YZJOxE9GbAfx8rfKfAfwcgPsAPATg2QA+CuBnmfmJ1WuFMXvH6KXCrtw+6qqef8AYqi1m+yi2qA6Ad2gsTyjvLieUZZNaHzlm74xRlEBYQ9jCKoUJE5F+cn+9zOjFwDuWkM405YAa8nGsIRfxGGb4ddgZti9lpHXbcbjitiv303AlhxXtUH/ooeyX70yF5UEA7+v58oCTTM3J9F1meLMlrwmj98zOqSOfYmbbkHzXrrXYZEnUCXarxk5E9wN4I4AHmfkbRPQnAF4L4FUA3sHMDxHR7wB4PYB3rV1v1BjN4AKFiUVRaiGbY/RQAT0wRvdps+/y009KD83+nYOoYzxLUfqE1b4W7sxlNJOIoDg1ClmbhwW6ENAyw2il3GpW3vR5KU8MfCNrOBHjtOdpF9Q6LHbmHMVF5tu1/fBRmTC6GCi3i+lQrd6/W0Fp2FwdRA3fJZPftR0w/U8Nl6XVEY0+/UwM3SVRzWeHmemH7jvgjHszTka2hvHXADydiK4DeAaALwJ4GYCfrvt/H8CvYs3YmbE7cDd1o0LJdzNmL5/kwbSMoQ9XUBsPRrbXBy24YwtVIrseW9i/Xo8Ms8MqjWifNDkCbR5gGSVzMiOPbN4rDrvt3NiNgVvDR9vWbj/iwQqJqlyB+xxgR63M/dyTTJsK88eHZJQEWj8LW9v3y9sHaiQn4KOx0E5pZnC6aYg+ib7kGjFBN4q+snBeuy065a0OebJv1diZ+TEiejuAzwP4BoC/Qgnbv8rMN+phjwK4PzufiN4A4A0A8LSn3+PDFndga6gN7zrDFiMl8mxfvXy6si4omN9u6+HbGA69A7A6HbPCRgGzsFDOGSdw7D7uQ/UkdN9q5DMDnz1Y4cbAibQXQhqDVsw0LAvz7g077S5Z6lxD9rjfOtWmAlxzoeY5iYiV1hnuWeoNfJMmyaxjjcaux3DH5B2zD4y8ww5omNk2H+WYx9a+JYy/F8CrATwfwFcBvBfAK9fO06qZ3w3g3QDwLfc8wKNsvB6/Q6dAavxOedgoTNvf/oLiGGN3CTkAbm5elm8Ko5MJAnamDdQrjLutAHQajmfjvHhMauwctu0nu/p9W8SbmnZaox7oCXEfjTkcjeHK8S2aIoOj+FeDTXAqgr9LzInB2+rINFgubLCzYb6G+wYzdzvRqGzYPjJgY+Taj8FBbzbyDQaeYeeuJdtjW98Uxr8CwOeY+XEAIKL3A3gpgHuI6Fpl9wcAPLbhWl2CLhq7p9D6KQsuREH0e/2qSZxg2JnRiwHHZbOMksQLClrqL8eo4kR2mClOYvBxjJcxiNveaOSZgUv/2Ov6kNBsjBSl9s1QlF0H2Gk/RcY2+0JoruE9oQ3L2LN2d+xSjyXo24SjY3dhfLhHqd+F9RG/GK5bPEP5FC8YWzBlmVMeOeRjhlzANmP/PIAXE9EzUML4lwP4CIAPA3gNSkb+dQA+sHol05GuzOqIeYZdWb1OfdlQTxJy9hKM+tbY8DRc8fql47Gr4b/x+JrZhTCAtMFrhSb5QqSQSccSnbEnijAKyYOS+U9Or699mRh5yhLRB2c4ydfBfafYSQKtrm7UcrmmON2leGHje9tnHZbJ/blXWEXnDkb3VB1M1GHbbh266x8kTjrgNXTI7fhxYi53zC4rf7OOeSJbxuyPENH7APwDgBsAPoYSlv85gIeI6Ndr2Xu2VDheLhsMS8Mt6RExzMIO+gCMZXsTRhaPT82Tq/Zwm/YRB1KKNVRXRljMjw8CLXMcmd2UjcKwqafPlGKNGZI5d7n3qCydcXdt9JhME0D2Vt39t40MOzO94tneDsbBDcM6pdkw4vYm6XotZXrzV3SkEoKLwkxUYW/C9Id8z9YnpNFZYuCb8YI/B2i4A2PMyj70MgjzrWzKxjPz2wC8LRT/O4Af2nK+lZEicWilnbbx5WZRzdIUoRzczlGmx4AtZG9keBOq28hAjL9UUx2OXDA2tDOqAKj0Q/Tet6A4HSskdY+MvMNk5JCt7MidZ/HLsLNLaAU3KbdRmkJpsOsUPvSXna6T++mwM1GHRAlWImumQ6LbZegBm6McM9A5527/QE7/IMwN66L6r8oWu7CjumiZV/eenDw9O6ZnM3YzbEHQhTaO6e3+JOvu6re3JsSVGL0FeKgQaM4kDxFD6KdOwyhMVBZXfzDsJWyb9m4ScQiGsDdhR+0e0yjNMn1laDJMXj7Zb+uv+MA4Zpg6Q3vg33uYDlkCdjNW3uyQ7Rg9c8hrzjguSMvwmmB4+jfVGK+UvVlWjV6UcScsUbchP+0UT8DtYfpYbtgBZhuMqcJkYbyWT5ghnuMUx1x3xOR6Pg+UZsXIj036WAw3YWfOdQ8ryb2kOHg8uz4dYKdtEqxkJ+aGErFLWTk65pmhx+vdpGPu2n0cVKdmdnZj9vaoZE/xJOV1xZsyx858J4OcZXpdlSXlPVvokk5zvYzpofvad2mgdVU6Jdjdc2vilBmAEM4hVZoY+rknqYKBW2Xp6g3tK21MbiDOt+/8Zln+akBDj512lFurLtFXU2yN0HYWcxNxhVyM3FPEDmjXSqfa0M6Tuv0OU26d65FYufNCHiaeq/VFZxyduynLJLlNldO/vCJZrEG71nrPFOzKCJ41RoxhPagmd6znZ5jfcjfXdp9cGaFljv0CkeOYPTW2oec3gI8MPZyzqjhRaTIlyhbSRAew9Ook+I2ws4zv2D6MnV0eJRnTt65vsy5Aj53WzzCEUNuwBbPSwKSv0GG25pSBxNCzc4HOKZdjfBtcWSaTfWd4LVXfGNs+54G7sZ85wE7zxKx8i+/QFlxwOKYekszRt8hBmMuWG4WeudEMnExpYL6LoXah4ZgduumckYHb727eNjAJ+n3djcWZE+1us89iZ9mcDTaB6XVMLxEaDbALsy52/t4tdrL46faKONzQYda+T6bPgkO2Rp455BER6LlAiplr5wY5w3vj+5aR9cCSfCHUR0srb+8qS2Tz7JUxlOmX9pNAli0ANMWRpA4a00s72kov9N+tsm7pZKsMdXto5Bk7yHEJOwwVZ83IMwM/Zg7XOlr0+Dns6voGFhz1O/THNbFr/M1SPyXYyQNIATs7NGtlSKOxTTLFbOMcecCqHWvyLwdzzpqRr2EW2p7JlWB2wIdXIKNARnlI2EDAi4xhFccablUGu8gDe25hHqF1qlEcaYuLLJB8H0lkiVp2WxTHMnjGDpwrTEzapeE8MJ9+k19ZlUvZ/kfArn5Xh03GYXdGD2e0JVAwx8oS3YBdZ/SAx09kC2auT2TbO2P7XfrNvt9+auQDrMpxE4echPN6zkY5/dTbwTfOMjAAVSSrQKvKI+Mz81PMli3Uwx+pOGzrLo1s8iQqzmZ22GLkWwx8lO0dicFQpyIBfbtvjx06h+2itDWjl7ZG7GJ47xwztzLUY7baRWdo5pK27wSneswo+bbZyJ1uTJzxwBG7/E8iJ2Z27kIPZ0xAS8CBq8FSOxeooZ4oaX33myTw5Gm3eh3atcjAJvHcwpwD3FLO3ujRrmHbKlgMjD4Lt0bK04Vw8jhsDNnRGL0L2ZXpNypOOgUXNGXEGjZvYfqkJU+luoZdW2jDilvbE94+ZIZlNkIr+5NFVXZoJ87Fta/dy+rDS3rvoSwYudQf+78zcmAdK5jjVxxy54w7jMbWfvps/CFpjMnGk3ppYenIGkbXhEDE/vaNLewQQIxe2UJYHijr6JO19x2bq5LwKsP3gITyCCTj+ITOxMgdk/NEYTg43+4Jqh6rkqAM5TJ9Fhyhxc5NgVGrVodmcqqszFsblqGeo0mV1g6HH+AwklOijDELxreVyQGH1SYmnzljbUdoaDaDMpDTv3AyUyA7nbPz+5URDGuwSasSV7aQsSA8WwhTyPJOlwgi+HPiQxto7KQcFXQ9JYpwi5ExUgWK5ezPi4auY8VZyM4bFceuxnP30WOV3a/iN8HOs71hekJ9UQi38bw5wk3XkeBt6+iZvvjjdlRcvLUNs7GR637rdNcMHRuxsufKPvu54pBnw7AzzLP3rogAQ89kP3LWIJ6zxV6Ok785y5drlDL7lJ2tv0v8dDdgZKQ4Zt/qcsk1xVkSxZmxg2XxaNwZawwZg/uFNVuw42qs8oMdFRt1sNxY3ibxHHZaYSnn2pzhAzciwQmt4QUMjNsey6ZfEZyx7o9GjClWacQ1wip+3yBXYlFN/c0lV6RMalmjKhVxYwud9+bK2JUp3KuJI8sDwJ78OebY8pVUGdnMALjlvjFste3vWLKWjxhCzwt9EcJ2V58JBe05Q+VZM/JswVO4j7IyzhSsYac41L6OERoarqWNpCwv9c+w0+6QS4WIzDoUwGCZSPd2nszQrUOG+W6TZtzj2hm6njs39KlDlutulDMsl01at0ABHzO6vB3Us4WwPAD/pJNlCgncudZDaLmDsCBHGUeYxTbKMIJ7o85AVl86kLC5fh/MmXfjPZcYMopjlcM9NHNrrOGiMLnGDDsmV05EhZUXbklYkuisJl9t1p7m2NnEqV3/7tZDyC3ZTP5A0mWp0cBD1AU0rFfZHEiSrB4rh8dsqJVhNNHJM/zWW0aDLQafMzo3ttDjScfkLTGENpa3GXvH4MaG5ViScT2UKURx3GORgS3m92tuMwkFpf5MgYaGDqN4cj+RIYCx8hxj5HGaZ0f+GJ1mo9ZPLrKq/K3lDTe5RWFvdcuCk4zl17AjqSd5SMrpxNw5tz7ov3dj6No3nuHZn9uNzTE8dzNWtg1XOoxnAIcsVjTuV9Y7VwbAAQmjU1GeXekQ2u1a5n4nvwoCTdNhafPyMo7XaZowlpdpOh1XWqYwCgfALZ3tbmkQxm9iCYYLBWdjvraoo1eSqeI41pgYe7cd7lmXsA5wAwKj106tTpzqcXYsrzkYQpumqzik2En9FiOTJ3D9P4Is46Bg4F0OpZ43yrSPkqXtOhWQJcPEXM+W1/ptu9buQ+Ts8+yd6LLW+imM0TE6ujIQlc4040E1eGGWmryzT2tJDsBm7EsdZkwYZQtTJAwh9ZWyAUsEBdJ+yVgiGqo19E3hYVCcNWMfScQNwsCR0Y2TzKIzvTd2zhqAw64dIU7B4Ef+2norlukTGc1hj5xx+d5OikMsvYYxdHvdcs2AlS3T8zdiVQqH93f65bKB2dmGhSYkLMrTFKCwNxqjozrpA8D1d9uojh95ZPBAGbOZFVz2ySkcDMtjxeiFaUYS+nzGErptFYgN4DNGd+zBPUukDJ8ojVxv9S01bb9iZ3E71E/p11peHDO3MhudofbxgfU3+NawK+dwY/k6lndMj4ah9tUkGusSjRlGtQvcGgkTNUWc9H7t+PyoaGyMFbAFryZnfxCGRDmA9sZXK4v5oqvjmpKUXdbzt6xvNHhAWADpvK6O9ScvX4i3M5PR6rRp2A6sKlDKEjNDd8dwqjg0Cg3jtl09Z9YldBKNHj1uXVmNzAD0zjqM49H2tHyK4CdMj4Yh4Bk/k47ZZ8+W2+9awUZDD+vfc+w2OOQrH8bbbLwN54iM4VfGjVlffcYZPVPA33tm8O4Ry7jUFmHJZggNS+ttBdQrR3rLK0Zeu8V20UyBUkav/TM0dBsGBuOnaPxJu9P7sYm5iJuVDDfAOOaApRj2JDqDm9LzYb3UA3ijj+/MG8rKW2HS8Xntl+m02oi9ax91hh6MvDPwIVbjmzxPgk6NuAERw0GqYbwz+pHiCCphJdeU4SVxN2AJbaEF36zk2jqWdQqz9hYSnigQN+WRfdonWDH0LUZuHYJIdo8Wuwy3A4P3geoFN67JVKD8/PXIeU8MvtTcY1fO87Mm1u3wxnA3M/BSHjCS+7LOdwOju0hLsBMCjFiNjDzDaoNcjak3m9yx7AsACNvR4MPUD1DB1zLkDC9tSVgiDQuBjun1loxWDdnjVkLCIP34f2Lo5jgXBsb9WWi45tCSpFxx1BWHXTg25mc0YTpheG1L/ZdgZ6dG3avOKoauz+Ryg3JfnxwzMHTdj3VGd9cJx+r9eEN3x65hJdsTyM4bxovs6svazfgdldGpRgK94pSvZY62ztvsZb9H8mYYXr6X880dJPPOo7GelRmb6/bkCahVplhjdMsSGZPA1GcxigrlpkllwXuNvmRmpE6z2ddLAagJuJ27f3v51OBn6+ordgBSlrfb/h7GDK6HOKdnysJ4+6bG6FsZPWJpr8EDW7oyYTyQK8+yNMWRMjm2MnenOGLwdjGHYXi73bcB6HQgLLGVqbWMIRzjrIRS03FiNPx6z9MFM5FZ1tg3HpMxhG4v/fEAmNmsZJRGG9xim/aNwR1ukoCz4b/t90TstGipv/6LOjI8vxq9PWaly4aGnrQtY/TpNTOWHxm6OV6/R4e8Bf8qJx+zc1xUE6ZoVHl0dUUb4w8NHhkrjFlCHYGUi/KETG9n8Gh1HXvfeu4Ko7dzuDd0c8ymJE9ViI7RD0ZRxMiVaeXYYPDRQiJugInQlmacuDXcSiG18bsx8i0MLxfdvHqunNxOHTjXzQ+z3Ez0NdoPKFYjnGaObOJTnwxhgJf2B2hj2SqeHs755y1KXLAyGhtbII9SluQaWm+4bt+2QVswKcdAgew52Wdm6Iucv4z/gB632MbF15Oy1cBxxcUp0yWpg77J2HmTZHgFWc3qG8N2beu2w33PcAPGhu6wGTfuvMtl7eucaVcmv/Y74HBoLK/Z+0WTP7fK7tOQ0DBEH8L3LL9FpmHhQKk3h++ZAm1lCqs8YuDaDzOKCLhJpt3d9IDhybQzC+dtpGDua4id7JMZEp2RCSH8EZg5vDJGl222OOYJ1Wn4rtcJ3wc4AWiRMbey+MTdSE7M7EjZodzUUr8GT9adP2eJTbIEpmZOvXVkYle2UaYMk+ZXBswl+5I2ZFne7DzX31sNfcLqittskceoLfE6QEhQct4/EbuRuGz5kd45uYaTtevVth9j6MOVcEuzC7WNzNAtPgM5+SOufFhqsudQvPQBAO2qVz8A2DeGr+cA6BI57dc6fdJnE7tbpq5j87INN36P0zqW4fWWBsmhTsEio5s+kbqtEs2SPfbcoQJlTlH7MjH0aPQ2TLf3pSuMqOGGpS5b3jeGl4Rrl4Cj1pajkqo8xs7uk/aG5N8Ms9QZWLvJMLKnLDlZ2HOHERgwj76iUS8Hc/7idKQbUgU5PbMvS/NSdnxoPRSMkpkQppOsMzbIpjFXWo6OdWU8H/+686LEedpwTbdPlWCFxbtkjWXy5Lwl2V8xaRgt7s+NFwW3UeSQtNMx2BrzAW6Yk4rZleKakN0Uq3iONfTkOumDSAgOZDRWt2V6bN+HjtHlGGMzDquJnCGM5zImPxzAh4NnF/VoSUhvPV52zfh9FCKLxHHOBPTbnqCbTZttqWbtOsLqcZ8xpk6BahjoFOdw8AxTy4e4AV1iTssi62THh3saJjAzxz6ImNw1t0hi6H1dG6+RGX/m0CKLR0PPoi9xyNWWFKuJnNTYtXHCFKI8meLMWCJ2TKsAQOhYDuO/kcFXydac9zeCjUZpr7tyAvP20DCeV49321acMRp2tgokxwVsxLhdecRN6xg46dDe6YMca/dp7mnoDLJzFqwb/WB/9khyGn1tFaOf3Vg9Izj73Rh6hlMcdlk5QxgfQkRrzPHGZ+EOBiHhkRITdbdNRpcKCnXswzSbIxfZdgpvTopJuMWyfTNmPtR9hwUurOdwfvZ9JaxM2zKTjUy7qU+7NtxcXavX2XLNtePY4xZtxw2LJ3KeefbDoWu0YxubKAJW2dhXsaFDb4djAHKG38z6G53MzLhn5w+VNWeOToEOBgf5Oxya0QN9VGaijNUh2KzNMZO+NQzfgusy+BtcJ33RiF4rrnYM9xcjzVlbo7Fy6MPMJmz/Hw5Ym2c/rbEz2trylWkCPWVrR51TOHw+SXLzeYNJxLR26sL6569xzEB4VsEGp/RkXP9JlKNxutU2yvBp4akOniGMPzTFsQxgx5IiM4fwJII4CwOHQN7MOSPZGL0MV3gdYcxdfd2Yvv3xgF2yth0t2T1tcPQ37QBPJVGFj8Um2IDNutvQnReGTssN5PTGfpGrIWuR1WgYBRyvsBe5EkKz7N1tr4zocQBfB/CVk1V6a/JtuHPaCtxZ7b2T2grcOe39Tmb+9mzHSY0dAIjoI8z8opNWepNyJ7UVuLPaeye1Fbjz2pvJJYy/yEXuErkY+0UucpfIOYz93Weo82blTmorcGe1905qK3DntbeTk4/ZL3KRi5xHLmH8RS5yl8jF2C9ykbtETmbsRPRKIvo0EX2WiN5yqnq3ChE9l4g+TESfIKJ/IaI31fJnEdFfE9Fn6ue9526rCBHtiehjRPRw3X4+ET1S+/iPieip526jCBHdQ0TvI6JPEdEnieglV7VviejNVQc+TkR/RETfdJX7dqucxNiJaA/gtwH8OIAHAfwUET14irqPkBsAfomZHwTwYgC/UNv4FgAfYuYXAPhQ3b4q8iYAnzTbvwHgHcz83QD+C8Drz9KqXN4J4C+Y+XsBfD9Ku69c3xLR/QDeCOBFzPx9KL9G8Fpc7b7dJvJ43JP5B+AlAP7SbL8VwFtPUfcttPkDAH4UwKcB3FfL7gPw6XO3rbblARQDeRmAh1Fe0PQVANeyPj9zW78VwOdQE8Km/Mr1LYD7AXwBwLNQXtv2MIAfu6p9e8zfqcJ46UCRR2vZlRQieh6AFwJ4BMBzmPmLddeXADznTM2K8lsAfhntUYtnA/gqM9+o21epj58P4HEAv1eHHb9LRM/EFexbZn4MwNsBfB7AFwH8N4CP4ur27Wa5JOiCENE3A/hTAL/IzF+z+7i49bPPVRLRTwD4MjN/9Nxt2SjXAPwggHcx8wtRno9wIfsV6tt7AbwaxUF9B4BnAnjlWRt1m+RUxv4YgOea7Qdq2ZUSInoKiqH/ITO/vxb/JxHdV/ffB+DL52qfkZcC+Eki+g8AD6GE8u8EcA8RyRuDr1IfPwrgUWZ+pG6/D8X4r2LfvgLA55j5cWa+DuD9KP19Vft2s5zK2P8ewAtqRvOpKAmPD56o7k1C5f3W7wHwSWb+TbPrgwBeV7+/DmUsf1Zh5rcy8wPM/DyUvvxbZv4ZAB8G8Jp62JVoKwAw85cAfIGIvqcWvRzAJ3AF+xYlfH8xET2j6oS09Ur27VFywsTHqwD8K4B/A/Ar505WJO37YZQw8p8A/GP9exXKWPhDAD4D4G8APOvcbQ3t/hEAD9fv3wXg7wB8FsB7ATzt3O0z7fwBAB+p/ftnAO69qn0L4NcAfArAxwH8AYCnXeW+3fp3WS57kYvcJXJJ0F3kIneJXIz9Ihe5S+Ri7Be5yF0iF2O/yEXuErkY+0UucpfIxdgvcpG7RKpQIoIAAAANSURBVC7GfpGL3CXy/0JgHwQ/P+sYAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGzCAYAAABpdMNsAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABeYklEQVR4nO29e5RcVZXH/71V/Qp5dEhIOokkEBk08hoegZAER8XMRMQRJD+daNCgCCMkQGAtlTjyEIWAOopoCANK8AGi/FB8ILgwID9RSCSIIz4CIkpG7QaGSTokpNNd9/z+aKg+Z5+6+9Spqs6tDt/PWlmrbp1z7z117759cr97n70TY4wBIYQQspsp5D0AQgghr0w4ARFCCMkFTkCEEEJygRMQIYSQXOAERAghJBc4ARFCCMkFTkCEEEJygRMQIYSQXOAERAghJBc4AZE9kiRJcOmll+Y9DIfTTjsN+++//24510033YQkSfDnP/85et9LL70USZJU1bcZrzMZOXACIiOGl/+oZv176KGHdss4duzYgUsvvRQ//elPd8v5KnHaaadlXoe77747t3EREkNL3gMgJJbLLrsMM2fO9L7/h3/4h91y/h07duATn/gEAOCNb3xj1fvdcMMNSNO0YeNob2/Hl7/8Ze/7f/zHf8Q///M/Y/HixWhvb2/Y+QhpNJyAyIjjhBNOwOzZs/MeRtVs374do0ePRmtra0OP29LSglNPPTWzvVgsNvR8hDQaSnDkFcNf//pXfOADH0BXVxfa29tx8MEH48Ybb/T67dy5E5deeile85rXoKOjA1OnTsUpp5yCJ598En/+858xadIkAMAnPvGJsuz1sh/ktNNOw5gxY/Dkk0/irW99K8aOHYslS5aU26QPKE1TfOELX8Chhx6Kjo4OTJo0CW95y1vw8MMP1/Vbs3xAd911F17/+tdj9OjRGDt2LE488UT89re/DR6vr68P559/PiZNmoSxY8fi7W9/O/7nf/6nrjESwjcgMuLYunUrnnvuOee7JEkwceLEzH16enpw7LHHIkkSLF++HJMmTcJdd92F008/Hb29vVixYgUAoFQq4W1vexvWrVuHxYsX47zzzsO2bdtwzz334LHHHsOCBQuwZs0anHXWWXjHO96BU045BQBw2GGHlc81MDCAhQsX4rjjjsNnP/tZ7LXXXpnjOv3003HTTTfhhBNOwAc/+EEMDAzgZz/7GR566KGq3vLkdWhtbUVnZ2fFvl//+texdOlSLFy4EFdddRV27NiBNWvW4LjjjsOvfvUrNUDigx/8IL7xjW/gPe95D+bNm4d7770XJ554YnB8hKgYQkYIa9euNQAq/mtvb3f6AjCXXHJJefv00083U6dONc8995zTb/Hixaazs9Ps2LHDGGPMjTfeaACYz33uc9750zQ1xhjz7LPPesd/maVLlxoA5sILL6zYtt9++5W37733XgPAnHvuuZnnyuLl88h/b3jDG4wxQ9fqqaeeMsYYs23bNjN+/HhzxhlnOMfp7u42nZ2dzveXXHKJsf80PProowaAOfvss5193/Oe92ReB0KqgW9AZMSxevVqvOY1r3G+0/wdxhjcfvvteNe73gVjjPPWsHDhQtx666145JFHMH/+fNx+++3YZ599cM4553jHqTY0GQDOOuusYJ/bb78dSZLgkksuqelcHR0d+MEPfuB8t/fee1fse88992DLli1497vf7fz+YrGIOXPm4L777ss8z49+9CMAwLnnnut8v2LFCtxyyy3BcRKSBScgMuI45phjooIQnn32WWzZsgXXX389rr/++op9nnnmGQDAk08+ide+9rVoaan90WhpacG+++4b7Pfkk09i2rRpmDBhQk3nKRaLWLBgQVV9n3jiCQDA8ccfX7F93Lhxmfv+5S9/QaFQwAEHHOB8/9rXvrbKkRJSGU5AZI/n5dDnU089FUuXLq3Yx/bh1Et7ezsKheaK73n5Gnz961/HlClTvPZ6JlxCaoVWR/Z4Xo7cKpVKwTeGAw44AOvXr0d/f39m2HSMFBc6149//GM8//zzNb8FxZwLACZPnlz1W9PL7LfffkjTtPx2+DKbNm1q6BjJK4/m+m8aIcNAsVjEokWLcPvtt+Oxxx7z2p999tny50WLFuG5557Dl770Ja+fMQYAylFtW7ZsqWtcixYtgjGmvKi10rkaxcKFCzFu3DhcccUV6O/v99rtayA54YQTAADXXHON8/3VV1/d0DGSVx58AyIjjrvuugt/+MMfvO/nzZuHV7/61RX3ufLKK3Hfffdhzpw5OOOMM3DQQQfh+eefxyOPPIKf/OQneP755wEA73vf+/C1r30NF1xwATZs2IDXv/712L59O37yk5/g7LPPxkknnYRRo0bhoIMOwre+9S285jWvwYQJE3DIIYfgkEMOifodb3rTm/De974X11xzDZ544gm85S1vQZqm+NnPfoY3velNWL58efzFyWDcuHFYs2YN3vve9+LII4/E4sWLMWnSJDz99NO48847MX/+/IqTLgAcfvjhePe7341rr70WW7duxbx587Bu3Tr88Y9/bNj4yCsTTkBkxHHxxRdX/H7t2rWZE1BXVxc2bNiAyy67DN/5zndw7bXXYuLEiTj44INx1VVXlfsVi0X86Ec/wuWXX45bbrkFt99+OyZOnIjjjjsOhx56aLnfl7/8ZZxzzjk4//zzsWvXLlxyySXRE9DLYz7ssMPwla98BR/+8IfR2dmJ2bNnY968edHHCvGe97wH06ZNw5VXXonPfOYz6Ovrw6te9Sq8/vWvx/vf/3513xtvvBGTJk3CzTffjDvuuAPHH3887rzzTkyfPr3h4ySvHBLT6Hd9QgghpAroAyKEEJILnIAIIYTkAicgQgghucAJiBBCSC5wAiKEEJILwzYBrV69Gvvvvz86OjowZ84cbNiwYbhORQghZAQyLGHY3/rWt/C+970P1113HebMmYOrr74at912GzZt2oTJkyer+6Zpir/97W8YO3Zsw1KeEEII2X0YY7Bt2zZMmzZNz4s4HDUejjnmGLNs2bLydqlUMtOmTTOrVq0K7rt58+bMmi/8x3/8x3/8N3L+bd68Wf173/BMCLt27cLGjRuxcuXK8neFQgELFizAgw8+6PXv6+tDX19fedu89EJ2HN6KFryUDLIwVOslaXWHnLS4dWCc9qLsK36u2BdFa6YW9WWMrDdj9xUzvGkR23a7OIwRb3mmKP63YDfLvgXxhqj9R6OBb5OJ9tKcyhMP9U1SsZ/YTEpDO3vnKIm+qThRyTpPSXQuuX2ddnmcgVLmtinJcw44m2bA3YaVc82I43p9bRsvSpsW27YdezatPx+OrYo2I/+nao+jqNg0ABQTpc3d9GyxYO8r2qTNK89DQ7HtVpq7tE1rU9qtZ/OpbaeyTdqp0i7syX8erHZpt5otSpvulzZeym5Ph9oG0I8H8COMHTsWGg2fgJ577jmUSiV0dXU533d1dVXM37Vq1aqKyRhb0IqW5KUJKLEezkQ8YNp2QbSJbdnuPJyFOiYg7WEt6pPIK3oCStLsvqKz3Ve2J3K2EoNKTCmzDQWxb2HoATNG9E3FfU7kvbP+sCbiQZb3w7FxMeFE2HjY5jUbH64JKGS3e/AEJCcR28a9B0DYqdZuxAQk7dhul3ZbELZo36+ATat2bPd9aeghN0ruueBWrlyJCy64oLzd29s7mF+qUCw/lPb/CL0fJI1d/hGIoUaDbuQfd/08MX0jOsuuyvwij61ORnkR+O32HzlvHos8loptm8IuvbdxZz/9j7DX3gzYY4x8BHfX81Mr8rnzJqSaj+seOOoqDNc1k38/xd9X7++v9bfZuSwm9f8zWoGGT0D77LMPisUienp6nO97enoqFsJqb29He3t7o4dBCCGkyWl4GHZbWxuOOuoorFu3rvxdmqZYt24d5s6d2+jTEUIIGaEMiwR3wQUXYOnSpZg9ezaOOeYYXH311di+fXsw5btN0tpS1rqd1z7poNXkCUWTD+Fp0d4Ad5NsMGyv2hFtjVLZ5G+R8p19zeU5C1J3jxikdg09X4zSV/FdAEAi/SSWY9hrE+N37FjKyprMLGWckL1odh1znWL+65qXxBYzRikX2WOWdur9HlPxI1BBvnP21Y/r7Yts5N+rJI2xedsvKH2t0kct/v7aG7a0bQzQhyDDMgH927/9G5599llcfPHF6O7uxuGHH467777bC0wghBDyymXYghCWL1/e0IqOhBBC9iyYC44QQkgu5B6GnUXSUhxa72Bp4FoY4Esdhj7KdQ2elh6h/6u+gUDfgtYWIfQGzquGs9Yjwyv7GtGYSF9Nqmnp3sFqx74WoXj1KD+PZXti/Easo4FYu2QvH5BrY7yFgxn7VR5Ttk80aNPOuo3GhXtHhVJH+KG8W1lHuLeKPFYVIcSV8EOrFaOW5wz5NbV7J9H6ej5Ge32R/vfVG6H9fNg+T5NW5QPiGxAhhJBc4ARECCEkFzgBEUIIyYXm9QFZ64DcOPWAbm1rliGN28u7pq3FqF5L9/N82TnBoPeFbM84Z4jI88Tg+ELkeaRPyNKx/XUNWp6vwHoEZX2F1ybvndVB5j/zUgvpqeTdbZlex0n5IxeIKE4GuX7Ns9MIn6hi46G8a67d1u4vDdp8kt03Zv1RQ23c9mWKNTVG5iV07FhZ2yabQ2msNB+Rd1zR2bY3aQMyX51l40E3rLfeyF4DJXxAVcA3IEIIIbnACYgQQkguNK0Eh2LLUGp5JcO1F2qtpO3xXkW1MgoBycHYKeZDMkGivDqHJAcl7FSXMuoI7w4gZTb3NFKCsD6HpAy7WZMuAD01j9emyBOhEFUFL6O1qEPkSFz1SHBS9nBKKgSWFmg2HiMzS9vTSi7ELjVQQ4bFeYdrqYHAtnF1aQFcO1ZlZcCRlhN5b2TZEPHjndROwb9P2csHvL+DzjnlF+K4sraQs/zBalOWGWTtTgghhOw2OAERQgjJBU5AhBBCcqFpfUBJS8tQOWE1dYri19H8Q6hUGjh7X0/zjghRtXXgYF+lzLZXvjsmnFVDntMrhy2wJXuvOnH2+D3/kEwZr41fZpyR+jjsENBAyLaigctfHuVWkGlYbJ+QF1Kr/N8vWPXX9nNGppvSng/PX6QtS3A3nedBluCOsfl6/JwaXg6ZUHd7+YDuw0rs6teaXxPCByf8KcGlBnbZc3GhtCthijJsXKD54FJ9jO6JKqfl0eAbECGEkFzgBEQIISQXOAERQgjJhab1AaGlaK0D0nxAisatxMZ7fQFHE1fXOch2r005r2xTfD6yPaRFO5qx5y9C9RT1zomTfUPXlx2fkHRPCL3cWXshj+OVTM5O1eOVPhDrK2z9PHRZ7LOE1kh4ax9UvTyihHhMGqgIG1d9PqJdawMCfs4Im5f7en1tNPsPEbzx9g+Suwq7ta6N7xMV+1rPi3evvHVA8li23WbbdKV9nb6er9I6lmfTcrvKdxb6gAghhDQznIAIIYTkAicgQgghudC8PqBWKxechrqmILAmQlvro/l8RLvq8wEcDTzG5yO3PY1b8/PElHmIRXOMSNHbSdceOGlEmi+pedv6eaivrZ/Xo50H10jIHGLOwSJ8QJqNx5YcifHrKPndvBILI83PKVB9N14ePzkou684rli/5jw6qfQlVe8T0mxatofdXVaPemzaJi2G+4BvQIQQQnKCExAhhJBcaFoJzhSLMLKcQiXU8gUREoPYNxyGbace0dPau30DEoMn5ykSnCaLeH3RMBz1SJMj5HlDb+9Vvt3Lww7u6tR9qLqvJ13IEG77GkvZrCTvs5RqhkeCcwimm1JS6NQRhq1VU9VseLCvu9kombkeCc4z21plZr9EsHtcu0mGQ0tJrlEys2bTgGuLIZuWZNixKVGCI4QQ0sRwAiKEEJILnIAIIYTkQtP6gNBS9EtqA8HwYrVMguLzAaCmn1dTzAfCTo0Wsi3/CxAVhu1u1lquWI4hCWXR0GRhqQnbqTxCPh5NSw/gautKCW4AiSXwyxQ/SUno8LYzoCSPo2jplbZrRbmvqo+nwr7aUgPtedCWB8hjhdLpaDbvlxwRfTU/p4Lnbwncm5r9nPK3uVXanXEkMvZbOezgae1Q92ybBly7Vm0acH5s0KYlWe0y/jwDvgERQgjJBU5AhBBCcoETECGEkFxoWh9Q5jqg0JSppqqPSHES8uvY26FyDIofJ7y+orq2wXalLaJ8sVYtGhD6ubcmQhmjkVq00OUjtHRPILd9ObKvhvQXqfq4GH+Mz6e67PSV0fw63loYPe2Ns7bHs8XGpJAKrQPyzuukFhLj1exYs/8AXul4eVr7fsnb6t1361hpdhMg/DGBtEOezZSy2/wSC/ZGwE7tY4XWslXp1zQF+oAIIYQ0MZyACCGE5ELzSnCtVabiiZIn5L6K/BUKJa0xtDrUV5XgZGZd5RVeDV8VeDJBMPLSCiWVb+ieopWd5kOVWwKSlTdmLbxVhKE6g5aSg8x8bG+HpAyJHQpbbRZhVCGXOlJrQFbWZDZNCgNqDq0OS93KeQOyWkyFVGe/WBu3L5OUjsXBHLnOsxHlWsjUO4pND25nLwnwbNGWljWbFl2DsnKVUrIBJThCCCFNDCcgQgghucAJiBBCSC40rQ8ILYmfah4VfBuSiOqKehg2stvEdiiU2q3iGDiu9PNoIdyK/yvGByQJeisUt4jUjBMrLNuLeJbatO0jkiHPUg+XvgD7WDEh217YuBiT5bvxZHZPH1e0dTQOvSpoKFS/+mUKqm9GK08S4dccPJb1OeAv0v2cEUsNgh2s8PtAKh7bByTNJ/Fs0bIncV0SaYve82F3luMVX5Ts88hnUvq07OEFfKKKa8ctYVHdveAbECGEkFzgBEQIISQXOAERQgjJhab1AaUtBaQtVcyPWqr6kM9HKRUcSguvrQNS05QoPp6K5ylk99XWTNTjAwqi+ICkju2sp/DKIki/jt1XHFdq6d4aCnsdkL6v7T/y/FBynYNTTiKwxkNo7SZzIxLt3oXWumllRALrgLRy8JrNx/g15bGj1sUNq41nr3XzfUCWvyjNtunBduuz4h8aHIJcB2R3FW3eWjfnQG6bsrZHrgMK+XidJvuQ8odnwDcgQgghucAJiBBCSC40rQRnigU/Oy8QnDJViSEUomq/3teRpVoNpfYkhuy+sr2R8kQwnN3eVZEg6pInpMxm99UyZVfaVwlR9cNdrfMo8tzgzpX3G2zTSmOivgzYGo7UGrJpxUZislRHLB8IpptSzhN6PmJk8npI1Psu+tpLDRSbBoT8G6hE7MvO1hBkX8XGveUBnkxoZ7cX11QMIVRJdugwlOAIIYQ0MZyACCGE5AInIEIIIbnQtD6gtLXaMOzspqjyC7J/MERVaVN07Ji+sn+4r7UR0N2jQlaVagbSz+Fr4BH6eI19gcgQbsWP4J3HlsflcQMpWuy0JdVq55VQyzOEfHsR1Xn1KqfZbbI92NfzkVZ3XEAP2Q5VU1XR/JzS1rRUPCE7TSt/Bir5I5XzhJYlOEsNxDX1Qq2tdsX+AeiVZB23E31AhBBCmhhOQIQQQnKBExAhhJBcaFofkGlJYFp8vTEY6x9TkiBqPUIdmnfD9HFE9K1+zVMIdR2Qp3mLfUtKm9THnb66ll7Q0pgEUvqrWrq8xoovwPPqKGlMVO08EtdXGVgLo2zHlIevy1cZSsVjV4+W6f5Vf6poC5Vf0VBKbfh2K/Z1/Dq6nbrr4kSb9EeK9DpO2fmINUSe/WvL2WSKn5DrMsO3mbIcAyGEkGaGExAhhJBc4ARECCEkF5rWB5QWE6QVfEAeWu4rz8dT/b7hnFTZfaWOHaWPK36dVObuUvpq2jmgr3lS1/1A6M0h30zRbhOatrLuISkJLVrq7km2jyi0hsjE5OOy8295WrpenkGVz7XGoJ/TPmXA11dHLrVa16/5eRTdvpqfx3t2lGN5vy3GxgWefdnlGDw/jtguZft1fP/j0HE1/xBQKb+bMgbPn2QPQrSpPl3RFCpDn3FhTZVOZr4BEUIIyQVOQIQQQnKheSW41gRpa7wEZxMrTxhFnlCrj3oSgyIbBCQ3TWYLynXWti8DutvQ5IlgiYWhz1JGMFJWsMNBhaxWGMgO4fakMXkecX8KigyipUMxhWwpDxByRYSUIfEkngjUrCaaBF2pXama26jlAyGZWZPZws9HdpsqN0ZKcDEpcwoDilwn7Mt+XkpivIWA7KyGcGulTrTUO6KvvKZBm88grTIGnm9AhBBCcoETECGEkFyImoBWrVqFo48+GmPHjsXkyZNx8sknY9OmTU6fnTt3YtmyZZg4cSLGjBmDRYsWoaenp6GDJoQQMvKJ8gHdf//9WLZsGY4++mgMDAzgYx/7GP7lX/4Fv/vd7zB69GgAwPnnn48777wTt912Gzo7O7F8+XKccsop+PnPfx41sLSltjBsGz8tSUzYqX4eWwMP+Vt0P457YO9YLXZfVN03bZFtMhTZ2giFYUu92dK8zYBsc7dtzVu2eX4cqz2RYdYBn5B9b8OlHOxBBHR3xweka+maXu5p6xGo/otQiiUlLZFm/4PbMel1stuCywdsu1XaZLvXJmwcym/1fBnivqt+HemPtJcayOdB+HVsH6lMtSNfB/zw7wbZuPZ8B8qGeDafQVplv6gJ6O6773a2b7rpJkyePBkbN27EP/3TP2Hr1q34yle+gltuuQXHH388AGDt2rV43eteh4ceegjHHnusd8y+vj709fWVt3t7e2OGRAghZIRSlw9o69atAIAJEyYAADZu3Ij+/n4sWLCg3GfWrFmYMWMGHnzwwYrHWLVqFTo7O8v/pk+fXs+QCCGEjBBqnoDSNMWKFSswf/58HHLIIQCA7u5utLW1Yfz48U7frq4udHd3VzzOypUrsXXr1vK/zZs31zokQgghI4ia1wEtW7YMjz32GB544IG6BtDe3o729nbve1NMyv6RmNIBaux/QC/XNG+5r6NVx6TiCWncyranrbfK7SH91jtum/ABWXp5cC1Mv/DV9FvHlT4f0ddYfQtS4xb72tfR9jMBFdZeCCE7LWT31csiK74xuHq5X9oYKtWumYhFLR0fsnnHLxKRXicihVSMXxOo3ca9Z0Wxce+/2opfE3BtXPp1PBtX/F+eT9T2cwbSGxXkcxlT2sTx64i+0pep+IskVa8DGs5UPMuXL8cPf/hD3Hfffdh3333L30+ZMgW7du3Cli1bnP49PT2YMmVKLacihBCyhxI1ARljsHz5cnz3u9/Fvffei5kzZzrtRx11FFpbW7Fu3bryd5s2bcLTTz+NuXPnNmbEhBBC9giiJLhly5bhlltuwfe+9z2MHTu27Nfp7OzEqFGj0NnZidNPPx0XXHABJkyYgHHjxuGcc87B3LlzK0bAaZgW/xUbqEKOi8kUHBOGHSVPZEsQQQlOkSBs+UG2AUDabskT7eIdXWwXO4be5wtFV7NKS+4gSjvd7bRv6AcX+twfr8s4QuaQ99KW0eSt8+6HlOisNCVyXzXNSiCU2kkPJLNfi756c/WNARvXJbh6UvGIE2lZqrVUPBGystzXs2khq9nbtr0DgBE2XugY0ruKLW5bacD9sWmf+wONtZ32ub+1KK6FIy0Lec4rDGpte0sLQjZu2V8oPZCW4VpLxeMRzIadsVuVqaeiJqA1a9YAAN74xjc6369duxannXYaAODzn/88CoUCFi1ahL6+PixcuBDXXnttzGkIIYS8AoiagEwVs19HRwdWr16N1atX1zwoQgghez7MBUcIISQXmrccQzFBUkUqHi3sNDYMG5pfR0tTEkjFo4aZeilzRLsddtrmtpUUDTzZy43/HDW6z9meOGZH+fO0MVudtr+90Ols/+8LeznbL24fCptPC2LAnrBti95SUBY3oD+7SfqLpOsmsVPxeClNlLIPXiVMsa/dNyL1jkdMSHZdPiD9WE57wMadFDqhpQaaDyjg9yzZfh3FrwkAaYdl46Ncx0fH6F3O9oSx28ufXxWw8eeFje/cPvSwpUUxYLGewK2kLMovKGVdpJ1G2bhXAVUJrQ5VOY3yAVWZikcOPgO+ARFCCMkFTkCEEEJygRMQIYSQXGheH1ALkFQxuqhU9cESC/bniDQl9ZTKVlKNDG4PfdZ8PoDr99lrjOvzeVWnq4Efu89T5c+fmPRbp+3jzxzqbK9v2d/Z/nsyrvx5B1xSz6Qi6j5Y7dr6iUrt9u2SaxAKMuWMkorH08Pt+xwqVR5RojuKqJIjol0rU93IMtsRfk7NxjWfD+D6fTqEjU8d72bSnzPxz+XPn5z8qNN20TOHO9vSxruTseXPL8Jlt9m4sk6onnRTqt2G1rZVm4qnynVAfAMihBCSC5yACCGE5MKIl+DqkycUmU32jaoAmb2vFmYN6Bl+TZtMr+O+h7d1DMUxd+7lCgf7j/1fZ/uEsf9tbbkDftu4R53tnr5xzvaO/iHNpL/f3XeXqADpvP2HNFDr/V/KZvKN3pMvFHnCC2dNsxulfOekHomUJ5ohG7a0cV2CE9tqJd/sfUOSmyc7OzYuLpqw+RbLxsfttdNp23/M8872WzqHbDwVN+/Ezked7Wd3jXW2dw4M/YiBAWHjaR02nig2HiMzyxBuWaVVSTel2a2XHR4CSnCEEEL2BDgBEUIIyQVOQIQQQnKhaX1ApujrzECFdPOSKH08e99gBUgtbY+abj7g8/H0cmu7VZRUEPp4W9tQGPaYVjctyahiv7Pdm3aUP/8/T77Bafvg1J8526Nb3HDXvVqHjtXe7h63JPRyO+29kb/dC1u2b5BIaSJvpqg0aV8JryKB4gPSSjUAgLHG5LeJfY2inzc0FY+dz0XfV7X5CB+QX45BbFt2nLYEfD5eu+UDEjZeaBN+Tmt7dJtu49ssG/+3J1/vtJ057f9zthtm47J8hHffs208EYaqpeaRtqj7Od02LRWP5zMUVOvXNEzFQwghpJnhBEQIISQXOAERQgjJhab1AVVbjkHVvIdTH9fWAXk+ICvdvJeaXvH5iH0T0bfY4urjrVZp7WJBD8TvHhhKR//o5n2dtmcmuWsiUnGhWq1FB62inLdX3rvV0sdLUtR2N+21C0bcLLmOw/MJ2ZuyPLG0A/u8cv2ETH+SKm3eegp9vUWthNazOX2j0k3p+8akm7L9OjFl5gFh856Nu0Zi21uLWkcA6O4fX/7866eFjU+u3cblc6fauPyt1s+T5ywIG0/FzXNcfzIVT4SfUy85ovettsx8WuWrDd+ACCGE5AInIEIIIbnACYgQQkguNK0PyFkHVF1I+eB+MeWKNc07sGZIz5Ml/Dh2qnqhcfsluYXKamngidDDi0Wpjw9tF4SYOyCE+OdLY4bG8GxHZhsADIgfaB+7KEoBt4gxlqxtI3x6RgjF9toBuX5C/k8p6BOyj6usC9K0c8C97yEt3TtvTInuCBuPKjsfVY4he1vz+QDCxgN+TunngePnFOuAhI23WNuJsPE+8TA9Xxo9tPFcu2hzbTwVP9628dai/twN2DbeKmxcHNcuVV0wus9H+oTcNY7iRit+T82v+dKJrPGKtoCNZ/k5jRxPBnwDIoQQkgucgAghhORC00pwNZdjiJEntH1jUvFIOUIpz+ClFypKrUmk57COXRBtUgqQkoSNlCdeKA3Jbm1b3QuxdWAvZ7tfxtHaYxDh3nKM9nYqf6snVWaXPpAhzpDX2NpBpjSRIatquiZNrpA2EVshtUZUO46wadnuyXNqKh7dxt1yDMp9hS9R23ZQKNZu4wPiB9k23ro1uw3wnw/tnHJMto178rv8rXa4unezIsKwxZj0qr/iNNImFDutNSw7pQRHCCGkmeEERAghJBc4ARFCCMmFpvUBZZVjCKeqVxpDodVqKp5sDVzTwwfb7TQluj6u+YSSgq6Hy9BrG6mPb7P18RfcC7MjbXO2+4QPSKYQccYgx2htJ0URdi31cjv2Wqab98KytRsdiHHW0jUpenmw5Laij8f4g1QblmMKPQ91lRwx2W1KqHVoWYLn57SXD3g2LnZVLqT0Vb4wMBR63fqC23dHybVx+Xxo5/S2rfGnReGLkdu2IavlSCq0K6RiTImdEijGzxkZhp3VrlxOB74BEUIIyQVOQIQQQnKBExAhhJBcaF4fUMHSERuViicqVb2eC8bxAYk2bx2E4y8KOBKKUl9W1gFJ3dceg9CTpT5ur3to2eEO4cWSm0NepvGxjy31cC/bkePDEtfFW4ditUvt3FsXJL9QjEReY3uNgpeLR+xr7xqZigeK3F8X9aTiUWxcTTel+DVlX9+PKcYg2h27kP4VpayIXEcj/Th9Vt2Hlu0Qbe6fPm2tm2fT3hgtG5e/TV6nUravzLMvbSShEh3WGI04biLLZduXzXvOMg+rwlQ8hBBCmhpOQIQQQnKheSW4FniVFSv2qyPsWr5PatUi1czZMZJDjBwBN9RaSnBaWhIpwUl5YpclQRRfFJmzhTYgU4JoeJKcrRrI8XsS0FBneU29LNVFeXOdoGe3Tasg6o1XCYX1U3LrNFR3s6hDgnNkt6hs2IFUPPZSg0DYtReGbZ3Hs3F3T8fmpV0OpFKCs2RmYeN9oiyrfF60pQbe8gdLJiwk7hhS+dvtayPtQ8rOmgF5ElfEUgP5dy9bAa05NJxh2IQQQpoaTkCEEEJygRMQIYSQXGheH1AhIxWP7Kf6gAJhv1oYdqh6qqN5Z7d524Hwbs0HpPl8Qmhh2S07hT5ecs1Caut+Gvkh5BgdH5ZoU/Vxz+cjTqTq5zLsWinlEKOPy/DVkGtMu12BbEEqqg8oEFqtpZtSlyWINs3v6T071fs5pQsuBs3v2dLnnrNfVipVboDv18z2c8rr7/s57b8FMm2P9H/pSxFcRKO0VffA2bt6PiAx/sBpy19L+8iAb0CEEEJygRMQIYSQXOAERAghJBea2Adk/HQ4iEtVHyxXrGjgapoYyDQlis9HjiOkhys+IS9rjOITkn6auvTx4EXPxhljSB9PsvVx3+cjm5V1QHXo4/b6I7lmKCpNScw1DPj6tHRTMemnNJ8PoPs51XIlDfRzauUX/LU77olsP2dR2LiWXqrStjsmd1tbqyf9nHZqHiNrjITS4Nh/c0JOQ+e5E31jUkp5PiH9tOVuVfjvAb4BEUIIyQlOQIQQQnKhaSU4ZFVEFaipSEJZJDQJIpQp2MncLI6ryXcBac+TqYYpDLtkbRdFGLaUMrxt5fVfC1H1JERFjvTkVxmWLWUd6/fo4aqAbQnBUFclujtuu468PCEp2UbaqdIeyoYN9XlQ0utEysxolI3L1Dy2zLwzVfvGyMzaUoNQBVdHxpXLNQL2pIrM3vDtB09xCcidY208A6biIYQQ0tRwAiKEEJILnIAIIYTkQtP6gEyVPiBvP3sjGKKqaOCaz0e0e21Sc1WqgspttZyBF6KKTHyN2/1BdhhqcZfQx2VIalSeGBfNh+XdHs0HFAjLtvvLy6+GrMrOMkRbKbngVW6IcV9ofSOWGkT5NQG3Umao5IhWRkRLaxXt56z8eXA7Jgw7e7vQ595IWQG1rqUG1mdZwbUkfpDt//LCsENLD6xt+Xx4vkzbzylsWv7UxBqH74eK8I3Z+9IHRAghpJnhBEQIISQXOAERQgjJheb1ASVVyo/aGolA/LuWmkfz+XjtgRQ/bqr6bP27cru9ZqV2PJ+QtV0QPiBZvjsmTYlEWyPh6ftWB8+/Iu+H5vwI5IzXfEKJ7JtkbVQ4T8yaiRrLL4TafJtWfs/u8nOGfH/DtNbN3i72B/ycwua1kiPST1vQ1gHJ65/a10kcWJY+UO0p2+cz2JpktvlOoKxz+IPQbo/dxHIMhBBCmhpOQIQQQnKBExAhhJBcaF4fUKHKfEKKn0fNE1dh2yg521SfUEgfT7L18ZBPSNPEG6WXF3aVaj6ORFub5Pt8sn970OfjlcfOXt8i10jYBwumtbddfUGNXqz5qCP9m3JYl5CfUyvHEPJzOin9xXEi/JxeiYuQH1Tpq6H5gJJdyoKuAFpJCCCw1k357Yksye2tCxInMhmfBwcputpjkmvbFDsO2HDAvTr0NdcBEUIIaWY4ARFCCMmFppXgUDC+tFWBqHIMgZBnV0ZQjiv3DcgTiRKyrYWkDm5bh21giKqNlODqCbuWOLcjRp7wL4yz6Ut0dj4XqH3t0g1emDKyJYhQuvygRFcryuUPycxaKp7hkpk9Gx+mkiNaqDTghlYXdg24bcqyhBAxsrgqO3sVgsXBjLR5e0P0VdL6SGlPSn+utBdpwxn3oNo/GXwDIoQQkgucgAghhORCXRPQlVdeiSRJsGLFivJ3O3fuxLJlyzBx4kSMGTMGixYtQk9PT73jJIQQsodRsw/ol7/8Jf7rv/4Lhx12mPP9+eefjzvvvBO33XYbOjs7sXz5cpxyyin4+c9/HnX86sOwlWPE+HzEsfzUI8p5g/q49bGOkNQYQn4bJ0S1X/cBNYqYEHPV51bpYPY90NL0QJRukOHcXuoU6zplDLXcNzvau7E0yM8ZtvEIP6dj46HUO3K7MRdK8wkNp43H+YSsz6JvKI2SY0/e30Yl1FqGaEvHjuOWikw3lfXbq/DfAzW+Ab3wwgtYsmQJbrjhBuy9997l77du3YqvfOUr+NznPofjjz8eRx11FNauXYtf/OIXeOihhyoeq6+vD729vc4/Qgghez41TUDLli3DiSeeiAULFjjfb9y4Ef39/c73s2bNwowZM/Dggw9WPNaqVavQ2dlZ/jd9+vRahkQIIWSEET0B3XrrrXjkkUewatUqr627uxttbW0YP368831XVxe6u7srHm/lypXYunVr+d/mzZtjh0QIIWQEEuUD2rx5M8477zzcc8896OjoaMgA2tvb0d7e7jckKMuaUXKtplvHpOIJaunKugdN4w6mo2nMGgmJnqZkQHaPOpaNXzZ8aFsm/NHXAQndOsYnJP9bJU9s+0FkGnvFJxSdekdLc68Ryg7k+IAifJVyO6pv7euAJKrPRN81Cnttj/QBDRcx/i7/Wc9OLyUPFvU8+I4bZOGVbvCG1NgFPlFvQBs3bsQzzzyDI488Ei0tLWhpacH999+Pa665Bi0tLejq6sKuXbuwZcsWZ7+enh5MmTIl5lSEEEL2cKLegN785jfjN7/5jfPd+9//fsyaNQsf/ehHMX36dLS2tmLdunVYtGgRAGDTpk14+umnMXfu3MaNmhBCyIgnagIaO3YsDjnkEOe70aNHY+LEieXvTz/9dFxwwQWYMGECxo0bh3POOQdz587FscceGzUwkxg/TLQSaqZgfVsNQ40I2Q7LE8qQ6pAr6knN49Av0pQEKqLaRKmjofFqaUoCYcBOCG7o3qXZN8RL2yMlObe3u6XF1TZSW9pdMrMi1/mpkrLbQvddewa07OpReDbeuBsSM8Yk6u9GxFIDra9nw4okF+hq5BizsmFX+bep4bngPv/5z6NQKGDRokXo6+vDwoULce211zb6NIQQQkY4dU9AP/3pT53tjo4OrF69GqtXr6730IQQQvZgmAuOEEJILjRvOQYrDNv7PrTfS3g6ZEgvV/tWn15H08tD6doblZYkhqQ/Lgy7YedVwlCDaUq8g9m+DXkDlL7BmOGINu/WNehe1uPnDD0D6rGq9xfFLTVQxtBA3HRTuo3H+IQ036tsS9VlFSKMXx5MvR9imYL0Zyt+Th/btxR4diRZ7ayISgghpJnhBEQIISQXOAERQgjJhT3OB2Ri1kh4x45ZX6GtWQnE99dIyD8Usy7IWeszIFLVN3DRSqN8WtJv4EnVSXabur4ikKVELd2wu4jw28T5fCJ8pME1XNWdMkRdZee1M+/qr/m4IWq18ZD/1z9q9lq3RJYcUe9d9Wvb/ObGPgN8AyKEEJILnIAIIYTkwsiT4ARRkoN3johUPDFEyB5+2pLqD9UojCdPFIflPDEh6J4cITNPe3JFTD4U+7OXayRzN2lrXmbg4bpZynGjlxpEhFbHLDXQCFcBHv6lB2ZgN2XDjlpm4aWadrc1+wpm11GWJURkx666Aqqkyn58AyKEEJILnIAIIYTkAicgQgghudC0PiCTmOpSesekFmngsRJNj61zGMOBmmpkQKYpGR4fUF2EQklV34aMVc4+TJw8no9PqK6lBrX2lbvmlF6nZvp3OZupactpIEMES7FoX0gfqJa7KiYVT6xR1Om+4xsQIYSQXOAERAghJBc4ARFCCMmFpvUBZVJrenAgnHok5jzarsq+zaiVm127xDftbnuD029URcyaiHqO7R1XOW8oDZQiiHv+oQiqLW9cFTWXY6h+DHmUFKmE7fc0XjmGfHxAMX8b6rmKTrapug4ktqv1kVZp7nwDIoQQkgucgAghhOQCJyBCCCG50Lw+oCpzwTV0rYWmXSslFppF864V460DGoEoecv8NRLDPhqPUB65KD9PxBq0KJseJprh+cjLxutyVWr5EEPrv5ylPXWUYwj5XrkOiBBCyEiEExAhhJBcaF4J7hVCU8gTXhh2PuQSot5ISSHiWA0NrW4Gmvz3+GHY1dMMzygAfflAXtjDqOEy8Q2IEEJILnACIoQQkgucgAghhOQCJyBCCCG5wAmIEEJILnACIoQQkgucgAghhOQC1wHljF/qYPevOUja8i9PDNSZNr7mk+ZzrLpS8TQjTpqY5vstSWvtf+pyKUdSiWYZhw1T8RBCCBmJcAIihBCSC80rwRlUfr2rtUJfVedUZAT5+mtnxfAKrTafBKGRtDSvGVSNcj+a4XaEKqJq7Z48p/0e7/lQKr6GqsE2iKaQmXOy8Xp+qSr9xdi48rfL2w7JfA2+dXwDIoQQkgucgAghhOQCJyBCCCG5MPLE/5DPx2htAS1aSy0e4VvyfEJJdlszEArDziUd/XBq0aq2XrvuHvLz1EpDQ7bV50NuJ9ltyg2Qvou8fKIF6zqldYRhNxLt+W/k34aGHSt0nKz2Ks/PNyBCCCG5wAmIEEJILnACIoQQkgvNIYxWIDFJVZq6aaQfJ0IftzXWkCSvHXZ3UdAGORLWAQV9Qknlz0BgjUTovNl9g/bZKB3eW64z9IVn/4F9Heryc8prPHSwXEqrh2h1/Zzq87CbCPlpPJecs9ZNXv861gxpvr5hvkx8AyKEEJILnIAIIYTkQvNqL1Wm4vFCVO2dgpKborPVk6YkIi2GEe/h8rV8dwgFSVur+CYdlvNI2UDbDmUgritDcUzqEYtoyW033LwEiv1n7GH3dnfOltW8pQUxj4MnX+t2MBwkLUXxzcCwnCfGxv2dI+wrKB1rspoiUccctwH9+AZECCEkFzgBEUIIyQVOQIQQQnJh5PmAAtiaeHSIqqObBpwxisaq6uV1hH+GtPI0QksvJJafp0WEqKIUNS6NRun7oRILRtOx6wjLTlItHY2+bx4ZaII+IccFlO3zeWnn7L7eDchsiVp6EGPDkoJ2wT0/Z+N8QLXaeNA/FOEvUp+PRpZjaDB8AyKEEJILnIAIIYTkAicgQgghuTDyfEAR5RgSmRNESqGFiDQ+dayR0FJo5LEmQmK8VPW7ds95FR07Ivv/S+0R6USi+lbZFhpTPXg2X71zyfMJOTmkAudRfaLZ984bXmDt23Bhp9sZCJRjiEnNo/mpZJu+1s3dV0u9E9oXqeLniXkeJLWWY6hyKSHfgAghhOQCJyBCCCG5wAmIEEJILjStDygxSXkNhiql16OPC93U9QmJk6Yx6ynEiWx/UXZTRTSfUD1rJhyEPu6sEYKuj8eo+UH/llJSwdPSVc1b3rvqNW5pE7qWLkpP11P2wTmQ3mxUZ2Xg0Nbv83ygnpM02ymn+T1Dud8k2jMgH7ua8Wy8cX6omDEazU5Df0fS7OdD7ysHUXsuuGrLzlfbj29AhBBCcoETECGEkFxoWgnODsNW35aVdDreW6A8kJh+o+QJW6USx/XTYiRZXcNSU0SJAg0pOdjbpi3ODFRJToxRkwmjwkxjZIRQCKjVrkpugCNl+PcucJ5aVZ6QDJJkbUTafMz4o9K56AfW7LiRAdp2ah7TKssxDA9xodR6Oh21PUpWq/7eedJZremlGIZNCCGkmYmegP7617/i1FNPxcSJEzFq1CgceuihePjhh8vtxhhcfPHFmDp1KkaNGoUFCxbgiSeeaOigCSGEjHyiJqD/+7//w/z589Ha2oq77roLv/vd7/Cf//mf2Hvvvct9Pv3pT+Oaa67Bddddh/Xr12P06NFYuHAhdu7c2fDBE0IIGblEif9XXXUVpk+fjrVr15a/mzlzZvmzMQZXX301Pv7xj+Okk04CAHzta19DV1cX7rjjDixevLjqcyXp4L8QvuZd8eNg31BotTUd6yHaED4HPeWPlrYnpAPXSijM1PEBCX28kSGqNlHhuTEaNxAVoqqWWBD3MlF1d3HcWvXyEErKHK9yvJduKtvmvTQ9no0rqXjS7K6eX1NciNgw7WpJNN/kMNq46tOqJ92U559Mstvk30qnr9uk+nkalW5KW/pgEfUG9P3vfx+zZ8/GO9/5TkyePBlHHHEEbrjhhnL7U089he7ubixYsKD8XWdnJ+bMmYMHH3yw4jH7+vrQ29vr/COEELLnEzUB/elPf8KaNWtw4IEH4sc//jHOOussnHvuufjqV78KAOju7gYAdHV1Oft1dXWV2ySrVq1CZ2dn+d/06dNr+R2EEEJGGFETUJqmOPLII3HFFVfgiCOOwJlnnokzzjgD1113Xc0DWLlyJbZu3Vr+t3nz5pqPRQghZOQQ5QOaOnUqDjroIOe7173udbj99tsBAFOmTAEA9PT0YOrUqeU+PT09OPzwwyses729He3t7X5DmlSlI3q6r+IKkPq4t4bCFjzl1ByTqt7Tx621JEJn99cNZGvGdZUrVjTvtE3Xx+vRy93lIdWvewj6xiJS5qhrfaTPx9PSrbbItUmNcjNot12z/4wdho4rfoBezjvk57Q/Cxv3fKSNWeum+XwAN6VUKta6yfLdajlvQZzPR/HjBNJL+Taf8bnCsZy1bkrb4L7ZxwnacEZ7tbYf9QY0f/58bNq0yfnu8ccfx3777QdgMCBhypQpWLduXbm9t7cX69evx9y5c2NORQghZA8n6g3o/PPPx7x583DFFVfgXe96FzZs2IDrr78e119/PYDBAnArVqzApz71KRx44IGYOXMmLrroIkybNg0nn3zycIyfEELICCVqAjr66KPx3e9+FytXrsRll12GmTNn4uqrr8aSJUvKfT7ykY9g+/btOPPMM7FlyxYcd9xxuPvuu9HR0RE1sGrDsLVUJCF5wpPoMPzyhHzNTsQ7aEyIaqNS80gJrh60zMCqHAHx270w01CKEEvmDIWo2ul1ZIhqPfLEMIVhe9Kx0ujbtMls123arSjsVTGV18k+lAz9lpJcxNKDGBvX003VnvQlJH3Xml7HBGU0ZTsgqznPQOA8dS01yKCqv92oIRfc2972NrztbW/LPnGS4LLLLsNll10We2hCCCGvIJgLjhBCSC5wAiKEEJILTVuOITFV6o1aHymeSylXCYkO6uO2v0gONEIf97R1rRwDakcLO02FPt4SqIgaE5atlVjwfULI7Bv0CWkhqkqotadVa2HZoYjnmBuk2m2gr7ICwEvFIw5m+0X9w0p/kpK2R47Ruk6eb0PavJeap7YwbIlmp6XWQqCvO2gtxFv6hFLFxlMvtNr2Aelh2KrNaz4f0R4qOaLZuF6OWhzHXrJQGoZUPIQQQkij4ARECCEkFzgBEUIIyYXm9QGVBv+FCKbbsft6Me1aOpeAb8bqnITKImv6uNBnU6GXFxy/iNSekYnn8xEad0th6OKW2gL6eB3eJ3WNhOzraNwR6UMg1z3o6XVsuwrq401YjsFdyyOQ/6WUz5BjX3paKG1dnHdieztg49r6r5h1cCHfpLPWrd29MK2Fkuhb+59CZ/laKhf2ST9Pdpt/3bJPFFrr5vhgNJ+PGEfD1raxJDchhJBmhhMQIYSQXGhaCQ4ZEpyfagTZX2gyAeBPv7ZUJsNXvffYCHnC/kLqZkF5YnhCVIt2iGqHkP28MGyxrbyHqxUgpbyihaEGroseduo2STvS0pR42ZvUEFV9X7dvxL0LhblrNi53VWw8VDnWsWshM3vh3sqYpOyshWnXZePiB9jLCQY6CmrfWpcWyG0vDFvrK0OVA2HYjqxWks8DsrdjMr4ju63idgbVpuLhGxAhhJBc4ARECCEkFzgBEUIIyYWm9QElaeLr/KggeWuSsdR1Q1VOC0qbdyKlHIPwOTipejy/BwLbEals7BEFQlQdfbzdPU5rIBVPDM4YAxUgnfZQSKr061iauOfzkXq5Ezcr+kaEvtZaLbJiW5K54ZFkX1J/UHLTsnFZCsQPnVVCtr3lD0lmm/R7+pU/s31AWimEUDodO9S6JGy8xQvDrt4nJN249pi91Dty27bFkM9Htts23kA/Z1TVX0lGezVLaAC+ARFCCMkJTkCEEEJygRMQIYSQXGhiH1CVOqLqA9LXOah6eXBqztbHtRLdjdTHY5Catq2PD4h1QO3FAWe7pVR9qnptjYSn5ysat7fux1v3INuVvnK9jm1XgbT2Wiqe4FqHRqXikahr3QI27yzMEm2azcvziGvs+Dk931LAL6Kso4mhLj+ncrO0tTyD2/ZGwM+p+WbkuiDPr2P31fet2c8Z8H1X6w721jhlwDcgQgghucAJiBBCSC5wAiKEEJILzesDGgCS4ssbSj+xreWk8l01il7uLbrJHoM8kVei29ZDC0obAFNUfCiKdi7R9HAAaCsM+XlKo8QaCSEwx5Rj8PVy63OwBPHQR08PV3w+sr+aF0vsG0xrr2np9awDqgfVB6SPIXH8LbXbuH9gq11P46euhfNsXJ7VOpiX+63g3qB2y8YHhI23F/qd7Zh1QN5aJasEQ5Sf02tzNz2/zkCEjSsl6mP8nFH5DpXxZME3IEIIIbnACYgQQkguNK8El2a8xoWi+zS5Tqa5UVLzyGqpnlyhUBgQr+j2gUXFU28M4rU7tbZTIc+VlAqjWtg1IOSJvdwhjCq68oSWtsST3NxDOZKKJrkNblvtnhwht2VYdo19Ayl/1DDsiLQlMdmMgtH2mgTnHUxs279P2CKK7qajn8o2b6nBUF8jpe2Q7Gzfd0Xe8kYQkJltmW1gNESbu9RAPh/O+MS2tHnHxuVvU6Rkzy4VyW2w3foclJmz5Tp1OUGs5JaVimeg8vcSvgERQgjJBU5AhBBCcoETECGEkFxoXh9QRkluv6PY1NLehCJJ7ZLccmoW/hd3X10odbTdwJg8/dzxobiDikldL/XxscWd5c/9Y9zx71XY5Wy3B1LXO2OQY7S2PT1c0cClHi79ar6fp/JxKvbVfECKTQR9PjWGrErUpQWig1oau8IYnPbAeO0lAWkwpty6d14ZFN3vaUpWGLNMTRUocW0j/ThjWvrKn/vHuH33Kro2Lp8P7Zzedsm2cfHjNBuPsGlA93MWPF9T5f0qbUf5LhmGTQghZE+AExAhhJBc4ARECCEkF5rWB1QYAApVpOKRmBh9XGrRakluse2si5AnEmk9rM9eFWpvLYbQyy2dOG0R64BKuk/IRq57GGP5gHZ1uuPtbNnhbPcUxmUetyR8PjKVirMd8gENKPp4oASx7SPyfIeKBh6jj3t9h60kd6BJ8XN6Nl/IbvdLvGePsSD9Hp4Dyeor18HJH+D5gCwbL9Vu49KPY9t4f2d2G+A/H9o55Zi0dUCezTs27jZJm5dLk2r1c4bKiMSk4pFkPQOG64AIIYQ0M5yACCGE5ELTSnC1hmFraUo8eULKLdZ07MlzilzhhYoq8d6JaJMhzakMWbUGYgbcvlIK6LfDWYVsINPpTCi+MDSGSTsz2wA/O7Z97JLQVwYGhGRib4s2T2azXts9+UG80mth2aocIbY9G6snTUmDwrAlahi27CslNy39VGRYuU0BAUnOHoN48LQlDkbYSCpsfMAOeRYXRspoE4rbhzb26RNtro0Xkknuea1j94sxeLKgPeZ+3cbtIQYlt0bZeCOXGmjYcjUlOEIIIc0MJyBCCCG5wAmIEEJILjStD6hQMigM+AKkl6pGkCg+IE9LV/RyX6eWA8n47B/W1aqlz0f8Hu/nWQczQhMuDbiD6i8NbcvwaMmUlq3lz4dP/x+nbXLLNncIYsz96dB57HMCQCq2jaWJ+z4fLQzbHa/n85EhrFqq+ohUPDFh2L7PRxHMY7R06buUh1Kqj3o+H8We1GUIAIx1K73MKp7NZ6ftkSsN4Fb7cPyecllCaUD6OYcGNeA9pC5TWreUP//jjMbZuHzuHBuX4dH92TYe8vnIyPBG2XiMn1NSrV/T869nwDcgQgghucAJiBBCSC5wAiKEEJILTesDyloHlCgpQCThNCXZ6xM8LV2uA7J9M8I/pOnlcv1EKCeL7coxBbEeoejuu6t16Ha+0N/mtL1YanW2xxWG1v78vwf8xGl7aKd74bcPtDvbO/qHjtXX5x63tEv8n8b26wg9vCC37XVA0ucj/Aby/hS0NRIx+riXpsRe8CXbxL7DtA5IYuwDB/2c2SmNPBeKUqJeVtWWNu88H4G0PfIZcMYhbDwtuifa1Tq0vX2XbuNjLRv/1gF3O20b+twxNMzGd0XYuOcfcg/rl1ywNhT7l+3BFFKOnzNgtNWWY6jgv68E34AIIYTkAicgQgghudC0ElxhwHsbr4iSHDecGVhWX3TkLrmzHGB2mydXWNvyDTcoyVk/woi4WfnbdxWHpIKtLaOctj+3TnS272o/rPz52I7fOm0/7D3c3feFCc721h1Dx+7vEybU50omhb6hMRc8eQJiWwnDDqXmqVmecK93PZmC60pjoqGEZYdl5mzJ2gu7lpK0rT5KSVpsp5YZ+I9t9ZKcny1epOKxbLy3pcNp+3Oba6d3WzY+f/KjTtudWw93tv+0zX0+tmy3bHxnTjauZsMWbWoqHvkHSfRVbLxWm2Y2bEIIIU0NJyBCCCG5wAmIEEJILux5PiCtWmQgTUni+ICy/UOD25ZvRkqsUh9Xwlm9ihByUM7BRZoS8f8HY91Ot6Yp8D+m09m+b+A15c+bXuhy2v72gtv3f1/Yy9l+cftQyKrZ4ZpQYac7poIV7qrp4bLdr3jqbqv6uJemJNvP08hU9WrYdR2peLxD2Zl4AmHYms37qXhEmiirs+zr+TKV8iT+ddL8nnq+LPvn7IQbOv03YeP3D/xD+fO7t7vlFqSNPy9sfOf2oRBv8+IIsHHFlxmVikdS49IC+oAIIYQ0NZyACCGE5AInIEIIIbnQvD6gzHIM7rYnlzs+IL2z525xUoKIXRW93FsjUZQHRmZfqammnl5r/yDZWayvsPL2pKl7a3eIUsF9O4c07u7/G+seR6af3ynyrtjrHvqy9XDA1bw1PRwQ6XRi0pLA9fMMX7niiPUUIbS+ET4g36YDNm/7OZWS9ABQtPwKqTCBgrA9+1ghH5A8bdH2NQWej8S2cVH6YKew8W5r/c6zwsZlmYdUrO1JrG1p00W51meX9TmQXscpyR1Y96PaeKAcg1ZGxL+myCam5Ii9G1PxEEIIaWY4ARFCCMkFTkCEEEJyoWl9QMnAUCZ5Z+1CcMehj8YTO91N3wdklwbOPi7gauL+GgmR68rSyz1/UUSupUTo7ppvo9AvSmWLFPLpi1b57oJcQxBIKa/ls1L8PN46ByUXVtgHpKx7GKY8WSF/kWT4yjHYJ5FtAZu3fUDCX+SvdRv6XPD8nGKdnLMOSD4sYkhKHjn/Xgmbt21E2FoqfDPmxaEfMCCfZ5kvUJbDto4t7dbz89g2HspZGOUDMpntoVLyWplt6ccZjpLcaYVSOpXgGxAhhJBc4ARECCEkF5pXgisZJC9JQ6rsFlERVeYt8SU4K7Q6IMHZ0oAfoiqOa8kVXiRvhFwhq1D6qTysMYk7K0OendT7oYoQckwD2fJEXbKaI08EyiQoIasxaUqCv9VJVW+y2yodq0ESnLr0IFQRVZHZpFynppuSbUr6KSNlTSVkG3CvuXyWVNsTNp4KG7erwXrXUN4bRZILSmUDlT+H9pU2HizHoFU5jbFxzeYDYdbV2nSlJTQV+1V3OEIIIaSxRE1ApVIJF110EWbOnIlRo0bhgAMOwCc/+UkYY/8P3+Diiy/G1KlTMWrUKCxYsABPPPFEwwdOCCFkZBM1AV111VVYs2YNvvSlL+H3v/89rrrqKnz605/GF7/4xXKfT3/607jmmmtw3XXXYf369Rg9ejQWLlyInTt3NnzwhBBCRi5RPqBf/OIXOOmkk3DiiScCAPbff39885vfxIYNGwAMvv1cffXV+PjHP46TTjoJAPC1r30NXV1duOOOO7B48eKqz1UYMChUIziqPiBd+PV0bVvHliW5FX+RF1ZazNa8/dLG1evlng9IbBvF36L+noAPSPOT1FNGWOrEaih1ILS6oKUpUUNUay/JHUrNox03Bs8f6RxY9I2weW0ZwuB2tk/USDst2m1iCMLGZbop+1iaTct2mfK/oNi45xsTxKRr0n2Xsq/i5wmUjtf8PHXZ+G5IxTMsPqB58+Zh3bp1ePzxxwEAv/71r/HAAw/ghBNOAAA89dRT6O7uxoIFC8r7dHZ2Ys6cOXjwwQcrHrOvrw+9vb3OP0IIIXs+UW9AF154IXp7ezFr1iwUi0WUSiVcfvnlWLJkCQCgu7sbANDV5RY46+rqKrdJVq1ahU984hO1jJ0QQsgIJuoN6Nvf/jZuvvlm3HLLLXjkkUfw1a9+FZ/97Gfx1a9+teYBrFy5Elu3bi3/27x5c83HIoQQMnKIegP68Ic/jAsvvLDsyzn00EPxl7/8BatWrcLSpUsxZcoUAEBPTw+mTp1a3q+npweHH354xWO2t7ejvb3d+77Qb1Copo6xooEnAZ+PX67YXvcQ2ldJ22PkvkoqnoBebmvgnm9J6uV26hQlrQqgp3OJWjcQ0LHh+IuyU4vI48b4fLx9A9dUTVUftZ6ieh+QR0Q5Bi/VvlJyJMbmPZ+PtL2C0lc+H46vUl/349VjsO6lXAckj5U4YxLHibFxgZZmKZjaKaJMguo/1WwPcTZeq90Gy5NU6wPqHwYf0I4dO1AQf9mKxSLSl7yKM2fOxJQpU7Bu3bpye29vL9avX4+5c+fGnIoQQsgeTtQb0L/+67/i8ssvx4wZM3DwwQfjV7/6FT73uc/hAx/4AAAgSRKsWLECn/rUp3DggQdi5syZuOiiizBt2jScfPLJwzF+QgghI5SoCeiLX/wiLrroIpx99tl45plnMG3aNPz7v/87Lr744nKfj3zkI9i+fTvOPPNMbNmyBccddxzuvvtudHR0RA2sUKochh0Mp1RCL2WEqpopWElLMrhtp/91+xZMHeGsUqKz+suQTk2CC4aRB9OKW7sqYdlB2SAmg6/TVz+uJl+Eq5wq1VNj5AlJKFVPg3Cywwfuq2bzWvbrwe3qJWlXZtbtVGa4do6lyHOyry8rh8olKyhSU8huoUhjMXaqSXuy3ZfFFXk7RjqOTSeVIcnJsWeRGFOlqLeb6O3tRWdnJ+a/+VK0tPiTVvAPp+3HCUw4/gSk5L7yJqDKn+vuq04qiOjLCajSeL2+I3wCCuU31Gxes1PZHjdZiTbPTrPPK31Anl+HE9BL48s+7uC+1kYOE9DAwE784ieXYuvWrRg3blzm7swFRwghJBc4ARFCCMmF5i3HMGCQVIhV9d6qvS8sf4ts8179ZSkE6/VY8Q8BrqwQDFGtMZxV9vfGUJJ9rQ153JA0o6G9lkekBIkJHY0KM/X2DYV7Z/vvvH2d3xqQ2LRUPHUo3V6otTKIKJuXvydG7qorbU/286H6h+D+Pr9kiryZqB5VZg6cRrO9qBQ/oZQ5inQcsdRAlYpDNq5h9WU5BkIIIU0NJyBCCCG5wAmIEEJILjStD6jQn6Lg5fBAcMp0U/GINqm5Kvq5TAGilSSICTuNWU8h+4f6qunnhysMO+AHiUshX1tfQA/h1sOwq/fr+P6hgM5dRwkG5zzeQrOhj34qHrerZvPBlDm2byYUhm37ROU6OJmaSvVz6s+HGkYe4/MJkCj3XftbELRTzbcU47sM+qXsvgG/lH1/AiZddSqeUnXGzzcgQgghucAJiBBCSC40rQSXlFIklZaee5mBZYhqdhh2IleNy0y79uu9fOuWcp29b2D1sBPOKuU5KVdEZCSOqXYZFZIaQpHg1KzCQSlA6RsKO1XDsDUZRI4p+7jBTAeaPFFPVgR572y5MZAJIZEymy1Re7ZWfZVT+V/XWiXpwWPXKjPXEXYdolEycz2h1JpELY/rZU1QlhpIO22Ujdv7DVCCI4QQ0sRwAiKEEJILnIAIIYTkQtP6gAoDlcOwg6GWtmbsZceVOml2mpLECweVoaXW54BfB4pGHNTLrWNp/qHBY0dkAq8HVR9X0uuE0t5oodRR2rru11HDWb2Q2xgtvY40JhE499bzkWTbntdf9pWZqO37LMO7NZv3HahiiNKfan32nslsP49v4w00cjsbdtAHZH2W9h+VBkrpC4jKq4HQcPsZ8J5JJW1PwKY17OvEMGxCCCFNDScgQgghucAJiBBCSC40rQ8IA6bC4oMKrgw5hVoacmiNhKef2x2EFu2dx9bApUwqdOvETjUiBxGhl3u6uxyj3TfCB+StHQnJvjFrJGwtXa7hikrbE/C3xKwDSiP08VTT3atPxRNTjsGr7Clw0uKk0l4CNl+08+sEbM9aQ+SNSbN5ub4u4Pe0z+v5h5R1QX5pluxrXJ+NB/wtiu1F9Q2Wcsj2c2p2HDyPven9Vt0Xm0mVJbn5BkQIISQXOAERQgjJBU5AhBBCcqFpfUBJfwlJKp0G8KdMLTect85BrpGQfp6k8mfAF5Ft3Vrm2/LS0dvnFNpooOyDI3SH1lPY8r433Gy/QuzqCS19u5oLLqAn15zrSm5HrQMKrZGoXndXfUIRpRli/JzyRnvlGeRaMfvWaf4hwL233nGE7dnr1eRlUdYXedvSVyP9R3a7tHHlv9PRNu7kRxNtik8oWP66pNh4yBaj1gGlSt/s59D/bZF+z/L5K/ztrgDfgAghhOQCJyBCCCG50LwSXKmExNPX4Mtm3o7ZoaOJX5/B3XZKLIRKr2Z8BvSQbSntiZ39Ug5KihMlnFUi5Tr3HKJvSC5S3sI1mS0kOWgpixoZWu3sm6bZbfJYXlmHxsgVQRSbNwX35knJTe7ryLQyXFose3BLjugys7MVCM335Tx7fIHyEk4tDdGm2K3/tyBwb5TnW0s/FZKO1fIkAenYeT4UaW+wb5rdpthpsK8ko50SHCGEkKaGExAhhJBc4ARECCEkF5rWB4SBEmCq0BG9kgt2SQU9TtMryW2Hkno6dXbIthHzeEzIp+fz0SRXz32k5BeJSMUT9PlIml0fF6ng9XBWGeernFfeHJlyPsYHpLUpNu11LcrrIH0+wjbtZyr0PMT8/1QJ2ZaoNi/vu+YTCqUdsrtG1kTX0tN4Nq6W5NaWACC7TRwXCIRWe8+HXSM94C9y/JwBm5ZktdMHRAghpJnhBEQIISQXOAERQgjJhab1ASWlkqtXZ3bMLqvtOXK8NORCA7f08kQItLqfJ6avIOa/AF45CaU9kNI/WNpcG0at+nhoHZDtA4rw+Qz2r1Ef19oAVxP31jgFfE3D5ANS14bJ9S7SR2TZvBF2K30+drvmAwUAU7SfnQCazXs5pOTvU47TKJuWhEqta75Lz29YWzodr3/QbhU/p+bnqcemnf3oAyKEENLEcAIihBCSC00rwaF/ACi8lMNGk5OEFODIauL10chsvwIn8bQno2XLbP7oqu9rIENfI6SZCHkiuiKkgrNvjDwRrD6qtWVLbl7/RsoTTkqTQIiqPJb8Ddq+NvI+SxvXsmEHbNw5jiK5yXaZ0dqT5KxrE5KgVZv3Vk7I59tuVOy/TtzzyDZFOlYkN0DYaYzkJo6l2bTXrti0d956bNrpRwmOEEJIE8MJiBBCSC5wAiKEEJILzesDGigBhYHBz6oPSMyhBUujFHq4V8VRhqjafcW25hMKh103SB/3ClZmp8Q30mfijclCpiyqVueF7vMZbFfCTrVUJIFwVjXlz3Dp4zHhrICejiTKByTzQlnt0sblsaQfNPusehh2yF9kj1E+Z/I+i/PadpwUdBuxd/bsX/9x8qQqarkGz3eTna5JX2pQvc9nsL3G5QPCDlVfZuB58LazjpMOZPez4BsQIYSQXOAERAghJBc4ARFCCMmFpvUBmYGBodQ4Xp3hIfx09HZMu1i8IPVyL517tr7pSch22h6peXt+kOzUKV5fKc/a+rgnPiuD9NK5IBuZnj2E5r6ISD+vlgaOKDnstXv+IqmtZ/t1PH08wl8ktXbjaOLytypaurT3QvX+FkgfSot4BjQNXw7DXgfkOey8hUFDH6XrS3TVbN7z64jf4zwPMeuAYte9aWt7FDsO+kTtlFGKH7PieRu1fi3CX+T9vZLHchotXzd9QIQQQpoZTkCEEEJyoWklOJQGgLSCBCez8Eopozj0vh/MzCEzB9vHDaS9sSUfI9+lUyl/KTKUF2KuZMhNI+QJZLfVS0yIqvN7g6HU9n6BLLyanCfbtKqnodQjilxnBoTM4IWZl7LbYiQ4IR3bIfaeBC3tSUqM9nG882p2K2xPaMXO8gIhuUXZvGc/us27RxkmGw9Ix3p2eKWvJiNXatfs1vv7pKTXkTKaJbuZgKzsPy/2mOxzUoIjhBDSxHACIoQQkgucgAghhORC0/qATP8AzMtauB3yLPXjohScLULlC6QWaveXWqimjwd0X3vTS2Mv+0q/lCOPS/1b0by9CNXYONQqUVLvSGLCTqNDVJUQbs2fFFViQerh8rjSJ2Rr6yFfk0UibVrxc3rlCrT0P4BjxzL1i5H+FeWaqoUxvXsVsHkntFp0lQZm+4RkhqIqq3VWRZTvUvNhBXyZ1Y5B7uv5GyPS63ipkhQbV/xFg4eyx2SFYdMHRAghpJnhBEQIISQXOAERQgjJheb1AQ2UYJJBHdH2+xihj3teEEsTl2kjPP9RyEdUbZu3zkHRrb02uW9ECh3pprI0fH8dkzyPclxJROqdYLqdKo8bjaLZ++fV7mW2tu77ceQaCbE2xtbLNe0cwsbleaTN2+uEpGYfsumItSTOtQj8V9W2g+B6HHmNi9mpqhJxLMcnJNfbSWL+e119hiKVKD9UzLMi2+vpq5XZDpQUMZ6PqLKf0xiW5CaEENLEcAIihBCSC5yACCGE5ELz+oD6B4b8GEp+NyPKFTtrG7zaBtXPt/4aCXniYVpXI3EWETUu15Xjf4ksV1z7OQMH1rToWL282r4hP4gzBn19kZeq3tbEvTaZS83C8/lIv46dc0vmRpQ+FIHm14m5TtL/oj1aXtmEBtqxRj1+nSibye4aWs+mtcX4k/zS3zHjt/MdyvVeIZ+Q5SN1/EFcB0QIIaSJ4QRECCEkF5pWgkNaKqeld14CZeoRLwWFvR05v9Yoq3lpShqYFt49j7stM5y4ffUUP25j7Dh2k/xYK4HxeXJFHcdScarzBko5FCyZ2bvRivSnZKLarTgpWWS6LH1XJ4R7d8lzEXgyWsOOW8eBh+sZlGmfZAkSr0KqXXKkZDdUdTq+ARFCCMkFTkCEEEJyoekkuJdf8QbQPyQNWa+FfoVBWTUwu4KlJ9fJlez2CvPE1Q1MSeoIVl8RImdERUujRN+ZVEYxyRS/9mfRt1B9JFIjpQ1VOlCi1fxIHXHcUvZ9hrxVXuVGO8O1ntE3cSqVBmwiVapFikgfL/LH9FttMhOC7Gv/dsWm5bY3fuW3AnCMJBU27hmQ3R6y6URpc5E272QvkTYtbV55HhpKRGZ22469v09K5GSwAqrWLmxc/dsWsHGTWrYYsGnVjq22AfS/1K5LhU03AW3btg0A8AB+NPSlff36xA5ym5CRSJrxGQD6QciIZNu2bejs7MxsT0xoitrNpGmKv/3tbzDGYMaMGdi8eTPGjRuX97Calt7eXkyfPp3XKQCvU3XwOlUHr5OOMQbbtm3DtGnTUChkvxE33RtQoVDAvvvui97eXgDAuHHjeIOrgNepOnidqoPXqTp4nbLR3nxehkEIhBBCcoETECGEkFxo2gmovb0dl1xyCdrb2/MeSlPD61QdvE7VwetUHbxOjaHpghAIIYS8MmjaNyBCCCF7NpyACCGE5AInIEIIIbnACYgQQkgucAIihBCSC007Aa1evRr7778/Ojo6MGfOHGzYsCHvIeXGqlWrcPTRR2Ps2LGYPHkyTj75ZGzatMnps3PnTixbtgwTJ07EmDFjsGjRIvT09OQ04ubgyiuvRJIkWLFiRfk7XqdB/vrXv+LUU0/FxIkTMWrUKBx66KF4+OGHy+3GGFx88cWYOnUqRo0ahQULFuCJJ57IccS7n1KphIsuuggzZ87EqFGjcMABB+CTn/ykk2CT16lOTBNy6623mra2NnPjjTea3/72t+aMM84w48ePNz09PXkPLRcWLlxo1q5dax577DHz6KOPmre+9a1mxowZ5oUXXij3+dCHPmSmT59u1q1bZx5++GFz7LHHmnnz5uU46nzZsGGD2X///c1hhx1mzjvvvPL3vE7GPP/882a//fYzp512mlm/fr3505/+ZH784x+bP/7xj+U+V155pens7DR33HGH+fWvf23e/va3m5kzZ5oXX3wxx5HvXi6//HIzceJE88Mf/tA89dRT5rbbbjNjxowxX/jCF8p9eJ3qoyknoGOOOcYsW7asvF0qlcy0adPMqlWrchxV8/DMM88YAOb+++83xhizZcsW09raam677bZyn9///vcGgHnwwQfzGmZubNu2zRx44IHmnnvuMW94wxvKExCv0yAf/ehHzXHHHZfZnqapmTJlivnMZz5T/m7Lli2mvb3dfPOb39wdQ2wKTjzxRPOBD3zA+e6UU04xS5YsMcbwOjWCppPgdu3ahY0bN2LBggXl7wqFAhYsWIAHH3wwx5E1D1u3bgUATJgwAQCwceNG9Pf3O9ds1qxZmDFjxivymi1btgwnnniicz0AXqeX+f73v4/Zs2fjne98JyZPnowjjjgCN9xwQ7n9qaeeQnd3t3OdOjs7MWfOnFfUdZo3bx7WrVuHxx9/HADw61//Gg888ABOOOEEALxOjaDpsmE/99xzKJVK6Orqcr7v6urCH/7wh5xG1TykaYoVK1Zg/vz5OOSQQwAA3d3daGtrw/jx452+XV1d6O7uzmGU+XHrrbfikUcewS9/+UuvjddpkD/96U9Ys2YNLrjgAnzsYx/DL3/5S5x77rloa2vD0qVLy9ei0jP4SrpOF154IXp7ezFr1iwUi0WUSiVcfvnlWLJkCQDwOjWAppuAiM6yZcvw2GOP4YEHHsh7KE3H5s2bcd555+Gee+5BR0dH3sNpWtI0xezZs3HFFVcAAI444gg89thjuO6667B06dKcR9c8fPvb38bNN9+MW265BQcffDAeffRRrFixAtOmTeN1ahBNJ8Hts88+KBaLXmRST08PpkyZktOomoPly5fjhz/8Ie677z7su+++5e+nTJmCXbt2YcuWLU7/V9o127hxI5555hkceeSRaGlpQUtLC+6//35cc801aGlpQVdXF68TgKlTp+Kggw5yvnvd616Hp59+GgDK1+KV/gx++MMfxoUXXojFixfj0EMPxXvf+16cf/75WLVqFQBep0bQdBNQW1sbjjrqKKxbt678XZqmWLduHebOnZvjyPLDGIPly5fju9/9Lu69917MnDnTaT/qqKPQ2trqXLNNmzbh6aeffkVdsze/+c34zW9+g0cffbT8b/bs2ViyZEn5M68TMH/+fC+M//HHH8d+++0HAJg5cyamTJniXKfe3l6sX7/+FXWdduzY4VXzLBaLSNPBmum8Tg0g7yiIStx6662mvb3d3HTTTeZ3v/udOfPMM8348eNNd3d33kPLhbPOOst0dnaan/70p+bvf/97+d+OHTvKfT70oQ+ZGTNmmHvvvdc8/PDDZu7cuWbu3Lk5jro5sKPgjOF1MmYwRL2lpcVcfvnl5oknnjA333yz2Wuvvcw3vvGNcp8rr7zSjB8/3nzve98z//3f/21OOumkV1x48dKlS82rXvWqchj2d77zHbPPPvuYj3zkI+U+vE710ZQTkDHGfPGLXzQzZswwbW1t5phjjjEPPfRQ3kPKDQAV/61du7bc58UXXzRnn3222Xvvvc1ee+1l3vGOd5i///3v+Q26SZATEK/TID/4wQ/MIYccYtrb282sWbPM9ddf77SnaWouuugi09XVZdrb282b3/xms2nTppxGmw+9vb3mvPPOMzNmzDAdHR3m1a9+tfmP//gP09fXV+7D61QfrAdECCEkF5rOB0QIIeSVAScgQgghucAJiBBCSC5wAiKEEJILnIAIIYTkAicgQgghucAJiBBCSC5wAiKEEJILnIAIIYTkAicgQgghucAJiBBCSC78//cuyxtSYBf+AAAAAElFTkSuQmCC",
       "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
+       "<Figure size 640x480 with 1 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -446,7 +511,7 @@
     "Ex, Ey = np.gradient(jacobi_sol)\n",
     "E = np.sqrt(Ex**2+Ey**2) # Magnitude of Electric field\n",
     "plt.imshow(E)\n",
-    "plt.title('Electric Field');"
+    "_ = plt.title('Electric Field')"
    ]
   },
   {
@@ -469,7 +534,14 @@
   {
    "cell_type": "code",
    "execution_count": 11,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:07.281558Z",
+     "iopub.status.busy": "2024-08-14T18:39:07.280831Z",
+     "iopub.status.idle": "2024-08-14T18:39:07.295668Z",
+     "shell.execute_reply": "2024-08-14T18:39:07.293469Z"
+    }
+   },
    "outputs": [],
    "source": [
     "@jit\n",
@@ -487,7 +559,14 @@
   {
    "cell_type": "code",
    "execution_count": 12,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:07.304350Z",
+     "iopub.status.busy": "2024-08-14T18:39:07.303619Z",
+     "iopub.status.idle": "2024-08-14T18:39:10.273861Z",
+     "shell.execute_reply": "2024-08-14T18:39:10.272963Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -499,14 +578,12 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEtCAYAAADHtl7HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9fdBuW3IX9Ou9n/c9d+7H3JmbmcTJ5GYCIpqgVahggl8VK4KiRiwtIoIpEDVlWakyJTHGFEVRpQhSJJoCLWssCUiiEA0gShACGjSJhYhKhRCJQBImk8xkkjsf9+uc8z7Pbv9Yq3v16tVrfzzvc855zzm7q9732Xt97929V/92d6+1iZmx00477bTTTjvttNN6Gp70AHbaaaeddtppp52eNtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROd46I6DcQ0Z9ZWfa3E9F3Puox7bTTTk+eiOg3EdEPPKa+Vs9DK9v7U0T0G1eWZSL6RZ28x3YPdpqnHUA950REP0FE7xLRW0T0SSL6A0T08oo6//iF+v+SPFkcJI2Zv4uZf9Ul2t9pp52eLnJzkvz9vgu238w5EZ07D+U59KEb/7/IzL+amf/g+SPf6a7RDqB2AoCvZuaXAfx9AH4ZgN/6hMez0047Pd/01cz8svn7+sfZ+RK4WkG/243/j1xkYDvdKdoB1E5KzPxxAH8KwN9NRP8sEf0IEX2GiL6fiL4UAIjoDwH4YgD/Q36z+qac/hVE9EO5/F8moq+UdnP9f5+IfpCI3iSiP0NEH8jZ/2v+/Uxu71d4EzURfTsRfYyIPkdEf4mI/pHHcDt22mmnO05E9HcR0fcR0RtE9NeI6GtM3nuI6FuJ6CeJ6LNE9ANE9B7055wfJKL/mIh+HsBvD+ahX2L6+iQRfcvGsX4/Ef1r5vw3E9GPEtGniehPE9FHOvU+j4j+RJ7//g8Af/uWfnd6dLQDqJ2UiOh1AP8UgDcB/DcAvgHABwF8LxJgumbmrwXwt1DeEH83EX0YwJ8E8B8AeA3ANwL4HiL6oGn+1wP4VwB8PoDrXAYA/tH8+77c3v8eDO0vAvilue3/GsB/S0QvXOq6d9ppp6ePiOglAN+HNCd8PoBfB+A/I6Ivy0V+D4C/H8A/iDR3fBOACf0558sB/E0AXwDgd7i+XgHwZwH8TwC+EMAvAvDnbjH2XwPgWwD880hz7P+GNOdG9J8CuA/gQwB+c/7b6Q7QDqB2AoA/TkSfAfADAP48gL8K4E8y8/cx8w3SRPQepIkoon8ZwPcy8/cy88TM3wfg/0QCY0Lfwcw/xszvAvhuJEC0ipj5O5n555n5yMzfCuAegL9z60XutNNOTw398WzNlr9/PSjzzwD4CWb+jjw3/N8AvgfAryWiAQlo/FvM/HFmPjHzDzHzg5k+f5qZf29u692gr08w87cy831mfpOZ/8JMW99oxv5zQf6/AeB3MvOPMvMRwH8I4Jd6KxQRjQD+BQC/jZnfZua/AmCPo7ojtAOonQDgn2Pm9zHzR5j530R6w/pJyWTmCcDHAHy4U/8jSJOWTngA/mGkNyahT5jjdwDMBqpbIqJvzKbuz+a2XwXwgaV6O+2001NLMifJ338RlPkIgC93885vAPC3Ic0PLwD4Gxv6/NhM3usb2/o9ZuzRXPURAN9uxv0GAEI7x34QwMGN7Sex052g2wbK7fRs0k8D+HvkhIgIaQL5eE5iV/5jAP4QM0dviUvk26ooxzt9E4CvAvAjzDwR0aeRJpuddtrp+aWPAfjzzPwrfUa2QN1Hihf6yy67N+fMzUUfQ3IRXoo+BuB3MPN3LZT7FIAj0vz7/+a0L77gOHa6Be0WqJ0i+m4A/zQRfRURXQH4LQAeAPihnP9JAL/QlP9OAF9NRP8EEY1E9AIRfSURfdGKvj6FFJfwCzv5ryBNIJ8CcCCi3wbgvdsvaaeddnrG6H8E8IuJ6GuJ6Cr//XIi+tJsNf/9AL6NiL4wz0u/gojuYXnO6fX1ISL6BiK6R0SvENGX32Ls/zmAf4+IfgkAENGrRPRrfSFmPgH4o0hB7S/m+K5Ve0nt9OhpB1A7NcTMfw0prun3Avg5AF+NFDT+MBf5nQB+azY/fyMzfwyABEV+Cunt6t/BCvli5neQAjZ/MLf3Fa7In0YK3PwxJNP1fcyb2nfaaaenn2SVr/z9MV+Amd8E8KuQLEM/jRQm8B8hxUgCaaHKDyMtQnkj5w0r5pyGcl+/Emku/ASA/w/AP3buxTHzH8vj+cNE9DkAfwXAr+4U/3qkkIdPAPgDAL7j3H53uiwR86wHZaeddtppp5122mknR7sFaqeddtppp5122mkj7QBqp5122mmnnXbaaSPdCkAR0T+Zd3/960T0zZca1E477bTT46B9Dttpp53OpbNjoPIGXz+GFFj3U0iBev8SM//Vyw1vp5122unR0D6H7bTTTreh21ig/gEAf52Z/2ZenfWHkVZi7bTTTjs9DbTPYTvttNPZdJuNND+Mejn5TyF9S6hL40sv8eG1127R5U477fQ00fGNN3B6++27uunppjnsmu7xC3ipJJD+Q9prtk0v271SfdzNi/IluU7g5q76dtrsVURnsmutN2OuWNAG+SRfht0Bu8xuPneOUx/cbVMGlnlvjk3CPL9nz339uj9LrQx06rrsx0KzfI4LNbwGOvxmd24OwvM53gPFE8fNuN/Ep3+OmT+IgB75TuRE9HUAvg4Axve/Hx/+t7/hUXe500473RH6+Lf9J096CLciO3+9gBfx5fRVSZHRABoIGMdUbhxT+jAkMDWkMhizkX8cU3ouAz02aQB4KMdaN5dlouQzsOeAS8sDH0y+pOVzdufeD8FnAijyim6SBtmUMeds6k3phCYudXJ9mqYqjZjTsdST9qYp1WeTdppM2XTMWm9K+QBwOuX0ScsyM3A6pa5Pp5SeeQ9kng+U+T20/M+ygcGU6/Ff+OfObX7Mb5cGrJYDwAGwCwDnCgBFfAaAiUs5yyvP2yjN8pe55rfPt/zOfEzyMAETV/xmzT+BRTbyGP4s/3fdT+fcBkB9HGl7eaEvQvnUhxIzfxTARwHg3uuvr3pFiVH1TnedwreHnXa6u7Q4h9n56730GlfgKRN5xTPcYgI7V4mtpAY8XbRtakHUViJqLQ5RmqQ7cwEPBJqw3hq2OJ4hKVMakLR5Bk8dHjeysKqPC/LCtnUbOXyaqCcfm5ogtULRQOAp8xuYtaTdBkD9RQB/BxH9AqRJ59cB+PXnNPREANNzIlsAFr42d8Fu3D197IBqB3Db6Xl6DlraPocJeKIgfHQYqnKqwHzZyt2zjgHnWoW20mw/kvWEn7MKqA0EnG4xoIGS1ULaGYZkrZBfIPN8Ak81cK4AigcuNLTpj4oaC+K6ahexPgVtXmTe74Ei4dNW0CRAeCBgGoBhqvltywHK7yU6G0Ax85GIvh7pUxsjgN/PzD+yuZ1HKV/Pt3IotHQfHtGEeLGHqdvBI2x7C11KiJ+ECS+M7Xjso3gitHkOo9bycJbFQehSFoLHoaQpOF4rrhewENyajHurNxZrhdDzAcW9GABidd+tpaWydpxhfRT33uMiO+QpyJ+zEK7huym3yYrpLZD2/Iz7Q0Rg057y+9SpgFvGQDHz9wL43rPr30YGLiE/z4miWJzo1tyHM+c/4fGtsMFt596nxSf8qMe5lglzxZ6SW7mWts1hJq4FTnkSFTBFzhIlZV1501AaS2TR8MqycReuG/msQs4UWp/m+N160NYpwCXFqnE9HCvsXnu2XTkeKLURAqMB4FO2apg87X9I8VcjgYNn08c+pToBrwYjGzZvqHnLt3X9hkHmLv5pC0WyJWmeLxUIclNNlhOVjYHANg7Kk5OPOZlKLluu+X2qQVXqnrMVylgVqYA24R9BAsrLc46bzjjxGILIe3S2rnjc9WbocenlWxsmonFubdO28bheJs/t54KMuYtxXWdf3iV8rIxnDkRtpVgZOm0zxArtsdOTfEk1YSTLZUktPfFYHOg6x6o1DCloOGw/u3UmDsuJdariveN5BaAjMDRnXeqB5Etbm9a29bi+UXKGlWoVAOeYj+lZRS1rUk5ioOSFZsW4nhiA2kRb5OcMWbvrBopzxreoG3ttrpmTtprwt9KWds+4OY8EFD0KkNsrutaQtOi6jSbyFY1LkTv+3FyaiCitvCoJ6deuvAJq5TmnSA2F1oeetYnMiryorF15ZfLmAsgb69Na3t5mLggsWPPlqW+VWgo+t0pVYl4GMjelxFTRBLAo1XEsijXqEyj8B0LrY1hnDXmZiFZL9oDOgjVrNv5pDXiKLFFzPAitlWa6CRYEhC66ANTwQCAfB+fLenec4f1qfgd0twHUmitYKY+b9exdND3MkbvApevtm099u3ONrCy3hZbaWcnIzex70ux+BACsdw9mb6HNXLqJzyOQMkoznRrQVCnPct4sX9fy5k/rSNlyU2cVpSEmOBfSQoXBtF9d43JfDRldJ+0ldw2Sks0KTZWmUayMGdfOAPDkXDgDkiLUcddxLzygrMSzFgfj6iNkC4MPLgaAYUr1x7FYISLLlZUBD569+867b+f4b9uRK7yNFcoB5y54Osfq1LEy9uJfZ128ti0FvGhBGriMm2vel3a43PNpqvmNbG2ijfwO6O4CqAuApycCmm6rTM4dgh/7wsWvjk161NYmSxfqYxMbn2Rs1hxtlSMfczDXtCq6pTY7s+DzTEtBwM51d6sg89TA/Hkvbam93mV0mrIKvKsAlyxK57jd1tCS+687HCqxMZhq145vM+A7ebDjV95tiGlaHf+UQVZkYQRqEL0Ium4LnmxdD3ywYfqwchEB5rV1F4uaIPHIlWdp5cKAJwKgFifuufyZvOV21zJlXbGL1r/E23ylRGeulSk6nK+6ZG1aAFqLD9Ns3vxNWWTrGrbfcl6/hBGGuycbB7DSuhi/Ic4kdE1abdvPJJGzNgDmLdZaEYbAErFi80Qp7+tqX04xesWpx1RZHVa77nwbHYryVOE5SxQFVoTGCmXLSr4MxuZrA9xaMuzy9lQosErIsYl5kXs9WRAlG5kCxLmSV7ReBgL+U8XTDv8RgCdnkYr4HZVtZADoW59mwNNaa1djFeyBKKscOPNSrJ9icZxz/wmoAmqeidvOW6X8eGws1EAAxszPzO/E6HxNRlBXgPK7Z4Hq8e5RAqctk/+jUhRr213rUpsra+9HcPMWrVNzb5pLb6ERnQmezgZka/J9X9uKn0VLfcwO2WdGja2wUhHP3PLn3iJlwY3ROoHbJp06K8GcIvTpXhmsiVPxsU89ilx3K8HTKpoDUd6V58q3bVEb95QVpgdVleKW1VlReybAmIDitrGWKCC7gYqbp22rA56b8Q+NbNTXgiIfPRmZWxG3ki4JnmxZMtajCERVtMTrpU1U7blx4zX8JtORswizrtYz7YnFsSC7VRbEuwWgNoKnWeA0N9GvkZGtc8ilNexKK8JsnTWAasafMwukzgFKW6nD4PMtWfPdbWbho7r+nn7dMoy1shC91M65+LrBDTMDfJbIr7CqQIjbH0iUp6VK2bpPd9j8TF6htfFK1J8HI2V4DnhaIXiNMp0DUX6M1spk3Spz7pkVsTG6K3lVxwAtC6I0zzRc7X/U4aP2jUo2yPI0+p0FSyU9WiywegEBBW1X/ZTDLnBaoUPqjU1z4tq4N7gpJQPmyo3n0zqgquK338JCnsMmHkoGC2C07Y5PmQVqA3gKJ4xzANPShL9RIfAF3s6JjfCv7lgqb8zvufw6AenN5fVA1BZw1SsX7bvSLbsxHQu39xw2XgJMyaDWtjUjKk0TPevTjFWqC6SeVxBFKN+nAxBZoSrFaS0P3nVDgetO26VaUdo2gU4aNa47IPNOx4Oc1oKnswLJAzmqgFQkzwOAKY8Nxn1jP+Jqg8l17FzcOEDftWPBF1ACyqv+7XkBUWm/J4YqT0KyROS89vo7/Jf+/Z5fEf+1LQHc1PLW5nfSlhYQ9L5/uJnvncmmAdB2jBGIQg2Y1dXnY6GACixVVkdv8cIGflMaUMVvub45nju6OwAqottOxnP1z83LdAmwtLZdWvJRLineOaAT1Zv146xs+za0Jfp/I3i6CHB6VJanNW64qHw0t3ea1MQe6lp7659Ldx6hcdH0volXfdbFKMawWYqPI+q47iJaG2t66VV40iZ5xRctQbdiRLVlYr4/QujaCTbObOqJUlVlXWKiKhePdekAKN/Ec9QDTw7gdsfT4XkFoGfTXJ2mHdMXsHkBwVnUWZ0Xl22Bb8NboHXlWuq6DGf4DdT8BlqeL9DdBVABM5sJIZrAe0IQpc8IzGqAdEmhi4iXx7JotYoUY2R5iCxSQcD5KkvUucBqreVpZVqXPbdw9WnbjxA/8Nr7twCOu2xfskhZnT7n0nveKIpvSgk5P7A6ybG8JY9DnWbL5XRvfWpWXVEQNEy2vinrrQ2Rwu1ZLFYS2TnGu+6yjPbioXSczjLB8gkVaThboVJ/2ZUTuXaq/Z0CqwSQ7wkBJ3HXGRePtJMtEGzdOvaaI+A7ON4CNXjO+eysUVU5z+/c3qz7tuO6W2V5ani/nvmVpREJAGu6esjyWGD5yVo+3MIicuXl8VeWSOeFAxK/AQKdpqoekIEac9nvyfIbCHg+T3cDQDXAqC2y6oFeC5I6bc0Cla3KY2v5OevRQnk/7sZiFQKktWkxkFrtzpujcwGIr7cWOJ0Jms4GSnP1FuRj1Qo538cCEJLTpukewPZ1vWHyebNCkbMyWPLumg546sbBmLTuqqswmLy/pD20bOSkfgxUW0X6UQpiQ6qXKzOPVCAKVmFCQdScK6+xTIgVwlkcwoBycxyCKFtOr7MAKaHuoxpZHJf4D9SuW60fyMMG92012LXgqeL70oSEcD7rxb51XXraXuFfuAJTeeMWC6RSLb/tdUoaUSsL1kIplkIg3Hl+zfYIdwNALdBZlqeVwKkLmpYA0FaAtERL7S25dzqAqgJTW4BU01+tPR+H7lxleVoDnnrj7LF+6boucd1rrUv21NVpY5OCegGvI5Z36y7K5fMGosyk69Ptr1eeotQWlOfaoOEw5sUqTqM0Z7+H1gNPcyuQorzJKEArSxZEaT9tUHnXldfZXLPaSHPImVUams0zE4jygEzGj1rZWh73NlX0btqq3Rg8d+OeDEUbp3Zdd3bPp4iX54CnHuujdGNtBFBZHCWdhD9T4kUVD5UBc3cBgS6Ks7FuaBcQ2Lo5rQuaBURZip7pFZtpPnkAtTBBL4KnJeDkzkPAtEVgnhTNjaVnQUAHTEUK1mvVEFgtgCgPvNz58l5QMxd5CeAU1dkIrlbn35Y6b3w2v2ul6oFtx9sQZ3lZ8nW8Feq5Iqo+JpySzM3w2xn0gJNXnB48WYUbpmHeZWMUsFeY7bm5lkaRL9wOuQVc12WjyIroZQXbuG5QB5WbGrZOvZ+QsXgF49W0wFXIeaUVeUVtV2AJ8AKg7p7ZG9CRgQg4ecujk4uLyYD0tRY4ReBrgSiYKxRImUlI+Tjwsjsvct36BQNAcu+BAOvi8246WH6j8LriN7X8FlriOxqcewdojnm3BE+b+ruEkiBe93frfjpp54DHxfNHhBzcU7u1m0XwFNXZCp7Y/D1qWuqrk3eu1W5T/vNKoqQiJRiBp7ANqvNU6bXlZwOCA6osT37ctr2ojerTMdtAclPWtVWXLWPQ4yUtFFm81uyLFFh3mvzoN7IS+Xo9GfDpntcR2Mp5Z1sf566tSks/TB54lSJb+V5/FsbmdRpa4DVHPAuvZSEt4psv13t+I/526MlboCw1D5vN4265zVanc4BWNI7FsmsLbmizJ+FRcviGMGORcqb3qu2OJWrRCnUJ4s4xVgAnX34NmJgZ/+P2VnWDyT3PTHq4I0WPRx0RCC1RUtZboawQRNbQZ4kWdgm3x+E2BXOWp4U0238YNN6xOKyxOtVz7XYGshNEMqua2AzVWym8dWLJMlFFw/itDbppqcXIMgHkDRjFOmEtUoCxSKxQ4k4GeMYiaS1PLO6jcy1PNk/6OccCKePaSJHFEYitjgAaSxS52WeW3yDQCU1aa4lCtcWB6j2xPlp+5/Rm24KnOQZqNRKeAUMXA07nxkmtpaV2PHjR9IWKETAy53J/KiDVKTsHjC4dBnP2Asg5oHUmcDrb5XhbUt50ugyAU5VuwE5VT8r0ytumt4Co54IojpUAKuXZuGtsfuSysfk2zbQRrrizLhvbvwFXXYW5Ajhtc+XYAZo4F+lH3TJSRipDQVWoWLeszJO2ozSgjZ2RoUj8dxTyErl2fJ47D4GT/HYCy31weBc8Vf0hlgELnjpyoHW0f4rTZ0jnJgeWNc/wNnXNNa+BFjQv8ZvZtGcpCDY/h9/VBS7fiDsLoCrqWZ96x7gAeNoSK7U2fy31lKPPWwumFsAQE8cgKmpH23hMGrQDiqhXJjhfBE9L5bXc8vVuBZLdJqvgf44O+6BIzlHSWqsR1snrs25R2kIOqFhqgoP9b7SdQc9lA3RXW7U7k5t+bMA40CjNesl73W/VXkS9OQiBqMr1iWIUIDXZAGJnoahAVGk3skR1V+b5NKDdjNEHEBurk/CQfL5tt7onjhc9198SeO4FjJu2VgWMm7ZWgWgZU9SOpwBINnyPgBTgdBYKr4MtLFI/Vh7QBIcLvxUwRcHmen351y8SQAFSwAow1aG7A6B6ArERPHGvfHRe5S0Arq31b0UbNRYH/UdPgwVSbkKsrFFRuQh8zbnyNo2/DKZqYyt4smVuC5rW7kflaeM9aAIxwyYjXnLL8qYMKr411qiQpy3LGzlYEs9nGHSFQCk6dy63BjgBFUhq0nKdXrBw111D0TF0LM3qLJu/ds6bA1NVsTI3iIuEGI01KtmaLEjKAjShcfF0A43ztj6Y3JDFGlUpbEYVQAwUBc6c3Ht6QSse6IjvDvj69C1u282LBpaA00q3bQioxPoTqRuzl5LONXlHdxJLVL7tJJakfAxQ2gCchd9FHjTgezL9jqlsxVvm1voo4My6cT0Y9DzXi1rm/d0BUFuoB6TW1mnybmGtehRBMXOWpUa79dJmLETkynbHYcqtrbO17Ebqgqc5mgFPcdD1BvB0ieuMeBn03cQduYHNWpnM8dpyS1S187xsZ7DCEtGzOACB4pzpZ06B+ePG8mSVZqQwgTpty5wXlQvmia5I2P2dzJjJum+MRUL3ibJlvWXCtwUUBRi5clSxGqXqY2Kk3BpaAs9yLd7q5K2Mro1wu4pMoevWH28ET2udCqGB3FqShALL4+ycKfxG0Fbut5cXWh/9Xl/RVgk2P9oBfYbuNoCasya5tK7lqXcPNq/o63B97URzNvWkzXUcWJVizeuqO+U5Gxdl6wZWqO4wQ5DSr9LkL9XvAaK1wGnNCsBHCaBWkr/L6a2vnslWW5micgFWX7JCPVexUET9GKieZWoOOM247EKXzYLlaa3VqQFNfipZCxosEeA3U9S+GMUaJRkjpTITG7GKLFHQOBkS8yjzdsuEsVBpuihQu6Qd6C9rb645uE/RIoMF4BRbo0p7ofXRtXdr66OOtX+5Parf/4yM5XsnCwqs5bHeoiLJQhMXRdmSxcXyKO0kWcgTGfdi3iTA3KRLHaDlueRvoCcLoIKxLk7GYZ0N4GnTar4FkLWUfluKrAEWuGga1eUaZbcApMK3xyAuqlNWtGj1xtkDTjO0ZMAIb/Ma8HQucFo6n6t7Bm1acUetCFir1CxAckCqKWPzbbcbrFPPLEWrlDoWqFBp+vxIcQ6ufkdxNivtqGNpWABOazdSDDcmtPmmIjlBLiJVgAlTUq5dxSrHZoVeibGyQAvhii0AbUyMBVj2Uq31pMLIKwX+DBnYBJ61DlrwnIdZH+c6c3LgL+8Cz7adwzxotkCqTDl9fktdcemV/NxFD0hZCyZQAanqMi3Pm1WX6+juWqAioBMwe7PlaU3ZJxUP1XPXATVwadKctlwAOu144/IViIrKPioKwA/18lfWB/rg6VzgdGmP1WyAODArDz13WiUaUTtN3SAfwS0IwT1d/qbcNeq9oXZcKV2Lg+Q5UFW14RWnabNncUj5Z4Inc8gdQ1svPW1UKIVKu+230qQrqkCU3+5ArVFSIW+4Ga3YkmvWHcur++/Akn7CowCsMs6ZSd0r1hm3GxDIwBJ41nqmS2N59HlVfnMs/c5YH4FQr55jfazAsnkJK+rIgCGG8kq7zvKyaTGB/fSLChW1AeY6Lq4CzYGA50syENDdAFCe8UHeavAUtrECZM2BpiWAJcnbZS9sNwbBC41bS9Ns+Y41yitQD6IiLRqkbdahLMLcH2oIniJgtASc1oImLwobLFGr8rXhmawAoCw1W+Mrg6zQAUmmjxBbhyBpftzPNBGVPXs8uVVT/njehYNli0OuG1kcFNT0FGYEmiKwFPB1SaGqIpNNm+1zlxWZyEz9YeE0OJW7PG801iiRU0YTXC4unrJVUwZV3hoVufXUfZeHbR+uqb7mHrgK700kB3Ogac5d5/NH047lZS6/CJwiOUCdVl3fzKaX1hKp7VTzCWuavryJLOT+lN9ynPlN6qLN09dU2kjTmQSgUy6L4sY1LrrGZSuJIc8R8niJ7gaA8rT1LfacCb0Hnhqw1CknSWv7ngsM77RZMThyw3mFKMdSfjaOKdKYKylq71LlH6FVZ1V/54Knc8YdAdIov8ZCfbZFgMi59VaBqOcZJK2lSLlsdeOg5uWS1am024KgKAbLK81wZ/MAPG2xQlSWJmlH5FRcfgqaCO230mq5btw85hloPv8SBhkHq/QCq1MFooD62G3EuHg/oh3QzW+3fjcdjodxucXFAlaGeuDJNT0HmnrlFExVfHW8VhkI+L3K+mjqKE+NTMC0LbyMLI16AQYUG+vUVrqbAEookhsVAGeeCMsGwCgCRFXaTBsIZPmcwB2VoKWqwYQXmnw00x1zWwad/N54GbUVqjfuxxFNzPXvnOUpctetiZGaLRedR3XOpLVN2LvMPsO/4SnP6DwQlX+fNOvvDEXLnSP3m9CCxUHLh0qP4kBxAKHFodG4yK4AACAASURBVKMwmxVZAyoh6irTFTwtU4g0DiNLnCxT8kxGFinRk2JNEheduHkoD4SBJk4GsvRdxpGVJeqAYw1GFhpKO4jcORoXs3z99c0oN2zZjSt5G3cVp1peelan1XIAV86PfYYuYn0Eh9tbeOtjZY2C5WlkjTL5AqaGIhvW2hS68TbQkwNQc8BnoWwDnsI6MwBrI3CiqG6vnm9mTrMSwLOzVFu3+qDmEkiSJtYAqYXZsomH8kp2C60p71nUA09L7a4ET2vB1aa+N1LIPn9/3XkIpkwZi5/0XoiiCYBSSD5vTZ1nkJjQd+EBK9x4Ui4GTlrGu+xWAKdSF6ZcHzjNbq64gacVGM91K1BlFKiAKbFYWJdNpFi9NUpXa3EQYJ7lUVzfrIq3dvMASPOYWpucYgUq3tEKhRqCJdfOxYBTLj8LnBp9Wc/73uq45MqTcft5rwLNuW4FqgLgXH1k2PKboLKz2q0XASlGDZ7zfVHdZVx4YAukyz3cQnfbAgVsA1h6PgOwIu3XAUiz1qag7Vmw1CFfhz1I0QwzBlGERia6/h2K67YDcXlrANJtQFQ01nNoDuDMgScOyvv2emVm+r4VeaCEgK1c53fb8WIwh5EdINpdeStpyY0XuerOUJylvY7ilPaN8qyU7WDrrwNOWx/N3lRVrA7FpVN9SsPKc/WeZwLGbYB4vrbZgGPXpvZduYuCCxzcAz2Z+7VEi248KSfnhg++zDky4F2+AThaA5zm+N5VHbaMAFtrcTKuXL/7vLQ769bjmufp2qFu3Jqf9Wo9AG4fKqM0nyUXXhGEDvhRBrv8JfA0167PA/rWpmpeXABhHbJu9n4ZkaQ6vdqNmrjKr6xScxrWAi2fL3kzIGo2oBylfhHWTrmgWjMWO0IHehrXnU8HWvA0WzY+nnXldegcV144Mbl2fFA52wOnj4PqCoxSnpnEpP+VIEpZ6so/NzRWE0FYxCvLlLagMIFukHjP6lS5aaxSXAOaQgBlxxteWp+qZ8XNYe6FRq1IquDqdG3CuXnAMDuHU2nHWiYAdesBJo1zmrVIAcYqVV9/ZalYQ40b15zMWBy1bGB19HW2ygCwEjzbyz7nWQ5fUKk+N3qtskg5fmsdMu1l8Fy59fK4a54nUFTxHKiBkpAJgm9Wmm+gOwOgNlEPPK3N7+Qtgae1wGnupWUurw4atxmlb7VQVYJUgI+CtMjkMAdoVBkG9Ux+uLXBpegM8BG3Mw+eun0ugauAVgOmGaBh21j06Ar7LZvmwMwKoLMqhul5A0oh0byiFOoBJ2AbeLKKLtiaQNsNFGe3HU235dyY7HhXUj115fbEgpQL2BeratNMZ6GwAens2hPrRMl3m2/aIHOpo+ColANQrFJAcfcgAFNr70EAmlK6kwFfPpIB3F4GGpftWuC08dptXK6dkvSc0VggG37bsSDzXN2s1OwdpW2ptYkrnsO2QWUMQM13oOb9VrqbAMrzTxk/c6FLbrsIVOU6IXCy8tm1RM2M4wxKz3jbaD05sUmnthRTAdzeGlUpQZM3N+Qe6Oqmr9HGZ5AHN9xLnwdP6wPP42H0rGVbys7dniiLAzZXb18WIDnx7eVpTFSF3kw5Mqy8FAh72okQfzMrU3dDyhnQpPXmFN0Wq9OCwvRj6FujupfZUhfYm/gWa5VSeUpzD6GOj6qsE4RkXQCgbj1rjfLtaBxM7k/jo4x1Ip9rjBaglikZotKScg02Vg0B00rgrPUXgFPosnXAKbRgNjLhxuXHvUQGbNa853r+kE7k/ltPy1T4Z5vVbQ+Ym53rfUxVsUI6IGXGJuNqYrfMM70m5s3S3QJQUYC2B08REGrace35Oh44LVmbNG1+vBfRH9Sss0PtorPpEZhaCaRMf+3InTbsgSWb58pEQYez5IGOT5+pE4KnOYC0BlQZmgNW58RG9byoUjcyHGq2Y7PNZ5vggZRrqExu+Z6B14MlLF7iM0s9a4JSzw0WgSbTTqQ0w/iWPCfOxjg5hdltR/q6BIDyx35OsO4ZUa7Sj1esHkhJoDejgLIMpGzQcdVO9aKRE3U/oQXFaq9jBjBX1OiGQA4uLAO2zlbw3AVU0bXMUW9uFF4AaMCzybfgOXTl6j5OhefaxmQmy1zHXrvytsf3amLN/W20vt0tALWWekBmC6iaKbMInlYAp60B5TZ4vFWIRVAqd65VlMSpDVV+gSbudrCScttNLNSj0qgbgU5VxrWxKhZqrr0l4HTO9bdIuWq7cdGhw9acvxj87cBRE/IWgbcZMXouaUZRCs0Bp5RvwE8Ul+L2dIoUp9bvKM7SfhlDCJbIj9eNcQU1lgMzzOpcT+yGBE5cuVxX6NbLY2/cekC1d1TlMsplrVUqVWC99iqo3LmUNtEccAL6Vkeg5kX324po5Ia9bFkeV8dGDnx/9vI3XHuFQSRNeKhlDK+qgoa3PZ4XfFS3w3C7zxs+G6tUcemW67d8L+M9j+F3F0CFqCRKc+CJOmmmbGN58sDJgyYbZO67r8DW+SiCGq2ZdZ0+4SIUkmceIB12ERyY0s2HPAX8KFUSXc92PubqUYGltRQBoK1uO54HY1HemqDzsI0Z6gGhqg3DykoUvCJ0Ih9hs8jCVFmiyFsGTBmXFo1XB3SL5+BOEwHsXTbRxNsBS1GaV5g9wKNKU/g+BGlWYQ5tG/3jeoybrBFsFBfbNBTQwyjTiTx73kKh0418QNY0yChuniroON8rTgk05BnQBZrHaK4WUzZBxbea33pgSfNd2pky0AsOl/KNtaknA2ZMvbF2ic0ttTuPw82helx4ztkKKfKjx0Nuy/Bc2uegnUofWb77vv28ai9j5vuOS3QnANTF3nDn2rkweJoDTueA2bJiwD7V1ASPq7w4q5S1SPWsUU2AeQSGVgKkRxlMHrUa6eRZ91kEnhauKwJJa4HTOZiheZDtvQ9AyioLUQOMUOTCDj0CUWjb6aVVYhKVfVZpATABfSXUBSprN0HsKM7IotCzMjTAaVaZtpfqyYueTas/FFvyVP58bBP81GTqZ+uEtzJIv37bA7+7tbdKyXnqk2seTisuvEcReJbrRUcGlnYQd/yaddcpj6lNQ3vcHdMaIoNxm5ik0mR83LdCysIA+/Fqu1hAy2cAbS1S9ZYFPXmpL5D89hUb6E4AqC4pQ83sX6EYA3oiYOTSiFy+ZJv254BTBJqi+fS8/aAAv6lmtLohZcjDURC3j4sjLICoqvO6TC3VRrsugauV4KuqslR+DiQBBUTOgZ8I6/YA0EzdrkWqN86g7NzkFCmjXhk2CT2X36xLL0yj9sKWwNECwHumiGg2iNzfp9l9dlYozc1xTq6NWHlSk1+Pw51H12flWbKiFxX9JXPMSdGyuSZOZVIaV+0k62eek2x8VE6zn/HQNuzcz9BgcxLQVMlsFFRc8tZQ6O6kIP8MGdD6a2UAKFbSUEY646nG278WPzEpkMkn1pqU0riWBzkWlxrnMlTy02HAcwvSRI+xaSePVS3mnu864Fw0invaqL/uHoBqmMl1XlRej1twFAIdBUulvAdOa0GTzd8KpjxgKtam0p514bG/PJunl5YfSgChS09AlJU4Eao1gKlqKn+0kztlt5IHKxGYsWmR626pjutnETj59F793nU4asq7ycl5bPW+NpanoCtNM7yYLefSVAnBBZR7WgJVzygx0LrwPLnsKKZllbVJjnsrqihoZ4XCXGORmAVR/nIN3hGBYvvM2D9pVJSmf0bNM12V6QApALGbJyvVEEwB6urpKVZta4MrobsCE+4+9tx0UseCppw2t6qugKqNMrBw3FBvfueiNppzD6gszw1g6vFcb47qpZzW3TcMDZjSdoXsqspIwJ9aAHWpuIlKGB3gqSxNffCkTWmZFiTNAae1FqjeLuQ2UNy68CoXHIx89Ga6EAB1tPHckB+jaeGivawFNwvgqVe/697rjaUHRrRBo5Dsw0+GBQ6sEh4NayqW86Pr56mnaA4OFGaVvqQ4vXI0fbXWgd7nO6Q8BWltuahu77oai6oD65qHIqrUpNn9m1w5177Pa3altvOX6ai4ctLEqefG1aPXYwdvgdVWWgOcgFoGmvvvZMC2QwF/FmSgl7YkB811BPyvXvAYDZ/t8SzPNbF27UmBxX3D7H3XoRW+67jleZyCQPLg2pfo7gAooBGUfjnzxEbgx94YqsuHsU49q5MDYOQBmS3bHM+M31GxOBWwJG2w1WIuzW5UR7ke67WQ1oosUVVguXXbmVr1qQNRftKqBNCUtXndG7CQ78o01icDeCIQtGR5WrQ69QBWMPZZ7NzJ82BJ26GSXKUFrKjK+TYRs8GnVfXsmM2Y2HY4Rz3A+JRTA2rCfYDMSbgqq/5dvfkhoVLAPAR52g6FeVomatf2q+MP7kFwort7++cp/+kcN5nphAPrhLxAMEBqrWrzK8uE9NWzTOiFmvr2uvyDcYuNFUPADCAEzfm3can1ZKDiNwVp9pecvEQyhID3dszxJbI76Llvl3ie0lgXFijAFd4CycuhMmB4aPjOoOqzQDXvqRpT99rOZPkTB1Cr3motUFpbjjh021XFg3nCgqc1wOk2LjwAallyqUHJ/MCwbbMGQWRADpOk2TnDxEXB5vNKRjxCWgmiAo/quvINAHNtRGnolIvac/2uJqrr9zmPygJVWaRMueZN0ACpECD5vvKEtHhzGZVsPRdE6CvIqtwMaDLHaz65cZa7LgJMTR9BvhlPqFD9ZVqQH7hhKnkUpTkUIG7EGeqeE/cafJk46NjGxdhv7EXBw1IPuT1NIxikBd0WYStF1sEmvbm/F5SB5uPDnfoOdLXHpe/5C5ZfA2LN/Gh5DiDHPZVyMtdI+L+VFy1j+G7ntiZo3QWcp+E73tv5kqied1Wwts1oTxZALTCoCh6P6hqwVE9QTrtZIKTHpVwFngKrU+y264MqfzxHzSdaqhEBrYqqgZS69mAmHqYsZJJGlZWr2hrB27F1UrR5bhh+duuQvlFspQ7YWarjrVHd9vxxD1AF53Mgq0lfQw67LnPeKoEaVHmlFb40ZOXVlIerwyYWauV1VKjtUi75O0ZzMVCtAm2PQ2tDPp8N8N5ocaisGEP9GynbEJBF12Gv1z4L5lgt5AyQtRyJ0jTnTd5QvlUnskm6EWKen3hGoXK8q3l6J5DCTuaBSqFuVqbBm/MiaLLnjws8e3lw9ar27LgjquY/0vMez6WKWpqUp6a+Bd7S/5pgcySwpBtyosN7adPyuZlk1054iZ64BSqkuWuYBUvpPFxJl+vZPLJ5qOtGwMmCpq7rzg13WFAkk7rrMpCyxwKOsnWpAU0mXYEVuFiijDXKLgL173L1PlHlYZgFVVKbzHYGViC9yy+gJXdXD6SAKQQ/Yd0OGCtmYTeWqO4SuPLji84jkttWIaJcncrt19uukwEKW3yZ0myDaXTccmj674Iqey1Rw88TGeDRy7cUrsIb3PlccK+Lk4ksBrPWBjmOFKYBVatdOv5yK6VZjquXmawcRbGyzZP9d7L7hQG1HhFDrVHFtYMiqFK3CUancmw1N1C5+Mo1lDLNta59e4iKmbQ5wOTzIxmIwZK0Zeo6oMyEkM9ap0ozY9rAe+GtpnHm32TSxapowI/OVcb1pp9g4VLHAqaKtwKyozw7QM97m6ZF10zWMd09AHXOxGyYHuWtsgZtAE9VNWfFApZBkyUpq0AKRgYULFnQVNL9OLrB5HJ9oNUvVYtkB/qYiOyDgrr/1ZaqubIzaYuWqbk2UB7ScMlsAEwqFx2151WZqH/q5HfK+v7LuBcmUqDsQfa80MK1zgInm+ZjnHJeJeJeYVblVoCnnrJ1QKwao1PkzXUbkF9MRenPi1IF4lG7a+y1azemAbtPk5QRpVleFsw+QNKWHrt9n4yLD6ZMasc8uP65WEuufLiJagSeIl5k8GTbjoC0LR/LSN12Y3EM2vO8989/NDcpALb3wgsAuTLuRbAyXFNQpqpHBqE5lrHjPRzvGzluGb0WVC0CKCJ6HcB/BeALcpcfZeZvJ6LXAPwRAF8C4CcAfA0zf3pVr1tJGcB1WmCNmgsa9247BT9DAUkRcArTcpcWLJ3jwitDLxciQGgS8AQgtjzVaVbM6pUMeXowlqg6sNzPPvamGgnObYRWKFtmDQVaWYS/LTvXTi0W1duvtMtBXgCEllx6fctUMPl2KHwwK4VZJl1vXXLPfak6k19ZnUyB2XMgjoUKyt11uvT8NbsPFNBaqKyibNLccRrwsptG0tZYHKgAp7IcHkWJWguUrRNdZihgULecdc/5NAUt1iJlX0pFCZNTpqosgSqQvHpWyVgj2OVTKWcH7NNmLBSryN2vCDCn4Rj+RUDlUlZHw980nlJHx+b5Hcid9msvx89/UzmXY+F3ccsKT50VUvjeyExdx/K0yIbjuxmTWsLcWHWnc9Tpnvxmmz1aY4E6AvgtzPx/EdErAP4SEX0fgN8E4M8x8+8iom8G8M0A/t1VvXoKwEbz8WAt20tr24i2KiCbNwN+InedtTYNLs0e98Ik4ninRFPASY2909ctXybNPAKoVNvmPBsXpSAKZT5qJkLC5SxUlyIPZOTYgSR9Aw4md8kP87g9jsCSz09p7UTcsChi2UyRdsUkFEwVzrpmbb5Vcgb/qHR40GTq2D6q7jlQqIzwWu4gXWz+qpRPRF6J9kBTeL7wyY21irMCUFQpRY2D8eDLK1agsZQ071T+N8sOZSXKgLrmfDlVrMjxToNJz7ExunJLqhOAqd6jTOS1Fvl8H31gc/UsFGWgluGArwoMFiiUiQ5oSufonD8m8ByWC66lA6Aa/lt++MnJyEBiS1Y+UWycWIemMldVsUydxQmcE8oxlzlRxmP5X6+sSj9nKr5FAMXMPwPgZ/Lxm0T0owA+DODXAPjKXOwPAvh+nAuggD4w2tyOA14GPCEEPeiAJWhZ76YbKoBV2hpMHZiyvTFORjJHQrE8Oa1rgRTn9us9o2oQVd7u6uBxcN7moNi/ofFQWg7oxkKlrsx1IE67LQjzD6htfgYENfV77Tkwtd0qVQMnbwHrjdXmV9aeoHoEpBw28t2ViUzad5OEjGkVGLKIy2uqp4guPn917sGqjRQDhannK4ATUCtMa0mQvAZsOcVZKUwHnBrLhIzZjKeR9eBPyimOcQpVwdGQ5jyaTNC4rNJzoErHlxWwvh6SKSf3jBOQSkP0Xwb1z1sLpjRvdBU9BbLQk4NLycBaq5PfvdyD50YeyJUDQjBlgbLeFxfDpuUFuJh4KAU9AqSm4gOhzHPLe+TjVIaKUHHpQrsLeF8N3VWojOvCt426a1MMFBF9CYC/F8BfAPAFeXICgE8gmcgfHUWa0wia37LArriT8gRJrwGTtzI157kJAU7e0lTOI1DV58iIGkQpKMq/InRTdtWNGTipa0+BlA0mR+PSayxRZAPHDYiS2c/cRy1UpUVa2JVZC6q4FKmaCMGH1UptOx5MyfmcNcmCpzngZEFT2F40rpmHsbvFhplo1Xytkynpg68+fdNN2VyuZV3FApNpJ57qrQ0B2PJlPKi64yDr9vMXNavwZl1dPt8va59RmABW7eXU5BlXjSpLq0Sz0uwp1vTLsy6dSu7VZUNqRVCAdHLluPSjZTnfF4YGD4siFpdOcdmUvquA8MZtZ49bN4+em2tJhxTPO6VAfR+iIp3nOgRMuUz/mKq0cBVlY0mkFijDyIHls+GvgsUB+jmdxgpp74HOt1S764RvQ+Gf5k9tGoiWFxgAzu2X5QVo3Hue95JU+F0xvE8rgdRqAEVELwP4HgDfwMyfI7vXCTNTJ+iHiL4OwNcBwPj+96/qi3tSrMIVgKnuuKHgyaf7Idt4Jz1HDYwi8LQGOEXPHKMOIhfLkqYB+by2Sg0IVu9x/J27MOAcM/JBJtRzDiStbnAFLdTtucWiSXCpTlOmB8SkzgIgasawQjQbM7cWrsGJBzfaPpV2JYtNvjbfYZ8HRg0gmgNCdxwk9egS89f1i+/rPxJBehc8kcuPFKdtwypRX6f6JTNHmr6iNJS8WrFy7O5pLwUG2+f5AtAYS6tEc18ipypiVOdV95FCsS9tm2egKs/lWJuT8igDN0b4QsFzUVGH941MUCe/A6B1/B0ZqMq6cvB1QrlABZQ9wK7SB27AWXPdApYUlFIBRigASfkX8FTkQFlStE6dbvnEdRuWyZbfDc5l2455ttwk7OVpDa0CUER0hTT5fBcz/9Gc/Eki+hAz/wwRfQjAz0Z1mfmjAD4KAPdef70MccNEFOYr0502Jaj1ybqe/VYFFiwNw5SvEwqSpBvrrhtNsLkFTXps6iA49mStTzpRGEBlLU5DLiFAyuZZzg+DBVGk1wWg2JlMHRtUbl15ek9V0t3M5OisQPKwoc65apA4fxYMsTnekJ7a5bgMfLl2/HPvAdGbqkxqogR0prCagwDv1rPF59KLjGEZNBmgppNb9Gw+BYDqUvPXy6+9zt0YKKfwZi0RTjlUCtMoyGjjy1BBzgQId61OkjYmpYl8XCtcrpWoChDKc5AtT+KmoYmTm44BOlGxNlDOH1BZo3RakfbEGkUIrVFqeVjY3Tq2SATMsQ+Nf/tcOZe1AKojC+4593ndPaCcPHg3W+Ou9e7Z/NtYq0bD5xGtWy/LhR2nzmkTmYDxPEdOiecAQCcUi5TUFeskQxcOVNZFsSpO5rM7Mge5shHv00Ad7+GOqzTHJ3t9K2nNKjwC8F8C+FFm/jaT9ScA/EYAvyv//vfbul7qGPXEPDNJe6tRAVnubjjwFMVCRe64BJJQ5VXHuY0hyIfLAwpwGo31aCDWdAVPSHNNA6SI9WsDao1q4HNp2+5crjEB7PZprZSo2fKgp5kfB7Xsq489eHF5HgxJm+tAFTfpkbWpC6wcqcXITkRGIdkJQ8tRC4BSkWqNZYN/bB8NC2fAkt5PaeMpAEdLdPH5y1sRwjLlMLI2LClNLeOAEyAK09QNgJGWs8rTK1gFUFzONTaGS31RogTonm8iy1YhngCaUhC0rqorpp9CJ2hcC1B+FSDlNAXuPshcFOjg5JtcPZn/8r31LwzV86gPGOlYKj5toO6LUZSmxx3g5NJq0JzrevDsAdQo5UpeAVCFz1X+yKadwn8AZZXlhOKCPWWZkPJy06P5g1AWGeSmmzg5qctcbbhpQXSX9zZA3MaqehkwvLD6YyvP11ig/iEAXwvgh4no/8lp34I08Xw3Ef2rAH4SwNds6/oMCiajMB8RqCqAqKpSgara1WfBE4Cu1SkCToP7teT3fkIGTwKUhCau3Xn68sbJrXfiPBaUAPNyjbWkVC9XWZKS8LFKzexeUg2QMpPjpQBVBxD1yjXHM3VXgyqsAE8ctBmNfwZIyX3zrgQPlnyeBVFAmTC0/FxF14hOPjCTywzZMuTGLmB7TTuPmS46f1UusLkyQl6JBkrTthuBqMgiYTfDDPMdeEoTFdTKMImSHE2dkYvS1Xwj1AQw2FgKUKxJIPDAaoFQmrJg2GfC7MWj+tauvMrFKF9nFWRubn87y9lnQJ4LA6RcXccipbOnM9fQFvCseV4GgqDu7gpLHyPl80UeRkCtTsYSqWmW9yqD5sEWHp6gL+g0wW1UypmnNe8ZaZw6Z+R0BUSGwQxKAJ5j3muincvYlsl6zcmABdAw9c6hNavwfgCNaCh91Vm9VhMMx+nolZEHOh3r3k5GMJv9y6QcTJ4AJqrBkw0UF+A0qouP1eLkQdNgQNWAFqzFFiiUlXd5YBMTJIh8yFYnBVL5DVCsUWN+YE5TeXZO9Y1DO72YmQvyACAfZxCVhb5ZkbcGNNlubgOsKoDT7ucxB6I8UIrAk4qR2cMkpXNbB21bQNAugGhrAy2LVrmmB98IrJ107YQK6CoV+wZKE2v96NZrd2zS7BDNeOzLo31b08nJXpef0e4oXXL+sm/0vfyKKsUZK8vZ4zBomEqeyIYPGhZFKWnWPSPWpeyum0YUi9OBU5mRE4AaGHRIyIYGTvvlMYGnNG/wicDHIcnWSMkCdUK2RgFEEljOoEGUIxXgBShQAqFy7dSIKc0/PshcG/B/KL/s5o40jdXPqCpu1HU3UQ88mby57Qwiy1MXOFfygMJvSWtcsSZtMMDJWBmnQ/pNMpDkAIcp8UN4D4BPqWE+UbI8TemXp8z3Y7owynMIZd5rmnHh2ff8JbdexHtrtbRB5spP5W+wHxSMHFSMa5Pm6O7tRA70AdZStQBoRfs0WfDUKxPVidx11hoFJPAUAadeLJTMA0Oj8YrVCXDxUmJ1AioXnX4Drxo/FBgB7U7kSTkGwGiLKeG2YGmu6QWg1JSNAFaPGnDEbZ9VvvmFO0YBX3NjpzYJKb6IGrCib2WSZgBLA8hyngVB4es62nYadx1H9Sm4Mc8vrXfh9ZWmb8e763yZXpB49BseG9dcsUqZNLE4DAlA0cCg/DsQYxin9PJ2GsBgTBjAzHmiktW9acCi6FQxksFChPIyIDJmrwtF5lN7aOVR7gmKIm5E2DwjlbKmepdqUdoB+zbTLHCq0trjteCp96IVyUb1ImZdswKuJGjcWpvGBKCU9wODhuRLmyjznAicTUnp1lJKHynHRBEwlXGQvJEH8q5JVkbkcoL7WfFeDlDLC9t2DX/rtNJ49a28DXR3ANTSwAnliZCbYdKq/ZuCtOiTLH5/p3GYmoDxgbhYoPK5tzqJxUnKRdaolD5h4kE7nPKBWJkAgLgEjB+RXtuISa1RQAbmKC69AaTB5ZElqliYDNiyihEomjQLuwaa29mHTTm444h6+dYUrGn9ZqJmo+MmzYOeCAhZ8NTJA1C99dTluMpvrFbdiyhKQu+5Tnakk6DqDYbGgpBMftJvtsDqNhim72pesKArAlGWrDbaSckHkUefgWiUxExaT2navsJv1xkZ6AYKR+4ZSTskmZkOAEZO4ClbH+hqwnCYMAwT7t07YiDGvasjrscTGMC7D69wmgbcHEfcPDyAmXB6TOk9WQAAIABJREFUyMkSQXl+m5LxgCYkS0WWuQkMquJUoIrWghx16cHl6Y7hXP0AqCwSPYtU+fVaWNrY8AHtgGY3T/Vp/tidR8Bp1tLo0wxYmjK/i/WJwYf0ixHgQ3Jj0NUEOkwYBsb1vZv0ezjihasjTtOAdx9eYWLCzc2I43EEnwjTzVgsUkdo4LgGlRP0JZ5M8LneM6BOy3Ur3htkldI4nJ95juezx+cx/W4AqGjsEfK0x5UWbcuRKzNnbaqtSdA0b3U6ZIBlAdJIU2VlEkA10FS1XSxQU2VNmrKWPGbfgICpiQkHTAVkIQedT4PGS51y2mkaNLj8pIo+nftv6AGkb4WaJm+MZCagPHtFadVrnrnh6ZtUNTO3Gi4icGQtSz3rT5MWgKhzwFMLmMxYJm7HU42Bm2sqClMEEpX8puBYroCU/tl9ntyeT2yvmVBdf5VmfitrlVyDHWNTfyMznzUiwO8DJTTvvqvTPGjSNA+geooTNViqVtmRBU2og4JHycvKkwC+yv7/MQEnDIzD1QlX10eM44SX7j3E1TDh5esHePnqAY7TgM8e3oOb04i3H16BiDFNA4ADphOl/h4OaZM7IIMqxnDMwprBXDKfFyClgcU2wNzcpl6gMcGsFHTPn74omDyV+2AOS+mWcVhHjvddwNQ73wKcArCkPI8AtYlrE1ClYOqQgfPAwFWyNo3XJxyuThjHCS/ee4jr8YSXrh7ilev7OE4jPnv1Ah6eRrw7XuH+wytME+GGoO5cxlDu25RvtvBebjLlC7e8l5itOd7nOS/anRxGBpT/bg6srO2GF1ucLZ7uBoAy1N0DaokMsGrmshXWp7ZMGUfkrhPLkgVTBwVNUwFTtp1cx8Y7CR1wqqxTQLYuGcBSBZVzWbk3EFfuvGpVnwFRgAdUqCwUF1ONF23MUNSmB1a9tG49btJ6b67k6tRgyvQZ5bPDH1SW6opSJtNfYnuOR3PgR0GOkQ0Zl3cFVpNG9Iu2nVDRRPcvGMOzTt37cYYS9RaoSnECxepklGMFsqTdobTj46Z0iwIDsmw6shsHA4PGCTQmAHUYJ9y7OuLl64e4Nx7xBS+8iQ+98Fm8e7rCx4b3462bewCAaRpwnBinYzJ5TVNWyuLW47wmbkjWB6tf7UtHZW0141dZ9PdZrhf1irtQJE37Us43h0DW14r12eA5/3ZlYAk8mfQmza2u07ZyfBPLcZYBOkwJQB1OOBxOuD4c8VLm/ee/50186IXP4d3TFX6K3od3jtcAgNM0pL9j0j9gBp84AacB0L0Eh8Jny9etvNeVl9IeCv+r97yWDbnsfPo5dOcAVEMGGFXHJs1/fiUd14Hjc0Hjg7reXHA4CkDyLjtx1x2GSS1OgyuTjlO5kYqrbwLhxISJBwVRR04OuYkJx2kEKKVJUPkAwkRUzplwnAa1RA1yP6ahcudNTBiGqdqxXO6JuOkI9tjtC2VF1Er6BamZqCoA4zVTUN8Cpvy3xpok7c2WNR/H9O46uwMvmLvuPWmnWlFDVOJBxG1gnf/651ES1ALFhPJ1cZKJhStAVikVc80CqggLQMvcYy2HOu95Iu/CA7AKPNnjyIWnli2nLLVPr0gHhIpVl61HS9QPEkDOGjCOwwQ6pGDxq+sjhoHx0gsP8dL1Q7x49RAffvGzeO/hXfzyl38cX/7Cx/Cp6R7+l7e+DB9/8D787INX8MnhFTw8jXiTGDc3BxxpxIkYPGVYM1COJ6AUTH4iVZJA2n16sC8J8lkQkmeuTAcq6/ZlhPMN1eMs5DbIHKjdeyYdUZo5nXsJC8F0BJ5supUBd9yNcfOWJcP/WZdttFhgFDng5LLNvD9k3r/4wkO8eH2Dl64e4ote+gxeOjzAL3v5x/EV7/lJvHF6Af/z9Zfhpx+8Dz/74GX87PAKHpxGEDFubkachhEnIPGeSIEUAOVzeYlc5r3ehzynRt9YTPJR+J94ZoTGMhNm/kKcv5WeKIA6y2xmQFGVbOcfI/W9oHDAb3iJyvpEpowHT94SNQeeRnNeLjy1OxHjZhq1nTKWDOjM0yjWKHHpyRi8BUqu5cRl/Cdzo8VCJRYpoHw7r7uFQY8uDaY2tEWdB2S2XQeemlUYDohVwMyWadrrgCcDwMBIn7YQoJMBqr5RAZLSYphsWZKHvwE95p4UQGbAmB071WUvSr6/Z42M0vM0Z4XoWR/Yt2cBkSvfunfiX7VImHMFV6Jw5Y9YLVASLDyOEw7jCffGI14Yb/C+q3fw6uFdfOHVp/HFhxfx0vQuPnB4E+9M13j7eA/3xiOA9CI5jROmiTDlrQzEipAsHZQ30eRkmTIbLPKQ5X4y7xBZlhhmrrciLbKej/Wegqo4JqlaiWZVPpeLZHftM+LKLAInf05t2YqvkhfxO8gT63aVpgHkrFYo4XvN+wn3DkfcOxzxytV9vHp4Fx+++jR+weEFvEjv4rXDW4n3p2vl/f1hwjQSpomAYcjzE1WyR1kOyDFmjvdVOXNspzaui1UJEW9n+X0G3SkLlLrv9Oa5c0k2N7e7cSZxDYgqi5T5Lh4KeLIB45HlaQyA0mE4NcDpajg1IOpAJwVRx2lUK5S6AnlIFimQWXoHTBgwUbI2SeyAWKI493ucBgVR4zDpFgc+HqrczNqVJ9qUMg9kE80GVKlWN7PbWuqBrVngY6TeAJqmjk2vQEzJI1e/G/cE14bZbbcBSVEacwJKpg8pCyobDfKQ3a2D3BwUpSb5eUgSKO7T2NxTC7jY3BMPusrrvKtLBVRZa5QWs+kwbduOn3FiILZACS0o0lZ5UqkTKc0gcFwBkrVm+m0KKKXZzTIhaRIwPiahpUMKGB+zy+4wTnj5+iFevfcuXr26jy++9wZeO7yF9w33AVzjCoQPX30aI0048YC3T9d453iNh6eyv8N0GsADcJpkqQulfhkqMOp402eZdWJXK4HZL6pmggFGXOclS5OZm9g+AKYNOMXq2rF8WkW+rDmPLI6rZMCDpoV4J2uVskC5bF3AKQYty4NYHsdxwvX1EYdhwkvXD/HK1QO8/947hvfvAhjxAhFev/55XNEJExPePl7j/ulKrVAAwNOAaSLwRGmfKAhP5Eaw2y8qH3jeyzxl3H2WRaXN0kTFf9u+21Cz7tulb6Q7BaA2kbetGrCECiwBPddds0VBx/J0oBpUDQYQSb4AJyDFQsnx9ZBQ+r3hqIL3AAecYILBmTIwMseg9FbHjOM05mPCRFzionKat0QlZyDUTRfFQxVLVGqs+fZdpRjndiYXrZvSdbfiR0XRJIiuONTgSMvG4Cn6jcom1x2bY1PuZI6l3IkxnJJViA9UQMcAde0pkJKJUyaVPCESkN7eE/I3aWUyrVnm4qHcPeuCKnP/KjYuTDI9fPzMEbn7EuQLRZYIrzC1nBwP7tikRS67Kl+WpAuYEmWa3TgKnsw2BcNhwuFwwuGQAdQw4aXDQ7x6dR8fvH4TH7n+FD5/fBOvDUcA17iiAV94+CxeHB7g/nSFN25ewvVwxLvHqzQWJhwPSYlOI0FmJFV2ERrXAGDZ564vT6o45dzKv9u1WsYTKdJKvgPZP5dinvvzADTZY8/nAEDpr1lxZzdHhfI+A2pZbad7fCGBJ+H94YRDDhh//7138IHrt/CR65/DBw+fw2vDQwDvwRUN+PD4Wbwy3Md9vsLP37yEt4/38PbVtd7r02lI+4GJG6/He1BeGZWv1264SihuOuO2rbCPnauBug+nEzygalZa3oLfTw+AUsHqX23zEhBMdCqrxvrkV8p5y5NdrVe76OzfZALLS1zUiASuRkwYacJIwAkDBmbcYMSQZ4vJaDU5Fndd2v5g1L6sO28ghv1+niX5CLGAqBNTZVXyFiZdkedA0Wqy5c/VqAvAaHEI/s3C/vpjKc9tmSa9SisTcQWeJE5qEqDFwMQFZIGRl06m7z2h3GO1MpH9rlcCruAy91SU5YVMfm09KptsyrU2yj8CRnNgiU2HnTJhP88IzbrqojJWadrykeKsytfteOuUd+FYt13lwpMgclGidh4lscRDXy4Pw5St6mV18QmEN6YDHvA7eMgD7vOVjmsAa5gCARiGtASemdLmixOpC0+vzyh/kjc+eaTkkaBcxT6Xck5GDA0Wsd4hOw2lTMDu/6T5Vo65bseSn4e68u151qQF4MnzNABPVTra/KYcjByodYq1X1B23xnej2IMQAk5mXjAG9M17t88wATCfU6QIemzpOMOEqoyTLk9LPOeoN9FVF5TnvGcbOu7vTRDZfrxfA7Yqe+jep8NQ6r9wDyt0D13D0CtmKBqaxNgZVKsT/a7dvbcb1lg0wnJlw/EYClZmtLEIsHjh+GkE4gcH+iEq2yhkt8XhhtcUdmd6cQJRI2YEqACYwKlmKj8RjVMowaSlx03zb5R2VI1EdtVnOn+TIPuESUPjnXliXXKx0LpbSTUZm1pV2cs88ZwCZoBORV4QTuZRWDHv6EUC1IBO7YsmTRbVo8nSWdznEBS+kimAVEGOBEz6Mh5x3AAhyEdD1RcL0DRGrKhnYArmeFtOZuW38AJhl9sJheum5c3eM2ncv1sylVvcjbNKC65V88qWGqIUK1y61EDlsxxozAlzytDoHXh5WMt7yxP6saRcuK60Q0yUxoOyfJEA3TV1dV4wr0x/V4PJ7WY3/ABb0/38MP3X8ePP/ggXhnv4xe/8DN43/AOThhwGE645mOqz0ccpwEPx7Tdy3QaMB2yBSp/ZFh3cicTq3SiZInIApvCB6gCTGKN4BHi5S7ybQKO1ULl5wKIjFOVxshzAkz5iKdxckseLNm0ngwEgKoCU0NdttrvywaMG3eeuG5Zg8e5WB7zirthyNbHccK18H484t54xIgJNzzibb7GD7/zOv7Wg9fw8vgAX/qejyvvr4cj7g1jxfvD4ZTj4OZ5D/NWqPMLgPJNKFS8t5ZGzYv+0Dm3vyh6QeXhTHryAMoJV1xm3RX6gHGb1tuRvA4kr9NtwHi811NOg8RItdYpiYe6yqDqBEqgKnNtIgJ4yr9DAmhZmvSYjHWMWS1Ttm913bHs6ZQ0m7gvrRUqXSOQJitz46neSVjuhazG62rKR6RFl9huQZUSt/V8OQ+qpJ7+GqBVtSduO61frEvlL4MnAVfMJY0AnBg85od2YlAyE2pgeXprQwFBBqjInEN5LGLBUgtUCHCCrRA6ZXdaQe5eLW2kGYGlxjIRKU5TxwMtX74CVVJOYqFU6WbBld8MxIchWx/k18R5Asn6dIMRn7x5FT/+9ufh1av7+KLrN/De4T6AYomQMIZxmLJVnEDDBOIxvcARi0lc++aByn5mDGd5kIT6PjXWCNTPiLVIAYHI2wRIe3lO3GKN6JSLNtJclAEHprwlqufiy4M21kao5Uk/Al1ZHeu/IVughGeH/Cs65YQBN3zAzx1fxt946wN49brl/dVwmuf9YHiv822e58z1E1C2J2C1vdcWyVzVOkfcdNYcW9aRSajUnmfiBnryAGqO/EREJbZJb3xO12KEKuYppXGpohaneMuCHnhqAsYpmS+vaKosT2J1qixQGUDdG25SoDgNNYAiABNwItYtxiceMIKBIe8PNcjeTxMOUg85TdrK1yDxUKzHxZVHSPfLuvFEHP0qvFkr1C1pJSZeV4+DPAE6bPO5LmuOi9WplKvSTcC4WqdOqCxPEu+klqcTl7TTlFcrZEB1kNfFvB9U/pI9CHm1Xp5E0gYr2QJkPtXDGXAJYM5pegsMACMuvO8BLQ/Ywnt8e7Y/9dTbSLMFVm36InCSPAuMfDlJMwHj1urgN9VEteoq/enKKyquG3Hf2RfKCYT7U3LXferhK/j4W6/irXv38MZLL+OV4T5uzIcBJWyBkBQyAxiGQb+Dl14KEiji0cRUIqXruXHnVZrOvOAQF2XLgH4WRtOolNP7buXbyDKx7coyCzXNyb7Pm+H5FuDk5aK7eablv/Bc8sR1J+DZrLwjQna7ZfBjLnriwvtPPHgvfvqtV/H2vXv47Msv4n3jO9t4L/uC6YsiNWAJU+JjiWXK8ypMTJzOxeZaZXNNNvkwfEaZw+1cp+mWJyZvLd0NABUJJ7mrXChPVJ6Yej8oNIHj1nUnzQ1mEpH2BJUfsuvNB4wLqLrKrj0Lmq6Gk4KmEYx72YU3YcK9Ie0BpWAJpHFREgE+ZTA1gHADOEtUkkSZ7Ni8Odl4KPlm3imDKM7nkmeBk/iujb1JoT6ZMi2gQit0UdoKmgNHYZqZJCtrEQfi4/L13G4zMNXtJndcaUdjmZbcdtnypGmnKQEoWX0yEHCcEogiYDiiBPqK7J7IxK/IxzDLSjwFS2xutzn2VikLmrSuVyy2vG0DLi0o+1yQBTCdfEsRYPLp3qIQWqJs8LC69UrAOI+ZTxlU6TgtcKJaeUq8yjimT7aMQ4l9kW1UTjzgPl9jmgZ84v4r+NRnXsa7L17hjfe/hA8cPocbHnFCuSHjMOEwTBgHBnOybk3DBMIAmqa0MmvktDv5yEaWsiAyJXkki6GSkClYyopS9wQS2eaSBxgla+aB7s7UJk3St8p18+LhQVQkA/64B5wkzYIl+bhvA6asO5dL3JsEjg/G6jgm6+FowLSEkpyQYt1O04BPvvte/PxnXsaDlw544/Na3ov1SXgPTDgODB4nMAbQkDe6zFYoHtiApbzLICHNeQAwQr+jWCEf4bHhkz6PgQxYPdHwF4EuQ11uDd0NACW0QWgjd51Nt9sWzJG1KGkagjRzXoLE09ubb0fNoGCMKMHkY4bZY54BRsqfauHB5NXuvIlHjMQaWF6C+8q4JmcV8qvyztrjCahnGAuKKi090+5aIBUKcmnXW5I0ba6+TXf5XnSoatdYmrQdrvt28VMAituOs9suW6S0fY38TxqievvK9SGuPQE2JuajclPkvimPrXlzNmU9WKqesVsAoAsZIp9e6lx7dU+C41Bxoj5nn4Y2bVbRElSo1fqgSpqLfOjchWquA0qcpVgaHk4HnI4jbk4jbnjEDR/SSyDkBa2uX8WfaprIYhYeP6dk9NS48/I1a1A5lepwTdk0oC1TGqyfKc28rVwHvLPgKbRIBaC5asP/2b6qv4DPVXk2Yyl60vMOgOP9iOlEyvsJg/K+unTTTvWlj8w71v6puScRD3ToJAKRedzTK2b6VPJtedkw6W3iMt0tANUjfeBRaTs5TzxpmSfHhNb6pCvsqrzWdXegk1qlJIh8pGR5Smmt204CxotVKv2+MNykGKQBSTiztWkAYxqoskB5dx4G6BYHxxy8KUHkYpUaQMbV51x5UBmsreSodycHFpYRE+LtDCyv5kDTEvBhw8oNbwiiJ6x1qbRngIz5s3UE/FR5YlkCygo7Lm367QzU6nRKv3ScUvvHCXQ65W9DEYgnTIcBdJRBDcCQgmqnA3SG4IGSO09eywHdeK6yQE0lX1/m7fUDBWhxSZOJS9qR6l0lonwn2OftebFEMVBtMxBSpEBz+pxCrfSRVaZyrK65fN+DoGENGpfyzgJFlQUqb55IZfuWsjlvUpA3POLBdIUbGvG5By9geusK7xLw5vEFvDPdw/3pKu1pZwZv99wbsiUquXLyPlBjmTwkWJwVFUGfPa5W59m3gHIL2ZbXxJIGU0YZiDpfy8CVOZc8wEEAcm05w+sKJNu4Nvn1FibUeXZRQbFG5od9tPyfMv+nahFVeuFO+xPO8f7tzPuJSWNqpX7aR3FQ+WKeUpwnMXjKptIpySlN5lM/buJpLUkpz1qgUlvm2OslLwdAzV/P6zN4/3QAKKALkKoiZPQIcQukTJrd88luU+DjnoQEpUuguLU8yVYFySJltzBgBU8jTbWVCYQJg5rLh2yVSns9EcATjhhzP8llNxLjaMYyUHHl2S0MbPxTnUY4cb72rATt9/Oqey2CTEb4emYHEdoOePL69lLUWIqifB0EqgfKgil/3Fqgym8FpKQdDRaHgqfSrrFIDWVWSHFJyGCIs46QCUImi2yhYkDinWDz85galtjJZCmtAwZkoqqA1hqQ9KyDKa8AHfUsUEtuHFunB56sVUEVJ0pesUyVcqlNOU+/CSyhUp6eJhQL1ABKmyXeEKabAQ9Oh2yJqAdvLfDpU0VcQisoybBaIWSPM3BZcZfHqkvZm3vO5UXCVFGR45LOripcmr3i1eK6RrYjAB3x26WF7l4nC8Jj+HY8z4M/Mr/6h2R99CSfGLvhEQMPeNjhvQDt6vKNnk1/VFsehzxohu5MrhEowkRjhVR+ivyASswbir73MiDNRXKg/PEJZ+ipuwegOhNQr1x6FvvuumiC8KvqNA3OBSdbFmSQU+0wriAp+35hgJKAJnD+nYqFChNuqATgnUCYwDhR2YX8NCWhPAwn/S7eIYMrm2YtT2UlHpf4JyrHApRkRZ69Pz33ngqgCO8j9Nl0BZc7ZXy6e+uorFjRm4ZLq1x3BvxY65SuuDO7k1f7PNltD04TME05eHJKYGgi0Cm/fZ3E9cbAlPdlHpA+aQCkSWSC2U/FjC1fA8OmpZlD+SUTDBce2vtj02TMmrYBaNk8r5ieOSL0Y6Dc/WkUojmOLA6aN7hjLe8+z2GDhivlyblMTjOrsPy+P3bO9HPkiSmvwkpK9MHNAcNDwunhgAdTUqI306hAa3JzSv2X+uapfP/RgwD52HAKLs6y7JXoAIiG1HbySw0T1LXunwGvGL3sSzsIylY0M/01UyO59BkwFblhK5BsLE+2rlxHFQ+nsmFkIluiyibTtXGhWjjAws9BXXgPbg4YHgw43Su8P8lXM2ZulQXQBMpWSLnBVI2P5bt5Mp/lGKmK/3mvvDRf5nsxFH6pPMh8ZmWM618ZQpWHgI8L9MQA1OxAhflAK7TkytlT/9ASV4wUX79169m/yvpEbmmniXu6MhvNKXjKQeMCngQ4XdMRAyZc0RFXdMSIARPd4CGScCZIxTgNhJvpoCv2ZGLCkD79MuQd50a08VADF0AYBZSrzueyIk/AVUHx+U1QNGIPWClvLqM1V8lrBIKi9AAoWfedghsDsCxoqi1QEhCegZF8nkVX4xXwRFNZcadB4yaNTgwcT6BBFASBD0htinlb5jtdlclA/mYYRDmQAUlcXHkWTFlwRXmYkubjpSgPeS1YCsuvqPcs0ZYg8p4SDV17cwDKgKA1n/MAyW8BUcUCISuw6j9LokCP06jK8uHxgPE+Ybo34P7pgPvTVQWipJ6/fHHlTSeUoGbpbkql9HtoyBYJ5DEjgyhRprIXkBFCSSNGecmgAqoqJWmf+ZzGNh/B8UrqASg5Xi0DwbG6bSuAhBo82QUEYunJq+4KgBb9B9V1kTdnAuGGB9xMKVD85jhifABMDxPvH0xXeDAdcHLAuVgfsw6VxQSUnbSZdwzK1njoqjyIdUnmKc43SYY3WFZmGRKXnpm7Qe48VajuP7G7/7fQX3PTwd2lC03UPvYpyvfn6nKj5LqLy5nNOPM+KSPEvZfyxAUobaS0Sf/UJYgSd1XaLcuNKwuaXE9HIiJTfc8dWgqcKV235NFct00euzwO0lw5PTcga6l/LWf2g2rT2FnKXENT+SVGAkqmjHUPWneft7BVbbvJYm5CqD5No2MM6txiUnmuyCi7Jg0rFSfqMtWxIn2jNKv+2YzBKFCYtFzOr04GYheOpVNGadNESXZPpN/yFOV5Cl60ekHldaIZv56Xv8bSQq4e2rJNW5l6Fp9qLKYsE1pQ5CgsF4xhM3iq0jv8711DKIttOIv9tWQBkXxubJoIdEp/Ke6pwAYrB13q8j6+jvCZ6Nyb8N6ZMpGbvMuzM3TWnXHh8azGRBhAToAzS5o8Y2WKdh3vBY6Lu85uKlZcd1O1ZQGAYm2iCVfDUd12V3TCNR1xrUHkR1wh7Rd1k115J0pm8isc1ZUH5Ekr93GDEVfIe0ER8vhSpPmBKH8zr3brqSuPyrYFdkWe7E4uWxzIlgbym17w8nYGbH3Y6CvWBtafQRuUuBcXBU6+vgdPBmApAMpvt7plgYlhKkHkplwGPjTJVgUlHxPXrruTnKdX4hQ0OyRuT0gWp9xHusf5cxP2ky+UXXwnSt8zQ9mAUBYaJJYJoEoM4+i6/ZuXScuGzZqVWb9xU45QzFvPCRGaV85Q5HvKIOfVQMCUq8CAUw5DXVeXqWse164b3UgRyQ0sitQEDtvYz7K6N80pRx4wZDfOxITjzYjDA8LpYVqVdZOtU8ccB2NjYQZiXZk3ST+UrEsklgegbOtBMPEwRfhS2ADUKkWDe8R1UUdriagWUZT3jMIbPy8g1vPhUndLgXL2eatloLI+cpWmliegiolrAsep8Lq47pB1aKsrZSEVUMDTzTRiAOPBlODB8Tji3gPg9JBw/5QtjzziOI0NeBad7L1BkI01WfQK8qIaLhsHs0wppPOZxoUyqn2iCr9jGQAM351uqOTB08b57M4AqEvR3PYGduVdRFVwNsx2BvlW28Bx+VWLEdotCwaxHqGUAyP/pqDwaxzxEAfd2mAAab70LRtoVjuVE1JAOcyYuezLIaZTu7lmeF/QCtLZ2x6EHWwDVpQfhjjdTXIKgto0b5K39ddYt2wb9W7jrFsWJMAEfYjL3k8ZzEjeSTc1gQSVs9QNtjZIxUh3Kq9WkHBWLJWWRmGkSRZAZK+nAlVemey0SLOuml4ZU656Iw4UaffN2r7EwJdhLVv/sebVi2ZMlzNWCAkmTlaIIW0ce0oxmqfOUvbmsq0SzS9o8kLMZASWAA0oR3oeNPZFXHRcxq73E+V5sOLs3xO0ijyG5h74ctX4Z67tHPCs6V4GLK9Ry0VoifNuPbmfTh50pbrIgFy3s0oJKe9RYqH4RPqCeZqKTMxRCZ8x+iT3z5qRGep5KvKR2xHechGfisdWBkCoY+FMOWA+vcpcSXcLQDUCx01aFDBuV9+VMtbK1Ha1FPvUgCmqA8fVvQZZlVfAUgFWxXU3ZoAFmnCFI4BDsjwx4ZqOeeXdIcUn5XIqxCQE4b0mAAAgAElEQVS7jU8YQVUMlN2yQMbZE+5oSwN92zP3VcETmZgEw6NmQ02HwjjXuwR1LUuegrTGnRa1a0CVAhg29adeuQySjOtO3HGaPmXgxCkuCkTgIWuDiUpgrcQGMPStPL2py5sYioVJA20FDFnwZQCSTDaSFrBD6wTlbN5OhryCW1FWyweKorI+ABUwqnYdz/XUrRMAprLPTt0PWRClv/Oa4sSEA0EtUDwBwxEYTsCRBxynQZe8i9WqunTpw94oA6RUiYqJ0wApuTeNEiUVawVXQB9EmeZKGtVzircY+dvCvkFTNqJHBZ49MK6AVhdA27x0AWv2R5TtCaYcKM4TgY4AHcumz5IXrcSz7tt6ixw3Lvm8i02HjNkipbIAwZIHUUlfIW3/wnW51bzdON89eQDVG/CMIKbjYhrWJCccfqVB69aLVt6VY/1EyyA7kde7jduYJR84XlbfHXN+CiIfkL4vBDrilK1Q4Ly7OY4AgFPeqfzEA65kvycmgIYcMJ732qApBYVPhMMw4Zh3LgeQ3Xfp+sU9Ku66AQATaTB5wg3lxumu5CrceWoirsBV0dD2puPxWDRCwOTBjRmqyYMpU6eZ2CZ12bFpg9V1B6COYxKrVHbdNdYnuZlT3ukeUBces+z3hDI5Mmk/SVlQMV9L4KzcBwOcUloBX5KmdXO+vK1F93A2ULyX95zQZgvUDGiqlWhfcTJQ3DbGtaOuu0hhms921JaIeh6MSIPIOb2MHXnEdBwwPASGm7Sh4gkpyFgUqdTzJDiJ7Hyha+jz3CHPEEhdeWpu0vmkfDuPgdqdo7uO5weBiwL1Acb6UmDnBmXcDDBeK/OmXAWQzG9PBnSxADrgOeK37jzPdT9mDyi1Pi4AaDagKa3CS+CIjwNGw3sPni0V9615wR8Y05TPjeWJZUKSbQnElZfhMJg0L+1mnvuSUAty/OVWDvJl5+uTCzXsiuazDfrryQaRd80DQbmFN6aqOHGRpQ31LKkFKt/N0bRjJx6xSnmS4O90nK1PWkcCySf9GKcNJtc2TLs2aF0D0N0Ym8By1Ns1zM0B596ni9Btuhalvqbttf3I5Dq5c9+WAUYCsMqqP9bYJpJAcePGq/urz9WiZc6rgHL55bj+Vlpk/UL+kxSdx07+Dd8QV4CoLeeBVQOemnT3a/qxVoVUh5ty9bj7TLLVvEJU6wIXK2dUboms23BdBQMsHOCwZfS3Kssz97r+DXl2Drm6s+CpGb/Tb1Fd3zYhBnuBUUHqrvkyh6cpA1yxxE+cLFA+9qkbItJYoAQAltis5jr9y4Cti1KW7XF4j7gcA+H95Og+zjzjnp68BQo4X2iBClH3kLUPHrdWpp77rqx8Y908U6xPfs8nGzgueQNNuKZTCiJHCTwfmdM+UJxWOQw2LiqT7g3Fgwax+72hbCyUtTbJt4w0/olRxTRJenVvxFVEAGA/NAxUVqfHSR4zs0uP8ntgyeSphUnfUmyanJc8a53q7vkk4EjddeZcAsgnTgG9pwk8DsBpStYneQNLXCuKcEq8pSl/bLgXC8VlQ01riSrWppJG9lj4LG9guXzXZWHf1HrHzzjpZDsLVOryVbpXolbRuz1+assEVJn4vYAa8KQB5SZ4eLDxKAbMUL1HnsSpSIzLKbvmbqYROBKGG05WiGlIVilx3zlLhF5ebn9SJSpzNOXYv2xpGOSCGCn2KVuhBhNETllm83MBeQ6tJcpusAhjyc0y2gSW5y4rnnTk2auVVZaqht8uzSp4y3M5hkuXj0fbjVUlcDywTlnro195R4AurALsQqPikpXVljgR6MgYjsZly8aN13kgxIWrOln4qrLN0FiogdLCmSzPsp1LZQ3Pc62YAvR7iDBzl9ELGmSe61pmkGv3XBV3NwDUFjKCN1fExj9VFiMDpqpVKGh3INfNNOHBFSvgGXLskwaPaxB52sJgcGmgqXwLD+V4yDsontB+K2/iUXcxByP3VWKhZKwJOLW7k9tgcnlzkNV4p+BW+g03zTyTwFilaS9EMyzdZOEIwFJlQeK2TLEmlb6s9Ymqv2xl0s+4cNmKQAPKDZiy1ie7G7nkI9XhvCKl7D6e/fk5vokloJzMJCKgiKRfC6ZcoPnSPfP3j8xvQEb0ni+asdl33XsBcNJzB5Ya5SnljXJV5Wnqlzf2ojQ1zEGacXPeHIkbR900E+leaGzA1apl7BBFLcgtCy2l0ID6WtHKnbl/RRmnRBtY7nF9qmoUrmmSTT9r5pdV050pE1uaOuB5DXgiDvlfgWcvC9XYuAFRPdKvYSBvUcGE4QgTRD4fSE7aB9VslOvIxyw338bCCcAaCog2b/f5MD8/2aWr6SjHMOd1mnn2ZPwrZSCiuw2gnCBUkwH6eRH1XFi9lXe1y67su2RdbbLyLv3JarzinpPf0ZTTvnjQAHNZkTe5S0hWpqG4EfPqvgmj+8xM+uhwCX6vdyf3mm4ghobcyFsiB590sSSC3rvNFmXdkkLL01xZXn4AonzzYlSX0XNTSbYpAKqVdzb2SYGVljf17Sq8SZbuyj3NS3tBeeUdAC6baMrYqiXeuqkgytwTXbjMr3k4VbkKgAHRA0Kly015zyotXm+kOKWeBU6SbxVnThPl2bj1IqDlFagfC1mFto6S2+6kx2JhoFMKIrf7P1klyh2lWvU9Z4VQYQfsQhS22RZMab8xiCrn+b5bIGUK2jvTZe+qQn3gpHkePOf8JfBUgSO4Y9ufgqT/n733+dWtWc6Dnuq19znf/T5f33vtBMeKLyISEcwQyEJBSAyIMgEEGSCExMBCkTJDkRjw409gBBkhWYmQBwxAngQxQEKBTCMZBYGEIzBWHF/n2gmJr339XX/n7L1WMeiu6urq6l5rvfvd+7znnF06+7xr9a/Vq7tX19NV1dX53rv/mZEFwyKF2jgVNy35z28YmIHnVn0X10F35Un9pWNce9v+bpCSuTY4q4u2YbUYNuGXTWS3DaAKUTRYNM5uzayAwPt+Ihw0HqcqdRIj8urQktWAXPxAVQlUdZopR7a80eNcHisIY+ANVrwnqP+nVI5MkHfMu+4K0i9SqPu0ZpWeSsjExqr1To7ynnakJP1oq/fxCq7ahrXG4zNpU8ZSZgkXfUhnQRXHz9LiPFDqF1kQMa+VNvnrznjc5AXQ7rwzRuRVtceunLrjjozhOIkB+boB65obbUlFpSez21b8OyGfo0cE3lhXXgLORBIlE0URZmrbs1zC1B2BFIpNumh2sZOTJx539WdDEdNy1DLRGDRpWACceimDySfM1Pr8ARq/T/Kh2F13MNczc4eegWZpE61FCrEC69buvhpJI5IAPKPGyX7QoPUJpRAls3gmB4oqzxxpZOcmNSyXdnTfcl0gcB2/R1Q5B0HTFDTrQ0zYgTFQjciDzQVySDRgfmVyQ1Hd1U1WBOGNFdTMJJCizhOArH3/mPveSh/3SFS4euYq5SpvKXcU246T95RTGLhsXuLSDqK+BfIYkAOquexkhuFd0o5c0wOmK2xfM5o+OkMfpyfyK5N1VdDFma/IG3qrj6eJAbg3JI8kWTZdVDd/qLE1Jk/uOd6APPQ+Hj6npjuy1XVa2F6Wy8ZqJQ+knkACgLzUqTfirvGaR+sTXD/RsFuf64fFyXIboDjI6gQEu2k+W6LgzxCTY5oReBqUGzavA13sn2lBFeA6cu9ljtPGSQE7bWgkTWeNyQF0wK1ZIE+Ki0CozbPbhkAHato+C8o98hfk9c2izxmlcQDa1rFJ34Cxyz7KWY81AFqkj2UhaR8XeZ+fPpPqn68MDd4XAsCjePetde1t0jXh0TgbfM9H6HYkUF3DxoPDeiCPjiZo2oV6EBH5fpLw/OuMx43fJ+u+oPp8qj6hrNdxkTyJ7VO2iarPUBVemZkWZmzYskSKGNm1QU630YZU7KKsX6hUdDIJrPk82Nq4+JCiYmxO5rBhZMkGmxUCgE6N16j2rjgxT4uaMHyfzkuTRuEeTHi+ExmPZxDDNc6p7xrbp8AGSqRR4oEX6wYsKRuTZxe9eSW1SjsXuxAuLyErLHA5XLjMtMYOShbuzYqNMW4+mZNYHNyhkUrJKv2UtEkepqs6+iRRV9cewTvuq3FqWDPRK5PlFjC58J6x2D8rdZI8VvrUAxhP1v+cqnVWQloZtFK2g4EFUfN1eJ6vAYBVCtEYhkvdrV8gru+pY3pj9fEjeWhrHSjqMCTUb0CGooSRlF9BgbeJAY4P30ji2IR7oOT6bXcMGB9hKPcdsHBjQK4rr+TpwlikTvk6IdGqkkXaqvRx23rJYySBzD4HKQZ5KhkjBT95M0DpGDIdRciSyHyIa04P46ZCDxN2mwaAKom0IK3p/7ZK2gcn6HYAlKXRSwTh4Q4D6sXTkTQm2vZfvY1vXV6VKqH3Or4YSVNOU+8VZBUuJaApoRiPI2GhDJ4WJCyZU4beyaU+C294LAcSZwBXuLumqXZRG3GW+hLD+oTaowaglv9U5BpNLobjHnameRAkhfULv80YOXSLG52ouYu3BxDDrLx0t50twxiVN840G+PxrUz+Jo3YQMmf6E6NBEwnCnPNUucCqvQ4BDE29zODgiXMQdWIXHHDsM+FIgbZpXG/Nq0BUOzSXgaeLFBCY/NinTwPX8e8zwZq3K2I+k4fs2aQsgFVjeNUfkJ7RuqyG69LJUiH3CDTdqtONYHCQMV41ExYMk81QAp9e9jn+9qMzBfaurryHFiyv2fGQHWsGgCuBjBx+HsELPs474Vcw8QGarWg6bjyquXL0J3D6oneAxptwxpYvdSjgihJVcAzasq2GNRpu3HoaV7/9LxY6LNT4VmbJ6D1oeSBlE0npEey+HKt3yfj3gCo6rullFvDneE5qjG69SNln91K01r1ntR9b/KS9wXa1YlQC0p3i3pe8q9y6UgveRvv5MFv4/uJB18YGzAlTt285AlQP1A5bHP37XVTnoCsoP5NuKtTc80xwMx1Hbz/teja5d0QiSqmY5TRn0nfhQPoGGdwnX8deNJnchtvyWIPwmBRGbxfoJqzahxsNc3VyAE//z7NOwfxM4Di77s0QV91EqXRHwb5BmU37wAzBiKg7N/DgiagT1PyhvP1QckjEPS7PLpsovElXKbCtTe1jg0IRJTG/JKRXMK3Pdcw91emRpPWXQ++4xHdngSqEQXUxvbbcUdhkcsCMteWrHuCNkzKio9tqW4L5se2qO8nyQcAJc8b3rAVA3B7vMsKUpcGS0mzIasOs+fyVo0nxuT2fDx5d1XxUT1geEV1Z+CPWqDS/t0E6dINw2xBz8FELcN318TtNQXXvqxmHhTw5MBHLYezkbdc22NbzJEtKn0yYayAqfiESknTcT7tOT9ocryLHMKaZ+q6wtb6IvAJRYB1eSDSKJY01P4SUH3qmCYjLcs0o2mfTxgvtUS4zI1BuWYf3jBdNkzUxDXSBvOHIMwwIe95XB9NYlQ87rWtzCXV3092YZCPcmGwCbe79CJqfUGR2sFw+cgaNQ6qkbi+j6hxiEEbQb1Wl3cmhu5W1TMm5TugOp4tL2mMzH2flPBwamOTbvjCJnnA+KdjQAzGgdYvWHPunQVYBnB4XmnHg60eccgLPclOTHFhkR43pJXxaCSP8caB6j5HpWClruoDDFx5j4AhkBkXBPVSv5XfhLy5hpDHQW4dqPqW0cxdMjGpWs+2u8xZbMJsG01bxr3vibQfjhpQxV1YpMKLVlcAGueZGkYVGNl0QgKiLFkVnnVdkOx9YFwuefNzeylTV99BGlufhSzoiyVnQtf0ON6IQ69JR6t48lUaG6cmHGhcFvRDzMQdeGjj/mBzUqNyPXJz0JVV4twQCEFhlPcpxMF12CZPfM5HTkOJlLk+Ap6aeAn3+aI4CRJQMYp7CjHp93OF/RHHyAJIoLWn2WmbUJXWlb3Td1GeYT1h6umkH7M6lPpG76MAGlJXj/qiMoUHmqCTfe83COgiciB9jOyfjhCZ96EjYz1cOLh85Nq/5J9KCN3z2P3N6PYkUCdpT8frjcYtjYBJc4CwyWdVc43jTJVQ1bPxUiOJKqq7gn4V4JTqSLq1eHiy5+OtXMEagHIWXo63zjUB9Oo8YzfVtQ2qTZSci9e2KemvhGVD88GgKu92mHzaGWiZhE/LN3/D/A4kKJBSKROMjVNJZ8+982o3p5pr1HcJ2dB72yA2T1kKVdrbGJuzlLuYZXORPsk239wujO6AYfd+nTsD4UkFnM18oMwEjZ+qofiMdhmzC98FTjaMfHz5tUbDHRNg82skC0XS1C40jy+gOkNiRj5QdkXo7ylirF7CLWGdHYyKKWRgyriSsR+8d3Fw19jC2KwuTuNLWb62alisFS0/k+YKv4tgfLCP9wCpuYcZD6bPPaN30qdWBRZUhU7srEZV34kfqPTIRX1b7d80PqC47ytvacXatbH1HDx1a9GPga5nqbg4cO/MzT2X/2tIU7tmEB2njwpAzQZAJIUapfO770bOM60EaWk8kjvbpMheCRWE1V14UKBhHXCCgMQbFqLsJlONyIsnciMotN7J9dkKsFL9VSnUhlScZHABXyOZl4hfGRYwuQOEuzA8WQJxCNy4sG4xWoDOVDIjc4wAKpvel6fXXKVApgxrtxQaj4saT5+9AVuq6joNN+lVDi3lkwInbueLulsvfM/ST+a15D1HTaPzmCS4tE/bWevTo2DFaqljlu66lyq05fr4nIddWeYjKOkjuxJrx0jN3Dbv3EaFB/FEjryV3Ughmnh5/wHars+XBVkdKjrfWNRiExgmq5tT9DExUCITZ5rE1FPqNW2K+WewA6Ai8Aw4AD0bAw2gMmMgAFbWFUSrvm37PuKLeTrLYMb2n/SvLBarC4u6C8/SyB7Kq/XqQtw4VdX2KfOaazOrzs2pehBVc5t3Exxm0+lUHtSXJvwoerfjSV+YLpiEJctIfXeExI1BvefQaFxdG1gDcCN1krIAGPunklckWhZEoar22vqItMupGAOJ2udI12wC7/upK/uo7sKAILYAibcSzBU4WYlVRGprJQDRpbPgL6rzK12XBnNLg8EtyDJMcSi9ikCZZyCajvvwoBzNfiUwW3ibPv6IE8VhWQHA83H5xg1mCybMPWCkN116rvFA167DfvNh0V+ULirTPs+DoO7dXD6Y9/XPC2gmONijmW+vcD48QJYXD4UbdgFwdLx3oLKWFdqeBUC1XU1XYmr/ZnQTEqhugHTiBbiGFWRdbgcvKce3tF7G597HbV7rtDLBG4jLjrkKbPT8O3d8i6jvllJ2VtdxBWDFOBxsdvMxNKw54w7cGIPnuuaz8YANCyUA2ahc/UCVdM2hw1T9QWWfUKSSqebcqtK+L2H3EHb7LGxWJ3bfh/kViVIjuZrsvpsdHBz6fiqgh1USVVRzGwqIWoptVKruDIBaXmL1edIM7mIsK+/CqCtzq6210iZdcEn97etpmDE0p7rYa0UEbT/sTSyfIjWMERgv8hrmJ2F1HhtN8JrOMOlQdefSeYkDUL5hx7DEgBzIjC3cxl7mqXy0tYQXNc7DVnwBxYx2eDaaGTCNZBvyC4CK8obQSiCsOsdKIOSsNADitV+lDzJfCX+lGi9tSHZsw3wjto3by47C6ScAyS1wDsZBc0B0y+9YPMzb/D5d6etOfQv0Y0LD5hO69e9Epu+jXZpADbckm5XkehPJExseY6Re6oewGe9mApKNNKZBGkmU9qfxCeXqZKXsTZxtjxO87sNLoE5OxB0QvfKSW9wXdGfe7Rh8eymVlT7VNFRBlKu3ujawDjqHyrb+eSM6I6XqPQRP8t4iA33qULD57dl38OEVODU2U0ckSlKGIfVjIw47FcxZFeO4vMZ7+nMC3RcA0TdPexIIwzQj8BSWB5OuKWOQL1qtN/G1o/ZMGmYkO+2a6pWxdsn29Y6m84uJi9q7S59/vJSvlTpUUNlJIwbP4clf9/wAPLVpav9GkqYu76g8906hWwB53jXILB7zmvBc3++NPQW5FrjuvbutnpdEuQWMtS2zZQylTOT+JnQTEiilkSTqQH+1iDt2mtkbWVsD8UGeLkwkTNVfk0qeTBhgQFFR4WUbKELiLEGynshF4vTAS/O87GCzOtX0NlAqQROXBWXZ9WjKSOBO5G6lU6sLX5uVQuHdsop00qkXo9k3aGc07oeRSo4Mkcszyk8RWOqez/G9qO04uy/glEoZRVykhuJ9Gep+wJHuhCpeyTWXzS6Aq9iREObNp3lK977ipAFNJtR+EnYAwKYxvyPJU5POlkc2Lfd5bZYrfqbU2EDVcJVUDBomEbAKfytzR2NDaepahQsy15RImXKoDT9sByPRLmRoUHwJeeA16LunSR8dUPDPbwDIdb7ijcsc4uzfctzchYUnK30UdwYiKaqJoGOgtYUqg6DhRTVbbwmXQ+sVafERXdpatwWg9mhnUHiwQ+j9P1mVXQ1rpU3eN5QYkFv7Jkvqhdyp7rxhek0PbJzVeFmdl1V0Ky9qS5XVehz6UxQ13oIMrkZtEakkuQAt6w+qGpbPP4aOEXswdYhTP420Of1vlM4vFQs46gCSi5f8Fjw15W4uzhuQA9WAXOKFNgaWclBmi1BVgkVAUf9lRFN9OdVJhBjgLR9xIMGNOg4tGCIxRjfhHiwZTUur+vPc6AX6+VZpuPjuFn9BnmAF3AIjVMbpyqhp2rjOdYGob1TyhE4KdZa5NuehbfWFznij1lcwCzNrSNzOKzWuonphmAMQ1YzTgTfqWrwLeTqYOgygnzIGNL4CqcYBabkne23TYf/dstG4mH/k/qWNQKsxc4BzuDlR3/XmIC141vqLMTmbNPKetu8tqg5AVH7H6C0daKZdOHGIPrwKT+iCUfsU8bQn7wdqRtaDuPU+Pi47CxkWVLuCxqjcSKr6vNUruTckt/VpXC88O4qZ3F9ZpfpB6IgX8BmpGm9rwyyocmnpaNkDGkrHjpDP+gl04YuQoPFrgadBGV69AccUD1X1RFrrJLHxBTRgoFch2vGW3a56gniMeciRcFPmEePhYVo7HkydovK6TQVn59VAVRvRZepbVxmRfPNlGwj8SRf2t00nFzYw6HsHHPs8iPvd9XOX3v4doMMAiogWIvo7RPQ/lvs/Q0R/m4h+g4j+OyJ6c7Ss+YOO1MWCpzYuaee0jSsONGu6akzu3RdYA3KVPhXVnQUwem5ed+6dNyLP9k+1LjW/qhDFo3igCvRUfU31tlrNe5T76MiX2NmeIHi5H6d9VjJSIPvrpU4+XOcu/11526ByL2lJJEq+Dgx41VrnvkCuvfsCo8ZjNmECqqybg8iOypZfbKM8E7Pv0r6vvNuOWwcgnJdP0UdiTX61+Stx/QsmXU6VqXIK4oXhepWdlTz4CTya3K3EqeTxB61H3+3oPNAIEDWMkgm0bqA1OKngJFkj5qieYgBPo3bShNA24y5dLqOzgTF94MMbQEzZP5vfkdX8Je7yhM8ZjIMoTzgGmjRcf21cacs6Hsbz+xkSI/IsgeKLvnfPV7q62DrrWDZjOhz/cO1Q/5rxELT94T5OGLlRVDojgforAH7d3P8XAP5LZv5nAfw+gL90oqyrk/csPot7qoTGuy+wv/6ZqQmjsluu+kf0ef1Ze3kHXyuFCusz+Dj22sV/Dqeleh3K+TA0ksB0i5c9MCGgw4VTEL5LM9cEPs0JCRJZAKjloB5FE9ZlcD19Tvv7kdOzzl+9JML8Uk2Tw7hPB8M4Lc0kLy/UMeJIU1XHLm6PIgZqwzUuen+b0TJLG9cV3OfpwRI0PDQoh8k/+hs9EwOc0QA3HuQbvCPQvf/Q0FqCiJ+0+FUAfeH8N1ukR/ULR1IAFKffQdO3PbjyaWrZMejco0MAioh+AcC/CeCvlXsC8K8D+NWS5FcA/MXTTz9BR6QhndRpAiwA4xEc4u8pyG+kTxF4AVr1nRiVS/lhev3lMQALnHP6uoeHC7swTxQAyMjovs83jb4e+Wpc+v2f+R4CYDU1GA9cFvhdeGzVeFuj+6jhHjzZ8oyXc2K0zznyPoPwBhRFoOrC9r5lkHXN+Wu0Ws0PQj9Rm3w5jMN07JmApNVy22tyz2ykD827m23sLvwUMUDrpuPDGo7PHCj66+MLM/Tv2fz2AGa4G8uCqKgsTPrx6B92xgOhB9AOAMXSR5fWgycybTpo2w6onOx7YoDWjJyvcZB0Xx80dY/s+mqkrRTatmoekn9CEDX6XrXcCVB2dNSI/L8C8J8A+Ha5/1kAP2Jm2ez1AwB/+mBZxygY5E+lkTTGG1svmKjPIDvwqoovl+HUewKMCLoDbwHl92EvmcoSrYWpOWAYjGIoXnw5saj5CKuRLSbi4rW87uBbKB/gWf1AjY91mVFn9JerH+6kaTPaa8bpjpwsMmz8JYxbv4vSzLXMdpVV/T8ZYNPVk9trC6yMpEmPcAEyeJIRsJVteEUN6DZhxrQhHzqMKhnouqLML8y1z0Ky8babDrQrRc+9TbrO/DWbsNHHjXZi+blt5BBwLoXglsk09Wh9QgG4mIEqOGJ0RuSXkvUrR+R89pAZi5qhDDSSCDNIR7uxuiknp9VNEoO6PXkdEPTZkXEwHQMdw+8nvwYku74fkV80y3zOXH0CctmFh23TuXJv52VEskhf3djxYyH3kenXMjnVTQXmZaMJy42HHGPa6ZqAAgckUET0bwH4h8z8v13yACL6y0T0a0T0a+vXX19SxKTs8aqm25HnJDVH6KivpXH++HNcDopzRhKvM+TBYXRdw578uJ6uXeaRJgnA1imgNUvrz7/TPMcewFE6r9JTKZWxgyo0fI8IEF6Douc9fVi+GF11/vqjyfx1FDzBpzuIVA/Q2U/tqI+4qsKbuPI4SXs+5/akKjMKVaFSViC5CoHqWTpSzkzytPf8iXTpDF18ekWxE/W591S4e9oQ+Z2yxL0+GS1sZkIYH7a3OBrQEQnUvwrg3yaifwPAFwB+GsBfBfBdIrorq7hfAPA7UWMslOgAACAASURBVGZm/mUAvwwAb7///QOcoKfeuHneKRKf3C/QA4q6e01cFQQuDKxzS2ptklJR2VmfUNnvU3k27A687CUcJSy5+ixgPOy0xQLGBsZGW/H9VH1HVTXkWNqkLgs4XhVImHgpB1rvsdcQ4UZ05rvWtDrHcr33864tdwCkQgeUpRmPqcz8Sk7qsxmVHOcDf4HGUzkNyvB+oEhwlG9+c7DwKK/mt9ezbgyeM80T1et26Hrz1z/9/fD4LCBom1Dt0P5GR5Jo3mhCJyCSKjUqkACIXCJ92ryohgF6FG/UO3nc80cDZ3TCgfXs0UofBpKHoK7NvSUGQP239eTxewZAR4x9NgZc/sa43oYDrq/dvSl+tFi2J1dovg2gLff9JZSorgmrhIwGfW/OyrM8h6qfp3Y4+f534+2ZpVG7Eihm/s+Z+ReY+Z8B8O8D+F+Y+T8A8L8C+HdLsl8C8DeeXBuhE++1Z/R8ZMKIpTEvu8y25+dZUCZn83lgt0dnDOW9r6zDNFwt7cQ/B52VlHAPnGbSHVXldXFVWtTurBuIgrYg3O/C2yM1Ijf5DlDzvgZsfsr0XPNXaAMlNANPnmZ55X4Apkblys6lq+6elfH/DGMmPP/uiPTAAwwT1uzEisoz0qi+/wbPDSvfpz0DnsbSssF9JEFz4dfq+wYQS98fWEBffPpFJygxaaI2tffNmBislG3hMGPEx/u/CT3FD9R/CuA/JqLfQLYp+OtPKCukmVgv9iFxDjTspsGxHXu9GwPWeyCr7FLoxqAeHXMJLQOpmT7H+oY6+UHNpXzn6jmlD8HEZ8/c5moKcaBJRtXW+XBytk/ZhcHWO9Qc+X5SOypzHajz2nq1AIkKQJLfPbqKaubjAmQXzV9DH0EyaUdSJcfwh8wdPn3AKCbhe5L5I3PA8Dw7Rh333DvRPLIbL1qokXnXmVrPGxoP2yas/ODX5AvBcMRMB8y1NyB3YyH4Haru/HtG48EKWSzQCOgIoBr1nzpRXa+nvrX16urX/doMQbv4/ho+DPDfoZB8j4fU6Y5OeSJn5r8F4G+V698E8C+ffuIHoubQ4KChlllcAUZiQN4cGGwOEvbl5XAbRkW1tmIhwoMZkAsYK2VDcjlEWMI3MVZnkVAREgje4jjXLQ8ssY5NRnfj1ZdXd4b3VBrVh93vSWrBxBiAtPcCXE48yNtEDQCSVd3p9cbP69Z2tCBzr9jcMyBqlCb+xobNUbrK/HWEUUf3nmmOmHnEFCx4sGCJDBOS5FfoG/UCDXMeHiNvgjDHeViHm2eomgYMTALMILNG5jlAKlnSacPa/OZdIFINilXNWo7c09PG9570MZI87Y0Bk8YCyZfyz5fBs/T9QdcV7j6VhUPTrwOD8sYTeTEKrycslCNeuv5me1OohE1Ueg0xToOo2/FEfmWy7TSS8Ih6rA/nJxuQz2iZ9qKpx+Qw4ZeiF3eieZaC6rULlQP130kyk/xYh5nN/fBZQfwFvqBq3U5nGdOJsm59WLw4XQM87T1iJLE6kucadIkvNK3HsYxDILiX/8h7hpLDk88Zls0IwdPe859InYuKRmp3xY90u7zvLUW+ByPaWxB0dmDTwg5WPAKuO/RhAdSZyo7E164Yq646KrYe7crzTi1HtBhDdOvbyR7bIkbksgOvujZgI626bITGhx6PQGPr+yoFH9yeA7Q+8sIvay/byUceVVfltNzaEQF1khiVYQ8VtqDKA59i/yTqO2YGy8HCNo1X60lZXmXXnLknc3UVFXVt8YR2faUdmqlyRvfYAU++bKCVRFDgDwlj5imG49c86ooYwCre9Nu4vY0le7t7dRdWJwZuf1tjeVsxc23j99p/oNJp1LH2by9uVq6px670yd/b9y95ItshvTXj5SoAWiRQJyXyR3hvHatyH6WxN4jHiZXUht8mz/MNy5vX/6OWQD1lcERSqTHokF14rcpODg+WNJas/dMZOgqiZKffDODpUTMHgGQFVQcrek16DoYefC83QzND8kupMywPyjXxu21zq213izRRuQAHwFPEOI88096eGOwXf+NPkECNKFys7WY6AEaDAqdevuV6Vtae+nZWrn1+lKYry6cNVkvXkp4F1Pj+Y3R9f+Yg6dMbvAT4N2F9+hB0m/yHx4ekmS2OBvRRA6hLKTS4PsExRv6djj+/75XGdYK1rSLjLsG4SojL5e7cuyM+rz4EZprRUWGXXp/sjkPdtx1LR86HE3uVXldu0B/RIcNXoInQ9qLwz56OTrAz8NSlHXVCkCeSKAXShyN0epcxQ8/Ce1Eags7gPpRKtb+h64gI/BxgnlMJhrseHiui6Xj8Tlf8II+MD+thvtq/cTnX8xy3OAPsQ3cbo/HdSR7lGn18U8B1x+9tAagLOLkVU89WVtWI3AAV6nfAiSfyU4BKpE1ofUDJeXeivksQX1ASXtV4YblXtsM66kBUKFIBDHfRAM+LxHhwLY+edZeTwIdlD43LWf02Nao7r8IbOdXU/FtW4wkNPJvT5sqNuszuBGSMwdoZegVTT6NAZTRVGwHtStmrIEyaPcPh6TdpHj3KD+wDKmIUNQ6Ak16oo3qM6mIZZLe7zIRpYR5gzABtJAnak0AdlUx0KqPB8yKaAD4N9mPAAYXGJ5gv3mgi8u+8Oh2Vvvfs4ymbkHx9p+rmqN9n4XBhXd9w/Xsi3RaAOkjXPpftqRKli54Z9PalNlCXAK09gLjbxLcmtjpCV5bw7FIkbfI09BdlQOsISL0wvYKpgAJmesiz9FWevQ+c2vjLOlCP8wCObco4SVe119l9WP6Z9tHZehxNf1SltKcqvPDxT6KDXujPnFV7uqzT7RyBMX//tPF88wDqKYcgPjVfUvcF1Y2B+nwqarXqA2pzedvfPRrZUg3rVgzcVdrlnz8o5xKfUEofIwcdVZlRzvWqQVnX/zxMon12UP6Ryelg3aKu/xi77iZpIoXofMkckc7OwkcMhAKwMVB1XOpIGPCOFFGMyC9fh7RHdwxUM9ivc2xw7tQ4XsIQtPMuiDr6F+XDRAoZ1XskTfNSFpt1Et55oI+THiIyff9U28hoY9fMtqmrd9CO8eYC+XVSXn8taS6USH0YAHUFyLz3kV0CEkYHCF+abpx/3gDJGqerV3JWsHYYZO2M9os9kEd0SxKplwQLzS4+s6tuIFkKz8Lbs5s6QOQmt8Mg0M8bE8D5SmOaGgiHTJPjyf7kdzRLflaiE6lkGlXd9vI2UJ036l112JFC62UHoi6dx1zep5xvN33GLPq55mDGYQnUiC5VPR8tK0ecDR+k9X8Tuj0J1EiPeWV6zqNadPfbbrr5i0UqvVm9rbPQJvwg93vp42tumrxd0x5mHR4QdhJsP3k33n6S126+Hg2Pg4iuZzRguKf83eB6TNSDKbWBujINd2gdLuBE4kG/DI/zOFOHa6Y7kLZzYfHcVBxp3hSNAPVMVfpUda2j2wNQQk9Q10mbnFFXJaqquLOONJNxbRAfqUJYiLBQNiS3tJBR9z0DZ7OuDF6ErvVFH62uk54Ye9NT0pRh81gHcv7cu5EfKO9Uk8WHSh1TPPFUTntOOY9KmrwWY0cE78t6BVqe6pEP03O07P0eTdKEYIiCyz2V14Fq7BIDvG1lk0Mu8VlOMugGLGIJXpfWpR/ZwRwFUbacEyq8Tm03U93BxY/e16TvzoXz5fngK3zE5Pr+Ofo9NIK3ajynyvQ7Ucn3dyjdDfrF3l/wWrcLoJ6RbkHSErkyeKWPgF54Ffbs9liv9LJ0dO55gTnqIub6MY3Hk1PsJWehXYWuyAqe5eSIj6jLX5o+CQB1WMr0DCNhJKmyLgyem67xXg0gbww6o8TP+EVNJSTP88gXnzetKkTtn9w4cq4QOiBldubt1j+0uzpU00F5T8j7KVK0ep0aJw3id1bBzSp9YlPyHEw0GxKvVzEkvgadWn+eULFeCqIu2kAQkZPADJ1FooY/53Fb4gcK61r8QF2nXBUM7dhGxQbmgzKHtmYnwnckjJ4+CQB1hOzxJRpWVG4jALK4HXiLOTtPHFtq2ifOKnU33bFyLnne7HiXj47OVpnd7yDNrbgMCGmi9vtQ9DEOnavRDAiF6QeM/ALj8a7o516nMZ5kSBwzyv00Vu0yNh4O0u9WaHCNgV3bhC6WXH1MSoh1ezZp+O7xLdPMUdi+KnSa/wR9NgDqY6Kju/yssfi1QNDY7f5Vir+IPmsm/Uq3RxfaSxwv//iAf7HDvhkZvD8DgO/9/czE0P7+w04OQ9upGT3BvvdD0FMf+1wL9FvYQf4KoC6gsx69u/wHmj2Zo1zm592NVIg3akPxASiyOX0Wsobiw6Nc+vDQtcGT6nHldK9UaZc5jsIvlVLwXPryArSBVIVH5UDrW6Dpou4I0NpRsw03C2AipdpT5e6o4zTPLc2t0vcr6wYCoWsalF88xk177RqT2zhfxgV0GwDqwsrfOgNfPnQFXmlOtz18Xuljo0vmsReaw64hBbg60Df0bBLuK5U73X15ybOfUYI5c1I6C5vRc/b9HunO+pGN2eGC7PV1QNRtAKgT9LluXnuq885PmS7hDSq4e+q8cM2J5WPa4fRKnxeJIbFzpHn2cNlno+dWqz4XHTU2/9AmFNv2LH7APnb66ADUx0BHDbzPNv5C+aDja4CpW5fefXQ0mFw+5Mqtodddd7dBt24sPnpuYaL5AOvnr8ST5qfPwaj7ClKliIYquSturrlp3nMSiL8CqFd6pVd6pVd6pVd6pZP0CqBe6ZVe6ZVe6ZVe6ZVO0iuAeqVXeqVXeqVXeqVXOkmvAOoZaD2oRD2rUl6ZsCJhvUK33Yzx56dCKe4TupVdD0+pxo28widBTzT/+FAmdUwAUgITvcjOwSfNT5fmvWHTnI6Cd7zGnD7crUl0NbRw07znpKf9jw5A3YpN7kvTNUDTp0qXfI8szfnUb/maAOlWwNYrvZInArAs9YwqCb4Vg+CTjO9miAfXs3QvTAKeR4vEz5luo0UuHBw3jWQBrB+6Aq80pxsZPjcjpXqlp9El89gLzWHXcHj4nOP02RbG13JWzdT8PfnZzwiIPF+M+ORZ3vkh5yhmys1l63zRt2avI8+p54u8DQD1kdHGT2u27YDyTp6xcsI6ed4obn2BifnWAayQVPPZq0sEUOmPNHjYKPyq9bhyuleqtDfJjuIvVivlw1w/5LeWwLn6ywJOdDPjZgq6fNwewwyP4RsDpiGQ6p57oB4+nCfpPgRJ3y+9+vaax7RcPMZNe+mY0Ekf7a+N82VcQK8A6gbpqLrOArlrudQfDeIPqTq9pbnklV7p2dVFJwb8iwErQgb/z7AA6N5h9k5HAckL0SEQ1cVfVucPBaKf+thrHvdi6Wrt8YRv+bMBUNKJtjM3EDYmbIMl1coJKwgbZ8PtLA0q5aCVDB01HB/Wr+Q/Ws4lzxsN5Oca4M9KZ6scnYkUpOErGkteneh5GNj5etTLj3HoXI1GQGpPCuVXxUXK9KSqPPcChwAQFSPy89ljNdJ+GttmQ4a5J13YzdNGnVLTYQCiztbh1mkpGwiegaKxe3g8h98f7cfN8p+gW2UVp+goABgBpafQWIVWfl/gK7nGezXziWnPcCA/J9ecLT6f6bEvDgKsMaZMSt5A005Wwrh8fMmyW/9o4vucgc+1KQJSl6j6diRb8l3yQMVT459BSiRG5Dcybk4BxhnTDMDTJdSBrqPG4Z4cGBz1tcQDzyuZSuUwaywLkOhq+1x07bBjn9Xbc2HYnsMxcSacg78JfRIA6izdgsRl+1y3E37s9MJfTLjq+/DD95UupcMSkhu1YfyYNjycnGJ3wdONG7oDzwSmPqIuf2m6XQD1BD2xjMeN6bh0Soy2kbAxTQ23x3nj523MWJmx8obNfS2rOWLoOYCdqhxfCjReazK4xBCajPSWJmVMNAUdJapxwjxElWbvXZ42fWoNzFF2tQzUcezzT2gqVqf2vaZtEpR1A+uMGyOa78byK9Yj38JU4jRPr5c7HXWVT5IASqkYkecSr2lArNQNWIztnkaG17YfDkqfhn3pJRE7EopmXPh84TsM6u/JSptOaAWuAajY9f1z9HsjXbUPBnQHno1jN052jceZEI4Pe/9J7MI7Y1PwBHpOQFHtpPbSzV8ssnOa1VsAo98leFTFdwuSuZshohbA7H0pIyBz1nfKU1f4B7K/dvP1aAikousZDdQ/qsI5WM61BNueSTLhWfwADTetHC7gROIz4OkMPcVe58K00s8vpsdI6fbQwki9OQKtUdhHaQN1hV7fQ9aXgIGju9+e6tRyzy5qK8brQDFWB2Flwlaee9SNwh5w2phuYifD1eklAUIDspKRPp3wTK52UJdX3EuXDht8OinVGandK1U6BaJkNRyuks89d5b8LJiKJAvJPiGlvJX9BUmBgrTNNdRsI/B0oRQiyju0h2ryHGtLngGCKN21iRDbYZ6gI76ojtZ/vJngbPggrf+b0K1hyo5mBmWXlHGGNt2BV3fiCYhZOV/rPbzUp/3dIwVMR8FR8Q9Vd++lLj7Od1yt2dHHKLqYAAJOcKADdSfes9ZpAqImxAfrFnX9x9h1N0lH1Tdw8ZcYuI5AGQfMpmNG1PzOaDQfNICKACwpq/IunT5MnWbOHvfqHBpWe0DqmV8AQqYgJ1LVjf6ifAjUeeFzyJU3UEsGNAIczH0bPwVbsen7py6kOOA/saG4Ud81ke7XpQ8XJXLv1bAwaQ6ApYhuHkBFdG2k/RJOJ7tnBkP6UlcIZ+y1hPakU7tN/CElTpd210sbwB5ReQwkVVYadSuuFV5BWEADINXEP9uzz63gL11IkuzEwvMsLqqU6epFD2kXPJ2hsyq8vfSzfgryvkizHZRAzcbYkfE3AtLh7rs9ydJMvSfxT5zUbmBaNnTBSLCrmm2Sv9oH1QbLajHq0mVJ0/GGXVUKRFlaJfcs8YwN2YDceiFfkSVUI+B0CTCa0VkP6tEqdip2fc4veU9yP4s330mYroio43JJDcZZ7KLsH9DbS/nrRAAlkFXRJQqfyd44PeqyEq4+ea7hG+qk9PuzpJmKx0kkhtIHP4H7vF6Nx+1W9ktVITxIK7QnlVYbKEI2JL7wY29ebfYuTGjUdy5MC4ukNqOHmr4J42YSpaOSp6Cv93f3zSVlAPox4EBCaISteXNc9YU4r05HCVl96+aipxiT+/pOwdVEPb7Lf6I+uwJwErotAPVCFO6UOwOYntj4kQuDBtih7gJcOWEr6sJVHHoO6ioG5PZdjoCmDylMiujot6TXJ7vjUPelY+nYgheiauM0PMol6A8Ju/LqfgoaLwh/pUIzRoo2rANRXdrJKnqw4vY7kJokBzvvtBqfAF5e3gZqrPoK7iPJwwg8ebATlbUrKRqkC5h699yob4f1uF6bHxkfAo6T2XHHxQv92cOjz0g9w4X6aHz7b2Ckuusect3x+1EDqKeIrCPANPbUndRFwWpcFqzW2NsBFZVKnZRLn/FEvmHubsG6MNibMC9enVyDnmNOvt4i4/oUgagn776j1n6LTLimqfG7bXOrbXeLtMNED9vB2PugnFH5wDlGdfE3TnT1byqUQu1m2mnPQYEhmI0kWnvPHT1jVi4CSdRUmunTRsDhRP1OkgVKTOj6PtFR697x2NwzBq9S03wzs5WK8h8eH5LmiKTR0YcFUGc+5Mly2hbjwcKRldZISrN3kK9NJ+WIGg9oDclFjSeAakNV3wnQ8eBpO9g9EUCaHdtij7Wx6WaGp6dErEfpCUx8+N0crAp7wAFUn0+jMhJ6VR7Qg59i15R9PSUQUVbfWXsnSvnPS6pM2fqc8lwkqXOtf9gWr+Do+Wg2yR5R48wm9U7NUK+jnVjdVnbz/da/c+BqREwohsTUjZ89qcQeYJN6zozmczqTJpQ2URu/1/7RtS3H/+3Fzco19aBIYqJlB/f2/Uuezg+SzcZW/YmnE6Gob/u+n9ER3mvHab7fy4B4nFhpXfhtBivqCCR9VADqGakBVUOVVwrVcWcdaZ6llzje5Vr0IU+BP0STBUi+pjB8r4y2POpBkuYt4UedX8524F0ghTrcPUfSnXj8rQ+LF6eJBOoQiDrEbAbPeil6ggTq6DzSSB2aiL2PdBw1VaNGwOkSioDU7FlXolk7XXXuTteRPm4O7I1oOA5seKT2DBNHTCK4v6B/7s5n+TipSl0SIucCKxNS8ULujePWsud9pYQExoJslwTasHLCPa2d9GhlwkKMFcCiYdWI3Kr2NjE+N4cWV/cIVA8yLs+Vv+4divG7BYX+8OQo/GaIGCEXJ+TB/YS5TbOSFDZJgwyaiEqdjn5YkfH42me2vqB2baaembzErRkW5H59/OdIowbw48QOMzN+iQksaf24Zjc2m1sqz8i/zAQC5+xkiuNraINrHRJteh4aF2eKZDyRJ+LTc8muZMyDgBEwcRKaJs0eaJ2A10tso5ncRTRvmP6svWfiNH8Unq+Zc14dA8/hDd4RiwQqybS23+e+Vpvr79nh0p2dk+QtoKkHjW3aUDoZVSxourNnId60BGomzpvtNjhCh1R76HfpxensUS5Jy7Z2UFsDmFDCn2aQLn6g5PiZrl6qWjzv+2m+HfVcPaf0IRjy7Jlpvl1XXAro7jygNSQvZeijihqvU9clGoMmr7rzKr2wXiIpq/dqB3agja+yPf0zAFfEAwbbqXoQM23eUeM06V2Desbiwve2kB+ZA0Y7qzITrWPM28Ac2ZEVOe61R3DMfUOhfe9R24SVH/yafNKv5Bns3l+hLr8fC/65cMx6BOiacRKn39vJdkSNO+q/hAKel6c50hzVq6tfAJ5qhqBddgBRE8fBNer3eMlB0rcJoE4w6JndzlFP2zH4eFluYI3Rq/fxpGpGPaPvIJc6s6vwYo/ko34aMYbnpKj6s1dygAMYzMFqK4V99Vsis6Nu5N9pYkA+UxWGdTL5DI0muuZ9DwKrV4rJMsyO90SMbu9bifLK/UjKMig3M6RzC8pdEinEM4yZ6Pyzabt5RujbewZSA4DT99/guWHl+7R05H2shGz2jv6+Gx99+LX6vnWkWuaOg0D5KEU7SvWVLDCcSAzh+9lLLZu09XJ6nmUAkiM6BKCI6LtE9KtE9HeJ6NeJ6F8hop8hov+ZiP6f8vu9I2XVip5vZHb3o7R+tTVTY23GADyS5iiIMdKlRp1mwI64GKg75KgYihsj8vIW4gNK1Hc57FibKLhyu/By3fqz8CxZsDTyCruZ+PyL5v4UHZyIzhStaXWxQvXeL9JtuYPvygMpzXd0eeEAi6rlROpUwFWjrhOXB0dAEE2M2w+q/maL947CNjqX/pboqvPXQBLRASorkRrmob5MoM9jni3gCHDf50A61XmkPvih2S3sAKoUYhlj/EiKcYkk29t6NfYu0TVM+j0JEnKetq+u/xePhUF9wroH7xi1hw0H4KV2I2/kI8P+sA8TwCmBlyDDAbLPkjqO+37Ac5jq2G/+fP/PAVEjbTranxM6yiL+KoD/iZn/eQD/AoBfB/CfAfibzPxnAfzNcv+idOa4ApvmqEPJ5zIkP+ra4Ixn8tH5fCO7p1jqdvhxH46ONEkAhp4KIJR0RxxaTnJQvB2ehWdVgUY1GHn/Hda9AKyrD9noeTcOmAJ6/vnLfTtTKUSTbrRSdgP2wLd59vM9KilIxCqBvZYaZ6aua+4vWLSNpTrBCmoGYs5QBIii5wfPfMq5eWcXtRdrVor61ufeU93Ontce7TMpZK9PRv3mAOaho3tO0u50S0TfAfCvAfjrAMDM75n5RwD+HQC/UpL9CoC/eP7xE3Ivfw06KpXKkqSBawOIoXc17s5ltIbd1f7JuiyotlDWgkAkYVaCVf1NlTP3VI3XG5BHg3Rl767gMs7aTWyD8D6jvb7go/XzXCQhurBozecBh9tlxCr5oaHn8A5Eqf0SIbSFAqp6rwk78SLGFiWUVsu72d8R2Xhqw/foClqCZ6erzl/PJIXoVsP+ec29GfhOwlDTUceULj1TVBkkZYCfz4982qTc1ctoGIZHdliJQySZGbWlSzuVOgGdJPHs32wc6LsgStNLlDr1bfferbRJs+4BkkKeb4hBOhnpox7jYzyRi3TyjDf6kQ2eHwtSf30ZNum6b8hfj9s2lPYe/ZvQEa76ZwD8IwD/DRH9HSL6a0T0FYCfY+YfljS/C+DnDpR1MR1RI/m4PePpfFhwBRneoHvj6qxS1HgRrQ1wMs41R+n1d6y+84AsqvvKyYFCAVjzNvL1OmJg+mLnVA2A0iXlHOYT1D9nuNL2R7kk6sPg1XimH5MJt2XKr0qhoL9MaJ9zKdk5xr9zBKJO0A2DqavOX0PGCfSTLrf5clgAloSBwuVrJv32mt0zWcP7b7vzF4VzICq/AMByoCzQMNCRFCJasB5+rn9PGw70A86DkCAt+X5x/RP240kmOysnBFFR/Ztwl9YCinK/J627VI1rq8BLXrBdY9dfXx/0YHD0XiNw2T0k/wyBkw/TMoO/CR0BUHcA/iUA/zUz/4sAvoYTdzOH64b8AkR/mYh+jYh+bf366wOPu4xm6ikfd8bAevSsTaVQAwAkwKwJ42oDZVrLGpB7550rtzZXEYibAcW9dunmp9MT3fzjfSkaG06760k1RdrUzc2EKo06Q2NjkT7NCWBkpU+1HBTpwKgug+vpc9rfj5SuO38NJuxwB5f8ck2TwwKGgIHqqRvAg7hnpKrCy48kF7dH3obVh2tc9P424wB49AX3eULpEAaApylrwFQDABcC5qb+TiIZ5hu8I9C9/945cB6onCWVMF04/+05ZO6AVFiImYSG4Nl9TzPw5NLUsi9rpyMA6gcAfsDMf7vc/yryhPR7RPTzAFB+/2GUmZl/mZl/kZl/cfnqq/2nHQC41jjOr1A2HVwOLKDtLD1cWI29K4iRuOqTqUqhIqlQ78bAqOJAxV0Bm/SZrJpNVIYb2nPvIhKQJXW071jfL7XvFEidrxmESQAAIABJREFUPPXG+uO0z0qOcevjKY639xFI6ozEm511GXh0AEzK6cKrOwHrkbyxXxKvvUA1HldPvioH79V3TpJVPZFTncD8kAgM4Gs77HhWx8Xzhnn+01ekz0zXnb+YgK38BUyZNiOZ2oJ4y0Cj/KEUIvqrg152KTGXKB77WRotLiMg1KhoiPUsvKdKISzjjOopar3eeBzu3aFt1qvuchmRam2scmsBEm2tsXn3t0XA6shz7Bjo368bA00aCuoq7QYzHubg5Sgl4jw/LjLHne/7CEB3ntTd+zRjOhz/qO2ANqwZD8E3eKiPt/o3bZ/9l+ffBfDbRPTPlaA/D+D/AvA/APilEvZLAP7GXlnzB12Q5ay0ZIcOG5cbZ5eSZ2Zw3u7Eq2G1PGp+27yt9GnoQNP6fHpuK1/fVx7Nf+wU7WyjQXhEVn1nwyJ7p3Ld+ZI6SU8y7vVZP4EuFHrW+WsmjSg0UhvNpBC+jE4yYxnmXhVPpBWyO/D0MFkH3o9Ink7RBPTVCszyY8xDjoSb8kPXFAPqJY8U9mtUXielesK8esa05Qh1/VsWatmq4HIQla/b3zadXNhA6q8ZfZvstacrK2z/2TgK6Kgn8v8IwH9LRG8A/CaA/xD5c/rviegvAfgtAP/e8cdeSDxHwBtTgwhZwpzkCRCp0VbCEhZaS3gWSViP5Kt4HQchgTrUuXJCKl7JbbqFswRqcXVe2RwGbKREQHtI8cjJ5qZ55+4KrJTNXzdtwcdEvV3LzwbwM5EOASrPm8y3BBcvfMgIbZgIJF8t1SJFgkOJs7QBlZFQAnijjI84S4iwZQNb2krJKQFYq1RKDN8KUApdGHSSJ5h7m04YmpMwUQuk2nmnpm1+XZt11yNw9XGBrKvNX6Pph7sGqQmpC6nhHMTKXic241KTyAdQBiqz3BbJEGdP58TZ0zVRZl5E3Pye+VjVmaIzIk+0QSyLE/jQwq11npjfp59XalwvZWjBSWiAXyRPNh2AAMxSGw4Xf4L63qfmTtKcGQONx/ommrQhrWdyuZf5TdqYyPzuvEeCBc8bgAWcuEigTDrTaIk4tB/O9WnDI0eqYjweeiL3fc/m2raJHQua3j7I9fUV+hw4CKCY+X8H8ItB1J+/7LGjBzmAJB/6kZUWZNDklUzu+kpb4ahdGHLGfJRLPwg2y20h6jDGSglglONdtny8C2rYPdZGsrQV6VM+zgUabqVKkRSrquootJGKVJFHvJt7EOXDu1WCHdQfgmZzfgCSCD4sH54gxLZbOxDiAFYBUTk8WkpSnaXknrkAK/FCnipoolTzDM7QmznDFC/o7N67ufZga48+cPc+J11t/pqsTo8y0HoHFxYMcDaJ9Pszq4eGiXAw8K9H2RdQWSSYZ+gic5BPTSpQGePwGI+IOTYMcQKeUOPJ5TsEnEbXF1Lb+xRc9Wn9GGiOe9ExwPHikduwax3zUo/xkb63wKkC6CPk3RaEqkYzBtj3bceLanwIniJp0wBAXdpUH94T+cmKd8DxyjO+ghBnWyQ2UON83rWA2DSRScN1B56rd3V7YJx2TrrnqI+qmUG9p73VQht56PEvS08dCjZ/org8t0vOO7w8ZBTu1HWqvpNjZKRrrQ3TpDypQ+gQ9Jr0CYKr0+SlHYPw4db1qDyYdJ4pRPlGq2gIECFz34KWM5+tnoNnq1fG2lVUeNP5xcRNgGuTBj0oaiVRmWEPDceD59Dkr3v+AIRFOzDnhut9GeG1BRphunYxfDER1E40r93OFbjHozP+p6bu43cKqjeRPHU2aKaMbhetzT/6zh3dxGHCesCmkJVEOZG1hDG4EU9GJGq4jasfCJW8kFdlJWymDirVKdIkAVGJNiRRg1HeibcgqwAzCCr2SiXdiqxCXMFZIIGqvqv+n6jaVKm9UzUkb2ygYA3eTRnu16vqrJpO7yGrAWqcaA7Pq3pmaiU/ddHVDAWbLli0K8k3VWa7Lh8ZFQcISJwNBgWsNGq9XAlJSxYkJS4F27Dc0URF7K2G5HnMqFF55ALBO+pszs+r78NST+GxBk/rws78YnAPwxQ7KZT/hYv/zKhjnBxednlyfAVD6luHa1u26WZSCElYb0SNw6VsWd3nsd6q7kSCsDE6iXvjmsDUIdEGJGC7z96oU2JNb188EYeSqGgLffNbGGBrPC5/VH9Rw1VVzigq9pZRdsAJmEohRv06I4pu2PwYntWNg0AaRTa0zD+0ETjZ/ncDRySSDO1/VeMCTZ+3Ktz5i6qvJzEiv0vFC73pe/v6biwAIzcWUu3e5m1XdWf7vPweUuGa37HU8bJJ7cNLoEZ0AdOWLE/xqC0gpN5TrForzi3tDjy1XVKAU6VQjdF4Kb/u1Ktl9PWpIGsLVHefO12zCbz9UFf2UUNtA6ZUbVfAU5PmqMSqSKJUfdfEoQE6r0PimWkwtzTgyq92RyvdKL2P79JRHx6Uo9mvtPiRxYg8/hJDYi3LMFF7769H6p1uezoMeOrSz8HTsN982J5kwoU1ZdrnWQAcjIHIRif0Vj9o/pG054imxm8caPJfOLdEC/OuLlaKxmiuh+PdgicbPwBPodRRwXtbH78jb0Y3IYE6SiJxiuMiQ8kMNKwRd3YkWW2i1M6JM7C5K+VnKRIjYTUSKpHuMEB1rbUW2yeLf1YkLJKXqh2U+H+y4EnP1GMjdeLYI3rnJwoibUoKthoDcnuPVhLlyfqFCgd7GBb3xxmykqeG2sV4ExZLpnLg8DuX763MmmKoSRJm66NlF9sptcSU51ERaRfbqCJ14lSkneKmYC3jRM7F8x7NG4DV/lXQhCaP3A8nNOumweRR6VNAe1Knw/SpAzjLKIN3bcZSvyhvpQxg3RAxlULwwBbG/Io0VesIOyfWkoF+s40ny0jVqLixgWrjbTuM7G5C54m1qrptPd9Q284mX+/bhzoVDfk4tPHSGk0F/LU+L3ydUfI2b9uNyiNM7+v/tjwycbW+VDcV2Djta9SxxCK5lIfX9GwnN1Oa9UIuJP1b2J/2vdg+Ze0OmvSRBDLmKyjjVq6hfabvFY0BBZrxGDlq/6ZpPZ3kZx8VgIpoJo6UCUR24m1A87FvRSVnd9wJWEIJt0bkK6cyoWxZGkQStgFkjMiRsICxlh15OYzUjYFV3wHGmBx1950c3yLxYkAueatqr75QdFDyaGcMw6oAgZmYvQ0bdcQgfEQeHAXAqCl+ED4tX36pw7dxPShPXAqYEgDmHJa4TlKJwBubXXicxcsJVczcgKGU04hESn1CGf9READY+n/q6kpowlnUhCOAVEBYHwYFaDPQM111XsMO5iOjSIo0a6OOiUoZ5IBUKY9TywgBZHWwnJfIBrAIMJqpcQRklTocNS5OxQGOqnEI4DuoGser7+SZlka+5hp7LMsIdVCiZZjy2/214KllntQzU6At01x3TXJgaGse+5p9MzSgWsGCfHZcVXRuKupAVBvZg+jSoFq+nfNyuzP8VDCi6mW+qG/v8vxGBCxW1Ut+u1Z9Xh8m9UBtJMtrbJz9te/vwZMdByYN0I8HDbPlRdcn6HZVeJYCKUg0a1nGP1LjiUPNzrjaq8jMV+GBSg6r59epGs/YMUm+iKyqbs/3lDrmnJx/1517N+GI1zS6D312XIOOVvHkq1R3AD7cgYzxEMOhGajZppRiz+ORJCosCxXMuTrvvv/p9pnkpyDswud8ajQ0RDXXHfNuVsfUpocJ9/l8nOWv5VnDXW5PIeIC9o99AhdT1461bSjiAz5PiRsyyqbsnb4L0h+Jmxkud/lKfSMJCjkgOdxU0JQpPNAEnez70AcYoduF59MLHTUt4dH77I11B56afOzav+SPVXiA71MK/mZ0exIos2KqKyoMjeF8mFXZiaiaRQrlHlV9PlXfF1adl1DUeMxFwpTBycN2hyWxSqlWZCnUSrm8lYodFCc8YAFoVTuotUiQ3ruDgx/4rno7bwzIRTqVu7Ie62JVdOIt3QKz1v+TBY3eqFybHgOAdTTMFvQcZJm4DBP5uFEmdplvySzUKPgQbDpZsWXBo0poZFGdyyHQAvCaByQVaRMTQCnVrzOlvNKDFIai5iPouXhe+mR29rH+CuCr4aLOU/Bk/vzhwnWdQS5d0JZB2+6uWWYg81MlRusB1xKhl0g4aQTJf1w/kUYaxciSzpJXJJxqRAxko+KiUuuZswxqbtQ4fp5kMXEYSKIaFR5tSJQNiLcF2Ioncgnf28rOZq4Rv0T2YFi7nb3dto4ePJj2DyVPgSSiAa4WmNjwpg2DNN1LuVtycWTKkP4uvxZ8Nv0MgLfcJwSAyzxEJhzap1wnN5U+slnQlp6XicD2Pe+rcIFWAonE2O6o9j2qgflsl7dIG9lesw+X/rfjAsbTfylvm0ie7DgAmnwz27e2Iy6jj0MCdUXqnEmiBRVNGHpJ1ch9gPdKLgblgLV3Ind+XvVoXtMlA5J6+6fu8GAHDaI6z6gObDvwK5B6sUOER+Rf5SkMm6AgpCnL/GqTE5yEqC/HSob0Hiaf9fFEyd23f9555mlv6B7cOBBkafj+16JPGFQNjUsHq9pOGmEncDOp0+A6/1KTtz6P2nhfH7k0TMtSJKWPdllZR5qwNlDXWilZ5gl079NJXvz7emAUttUgTdBXLcCi8R8G+TwQ9M+VfK5+KnEKy6Gw3KE0xpKA0wPU9bs8WqSPk/RHKXRRoO2K/j3Cd25VtEPw5P7K1GjSuuvBdzyi25NAAbAofi/cGkjKqiqyixJQ4R1pCopOxCrFWYjReCcvecXTuHoQ51QcabLWbQXhHjBONXO6DVvjfXyz0iZUP1NiPG6dZ1r7J6lP46eKSd0X1LDUSJoab+QHAVYjBrb3o0HVTCoHuSgNyvOAIEgTLaLV6DtKG+UtxuE2XryTZ+lStncSw2wynI8JxogcxTt5ngg45XOWoC4LtnZHnr6bA14NoJJ5pV7XdDncnuPHHvSVtmvm/LPgJkr/CQOkXXKMMxJVsL2QrvVxKF3FNSzflv8ZCuZt+BEpBOl8iJDpNXU1H5EHRIkYCzEegcYbNQEaLobEidgYOe+rcaotjA2U9zG/ttEixrmh9okFoZq+pIueBfRgydAuNmCyPzmPeYjPXqWN0LEhe1Nq/tzXtLGmlXqoZxU2mwqsiMuOAx0PY5s3D6iTGQeNGi9l6SMv1r1BbPs0eo5fqOc26PutA4QKLu14OGD7ZsuDA032Fwf6eUK3A6A8OIq4I+oYkQFjjTTJL0w4q82IW7UegOrLCbm8CqbyES+pgClR44E3NTBPKOmKMflWjMjf85J9QoGx0AboLroePLVSqaTSp03BkzmUWFV0Tn0HfxByDJDs7jvrYt8bkEerVAlv+ulKNMLJSiNw5dIo+LHpZfIhNHOMpqP6fBlqdcddrZiAKIjxrhqKcwZCDGNEXn6tdGlJZZyaeyLwktQ+irNlJqoRudRRyikgKZEBQ1TrqeCIjoElXwba9Ox+D5F/3lNmpRumXvJE3WUDrMq4U4ZpBr20uTJRlvFaQDlnwCSgRZgiuAB7GZMOYHB5qFXjcFlgMnP4jVtSFQ3aXXjbQuAFWNIWHvkxIll86fzCskMMet9IWCwQasJJD3ft1HbSfmjLIFeehpkOC6WJJ8j2qQVVVaXLNqoDUmp6YJi93aEn6jwdSGVTQQeim/di+Zfbm0V9Fr+cV9vqNbiCZ+n70t9tnrrDHEDHWxqSMWD6n63KTn6B6u9LDwWuYwAMcx3sxkRNFwKmqClO9v1np8KLyEprunDDFbxR+GaAjydR9alTTAVPNCxrWDdTByt9slIne5gwgEbi5CkaI73uOqxOTxfwyVOMOSK6QhmFVGqjTI2aX02DGt9JeiL13RlL28FXyBTEnbTgrWAMQ0DVvp88Z5zms6VuhdxGt2qcOkinE3YJD5vXraRDKYphNm1H7r3McUq0oQjczVb2yjzPUuiod6+NgFCyYPP4NjwNnobtu/MX5I2axdfHP9uDv1AiZsIOS/kdHekxtX8rFWN3dJQ/33X3mVz/fGW648J8RaN496356jTgyYZH42zwPR+h25FATcj6uOjj6hJMEG2W/SAbh4PUcNK6M9jIeCcnKukFdCxYlgzfdYcbJSTOar4HLFh4U0nUBsYDgDdZj5PjacN7Bu7pEdDdeVkS9R4LtmI4LsbjKxIeeMF7CbPSKU542PIKrzMeZ9I6RgcFt3mqgHnkD6rdvTFGKtFW1D5RHDwkgoiC4uJkxc4mPbfxWQqZE1FJYyVPDBTAY/w/cc0LoDUmT1SqlJeK4uKAZelIxfEBESgl8LaBlgSsG3hJWRS/MMr+b1SVXlJpVJVWlUnK+ITiYmzeSZaEoRmJlQdL4Xl6Nl3U/jv987kDKdpcG/gx3o1PqtfFEFiDTD+IlAmAStNVEkVcbfNkhQ5upRAqAYUuCPI3WtQ4gEqfvAdoS16qkIixgMELY7sDtjtgSWJELobkHPoAiqTbllmq76fmt9RrK9IHzu8m4GMkcbDgYwhULGgaALYhLgj6OYqzzaqfn1GxE9wYKHytGROM0o/IZgEkIKYMKZGAU02XJd+5MnLQufDNvGkATb/PVKwyBhZibFT7nkvfixuDIwdIWz4j/GRjAm+Gv3jpI1M1Gpf+jsbAZoCTSCZtfzR9737h+vrCie22AZQ0pohA2ewmQWngIC4i6+vJh+ffhFR2yyXk06Wrb6ishgOh7LgrtlEF5CRkALbqLLjqsS9iN2VVdo0KT9V0EfCpO/9yqdWxZiuVctIncx9NlF7aZI91GZJO3KP4SdxJMt26y9QraJpMfpJuECbP0+cqLjT2VKLGY1Q1HnHjE0omrozgqar6gAYoceffiSrYSXW3HeToFpPOgidtnxmwccCrSWfvB/n3hsTnSKNxZtZyLoNgp8LAUecwiW8mdgE/blzKGNfnMKAOFqNnlzSslTtGSTlUvk7CAJc87iyDbV7TSKaaajgRZ8F1AXiq9bbSldCmZQ88NemoLwcuDVzcHk36GUA4FnJQHQPcxfU3NQ/XBKNxxjVSwVMZI0fI2z6Jz0Nxoil93x7zM24wuxFp7CEdPXgKxjH5dM07Z7LjAIiB8gg0XWpxcNsAKiIHqkZJNs4Spg3c2UAl/a2uD0BmJ54ugoqkhxgwO+DEHmlRGyjOXsZJDMezW4NFfEKVsAY8mZ161nUB0DrOrGGt6wIrdZI65fdrz8GTd/a+r2a+srpdeS7uWTjnaFLAoLsnzMrmA9VVnZVEoQvLDxH8xAnZ2bx8z5JHjMmLvRMT1KVBYwNVymyNySuIaiRMZvddtW2qoEqkUlXgJ+VbAEQNWDp1sLADVXr/Cp56EmwRvL+XkrO9MN3RMVFG3couZQmIApQbE1AZYzIJLOctBaobAzaATSVArbuXiIR5ihQCCyuAImLc04ZHcMN0Z+SlT/LbM9DBH1owtAeeQvVOA9BcmL82FL1eOP5N/zcLMVuWJiW1letwURkP3iaKmCuIllC2tlD2PdwEafp+T9hgPdAvpbG2u9z3YgM1cmMgj2+MxSVcgNSe9JFhbJ9sWH2XEChLOtsOXbwD076SJ+k2AJSbeE5lLYNF5xJGNzgEEIi0E8grnI0o8zwFRtknFFClTmJMDgIeeME9VqyU1W0ircq+UBYkzjv0Ft6wYMN7AAkb3lAu7wGLuil4wNIdHPzAS1HrLY306WFbWtUd6q8CKQ+o9J1bMOSlUuKPQ9pu5M7gxYkccJL5oHxvjcRI4u2c4a8LCaiq6rgWIBGAyJhc/TGB6wRG8QHDvFABX1TUdSwDMxuPF2NyXkjLRSr3ApTEu3gyYe4v9P3UxLdhHOS1YMlLp3x/7F5/4kQjxitBbsz5sSvtWzc2SB9wNhRGYZylfD06sajlcnKuEinxG0SGiVoVXuKaLlk1TqmvW1Q1R7RQVdXcpxVYGNs9ge+Ae8dEPYiq84n3AWWuNwFPMlChv9Xnk1HbRPelbcJry2Th8gR9eJahhgs6k9eOBb+RpQ2jMj+gmhEQwBuqSYEkLeo8howTAjbT/0keUvJtpH7FshqXG2CjKlYjObQ+nlT6uDD4jrL61saV+JE7i25z0kz6aA3DNbyCYhoZkfv+9aBpJH1015dKoD6sEfmIOfuXOSn1aEHBZTO89wnlnVTqNVr3AULWj5M9YDjnMf6iUF0XdGU0bgla43H7a0GTr7sNm42RDwaUgKcxYQsC9so++pwCMBo1GQKA0eySA1qpEam7AraSJ6D+all9xTojdmfc3kiYThqW98/aSbAT/1lJo9j9GeoAlpu0h0zaSUlmjF7LcWU127zDeo87yWbz0qRktr3JkUGSzqr6jtIen7I+n8i224wBdu3ReyKfqe/CPjtLLm/HkGdjwPO3qK6+bA6eEZTFZlxc4tMvERcwDqCo8BZsnfRyJIXs/Aka0NRIH2GuO4Bl8qKmJXsdttEAPDmQFfbV4Bv39OElUAKvj4TbsAIICNAW8Of9VO/k+cNsvJJzVddZY/LNXD9uC5BWPG6Lujh4AHCPtUiJCCmZc4F4w4ZsbA7kyj3wHTZs2bUBWMGUGopzPvdOpE4PvOBhu2ukTw+8VBWeSJ/Y/hIet9TcVzcF7W48774g9EjO7mMzK0gbBjNImz56CbKrfVOlTorEaG2dJC8B3tgcZiUvYWxcFVA57063nKdyTl6xearn4xXP5BupGwOkVKRJ2XiciyG5ui5YirF4cVYozxYpVSM9WqCgLZIysU8fxI9AkaYdtfnnBJYCspNtI3GK0pj4TvJQwurGBaPSKeFcvI2XvSntBglVJeYNMrkQ1O+y4hDj3dxIgjA2JBZwdFekTHdYke42bPfAds+4X1ZlotZGKrR/AuozPVNUI3EX7tOVe4qkTRZM8EC1E4Cmab9FLxFR0Hw2aTMOYOYnRj8GCGpXyYS6icVIolQSWSRWuXNlDivjQMacGJUXn1BZcj53Y6Ee5pF/72nDRgy627C+qX1/lzakjVW9a73R1wW7ud7I8BozFrYyIRU1HZnxQBom7x65sAiuS6MO+913UnQv7XGAl314AGXJgyYmQAwkJaiEUROGunNF0gC6Gy/S94qNFFB8QpWwrfhtavxC2YOFOT7eBWVX3N7xLvbYlgyuEt7zXWNYrj6fgmNbjuy4G5EFV7338T5MQKrvo2grqqVLt9dGpBNMMzP1z4wBVZlcgg/BgimW/ASQzHBc8qfKrCwQsSBNJEQCnnjLMkFOCbRtUMNxawc1ObZF6q6LcQU/VSpW60J6b+vnJ+1R2/pnRHGvZMivciMmSkHaPqgZssowoW4yWyZqdlWBDRM1hQqD7NRJbNQ3uhNvbgcjEob7srGGUt6Bty3AHW09E3UfX+hTzi7E7AKsA0uVMe4Co0GaSKoUAac91d2MiUZRnn3ZhFSubbM0YwCl/xnav6rSbR6c7aGkbOsfrKmYtK+uIusuzJnQWtW3BRhRYj1IOiFLoCzQ8uRtbfOvrRPaPm/CXZzvW5M2GgMAGhUfEPS7B1To447SbQGoK9BoYrBONUfixmpMXkBU4a52Z16Or78rF0/kZadd6538Dm94zXEChpCanXcZPMVex63kKLJ9AnrjcXkP7zxzNC7CMXRNznmyrNy03OVTKRLalZ2AHx9GbmaSsC49aprmOVQnQ3VrAFTwsxUQb3bkqXTA7shjqlIoYziuYElBlQFSUp+Z7VNQd8/MHRYOAVaU75XG5MfNJUzUgyhbjjJROOPiMnysKkSNijcnldAChREZKQRqGTmq73y7A0ttY9KWjciLM0VhonvU2D0pWkcrjSph1faFWhA12KIuacgYGjeMFcG9tKkHG+j7do+ZRgA67NsjY4DRuLKo4NfMe6X/ieHOx5PwMmoUNEl+I3kqnT9ymmxtoe5pxUoMWjh7Ilcj8v2NAyLlbAEzoQfP6P5G4Fn7fwCeQpCNQZhp46fQzQAoYiOK9mQGQlXXQTldnRTYTDKk6jrZjSc+ocSY3PqEEhcqj5z9mjxuCXcpuy542JY8WWwA0gpgQeKMxB+4+GcCIW2MjTYkrl+8904uxuLZ71MGT9ZwPBuS5zJFTSgG6ysTHlUKlfBYxBGP29IALva/QCN5suq73JZOtAo0g73TVYd9dAUuHM0soyHhQFAjqbKAYhSmYMowq6J5yzvnJKwwKglTtYppKxmHOiloQeACv5E4A6KUsr8nVeGhqu4WAVJFpVfiahhU/cayay9VYMQzaZQHTXBhZMtp00TSKYi64HMiRjV2LRSu5CNwanh8A/YFL5u2z9dU+qceM8SExrA8b14QlU8BSKKGNn6hso+yzFh5S2DaGuZpF2rWKPyeNtzTChBwd79ifcvY3m74YnnA2/SId9sd7ihL2a038sbu0s4jyIyfN6rqOwVJ5H7RGo2Xd1YwVdR+++oc0xUj5orgGi5dQIJTmvSTvp+OAULjY6y6HjAq3VK+SCRVqkQFJFHpf0F2RQWjG18KL7S+E+3iWkDRfVpxl4qqjhl3dyu2t4z1LeOL5QH3tOKecpptsy8MBeXtXwkrfdr2P/X+vjbTv8V4XPt/Bzg9WWV7ElR9nJ7Ir4AcgXZ7f+QQLFKHWR9L6pPJpbNOLjc1EpcjWZwhuOkC67ZAJjU90oVbr+OdwbgFTQPOFm45vaa0qSn4idkn1eriPHM/EKb3BnjsPb9Kh6hqHrowavP6slP9ZUJV6dlnUJu3DYvfv3nHadtRX8YeCHilMUWLiwmj9ivg8L5hAtTHNc+3QKSAD5PH6mhbJ7n5d+TKRGihDQttSCm7MRBDYmDsDyqX6xhr+EGZ+ut9/fOSh1aiQE2evt3QtNUZ8ERc/2YUpgvqQDx4vn2vEfAL+p+a+ODZXVhvrmF/LVnJUpYycu77BCDJ7kzjJwwH3FhEz4v6q1AoJXJtM1XbmjQj6WPYZxfwrA8mgSKeMElByAKUbTp778QQjQQF/eHC4hPKGpPnupTVF4zKrNhCPW4JKTGsd/KHbUHdPrIEAAAgAElEQVRKrPElaU7nOI9IqhauRuTf8L1xW1AkT9udSppE8rQiqXTpsXgiV5cGRuI0vOZWKgXUrat25WGlT524PeqbZtIe9OFB8t0bUl2MzcP9irAAGjkYGGYlbwEJSV6Zy2VFl0phZTzSiup/h4qtgnkD+VhZJE7MxZCcQVgyeFF3Bam4NIAajmdJVHlk587AgDOCA3Gm/uaeXZgHil6y1LRpQGH6A/k+JZpqrTxoL0PDShv01/B/qwpSNU4z1slIGlAlUeqF2uQ3Y0Gdv4q/Mvm+NycZcN+6GpGnLGlIYLy5e8Q3bxn8ZsMXyyO+SA94t93hPq3YVtJ8lhjl8VuVPsH+CeDbSA2HVeIgYUAjeWgkE9IfbK5N23WghYN4tGFd+FEafEfdONgZAyJtaq6l/wvjZ6DaxJVJL2cnHRu8yUNR3SRsVdsy2kAEiPpuw31acY8Vb+8f8eO30L5/mx7wNt1XH2GFLL9ZmbBt5c/wDC792hiOi7RR+tIbjKP0rfb5WPKoeaL+jPodbdqzdDMqPKUGIKEfmC4dA6VzOBSni8pucR0tzjU3JiwlzB/vgmILJWq9h23JPlFYXASUAxWLqHTkGwqU4xZsQ59PCp6MzycBT92BwQ1I6nfe6Xuz6KFrWL/jbsz5DBZ9PkmVPIKCgQ00oKhJ48NLPRsQJOMnAFY+TA3OUcsQlXEuj6pBeVHjcarTV57YShmUrykZVd5WPPrKrrqirlObKjlU2BzbIobmun08AElWimYBjgdR9t19GPuwE6CqKWeS7JMgYeBA3CZmUahjz2Jwm5XNuK3JqhqH6nW25RVD8FKsMSyvnmLlQXXHlaryALWbqaqVdk60tFBe+N3TikQb3t4/YnvDoDcb3qbHrMZJa+M3SJtByzdArahpRo4zqVHpFWAlbW7Ak7V3GqluDgGnEWCaDeIJP+pAsvSvGQezMWBlBnluqcOHxLcXjA8wGQfSdjAAWw4bFsPyAlard/JWGmn73vqAEvB8f7die7sBpu8XOSdv1lzCb9wY8NJDUd0peJY+hblXEO3Ak/cJ5fvVg6advj4Lnm8PQI3IcM+xoTiMsaXsNqh5JA3JJEJiVFk9ktsdeaCqcZH71f5qeD0nD0jFHYLsyMuuDxZs2Rs5kx7JYj2O6867suvOHxjs/VC1TjXbr9raNLRh0k49sOra2rRpFN6md7+OLlrRHaAGOI3i7cQmwMgyLwVL9Rq+XAMsuNge1N13ZbLaAAJn+yYg20sRUM/JA7wH8lbtZ+2ZSEGRB0ht/KBLPGiahU3aFqb8w/j5aLqPlXbGsn19j9kjJspNAijj8OsEBeiFKaoEQrFT2ZlVwJaka7hzWWjmb78yuEi1X+2gCoBaVvA9Y7nf8HZ5VOZqqZV6twxUF2HmPjM9C5zQMUgf14GgAXhq1X0mDi7ed9Skf0X6c5Q6cBwUr/2L2k223s0uPDYgevPpqU7Wvt2A6oSTK59kxCpc2Twgff9mWcFvGMn1vTjTtBTbPwl4oiJ9LO8mUsagjzvwbMeGd2cQXdv8thM8wGoq37fFHn0cAKqMsMiQXI3nCreMgJP6fgIgBwzbHXkaB2NQXiaVRyxZPUecJVFM6hsKKJ5ZmRVpJeRJbKWUkXrKz1uQjdBXJLzb7rGC8G67zwblnA8Lzio76xMqGQPxDKwe5Xdb1IhcdgNuTFi3GsaIXRds3QCvQMp+g2FXNB94wC33BmHEHVy8MIzpjOMfK2DGpxMgglyoACWtKpkixXeUzNNJKlT6Vz7ujatq0PiJkvbIk2EF7Am1PL5LVdJ0V4CTGIwXX1AZqJXfBfUwYT3upb6vpNV40xbank0b1LAmLdm0fftqXkjnBOGfOBEwl0ChbbuhQbFpezM0K2hFHf+SRj6HvNkG0B11ZszL7r0q/ZDtEVR2jkLBtxj/rky4Mwuq7L5lUwnEl+kdEjF++u03SD/1gG99+Q7fvvsGX6Z3+El6g7u04sE4/G3mGaPCUQa6klHZFAa6WtUdlPHpdVERkjEibxgv4BhtH67XaOObcLThnhoV3DCRKUr6Nuj7aAw0Z1+K6xTJr/kKGE3chm+l0MQQf3bZDAGKlNT+ccsH229bAqet2gFz1p4sBTy9Tdlg/KfffoMffvWAb335Ht+++wZfpXf4o/SFujsAjM3ulrBute95S0Z1W+rJlPvUgiiRLvoxUE6oVlUf0EmqtG9gwqXxor6HC3PhZ+i2ANSRASpJee7HRETUM38XQFHnlWsdDDA+otwAEd9Q4vtk5QrC7Ll0GxV/TkVsIa4NrMuC1UqfjOTJuiwARArVqu5s/b0EKdwFcwnZfJcMtqPpQqBUAYllErqiIvMBDEBVu7wz1XJ5lWEBrSpP05QMkkbcGlTOpY40hUHJWXkAV5sVA2IU1OjkaQCOpLGAyNS9BTuub11aD6ZGac/SpUPqk6HBeLNTEptwGYdWiqHD0oIoCS+RCpLq51Bt7RjN0G5VO2UcC4hSYEGQVZC1i/RSqKrKYbyhR7xJj1juVtwva9mF9ajSBzGFaJpHF2U2TC4EPbj2dNKHEAiNgNGEofr0XRpXl5nEfBSnr286V+eUcq/vZsJ0PLhr+zx9pCubXb01je1ny1MbKZX0z0ACWUDUPa14k1Ysd5v2fRq4sOj9CtY69sf21L8h4LHjJQrvKtD3czgO0Ib5Ms7QbQCoCDjZWcOP2iA9CxAqYsrqVLNOJpFLg/yo6p38cUtlK2+WUomReAY/jEcklTJV1wbAUiqkYu0ihWrCUt5B926rRuTvtjuVPInR+EPZxWddFnR2T/a+iWttn7zqzsZ51wUyyFXUXto6mgybvjgSdoCirt6Teyv4IXOPYPi4eCuFknvxPtBKoEwiFSWRSyjc0VyzSb+IeJLAS3FdcJdUyrTdEVSyJMe/GJcFCpYaf1Fo4vx1I1mCCYOJc+HatnDpfFiQ9rMgxtiI3I3TZty1PKuXSJCLkzBxmSG2UJWPQK3vZNiJt3IUQ+I1D349Iy9RcWmQH7KVeW5dExZirBubeSSP14U2fEHv8UV6wJ/64sf44Xf/CN95+w3+xP2P8VV6nyXsxq/DupV5bKtGxLwl8ErgteiiigSKilSCNoBWVOkD13futrJbCZRNO2DGe8wUiMPC+xn5ecv1uZVcdf0s6an2cTMu0OZvJFFUImVukvM3C7qSUxKYOLc7shRqKz7q1jUhpQ1JpISFl4izzC/oAV+kB/zct/4Qv/fdn8J33n6Dn7n7uut7kTxJ3z9uqZE+NRIoNn0v35OMg6CfrfQRZmxoU3t13gg0BcApBMMfJYAaUYOeAaCIJmWAKsCuI1h8QAH11Gn9RQUDuiNPwNNIlYdq//S4LbhLa8mfR+1Dvsm7ERI6dd7Cm/5mFR5VtZ3uwqNObQdkyVPdhVePb3kM1HWR3ye7slAQZK6b8GAVEgOm63DNECxdmq+Mh1Cy1MT3x7vIteCfPHyMbygJTwRsxsi8DELdmacFmUIXncuQnUxBj2fRHXfFjYE1FJcdd3ptpFMtWKqG4x5UtYBJXtbEowdD06793MDSgMgZjagE0DHQRjqKlpE2SQ24t3GNJMsAeylTwFLut7q5QY/+MCq7DLy4HTcbYUv5uxc13uOWui3qX6QHfJXe4U+++TH+9E/9Ab5z/w2+u/wEX6V32UdUIVnUMTKQ2oSJMtWdVyJhatQ25h6eiZJe219IOmmnLQgbAKcOMDVgajAhjeYp6uO5RbkNiPag2s47MOPAA6kOSKMdEzqXLWXOLvZOOk5kfilSc95kzoeq8dYtYUum76n2/Z96+4f4R1/9FL7z5ht855K+X+sEZfseUle7y1L72R8k3fbrWfCseYL+vIQPCX14AGUG1HCSPshtI7WeB1E+zO7QEyClYk1CYw8lIAuQXXqysMvX1lO5qPMeyjl6C9fBaQFUpLbz3sUtGPJuEkYex6Oddy2gCkBTSduA9TLpTbnrlUBVVOys2y0IUhLgxON0jXTKjj07iaG1h8qTVV3RUwFkujNPmRtlfzlrGRwyIciRLbr7DnXHnbgq8EDKNKsFSEwtKPKSojafA09or5+p6z5d6oBSP0A5mMgsrw34bjP8OhAlzNYyEEDVddlwPMflDTTIjEkcaSYUb+WoLg/KNy2MbpVfs6sXABYw7rHi59/8CO++usNPLe/w7fQNUkEtchi6XdTl+QhFAoE6eI0UwUqWBNvVOMnjw2q7RKBoTxUUx7v+G8w3fj4ZpbWzpx8HTTaZQ1x8NwbMczSuAQfVsBwCnrk82+7CDNoy9z20z3SRXnhK3oX5iH/q/g/xZ799jy/Te3x7+eOm7x+KLW6WPgV9v5m+1z+qYMmAnToe+nPvmn6MwHMAokbAqeMpHzWA8uSBVASsCgdk7iUFKraGVU3VQtQGlFtV3sqEJW2qwlNndFTSMhVVHtXDgpEBzJ3sRtiARwBrImyUkGjLkqwCvO6L9Oqb7V6lTiJhsv6d5PrRTGaPxTv5ow5SUiNyawTYgCluvY4zKqCyajm/rVXC+74Rros6wV2L/KwRgaLybA+sFCBJ3SyYQAuW9JgMt6pnoKrcSKpQHmRnvsLJGPIhk9pEZSCVH8aJkFbWFSBtuZxtIQOc8oO8wTiAZkeeXHdACzasvktz78CYBWFRejZhHZALARo6+mRBmUzylqJ3tYNT2yxfjAyKdQzLODWfFzE6l8fNsR/ygVibF4KOVaxFUpnMPPiYzzhbadE6vVvzvPN+y6YFD7zgnh7xVXqHP/et38Rf+PL/xgMIP9re4Bu+x4INj9uC99sdHtYF7x7v8LAmrOVv27LqjlcqUghkg/HGkLx8YitqvIABK3kq7RAZkWtzH2KmBo24rjoCnoDa7uE4bxYp3IVlKTia78t+V50KT+Y6QvEqXtvKLtpy3bkdVzKRloOF1USDkI3QE/BY0r5fFzCA9+sd3q13WO/yJqiv6D3+3Lf+X/yFr/4uVib8wfYW75Fd8rzf7vBuW/Cw5r/3jwseH5dqQD7pe+ln8e/kVbZTqWNkRO5Vu0Dbx4N+Pi11dHR7AGpE+kKOe7okDfZiqEsDlT6VNNV1ARpVnhhEyjEvQAZNgJHgUJVWVWlTUqdiYmQufqKyMCLv1hOkr4cEgxojcXstZL2fW121DbPSJwANeIILj67lPn+HFlWcoAOT0S6Vb76REp0oq0kvQGwCzkbgS8eSKaOGldmIXLxxcQBUYASwkVgZ8CRMkVDVdqVOCp482PFthTbegp3QceagjN0wjeuZwudE8vpzKYRJo80l8w/pmLFFeKZsJ33/LeivYRRlmFWpVMFSIoGgcs0i9igITXGXWXg9btmcwEqhfiY94ueXL/HH/B7f8JqdASPVBZ/MXaq+QXHYCZU42L+qqkEjmYokDkr2fQPmOFTVBeBpBJzOzDVRWhvUDRHKdbBq39HUFE1dml76H+7Xvr9k1HGAesyPACkO+t65xkm04WfSe/zC3bfwE36Pdw+PeF+OIrNHiq26MEft++DIHu170++N5MmltX0bqeh8Pw4ljrDhruMu5VX4mACUp1AMIVIpQGylKogCdEhTNSgHclzRskDO47P2UI9wUilk9waJGXdpVcPybS0HFSfo9WpA2TvKzW0dZDbOMp2rAmsw/rgZaRPqllGpK8uv5ms/DAZgJU2d6wLPXZsJiJqPs+sHE06+nGuTm1kioCWAQm0EYMAQALGFYl+cAR86cYkKrNg/MVBdGmxcpVYiMiAuBpvQimW7pzwQradxBU7GOFx+j4ehgj4b7nb8+ZVuKG0y1HXjTrc+YQ76uMhPzpY8x6Qgzkg0Rb2q45TgzkMzjyV0djHWpUJeCJSZT8a/TGCrpKE6hldkz9Qp4RF5HvjjdI83dyu+fnyDu/ffAgD81vs/iR/ffQtfpt/Bzy/AA2/4B4/fw+8+fgc/fP9d/JP3X+Inj2/wk4d7vHu4w/vHBevjkueVlYDHBIjkgVGkEGi8SVvpg0qWrCFxIHloJA6BYXnDLAcMdSh9umQwW+Ar934cSD9xOwZGmwq8NMqm0eM2ARVAJRRJI9hIKKnmQZG/ExXVbsKaK4Fvljvcb4Sv797gjr4EAPzW+z+BH29f4Ku37/ELyH3/O+v38LsP38XvvPsefv/9l/hmve/6ftsIXPp92PfSl2vte1pN31uAZAEX0NhMNX3pAFQEnJs+QpvuEropAKUHCluOZu8LdQ7kPDQHlOmLrVMJVIkUTLj1DYUtgYgLzyTcpc3sM0lgzu7rczjpbjzd9muAVKINS3Ff8ECLlmLtmR6Kwbj16SRg6ZGXVsJkwJWk9eBpNUDLG457g3G/rZhNu9l0teFN+rODbpSeZnGCjGoRKs62eSwKQr3WII5AVQCi7EQn4epMnKAqErV5Imnc+jEz6SSZDyAuVTJc0ariADg1nLGLMumbM+xcvAdPh8GSi/O/TXk2HH26z4EI6FV4hTgYk56Z6vQ0AFPk+85k7xgrzP1an6EMUyQNxZcZJ4DWwkLN98CPSee3h8c83/zR8kZdrvy9u5/FH9x/C9+//8cANjyA8TsP38Pff/+z+OE338GP3n0L79Y7/PH7e7x/vMsqnLVIH4SJbsiMVBlmAUqitrOG5NaI3AAsAK3qJlLrKRONQVMnkTDXISA+Ose5vm/Ggu3zpu/l14yBRDVtBKTQ93+di8wcJs8yAEv8RGUbTsrqwEcCkEHUw0MGPl8vb7JmBb7v3+MbZvz2+5/FD97/DH747jv4g9L337y/x/vHBQ8PC9bHlKVOj5RVtAKiSn+TGQe7fQ8Y6dRgHDgApf0PxH17ZRD1QQGUfshnSBggm4GEei8gwBuM13T1XtRw+bqo6qj1Um4lUbnSrWG5PfIFJk0VVWxYQVhQwFUZ7VbiJHWRX6+y82o7eQ/v70nIbhSa+WeJJFKn6AnIPaQZmPKPNnxiN6+ZvFpQRa041zI6yWIYn+7i64BW2R1aH1MB2uLqZRhmD3yoASwSblV7EeCxbaJlm2f5Z0d5r0KfOpAyE7Yn++qegeqkbYpxUWYEmbL024QbW2jWlfpbgIUwUXtsih5BJBKuDWUHDGfVXrFbARIe1wXv1jssacMfPmZJ1D94+B7+3vLb+MfbW/zew3fw+w9f4uv1Dd6td3i/LtksYU3YVrt1XZ5tPEhbKRPX+NCmyTHJTiLh+8SAp1DaFACooRQqig+oA84w/TyLKzfSj37+8v0tmXz/W7CkY6Kobdm0A28yd+W2Zki/A2j6PuHd4x3uaMOPH78AAPzOw/fwG8vfxz/ZvsT/9/ht/OjhS3z9mPv+ne37LelYat0WoPaz6fe9vtffEj5V4QXgaRc47fT9EbopCVRIOorKSJFrRV9lVUXe/5PMIPJDrkBAVHkiddrAei2/dfASULZ5iuRJKGURBe4KRBaJlMTpdSnN2y/Va+/vqQInbyAeqe2s3VPj0kClUhZAVS7cXucmsrvvGhXfhQNtRqZHMjVdxWi4vedCaIeD72XGIMyBFMgET+iPSZCkLODEPrxOWlrdMu70mIqIPGiSMOdNPDIY12sTZtOPpFIzCVMnTRqCsz7uc6KpHyhz2QBU1+5Dz9RFGqEG534QZx5Xw0QKuZQkjXFx8QGUuGxOQJYKqC8zlAVAAm8MXgkPDNCSF5DvHxd8ffcGD9uCt8sjfvTwJf6Pt9/HT7Y3+MFPvoufPL7BH777Al+/e4PHLeHdN/fZ/ukhgR9SZoqPCRCVzSOq6kaMhq00wjFRSSdtPpJGhUxzALAiCVQolfJxE+r6WgKjOJqPASJuvuNOhVf6Vk1SLBtEjZd5O79THlMJKN7gayGc/e+AV8Jj6fuvmfCwLvjJ+3u8177/Fv7Pt9/Hu+0OP/jJd/H1w1v80cP/397XxFrXJWU969yXr+lGYzdoCHa3gpFoOiaKIQSDMQYYIBJhQBSjhhAIExMQNYpOiAMHJkR0YDAENAyMiC0JxIHRIANHHWkYoKCRgDbdaaSNNn9+8n7vPeVgrapVVavWzz7n3HvPPXdXcnP3Xv9rVe1Vz6mqvfZb+I3/9y7cC+8Tju8cgHcyiEpvUg0Wf6OtjwCfAzbkveK3tS7Z/xo0C896/I5AlM4/ga4OQIkbbyspoMXWI8kidx5UAVQaIPljDvQqS0AdpfLDrVqSbFzUQcCURlgScK6Ak2+b37IbgSedr+tqC5Q+soDUvQVPMP95+S5GDwCyIuAk6QyeaJ7W1lNWKK2sfL2k8VwF4DIsHZNQUvWRB0wVqKR6rxSsBTcKEaaoDbsUTdxTVLZT15CvOyjz0sBUb2uKxNLnRSIc6T4TcA4nlkV5kAJCfIyGlsG6sWWlKUdtyP8C3I+sUJHfmiLCfSK8OeSfe7/x+i381uEVjpTw62/ehTfHA3719bvxzv0d3i5xL0c++4dddxwDaNwz5QFSb1xZEGT/axCk01rLRKs8I2tTqFgdM05VrP4RCPlbmLhFBkL+q05EHgDIcRW877n4OAbf6ZhAx3KWIr9UcEQ56JRwfyC8KTFsv/n6Lbxzl6//75u38Pr4Cr/++l14fX+Ht19/Rnb5yht3qVidNJ9Tw+cQJEW8d29UNuCZ1yCwOE6Bk+PrKXCD6ToAFEtHLy261trRSl5NErhP8K4qHRslskb5aAO+ZjB2VyxPfMQBpRwHlS1LB7E44HAUsMRv7ukjDw7pKO653G8MinhcOi5qi+WJ598CptSAJ33uk3k5QZfz1ie9QanyUQD5UDgDoGLYqn5h+TQNaHR7khYAH7kGnEjFQeUyZa141MMucVGAtVpp5RUslYzVgRBvRWosRy4uyrSjgJhuc5TWWJP0mHQdqXfGTnMLROgepOnlEIG8NkhKrXcYMFzO75GPUQcbPxsakpIRGUtzcj6n5cFkb84BuCsfmc0nAeMNyo++Q/5e2t3hiLff+Qz82qvPxD0l/NY7r/I3O995hTfvZAV7/7rEO7051FfV36RqaWLLgwog96+qi0UCCmAB1kIhSrTu/cMDNDvKs69MBzIe6SnXRv5Bxo0h5Ln8V3tewbC1j1QGWfaDbkA50MZF3cMEkWc+k4Drwxtl9T6ifAD9CDpkA8HrY8KhuADfPhDefucVfu31u/KLBq/LETzv3OHNO6/yiwjv3NWA8Tcd3hNMALnw+R6WtyOANQBOPg4OiHl8aRB1HQAK6AunzhebZb7M6DsVgKTceEEaEFuhAIjF675sFvlavn4g7jw5toBycPk9JQWkgOMxH4N/VNzQrjwoQMTE1xXMtWBKA6x7VX7ktouCxs2115QKJIVlHCgI2/DUy/duuY0UAqoovwuYBiAqWTDED6+1MGmwlFSfReGpadZBcaIdJ6eFb82hXmuQZPIPti7XicCZWfIZG09nz02TduEJz5tC+joFaeq/A1PmEx9SXgEpldwoTgb2XtBlHKxBkd15KYcVsNWIyjHmdJ9w/+qA44Fw/+YO6UB4OxEOd+XDs/eH8r+8bXVEDhhnhVkA1IGVKQMjAg73bVoIprwyBUq9+oOF59g7A2gMoDTqaZe7SzNFqyvLs+dAFf93110wHQEpNR4Jw2W6g8QfsQzk8w4L/+9QQFVx895DEBfdJ9CrfEr9fTkr7O3DWzgc8qZ4PB4y2H5zqFanN+WE8XtUd90bdZ7XPfPbgikArXt2K+9JzRMY8ryXltNPQ1DXA6A0Gc0WaMheNVIB46RAFOAAlVKbydaLgs65LrvvEpRbD5B0IAvlgRmY2o9sAhZAaeDEeRpU9c94sgBJW57smkCVCdJ4rXzlLQDnRPS+1LRmP4MWxPeUYH/FTTc7GFnLbyhRK3JqeXSzUl1Erp4BJb8sbROd2BgHnnS5FF+HliJOD8BTqMBdP02+SXtAJj9TipaEnIDwxizO3mRBTnNtGpMqRfbU3kVW/kQ2qT4DItp8fUy2UaAGFwPZisAHuJZjDoBDjqM6lL2McuAxkXpVXcW1QFx2dYxVKaaq9I51KKIAWZEGyrD3fwiYZuApUqwufZkUDwErB+KS5beckuW124bCdOG/3ozcf/nUS3lhgJp8RtkQ8C0/HO9TtngmCE/zcQep8D+PncrJ4vmIinyt3bSazwKCyKZpvhgApO49MIrm3OPxKnAKQdNG3j8NgOoBJJ1uyicrmSJ9LFJVMGSzSE4QHXiw4lqlnzcJdtVxQDkA3BWrk46dYpfdPQq4MhYnyPV9wJieJcpYoFS+B073R1uHyjWn6UPSRm/dmR9jVBdO3HcizAHQ8hQI6jJF6ATIABbqFV8KysLe+w1JipcNRobHn8DgsuXU8GphUvmJ10Q1zPIm1yncjJvlCICSv9dWJ8nT6YA6rDPIT506EUBCv0wD+jr1b520i6k394RgvbiySsvlkrpGXVsvuPpPXslL/HlFiQv2z4ZYJvT1IbsDj6WdwzHLUErIwCgBuCvK9ADQG1b+6iEp+46JcRI3XTnPB6gBwpxGqOAKwIHXkmOiOJ+fOe2u6yjXCDRZZWofwKFyRZu3iZK99M8ZW7glTf1w6srAQeUfShvshmVVqPheP+UDpBzWZPLl81LFC5NfQkkSopC/04n8Fh+7+lLhvwbvxeIEShIcHp3vxLwHMLY4Kt43LwgMgJVx3wIN/3NeuwlfiufXaYHqkVegvXyUfUauWyuUVCHXYJOX/cf5jd98r0PE9ffxciUOGK9UT3Ulc9/04/4TWmBVy8Kmu/Y8eLId1vb1br/pKIMVMHUiNRYgTx48aQDYqdtYpwDThiRTAVFFwRiRc3IXgTTdrIwPdUyhctXpDgwZAGMAkZMhD2x6rOwAoxXW98ozMF1t5zmT3px7c9XJHuPbtDhQmNv2Yg5C/ZwHiuuNwVJRhhpQyGGbyhrBPx70oYtALoN7VsokH7uW4PNUXs5RP7B0cLg538m46FQgMRRQ0iDIvYVlFescPEVWqBlwGlmcTja2OpmI9gO7X1C5bmVA+M6gNtXrzNO8LnQouq0EkbcAZR4AACAASURBVHPjCSgfk1bzMXtP6YXlhtMIwB3VgHAGzur0dAFQwudUgVHwSR5Rhho8RWDJxTElfvlB1Z3yXi34Cng26SfQEoBKKX0HgG8pXf8MgG8C8HkAfgjA5wD4KIC/RESvTx+KI890D5qGYIklqNVeUaiwj4kCFEAq/+9LHxwXdfDlFJDS50sdFHfu3Y4bWqDUvXmjTgEnbWWaWZ5g8soaOMBlOpYyLt2XewwagCMNiDxo0srHrHhJaIBPmM6bmpIYVlauSbj8AIs3yjYCUg0IcmkGPIWgKuhD5fu2ff8RYLsFuuj+pX6NNBuvVjJwcql4aGWPiuxVC6vUU3zTSrSmszCWRo9WHq1y1HOAktNicT0gW7QS5DNDKZF8mzFbN5wSJWSLkwY8WjmyYj3a/AYk9YKHy6/E3qvswoMmjZp8wy/Ft5rWbmyritWAJmFAcsyAbEqGv1zJyYDwnYsxL4NNrTnNHKoNlZYPU4XhPa9zeQk8H3nB387jbyeqPUHmp61Nip+jbxkeuG8tBydaHCPQnMdHLb+BYZqmrWBqCqBSSu8H8G0APkREb6eUfhjANwD4agDfQ0Q/lFL6xwC+GcD3LvfcCMIkPcpn0KPNi5AD63NRlmNihQgHooAjn/2kGj8CEsOk4/OO5QmoHwcl+WSLsWyV//eqXz8NTT6YnNNmwInvpZxy6zVuS1VOrFBl2tp1VwepN8wgX01meObRjDRQcqCpIiHeeeJ8Y2FSeWYDSq5JHr4CRnpvAeVNLV8TnNiYBzkCnDxsTaHVYgaaeC46ILkBVbadCDyFFqQJqKKiqLuWpSsHWZfev7rnQAEts/XaBLyzyo7UtSur+c2ASH3CR9x6KljZnBPEsn2oSrjEi2e3HbvwDnkc5qR8Pm8smpZSetWikKpSdMoxVJg6ryhzWeeR8jT/qY7HPYcxgKqz6VklTN6MomfHH9ALWL76/x0ZSPoZLjz1AMy79WSf0qqR1ztB3HqJrVYp5UDyBNC9Oovq4MbL5PniPsvTA8VTd50HzIBYKKSs6z+0MjX8VqwwAMoy+BRL1GFeBEAGWu9OKb0C8B4AnwTw5QA+XPJ/EMDXbe8+pu731BQQsOn9XVysLkG6d1l5dxdbavS5TD0XWpufjIWJ3J8u07yJR627zoMnO2YFhpp5tmszlBNeg8GaPjY1QwnAxWqdpkxQzrSbbF63H6/s1Bj1n2mrUz5s29WT9oJ2w3lFY+71M2L99YjFFrrM/sUKwf3p/Nlm7QFBCq9JFIP/xR27q2q9Bty7P1FYsGn1zx92qa6V8hMLgwogjz7JEc3T/4/GuQSeAt54PlnFSoYPpl+V1vBV89bx2NczZVV+Tid3Pxq/68TzNRhTz93ZO4tJeMR5io9WJtSfOQyzlRfD/wFPfV6K1ibgI/w92nIj3ooMEM2f44DXnqYWKCL6RErpuwF8DMDbAP4tssn700T0phT7OID3z9o6iyI/jaxOBQ/hN/JKeQ6EkySB6hwbVdIpt1PNorlxHWCeEhW3HokG0lYpJg4uj6gfC2Xv/eGYnBYfkmkDxTUY0m/daYuJPnXcDgitAEXlPEV1eiT8srrZszuXrWttLE+lsmmD81T32gNRZcBeS9P8q60kyBolVGHrbIR6uD1qwJRPF0CV4IFNY6Hia382FNfpgSpfzo1rM3C9QnB12f2L4M+BAlheUpsIJUtAFQi5V4Ui0K4sS2IIPdQ2tTWK83wdVpL8nFjLA4oFqg6HEpDU6ffNjwi7HI0yNErMxbc0Vgq5jxW/aQe+fVtHL68FGRRbpWDTcnrwwM72riDJyIKXg0AGah7cdXkjOOU2ZfvjTU39F96mEo7CMsMxVLyORW6kXXbbljXmex5M86zrNeTro7tWaSMLVC5HXb6HMoFtvDd5avxNustbpRUX3vsAfC2ALwDwaQD/EsBXrXaQUvpWAN8KAHfve1+/oNZeOm3rpiw7BaqSRRGKkmePLcid+vOidF6dTE73bj0mPoTz4AYtbjxpt52U3pcj4AQofW0sUBiDJ1WHeH0kUQED1V7jrhOA5QbdSzuX/AbhhtICq0m/uj1uB7UdBlpNnloGm1/4WXJ116ZcNK5AniMw1XXXlbSRlayb5/sajKlu8NQv8wzokvvXu9793q6ccSyTEFUeJiXLGvBDH5lRPumToMqV66yFihI9qjxWiBwszMGZhPwWFZKJmZJ9UI9TnV5tDuH0gu8fEPXfKzLv1gtBE3G+VYaRAtbKefbZllB5BkqWKXpDS/JG7lq9HE4ZGFnQciD3cxnQy5+LujeRhc+qTfOZniIzh+rW5b1BMNhBGo99URrQmfnVucm95lWHj9O361Qd2XYMeCb0+T0ATp7/Kq3O6TTFtRJE/pUAfpGIPgUAKaUfAfBlAN6bUnpVfsV9AMAnospE9H0Avg8A3vXBD8ajDLSifNLFKb4u0ELbhgAlbkbjgsASFQMcPwAAqQaMR3Inlqlonh2KDrvsAaeR5ckHjEue6QuNAEn6tZFXPHCAx8mDBkZSVoGhJk81MxKzQApgz/YhU8+Mf0Ya2HXiJHpWpzCN0x2Ymrn65P5U0HWddLH967e/9wOUSqzIiMSioxSpgG4PprgOyCpRUu2AZZeqQuwpUT0QDbycHJhxFAuWPF/u2+i1PRmsTY4UqP8fxTRttD50LQ+SRiZNrt2Yw9fa9Xw37oM9maj8q/3JoZo9GZCNCtCXBkhDAWkFqA2QTroiIGgomZRmg9NG/gg8exCi13oInIAYMG/le9Bvj/dmvFLWMfdMnbcCoD4G4EtTSu9BNoF/BYCfBPATAL4e+U2WbwTwo+cNZUAicFqLghOVEOhzoXIh/tCwgKiSp8+1SKggKrvvrLrkNHbzGQtWKZNK/0B22W06EgBo4qVq3y1o4vs4Ta2FBmAGWNX2svA6LWoeiuQG1M7rpABy86TWofhv9eayqJtNkMd7i7lXjTqvXxcoNRsLuXzVgN4EAVTg01mHfEBnRyY88OGxjUBSD1hxXlRO9TG8l3bdZIJyz4Auun+JC2+0DnqR+PJAbVr0rcNU97P8IxKWn1D9a3MFl1HPSXXJ6RP2VcA4UL6PVlp2rrxmnhGACoGMvbZpVRmGlipuz7iFKO5D0ihI42utL2AsGppGJ5Mvk5cJvfEwySnLXMfJgLP4puRkgMsw6w/KBejdrnpT0y8aOHcdywbXDfcdThrwvuFfKXPOiwGN+9akddyzEVjydVWapy3WqGkQORF9BDnY8qeQXwE+IP8i+5sA/mpK6eeRXwX+geVehx2eWKdXT4OFYRux+6sHYKSaAimc5YPDexSVWwVPzfAX5jiViy3a8dRN5lzST7AHG4vD75YdpHU3Fd9Wp+0QPEV19Rij/hCU6bQ5Zeeg/2EfOr9T71rowfYvCv4K6SBwURRHNMpbgr6VcjDXCICFVzIDJeTrNQBGAxkeI9lrE3ysA45dmd5RAz3whKCsWVe3jv11oHa9FB/MegfgSfoI+BjyeMB3n9a0HYyhkQEvD6rtaE11+UR2fZp0gsSbmfZckHnyYzkGZbR89ILGj7a/poyeF/R/isuYNAuezJi5DcWT5vkLZMA8t4u0dA4UEX0XgO9yyb8A4Es29bZKhP6mzGaApO6dVYrPCedv4gEZYNScnEdSL5U0mBKRNSq3hRr/mSDgRZ9QzhYqf/ZTOCVviTHuPJvWA1Ndy5Ok1QQT90Q2VspuCLoc0GhTAswbk77uhEKLElPpWluW6uK6eADddwpuFZt18aTa1WLVszT5dGoac+NdJG8NatIjMNUBdv4XZNR213UX1eF6E6B1zXSx/YsVRi/brYtx4ydXiO+1RaI5vsDmJaAN7maLFVsypF1VjmxajfdEOSwRxuqUnAz0DKdVWXWu9Qd/AwW66rJpg8hb5VmvVZ8RWFH3zRya+S0q02CB7PopPgJiCVyWAXk2FY9lv6nHDvQskjzP+pJU0YlH5nWRgdKvloMuGQACxdMOz4FqaUTEU8d3V475rvvrAabIytS1MG7DSw097UnkI6CErJxJgyVfF7AaLwRVNU8O2ZSuC9BIOUJBTixHBlIVHI20ouaABj4VVI0otia1+ZEFrBfvJKMa1IHKl+seWPJTWN1XThVOteQCemZtacAVgSrdnr+O8iMgpijmugJZq+QaDsFUByzNwFNEQ7BkrgdnP0Xk6t4q6bfwGsAkwlKFpy1DIm/k3SklrzlUE4AEGx9toLHIqgdSHGAOtKDPKNlAQespDPdndeNBTANsMAVOQF3fuMwEOGml2wNNPcCkNsnN4suARIMmgiyiNKf2lQRalgH+03FyNU3JQDmd3AOt6r7lvlEvUh6L3Rd8wd68ea4ONOnrLhjqACf4PMz5ztcbALOMo5nTNuY/+adczC/5Ho3wS69cAV+CorVi5SQye10FUWVQ1HRcHm4BVr0BYFKuHYe9b4FYFzgBBjzVh1WDK9cu+fwtmvKBaAV46A0DFgxNy0egDAHoUsPw1ifTjmqg3Tgn83DUBzH9/MiF2LU89dJ6Y1nRIGkbTrwJIpjXZROQP03QFNNlBmCqp0TlR14LpLpKFPy/KNGDyugpUa2gAQOm6pEsk/WQqpdVohYEoSpR8vVjBToFTiPAFBxVsUJeHsQTEoEpqaM+59OTAa4oh5qqYHN10GkNKK8WenN6OcsC80DLRmkk73O8WJMJN2tqr2c8z3kU5mk+tWktfzeDZqd0T/3N9+QAypBTTF0GGt8Jk9Kmqm4G9LV89Aq6WKIAIJFYonSt3BYHkcO8sac/IwPovNWJ2/r1vs2z7rYJcCqTMsCplPHgSwt8Y43S5eDSo+uR9SqiRfBkAVB+2jUY0t1pBdGkqSEmvqZW3GRISQF9JVuRtessLKqXbQaaVF7XMuXTonIj0BWNaXV+V4DJH4Iaa070kOu5H4J0VqYsR9oKpAXau3YisOOsRtWdY/NZzk0ZadsMq5Rr59X9wRIoUv4fKz/+X5Rn6M6BrG3XZcOgKVKcHcBU3UkDAHWiMtX95IZV+sGlKRmQ8wp7MuDTkxo0g7OSXvlMhl862NxYF1Udvm4MDep+uFYRn/X1iOcmjYI0y99lsOz5DjQA+RyD+fUAqKk5YbUdKGWbCiBCPQeqCGt0xEHTlLJGATBtmbgnZpgDUpzfHWpH2/ZcbpHFaUjhZhdNdNzMY1qoRrh5M0XAbADWQisTdfLgRDZCcatjdGOI8iJ3XVP+guTHcQ1GyqemcAkC+dKPPPFmrc7j0TGa3uXrLRLmjCFSyk7SqLbjy/n20Ih19xEBtTyPtrKeG0/yGuDDaRQrX9fHCDzZctvBUzh2394iNW/havCSVJ/FQpVDU9ThmKZeIAMCohzPCliW4JSonKrQ432P58BELTdrre5P4bmzNNZytW4XPM34DlwcOF8PgGJyCknOg+I8z2CdxhotSNPuOlGAyhpVu+VfBjlFx0VJdYKsvj/BHLCgactxBiMLFAyQ4ocwyuML1V4DvFQdJ/hT65ER1NTWP4eaJxryUHtrT2OFivKdvAjbHAhy3Zl7TXrTSq6+mf9gExqKQwSYfHseOE3qzFx9bRqFbffG+dIoOom8ZsLIgZz5A8iDKcaFQ4JYiQAYi4T8/FYVNlqjqqUCVfi4TPnXWCAAIw+rbPZAZKxMaQCq6jptsjqp/kLl6QGTGu/wIM1FEJX57MqaZ1FtMuVbc1kGXNlUgbBYJXmvjmTADra2o79hp9oTy6Maj+e9uY/mE65TzWt5T7EcbAkOj3jOfVCnHWAKlDefPB/Q9QEoTUXZmWDyHmAC1IZDbiEUiKrITNryweW5Ri0XARUtY9Ss+nYNEz6rAWjSY+wBJ1M+Ak9NP649CtJMxx06AURNDY9OKTVpyYEold+zGnERPWYPuEZASufrIY1oBUfPQJMp0wNOKm/ocgs3yWh37NQfje1WiQjpPlgjVoQiSwWkaIBEClA1itS+OWywuASd58I60FhAl8S51P7MgZsGVOl91AEu9b+rSB1FyuksJXoMyq0CpwXQFB6i6TfFxRPIpb5uTMlCIwc9GVBWqVT4QjzGVNpXQErHSPFblKIXU5k7nxpd0lg8GkANGEBl/q/M3fF/+nFfB3j6Lj/F86htU161M+O7SqtzOEFxFboKAKW9ZGeRBldNngJRHmgxiDL3rpxr3sQ7KRdfzjtnDnYCjVUqKLcZPPn8sIMxdT/4fAGK2BgBrRB86c3EgyjdQdSvZqOqb9L8AB0wM0MZrGV3+TpgyNRZBU8ufcUNOLQ+9bD0rQMnTY2lITUKN6lDM0ktjg4MzvcQ945RouBriBxKYLALNNZWLiPmQZpc83NRFHN0OjYQPDfNWqg5h0CqDqJRlB0F2ChRvj62aV1lfKSpAjX3K3Ftq3RU/C5yQOoTGKEMBO49IwOodeUU8oNNk7bAPGaAHgApnia3GwE8YMx7N7gQOJX7+Hpy+KniuU4z7TwRYNZ0FQAqpFCLRmkWCNVdhysUUmCovmRgyzUB5qTqoYJ6vVtoF5+xUA3NKi2FxxmYmwAwuULLwInL9AAVubI+7ykpAkiKf8biFIGo8j/cIzwYUgDNA4ZmkwnWZTPG9Eue4ryRiX0Kkrrp7lnxZSJgFY7jqQXkAYkQuPAI3p1i4og5y3ynTP1v/P9wJ0rXOKkw2FwHGWuLklipVB8RHxMDMX3PXawJcHjic6PI0AVNOt2cHRV8B82DJrl2b3PJuCLFqYKVa56a0DkASj+nPA69jI3bThWgjnvPu3eVThIZ0GVN2zbPVE3tvmBkYWW6gS4KeV/m18qBBTmr7tkGLHcAU8PzUr87h410vQBqRB5IeRA1qjPyGbFyZWtU1Bf3B0g7kTLe+ikXP4ywP2wHT93GTxEaEcoAcD0EzYBQNETP3gGIMukdiuKrOB0IgJQqszS/Tp+9cpvAU68/X37Q9s275bZS/LDXa20RSiqPLRPFBcdWCWOR4G3sSDWORQeJq7450Di0RihZzdUKuEBqhk/SHsI+Nq0JRspTl+9bH2TcketG97ECnuCuR8DJz3XrnqaBK2DlADUN5YPPPRmQZooMZLVGCmRxd6qOlgEiK0tqeNHLC25bM1NZooj3Jd2vbchnD56kLRoDZsBaGmHbMvczwOzyttB1ASivzfTiwH1ceAaWSi1JMIqzIHolUL5yaHoPgJv+dZE3ozPRROPC8/k6z3du66+57FILhHrWp3C8cZnNy+CBTbkcgaUWHOUb+RXH4xqBKNW8mbVeZ5XRYOneuPjS78uz3WkB1PhyIXCagCpveepZqCI6U8KfNY2CjonPOOGySV0U6wLu830CqY8Al3u5Rvkieamv3sIidb5TNzaGSp9+n9QWrJFVCp37Hp2oRKs1IlCinD5SokdvxaL22inPBjBFCljTyplQzBNuWsuB7DmnyYDESOm4t7KXRTKQx+P4zCIje19HDmQh5lOuk1XVDO8Xv1PHPHf8O4Xn0u4qUG501vad7boAFFMHHJk38po6Diw1eX61ah0BUipNlxfXnob0Tana16Llu6Eu/2agqfTbtBMBpxVQ1el7Lf3Eyc9oBIJ6IKpTjpuTeXggpeVvAoBms926HFsAVuji88BplOefpW65tm9PL8JSRWiCyC24LnmHKlCiTBcUqbzNlZQSBUAqRkoHCK8oUdMOqmxHhzw2SnSLPokUaQ80lfJT4CT3tb1TgFMPNNk4qEDZrlKRibq30FgGcqF1GXBASsc2eRkID2V1PLZ7YwV6dQG2bloRUFH3PdDE1yfEta0AJw2+hkD5xINTgWsFUDPyinFrPuI8CRwHlJTVsuH5TuqB0O2cTV5xj6xCI/A0aDPMm7j+HjJ4fPOm3W1nDKK6fXqQNQBSTA2gOmH8y0sagafZL8dLgZ+XAJCmRM3DnYKFsWc/FeXqBKm6UcqmcwTSwbp1eoHGkUsnK+fIhWfb4Sp6mxOFo+ayVYyjGKKpMuXr6BV1Hr9SgtpdV/OprXuMxhCUA9rgYzeHZdLB11AyACDJaeEKqJIOFA9kAJaf4trFugw07l2RLVuNhwRYeVieuuG9SzsDPAkN4pymPI/GcIsHaVYfPEsL7KZd7sUK1QNJvr4szkgT6o1DCb7RWDArTabTnL81cDyibuxUBzDlOkFeINRh/qBdX2Ya+0T84HfyO9SNWyqXfWtTPNyuJSooizZrvUwwv4vhSz9e324AjEZWJ5Pv3XZB+a7rb9D+iyBtgTqgVTbm7CedXkEVWySSWkO2RqSEGnCu15hdMcey8+jDFTnQPMFao7iuCjI2b9wBln8moGS+FGbaG5UogNNcNxEAY+vDwPLglWfs0nG83PJ21sHWTWLxSerIChJ3n7FK5V/nrQwAhfeobc1kAGhfNuB2dLA5tycDrv+27mEx7wNe+/wJv2u6rbMZKIfnQQ34voGuBkB1KVB+0zIaRKGT16uvzA8qHrCtG7QdgZ9TTiI342rSFNgbgZ+ojVksVFRvRbZOlT9BzZelrjsPaEE3Ic5318ZVE8rVBQYeLEUXOI3KrbQTtTkBTzs58gpWAyoTB6NOnD6StUikXMdYI0rAubZGlMyq4IpbT1tLLeBXFofON9ZyuZLn5H7zb0GNvSYK1SvTsH7PfcNtefC00rdRyjweVSEATCtxMaSPspBzoMjIgPBXrEhAPd6glhEL0DHVYPPGqhjIALkT6cseJ8HqsHKQ+6M6/ovxnpr04WdX4HD7BDwJDQBzZGmaAuYTjzJ4OgDFSmwLQBKhcFaosE4AdgAlfT5D5UOVUUAqZ/sOx9JGJqJ5U9VQ6zXPczcmalJmBXwpalx3WwBW09hCvVJGWKxlpQd6onYViOLbCCTZWJYBdTDfJbBGlw0DcNQFTh4MAbJgM0vVsP/VOjdIiYB0jLRsWYj7/C8rrCJgDKrE8pOMEhVrhFaiXPeY8llCLLMpAx+JY1KWCI6LMVsdx9IwWAqAFPcfuatXftu0ri/Xv0o71woxctfNlOgMNKWeYl0gqZvSXAYUkGKLlHbvioyAanzUkgwUZy3XN/qyyEEPSJV8Xrs6/sV5M2ne93ht0jDkt67XtTrNeI5SpgOW2jls4/11W6AigNQDUVohStnOzzMuN8o3BSHlGov9ihaRsW3YmdDh5Sy26VzgFJRrXHcRPUYUcQCiAAeK3FDFElXGOAoi5/tlMGWrnU8rAAoD0OTuTwFPvcDxp2b91RC78Mw36pQCRatQRZkWRSruHWLgQ9W1t0WJcvccZM6KUAeZ83g0kLpH5as+2dwpzy2WiN5Jz6Ei5fueIgWMy24U89J1142A01G3OQBOq1YJbXUCClgmA6yrDJRxpQR278mktQx0LJJTGSh1qgxVag7MVHIgS6BB1SKZD2wbvWH5sgScSrnNwGkRNC3xfQNdJ4CK3GzD8ljXdFGdkWvOl2NihaQFZjaGxwJOvvxqe6u0Vd62lI+sSGfQVJTcLy/ffxifBbRjjID+jGYsGAGnSXkf79TUXwFPO/Vp5r5DuS/KVNw8yhoBwHixjbvGu2S4LpCVBmpwOBKyAjn4fosYploHqAAJQA00VvucVp4zS8RmK4Qv468DK4TMOVCm4XjMG1tKYa4qUX+yfKcvWRtdvhsX52SA+3TrKzLQsUhq4F7LFhbrIHMlQ4CVA7ZKedcdYMGQ+ZC1oxSBywl48jzZ5K6TdoEGPOk81b6uu5Xnq3QdAEqYGigJfrANkOHywYeGPQACXKM9zebA0VQBthuL8OPUYPKRhgxB0KB+D1wtxUrVy6H1KUjbPPUoTknych8GHweyMLQqmXylGBT/oiBzTeGUVoHZiRSyaZIWWZzivEHdqNxsDC+FiGIXHmAW2Ky1tjiUTGONYPeZ3jsaaxSaAGPSDjv+HhqfHdV73V0pT7FAsSUCsPKw0RLxZFYIk98HTo0C1W36eUZz7oAinxa78AjGKnVf+LFqkdTWKC0DqcpAY40Cmm8sGjkA3Eer1VQZ3N9jiULro5EBTut8sy4ATrMXA4ZWxgg0zdy2XG4jXQeAishbhbaAKH+91J+uKz/Fah5ce3qtG9B3IS2zCFqa/i4Nnmb9X5o8EO6BqA31AStSGq17dodWKX3Ptw5zn0tLMVCdtB54msVIDfvl/OUxPYZwPDFFm6w/QJOLRlYnUhEvx2Tf3hKLRg40N7ExzhqVDtr64AKNg1OsRdzdXqqDjLW8hxaG6dqoqXilqoET0AdPgTLlORsF3LjbXN7IXRcpWZ8/owg8DWXAlk8o/AcEYOXx6P0osEaZPSeQAW47ofnGopEDwMqCGvTmAyV98RGvgf63Cj14knlCwLIfn31pwPH1FLC8ce5PC6ACkBNaoaZ1NoCo/msrwb3TkNHazpT5udRrewSa/P2qZSsCT10w1rYfvQGzhWbuthATdwGSGoOSBxs3pSoCfSDV7dz2fREatTMCTUAfOPm6PfCUgvzVsb0UCg/dK2kHu0DW4pDmShSACTI25wexzYmVQaofq5Uc9ykQoJ4ZpNt2ozdBxNLfdurFQWWLAV+PlemWeKfG8tQDSCtuPGOhGChYM+HgF3VHBjyfAbUtMZBm1yvsiwYNkAbZuCiVU6+57SoHxippR11vTmG90Rs6veW13HswFPC7lqWY39zHAnCau/BOU+LXa4ECrEYMwVBNS6IEFdCJlKhum2krmGoG8YC0YjXqpZ0DnIZjWuwjGpN0NMjz+VHZCCQ3AMmNYQakJLud06NhhxHLFqw+JwGnTr9d8DRq55aJCBi+hUf2XinTBIRAyipYqu6eSImSsyjo4w4wP8W8OX2cYv55QLW2NvH1RawQGjyZ/AXgNLNElbGYe3/dnbOeqJIBcdEq/kdASgATrGwQIR0yeg6BdNnbspXJygCAxhrF7eRyFUjlcamx4zRtNgRNQN89668X+C3tRMAJWOP5CCA/KwvUqeSV48rDPirnTR++bA+EcV2mS7kwzo2FOqWNWbktU3tATLnKbkMhIC7tEPHMCAAAFo1JREFUeasT37j161rHIlB/yvgGtAKcwnKngKcNizuKubpZipQmp7ng8exKgymfiELXTdSPd9notrV7DoBxxelg9ERog4v1kFjUt+x5vkwnrSsSwa9965axCs63k7wSjNoKYl7sODvgaSuIAuDP/DL8B8qBlwUAc9McEO5lx/UtQFp9GqYaDSYywEHiSfFZu3eT6it483KkQkLeRusVgKeQIvAkfenrTj/c/xRUBfyN2lvk/fUAKC8YwtyOFapzHVqigFiJmv4fQROu0qjrXt5my5HNMpanEXAyefoX1rz7Lrl4pK4bLhCDmatOxuaVg7tvywcAZYW/PaDVoSULTqfBFSvSKcCp6W0rwLpVqxQB6f6olF1dKeJjBACrRL1FwliHlMWhvNZeLVGlKaT6qjufGVQsRJE7Z2aFSIAJLpY+1HS679y0025o2YWj2jkleDhy4QytEJESjdw9ANJmF14u08iAeUuPxhZJlgF+ycC4+ooM3HFvddMTGXDHXfgAc+kTClAD5s3NCFybuQ7WIrI4SbrmLdDyuvRvearLnGFp1DzvWSDheL6BrgdAjWgVRKHeNx8eninRqE8mH0wu6b7OoL1z6BzQFNVfBU+jdh7Ld7MKohCXAxwoC/J9/a5R0QOZzhpcZGlWQZOUH98vga2VdncKFUn39W9vkdCvoQPVGnWX201AG3jsg8v1MQSEaoWIvqXWsUKIWy+p+TgrxOpvykZUT3Dj8HinwcMe3Lg6w5gYHkdHkabIlRfdd6geUNkBG/oIAwDGIumPJ9BpzqIlLt3I4FD6sFbIVg6AKgsAxCol6Z4imfdJ4cnfvp06x7DtEb85P+JtN+Yt4LXnd2d+K3S1AGoaTM40AEbGGsV5UOX9fbePDjRfWfNp2wttjMaypd0RcPL5E9Bl21kb0irNgsmlHNzydqxR3Cag2o1+TQe/vMe/yh4KMathrAKmTlrs/uvXoV45d/+iYp+EqMZARS6XzknPhpwSFcCkfw1zGreLaiUiKOXorRDehQdAf9KlceUAMZAq89sk3t7NIvNtgROPke+nhyVy+VXL08wKofJCJdpT7tGcAxdsKlbHLv+BBkj5N/UEXLObl6xLd+W8KC8HAKoVXcsCEAKpZYqAExDyWu57lifoMvGblb3jCUJLYwCWQ6Ac8XkBVF0XgHIacejKgyo7uddAYera0+ndcW7RHhMmPOSRB0H60tEE03v7C3hpHOfQCBi55CE4dqC8ce2pcr30JwEOoz5PAU3BfcO2LeBJC8GtAytRFm7F5CTw+j+J+w7ZKuEPXlRnLRHf8Nt4QZque+rbWYB7JByQAgIwtUBTa4QWkQF42urGid6yC60QPeDUUcah5cNM2G00mv9cRLlvyb2dp4F0Oma3sD/WwoAoSasxURogMafzVSwHbI2Se7SPK53gyuq9fR0CJ2DoopVy5/Kbr8tfyG/9HzjpTbzBWaNPRKM5bHl1f9bWrMylgACl8d9F+uikPTB4uijN3iab0BQARHW2WHc4PQ3yL0mzvjp5p4CnafmdMvGG7n/pAuNgZKkf1PO/qhXFaf3hdQNsvQKL2nCAZ4sVYsmVI/cd8DSiSLFFdXxa5ALy+fp/1J/nl0/X1g4N1HrWrJ7CJmpcmP00zJX9QA4AJwsmfdyspkZOBuBJaMLrrtvOU/TcjNY6as/zTteLntWAnt4CRRhu2I0rL3pjDqqN3n1J8yCisUipskMQ9dhKZibYnfzlwzBXwKdra2p9ajbPoE1foIdqFvjrs6au2k53XcuU7uixQNRoGFsA4KIYbI6lelFEwH05nvnA75YzOkltwDhbJFJq3XpUhC+l1hK1aIXwr7dLnrNAWBceqTqxNSrPb6Mr5xQ3DjAPGNftTdw4rSuvBTPJu3W0Eu0Cqo7W1zIQWRdVunHrKbkIXbobLFFdGWArYmSJKo2KLOhPumDj1tbs8S1w6vIa5V7LxOxAVOHtCZZGz29O1/819fiu6OkB1AKFIIozJA1uN+DK47TGvefLSkF3PwUDk3xPWzarSfnuWU4rwKmbNgFPD0DxEQNoQLEfb4NvIjANxLKBZqrtXFd5e2EAPgUvlwROvbSmzCMIwjWRbMBucz04Y/4RFUQpkm/P6dgZDi73xxzowHIXVLz8evsRjRvHzsfV43xvBTi48XZoCJ7g7n3AuKqXvKLTpOJnWJnWugo88X3538Q7dcrlPo62bES6zIz/HMd0RHXn6XVwZ0ZNA8tR+OXdeZ6XVOVA4qIUoJa2tTxG050YFHqHqPp4Jx6b3DvwVNuwMhIFjJuygdVqE1iOwNLE+gRcC4CKwE+gxKYKJKi3CqRyHx0wpet46o3pUnploZ3h4Ze9+icCp9zfhn5GNLPyrdZbsUb5m0UwBfTlbm5Rm+QPaO14g+1554CnYezTSyACiJWAz+MN+HAQZdlTooADVk3AOFsFyAEttGdH+TfzdB1fv8whtD64HysNrycuo5PiYMoYI4Xa9OnBUgTKvEVC1Q2V6UiRqvrUUaRmiTT/Ja3892/eHamCaAE4VMtpa1bzJmaURhZIF/C8BKLKRDQACj8g3WF/42b2fO6Ryu+e86Qti5q3nbSu+3QEngJ+59u1ve06AFREHRAFqId7dtTATGEOQNHKidxd99+Fael0cGA8li1AClgHTr02Tl2XACl3LVG+n4DfXZwULWkHWPfKPbg7a7X9E/DzMLbKt/HQ83xOVJS6vPGkrAkppeziSykrUiqyrNx0AOQsKfOWFivbu2KpAIzbpop7BV/hm3lFYW5x43gXTk4/YW1cnRXwVOs65Th7447To9OmnZJMgWuncfccj3JNuh0zPxXBDycDPf57N10JGDeWSGOJKl3AARmWiSYtqaMpFCCO3HkORAFogJSs/xaKADPPp4wz56n7RibcgakRv0ub1pXnQNI5/C7j2ELXF0Su6VxwQoM2ZmBjoe9Eqfk7l05qczbeC4CnzW2fQ5siGbelD5cqDdqLyum/c2lrm5Ny03luSQ/LPsIvh6sjykqU/wATgGo3YucC0kq9aTYGEiGFwdNxnSmLvBJz6ZuoB5469zXdtrGsvJsxB+AJaA9IjHgxAk+e3zpN6ru6kWWjp5i9FUWRP1S0n+bqNO2ovoB+IPclH+l5+JAq6+Q/4q22PkY0erYifku24k/EcxpP5HosUIS+VWBmiWpuYKXKr21kvfC01b0k6P0C2vQCG9jmMoNxb7I8rY5FGu+UX7VEcRtR335KA5Ewxbew0P16O5tOaGe63KM2R9arLtDq9HjrlioCcH9UVqcSUJ5SOQn6kK0Sh5StEcdj69LRlii2QgB9K4QLHm7ODPKHbOrNTX/yBYA5H0jcfDAuHJMufQ7Ww1EvFkZoEkgsczF51AYNl7ZsbEwHiHqLRWCJIGPNCNw6UUxYxH/Fu+bMsID/AEB3sRUKzto0StPxUDkPhm8jdx7Q4TvQ8r736EeWpzLGBsBp4K7PCRvxVvfjeanaNtanc/gNLFmjrgdAAZtAFNABUlIncO/p9kxDnT4j2rCZPAht6WcJVJ0AnLaO41TqBL51gRQwBsc9oDWoElVdy7g8bVryFQtWr58h4Hqh4ImJjqIsheRS/HCg4nIRJXpXvsNxJHHTAahBxazYHNmzfhz4AWDcOM1YgzZ9HAxg9temfc6f0MiKNTyuoLGudECQpyiQmP+PlKku21OmISBzHWoZ0Pw/FvfeoSypjnOistB6XmGsGwWu3DrPKC08rZ6AilYCAdFg3QMpmXdbzdMIPK3UmbrufFrH+ti47jTAUhbBaikcWAknliem6wJQwBhEIc4bAimfESmAFUDVK9ujrQrlEoDkTMDEtGr6P3kMTYeDeoO3B5aAVG9MW0DzOKvb3FY6SwRWXY+zMZwCnl4MUQ3Y1fEwksa/7vM9UYmLAawFoQOWTLpRigiCxyHfRqtp7adeQjoFRG2hEXjy1idXvm2LumBpFDje/bZZBJ4k7+iAVuumE9IycDyolwWOFlwTVUukkg07nhVQhYDfQdqAjBWK+/FWsQ28j+KThLoutUGDUZ0OWJJrDZ5G5eTSgaXmfsDzgJ4EQE3fqOuBKM6Thtp2m+KNCXLQ8ZZPtIxoBAhGdEn9tOhKXNaJ54CqlX5mIEr66Vukun2tAuIzQO9FocW5aGyx/tqbfis/Qdf6e/ZEZQO+V4pa/3pLh6KMlJWK87U7r+fKi97e8y4bPupABx/rN66grFZFWZoTqp1yHIGoZvrqUzGjNdJty3xNn2o+viznO/eNB0ut8lYK0VujvCtnZHk6EnR8W/dtrHsFjg+K34r/VKyOYomM+C9v5fVBVQLitzK5bO9TL/oNS5Gd4LkPQNRmCsDTsutOl/FzK213XbWm/TG/pa62PPF9FMe4QNdngWIagagNZabWKdPexFK1ShfVpqt9btNiFwNOl6RTgaej1W/pSZ9ScWNH1wQcNoxlWVRevMUpoOh1dZNPcqYTAGuF2tQPWTcOM3ikRFdIrGSIXyEa7KnzV9MX+n4IOuETHIa85SlqMzgniIoMJAG8xSTkLJErlI6UY6GmY3WgitME3MKeDTWSi8bKuTTUlhbddsNxqLY2AbgNZa21kcZys3CIJnDNAAqoD+QWl1r34Z90tcVS9QzoEq8hX7z8Cs1A1JKZcc6+qdvvVDplTR5I1E4S4Uu8AXnLxJtwOZGcyivrWYnWGChx5/h4KOPK0Q1P3DgLCm4WSNxQ5MpbqRdRZHniPoChVaL7Knup33UVOSsV3zdnPgWvtYv1Sb9N6S1PnTOC6jhyPjH/9QQPyGtYznwS/t/dKSujastZFD348rFwm2hkhfIyxmNfpQ7O6IZKjgBPBMQWYt3MvbEqVuuTiXvqWRq1pWqRrhtAMek5rVilIjpFoc66eiQF8iCGgHPafGjDhDzcq+W9SXfOmFXebV77R5CJi8ndqYL1EoET8i9Yur+3FqXDATgeWyXKyo83c21dCCxGjRsnIo55oQ2BxCqveRNL938qiHrMfYSBRy9vJc1bFgJXoFGm7pX3hvelTTocch6pGChSgFr3t2otZCuk3GN6OrmpO5CnLogK+onHFqSNeBBkNcHjs/Y64CaMd+u5eIO0Eb9n9GQAaulk8YhWrFKjemYQJ/Svqz80kLgUXWKcTzHXrUBK6m0HVD165oZIS5cQ2FtajxNJTiPXAIWtC0ziynv88Rk6xZp0ibpAH+yEZZ01oRnLmjId9zEYkIqDCd11ROY/ACR3TAWVOKTc1sGCHz3mnhs2ctNqq9QlaBXAnePS20KrfPTWppWyvc+zRO5Z1eaWOKgntUCdDKKANaV6qrXqpdEDrsNFQGaPj6daqB6CzkVa14TGn1rpXy1R/ZhwOfNJlupwqMDKWyHSwbrx2I3jFKaJg+F8r0Aja8HKm1g9xeleZe++xh7JRGhVWJDj1TKrAEwDE58WHGAauu90nlLATVmmcuaTgCh95tPB8YrdeP6FAF57jl9ajYMarUHPsngKGI5cegsWwN5H5oeu2k5bpl5A5mPBpW3fVnNsQbmODj6l+2NbdkBP7sI7C0TNaPacvhRF8US6+cExweKm/ih0TQBoC72UZ+ASRAAdCUm5Rk4OEgdaF83J49rgFjq5D5xuET7FWnRpikBWU6QDtPhe855UfJu3Po7IH64ajXN01AUfaQE8PM91nyPqrekJ1qWzAsi3WKnC5hz/r/UYA08X9Lhsoyt4rm+FrgY/7IBgp4ckOoKOByQdMM6klaN245AzE3kXzYIiPPtsJmlnvL8O+7mSZ9wGqZ85KHHbObfP0VkrihWKykGZ6eACvV0MWn6hgN/Im4zhXADcxEat6dBhHNSJdDE90A3cnwPhuD33skDPXVvKUWR1DOgqAJSnq1HGO+20006aiAAwiEolyb0fteH19bD9x7AsPEA/J50f5Gk1GLyTngKX3XnjUS6dwnukQ7ZGBUansyySl6AGyL2AX5QX4Le2Pgl4Wmj3uj8mvNNOO+20007XSudawHZ61pS2nrx5VmcpfQrAbwL4X4/W6cPS78Q+l2ujW5kHcBtz+b1E9LueehCXoH3/umra53J9dCvz6O5hjwqgACCl9JNE9MWP2ukD0T6X66NbmQdwW3O5FbolnuxzuU66lbncyjxGtLvwdtppp5122mmnnTbSDqB22mmnnXbaaaedNtJTAKjve4I+H4r2uVwf3co8gNuay63QLfFkn8t10q3M5Vbm0aVHj4Haaaeddtppp512eu60u/B22mmnnXbaaaedNtKjAqiU0lellP5rSunnU0rf+Zh9n0MppQ+mlH4ipfSzKaX/nFL69pL+2Smlf5dS+m/l//ueeqyrlFK6Syn9dErpX5f7L0gpfaTw5l+klN566jGuUErpvSmlD6eU/ktK6edSSn/sOfIlpfQdRbb+U0rpn6eUPvO58uRW6bnuX8Dt7WH7/nV99BL3sEcDUCmlOwD/CMCfAvAhAH8+pfShx+r/THoD4K8R0YcAfCmAv1zG/p0AfpyIvhDAj5f750LfDuDn1P3fA/A9RPT7AfwfAN/8JKPaTv8QwL8hoj8I4A8jz+lZ8SWl9H4A3wbgi4noDyF/9+Mb8Hx5cnP0zPcv4Pb2sH3/uiJ6qXvYY1qgvgTAzxPRLxDRawA/BOBrH7H/k4mIPklEP1Wufx1ZyN+PPP4fLMV+EMDXPc0It1FK6QMA/jSA7y/3CcCXA/hwKfIs5pJS+h0A/gSAHwAAInpNRJ/G8+TLKwDvTim9AvAeAJ/EM+TJDdOz3b+A29rD9v3raunF7WGPCaDeD+CX1P3HS9qzopTS5wP4IgAfAfC5RPTJkvXLAD73iYa1lf4BgL+B+p3tzwHwaSJ6U+6fC2++AMCnAPzTYs7//pTSZ+GZ8YWIPgHguwF8DHnT+VUAH8Xz5Mmt0k3sX8BN7GH7/nVl9FL3sD2IfAOllH4bgH8F4K8Q0a/pPMqvM179K40ppa8B8CtE9NGnHssF6BWAPwrge4noi5A/s2HM3c+BLyXG4WuRN9TfDeCzAHzVkw5qp5uk576H7fvXddJL3cMeE0B9AsAH1f0HStqzoJTSZyBvPP+MiH6kJP/PlNLnlfzPA/ArTzW+DfRlAP5MSum/I7shvhzZD//eYnoFng9vPg7g40T0kXL/YeQN6bnx5SsB/CIRfYqI3gHwI8h8eo48uVV61vsXcDN72L5/XSe9yD3sMQHUfwTwhSUq/y3kALMfe8T+T6biY/8BAD9HRH9fZf0YgG8s198I4Ecfe2xbiYj+FhF9gIg+H5kH/56I/gKAnwDw9aXYc5nLLwP4pZTSHyhJXwHgZ/H8+PIxAF+aUnpPkTWex7PjyQ3Ts92/gNvZw/b962rpRe5hj3qQZkrpq5H913cA/gkR/d1H6/wMSin9cQD/AcDPoPrd/zZyDMEPA/g9AP4HgD9LRP/7SQZ5AqWU/iSAv05EX5NS+n3Iv+g+G8BPA/iLRPRbTzm+FUop/RHkYNK3APwCgG9C/mHwrPiSUvo7AP4c8ttSPw3gW5DjBZ4dT26Vnuv+BdzmHrbvX9dFL3EP208i32mnnXbaaaeddtpIexD5TjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRvr/3qcIby5y71IAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGiCAYAAAA1J1M9AAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACX0ElEQVR4nO2de5gdVZnuv9p7d7oDJI0ESEATiHhBBUcFxQAeFTMno3hGB0YHRSd4Hw1oyBwdmBFUFAOO4yAO4MELeIFhhnHwLj4QlBmO3IRBxQsyCMKoCXiYkJCQTveudf4I2f2tb+319lrVe3d3pd/f8/Cwq9eqVbWrvqralXrftwrnnBNCCCGEEEIIqTGN6V4BQgghhBBCCJksvLEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9vLEhZAZTFIV88IMfzJ7v+9//vhRFId///vd7vk6EEEJCqp6v+8lJJ50kBx544JQs69JLL5WiKOS+++7LnveDH/ygFEWR1Hcmbmcyc+CNDdll2HlS3fnf0NCQPO1pT5OTTz5ZNmzYkDXWhRdeKJdeeml/VtTw7W9/mydpQgiZgdjriv3vpptumpL12Lp1q3zwgx+c1n+sOumkk6Lb4eqrr5629SJE05ruFSCk15x11lmydOlS2bZtm9xwww1y0UUXybe//W258847Zbfddksa48ILL5S9995bTjrppP6urOy4sbngggu63tw89thj0mrxMCWEkOlk53XF8pSnPGVKlr9161b50Ic+JCIiL3nJS5Ln+8xnPiNlWfZsPQYHB+Wzn/1s8Pc/+IM/kD/8wz+UE044QQYHB3u2PEJy4S8mssvx8pe/XA4//HAREXnrW98qCxYskE984hPyta99TV73utdN89rlMTQ0NN2rQAghsx59XakDW7Zskd13310GBgZ6Om6r1ZI3vOEN0fZms9nT5RGSC6VoZJfnmGOOERGRe++9V8bGxuTDH/6wHHTQQTI4OCgHHnig/PVf/7WMjIx0+h944IHy05/+VK6//vrOY3b9L2QbN26U1atXy+LFi2VwcFCe8pSnyLnnnuv9q9h9990nRVHIxz/+cbn44os7y3v+858vt956a6ffSSedJBdccIGIiPdYfydWS/zrX/9a3vWud8nTn/50mTt3rixYsEBe85rXVNI0E0II6S+/+c1v5M1vfrMsXLhQBgcH5VnPepZ8/vOfD/pt27ZNPvjBD8rTnvY0GRoakv3220+OO+44ueeee+S+++6TffbZR0REPvShD3WuEzuvDSeddJLssccecs8998grXvEKmTdvnpx44omdNuuxKctSPvnJT8qhhx4qQ0NDss8++8gf/dEfyQ9/+MNJfdeYx+Y73/mOvOhFL5Ldd99d5s2bJ8cee6z89Kc/nXC8kZEROfXUU2WfffaRefPmyR//8R/Lf/3Xf01qHcmuD5/YkF2ee+65R0REFixYIG9961vlC1/4gvzpn/6p/OVf/qXcfPPNsnbtWvn5z38uV111lYiInHfeeXLKKafIHnvsIX/zN38jIiILFy4UkR1ygBe/+MXym9/8Rt7xjnfIkiVL5Ac/+IGcfvrp8rvf/U7OO+88b9mXX365bN68Wd7xjndIURTysY99TI477jj51a9+JQMDA/KOd7xDfvvb38o111wjX/rSlyb8Lrfeeqv84Ac/kBNOOEGe9KQnyX333ScXXXSRvOQlL5Gf/exnyVI7Qggh6TzyyCPy+9//3vtbURSyYMGC6DwbNmyQF77whVIUhZx88smyzz77yHe+8x15y1veIps2bZLVq1eLiEi73ZZXvvKVsm7dOjnhhBPkPe95j2zevFmuueYaufPOO2X58uVy0UUXyTvf+U75kz/5EznuuONEROTZz352Z1ljY2OyYsUKOfroo+XjH/84vBa85S1vkUsvvVRe/vKXy1vf+lYZGxuTf//3f5ebbrop6amU3Q4DAwMyPDzcte+XvvQlWblypaxYsULOPfdc2bp1q1x00UVy9NFHy3/8x3/AYIO3vvWt8uUvf1le//rXy5FHHinXXXedHHvssROuH5nlOEJ2ES655BInIu7aa691Dz30kHvggQfcFVdc4RYsWODmzp3rvv/97zsRcW9961u9+f73//7fTkTcdddd1/nbs571LPfiF784WMaHP/xht/vuu7tf/vKX3t9PO+0012w23f333++cc+7ee+91IuIWLFjgHn744U6/r33ta05E3De+8Y3O31atWuVih6KIuA984AOd6a1btwZ9brzxRici7otf/GLnb9/73veciLjvfe97XcclhBAyMTuvK93+Gxwc9Pra8/Vb3vIWt99++7nf//73Xr8TTjjBDQ8Pd87nn//8552IuE984hPB8suydM4599BDDwXj72TlypVORNxpp53Wte2AAw7oTF933XVORNy73/3u6LJi7FyO/W/ntXLntrr33nudc85t3rzZ7bnnnu5tb3ubN8769evd8PCw9/cPfOAD3nXwjjvucCLi3vWud3nzvv71r49uB0Kcc45PbMgux/Lly73pAw44QC677DL5wQ9+ICIia9as8dr/8i//Uj7+8Y/Lt771LXnpS18Kx77yyivlRS96kTzhCU/w/tVq+fLlcs4558i//du/dSQAIiJ/9md/Jk94whM60y960YtERORXv/pVpe82d+7czufR0VHZtGmTPOUpT5E999xTbr/9dnnjG99YaVxCCCFxLrjgAnna057m/Q35SZxz8pWvfEVe+9rXinPOu16sWLFCrrjiCrn99tvlqKOOkq985Suy9957yymnnBKMkxqBLCLyzne+c8I+X/nKV6QoCvnABz5QaVlDQ0PyjW98w/ubvsZprrnmGtm4caO87nWv875/s9mUI444Qr73ve9Fl/Ptb39bRETe/e53e39fvXq1XH755ROuJ5m98MaG7HLsvAC1Wi1ZuHChPP3pT5dGoyFXXXWVNBqNIMVm0aJFsueee8qvf/3rCce+++675cc//nFH72x58MEHveklS5Z40zsvAP/93/+d85U6PPbYY7J27Vq55JJL5De/+Y045zptjzzySKUxCSGEYF7wghdkhQc89NBDsnHjRrn44ovl4osv7tpn5/Xinnvukac//emTSsBstVrypCc9acJ+99xzj+y///6y1157VVpOs9kM/vEwxt133y0i4z5Xy/z586Pz/vrXv5ZGoyEHHXSQ9/enP/3piWtKZiu8sSG7HBNdgHL+BcxSlqX84R/+obzvfe/r2p76L3r6hiSHU045RS655BJZvXq1LFu2TIaHh6UoCjnhhBN6GulJCCGkOjvPx294wxtk5cqVXftoj8xkGRwclEZjZuVB7dwGX/rSl2TRokVBO19lQPoBq4rMGg444AApy1LuvvtuecYzntH5+4YNG2Tjxo1ywAEHdP4Wu/k56KCD5NFHH03+F6sUcm60/uVf/kVWrlwpf/d3f9f527Zt22Tjxo09Wx9CCCGTY2eSV7vdnvB6cdBBB8nNN98so6Oj0XjmyfyDnF3Wd7/7XXn44YcrP7XJWZaIyL777pt9zdx5vd75NGsnd911V0/Xkex6zKzbe0L6yCte8QoRkSC57BOf+ISIiJe2svvuu3e9WXjta18rN954o3z3u98N2jZu3ChjY2PZ67X77rt35p+IZrMZPO351Kc+Je12O3u5hBBC+kOz2ZTjjz9evvKVr8idd94ZtD/00EOdz8cff7z8/ve/l3/4h38I+u083+9MOZvsP2Idf/zx4pzrvOyz27J6xYoVK2T+/Pny0Y9+VEZHR4N2vQ0sL3/5y0VE5Pzzz/f+bq/fhFj4xIbMGv7gD/5AVq5cKRdffLFs3LhRXvziF8stt9wiX/jCF+TVr361Fxxw2GGHyUUXXSQf+chH5ClPeYrsu+++cswxx8h73/te+frXvy6vfOUr5aSTTpLDDjtMtmzZIj/5yU/kX/7lX+S+++6TvffeO2u9DjvsMBHZYZJcsWKFNJtNOeGEE7r2feUrXylf+tKXZHh4WJ75zGfKjTfeKNdeey2MHCWEEDI5vvOd78gvfvGL4O9HHnmkPPnJT+46zznnnCPf+9735IgjjpC3ve1t8sxnPlMefvhhuf322+Xaa6+Vhx9+WERE/vzP/1y++MUvypo1a+SWW26RF73oRbJlyxa59tpr5V3vepe86lWvkrlz58ozn/lM+ad/+id52tOeJnvttZcccsghcsghh2R9j5e+9KXyxje+Uc4//3y5++675Y/+6I+kLEv593//d3npS18qJ598cv7GiTB//ny56KKL5I1vfKM873nPkxNOOEH22Wcfuf/+++Vb3/qWHHXUUV1v5kREnvOc58jrXvc6ufDCC+WRRx6RI488UtatWyf/+Z//2bP1I7smvLEhs4rPfvaz8uQnP1kuvfRSueqqq2TRokVy+umnBwkxZ555pvz617+Wj33sY7J582Z58YtfLMccc4zstttucv3118tHP/pRufLKK+WLX/yizJ8/X572tKfJhz70oWiWP+K4446TU045Ra644gr58pe/LM656I3NJz/5SWk2m3LZZZfJtm3b5KijjpJrr71WVqxYUWl7EEIImZgzzzyz698vueSS6I3NwoUL5ZZbbpGzzjpL/vVf/1UuvPBCWbBggTzrWc+Sc889t9Ov2WzKt7/9bTn77LPl8ssvl6985SuyYMECOfroo+XQQw/t9PvsZz8rp5xyipx66qmyfft2+cAHPpB9Y7NznZ/97GfL5z73OXnve98rw8PDcvjhh8uRRx6ZPdZEvP71r5f9999fzjnnHPnbv/1bGRkZkSc+8Ynyohe9SN70pjfBeT//+c/LPvvsI5dddpl89atflWOOOUa+9a1vyeLFi3u+nmTXoXC9fvZICCGEEEIIIVMMPTaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9fbuxueCCC+TAAw+UoaEhOeKII+SWW27p16IIIYSQCeF1iRBCdm36Evf8T//0T/Lnf/7n8ulPf1qOOOIIOe+88+TKK6+Uu+66S/bdd184b1mW8tvf/lbmzZsnRVH0etUIIYQAnHOyefNm2X///aXR2HUe6k/muiTCaxMhhEwXWdcl1wde8IIXuFWrVnWm2+2223///d3atWsnnPeBBx5wIsL/+B//43/8bxr/e+CBB/pxeZg2JnNdco7XJv7H//gf/5vu/1KuSy3pMdu3b5fbbrtNTj/99M7fGo2GLF++XG688cag/8jIiIyMjHSm3eMPkBaf+X5pDA31evUIIYQAym3b5IGzPiLz5s2b7lXpGbnXJZH4teloeYW0ZODxQZqd9mLAv5wWrXibNFuqn2lT80nT/Mtkc7zNqc9BX/Mvmq41Pu3sv3aqYZx5EuXs8nWz7dtQ0+AfVO0yqlIgsUmpF+j3K0o1bYYo2qU/redtm76l6ts2y2irznZM3Vb6bTLW7v5ZRJwepz3mt42p6dFR09bu3k/Eq18RkaKpa9a06ToNalbXs6lLXW+mzatFUM9hzRagzZ/06q0BatbWM6j1nmDr0sXbdJ3auvfqWURETRdt21Ymtdna82vdHAjt+HxevdmaHR1T/drRNil3tI3JqNwg3066LvX8xub3v/+9tNttWbhwoff3hQsXyi9+8Yug/9q1a+VDH/pQ8PfG0BBvbAghZJrYleRWudclkfi1qSUD0ioev7Ep1A/BwtzYqGnbJg3V1oi32RsU/UM068Ym+UfiLL+xKcp4X9PZ72vavLsge7MUb5OGamuYH4JO9S3N/i3UdPADXf2AtNu+MDcvifUsoGbDetZ1aW5smv24sUF1uQve2NgbFFWXRVDgaW3izI2NxNtE16WtWb1vQM3qGt0xrffL4/0eX92U61LPb2xyOf3002XNmjWd6U2bNsnixYuj/d1MvtbO5HXbFQDXsemmmMHrNpO3G4nAc8m0E702NZqdH4Tev3DbC66+qBfglz6i4g+qXt084GXk9E3sbLuBc5ceE97kTAfg++of0+Y+KnkMiP2hr2oveDoYzBv/oW9vCqaVIu0m2jIVx0VV9PHUq98T9vsmf/t+bCd7DlR1Gpw79ZPpzocy+HeAGD2/sdl7772l2WzKhg0bvL9v2LBBFi1aFPQfHByUwcHBXq8GIYQQIiL51yURXpsIIaSO9DzyZs6cOXLYYYfJunXrOn8ry1LWrVsny5Yt6/XiCCGEEAivS4QQMjvoixRtzZo1snLlSjn88MPlBS94gZx33nmyZcsWedOb3lRpvL7Iz3ox5jQ/1ZxJsrwpkWJlyBQqU3HMfjxG7s/363/RzGhZXkWm5Fgr4tr/9DF6sia7JL26LhUDrY7fwJNQNK1fIa7tF+CJQFgPjFlg8jiV6YtEJbGtV+cV/R2shM1uX93csL6HxJVD2yzwvIC+wCtSaD+KCSTw2syJDMongaTNrif0PVSt2Ypysyk5DjQ566Z3jV1PXYvBd4hfG+y1yd8XgYksPp9dVz2KJ5/MqWddT9ajptbFnjv1xOPLLpwTGZEk+nJj82d/9mfy0EMPyZlnninr16+X5zznOXL11VcHxk1CCCFkKuB1iRBCdn36Fh5w8skny8knn9yv4QkhhJAseF0ihJBdm13ntdKEEEIIIYSQWcu0xz33lKrSyorz9Ux3vwuYEia1LSrOXHmRaHNDoWnVBWaQuoyq22wm+3+qLn8qrAVVawYQ7MLUfYpWpg/rSXyKVnP8nR6JkaWBJwG8c8brm+PP0Nh/skR+BegFii8CLRPG6vbhOu1MY6H1/NYT4HkZgoGqYbcpOpaTfTT+oDrS2pn3wXgvZWzGX4JZ2BeC2lXT89pa0NP2nTOoZlPbMuKks2KbEz0+wS6r6vGB66I+J0YXW8IIZ1C0sC7j/pvKvrDgvVv6/Tfx82NwGHap2cKVyR4bPrEhhBBCCCGE1B7e2BBCCCGEEEJqT/2laKlPJLPekpw6ZsZz6ymWyU07OY/0K8bc+k9V4xsq2E1V5Wb9iB7NGSfnO/ZkeRl9AX0v4T7I4rKGzKmv/G47FpFY67uCrHWmo+Oe/ThTINHIke40QRR0I3F5Zj4H2yL9uuCVXo4cKGMZyUMCSZmWplmpjhfNL/Ft8fhCxj+C7QbbgghpHXMbl5sFsh5vDHOct9RPORsFXerr6wT6J13PzXjcM5RdBvOp79ujmo2OIeE+9MexbfFx0D/796KGCxsfriSTztRsgX58oIhyWyfefGZab4xgTNW5NGPq/W2WV6gahlemhJotJqpdPVxyT0IIIYQQQgiZofDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3199ggUDwkkkginXofPD3V42KnV09fQK0/mDEnkjb5K8Y72ihQb3HIH9GvzduDSGe466u22WWkd62+raa6hHvlf0ms7159Pbg45L9B/rW6+vemm2ZLpNHFY2MokFcGeRK0Lh34FQJvQRN4EvQwQVvcg4CjXf0m7GUAy6gIPK/rYre7CHkZ7JB629jjR3sk7HHntZkV0P4B5KECFC3z063dVoszY1b12Fjfg+fvAnVp2hyKNm+k1ayz88FatzUbWU87jerZ0oMazoko13Wa5Quz+0JlTBfmCzsVBR54qLRPCvnC7PlK9wv+oMZsm7rUw+ys2QmiymOzE0IIIYQQQkgt4Y0NIYQQQgghpPbUT4oGJWTxpizpWcVlpD6ezJKQTXdMNHrJeer3mEACkyxpq6zrSZepeV8JyeIqS+YmIFV+VlFuBsuiR1HQfVFIZsWHT36cCSPfUS3oJnROqirJRGozysv6TtFqSdGRooENjqQ7QKbmwNvn9XyBPMd7izqQkkCZGFgXESMPQvG8dhmSBpJRWfTiTDfvvG43k8QlP3C9bWK3GtiZ18jra1qgDgVyncTTSoja9oWSpYmIkfVM8G/Z6C3yXnx5XD4J5XVQdgnms6vtSaNAHdq+qJ6D+UAbIvE3SxhDHj9+CrVLJ5JPelIxI/EqwHmgUNvRmQ0OL6lNF++HIruR9M1bwI51KShFI4QQQgghhMwmeGNDCCGEEEIIqT28sSGEEEIIIYTUnvp5bDJI9tXk+Gagj6eiuWEm6+J7sW4T+FEciqT1hulZTqga1Ohc1TKqRkGjxN0JO6P5En01lX00k/HNJEdYJ/abDFWXATT7qG9Yz2BdgOTYGyOn9qAAOudLkSRaTRX3jDw2aX6FINIZeBI8X431FsA2tLw0D0IwDvQk+E3eMnJO49Z3oRfnpRgb34H6HMRCazuI9TlYz6VusxJ/HasbeJPGF1IY/432L+TYAb2+wK9Q3dhn5g1ik4EXC0U6gzbPH5PThvwv1vvlHYd+V4f8N5qqnrHUc7OIuYabulTbIvSTmUWqYyE41r24ZztOD2rW7IuiDepS+9vKhGcs9NgQQgghhBBCZhO8sSGEEEIIIYTUnvpL0dDjb68fiHTOkIkly80mo5qqKmmbTnLkVjmyPC/KNv4MNpCppeZm9kpS1iOSl5GRUO71zZGb9Uu25o0zjQUN6mkycc8Vy80fw5ZzYtR40DRTzxd1ZqA1LkVDwJhZEI+LIp11JCtsQ1KhDKkO6JslNwPyqMo1mhq/byOjU18vMEGTH4lrYnWj/XyZT1asrt6GZTzGVxroopYhRUPR3yBSuWqkc9CGIspT61mkNxHlwXxSCai6L8EFyKtnM6aJIfcOC1P7vjStJjXbmb85cZ+dwyX3JIQQQgghhJAZCm9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/jw0CRTon+jwCX0dVH00/oqCnO77VxfWpfr8J8gljY040rjekjfvsgXB7ug0KwPOS7Kmx81WNkJ4w7jktlhWPkdhvMnhC4mpa+x3tKlLTtiX6b3K+rpYjwyjoHFJ9aMTDNZvimgl6b+BXQFHQntcAxAj3KtLZX54/G+qLfDRhW+TzJPCOA+RJQP6bYND05SNPQuVYXR0TjYx2bbvvXfd+lkl4bDxsfXl+Mlt7+nO1uOfANwP8a6FXR+J9U3009jisWMPgTRP44lCCggY/UYP4ZR0FPZNq1tKlTl2bHhtCCCGEEELILII3NoQQQgghhJDas2tL0VIJYv6qStgStULBmH2QqU0F8JG3+jxRBi16PovkBuD7a2laUVHeZp/x6rdSZ0nBpgIQ6VyAtmS5mdmGuO8E0xGmQlmJI+HVx4nkXkiGiWRq3bsF48D5wNP+oK/uF+jiplnKWldaTZFuUjQk3QmkLDoeF8hsMuJxvTFRTDOSsNl/6syKe46siwWdt63CCb1sHJ6DVGNpDxgwn42GTrxYhKcH9UXMmIU+P9jo3rZqs8enaoOSn4nkZqmgiG4kN8uQT6Jad0A+6UWbo1hqMTWVU88V5ZN6fQqwL4ImvQKoDO0x2gbLB+d4JDez8cuVa9Yl1qylW5vNtQbwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189gEfhjdlhHNrOWMVSOds5aXmtVrxwEayWn22EApLzIzoPhnaIKw8wGfgzeX0YtOe4yz1uDatshnMV+xaqQz9N8AH82Ecc9g+bF1yWnrEfCYQTUEzh+hVhnsX61VzrAhTHfJknGicc/onwlt4SEfDYiyhbHNejrDr+BJ+8F8O9YttU3ibRkXrmAcPaTnKzGNJTpA9TFoznnAN2S9DN641gtk+8YorKko7pXxfA7BNRScPJFPCRHsw6L7Z7H+LjuO8oXZ3286NhrVsxkT1nPgPYuMKQJ/s3nfybYlPhIIfI16cXa/eNdb8FunjDeJ+J6X8LyjPqOaDZahrmnBcQD8XXocG++c6QtzDXpsCCGEEEIIIbMI3tgQQgghhBBCak89pGhVZRjwMWMPIp2DR7U9GFPM08OqUdC2a2K0q8vQvKRKjiZ8U7r3rDhDpoakCGDjeFHQWTmO6V17Mh8ap1eRzlVlcRl94XyxMfpFqtzMPsFH0cxxJVF43vEiw22cOFhPtE3B4TPtkfC7IG4gIkWzgAhcT24WyJ+AFC3xjeuVI2+B5GfH8vXyTF8k3UmUdwfHEkyEjZ+79PcIInfb8fUMpoGMy1NCB5I2tcw2OHlaeY6OhrbR00jy441hZkNveDdAmWDFevbkZoGkC8gnUa3raHEg5Qz6Zsgng76R+SxeXaD6DVSIWmpo6qn0OsYXKOJ/f1NDlWtW15uVT4Ka1V2hfDJBLumEUjRCCCGEEELILII3NoQQQgghhJDawxsbQgghhBBCSO2ph8cmlRw9eaLmN9DAIv8LGlP1DWSsYBzojUES0Ira+kD3X9ET4Ukyga9jxzC6A1rxDANB4pBZUdCexrlP5oXEVPCqfpiiNKP2wLczYV9AovWrZ6DFFaBmsqKZ0TK8fkbjrOa0x50/3wQrEFsZ+m16Q6sQaYb/JghPCUHEMvJ5AI8N8At4XhkU9xx4esCY1kcDxnHAg5HqsbHA0wO8xqjrrTnnad1/YX0sbbNyXjy7HSfuZfCic5Fvx56Pgf/Gv6bGvTnWAtEzi6de1Yx69mrK1gXwhfl+rv77wnBEuW1LK2Jcv+C3hz3/l7qfaQPxy3ZbeMdCTs3qdTP+G9fQx1q1mkX2mc7XyfhRyyc2hBBCCCGEkNrDGxtCCCGEEEJI7am/FC1RquWQbAyNiWRjwSP9RLlZkM6HpGhgHNsUbalOEX866pMRxRzIbICMyetrl+E99rSSDR0lGH80naNu8yKsM2JJITlSv8S+UPqXEwUNHn/3KtK57/HPaNeDqNegLHoV9xxPPvWlaUADGsyn9yFQGk6UEkrSKFsNKVsJ/yYIpBO+NCsuz0GynjBWt6KErQnaQP1mRedWlKJBwLlLS26CWF0t2wrkZbav+mwlP2qcQKamd6GZT0vYAikckqk5cAFS17vgzFH1PAp/I4E6AbHNsJ6D+br3E5G+yCdhPYNrRWVspDOSheuaBdLKHe3qM5KpoZq166blZ0imFsjNdJOV3ukx4kW6s6W0XxTAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUzmMDdeGV2ypGOps4xgK2IY9NfH3ClEFkigBjVsQBaaXeGTCCFvlvzMyB/0Zrpe1SUNymZ1QC5oLAk6C2/TSYEJLLFPqUbMRj4nwlaJvIGwM9PhInrZx7hrfrkW56Ak018q4gr4HeF0FbbAF2MjTnxNtIz3HNhrgucc/onwmtnt3X76dr+5PjcXN8NI3unyfV16438p0l1mzVc471sehrSmHPebav2jfBboJeBrUqQeSuusYA/w3yWYSeBH0tlP6g933Veu6DjwbV6ETLQPUMj6cenGdDX1jcl5xVs9rDleUZU4u3y4C+MOT/ifvC/GvoxBd/R48NIYQQQgghZDbBGxtCCCGEEEJI7amdFC0HB+RfHratAeZDkc5em308qCdMm10dLUVDkrZgvmgTnA/htNwM5Eg6+5hRP4EskeZG/EeU9s213lui7aNMkHOb2gY1Rma2ItIvk+RdkRUFrR4V9yHSOXxsDtYHyuRAm6UPcc/J54Hg2E7v65WQ2U5+PcfbAjmhd6yBdUHbjDK1nlAOpMY9x5vgW9xBPG2/5WZhW7W+gazHkzGZttS6zJHR6vOalcd4bXGZWk7fvMjd8Y9QpmblqN65Gpx0TNxxisynG4GkzBvU9lUTOfWM5GbJbWZd4HER74slbH4bvFYgYKRz/BpevWbNOKoWK0ebBzWrfyPaSOf4bzv9HR08We6cnVI0QgghhBBCyCyCNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb/HpqrWEflvwJipkc6BflG3Bf4bME6wfDBODzw21isjQNuP/Deex8YIPV3glVHYyEc1UGAt0NpOsw1FLwNZbCxVfTRV56vYN9DgpvpYciKdkf+majQ0iCLNiolOJePYhm12XTzPXLwtrFnVZv9ZCexfT4Mc6JhVU5beWx8jU5C1vYvgWoW4Vrih8asIQFxsjo+mB74D7I2J+xMmXEail6Evcc+B70B9tpHKyH8T9I1H2TZ03+CEHN/e0Mugty/wYIR2V+DN6ZG5zq/ZGVzPQc3G+5a6b4ZnzPMfVfTYWO8T8sYIqNkGrFnTpmOb2yDaPKNmPd8o+B0Y+EahvzZsLDPeYcInNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY4NIfmeFFbOqj9a7kfiumrCtVG1mSOCxQW3BMvSYPdLMly6u6/U9Nv6XKr1sczOmXYjuYN95o7+V2Rb++0KQ5jeuf0Y+Dhd4mIAnIcvcAEDvnAF6VZSPnzpmoMdNfE/EhH0rvuOmHx4bb9cjjw16b4EBaegD3XZ0wnhl4qekYD6Htm/cmpOnDScdymYhZRePTYBXa7YQVRuoNTsffFcM8HWUqe+4sf4E4LEpm+nvCxHoV1ATwNsG36WFfAfmOzSUtyDw1Nhjua18B/bCpa/FGe+/0dsfehnQO7ACUyvw33j9UKMk/2aqXM+29sB8yb4wW4cZPhrvuADj9Oq9TN4+tZ6TdqSf+H4Y+P4z8WsR+m+C99GA5eu2DG8o+n3hvPkmvjiF/u84fGJDCCGEEEIIqT28sSGEEEIIIYTUnvpJ0YBszEqHUuVmYTxh/NlacqRzw3/upiVlSF5m221bE8Y9q2VkRD+jR3z6Kbrtp6dL+1hVPaou7WN68xhbt5dWx+RJ0+zjbxUFDaN744/Nw2enaTK16QCUJZaUld372TYU6QzHzFhGKL9yoC0+n98x3pRVF7rUrNLDHutgdbwUZduox7GP5sH4VhJEpo9yoJByIE+KZkFxsQ7IXGBsMpDOaNkYjGk2dQblZkC2Fo4TX7fkmHVwXrGSG6dlPUGbkuqMxSN3RYy8PIi51ZIfFN0bl/zY1xTovvAcnyHbDSR0iQT7yRvU9O1BPVeNIZ8o7hnKzVJrFkgyc+LLk+VeptYaY0W0zdol9LHQNtumAaSVMCa6jM/nR42DWrfXMFTPXSgztNN8YkMIIYQQQgipPVk3NmvXrpXnP//5Mm/ePNl3333l1a9+tdx1111en23btsmqVatkwYIFsscee8jxxx8vGzZs6OlKE0IIITvhtYkQQohI5o3N9ddfL6tWrZKbbrpJrrnmGhkdHZX/+T//p2zZsqXT59RTT5VvfOMbcuWVV8r1118vv/3tb+W4447r+YoTQgghIrw2EUII2UGWx+bqq6/2pi+99FLZd9995bbbbpP/8T/+hzzyyCPyuc99Ti6//HI55phjRETkkksukWc84xly0003yQtf+MJqa9mLWFLoozFN0H+j+8Ujna2PBnlsGsaPg3w0TeS/0cvvQ9xz20QxO6/NxG3qtsBTk34/7Xlu7Hye7hbEX8J9D2KT+xWHGy89HNsMSI1NDqxmiZHOWR4bpN3N8N/0wuMU7F4Qye4lTtoozIyIZR0vG6RYgvpCcc846ju+fWeYTaxvTOW1qWzlxz1b/IjjnAjc+Pjah1ACTwD2xphzte3b0n0l2teZXxalnq9l44/VBIp7tucV5TtwY7Zt/HMQeavarHejYcdBntq219FvA3HPMPIXeR6BlwGd46v682C6LvKVoIhy6AvLiCEHbdAXZuuyapuuYRBfjnyr2jcj4tdT4OdS6xLUaNt8X28cswLAM4Z8NMh/o78wvr7Hr0ZBPXfB+rgRk/LYPPLIIyIistdee4mIyG233Sajo6OyfPnyTp+DDz5YlixZIjfeeGPXMUZGRmTTpk3ef4QQQkhVeG0ihJDZSeUbm7IsZfXq1XLUUUfJIYccIiIi69evlzlz5siee+7p9V24cKGsX7++6zhr166V4eHhzn+LFy+uukqEEEJmObw2EULI7KVy3POqVavkzjvvlBtuuGFSK3D66afLmjVrOtObNm2qfgHJkQ7BKGj9+NnKzeJSMCw3021x6Zltb5pxtNwsmE9NNxvxjEcrU0OP+LT8zC6vrR9BFnGZWpg5aNct7f7aRkG70tMVmSHjMcICoikh/ZKmxQikCCCKOjU6sWKkc/gmZNsXRUXGl5/cZvBkW0Auatv8qFUznyf3snIZIxuIr1p6nQAVZNb+BaU+JdLKGUa/r02uWXQkW8nqCCjdibcheY6dL/kN6yg6F0jI7HQgARrQn83xo+Yr59g2FduP4o9HjWxsVI1p5DkN1deNmjZ92TDz2e1WgJhdfR21Kmn/LfLpMjVPKhucD9V3QvHOfdKfptYsjnsGcjMU99wj+aStZz2Ort8d02r/2uNA1bCVVqJIf11PDVuXWj45CraT+X62hvU4BTh/BK8d8WrWLAPGPat+zh6/ul/8ZJkU95whRat0Y3PyySfLN7/5Tfm3f/s3edKTntT5+6JFi2T79u2yceNG71/GNmzYIIsWLeo61uDgoAwODlZZDUIIIaQDr02EEDK7yZKiOefk5JNPlquuukquu+46Wbp0qdd+2GGHycDAgKxbt67zt7vuukvuv/9+WbZsWW/WmBBCCFHw2kQIIUQk84nNqlWr5PLLL5evfe1rMm/evI42eXh4WObOnSvDw8Pylre8RdasWSN77bWXzJ8/X0455RRZtmxZ9UQ0QgghBMBrEyGEEJHMG5uLLrpIRERe8pKXeH+/5JJL5KSTThIRkb//+7+XRqMhxx9/vIyMjMiKFSvkwgsv7MnKdgVGEoJcXS+22TR5Ppr44gL/jWpEkc4t67EBPhrbt+X5b/w2z2NTxNsQVseo9dhjRgSr/TdjZvwxEOlsNce+RDQ+nzPr5mmcgx0Vj3T29cBWyBydAP0mIEMbinZTaqQz8qoE2lkUp6rnA56aCZcBtbvxMZN9Q4Zkj0KGj8UZ7XCpCiBIqAUWLq/NbAutnYY+mhwPVWpbzZnKa5NrhZp7kdx43HiRJMc9I0+CbVM+hMCDkBh5K4J9NF7boGkbVMU+aK5/Q+MniEbTP9GU7fEVaG/zV6YcGf+SjRHj8YTeDeVzsPvMemX0brKXJjWzjdUtwHHun/NAbLOdD/hGi3hTdPyuJEeU2zZQz4lxz9PuCzPeLz1t69mpGm4M+b9gmq3xtvaY/6XKkfEVcCO2nse/Y9Osp/aFifHf2J8+AmrWm7a+Uf27F3lq0e8LEF8eALw5XbujsQxZNzb24t6NoaEhueCCC+SCCy7IGZoQQgipBK9NhBBCRCb5HhtCCCGEEEIImQlUjnueNjIe9/tt4NktkiOZtkLJv5DcDEU6W+lZyzx+130HTJuWog004m0tox3Ssi0U92ylaGPq2W3TyMtGi/E2G32tCdvsq5DH19umbzr1rNpub/30P3iLvKcLjEucgqIpYv1EnI4B71V2bk5sJyrZihI2KCFLfXu2TCA3A20NtRNxTLRZPox7VrGoZt8nyxsmeADQUBuylLg0ACWNV4+itm2oaPUChPSAsllI0Zp4Y1aOx9XTOXIzVc/oTe0w8ta2WVmPjsCd47e1lVzHGblZsdv4mX3u7iNe24I9tnY+77/HI17bbx8d7nz+f4/u5rU9tmU8sa5smBXVmpsMmbKYCF7vMmLjtT05u5X1qM9WpgbOuVCKBuL+syL+EZWlaIltoJ5LE9ssXpuZL0M+qdvbVm6G5JND4zugmOv/nhrafXvn817ztnhtT1Q1rOtXRORhVcPbtvgHUNlUK9ow0kpwTWvYwgRSNN3VqiB1DSMZZFCz+rqV8coG//fMxOfT0q4wgE9sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqZ/HJgeg+4z2E6urtXpGHQUdb2uatlZT+V+Ap0bE99XMMT4av813pGiPjZ1vUPVFHpsRI7Iec+PjbG/74lXPtxP4ZlQ/EP28AxWBaESavp7UF2xq/01pPRhe/KQVfiq9aq+sMiDiN2+gyKCon5mG3hygjw3GTIxwttPQR9O2bXo+sw8T25CfwLbpbeqaptbUZKD3BgQeMhB96m1vENMZyOITPVQJ4WBkkpQtkSLhypka/xz4qWDccwHa1GfkSbCRt7ptwLSBSOc2iMDVnhoRkd32GPfVPHHY99G8cO97O58/tM9Pvbb3P3ho5/PNrQO9tt8V8zuft4pP6f20ARs4dMH5U+A3BPLf6Gjahn3dQKp30e5f5JVEHryqpPptTN/K9ZxxHocRzsgXZutb1bD21Ij4vpqhPXxf2H57bup8PmLBfV7bh/e9o/P5jAef47XpGl5fzPPaHtPrFfw01xsueImAmVZemYpR0OHrHYD/RtdwRl3mXrfKjLhnPrEhhBBCCCGE1B7e2BBCCCGEEEJqT+2laA7m3IImL6oxPQrae/xsY/e0NMvGPatpJD0T8WVktm2oOdq1n4jIYFNFajb93Mq5je3Rtsfa489nHzMZnrqtIeD72m2olAjb/ZYgUtqpbWNfPt/Q0iEbqYliudW0nQ/GfaYqkCajN6sqG0icD0aIolIHj5hhFLOZbth4U1WmjTFTQ1puZuZrjLpoW3O7ervzHBONqaJ4SxvL6z3+9tu0JMfWuo109qSHweP+eH2hZOZUOSFKdEYEJRtXEBBAqhStcnQukJt5sp4c6Q6Qouk43EB6ZmU9Ki7XzTEngUElkx7yrzHDu40LbQ6c9/+8tpfP+7Ga8lfulfPv6HzeMDLfa9s6On5tGh3159ve1q8w8FfT36hY1qNlZPa06h3aVtajzmtBrK4eyDR6MjWrzwHnB4fOHT0iNdLZxuhjKZr6nCGfRPHltoa1vLI0cc9OT5t6bqkanr/bNq/twD0e7nz+o+Efe22l2lHHDt/htT20fVx+tm3MyP7Hxr/kdlMXXg2jk4KIVwBWBlmC61YD7Cd9nXbBtV/J1FBdmgPRRSe6QykaIYQQQgghZFbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21N5jkwzUwce7BhaMVB+N8d/otpaZD0U6Dxk/jO4b+GjU9Nym72zZozkeVziv6etFNxdDnc/WH6G9BtZ3gMiJy/UCna3/Rgk6A6m055fw79F1/HOBfA6B6STyecdA0ndS/TA5sYqepjveBqNHJ4h7hpHOylfTsG3aR2P9N6PjCw28OSNa9OuPWbaBWFgRRkwm6unF/x5WQ+9pykFEbOit0BNmTOSvSvTm0EfTG1yzS4y4dPHyaTJqBFlAoCeh0f2ziO+jCfw3Og53Qr+Cmh4w1z/lUZgzx4973mMg7vHcVI5ff/70nhd7bW/d7987n3dv+ZG7uw2MjzM46I/ZVn6F9pjx4OnvGxwvcc9Nw+4M9RXR+SL4DYFi9NW09QD6bWY+9YecqPgA6AsDMfap9ZzhsfF8YaCey1bcU2PbXVDP6hozx3id1fTuc/zfU7qGN6v6FRH5s3te1Pn89v3/zWvTNazrV8SvYV2/O6bHN4AzPqGghkGcuf4tZK1Qnv+mTG8TVJe6zS5Q90uoURdcaOPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFA49A87Q76iOUmxkJjJq2q6LlZ00rU1Nj2ghn23dOY0x99vv6cjMrRRt/XKqlZyK+/Gy4ad/T3HuspMxrs9G5qm8oRVPRp+Y5J4ouTI3sdpPKbZ5GMqRK6DDwZExQphZvs9OB3EzHPY+afaFlaqP+oJ6EbcQftLFd6UCCXagf49vn5o1oiy8f8Qe1Es1StVvpnX9usfnlup7NbOit49GJLtOkr5TNQgobI94NIM9Bklc/OtfMh+RmyW9qN7WsJT+BrMdMq3kL07fZir+mwF7jNOvHhjuf73jgSV7bg/uMx+Paa8MAeC1CQ02XA0aKpqWqZrVslK3z5KlWpg2kWXp1bFsZ6Sf+PrTnWK8tiNWNR+5WBdas7Zsqn0Q1a9tA3LMnL7PyyUBqqcYx9SxqnGbL3+C6plqB/mqc9aN7etM/un+8hh/cd57Xpmt4AFgQ9LEk4tewV78iIkZ6p68r9pjRdgL7O8y7/pm69NrQbwFwTassk368scx4DMMnNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTCYwPsGskgH03gwdA+msCfEffReG1mPi8KurCeGhMzqLSWg00/NlNPDzZ8j81uymOzm/HY7NYYn9694beNKgFr2+gutQ7T6jW9Njiff/88Zr5/qXwHTSOkdGq7tU3cn47bLkurF1WaY/FxXj/TBuOepefkxDYjIWp1H01c6Ip8M0E0dFt/tm0u2qa9K0Gk8/bxQRuj/goUynPTCA9u9dn8241eRobvoTTL0N8/iBPXumKrGwdtnuY4oy58/40taBpweo0X95x4TkB+haAN+Q6A/wZ5ErQ3xnoStK/Gxj1bz40oH0JhPAnN5vj0QNP45VQBjxkTxMPtPcaX/9BQtG3MfKmGdy3217Ol1q1t1tMpf5Sz1xtzHdGnOXu4ligKWo+JTk8gCtruX+Rl8JaHDnnblnNNS/SMBb4wVLOJHpsg0hnEl4c1q6aNv0zXcMPUbEtN29+BI+pAebi9u7+83w+qtj28Jv1bqGHG1MdM06zLmFpPN2B9yOZVF6qGG9aXrHZG8PoO9J4T4BlDvjDvXFbx90ynu/WyAvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT21kKIlkyMdQi/RLVzXzyL+40PbpuVmLSNTa8E2/xmbjhbU0c922sY979bY3vXzjumRrp9FRLZ7UjTzWFM9Z2w3/Tbdt22eTevpshmXqYn4UZVts230OFZu0NZSKdNWlvH95GsBQBtiErK05FlzYn1TJWwojhHGPbtom223bVpiFsjUdNuYkXaq6cJK0UbVcWHqq1DSxlClVnTtZ/sG8wFZCJKT2DhZLXMVI3vxFAUVH9unxGaSyVG2RIqUK2dipHNWG4h09tqsdEfLegKZmpowUh0x51Ud8WzPuU0g3dGMGL3bo+1x+dmcR/wv/MjYbp3Po3bF9bLNdUOvW3Bt0N/RfN9AxuTJQ83O0NsUvOEdxcH3Q9YzJXHPFesZxpfbmGYtnwS1HsrU4hHldn831LSVf6EaHlMroOtXRGTgkXibrf3Y8uy66Bq2ce12WkvvgppNjXsOfvdq+aZZbz2doYROllc/TkkpGiGEEEIIIWQ2wRsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY5PoowkinYGeEGntUcRkE/lvlBCxNUHc86Dy0QyYvrptyMQ96/jnocJv2115bsK451bXzyIio42mavOFrnraRkHrSE8b79wyouOxxvj9ddMIOHX8cxv4nUqwD9G+h1HifYh3nhCwQsmRzsBHg7wbyGODvDkifhy0jW3WPpMg0nlUxW1aj81oosem5ddlofT2hfGFNZQxy/n2NSmUkaYwmm6rk/e9Oqa+1D4MYptBnCvUyYMoaH/Z0dlIj/DinjXgfJFznkERuH4UdNxHA/03wFcSeEyA56YArzuwUbaaMfOlNisfwsCj/sbYWs7pfB4xHht7zfFWU58D7Hqqc0KwLcr4ucs2oYhn81IBvwm9UiDRrwDPD6Ypx3OTWqeoX1bcs67ZnHrWNQuizUXEr9nAu6J9YWY2sOG03+vRsUGvbeDR8c9b23O8Nlv7seXZZesoautZdnYavMLBNzxFVyVA/74q2vF6zoooT/UMR8ZG8IkNIYQQQgghpPbwxoYQQgghhBBSe+ovRdNUlRUFUiUdFZn+uF1P47hnE+8MpgeN3EzLz4I2JT+zMrUhJUWzMjWvzQ14bVpupmVptm3MvMFZf4eWeYYYTo9vm9Eyvk1tpGdbx/qaZ+N+ZLd9dIpkAqANUXW+1CEtGW2ehM3GNifGRKN4Zztt2xrteJs3n42CbqvjYsxowXTbqK8pK9Sj+caYiS9XNWNjYLWEwT5uD+KeEyV8tg1FOnuxzZN8bJ/URirhGmo/Jh7qvXtTu9qhUNbjt5Wp0h170gHxuEHcsz7n+qN4sjEb26wjcFtb/fkea49fj8aAFM1ei/Xy7Xpq6Wgo9bPfPy4rdfoPSJtlt6n3FncgU7PHLpL1SLytZ6cAJEVLjXS259zU+PIg4lhNBNIzs3x9Xrf7F/zW85ZnpfZq5UZK/zdTa4uoNiPtB5HlXs3a35aenM7Us9027fixbl8/EF0DGPVt5ZuqybzCQMD1Dkoru+AY90wIIYQQQgiZTfDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189jk2BeQcM/zYJgmoBXWEc/W86Gnm0HEsfbY+G020nkA9m13/Szi+2oCH4323xRjoM2fT/tqthn/jV6+Xc9BlaVrtdE2/rmhxJd2u+lt2jY61waShIJ9X4B+ztOZBsGZ0TERlb0yGX2TvTJAt418NDAKWkwcctCmxjFxz4WKXxYb96ynSzOo9twMmPm0xtiMKS0V6Wz9Pm2gY4Y+GuPH8eI2TZu3L0ztqb5Zsc1o35Oe41o7/puwX2p0buCxiXtAvGnQFkbeqs8ZbUGUuedJiLdZtB/GRt5uVz6E5mP+GGP6lQIZ598Gur57kdXW82GjdOPnQC9mNzDFgYuTHiPw94I4Xr3ZkFeiX+eAih4b6AsD0eZ62yNfGIp3ttPWK+l5V/wmr55t7WlPsfXRtFQNW/+NPg5QXLk9lrT/p2G+RBn4wvT1xwysPWOoUAI/S0X/DfrtkRk9zbhnQgghhBBCyKyCNzaEEEIIIYSQ2lM/KVpF7KM9JEfST4ODGEkgU0NvjvXij61MDcQ9W7mZnrayMa9NRTjbvkNWwubFRPvzafkZkqmNmmfF+lGt/X4N++gWREPr+Gf0qDjcT937BQQyxPHPUEEW1FMfIp5TpWemL2qDUdCoLYhpNn1B3DNs0/Kvto10Vm+FBnHPts01VVvLr6eGkqa1zRubC1XCUGpn+ubEZLvEfYHinrNkagjK1irhGl1iVLv1S3zFQFbcs5cJa9p6Id2xseZAbgbPqwArwdERuK1t/pgj7fFrhX2lgI3gTV1Pfa2AMh4RT/IV7HPdtWnXRTXaN7XrcYKLmtpP9vxQpsnbsuLfs6T9ahi03jnySShhU5+RfDL4IRaXU6LfejkgaWVrZHwZo6YNySkboGYLIPcK5ZT6eAbSSrMuwTXHbx3/aCOdvZWJzxZeJ120qVsNBzUA4BMbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7di2PDdQlmq6pcc9An2t9HXraxh/rtgHjOWmacVCkM24bj1geEDQfiJAO5hvr2s9ON4woUn//ARPVa7//dqWxDrxJal1HwfYONalp+zdLZFx1PksvvA3AnxG2ue79bN9A0x0ZX0KvjOcBabt4Xzufqg07nxfx3PZryGn/jWnz50PL8/9dB3qB0LaxfhwQ24y2aVX/TdU2Ug3XcL6OfeffE+Od7XQwXyPe5vsVjLa+qfvZNn2A2uWpug/8CWKmU8+rPg7E3GqPgvYniPgeBRSPiwjWq4h/X+ud9DwK9uvp7Q3NK/YclOZRCPx5yH8DfTVVr3FgmIy4Z1TryEfjeZpghDTw38hEHpv47zmNrb1SrfioeZ1FU9WwfdVFatxzAxxbNmbd+sT0qwocuE4HNeTVM6pRO6Pqa2PIU/1eCdemFF/jTvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT28sSGEEEIIIYTUnl3LY9MHcjSZTSWKDTwnsC3HR6Pbxry2OaptjplvjhI/Dpjl67ZgPrA8tJ5NNWbDvrcHTNtto7d30/iWCvVeA+yxARprq/n1Xt7Sm3fTQJDnpSKV32ODfDPBe2vi07ZNvHfVmH2oPTDGi+W9n8a0yZiqxXLAa/KWYedTvprCiIz9d+qYbWHfU6G3DfDRwP0L2nr2rhrSe5oV3mODPAl2RuRXUHr68L0faiS7fsCbA9tyzquJWG9BW003zXtsSs9jk/5OEOyxVJ/BO09EzDa1nhe1OoX5TqnvBIHvEsl6Jwhoq3r2CK6NoK/2yqC2YPt277djWte6rdm4xwb6xEA956BrL3iPzbayaz+RdJ9YjmfY/g71fsNY3xKoE1h63h/sAQX8ew6c6HI9NhmPYfjEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thQNPL4T8EgdPZ5EEcN+FHQ87rnViMvLRPw45IGGlX+NT1vZmB/NbOdTUjSzLfy29OVpuVmwnm68tAZKf76RjG3TAFHQ/vb2miYTxjxzQKqQDAlb6nxAsdclCto+x1bHhZV4IbkbiHT2npu326atjLehMUG8tI7JnEzcs79N7TggClr1DeI2kUyNOrUpxSVK0bx57B+ATM0BuRmS9cA2XTRAumNlPPac68m4gvOxRNGSHCsp05G4ze3+weTF41Y8q0NZj+2LpGj2C7pIPzEx6znRuToK2p5X9Gx2VVLPARP1S4wsz5JPFon13IzXc/BP8AVoA7UPZYlZcc/x2ObGiHpFBYh7zsH7ukaS3zZfSkvvgrhnFF+O6lmtgY02L1TN2q+nr6NBjabK8nbORykaIYQQQgghZDbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21M5j45ARoKKxItDgqs/Iu4E9H7ZtXBfZBPOJ+JHHTaNn1H4c6+MZEBQTrSOdi2hbMJ+A5YG4Z/0dwljs+LbJ2aaeTB3oY0ONtZ6w9VQPd05OpDOaD/tv4r6ZwHOjo5IDH40W75p90Y63aX+MM14ZbzqIkAZxz3rStrl4ZmngufEinY3GOdULhfTuYD+h2RgT3X9ckSgP13J24PGEsboo0hm12eVBv0KaF3VHe9yfkkoQgaumG8ZjM+bFPfcqOjfeZjeAngx8S95k3H9jj0LkuSlU3+Dr9SI6N2enJfptRGzNOtBm5kuuZ+sVifvC0O+5HD81AnlsmqNltE37yxyoX/Q7KIh7ttu71NvGDKx9nKiGbAw5iij3zDngBzP8fSFRdjYFHiwAn9gQQgghhBBCag9vbAghhBBCCCG1p3ZStMogOZIBRTrH+tlpJL9qSHy+HX3j0rCmJymLt1kJm54eMPezOrbZzqeXkbM8XzIXl9rt6Ds+zvYJZHpV2iqry8DbwqcCKDdD5MgUwNP+nHhpr29p29S+MBHL3uNoEM0sJjLci3h2VlIGpG9qTGeiOLXcLJDeBfHWRbyvt01B0WTsC6BswTikBSBVcI3Et2Cnys3AeSYr0tmTm4ED1F4LgeQnjMdNl/ymouU6je1t0DMdFD1doG0BoreDw0dHM9u3v6t9YaU7eiAYBR3sQiQjisfIVwUq/YKLhZoPRDPDegZjhpHOaesiYuSTqXUxAUiKVmwHOd0A9HvG/w7px2hhDgQv/jmQqUU+71g51WSXryPKzXHgjRmXbAffvMumSDrnPg6f2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2lMPj01V0WiiJyLVb2OnA68MiDj223wNZlPiMcq2b0P1bYD5BoJoZv0dbNyz/myWV6QtL/hOwCfUapho6HK8DOE2Bd6kIAo6Va8a7TUB/fLbVPTRoEMEtwGhq5aiB74ZsD45kc7AD+N7bECb9eYo/4317TgQYe3pj7O+L+hbcT+laI7JNNFwoYelC8k+GhSxDPwK4ZhxT48ex8bj6r7BkEDPjzwBCBTTbD02yMuQCvpOE3mI/FcDGL+C57+Jx9xaX4nnu7NRvWrGwGcHzyvAf1MVZP+BvjDbFq9nFPcsKO4Z1HpY38ifkraxUDRzab5wY/vYeBuINkfkvb4ix0+nJpytZz1hFup5c+K+HevpQb8LYJ122d45hz+f2BBCCCGEEEJqz6RubM455xwpikJWr17d+du2bdtk1apVsmDBAtljjz3k+OOPlw0bNkx2PQkhhJAkeG0ihJDZSWUp2q233ir/5//8H3n2s5/t/f3UU0+Vb33rW3LllVfK8PCwnHzyyXLcccfJ//2//3fSKzshGY+qqsZWJkdBZ8imwmkdo+xrYnTkchNI2mz8csPrV4A2fz5vTLi8uIQNzWf7om1RdZ/lxDjqvlOh/slRc6T2DeKH0RipErZgPiuv0BIv0Neum5aKQZkakpSlxz17j9SD7xAZQwRKyqxMD8U29yTSuaoyF3+lXYZ+X5vS457BGJ7EyewJL8rWLhvIzcDb36F0R0vRMl6LkAOSkem2YjQuResV6PuGnfVnu03jkjL4FnfVtyjN91NtzrShLTElqe5ABplaz0HcM9y+3ccQmaBmJb1vVZA0Tddwr+o3T5qmPpu+Dp0j9GRwfotHOntR0DmvPkC/L7p93wT5b6drck/Fo48+KieeeKJ85jOfkSc84Qmdvz/yyCPyuc99Tj7xiU/IMcccI4cddphccskl8oMf/EBuuummKosihBBCkuC1iRBCZjeVbmxWrVolxx57rCxfvtz7+2233Sajo6Pe3w8++GBZsmSJ3HjjjV3HGhkZkU2bNnn/EUIIIbnw2kQIIbObbCnaFVdcIbfffrvceuutQdv69etlzpw5sueee3p/X7hwoaxfv77reGvXrpUPfehDuatBCCGEdOC1iRBCSNaNzQMPPCDvec975JprrpGhoaGerMDpp58ua9as6Uxv2rRJFi9e3JOxNUjpOKloPUWqV8R6TEIPCvLjxH003nxBmxrDPKjz2+JjBr4d8H3RulSlaqRz2NaT1ZlZpHoyUj01pq/17eTEPXvTgR8l7nnx9LpB3HO8DUU6Q/8N8AnBcapmf2f4nSqPOUuY0mtTIZ1dniyhR/4BGJ2b4UkA/hvoM0DxsGC6ql/B+g48j42Kys0dR6PXzV432l6/+Hw7ppV/AMZrW69MZIGmzZkD1vPc2Cho7xxr/DfodJSzm6r6whLrOa8NGBJRtLkdBv0WwLMmYSOcrU+s1yAP0Y7p+DFaeCeCuGcsq9Yl7Vpoa92LmU85kWboy7KkaLfddps8+OCD8rznPU9arZa0Wi25/vrr5fzzz5dWqyULFy6U7du3y8aNG735NmzYIIsWLeo65uDgoMyfP9/7jxBCCEmF1yZCCCEimU9sXvayl8lPfvIT729vetOb5OCDD5a/+qu/ksWLF8vAwICsW7dOjj/+eBERueuuu+T++++XZcuW9W6tCSGEkMfhtYkQQohI5o3NvHnz5JBDDvH+tvvuu8uCBQs6f3/LW94ia9askb322kvmz58vp5xyiixbtkxe+MIX9m6tNX2QFaU+YkexzQ0rL0Nxz+BZsZWt+fOhiGUjDVOPD5vmUaLfBuRmVkLnydTi6xKsd7Bu8e2W+nZr1C9PsgYe1aJiy6nDVGlAjmysyvh2nJxXVhv5lyfVguuNZGpxuVkYI1lG2wogU6sqi8uJX0Yx2UWqhC1Dplakbfpdmqm8NrnChRKxbkD9c7wfjnRWbcEb3iP97LSVrujPk5D1pJ6rIaO+FE2/1R1KzzIWAa/vYLsF20ZLyuy6of2k5WZg3wdR0H5Pf6qITYTLqAySf/WinsGYwbYHbVVl6I1ebSdVw72Ke85ZtyL5PBCPGg/jl0G0uVen6PeUadKLS3gXQdAHUPk9NjH+/u//XhqNhhx//PEyMjIiK1askAsvvLDXiyGEEEKS4bWJEEJ2fSZ9Y/P973/fmx4aGpILLrhALrjggskOTQghhFSC1yZCCJl9VHqPDSGEEEIIIYTMJHouRZtJ9CLyF/loqhJ6TJBXBvhaUJuNZlYCRxv3rKdQhLRdntcvow15jEKPD/AmQb13tGn2UbFkU30zcD4R38uCfDzARyNlaZq0Ft3Unp4PRjobnXp0IsRPIrXLKLr2s+Mi+TOZwai45+DvaB6FS/UroHFA5G5VT0LO6w36QTGaHvfck+WhOFzxNze0S4DoXOgrqerbhJHOPdpnOcvXEeUoChqNAyOkQV1OcCLt9+sdrI8G1XCq5wb/tvHbShjJHq9n7HfyGz2flPV+wa/kGWnS5+vW1q+4Z0IIIYQQQgiZifDGhhBCCCGEEFJ7dmkpWipVH7cjaVQgqcp4PGzlYF6blqlljamlaAVoA1I024bkZ6pvznevSs/iPnu1kIpUjXFO/Uo50ihveRPJpuKlEEq1dJuOY0ZR0EimlhNTHRtfJO87eDHSU6t7TEjG7NqXSrceUUGKBuU5WRInMB+Q50DpTkV6Ff2sI51lzH9ru32rexV6JaezkiatrEFtUKYG0nFtpDiOf+4DvZJWevNVrGew/MlslarWAliX20crrk2cqjWMpKXhiPFXXRSqLVDTpUor0RWoR7HYO+ETG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe2aNxyZHo9jvqOCmEfMjD0oDCf+DcbWvpf/odbPr2YD+m3hfuC36EL0dsAvERE97bHCJtLTAR9MrgDdHe3qwNwVEQQfLS1+1qtArM4OIeWwMyb6DYHwUBd0Hf6AXD2uacpJde4AL/AnNni8jJ97a8yTYWF/Pr5CxZZD/BngNdD0VOdG5VemVZyy1nlHt5WzejDjzfuCMT6zX5NRsuFET45dRnDjyjCHTmAWN2Y2c3/DJPQkhhBBCCCFkhsIbG0IIIYQQQkjt2bWkaH14zNirJ7xImpXT15N/FVbShWRc49+kWTRAm51PydsyvoMGxUJPRC/kZruAuiwkY7P05el7EA2dIT+LUZo60ZI22+ZAWypWpua0tMSuW/qwnowtiMkGUa9eIq+Vwu2SVVxLXOFCKU43ct+sPckxUqU7011J8O3rY/at7b2XolUm2OfxeFxf1mOzkSP9JmrzutlzV4/yjwFQWtmLekazBXKrauNMCaPbOx9LN2caVwRvp6AJSCS9QzZLBlnxtQiT/M3CJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbsWh6bDKrG/vmek3j8MIottiAPSrPielqvTL+pup79YipiHWtJ4PmId9VlmbM5YV8UBd0rUr05qWN0YcaW10xdr9lAVU8N8mfkjINmQ1r7GeRXcNu3m78Mjrchb06/SI3H7dmY1ZZnPTf+kNVWNMlHlkJqPQfHQdryp/tabz1jblT7xKbeY5N6rFfdaoFlrPJAehDQhv4WgU9sCCGEEEIIIbWHNzaEEEIIIYSQ2jNrpWhk8lSNce5FhHPPmEnrMt1Mx6ao/BybkGmikDRZRC+UU1ArGpfuTLc8pyouiHuuCSB6O1CCTfGu0ZIyK0vLkpslxoln1WwfmO7an+oarqyItJHOKDIcysZSI53NjGh5jHsmhBBCCCGEzHZ4Y0MIIYQQQgipPbyxIYQQQgghhNQeemxqRlVfy1TTlHqsJyGTpp52BkICpt2fEMQ9Ty1THn3dK28B8kDoppp6rwJm8Pfw457Tme5jD0aNTzWJ9RyDT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT2Me64ZbVePe9E275nJbGGakzEJ6RUuiHmd2gjaYs6cKV2exU114m6vlpc4TmH2b23jn/X3mGHfoRio9rM6PPammOlevmaSu5S/PgkhhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7aHHhlSmqt+nnFFazhm0LtPNdGyKgtuf1Awn3TXgyJ5Stczt+Un7CWybbjLrV0yxV6YqRaumP0nM5vW2/zRveuurSW0L/Dfoe+hhcmq2D/6YafeJTXENV/120NNjB0UL0eOg+XKWN0n4xIYQQgghhBBSe3hjQwghhBBCCKk9NX3uO3mqRutpGZWVVHltGdoDJOlqV1zP9hQ//q66nv1i2qMTZypWvYKeDjfS+gXzWbWBnmhMwX7Ry2iYYytV+jbBes7Y8pqp6zUbsOfcIrUNSGd6JG/T0ih7CEx5xDEAxT0X0xHr2w/5DBwzcXlWatiHE1LPoqFRzSKpkotO+N3MfFMtu2yY7VJWjHvuFeh47sWx3rPzBZS3ZfY38IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9u5bHpg86017JCcuMaGTUt1T3oraf5/kxm6JUwsi2K0GbnU97iqrdB1eNhbbLr8oMkpD3jkl4XvqyfORdSfa1mDpJ9crYtlQKqyEH65mxCG+cYBl6+XZ9EteFTCuFK5I8Da4XXpkM347no0E6ezDkVGA9CR4zOe45xxuDInC9fhlt3v6dgujcIJl5/A8OLaRqPaPZgu07PtCMO1UOjPvEYK1PAdBvA/qG27ua9ys5CrrH8IkNIYQQQgghpPbwxoYQQgghhBBSe2bwc9/ekhP/W/b56WHb3E+iaOgy496zrcYpQb9e4cni7HdCEdagL9wWIF67Z+wCujUYtzwVoKhkqxvoh44AScES46azpGBTsIFnbLz0bMRJ9/NEjnQHynWQ3kzXdsbJKvHN4c5oV6yUpd+nx2LOgPlL769kzvu+RbSt23RqG14B/Tl9jGT52RRcwwpTwFCaBvWTWqoUr72sUg8kmvH93Q+KVlNNjfV8/MnUbGVJGRojNbI7Z8yqfR6HT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO2ZNR4bRFXdJfJ8tG1bhhC/Dfrq6GTULxxzXOBYGrGj3xZfF7s8FOPs+336r2vNkRX3RBvdJ0BiN9Tlw/ki/Wxn1GYHDfqCfyLRfpUg9VZ5XgrkvwnaGvG2VOx8id9hR9/pM73klC+9OX0g5rEBZHkSPEtCPOY2J1oV+hUqRtKi82iO/7FRqKtOa47fJu3s9bL0ylcRROe6tDboOwgWMv6xKKvNNx0+UV3f0E9WtZ6Dgo7PlrO3q/p0G2gjez6x3nhsqtYw9N9keHEcqq/USOcpvBjxiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7dmkpmgOPMtEbWTX9iBi2Y1hJl44/tm2eNAy1mQeypfe5jLYFcjOwPK9fRluwTb1lxLd3zr7od2R3raiqvPOkYOkb1Mq2tGoMysaQ3KzRME1FtA3K1NQ0jHSeYJv5T/Tj+do50j/KxmpCTIqGNDFWneMdW2aYhou2YYmT6/ZxxzBANpUTf9xv3ID9SbK9v8tDkhsxu61yBC7oC6U7GW1oXapSUbIYyC7d5OsZSaOC1Qr69vfHQMOswFhQw/G+MfBvm/S4Z1TP+DxgF1q1ZhPjpVPaMpLf+cSGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNSe+nts+iCfTNUVI89Haf0vyCuC4p3BvWcpyJtjfTyl+mzintU08vvY5fmenvh8wXoH6xbfbqmeJtQP7U+4r7NyddO7JnteMlatiE5gvHECzwn4Uibu2It0hutt/Dd62kYogyhop3w0QUx0A4zpLU/ibcA3E4C8MkFb4s4B3hwLvTlTS+GKThQv3Pb68MnwqOmYX89vs6N1/KM1EsJYXf3ZpTYF9CriOYrxJ+goaORP6FncPzC+BV4G6DvQ+yndZ1AkexnMeTTXrxADriowjaEhU+sZGEKqesYsqL575stVNZzqqZmInHVzoE6gv8urPXD+QDHkOV4zRZFw7kjpsxM+sSGEEEIIIYTUHt7YEEIIIYQQQmpP/aVoicAntRlSJfwoXsm2ApmakolZSReIbcbjGEmXni9oU2OY3Dy/LT5mECENvi9al6pMFHOY3taT1ZlZpEqlciRNINLY2UfsSNJWUf6lJWYOyNSs3KyAkrK0tvAJPhinKhlys8pjkt6j4p6h0gRIw3y5ohlEp5Ub2Ycv5TE7W5/WzZhInlKANhwlW63YrDxHT7s56T9JoDQNSL/9fvH5gvac2GYUTava7P5Fkp8iUdYzKXk+kguBc3xqPWetd3IsNv7C8LcAnDONhn2VyECzB6PGCTZFVnx7937BOFn7Im0/BVKy1HreCeOeCSGEEEIIIbOJ7Bub3/zmN/KGN7xBFixYIHPnzpVDDz1UfvjDH3banXNy5plnyn777Sdz586V5cuXy913393TlSaEEEI0vDYRQgjJurH57//+bznqqKNkYGBAvvOd78jPfvYz+bu/+zt5whOe0OnzsY99TM4//3z59Kc/LTfffLPsvvvusmLFCtm2bVvPV54QQgjhtYkQQohIpsfm3HPPlcWLF8sll1zS+dvSpUs7n51zct5558n73/9+edWrXiUiIl/84hdl4cKF8tWvflVOOOGEHq12hKxIvGr+jDJRY2x9JSXQ/Ob4cba7cf1m6M2J+29Kr58DbdYroyOk0fJQ9HR8PtsXbYvqnpp0LXhV3XhVYGwz6Iv72ValYa8aIxzMZzXWcX8K9LU0G/E2b76GaYq3weU14m0w+hqlZga+ociYE7WB5SW3AXblWOipvDYV5Y7/JgIdP579JvDKqPOzLW0UnYsiWb0Fxv03UHc/CZAfxvPYGH9Cr+JyNej7hp3153Q/DPIdwEhn1RZ8deBJSPbf5BC/jITXLe98GK/nwgzq1XCwfVWbOd68rrZmreclZ38nUiB/l6rhXtVvng9cfQ46q8+oZm1bGeln2rJ8NNBv1eX7oth0Q9YTm69//ety+OGHy2te8xrZd9995bnPfa585jOf6bTfe++9sn79elm+fHnnb8PDw3LEEUfIjTfe2HXMkZER2bRpk/cfIYQQkgqvTYQQQkQyb2x+9atfyUUXXSRPfepT5bvf/a68853vlHe/+93yhS98QURE1q9fLyIiCxcu9OZbuHBhp82ydu1aGR4e7vy3ePHiKt+DEELILIXXJkIIISKZUrSyLOXwww+Xj370oyIi8tznPlfuvPNO+fSnPy0rV66stAKnn366rFmzpjO9adOm8ALiP3dMHzyxK34bLZCUBXIvIDfz2rA0a1TJzWzfUvUtwXyjzrbp7+CibXY+TyaWsZ5afqb7iYiMlf508jbNkPelPrqt/KC4X5HRqU9bwVPkQEEA23RjPMLZyq2gpM1KvJpKXpETv9xQCw3inlVb06xcc7y+nG3zJHNAppb1fUFf1CbpbYxxxkzptakskmQRnlwFHa9AumllNTA615M/mcZSd/MXWCg5UBglG5e5oBhlBJLnlHPiUrSqsh70nSaOe473FSQp07s+J9K5jPSTCeRmaj17pd5DuzeQYsFzV7yetTQtqHU9KJDFBdLKQIap92H67wR/CCSl9HVypYost1HQdjrGpF5B4p0HTN8S1XPksx3HtBWgDUk5YZ12acup66wnNvvtt58885nP9P72jGc8Q+6//34REVm0aJGIiGzYsMHrs2HDhk6bZXBwUObPn+/9RwghhKTCaxMhhBCRzBubo446Su666y7vb7/85S/lgAMOEJEdZs1FixbJunXrOu2bNm2Sm2++WZYtW9aD1SWEEEJ8eG0ihBAikilFO/XUU+XII4+Uj370o/La175WbrnlFrn44ovl4osvFpEdMpPVq1fLRz7yEXnqU58qS5culTPOOEP2339/efWrX92P9SeEEDLL4bWJEEKISOaNzfOf/3y56qqr5PTTT5ezzjpLli5dKuedd56ceOKJnT7ve9/7ZMuWLfL2t79dNm7cKEcffbRcffXVMjQ01POVzyIjxjI50hn5b0xbG/lIgr5xf4pu2w7awtjm8elRI2DUbXY+vYyc5fn+m7hvZkdfFPecvv1jbZUjS3PiCfsAitSEZPhBUPwwjnsGfQN/itoXTX/Gwmszkc6ex8avPe2jyYl7dt6YZj2Vxwb6b0TMdgOa7hzfDNgXcD5EH+JyZyJTeW1KjXtGdZDsv7HxuOokhNomyJf259MRw/aYmMCDktqG0N4Z67GpSgnK3iEPAvLRIK+M9Q9488XHtHWEPDbQR9OHuGd4vQFR+YWNW06tZzsmiHv2hrHn5iDOPO23QE79Iu+Xm5P93nsRwb9nHPhNio5RB70yZnll/LjwIp0zoqCxLyzSL0LSOfdxsm5sRERe+cpXyitf+cr4wotCzjrrLDnrrLNyhyaEEEIqwWsTIYSQareWhBBCCCGEEDKDyH5iM93YN5t6j+Eqao6CR3vqs32k7belS9F0HHIbzCfiS7WwxMvEL0uza78d01rC1o6OGcwnYHlgPhR9HX7/NClaEOmsP1d8My98m/QMBsrUwBP1PLkZkFTZx+9KYuba5nG0lgrkREEraVoRRDqntXmx0CL+P+XYNk/C5jfZt2l701UlfBlys1SVRI9erE0AhUtU+KE+oNYExC+jeFyvza5g6XU0y9MyF3vBs+dOvfxqoAjc0sh4Wkp/YiU/qfHP8M3sE5z/vc2BpDuB3Cw+X1F2/2z7Bm1x9WL6zpioH5AselJZm/as28zaadklrOcC1bOZUceX2+1kz9VqqVXjni1IitYeaETbdDQ0ipBGv4OCJPcSHKO2DUkrQT0jaWUBYs9TpZWInZupaKfvKz6xIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1p3YemyxcmnY4R3eJoqB9P0gj2jZWGh+LibIdVe2jhb+L9LSNXx51ra6fd0yPqs/WY6Pjpe188eW11X3xaGnmK4H/JmPbYN+SbvOa6mKVwQCfRRDFmeirQfPl+G+s58TTWIMo0GA+7XOxXhk9TtPEwOpcWtuGxlRtNnrai3u2Ou3g+3f/vGPd9HxgWwTbG+xEMF9W/DOZNEV7x38TAY873c/q0r0iAZ0DzyGIztWTRiPvgB+kNMdBA/hTUMSy9tE0jHmk1RjfmG3jsfG8DBXP6uj6HmzeHB+N9ryA+YJIZ1U7wXwoAhdE58JY3aqg64/tq3ebPTa8GjLeTG9x8XqGXkXgU9oxUNyfAv1WCuTvsm3l4PjGGGj4G6NRVPvJ7Vm9yuB9Cv4kiF/2vV/xhaBI58Dr4s1nx1THwWQjyjPinvnEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thStB6DH2GGMsYotNs9Ox2CblZSh2Gbd5u8+LRWzsrHtWjZmlq/bgvnA8tB6apmalZ6NgWm7bfT2bptHsPhtvPE29GhakAykH/RBVpQTBY1kYvrZsZVboelAmqWjoI00zDVV/KWJX3at8Zoqxoy+oaVq0c6nluGCNh0hWsTbjEwt+CcgJClrdO8XTGfIAskMIiJFC4676ITgOtD1Y2VjqrN9w7sXzx60gZXRGjIg4xGZ4LyaiJXuNNV0e8hI37y4Z39jIGkaetu8Jz9Ccbgi8G3sOAJXfW7bNjAflPVEPksXmY83X8Z+QgOhmtWz2XMlkkbpfQHq2Uo5oUwaSS2txLhqDat1bZkdNTbU6Npvx+KrRpTH6zl4DYbua2VjIO7Zk5jZVzb0O6I8YbMEYwP4xIYQQgghhBBSe3hjQwghhBBCCKk9vLEhhBBCCCGE1J5dy2MTaA1V/GWgs0Ua3LiOODV+eMz4QXRs5qiJNJ7TGPOm0z02IO5Z0HyNeFswX6trPzsd+IbU9w+WlxHp7PlvwPbO0aRW1dX2zPjQi2FQFGfQpn0l/saA/hvtmwnagB/HxigrvW5h5wPxyygKumjG2/y45/Tl4bjnnL7dP+/oG29DGnaoKa/YRqpRlEUYhypdbAdoe+vj0P7zIvIreLp0ZHQwbcrnYc8BWiMP/Qnie1ByzqsFiMfVHoWxQX+MAc9j05u4Z89jOYGnCMbj6thm60lAbV52rz+k5yOwlhPtZYCemoy2YJehfaiGCc5dnlnGX6Sq4QL5b4BxJ/SNFtE2mzvu12z8d4L9faEJ457HV9xGOrdVDbeCuOf4caAJXl+h13MCX5jnq4Ex5PYcEffKwIhy7b8Bkc4w7tnSpS0lYn8nfGJDCCGEEEIIqT28sSGEEEIIIYTUHt7YEEIIIYQQQmrPruWxAQTaSq3fDHSX459hRrhZBvSKKF/JWKOMtomIjCmB42gj7mvZ5ga8tiE3Ot5WzvHathWqzfmeHj2OnQ8tb6TU8/ltej77/eC2sd4ksL2RPtZ7VwESu4N3HCCKPr1oBHllYv1s38rvsUFt1kfSMDpm3R684wb4UbTPpenXSaHecaPfabOjrRltEzVt32NTtuL+G/QuHmMvS35XTfBOn6p+GKRvrwo9N5UoykS9N/TY6B1q2+J+BfxPkXqBwEyB6g74E0Sw/zQV6y3QHoUx8x6bweb4tarV9q+bBfAopPpkAw+Cfe+H6ht4ZbRfwb6rRvsVrFdG9w08NsBHg95xE+nXU+D5CdSzq1jPehlm2zvkUQMeFPRbLwddw8F7bJTHZiDj3UvYM6wnsMdG0HuSvHfVmDb07iVQz4LecQM9NomesZ3d7bEJ4BMbQgghhBBCSO3hjQ0hhBBCCCGk9tRPipbz6NB7ZGc1R2mxlXZxbfWYr21kU231PK1tJDA6ttjKrUZN3xbsG4971nKwAfMs0ZObKcla2OZLyvSYKO7ZrudIqWOi49tCxI+Kbps2vY3DuOfxz0imZnGJ/Xql+QmkYdGJCUhc1UDChmRqSH7lScis9Mz0VaVhH0druZlr2cfo4wMVLbOMtmobMwvU8jNz/HjytpaZL1EWF0rv4tNou2HpX7wwskoPSURIzynGRIqd5Qe2t3f1AcdkqBqrKOuJLsBId6ykoxFvCyLRUexsYlyule7o1x205/pjtNR1DMl4LCW6vnvx1vHoWhEj3TF9YaQzkOdUjs5FbZppkaLFl194+8LujNQF2kETpZUiMM5c1zD6DWFrr6XsBIPmdR1jqoYHG/5vrdS450A+CX4HQTll0Db+MajZMSUNAzHkgdzMazNjej+2zHxIptYFKL808IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk99fPYIKrqTkGkc2m8I1qrHHo+xqet56SpzAxjhYl3BnHPI4XveWmV423WR6OnB0rjsSnmqM/GY6Minm1ss/bcjNg24L/xI5xtWyM6jbap9TTpfRPGI8Y11tDAUNVX04f458reHKQ5tl4RZVSC3hzkIzHttq/e/VbX63lVjJ5fxz8XLSOwHVODDvinMafmK43HRnt8yiDuWa+LmDYzDbdNvK0Xcc8BVdtIJYoyoveuuB8CT5qumRy/AqCh9POlHRT4xaznpmzHj5828KZqP4GOdxbxPQpju/nzzW2OX6taZr4GuBbr5QdeIBCHiz0JfpMXgYt8NBn+G+ijgdG5EiXFv9AZJrWGUT/gDbLXH9HnWVvP3jnYXgzV6zrshcv4QXUNB54q8FvPW5zZiNonZn00Y7uLavP9N7b2vVVRn4PfQdoLZK+h1jPnxZBbX5hqG7Nt6jPy2IB6Ds5XqC3z93oxFv4tBp/YEEIIIYQQQmoPb2wIIYQQQgghtaf+UrTUx1mBVEk9yoRvrfeH9KVR5lG8eszacvYxvZKimef9241Uy4vGNI8udYzygJGpeVI089x8i5KbDZhnerrNxj1r+ZmVqel10Z9F/Ihn+33HjM5HS8yCCO3EN0hnvakXRRBKYlu/8J7P2sjWaJOfEGtlAmqTBtKHREkVlMuILzezK9BUcreyZaUAWrflb/CGms+ZY0Ta4/XmrNxsQEkUjVymbKo2Ox+Ke7ayNbU6VgqB9pO33ZD0L0emFutH+kLRDmVJ3Tuqjzn7E7xh3qsfK9100Ql/tax0Bcoj4zIXZ2XaWtYDCtHGPc9rbut8Ht3DX+/dGts7nweBFM3iyZTtenpvX49Ldex0A0l3kEwNveEdvandyoF6GJ0bQ39DFFGO6tkuH711Q/cNztXwAqy2r10gkkm3/Voo9TUG/NazaEnZHq0Rr210j/HPuzW3e2229mPLC6Roar3td0A1DOVmqC5NW8OLkAbzgXq2wHru1p9xz4QQQgghhJDZBG9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/j40mIwJRtwWzVfR1aH/ImNF9ah2ojn7e0dfEITfGxYTbjXelqcZ5zIgdm0qE2DCCxKbqO8cIKLeWg+rzHNM2Pv1Y2/fY6HWz6+m1tU1b23xf7ccBum3raYKRnmA/Ie9Vsq9mEjrmuIvGUDXyF82HPB9WG+3FFtsZnemr/Sl+m/bV2CROz89m9z302Ki2Ab9NT2u/jYgf9xxEOqsynTDuGUQ6w7aiiLYl70NDsq+G/pue0BgTaeysj8RtGkS3Az9VAepHkC4dxeOqA80OqU+dwXFuvWU6Ntr45draBwCK0kbg7qE8NtuH/S813Nra+byhMT86ZvgqgKLr5x2dgcfGehLUNIp0Rv6bHE9CanRublRutA3Ub9CEahZ4Nb02cP4PUsi15yTYGKqf2fZ2d4vnsbHeFfX7oh3/7WHRXhldvyIio8PxNlv7seXZdUFxz7aGRdesWZyuZ5s8DSPKQRR0L3xhlm717Rj3TAghhBBCCJlN8MaGEEIIIYQQUntqIUXzIgErjoHePh/EE+rHfjY60JNG+feFTaWzaZvHmA0dadyYIO65rSRl5hvr6aCtHW9rqmkbBe1J0dqDflt7XIo2YuOelcRsBMjNbNxz207rbQPkfYEsELS5xJoJ6yLyeaKBKpITqZksR8qQCXjHQel/Qd3XKsEadns3E+PTzaNqb5E2ClprawKZgoqQnuOvXKnkZ/bt6Fo+Y6U0uq+dL5SbAUmZlj4gWURGBLBuw28Hj0s2SG+oEveMpIVBdK73pnYzWzwdHb+mwA/yNaui5Cmmfkp7/VMr4Mb8vlo+M2qlNKpo7SsM9mo+Or78fbZF21pmo6NXL4yN6fU0G1FNh9Izv6te1aBNS36QrAe+xd1vQ7IeGOnco7hnb0hUs7Zv6qsBcq63ioZZIoqCLmz8PohI17VRmpodA9JKLSnbq7nFX4G9R1Tbo15To9hnfHlmTH3MBLI4XcOjfputYa12C9ra8bbkKOheySczZf/2+EPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT218Nh4QI0mivW187luHx+fjkdFav2mscp4Ot/CRDpr7fKoiTu2fpjtxfhusZrnfrC5PdT5/Kjx2DzWjsc962nrE9Jxz/b72kjnUe2xMW16m1r/DdKUI1MCinGsDTmRzpX9N5HPXfrq7W/9OP68RvOrPpdhEK36bAdVvazHRvto5hit/4COe7Y+obhvBnluUDR04NFLjN7GPpoJpklfabSdNMbC87ILTHHjIL8c8mFBvwI6zqwnTTcFWb3Kr1bY61183ZzR6LfHxlfInvPteV2zqPVI5/NzFv+X17Zva/P4os21cLSML69U0w54ElC8847p8c9BpLP2MiBPQh/8CkFbcAGM94UgH00Rb9TrBusZReObevY2TVDP8Shom1guo2pMez5W023jxRoFPmHNooGN3vQfLBmvYV2/O9ZN/Q40F0q9PH0sifg1HEQxj8ZrOIh01m02Chr5whI9Yzk16/VLqFHrz0XwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFqwqUKrloVyxTM7Ip9bko7ONR9SjRrEpRxGU2OZTe41kTj6jWe9Q889WSssfKOdG2INJZPUrV0jMR/7GqlakhmYKN7dRtdnuXXltcboYjnTNydfuvCsQSlarxsVoKAN/8bGccbwzmC2QD6hG32VAoalavuJUp6D/oOGkzm7SN3MyhSGc1baVoukyRvCzoC+QV9p+OfJma35a6f1EbjJAmPSEW91yAt6NbHDxe45JIT/ID5KFVZT3o+BQRKb36Ndc/dYxuH/CvB4+OxiXN8xvjEc//ctC1XttN28Y39JYx8yqCUXVtGvHHbG9X62YlZEq60zAyHivP8SKdR/02vS/wW9zj8wWRzl48rt3Buk3S23qE0wOj84yRe3k1C6Lxw0h/1WTPx+C6FUjTJH48aT9B2TRy+oHx6S3b47+L5jX8iPJ/OujqzudbRvx10zWs61fEr2GvfkW8Gi62m5oFNWzbkHzSq+EyvS010tm+TiLWL0bRRf4bg09sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb3HptBeiiCTNj4f0mgWoM2pGVEUdOC/8TTVZsXa1Tw2pVk3HUloowRHGuO7epPRKupxRoxXRo+53awninTWvpogwtmsN/TRAK8M2odepCn0V9k2SWMyOmbkl+jBfIEuX2uVkXcjiHvW236CY0vHPQeRzi7a5nmDAj+K0hUbfW45oP038fkCr0Ez3qa3WxDvbA9R4JVBHoleeGWq+mbQYUDSaYyFUf/dQNsXxazrWke1FezQVL+CadOHViMoSusbUrVtDlj9fbc3ff/AI625nc/3DSzw2r4z+OzO5xcO/dRr++am54zP9+he/phbx8ccHTE/ZUbGD9jGiHn1gvIoNIxvBnkSwujceJsA/43nozHntVS/Qhj3HG+rTPxUHdS2X89xrxk8V9pLTNn9s4iI/pkSHopxz42t79JbN3+kMVXDm1pDXtt9c8Zr8WpVvyIiR+17R+fztx55jtf2q83jtb9xy1yvbXSb+lIj/gVH13Aj8NiImdZx5qYNeb8q+sK8Gs6oy9yadWMT99kJn9gQQgghhBBCag9vbAghhBBCCCG1p/ZSNEjqoy4gcbJyL/3s0sZ0amla2za2wT1k0zz3A9I0L9LZrFtLPa8dM5KubcX4rrZvcNbjhPI29fZdM6aWuwVt+i26dswg7rmI9tXbNIx71o+xrRRNktp69di+ZxGbnlQJRK8iGZNtQrIXtC203Kri26tF/JoN38CuIqWttBNIa7C8Li4F82Oa43KzQDIBZGvBOLoNRG8Hy0DSsMTo4CxpI6lEJSkakBZaaYfXFkh30mRqSNZjU1e1csimDzdABLz9Um11wnDmp8VW9fm/3LDX9r2xp3U+3/XoQq/tt4+O9/1/j+7mtT22ZTw61231l9fYpqQ7JnJXS3eCqFwb6awuzfBN7Ui60wZyM7vBXbwtWdZjmcS52xsGRZT3oJ7tbw/dF9UsfJ2D+HYFHGdufl+oz9vEjxr/rarh68ee4rW9bss+4/0e9Wv9YVXD27b4EdLuMfUbbZuRT6oankg+qduDSGcQ9+zVM5CbhW1qwm57W9+azIhyStEIIYQQQgghswre2BBCCCGEEEJqD29sCCGEEEIIIbWnfh6bHC0pyidE3gIXF/A7HU0cCAjH2wIvQWO8r/USiPgCfteICxMd8MOMKh1kszBxgYkmEDumXt6YEXXrmGbrsdHTQdyz+f5jIO7Z+752u3lxxGD/gvkCwGYqoAmiIqneCTFeGeCxsbsaaqOBjwWuDNxQYJzAshaPdPY1uOnb3otGRv6XQO+tJlCbmDjoquOgfYFiuYFPKYCem57TaDtpjIXbPDheoxMiTh+IKNrb/tOjmob+G+tz0PUK/De2lMrAA6LHsZ2RH3L8p8bWUb9tZNu412D9f8/z59NezW3G6KYjcG2kc6InIWgDkc6BX8Hz2BgfDfQrxNuwxyYxVhcxUb+KXj5Yz/qcG//JJE0b6a92d8Ncw70o6Ak8NnqRTevjAbVf6N8lbX++baqG12/zf0Y/pGq4PWaOAxXjXASRzuPLaNpI5+3qM4gkF0n30QS1rmo4qD3dF/howm0ocbzr+8QF7Lqcc2PwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFs6TKZ8Cb04OnYPqxZ/BsTc1nH4+qvoFsSt1D2tQ6+1Z3/UTWSsN0HHLTPO7XcrMmkLOhuGeLlpGhdbFyM0/CZqKuw0hnLUWLxz2Hb8wG8aagzZchIh2IxMmK0EQayfjiA/EXkJQhqVIgZ/Ea1eesf+bIkKaBdfGjIuMygWDpMO45sQ3IxOAb30X8KGwgFwrakMxILw+pJyvGQlOW1huKMZGd5YCOV38mf1JfK7AULS6lDGSdStliZWqlOglORtajCeLZgcSqMTq+cuV2I895TMnNzFvr9TLCWFslY7VyHCQ301Id8GZ22x5K0dKkO1iKhuS38fmwZDreNhmwFA3Usxd/ny4N1j9hXNP/Uuh1DjazXG+3shVvC+pZ70NTe6WSirnHjAxfT9rjYAzUs6q1QG6mI8pBjdpxsBStD/JJZ4/f7v0sKTVbtifusxM+sSGEEEIIIYTUHt7YEEIIIYQQQmoPb2wIIYQQQgghtaf+HhtNupVhAp+F+gh0/kEEbOCriQHEpCIiynNi/TdaT9o2wkTtq7E+lqqUiT4aG+HstQFPzY7peKSz57EprfEB+GH0ODlR34g+aZejoFhfa7IBX9crk7j1a3JfT61PGFOttOgwkt1vgt6g5PUCYyItuPXUwL4V27IinePzwUOdvpqeU7SdFI97QXJ8NRrfr2C9muqz8Zyg+tUegdIkI/fDr+DMMjz9/pg5j6tfGtbz4h1rwLoX6P61X2HMtqnl5fhm7DiJPppgGcBHg3wHKDpX76iwDcxXkbz4ct0GfDRFvJ5hND+IKHfWpwQ8ZHYfer40VF/ml3Kpa9iuN7Bo6+PJHiOexwXUZVij8WkbQ94Ay0A+Gl3D2GMTHzM08MXn60a3iP1o3+SeItJut+WMM86QpUuXyty5c+Wggw6SD3/4w96Pb+ecnHnmmbLffvvJ3LlzZfny5XL33XfnLIYQQghJhtcmQgghIpk3Nueee65cdNFF8g//8A/y85//XM4991z52Mc+Jp/61Kc6fT72sY/J+eefL5/+9Kfl5ptvlt13311WrFgh27Zt6/nKE0IIIbw2EUIIEcmUov3gBz+QV73qVXLssceKiMiBBx4o//iP/yi33HKLiOz4F7HzzjtP3v/+98urXvUqERH54he/KAsXLpSvfvWrcsIJJ1Rby148Wg0e3cajoB16rAsf26vYYvsMH62a0ato+UFhH926eJuWg1kljSYcM965BN9XT9soaD1t5WV2HCRFc54sD8SUBsvQE+LTj0jnHOKl5z/Fz5ARpUZBB19Jz2dlU+mLj45pVyj4vlpqg96mjVYmVfJj+troUQEysZxIZxjNnCxPAvOhCPpZKj2bymtTY8wFkfldgfs6rldBb2pHsi3vuhFIbrSk18xXUdYTSNHUtAPyLyjzBFI0JNsK36Le/bOdtvIWGNsMpDtBdC6U9agJEI+L5WbxmGgLfPs7AEqBAylaYj0HNavqEsgug+u7rjUgmxIRKcHvBFizus1GKqPjEP32SqwLJEUL6zkuNwvipmGkM5BdwrjnuEQS1h6q5y70TYp25JFHyrp16+SXv/yliIj86Ec/khtuuEFe/vKXi4jIvffeK+vXr5fly5d35hkeHpYjjjhCbrzxxpxFEUIIIUnw2kQIIUQk84nNaaedJps2bZKDDz5Yms2mtNttOfvss+XEE08UEZH169eLiMjChQu9+RYuXNhps4yMjMjIyEhnetOmTVlfgBBCyOyG1yZCCCEimU9s/vmf/1kuu+wyufzyy+X222+XL3zhC/Lxj39cvvCFL1RegbVr18rw8HDnv8WLF1ceixBCyOyD1yZCCCEimU9s3vve98ppp53W0SMfeuih8utf/1rWrl0rK1eulEWLFomIyIYNG2S//fbrzLdhwwZ5znOe03XM008/XdasWdOZ3rRpE76ABCJNre+zPguQc+vi2n7kwfCGtHpkrbu0kcZK7Gi9Ig2rLVULCdp0dK4RNOpRkzTgCWivTJg+WXT9LGJimkHbjnb1GURKB7Jibz8BoSvQKsMo6BkG8mBoiTPSRlvNq9fX6mpzoqD1+lhdLYh0Tj7WqpIRmyxoG2bEPaNxHFoGGpNApvLa1Bh10kg5UQA/lz53233tRSoH0bloviLapg+mIFa37P55x5jm+qM0+tq3I2J8D/aNBlU9aalRssBLELapayjwzdh229ZAUdAg7hlGWCfH6qZ7bLL6aetIO95WuZ6D2ovPB/03ntcrXs8i4u9/40fRcc92nAKdj1Nj+20TivpG/pfE2HHbHsaQV/PR9KIus+brQmO0Tx6brVu3SqPhz9JsNqV83J21dOlSWbRokaxbt67TvmnTJrn55ptl2bJlXcccHByU+fPne/8RQgghqfDaRAghRCTzic3/+l//S84++2xZsmSJPOtZz5L/+I//kE984hPy5je/WUREiqKQ1atXy0c+8hF56lOfKkuXLpUzzjhD9t9/f3n1q1/dj/UnhBAyy+G1iRBCiEjmjc2nPvUpOeOMM+Rd73qXPPjgg7L//vvLO97xDjnzzDM7fd73vvfJli1b5O1vf7ts3LhRjj76aLn66qtlaGio5ys/IUCJhuVI6vGojQfU3ezzLv3I2UZaaomVeaYeKHe8OOD4I99Aiqa6Bk+RE6VpKPoZScHCKOj4mGE0c+I4pd2mcZlaL+RmVtoIx+wVQCrlR0GjnOiMMdXnsJ5Vv4mioFOPNSuF07OhfVgVFMVZUaYmYrYVkqnB2Ob0dUOqSzhmrN8uxlRemxrt7nHPMOYV7E8Yzx7Ic/TnuEzNHjsNfY7NidUF0lUbM4ukaDCmOrEuYfyxkXuh6FwoucmQ7vjRuSA2OpDQASkckMjj6Nx45G6vQDXb73qGMjUrl7Qx5EiiCWRqSG7sx1tLOkB+BSOVQVtluRmKKM+o2WSJpB0T1WkXaZpdX0ThXE+U7D1j06ZNMjw8LAd89CPSePyCA/Xs+iQdFF+8TVCbHtP+EPSWZ28s1M63OlN0Q4LGCX7cpt3YWGbdjY3uG8ynFxD/JVig+ewNL/jxHp5cinjf2PLMOHDMDC06elcMfKdCzjhg20T7dRmnEjP4xgZd5MNzme5nf7WCMYvu/cK28THLbdvk13/9fnnkkUcov1LsvDYd9bIPSqsV3gzBH+jWK5Nah8GPvdQ2s26eX8G2gTGbqK9E+/LGpvt6BmPW9MZmRtdzULPxvtpjE5wfeWPTfcxpurEZG9smP7j2g0nXJVpUCSGEEEIIIbWHNzaEEEIIIYSQ2pPlsZmRgEdd8BGhp+0Aj8/sbECq5EfnWrmIehxqxizawEcTyNS8KdBmllHx+TSKW471s32DCOdgZq2XBeOCmOhAbobqAlH1MX7V+ZAfBfRFEqdgSN1mH6nrx892Pt3XPka2fdH2Bv4bXZbQt1OVHNkL2r4ZEbWwDUjY8P6Ny2Mr2736pVnZxSnGnBRdijPYDd4fjH7fkwHa64g+58XP/1gKVtGvAGJ1w76mrS3RNi11zInH9RdgZkuU/+ZEMVftC+NxgVQIytQC+S9oA4dySpRuN4JIZ39Q01dN5NQzlJtFxpAJ6tn+TmjG+yL/DYzmB+djSEXpd/WaNW3teA1Vr1k1YeV13jEK2hCP92uMpdcxn9gQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNpTf48NoPD8IcAkgKKCbbRqGdcj47x0rcm0RgN/0rMkAP8NEimGfptqQnwoz0UxzZF+XccE0dD4XTXxiOPKbZH1mrBvBp7nJdFTEywfeDAc8F4F/i7vHRbxxQeraesblCX2ZsXn6wc9i3tO9eoE2uy0NqhhT1z2hH1JJRqjpTTswSIC/5kw8CvoOrDHnT6Wbd014wez1rr3w3+T1TfHd9aLuOeqUdDAG5PTt7KPxkbuQg+G9keAkyWKhc4g8JF5MfYV67lp6kn3tf6X1Gjx4PdF3CeWU88wproH51XkcYH+m4lq1qX1hTULXudglycoXhrEl0f7RWi00wubT2wIIYQQQgghtYc3NoQQQgghhJDaUzspWiBzQXqZ5Dag+UFtQdyzfiQHHl2iKFcR/7kukKnZdYPSoR4Ax0Rys0CahKKZ0ThWpgba0HyxfuLLF6cDpDZz8bIwbeZRvHqMbh8Ve8vLiYI208nFByJbg9l6UcRo1+dI0cC4ULaWEffsUscE60L6T9Eupej2Gnj7Rm51Hg+OSX282re4K7mOlRR7yg4rV0QyNT1fjqyntOcS/dlKqoFMLVVKmQOQovkRtLYNSWdA3xzpTqLcLJS+xcfUOz+U3iG9b7wJYveT+v5Bzep6tnIzfRwE9aSk5k3x25BMLVF2GSwjq55VW1AYMnnAMTrtNWvH1DHRVormHYdWpqb7IdnlxEVajFGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPbXz2ASg7Fyt/TOiSC8SEBkWAu0fMBPoaGKgkQ9001CjD5aPYqJ7pGPGcc9ovsS4ZbsM6JUB49i2EmyA1O8E4wnBGDnkRDrH+pm+YZOu9figwXxafwziVEUm8Mr4K4MX2meSLVRZxyjomxUpDc5Jif4bWNr04vSExlj3uGe4fQP9fvy65b82wPgovXja+Hk08BnolQORxhP6FXTEP/ArZHlMqwI8Np4fJSO6tlcRuMiTkOpzCE660MsA/Dc9wtuHqJ6tB8OLATfz6foCVmNYz8F2slHU6pgJfDz6WIv7aMJzbg+KGHpOzOK039XOlxU1HuknGT6atm2r6r9JK9Sd24Vxz4QQQgghhJBZBW9sCCGEEEIIIbWn/lI0DVKNTdQ3Np+VNOnnhfZxbOKgUN0m5hFsxZjXYBGJz6eDKGbYGbWB7wv6hnKzSL+gDY0fn86Kd54KLQ94wu6JIOPJlAHeMPZxuxooUHKiR+MZfeF8qTHRvSI1/rlfcc9AZpr8dvacMqT8rPeMOQlery5dNrX+Z0NzHdFxuUH9NEBx6XHsP0sCWY8+7otAwtZ7WU9ObYPFYVkVlKLpNiDdAVG5O6bjbfCN6yjuGcjNfJla+nz+epl1SYjS7QwLJFZF1Xpuao0iuP6AmGhUz2LmC15poNcb1bOVYerXJJjFo8JE7gi/ox2ymoQsq2/FmkVyM1iz3u8C8KMhRWVm1wnAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUw2OjpXU5mnGk9deeF9zRjAliDb0ITzsOiHK18ceJeuScxEHXB7E9joLOMABV9dGkLiPQsqZ6euLDZ9GriOPEr5uXEq00xmZOOA74TkhXXDU+vGdU9axV9dEEy3DxfqnrBg4Remr6TzHalqJshw32nwl1F3uy1tPGI+D7aEwb8t8gvwLyPOrrmF0X5AfN8Cv4vlHg44i2dOmb6EmAXgYUtyzmsg28MoGXITnuOcN/04635XhuEN72t/XseajifpjC7nu92sh/E/ho9BjGswXq2Xq/4DVdfyXrzUHnXPBIILWG7fJgNLJuC+aL14m9FletWT/u2V8B6P0CMdV+Pv3EF/+i3eWcG4FPbAghhBBCCCG1hzc2hBBCCCGEkNpTDymaBkXgVtT8FGa+ZGka0uNYvAxAOyaI70Nvip9u2UlVWRGSm6FxKsrbsiKdpwIt2ciRf+nvlBP1jcb0+oGIVis7AQsJnion6uT69cZsTdX49DyZ2uTlZjOtZMk4RbsthXSRRdhXA3gzAelOkHEMZGpIA4MkN3o2K9Xx5G4grlX8CNzgQAexut6YKCrXypiQjApdppHczJP1xONw7fLz3tQOpGhaUlaW8Ta7fT2J0eRkPUmAenYNf0ehKGi9T61EslCx6S6odS03A9dJdL0RMZI201XVc3gYxu0DqC79Yxv9JoxPh/HlQF4WRDPr9cyo2TJeX5VrVq83iJAO6NJGKRohhBBCCCFkVsEbG0IIIYQQQkjt4Y0NIYQQQgghpPbUz2PTDwLfTg+ioAMPQjyaEhomEqNjp4VUI8BEGtgqY9pxgkjPalHQyNNTpM43HfQiChpFOCP/jf2D1SMnbpteScMhqSU7UT/ko0HLS/XRoPlQXxQ9Pd3ni12FsbaIS9B7e/H/5lzieVX8f1/UXgN7HvP8CraAtF/A/JtlcgRthgweXv8CI0DaykBPjQWe/3Vb3DeE/Ak71ifuEYCxzSoSF8fq2ozhRE9COz5frnfBA9Ss161p/Rmq9qz/Rh8rqNZz/p1dL36C2Qq0afT+NdHq/rkTtNnlpXq7M3w03noGnjFUlwLaZlDNWrq10WNDCCGEEEIImU3wxoYQQgghhBBSe3ZtKZqfVxvvByU4IAoa5eqix/SWLNla4phTTa/kZVnjjn8MZBmJ84WSshm0TVHJAKVHqizN9kVKpQmTzYv4Y3S4SVEMer9BsbNZr0CfYDo2boYUzYG2ysygUq8TRbvty2uiHbU8B8Q2B2+7b6huVlKm4nGh3MyXfei+cLfn/FOnHagB2vrw2oJUuVm4fdVn8IZ1kYx4XPQ29kDCVia2AemOjdxFb3+PjdENIEWDUd864tjK1HQ9m7rU8rOgTReGlYk1E+tZBNd0gb4TGKMXNWsp49dQGOGMYsFBfdemZjv9KUUjhBBCCCGEzCJ4Y0MIIYQQQgipPbyxIYQQQgghhNSe+ntsPD+MaYJ+lGrRp9Zz44+Y6I0JBzUD5Zgkakiq/8WQHOE8UVviNpyOdFyUmOphJfvgOEiOOAbzBesCDifsqbHjzKCCnoyvRpEc41zRC4XGnEkWsV2W0TGRRnPHZxTVr3wBhYm51Xp67RewhIeZ9hbk+GjSvDnOzAmja+13RychtUhbo1VPAak+mjAKGvlmTN9+xOPCNjVtPQm6zXoSdF+7Lpocj43xtRRl0b2f4Br2xjC1p301QVtTzWeLpp3qNfNrOqhnL3Udvd4BmVqrAX00dnmoDcWQB56xGtZspw89NoQQQgghhJBZBG9sCCGEEEIIIbWn/lI0gJeajHVqZsZ4E1xeorbEBXm4cNBq9EqS0gul0ERPv1P1MxUlbDlR1FAW0Q8JG8hGDiQbaF1AaqXXrWJdTBz3rD72o56ztmnFZejF9UiWliU368GYYd8ZJPXbVRhrizTGdnyGUjT174YNsx90XK05YJ2Ny1X4l6b+R0FDaVoj3jcYR0fZCsDGYqdIVCRP1pP8Znaz/GAcFDddNR5Xtdk4XkmN1UVvaM+SojXibU1QX2Yb4stBxShovW72+LH71FsXU8+NeC1411Q7X+o1DkrrkWTQ9NU1hOrZzDslkc6q3oKa9eoS1LOVt3UboxyL9zHwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189ig2NkM3X8/oqC92YCQOPCU5MTj6iYk9JwCaX2yN8aSs26pfTN8NJrKnpp+bV9gDPOioCsODyXWGWVZOe45WKHEfr3yjE3xOJV9NBl9GfE8tbixMXE7Nf4FiGrWXhmrIddZttavoLwMrohrz4NDsAF8O57nJB7THKTa2tVOjM4NVq5IPHm1M06sif4FGOkcxOpaH40ax66b54eJjxPG8ybG42bE6mqfgwtidfXJGXgZRPx6bqT7WjwPWavptyH/hB4fREFLYcYs9H4xA5muXu2jejY+OK8tJ+654m8Wbxl2k3n1NME4OtI56IvqsgeRzmg+6/3S5x3rv/H6lY//jx4bQgghhBBCyCyCNzaEEEIIIYSQ2lM/KVoOQBqGVVyJGa05UrCqjy5zJG0ziapSrcrzVZSb9Wr5OaTGiedEQSfKIHOYKBnUX4FKTb2ThvWYSZVB6nfK+O7Jhzoq9hm6rWtHe0yk7CJFM1HFTst+mr4+Bh8TIDZZS7qsbEpJSQKZsvfWeCDNCuKrwasJSr+vlvKgmGh4fc0gOS53ErIeX8aVIWnTbYEMEY2ZFgXtxowsx4uwbsfbcqRoRiLpRXbbSHJdN1aqpMcIlofqUh0HRkPmxZkb6VkY2wzWILGeLb2o4aB+QT3BaHHUN5CNxeWxBapLT5KZEemsJZJAPhkeB11q1lGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPfX32KR6C3JibhMF9lk6yxwvRep8uwoVvUJZ3hlveVM8HyInaTwxCjpncZU79yaVtTp98BRVpmrqedX1rlz4pBe40TFxO70IOmLZ+lOaVvyvAF4ZT6duxyxBWxHXyGv9fJBc6+Lr4swyvEXkGEl15G4/zggoOldsm54vw6+A+qI2Gzed6ldAngQ7pvbcmFhdh8Y0FLpmrR9HtTnjJytslK/XqLwyZr1do1rN+oPY+UCcufV+oXrWnhvzCAD6u1LJ8n55K2rGiddX1eUHY+q6Qecre/7wPGOmRkAUdLeadfTYEEIIIYQQQmYTvLEhhBBCCCGE1J76S9E0VeNpKz5V7JkCpqImZSalPU+LOqYfy5xulU/VKOhEehW1imPIe7OIqsvvB1NyrPViw82gc8Kuihtriyt2yCK0/MyhSGcbBa3fDh5IyoBMzRsEtAWRt1raASRsMCpXcH1plZx9i7v3newywJjeIPGmnOjc1DGzQLKeYJlov8VlY748x77FXUVBB5IfFblrZVtm/3rttp51FLRdBqrZxBjhQP4E/tm9APKyAD1uMy5TK8w4njTNHjOanMcDE6Rtp5Alg6talzn1i6SOKC5d12VCzToH5I4GPrEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWnFh4bkHJbnV5oa6tqhXvErEt9ncHfty/7oh+1PgVFM5O8X7WF23DGsiPu+fEdpHwIQXK7joK2/oFCR6Sm//uiHieYrRcRtBOhl2H9N5XHVJ9z4u8rLy/R42L75vgVUvshv4LF898YDxOK3PXajG/HLkPXs92/el77ugHPq2LQ65pTs962N6OiQybIM+/zybSqbyarLuJdYTQ0GDfHq1Mgrwxatq4ZW7O6r417boeeMcY9E0IIIYQQQmYVvLEhhBBCCCGE1J5aSNE0M1p+NZPXjcxeKGsipHeUbZHHo2+9U759G3sZlwAl/5tiRXmZlZn0LObdW4Y/jSSoXjwvkgZlfN2evP29X4B1C2SJFcaA2MhdHQU9ZuQ8DRvpDCRHXmxytVXrGUimBtYtOC76LVPLoB+/bSsfI/04tuw5UNWpjSH34p93Rpsz7pkQQgghhBAym+CNDSGEEEIIIaT2zDgp2s5HUuW2bdO8JoQQMvvYee618oDZzs7tMSaj45IpJa+wso/Ca4vLMIrgbd1KclGYf3ssxnU2rm01N6qviUxzahwHUthcadOu7PL1Z9NXS/HAP5n2Sv4DZTZ6k9r94iU8mTHb/r7wlmGUMN5+a5tlaCmNHVPvX7TvS5MU5UkbfUmZlxjlRk1bu3u/HYP66wZq1psO1lvXs5UMqWIo/Zp1XqHE6zms2QK0+Xg13QA1a+sZ1HpPCM4X8TZdp8F5xkob1XTRtm1lUptNKfNq3e5f0OZKXZfxmnVGZubX8462MRl9vG3i69KMu7HZvHmziIg8cNZHpnlNCCFk9rJ582YZHh6e7tWYMey8Nt0g3x7/o/59N2JmsNOEzDSs9UtPjwohM46U61LhZtg/y5VlKb/97W/FOSdLliyRBx54QObPnz/dqzWj2LRpkyxevJjbxsDt0h1ulzjcNiHOOdm8ebPsv//+0mhQrbwTXpswPJbicNt0h9slDreNT851acY9sWk0GvKkJz1JNm3aJCIi8+fP506NwG3THW6X7nC7xOG28eGTmhBem9LgdonDbdMdbpc43DbjpF6X+M9xhBBCCCGEkNrDGxtCCCGEEEJI7ZmxNzaDg4PygQ98QAYHB6d7VWYc3Dbd4XbpDrdLHG4bkgtrpjvcLnG4bbrD7RKH26Y6My48gBBCCCGEEEJymbFPbAghhBBCCCEkFd7YEEIIIYQQQmoPb2wIIYQQQgghtYc3NoQQQgghhJDaM2NvbC644AI58MADZWhoSI444gi55ZZbpnuVppS1a9fK85//fJk3b57su+++8upXv1ruuusur8+2bdtk1apVsmDBAtljjz3k+OOPlw0bNkzTGk8P55xzjhRFIatXr+78bTZvl9/85jfyhje8QRYsWCBz586VQw89VH74wx922p1zcuaZZ8p+++0nc+fOleXLl8vdd989jWvcf9rttpxxxhmydOlSmTt3rhx00EHy4Q9/WHRuymzcLiSf2X5dEuG1KRVem8bhdak7vDb1CTcDueKKK9ycOXPc5z//effTn/7Uve1tb3N77rmn27Bhw3Sv2pSxYsUKd8kll7g777zT3XHHHe4Vr3iFW7JkiXv00Uc7ff7iL/7CLV682K1bt8798Ic/dC984QvdkUceOY1rPbXccsst7sADD3TPfvaz3Xve857O32frdnn44YfdAQcc4E466SR38803u1/96lfuu9/9rvvP//zPTp9zzjnHDQ8Pu69+9avuRz/6kfvjP/5jt3TpUvfYY49N45r3l7PPPtstWLDAffOb33T33nuvu/LKK90ee+zhPvnJT3b6zMbtQvLgdWkHvDZNDK9N4/C6FIfXpv4wI29sXvCCF7hVq1Z1ptvtttt///3d2rVrp3GtppcHH3zQiYi7/vrrnXPObdy40Q0MDLgrr7yy0+fnP/+5ExF34403TtdqThmbN292T33qU90111zjXvziF3cuHrN5u/zVX/2VO/roo6PtZVm6RYsWub/927/t/G3jxo1ucHDQ/eM//uNUrOK0cOyxx7o3v/nN3t+OO+44d+KJJzrnZu92IXnwutQdXpt8eG3y4XUpDq9N/WHGSdG2b98ut912myxfvrzzt0ajIcuXL5cbb7xxGtdsennkkUdERGSvvfYSEZHbbrtNRkdHve108MEHy5IlS2bFdlq1apUce+yx3vcXmd3b5etf/7ocfvjh8prXvEb23Xdfee5znyuf+cxnOu333nuvrF+/3ts2w8PDcsQRR+zS2+bII4+UdevWyS9/+UsREfnRj34kN9xwg7z85S8Xkdm7XUg6vC7F4bXJh9cmH16X4vDa1B9a070Clt///vfSbrdl4cKF3t8XLlwov/jFL6ZpraaXsixl9erVctRRR8khhxwiIiLr16+XOXPmyJ577un1Xbhwoaxfv34a1nLquOKKK+T222+XW2+9NWibzdvlV7/6lVx00UWyZs0a+eu//mu59dZb5d3vfrfMmTNHVq5c2fn+3Y6tXXnbnHbaabJp0yY5+OCDpdlsSrvdlrPPPltOPPFEEZFZu11IOrwudYfXJh9em0J4XYrDa1N/mHE3NiRk1apVcuedd8oNN9ww3asy7TzwwAPynve8R6655hoZGhqa7tWZUZRlKYcffrh89KMfFRGR5z73uXLnnXfKpz/9aVm5cuU0r9308c///M9y2WWXyeWXXy7Petaz5I477pDVq1fL/vvvP6u3CyGThdemcXht6g6vS3F4beoPM06Ktvfee0uz2QySQjZs2CCLFi2aprWaPk4++WT55je/Kd/73vfkSU96UufvixYtku3bt8vGjRu9/rv6drrtttvkwQcflOc973nSarWk1WrJ9ddfL+eff760Wi1ZuHDhrNwuIiL77befPPOZz/T+9oxnPEPuv/9+EZHO959tx9Z73/teOe200+SEE06QQw89VN74xjfKqaeeKmvXrhWR2btdSDq8LoXw2uTDa1N3eF2Kw2tTf5hxNzZz5syRww47TNatW9f5W1mWsm7dOlm2bNk0rtnU4pyTk08+Wa666iq57rrrZOnSpV77YYcdJgMDA952uuuuu+T+++/fpbfTy172MvnJT34id9xxR+e/ww8/XE488cTO59m4XUREjjrqqCB29Ze//KUccMABIiKydOlSWbRokbdtNm3aJDfffPMuvW22bt0qjYZ/qms2m1KWpYjM3u1C0uF1aRxem7rDa1N3eF2Kw2tTn5ju9IJuXHHFFW5wcNBdeuml7mc/+5l7+9vf7vbcc0+3fv366V61KeOd73ynGx4edt///vfd7373u85/W7du7fT5i7/4C7dkyRJ33XXXuR/+8Idu2bJlbtmyZdO41tODTp5xbvZul1tuucW1Wi139tlnu7vvvttddtllbrfddnNf/vKXO33OOecct+eee7qvfe1r7sc//rF71atetctHR65cudI98YlP7ERq/uu//qvbe++93fve975On9m4XUgevC7tgNemdHht4nUJwWtTf5iRNzbOOfepT33KLVmyxM2ZM8e94AUvcDfddNN0r9KUIiJd/7vkkks6fR577DH3rne9yz3hCU9wu+22m/uTP/kT97vf/W76VnqasBeP2bxdvvGNb7hDDjnEDQ4OuoMPPthdfPHFXntZlu6MM85wCxcudIODg+5lL3uZu+uuu6ZpbaeGTZs2ufe85z1uyZIlbmhoyD35yU92f/M3f+NGRkY6fWbjdiH5zPbrknO8NuXAa9MOeF3qDq9N/aFwTr3ilBBCCCGEEEJqyIzz2BBCCCGEEEJILryxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7eGNDSGEEEIIIaT28MaGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG15/8DDbwFDayzgUwAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 720x432 with 2 Axes>"
+       "<Figure size 1000x600 with 2 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -525,7 +602,7 @@
     "Ex, Ey = np.gradient(gs_sol)\n",
     "E = np.sqrt(Ex**2+Ey**2) # Magnitude of Electric field\n",
     "axes[1].imshow(E)\n",
-    "axes[1].set_title('Electric Field');"
+    "_ = axes[1].set_title('Electric Field')"
    ]
   },
   {
@@ -558,7 +635,14 @@
   {
    "cell_type": "code",
    "execution_count": 13,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:10.280808Z",
+     "iopub.status.busy": "2024-08-14T18:39:10.280585Z",
+     "iopub.status.idle": "2024-08-14T18:39:10.287165Z",
+     "shell.execute_reply": "2024-08-14T18:39:10.286130Z"
+    }
+   },
    "outputs": [],
    "source": [
     "@jit\n",
@@ -585,7 +669,14 @@
   {
    "cell_type": "code",
    "execution_count": 14,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:10.291933Z",
+     "iopub.status.busy": "2024-08-14T18:39:10.291674Z",
+     "iopub.status.idle": "2024-08-14T18:39:10.800879Z",
+     "shell.execute_reply": "2024-08-14T18:39:10.799940Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -597,14 +688,12 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEtCAYAAADHtl7HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9fdBuW3IX9Ou9n/c9d+7H3JmbmcTJ5GYCIpqgVahggl8VK4KiRiwtIoIpEDVlWakyJTHGFEVRpQhSJJoCLWssCUiiEA0gShACGjSJhYhKhRCJQBImk8xkkjsf9+uc8z7Pbv9Yq3v16tVrfzzvc855zzm7q9732Xt97929V/92d6+1iZmx00477bTTTjvttNN6Gp70AHbaaaeddtppp52eNtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROd46I6DcQ0Z9ZWfa3E9F3Puox7bTTTk+eiOg3EdEPPKa+Vs9DK9v7U0T0G1eWZSL6RZ28x3YPdpqnHUA950REP0FE7xLRW0T0SSL6A0T08oo6//iF+v+SPFkcJI2Zv4uZf9Ul2t9pp52eLnJzkvz9vgu238w5EZ07D+U59KEb/7/IzL+amf/g+SPf6a7RDqB2AoCvZuaXAfx9AH4ZgN/6hMez0047Pd/01cz8svn7+sfZ+RK4WkG/243/j1xkYDvdKdoB1E5KzPxxAH8KwN9NRP8sEf0IEX2GiL6fiL4UAIjoDwH4YgD/Q36z+qac/hVE9EO5/F8moq+UdnP9f5+IfpCI3iSiP0NEH8jZ/2v+/Uxu71d4EzURfTsRfYyIPkdEf4mI/pHHcDt22mmnO05E9HcR0fcR0RtE9NeI6GtM3nuI6FuJ6CeJ6LNE9ANE9B7055wfJKL/mIh+HsBvD+ahX2L6+iQRfcvGsX4/Ef1r5vw3E9GPEtGniehPE9FHOvU+j4j+RJ7//g8Af/uWfnd6dLQDqJ2UiOh1AP8UgDcB/DcAvgHABwF8LxJgumbmrwXwt1DeEH83EX0YwJ8E8B8AeA3ANwL4HiL6oGn+1wP4VwB8PoDrXAYA/tH8+77c3v8eDO0vAvilue3/GsB/S0QvXOq6d9ppp6ePiOglAN+HNCd8PoBfB+A/I6Ivy0V+D4C/H8A/iDR3fBOACf0558sB/E0AXwDgd7i+XgHwZwH8TwC+EMAvAvDnbjH2XwPgWwD880hz7P+GNOdG9J8CuA/gQwB+c/7b6Q7QDqB2AoA/TkSfAfADAP48gL8K4E8y8/cx8w3SRPQepIkoon8ZwPcy8/cy88TM3wfg/0QCY0Lfwcw/xszvAvhuJEC0ipj5O5n555n5yMzfCuAegL9z60XutNNOTw398WzNlr9/PSjzzwD4CWb+jjw3/N8AvgfAryWiAQlo/FvM/HFmPjHzDzHzg5k+f5qZf29u692gr08w87cy831mfpOZ/8JMW99oxv5zQf6/AeB3MvOPMvMRwH8I4Jd6KxQRjQD+BQC/jZnfZua/AmCPo7ojtAOonQDgn2Pm9zHzR5j530R6w/pJyWTmCcDHAHy4U/8jSJOWTngA/mGkNyahT5jjdwDMBqpbIqJvzKbuz+a2XwXwgaV6O+2001NLMifJ338RlPkIgC93885vAPC3Ic0PLwD4Gxv6/NhM3usb2/o9ZuzRXPURAN9uxv0GAEI7x34QwMGN7Sex052g2wbK7fRs0k8D+HvkhIgIaQL5eE5iV/5jAP4QM0dviUvk26ooxzt9E4CvAvAjzDwR0aeRJpuddtrp+aWPAfjzzPwrfUa2QN1Hihf6yy67N+fMzUUfQ3IRXoo+BuB3MPN3LZT7FIAj0vz7/+a0L77gOHa6Be0WqJ0i+m4A/zQRfRURXQH4LQAeAPihnP9JAL/QlP9OAF9NRP8EEY1E9AIRfSURfdGKvj6FFJfwCzv5ryBNIJ8CcCCi3wbgvdsvaaeddnrG6H8E8IuJ6GuJ6Cr//XIi+tJsNf/9AL6NiL4wz0u/gojuYXnO6fX1ISL6BiK6R0SvENGX32Ls/zmAf4+IfgkAENGrRPRrfSFmPgH4o0hB7S/m+K5Ve0nt9OhpB1A7NcTMfw0prun3Avg5AF+NFDT+MBf5nQB+azY/fyMzfwyABEV+Cunt6t/BCvli5neQAjZ/MLf3Fa7In0YK3PwxJNP1fcyb2nfaaaenn2SVr/z9MV+Amd8E8KuQLEM/jRQm8B8hxUgCaaHKDyMtQnkj5w0r5pyGcl+/Emku/ASA/w/AP3buxTHzH8vj+cNE9DkAfwXAr+4U/3qkkIdPAPgDAL7j3H53uiwR86wHZaeddtppp5122mknR7sFaqeddtppp5122mkj7QBqp5122mmnnXbaaSPdCkAR0T+Zd3/960T0zZca1E477bTT46B9Dttpp53OpbNjoPIGXz+GFFj3U0iBev8SM//Vyw1vp5122unR0D6H7bTTTreh21ig/gEAf52Z/2ZenfWHkVZi7bTTTjs9DbTPYTvttNPZdJuNND+Mejn5TyF9S6hL40sv8eG1127R5U477fQ00fGNN3B6++27uunppjnsmu7xC3ipJJD+Q9prtk0v271SfdzNi/IluU7g5q76dtrsVURnsmutN2OuWNAG+SRfht0Bu8xuPneOUx/cbVMGlnlvjk3CPL9nz339uj9LrQx06rrsx0KzfI4LNbwGOvxmd24OwvM53gPFE8fNuN/Ep3+OmT+IgB75TuRE9HUAvg4Axve/Hx/+t7/hUXe500473RH6+Lf9J096CLciO3+9gBfx5fRVSZHRABoIGMdUbhxT+jAkMDWkMhizkX8cU3ouAz02aQB4KMdaN5dlouQzsOeAS8sDH0y+pOVzdufeD8FnAijyim6SBtmUMeds6k3phCYudXJ9mqYqjZjTsdST9qYp1WeTdppM2XTMWm9K+QBwOuX0ScsyM3A6pa5Pp5SeeQ9kng+U+T20/M+ygcGU6/Ff+OfObX7Mb5cGrJYDwAGwCwDnCgBFfAaAiUs5yyvP2yjN8pe55rfPt/zOfEzyMAETV/xmzT+BRTbyGP4s/3fdT+fcBkB9HGl7eaEvQvnUhxIzfxTARwHg3uuvr3pFiVH1TnedwreHnXa6u7Q4h9n56730GlfgKRN5xTPcYgI7V4mtpAY8XbRtakHUViJqLQ5RmqQ7cwEPBJqw3hq2OJ4hKVMakLR5Bk8dHjeysKqPC/LCtnUbOXyaqCcfm5ogtULRQOAp8xuYtaTdBkD9RQB/BxH9AqRJ59cB+PXnNPREANNzIlsAFr42d8Fu3D197IBqB3Db6Xl6DlraPocJeKIgfHQYqnKqwHzZyt2zjgHnWoW20mw/kvWEn7MKqA0EnG4xoIGS1ULaGYZkrZBfIPN8Ak81cK4AigcuNLTpj4oaC+K6ahexPgVtXmTe74Ei4dNW0CRAeCBgGoBhqvltywHK7yU6G0Ax85GIvh7pUxsjgN/PzD+yuZ1HKV/Pt3IotHQfHtGEeLGHqdvBI2x7C11KiJ+ECS+M7Xjso3gitHkOo9bycJbFQehSFoLHoaQpOF4rrhewENyajHurNxZrhdDzAcW9GABidd+tpaWydpxhfRT33uMiO+QpyJ+zEK7huym3yYrpLZD2/Iz7Q0Rg057y+9SpgFvGQDHz9wL43rPr30YGLiE/z4miWJzo1tyHM+c/4fGtsMFt596nxSf8qMe5lglzxZ6SW7mWts1hJq4FTnkSFTBFzhIlZV1501AaS2TR8MqycReuG/msQs4UWp/m+N160NYpwCXFqnE9HCvsXnu2XTkeKLURAqMB4FO2apg87X9I8VcjgYNn08c+pToBrwYjGzZvqHnLt3X9hkHmLv5pC0WyJWmeLxUIclNNlhOVjYHANg7Kk5OPOZlKLluu+X2qQVXqnrMVylgVqYA24R9BAsrLc46bzjjxGILIe3S2rnjc9WbocenlWxsmonFubdO28bheJs/t54KMuYtxXWdf3iV8rIxnDkRtpVgZOm0zxArtsdOTfEk1YSTLZUktPfFYHOg6x6o1DCloOGw/u3UmDsuJdariveN5BaAjMDRnXeqB5Etbm9a29bi+UXKGlWoVAOeYj+lZRS1rUk5ioOSFZsW4nhiA2kRb5OcMWbvrBopzxreoG3ttrpmTtprwt9KWds+4OY8EFD0KkNsrutaQtOi6jSbyFY1LkTv+3FyaiCitvCoJ6deuvAJq5TmnSA2F1oeetYnMiryorF15ZfLmAsgb69Na3t5mLggsWPPlqW+VWgo+t0pVYl4GMjelxFTRBLAo1XEsijXqEyj8B0LrY1hnDXmZiFZL9oDOgjVrNv5pDXiKLFFzPAitlWa6CRYEhC66ANTwQCAfB+fLenec4f1qfgd0twHUmitYKY+b9exdND3MkbvApevtm099u3ONrCy3hZbaWcnIzex70ux+BACsdw9mb6HNXLqJzyOQMkoznRrQVCnPct4sX9fy5k/rSNlyU2cVpSEmOBfSQoXBtF9d43JfDRldJ+0ldw2Sks0KTZWmUayMGdfOAPDkXDgDkiLUcddxLzygrMSzFgfj6iNkC4MPLgaAYUr1x7FYISLLlZUBD569+867b+f4b9uRK7yNFcoB5y54Osfq1LEy9uJfZ128ti0FvGhBGriMm2vel3a43PNpqvmNbG2ijfwO6O4CqAuApycCmm6rTM4dgh/7wsWvjk161NYmSxfqYxMbn2Rs1hxtlSMfczDXtCq6pTY7s+DzTEtBwM51d6sg89TA/Hkvbam93mV0mrIKvKsAlyxK57jd1tCS+687HCqxMZhq145vM+A7ebDjV95tiGlaHf+UQVZkYQRqEL0Ium4LnmxdD3ywYfqwchEB5rV1F4uaIPHIlWdp5cKAJwKgFifuufyZvOV21zJlXbGL1r/E23ylRGeulSk6nK+6ZG1aAFqLD9Ns3vxNWWTrGrbfcl6/hBGGuycbB7DSuhi/Ic4kdE1abdvPJJGzNgDmLdZaEYbAErFi80Qp7+tqX04xesWpx1RZHVa77nwbHYryVOE5SxQFVoTGCmXLSr4MxuZrA9xaMuzy9lQosErIsYl5kXs9WRAlG5kCxLmSV7ReBgL+U8XTDv8RgCdnkYr4HZVtZADoW59mwNNaa1djFeyBKKscOPNSrJ9icZxz/wmoAmqeidvOW6X8eGws1EAAxszPzO/E6HxNRlBXgPK7Z4Hq8e5RAqctk/+jUhRr213rUpsra+9HcPMWrVNzb5pLb6ERnQmezgZka/J9X9uKn0VLfcwO2WdGja2wUhHP3PLn3iJlwY3ROoHbJp06K8GcIvTpXhmsiVPxsU89ilx3K8HTKpoDUd6V58q3bVEb95QVpgdVleKW1VlReybAmIDitrGWKCC7gYqbp22rA56b8Q+NbNTXgiIfPRmZWxG3ki4JnmxZMtajCERVtMTrpU1U7blx4zX8JtORswizrtYz7YnFsSC7VRbEuwWgNoKnWeA0N9GvkZGtc8ilNexKK8JsnTWAasafMwukzgFKW6nD4PMtWfPdbWbho7r+nn7dMoy1shC91M65+LrBDTMDfJbIr7CqQIjbH0iUp6VK2bpPd9j8TF6htfFK1J8HI2V4DnhaIXiNMp0DUX6M1spk3Spz7pkVsTG6K3lVxwAtC6I0zzRc7X/U4aP2jUo2yPI0+p0FSyU9WiywegEBBW1X/ZTDLnBaoUPqjU1z4tq4N7gpJQPmyo3n0zqgquK338JCnsMmHkoGC2C07Y5PmQVqA3gKJ4xzANPShL9RIfAF3s6JjfCv7lgqb8zvufw6AenN5fVA1BZw1SsX7bvSLbsxHQu39xw2XgJMyaDWtjUjKk0TPevTjFWqC6SeVxBFKN+nAxBZoSrFaS0P3nVDgetO26VaUdo2gU4aNa47IPNOx4Oc1oKnswLJAzmqgFQkzwOAKY8Nxn1jP+Jqg8l17FzcOEDftWPBF1ACyqv+7XkBUWm/J4YqT0KyROS89vo7/Jf+/Z5fEf+1LQHc1PLW5nfSlhYQ9L5/uJnvncmmAdB2jBGIQg2Y1dXnY6GACixVVkdv8cIGflMaUMVvub45nju6OwAqottOxnP1z83LdAmwtLZdWvJRLineOaAT1Zv146xs+za0Jfp/I3i6CHB6VJanNW64qHw0t3ea1MQe6lp7659Ldx6hcdH0volXfdbFKMawWYqPI+q47iJaG2t66VV40iZ5xRctQbdiRLVlYr4/QujaCTbObOqJUlVlXWKiKhePdekAKN/Ec9QDTw7gdsfT4XkFoGfTXJ2mHdMXsHkBwVnUWZ0Xl22Bb8NboHXlWuq6DGf4DdT8BlqeL9DdBVABM5sJIZrAe0IQpc8IzGqAdEmhi4iXx7JotYoUY2R5iCxSQcD5KkvUucBqreVpZVqXPbdw9WnbjxA/8Nr7twCOu2xfskhZnT7n0nveKIpvSgk5P7A6ybG8JY9DnWbL5XRvfWpWXVEQNEy2vinrrQ2Rwu1ZLFYS2TnGu+6yjPbioXSczjLB8gkVaThboVJ/2ZUTuXaq/Z0CqwSQ7wkBJ3HXGRePtJMtEGzdOvaaI+A7ON4CNXjO+eysUVU5z+/c3qz7tuO6W2V5ani/nvmVpREJAGu6esjyWGD5yVo+3MIicuXl8VeWSOeFAxK/AQKdpqoekIEac9nvyfIbCHg+T3cDQDXAqC2y6oFeC5I6bc0Cla3KY2v5OevRQnk/7sZiFQKktWkxkFrtzpujcwGIr7cWOJ0Jms4GSnP1FuRj1Qo538cCEJLTpukewPZ1vWHyebNCkbMyWPLumg546sbBmLTuqqswmLy/pD20bOSkfgxUW0X6UQpiQ6qXKzOPVCAKVmFCQdScK6+xTIgVwlkcwoBycxyCKFtOr7MAKaHuoxpZHJf4D9SuW60fyMMG92012LXgqeL70oSEcD7rxb51XXraXuFfuAJTeeMWC6RSLb/tdUoaUSsL1kIplkIg3Hl+zfYIdwNALdBZlqeVwKkLmpYA0FaAtERL7S25dzqAqgJTW4BU01+tPR+H7lxleVoDnnrj7LF+6boucd1rrUv21NVpY5OCegGvI5Z36y7K5fMGosyk69Ptr1eeotQWlOfaoOEw5sUqTqM0Z7+H1gNPcyuQorzJKEArSxZEaT9tUHnXldfZXLPaSHPImVUams0zE4jygEzGj1rZWh73NlX0btqq3Rg8d+OeDEUbp3Zdd3bPp4iX54CnHuujdGNtBFBZHCWdhD9T4kUVD5UBc3cBgS6Ks7FuaBcQ2Lo5rQuaBURZip7pFZtpPnkAtTBBL4KnJeDkzkPAtEVgnhTNjaVnQUAHTEUK1mvVEFgtgCgPvNz58l5QMxd5CeAU1dkIrlbn35Y6b3w2v2ul6oFtx9sQZ3lZ8nW8Feq5Iqo+JpySzM3w2xn0gJNXnB48WYUbpmHeZWMUsFeY7bm5lkaRL9wOuQVc12WjyIroZQXbuG5QB5WbGrZOvZ+QsXgF49W0wFXIeaUVeUVtV2AJ8AKg7p7ZG9CRgQg4ecujk4uLyYD0tRY4ReBrgSiYKxRImUlI+Tjwsjsvct36BQNAcu+BAOvi8246WH6j8LriN7X8FlriOxqcewdojnm3BE+b+ruEkiBe93frfjpp54DHxfNHhBzcU7u1m0XwFNXZCp7Y/D1qWuqrk3eu1W5T/vNKoqQiJRiBp7ANqvNU6bXlZwOCA6osT37ctr2ojerTMdtAclPWtVWXLWPQ4yUtFFm81uyLFFh3mvzoN7IS+Xo9GfDpntcR2Mp5Z1sf566tSks/TB54lSJb+V5/FsbmdRpa4DVHPAuvZSEt4psv13t+I/526MlboCw1D5vN4265zVanc4BWNI7FsmsLbmizJ+FRcviGMGORcqb3qu2OJWrRCnUJ4s4xVgAnX34NmJgZ/+P2VnWDyT3PTHq4I0WPRx0RCC1RUtZboawQRNbQZ4kWdgm3x+E2BXOWp4U0238YNN6xOKyxOtVz7XYGshNEMqua2AzVWym8dWLJMlFFw/itDbppqcXIMgHkDRjFOmEtUoCxSKxQ4k4GeMYiaS1PLO6jcy1PNk/6OccCKePaSJHFEYitjgAaSxS52WeW3yDQCU1aa4lCtcWB6j2xPlp+5/Rm24KnOQZqNRKeAUMXA07nxkmtpaV2PHjR9IWKETAy53J/KiDVKTsHjC4dBnP2Asg5oHUmcDrb5XhbUt50ugyAU5VuwE5VT8r0ytumt4Co54IojpUAKuXZuGtsfuSysfk2zbQRrrizLhvbvwFXXYW5Ajhtc+XYAZo4F+lH3TJSRipDQVWoWLeszJO2ozSgjZ2RoUj8dxTyErl2fJ47D4GT/HYCy31weBc8Vf0hlgELnjpyoHW0f4rTZ0jnJgeWNc/wNnXNNa+BFjQv8ZvZtGcpCDY/h9/VBS7fiDsLoCrqWZ96x7gAeNoSK7U2fy31lKPPWwumFsAQE8cgKmpH23hMGrQDiqhXJjhfBE9L5bXc8vVuBZLdJqvgf44O+6BIzlHSWqsR1snrs25R2kIOqFhqgoP9b7SdQc9lA3RXW7U7k5t+bMA40CjNesl73W/VXkS9OQiBqMr1iWIUIDXZAGJnoahAVGk3skR1V+b5NKDdjNEHEBurk/CQfL5tt7onjhc9198SeO4FjJu2VgWMm7ZWgWgZU9SOpwBINnyPgBTgdBYKr4MtLFI/Vh7QBIcLvxUwRcHmen351y8SQAFSwAow1aG7A6B6ArERPHGvfHRe5S0Arq31b0UbNRYH/UdPgwVSbkKsrFFRuQh8zbnyNo2/DKZqYyt4smVuC5rW7kflaeM9aAIxwyYjXnLL8qYMKr411qiQpy3LGzlYEs9nGHSFQCk6dy63BjgBFUhq0nKdXrBw111D0TF0LM3qLJu/ds6bA1NVsTI3iIuEGI01KtmaLEjKAjShcfF0A43ztj6Y3JDFGlUpbEYVQAwUBc6c3Ht6QSse6IjvDvj69C1u282LBpaA00q3bQioxPoTqRuzl5LONXlHdxJLVL7tJJakfAxQ2gCchd9FHjTgezL9jqlsxVvm1voo4My6cT0Y9DzXi1rm/d0BUFuoB6TW1mnybmGtehRBMXOWpUa79dJmLETkynbHYcqtrbO17Ebqgqc5mgFPcdD1BvB0ieuMeBn03cQduYHNWpnM8dpyS1S187xsZ7DCEtGzOACB4pzpZ06B+ePG8mSVZqQwgTpty5wXlQvmia5I2P2dzJjJum+MRUL3ibJlvWXCtwUUBRi5clSxGqXqY2Kk3BpaAs9yLd7q5K2Mro1wu4pMoevWH28ET2udCqGB3FqShALL4+ycKfxG0Fbut5cXWh/9Xl/RVgk2P9oBfYbuNoCasya5tK7lqXcPNq/o63B97URzNvWkzXUcWJVizeuqO+U5Gxdl6wZWqO4wQ5DSr9LkL9XvAaK1wGnNCsBHCaBWkr/L6a2vnslWW5micgFWX7JCPVexUET9GKieZWoOOM247EKXzYLlaa3VqQFNfipZCxosEeA3U9S+GMUaJRkjpTITG7GKLFHQOBkS8yjzdsuEsVBpuihQu6Qd6C9rb645uE/RIoMF4BRbo0p7ofXRtXdr66OOtX+5Parf/4yM5XsnCwqs5bHeoiLJQhMXRdmSxcXyKO0kWcgTGfdi3iTA3KRLHaDlueRvoCcLoIKxLk7GYZ0N4GnTar4FkLWUfluKrAEWuGga1eUaZbcApMK3xyAuqlNWtGj1xtkDTjO0ZMAIb/Ma8HQucFo6n6t7Bm1acUetCFir1CxAckCqKWPzbbcbrFPPLEWrlDoWqFBp+vxIcQ6ufkdxNivtqGNpWABOazdSDDcmtPmmIjlBLiJVgAlTUq5dxSrHZoVeibGyQAvhii0AbUyMBVj2Uq31pMLIKwX+DBnYBJ61DlrwnIdZH+c6c3LgL+8Cz7adwzxotkCqTDl9fktdcemV/NxFD0hZCyZQAanqMi3Pm1WX6+juWqAioBMwe7PlaU3ZJxUP1XPXATVwadKctlwAOu144/IViIrKPioKwA/18lfWB/rg6VzgdGmP1WyAODArDz13WiUaUTtN3SAfwS0IwT1d/qbcNeq9oXZcKV2Lg+Q5UFW14RWnabNncUj5Z4Inc8gdQ1svPW1UKIVKu+230qQrqkCU3+5ArVFSIW+4Ga3YkmvWHcur++/Akn7CowCsMs6ZSd0r1hm3GxDIwBJ41nqmS2N59HlVfnMs/c5YH4FQr55jfazAsnkJK+rIgCGG8kq7zvKyaTGB/fSLChW1AeY6Lq4CzYGA50syENDdAFCe8UHeavAUtrECZM2BpiWAJcnbZS9sNwbBC41bS9Ns+Y41yitQD6IiLRqkbdahLMLcH2oIniJgtASc1oImLwobLFGr8rXhmawAoCw1W+Mrg6zQAUmmjxBbhyBpftzPNBGVPXs8uVVT/njehYNli0OuG1kcFNT0FGYEmiKwFPB1SaGqIpNNm+1zlxWZyEz9YeE0OJW7PG801iiRU0YTXC4unrJVUwZV3hoVufXUfZeHbR+uqb7mHrgK700kB3Ogac5d5/NH047lZS6/CJwiOUCdVl3fzKaX1hKp7VTzCWuavryJLOT+lN9ynPlN6qLN09dU2kjTmQSgUy6L4sY1LrrGZSuJIc8R8niJ7gaA8rT1LfacCb0Hnhqw1CknSWv7ngsM77RZMThyw3mFKMdSfjaOKdKYKylq71LlH6FVZ1V/54Knc8YdAdIov8ZCfbZFgMi59VaBqOcZJK2lSLlsdeOg5uWS1am024KgKAbLK81wZ/MAPG2xQlSWJmlH5FRcfgqaCO230mq5btw85hloPv8SBhkHq/QCq1MFooD62G3EuHg/oh3QzW+3fjcdjodxucXFAlaGeuDJNT0HmnrlFExVfHW8VhkI+L3K+mjqKE+NTMC0LbyMLI16AQYUG+vUVrqbAEookhsVAGeeCMsGwCgCRFXaTBsIZPmcwB2VoKWqwYQXmnw00x1zWwad/N54GbUVqjfuxxFNzPXvnOUpctetiZGaLRedR3XOpLVN2LvMPsO/4SnP6DwQlX+fNOvvDEXLnSP3m9CCxUHLh0qP4kBxAKHFodG4yK4AACAASURBVKMwmxVZAyoh6irTFTwtU4g0DiNLnCxT8kxGFinRk2JNEheduHkoD4SBJk4GsvRdxpGVJeqAYw1GFhpKO4jcORoXs3z99c0oN2zZjSt5G3cVp1peelan1XIAV86PfYYuYn0Eh9tbeOtjZY2C5WlkjTL5AqaGIhvW2hS68TbQkwNQc8BnoWwDnsI6MwBrI3CiqG6vnm9mTrMSwLOzVFu3+qDmEkiSJtYAqYXZsomH8kp2C60p71nUA09L7a4ET2vB1aa+N1LIPn9/3XkIpkwZi5/0XoiiCYBSSD5vTZ1nkJjQd+EBK9x4Ui4GTlrGu+xWAKdSF6ZcHzjNbq64gacVGM91K1BlFKiAKbFYWJdNpFi9NUpXa3EQYJ7lUVzfrIq3dvMASPOYWpucYgUq3tEKhRqCJdfOxYBTLj8LnBp9Wc/73uq45MqTcft5rwLNuW4FqgLgXH1k2PKboLKz2q0XASlGDZ7zfVHdZVx4YAukyz3cQnfbAgVsA1h6PgOwIu3XAUiz1qag7Vmw1CFfhz1I0QwzBlGERia6/h2K67YDcXlrANJtQFQ01nNoDuDMgScOyvv2emVm+r4VeaCEgK1c53fb8WIwh5EdINpdeStpyY0XuerOUJylvY7ilPaN8qyU7WDrrwNOWx/N3lRVrA7FpVN9SsPKc/WeZwLGbYB4vrbZgGPXpvZduYuCCxzcAz2Z+7VEi248KSfnhg++zDky4F2+AThaA5zm+N5VHbaMAFtrcTKuXL/7vLQ769bjmufp2qFu3Jqf9Wo9AG4fKqM0nyUXXhGEDvhRBrv8JfA0167PA/rWpmpeXABhHbJu9n4ZkaQ6vdqNmrjKr6xScxrWAi2fL3kzIGo2oBylfhHWTrmgWjMWO0IHehrXnU8HWvA0WzY+nnXldegcV144Mbl2fFA52wOnj4PqCoxSnpnEpP+VIEpZ6so/NzRWE0FYxCvLlLagMIFukHjP6lS5aaxSXAOaQgBlxxteWp+qZ8XNYe6FRq1IquDqdG3CuXnAMDuHU2nHWiYAdesBJo1zmrVIAcYqVV9/ZalYQ40b15zMWBy1bGB19HW2ygCwEjzbyz7nWQ5fUKk+N3qtskg5fmsdMu1l8Fy59fK4a54nUFTxHKiBkpAJgm9Wmm+gOwOgNlEPPK3N7+Qtgae1wGnupWUurw4atxmlb7VQVYJUgI+CtMjkMAdoVBkG9Ux+uLXBpegM8BG3Mw+eun0ugauAVgOmGaBh21j06Ar7LZvmwMwKoLMqhul5A0oh0byiFOoBJ2AbeLKKLtiaQNsNFGe3HU235dyY7HhXUj115fbEgpQL2BeratNMZ6GwAens2hPrRMl3m2/aIHOpo+ColANQrFJAcfcgAFNr70EAmlK6kwFfPpIB3F4GGpftWuC08dptXK6dkvSc0VggG37bsSDzXN2s1OwdpW2ptYkrnsO2QWUMQM13oOb9VrqbAMrzTxk/c6FLbrsIVOU6IXCy8tm1RM2M4wxKz3jbaD05sUmnthRTAdzeGlUpQZM3N+Qe6Oqmr9HGZ5AHN9xLnwdP6wPP42H0rGVbys7dniiLAzZXb18WIDnx7eVpTFSF3kw5Mqy8FAh72okQfzMrU3dDyhnQpPXmFN0Wq9OCwvRj6FujupfZUhfYm/gWa5VSeUpzD6GOj6qsE4RkXQCgbj1rjfLtaBxM7k/jo4x1Ip9rjBaglikZotKScg02Vg0B00rgrPUXgFPosnXAKbRgNjLhxuXHvUQGbNa853r+kE7k/ltPy1T4Z5vVbQ+Ym53rfUxVsUI6IGXGJuNqYrfMM70m5s3S3QJQUYC2B08REGrace35Oh44LVmbNG1+vBfRH9Sss0PtorPpEZhaCaRMf+3InTbsgSWb58pEQYez5IGOT5+pE4KnOYC0BlQZmgNW58RG9byoUjcyHGq2Y7PNZ5vggZRrqExu+Z6B14MlLF7iM0s9a4JSzw0WgSbTTqQ0w/iWPCfOxjg5hdltR/q6BIDyx35OsO4ZUa7Sj1esHkhJoDejgLIMpGzQcdVO9aKRE3U/oQXFaq9jBjBX1OiGQA4uLAO2zlbw3AVU0bXMUW9uFF4AaMCzybfgOXTl6j5OhefaxmQmy1zHXrvytsf3amLN/W20vt0tALWWekBmC6iaKbMInlYAp60B5TZ4vFWIRVAqd65VlMSpDVV+gSbudrCScttNLNSj0qgbgU5VxrWxKhZqrr0l4HTO9bdIuWq7cdGhw9acvxj87cBRE/IWgbcZMXouaUZRCs0Bp5RvwE8Ul+L2dIoUp9bvKM7SfhlDCJbIj9eNcQU1lgMzzOpcT+yGBE5cuVxX6NbLY2/cekC1d1TlMsplrVUqVWC99iqo3LmUNtEccAL6Vkeg5kX324po5Ia9bFkeV8dGDnx/9vI3XHuFQSRNeKhlDK+qgoa3PZ4XfFS3w3C7zxs+G6tUcemW67d8L+M9j+F3F0CFqCRKc+CJOmmmbGN58sDJgyYbZO67r8DW+SiCGq2ZdZ0+4SIUkmceIB12ERyY0s2HPAX8KFUSXc92PubqUYGltRQBoK1uO54HY1HemqDzsI0Z6gGhqg3DykoUvCJ0Ih9hs8jCVFmiyFsGTBmXFo1XB3SL5+BOEwHsXTbRxNsBS1GaV5g9wKNKU/g+BGlWYQ5tG/3jeoybrBFsFBfbNBTQwyjTiTx73kKh0418QNY0yChuniroON8rTgk05BnQBZrHaK4WUzZBxbea33pgSfNd2pky0AsOl/KNtaknA2ZMvbF2ic0ttTuPw82helx4ztkKKfKjx0Nuy/Bc2uegnUofWb77vv28ai9j5vuOS3QnANTF3nDn2rkweJoDTueA2bJiwD7V1ASPq7w4q5S1SPWsUU2AeQSGVgKkRxlMHrUa6eRZ91kEnhauKwJJa4HTOZiheZDtvQ9AyioLUQOMUOTCDj0CUWjb6aVVYhKVfVZpATABfSXUBSprN0HsKM7IotCzMjTAaVaZtpfqyYueTas/FFvyVP58bBP81GTqZ+uEtzJIv37bA7+7tbdKyXnqk2seTisuvEcReJbrRUcGlnYQd/yaddcpj6lNQ3vcHdMaIoNxm5ik0mR83LdCysIA+/Fqu1hAy2cAbS1S9ZYFPXmpL5D89hUb6E4AqC4pQ83sX6EYA3oiYOTSiFy+ZJv254BTBJqi+fS8/aAAv6lmtLohZcjDURC3j4sjLICoqvO6TC3VRrsugauV4KuqslR+DiQBBUTOgZ8I6/YA0EzdrkWqN86g7NzkFCmjXhk2CT2X36xLL0yj9sKWwNECwHumiGg2iNzfp9l9dlYozc1xTq6NWHlSk1+Pw51H12flWbKiFxX9JXPMSdGyuSZOZVIaV+0k62eek2x8VE6zn/HQNuzcz9BgcxLQVMlsFFRc8tZQ6O6kIP8MGdD6a2UAKFbSUEY646nG278WPzEpkMkn1pqU0riWBzkWlxrnMlTy02HAcwvSRI+xaSePVS3mnu864Fw0invaqL/uHoBqmMl1XlRej1twFAIdBUulvAdOa0GTzd8KpjxgKtam0p514bG/PJunl5YfSgChS09AlJU4Eao1gKlqKn+0kztlt5IHKxGYsWmR626pjutnETj59F793nU4asq7ycl5bPW+NpanoCtNM7yYLefSVAnBBZR7WgJVzygx0LrwPLnsKKZllbVJjnsrqihoZ4XCXGORmAVR/nIN3hGBYvvM2D9pVJSmf0bNM12V6QApALGbJyvVEEwB6urpKVZta4MrobsCE+4+9tx0UseCppw2t6qugKqNMrBw3FBvfueiNppzD6gszw1g6vFcb47qpZzW3TcMDZjSdoXsqspIwJ9aAHWpuIlKGB3gqSxNffCkTWmZFiTNAae1FqjeLuQ2UNy68CoXHIx89Ga6EAB1tPHckB+jaeGivawFNwvgqVe/697rjaUHRrRBo5Dsw0+GBQ6sEh4NayqW86Pr56mnaA4OFGaVvqQ4vXI0fbXWgd7nO6Q8BWltuahu77oai6oD65qHIqrUpNn9m1w5177Pa3altvOX6ai4ctLEqefG1aPXYwdvgdVWWgOcgFoGmvvvZMC2QwF/FmSgl7YkB811BPyvXvAYDZ/t8SzPNbF27UmBxX3D7H3XoRW+67jleZyCQPLg2pfo7gAooBGUfjnzxEbgx94YqsuHsU49q5MDYOQBmS3bHM+M31GxOBWwJG2w1WIuzW5UR7ke67WQ1oosUVVguXXbmVr1qQNRftKqBNCUtXndG7CQ78o01icDeCIQtGR5WrQ69QBWMPZZ7NzJ82BJ26GSXKUFrKjK+TYRs8GnVfXsmM2Y2HY4Rz3A+JRTA2rCfYDMSbgqq/5dvfkhoVLAPAR52g6FeVomatf2q+MP7kFwort7++cp/+kcN5nphAPrhLxAMEBqrWrzK8uE9NWzTOiFmvr2uvyDcYuNFUPADCAEzfm3can1ZKDiNwVp9pecvEQyhID3dszxJbI76Llvl3ie0lgXFijAFd4CycuhMmB4aPjOoOqzQDXvqRpT99rOZPkTB1Cr3motUFpbjjh021XFg3nCgqc1wOk2LjwAallyqUHJ/MCwbbMGQWRADpOk2TnDxEXB5vNKRjxCWgmiAo/quvINAHNtRGnolIvac/2uJqrr9zmPygJVWaRMueZN0ACpECD5vvKEtHhzGZVsPRdE6CvIqtwMaDLHaz65cZa7LgJMTR9BvhlPqFD9ZVqQH7hhKnkUpTkUIG7EGeqeE/cafJk46NjGxdhv7EXBw1IPuT1NIxikBd0WYStF1sEmvbm/F5SB5uPDnfoOdLXHpe/5C5ZfA2LN/Gh5DiDHPZVyMtdI+L+VFy1j+G7ntiZo3QWcp+E73tv5kqied1Wwts1oTxZALTCoCh6P6hqwVE9QTrtZIKTHpVwFngKrU+y264MqfzxHzSdaqhEBrYqqgZS69mAmHqYsZJJGlZWr2hrB27F1UrR5bhh+duuQvlFspQ7YWarjrVHd9vxxD1AF53Mgq0lfQw67LnPeKoEaVHmlFb40ZOXVlIerwyYWauV1VKjtUi75O0ZzMVCtAm2PQ2tDPp8N8N5ocaisGEP9GynbEJBF12Gv1z4L5lgt5AyQtRyJ0jTnTd5QvlUnskm6EWKen3hGoXK8q3l6J5DCTuaBSqFuVqbBm/MiaLLnjws8e3lw9ar27LgjquY/0vMez6WKWpqUp6a+Bd7S/5pgcySwpBtyosN7adPyuZlk1054iZ64BSqkuWuYBUvpPFxJl+vZPLJ5qOtGwMmCpq7rzg13WFAkk7rrMpCyxwKOsnWpAU0mXYEVuFiijDXKLgL173L1PlHlYZgFVVKbzHYGViC9yy+gJXdXD6SAKQQ/Yd0OGCtmYTeWqO4SuPLji84jkttWIaJcncrt19uukwEKW3yZ0myDaXTccmj674Iqey1Rw88TGeDRy7cUrsIb3PlccK+Lk4ksBrPWBjmOFKYBVatdOv5yK6VZjquXmawcRbGyzZP9d7L7hQG1HhFDrVHFtYMiqFK3CUancmw1N1C5+Mo1lDLNta59e4iKmbQ5wOTzIxmIwZK0Zeo6oMyEkM9ap0ozY9rAe+GtpnHm32TSxapowI/OVcb1pp9g4VLHAqaKtwKyozw7QM97m6ZF10zWMd09AHXOxGyYHuWtsgZtAE9VNWfFApZBkyUpq0AKRgYULFnQVNL9OLrB5HJ9oNUvVYtkB/qYiOyDgrr/1ZaqubIzaYuWqbk2UB7ScMlsAEwqFx2151WZqH/q5HfK+v7LuBcmUqDsQfa80MK1zgInm+ZjnHJeJeJeYVblVoCnnrJ1QKwao1PkzXUbkF9MRenPi1IF4lG7a+y1azemAbtPk5QRpVleFsw+QNKWHrt9n4yLD6ZMasc8uP65WEuufLiJagSeIl5k8GTbjoC0LR/LSN12Y3EM2vO8989/NDcpALb3wgsAuTLuRbAyXFNQpqpHBqE5lrHjPRzvGzluGb0WVC0CKCJ6HcB/BeALcpcfZeZvJ6LXAPwRAF8C4CcAfA0zf3pVr1tJGcB1WmCNmgsa9247BT9DAUkRcArTcpcWLJ3jwitDLxciQGgS8AQgtjzVaVbM6pUMeXowlqg6sNzPPvamGgnObYRWKFtmDQVaWYS/LTvXTi0W1duvtMtBXgCEllx6fctUMPl2KHwwK4VZJl1vXXLPfak6k19ZnUyB2XMgjoUKyt11uvT8NbsPFNBaqKyibNLccRrwsptG0tZYHKgAp7IcHkWJWguUrRNdZihgULecdc/5NAUt1iJlX0pFCZNTpqosgSqQvHpWyVgj2OVTKWcH7NNmLBSryN2vCDCn4Rj+RUDlUlZHw980nlJHx+b5Hcid9msvx89/UzmXY+F3ccsKT50VUvjeyExdx/K0yIbjuxmTWsLcWHWnc9Tpnvxmmz1aY4E6AvgtzPx/EdErAP4SEX0fgN8E4M8x8+8iom8G8M0A/t1VvXoKwEbz8WAt20tr24i2KiCbNwN+InedtTYNLs0e98Ik4ninRFPASY2909ctXybNPAKoVNvmPBsXpSAKZT5qJkLC5SxUlyIPZOTYgSR9Aw4md8kP87g9jsCSz09p7UTcsChi2UyRdsUkFEwVzrpmbb5Vcgb/qHR40GTq2D6q7jlQqIzwWu4gXWz+qpRPRF6J9kBTeL7wyY21irMCUFQpRY2D8eDLK1agsZQ071T+N8sOZSXKgLrmfDlVrMjxToNJz7ExunJLqhOAqd6jTOS1Fvl8H31gc/UsFGWgluGArwoMFiiUiQ5oSufonD8m8ByWC66lA6Aa/lt++MnJyEBiS1Y+UWycWIemMldVsUydxQmcE8oxlzlRxmP5X6+sSj9nKr5FAMXMPwPgZ/Lxm0T0owA+DODXAPjKXOwPAvh+nAuggD4w2tyOA14GPCEEPeiAJWhZ76YbKoBV2hpMHZiyvTFORjJHQrE8Oa1rgRTn9us9o2oQVd7u6uBxcN7moNi/ofFQWg7oxkKlrsx1IE67LQjzD6htfgYENfV77Tkwtd0qVQMnbwHrjdXmV9aeoHoEpBw28t2ViUzad5OEjGkVGLKIy2uqp4guPn917sGqjRQDhannK4ATUCtMa0mQvAZsOcVZKUwHnBrLhIzZjKeR9eBPyimOcQpVwdGQ5jyaTNC4rNJzoErHlxWwvh6SKSf3jBOQSkP0Xwb1z1sLpjRvdBU9BbLQk4NLycBaq5PfvdyD50YeyJUDQjBlgbLeFxfDpuUFuJh4KAU9AqSm4gOhzHPLe+TjVIaKUHHpQrsLeF8N3VWojOvCt426a1MMFBF9CYC/F8BfAPAFeXICgE8gmcgfHUWa0wia37LArriT8gRJrwGTtzI157kJAU7e0lTOI1DV58iIGkQpKMq/InRTdtWNGTipa0+BlA0mR+PSayxRZAPHDYiS2c/cRy1UpUVa2JVZC6q4FKmaCMGH1UptOx5MyfmcNcmCpzngZEFT2F40rpmHsbvFhplo1Xytkynpg68+fdNN2VyuZV3FApNpJ57qrQ0B2PJlPKi64yDr9vMXNavwZl1dPt8va59RmABW7eXU5BlXjSpLq0Sz0uwp1vTLsy6dSu7VZUNqRVCAdHLluPSjZTnfF4YGD4siFpdOcdmUvquA8MZtZ49bN4+em2tJhxTPO6VAfR+iIp3nOgRMuUz/mKq0cBVlY0mkFijDyIHls+GvgsUB+jmdxgpp74HOt1S764RvQ+Gf5k9tGoiWFxgAzu2X5QVo3Hue95JU+F0xvE8rgdRqAEVELwP4HgDfwMyfI7vXCTNTJ+iHiL4OwNcBwPj+96/qi3tSrMIVgKnuuKHgyaf7Idt4Jz1HDYwi8LQGOEXPHKMOIhfLkqYB+by2Sg0IVu9x/J27MOAcM/JBJtRzDiStbnAFLdTtucWiSXCpTlOmB8SkzgIgasawQjQbM7cWrsGJBzfaPpV2JYtNvjbfYZ8HRg0gmgNCdxwk9egS89f1i+/rPxJBehc8kcuPFKdtwypRX6f6JTNHmr6iNJS8WrFy7O5pLwUG2+f5AtAYS6tEc18ipypiVOdV95FCsS9tm2egKs/lWJuT8igDN0b4QsFzUVGH941MUCe/A6B1/B0ZqMq6cvB1QrlABZQ9wK7SB27AWXPdApYUlFIBRigASfkX8FTkQFlStE6dbvnEdRuWyZbfDc5l2455ttwk7OVpDa0CUER0hTT5fBcz/9Gc/Eki+hAz/wwRfQjAz0Z1mfmjAD4KAPdef70MccNEFOYr0502Jaj1ybqe/VYFFiwNw5SvEwqSpBvrrhtNsLkFTXps6iA49mStTzpRGEBlLU5DLiFAyuZZzg+DBVGk1wWg2JlMHRtUbl15ek9V0t3M5OisQPKwoc65apA4fxYMsTnekJ7a5bgMfLl2/HPvAdGbqkxqogR0prCagwDv1rPF59KLjGEZNBmgppNb9Gw+BYDqUvPXy6+9zt0YKKfwZi0RTjlUCtMoyGjjy1BBzgQId61OkjYmpYl8XCtcrpWoChDKc5AtT+KmoYmTm44BOlGxNlDOH1BZo3RakfbEGkUIrVFqeVjY3Tq2SATMsQ+Nf/tcOZe1AKojC+4593ndPaCcPHg3W+Ou9e7Z/NtYq0bD5xGtWy/LhR2nzmkTmYDxPEdOiecAQCcUi5TUFeskQxcOVNZFsSpO5rM7Mge5shHv00Ad7+GOqzTHJ3t9K2nNKjwC8F8C+FFm/jaT9ScA/EYAvyv//vfbul7qGPXEPDNJe6tRAVnubjjwFMVCRe64BJJQ5VXHuY0hyIfLAwpwGo31aCDWdAVPSHNNA6SI9WsDao1q4HNp2+5crjEB7PZprZSo2fKgp5kfB7Xsq489eHF5HgxJm+tAFTfpkbWpC6wcqcXITkRGIdkJQ8tRC4BSkWqNZYN/bB8NC2fAkt5PaeMpAEdLdPH5y1sRwjLlMLI2LClNLeOAEyAK09QNgJGWs8rTK1gFUFzONTaGS31RogTonm8iy1YhngCaUhC0rqorpp9CJ2hcC1B+FSDlNAXuPshcFOjg5JtcPZn/8r31LwzV86gPGOlYKj5toO6LUZSmxx3g5NJq0JzrevDsAdQo5UpeAVCFz1X+yKadwn8AZZXlhOKCPWWZkPJy06P5g1AWGeSmmzg5qctcbbhpQXSX9zZA3MaqehkwvLD6YyvP11ig/iEAXwvgh4no/8lp34I08Xw3Ef2rAH4SwNds6/oMCiajMB8RqCqAqKpSgara1WfBE4Cu1SkCToP7teT3fkIGTwKUhCau3Xn68sbJrXfiPBaUAPNyjbWkVC9XWZKS8LFKzexeUg2QMpPjpQBVBxD1yjXHM3VXgyqsAE8ctBmNfwZIyX3zrgQPlnyeBVFAmTC0/FxF14hOPjCTywzZMuTGLmB7TTuPmS46f1UusLkyQl6JBkrTthuBqMgiYTfDDPMdeEoTFdTKMImSHE2dkYvS1Xwj1AQw2FgKUKxJIPDAaoFQmrJg2GfC7MWj+tauvMrFKF9nFWRubn87y9lnQJ4LA6RcXccipbOnM9fQFvCseV4GgqDu7gpLHyPl80UeRkCtTsYSqWmW9yqD5sEWHp6gL+g0wW1UypmnNe8ZaZw6Z+R0BUSGwQxKAJ5j3muincvYlsl6zcmABdAw9c6hNavwfgCNaCh91Vm9VhMMx+nolZEHOh3r3k5GMJv9y6QcTJ4AJqrBkw0UF+A0qouP1eLkQdNgQNWAFqzFFiiUlXd5YBMTJIh8yFYnBVL5DVCsUWN+YE5TeXZO9Y1DO72YmQvyACAfZxCVhb5ZkbcGNNlubgOsKoDT7ucxB6I8UIrAk4qR2cMkpXNbB21bQNAugGhrAy2LVrmmB98IrJ107YQK6CoV+wZKE2v96NZrd2zS7BDNeOzLo31b08nJXpef0e4oXXL+sm/0vfyKKsUZK8vZ4zBomEqeyIYPGhZFKWnWPSPWpeyum0YUi9OBU5mRE4AaGHRIyIYGTvvlMYGnNG/wicDHIcnWSMkCdUK2RgFEEljOoEGUIxXgBShQAqFy7dSIKc0/PshcG/B/KL/s5o40jdXPqCpu1HU3UQ88mby57Qwiy1MXOFfygMJvSWtcsSZtMMDJWBmnQ/pNMpDkAIcp8UN4D4BPqWE+UbI8TemXp8z3Y7owynMIZd5rmnHh2ff8JbdexHtrtbRB5spP5W+wHxSMHFSMa5Pm6O7tRA70AdZStQBoRfs0WfDUKxPVidx11hoFJPAUAadeLJTMA0Oj8YrVCXDxUmJ1AioXnX4Drxo/FBgB7U7kSTkGwGiLKeG2YGmu6QWg1JSNAFaPGnDEbZ9VvvmFO0YBX3NjpzYJKb6IGrCib2WSZgBLA8hyngVB4es62nYadx1H9Sm4Mc8vrXfh9ZWmb8e763yZXpB49BseG9dcsUqZNLE4DAlA0cCg/DsQYxin9PJ2GsBgTBjAzHmiktW9acCi6FQxksFChPIyIDJmrwtF5lN7aOVR7gmKIm5E2DwjlbKmepdqUdoB+zbTLHCq0trjteCp96IVyUb1ImZdswKuJGjcWpvGBKCU9wODhuRLmyjznAicTUnp1lJKHynHRBEwlXGQvJEH8q5JVkbkcoL7WfFeDlDLC9t2DX/rtNJ49a28DXR3ANTSwAnliZCbYdKq/ZuCtOiTLH5/p3GYmoDxgbhYoPK5tzqJxUnKRdaolD5h4kE7nPKBWJkAgLgEjB+RXtuISa1RQAbmKC69AaTB5ZElqliYDNiyihEomjQLuwaa29mHTTm444h6+dYUrGn9ZqJmo+MmzYOeCAhZ8NTJA1C99dTluMpvrFbdiyhKQu+5Tnakk6DqDYbGgpBMftJvtsDqNhim72pesKArAlGWrDbaSckHkUefgWiUxExaT2navsJv1xkZ6AYKR+4ZSTskmZkOAEZO4ClbH+hqwnCYMAwT7t07YiDGvasjrscTGMC7D69wmgbcHEfcPDyAmXB6TOk9WQAAIABJREFUyMkSQXl+m5LxgCYkS0WWuQkMquJUoIrWghx16cHl6Y7hXP0AqCwSPYtU+fVaWNrY8AHtgGY3T/Vp/tidR8Bp1tLo0wxYmjK/i/WJwYf0ixHgQ3Jj0NUEOkwYBsb1vZv0ezjihasjTtOAdx9eYWLCzc2I43EEnwjTzVgsUkdo4LgGlRP0JZ5M8LneM6BOy3Ur3htkldI4nJ95juezx+cx/W4AqGjsEfK0x5UWbcuRKzNnbaqtSdA0b3U6ZIBlAdJIU2VlEkA10FS1XSxQU2VNmrKWPGbfgICpiQkHTAVkIQedT4PGS51y2mkaNLj8pIo+nftv6AGkb4WaJm+MZCagPHtFadVrnrnh6ZtUNTO3Gi4icGQtSz3rT5MWgKhzwFMLmMxYJm7HU42Bm2sqClMEEpX8puBYroCU/tl9ntyeT2yvmVBdf5VmfitrlVyDHWNTfyMznzUiwO8DJTTvvqvTPGjSNA+geooTNViqVtmRBU2og4JHycvKkwC+yv7/MQEnDIzD1QlX10eM44SX7j3E1TDh5esHePnqAY7TgM8e3oOb04i3H16BiDFNA4ADphOl/h4OaZM7IIMqxnDMwprBXDKfFyClgcU2wNzcpl6gMcGsFHTPn74omDyV+2AOS+mWcVhHjvddwNQ73wKcArCkPI8AtYlrE1ClYOqQgfPAwFWyNo3XJxyuThjHCS/ee4jr8YSXrh7ilev7OE4jPnv1Ah6eRrw7XuH+wytME+GGoO5cxlDu25RvtvBebjLlC7e8l5itOd7nOS/anRxGBpT/bg6srO2GF1ucLZ7uBoAy1N0DaokMsGrmshXWp7ZMGUfkrhPLkgVTBwVNUwFTtp1cx8Y7CR1wqqxTQLYuGcBSBZVzWbk3EFfuvGpVnwFRgAdUqCwUF1ONF23MUNSmB1a9tG49btJ6b67k6tRgyvQZ5bPDH1SW6opSJtNfYnuOR3PgR0GOkQ0Zl3cFVpNG9Iu2nVDRRPcvGMOzTt37cYYS9RaoSnECxepklGMFsqTdobTj46Z0iwIDsmw6shsHA4PGCTQmAHUYJ9y7OuLl64e4Nx7xBS+8iQ+98Fm8e7rCx4b3462bewCAaRpwnBinYzJ5TVNWyuLW47wmbkjWB6tf7UtHZW0141dZ9PdZrhf1irtQJE37Us43h0DW14r12eA5/3ZlYAk8mfQmza2u07ZyfBPLcZYBOkwJQB1OOBxOuD4c8VLm/ee/50186IXP4d3TFX6K3od3jtcAgNM0pL9j0j9gBp84AacB0L0Eh8Jny9etvNeVl9IeCv+r97yWDbnsfPo5dOcAVEMGGFXHJs1/fiUd14Hjc0Hjg7reXHA4CkDyLjtx1x2GSS1OgyuTjlO5kYqrbwLhxISJBwVRR04OuYkJx2kEKKVJUPkAwkRUzplwnAa1RA1yP6ahcudNTBiGqdqxXO6JuOkI9tjtC2VF1Er6BamZqCoA4zVTUN8Cpvy3xpok7c2WNR/H9O46uwMvmLvuPWmnWlFDVOJBxG1gnf/651ES1ALFhPJ1cZKJhStAVikVc80CqggLQMvcYy2HOu95Iu/CA7AKPNnjyIWnli2nLLVPr0gHhIpVl61HS9QPEkDOGjCOwwQ6pGDxq+sjhoHx0gsP8dL1Q7x49RAffvGzeO/hXfzyl38cX/7Cx/Cp6R7+l7e+DB9/8D787INX8MnhFTw8jXiTGDc3BxxpxIkYPGVYM1COJ6AUTH4iVZJA2n16sC8J8lkQkmeuTAcq6/ZlhPMN1eMs5DbIHKjdeyYdUZo5nXsJC8F0BJ5supUBd9yNcfOWJcP/WZdttFhgFDng5LLNvD9k3r/4wkO8eH2Dl64e4ote+gxeOjzAL3v5x/EV7/lJvHF6Af/z9Zfhpx+8Dz/74GX87PAKHpxGEDFubkachhEnIPGeSIEUAOVzeYlc5r3ehzynRt9YTPJR+J94ZoTGMhNm/kKcv5WeKIA6y2xmQFGVbOcfI/W9oHDAb3iJyvpEpowHT94SNQeeRnNeLjy1OxHjZhq1nTKWDOjM0yjWKHHpyRi8BUqu5cRl/Cdzo8VCJRYpoHw7r7uFQY8uDaY2tEWdB2S2XQeemlUYDohVwMyWadrrgCcDwMBIn7YQoJMBqr5RAZLSYphsWZKHvwE95p4UQGbAmB071WUvSr6/Z42M0vM0Z4XoWR/Yt2cBkSvfunfiX7VImHMFV6Jw5Y9YLVASLDyOEw7jCffGI14Yb/C+q3fw6uFdfOHVp/HFhxfx0vQuPnB4E+9M13j7eA/3xiOA9CI5jROmiTDlrQzEipAsHZQ30eRkmTIbLPKQ5X4y7xBZlhhmrrciLbKej/Wegqo4JqlaiWZVPpeLZHftM+LKLAInf05t2YqvkhfxO8gT63aVpgHkrFYo4XvN+wn3DkfcOxzxytV9vHp4Fx+++jR+weEFvEjv4rXDW4n3p2vl/f1hwjQSpomAYcjzE1WyR1kOyDFmjvdVOXNspzaui1UJEW9n+X0G3SkLlLrv9Oa5c0k2N7e7cSZxDYgqi5T5Lh4KeLIB45HlaQyA0mE4NcDpajg1IOpAJwVRx2lUK5S6AnlIFimQWXoHTBgwUbI2SeyAWKI493ucBgVR4zDpFgc+HqrczNqVJ9qUMg9kE80GVKlWN7PbWuqBrVngY6TeAJqmjk2vQEzJI1e/G/cE14bZbbcBSVEacwJKpg8pCyobDfKQ3a2D3BwUpSb5eUgSKO7T2NxTC7jY3BMPusrrvKtLBVRZa5QWs+kwbduOn3FiILZACS0o0lZ5UqkTKc0gcFwBkrVm+m0KKKXZzTIhaRIwPiahpUMKGB+zy+4wTnj5+iFevfcuXr26jy++9wZeO7yF9w33AVzjCoQPX30aI0048YC3T9d453iNh6eyv8N0GsADcJpkqQulfhkqMOp402eZdWJXK4HZL6pmggFGXOclS5OZm9g+AKYNOMXq2rF8WkW+rDmPLI6rZMCDpoV4J2uVskC5bF3AKQYty4NYHsdxwvX1EYdhwkvXD/HK1QO8/947hvfvAhjxAhFev/55XNEJExPePl7j/ulKrVAAwNOAaSLwRGmfKAhP5Eaw2y8qH3jeyzxl3H2WRaXN0kTFf9u+21Cz7tulb6Q7BaA2kbetGrCECiwBPddds0VBx/J0oBpUDQYQSb4AJyDFQsnx9ZBQ+r3hqIL3AAecYILBmTIwMseg9FbHjOM05mPCRFzionKat0QlZyDUTRfFQxVLVGqs+fZdpRjndiYXrZvSdbfiR0XRJIiuONTgSMvG4Cn6jcom1x2bY1PuZI6l3IkxnJJViA9UQMcAde0pkJKJUyaVPCESkN7eE/I3aWUyrVnm4qHcPeuCKnP/KjYuTDI9fPzMEbn7EuQLRZYIrzC1nBwP7tikRS67Kl+WpAuYEmWa3TgKnsw2BcNhwuFwwuGQAdQw4aXDQ7x6dR8fvH4TH7n+FD5/fBOvDUcA17iiAV94+CxeHB7g/nSFN25ewvVwxLvHqzQWJhwPSYlOI0FmJFV2ERrXAGDZ564vT6o45dzKv9u1WsYTKdJKvgPZP5dinvvzADTZY8/nAEDpr1lxZzdHhfI+A2pZbad7fCGBJ+H94YRDDhh//7138IHrt/CR65/DBw+fw2vDQwDvwRUN+PD4Wbwy3Md9vsLP37yEt4/38PbVtd7r02lI+4GJG6/He1BeGZWv1264SihuOuO2rbCPnauBug+nEzygalZa3oLfTw+AUsHqX23zEhBMdCqrxvrkV8p5y5NdrVe76OzfZALLS1zUiASuRkwYacJIwAkDBmbcYMSQZ4vJaDU5Fndd2v5g1L6sO28ghv1+niX5CLGAqBNTZVXyFiZdkedA0Wqy5c/VqAvAaHEI/s3C/vpjKc9tmSa9SisTcQWeJE5qEqDFwMQFZIGRl06m7z2h3GO1MpH9rlcCruAy91SU5YVMfm09KptsyrU2yj8CRnNgiU2HnTJhP88IzbrqojJWadrykeKsytfteOuUd+FYt13lwpMgclGidh4lscRDXy4Pw5St6mV18QmEN6YDHvA7eMgD7vOVjmsAa5gCARiGtASemdLmixOpC0+vzyh/kjc+eaTkkaBcxT6Xck5GDA0Wsd4hOw2lTMDu/6T5Vo65bseSn4e68u151qQF4MnzNABPVTra/KYcjByodYq1X1B23xnej2IMQAk5mXjAG9M17t88wATCfU6QIemzpOMOEqoyTLk9LPOeoN9FVF5TnvGcbOu7vTRDZfrxfA7Yqe+jep8NQ6r9wDyt0D13D0CtmKBqaxNgZVKsT/a7dvbcb1lg0wnJlw/EYClZmtLEIsHjh+GkE4gcH+iEq2yhkt8XhhtcUdmd6cQJRI2YEqACYwKlmKj8RjVMowaSlx03zb5R2VI1EdtVnOn+TIPuESUPjnXliXXKx0LpbSTUZm1pV2cs88ZwCZoBORV4QTuZRWDHv6EUC1IBO7YsmTRbVo8nSWdznEBS+kimAVEGOBEz6Mh5x3AAhyEdD1RcL0DRGrKhnYArmeFtOZuW38AJhl9sJheum5c3eM2ncv1sylVvcjbNKC65V88qWGqIUK1y61EDlsxxozAlzytDoHXh5WMt7yxP6saRcuK60Q0yUxoOyfJEA3TV1dV4wr0x/V4PJ7WY3/ABb0/38MP3X8ePP/ggXhnv4xe/8DN43/AOThhwGE645mOqz0ccpwEPx7Tdy3QaMB2yBSp/ZFh3cicTq3SiZInIApvCB6gCTGKN4BHi5S7ybQKO1ULl5wKIjFOVxshzAkz5iKdxckseLNm0ngwEgKoCU0NdttrvywaMG3eeuG5Zg8e5WB7zirthyNbHccK18H484t54xIgJNzzibb7GD7/zOv7Wg9fw8vgAX/qejyvvr4cj7g1jxfvD4ZTj4OZ5D/NWqPMLgPJNKFS8t5ZGzYv+0Dm3vyh6QeXhTHryAMoJV1xm3RX6gHGb1tuRvA4kr9NtwHi811NOg8RItdYpiYe6yqDqBEqgKnNtIgJ4yr9DAmhZmvSYjHWMWS1Ttm913bHs6ZQ0m7gvrRUqXSOQJitz46neSVjuhazG62rKR6RFl9huQZUSt/V8OQ+qpJ7+GqBVtSduO61frEvlL4MnAVfMJY0AnBg85od2YlAyE2pgeXprQwFBBqjInEN5LGLBUgtUCHCCrRA6ZXdaQe5eLW2kGYGlxjIRKU5TxwMtX74CVVJOYqFU6WbBld8MxIchWx/k18R5Asn6dIMRn7x5FT/+9ufh1av7+KLrN/De4T6AYomQMIZxmLJVnEDDBOIxvcARi0lc++aByn5mDGd5kIT6PjXWCNTPiLVIAYHI2wRIe3lO3GKN6JSLNtJclAEHprwlqufiy4M21kao5Uk/Al1ZHeu/IVughGeH/Cs65YQBN3zAzx1fxt946wN49brl/dVwmuf9YHiv822e58z1E1C2J2C1vdcWyVzVOkfcdNYcW9aRSajUnmfiBnryAGqO/EREJbZJb3xO12KEKuYppXGpohaneMuCHnhqAsYpmS+vaKosT2J1qixQGUDdG25SoDgNNYAiABNwItYtxiceMIKBIe8PNcjeTxMOUg85TdrK1yDxUKzHxZVHSPfLuvFEHP0qvFkr1C1pJSZeV4+DPAE6bPO5LmuOi9WplKvSTcC4WqdOqCxPEu+klqcTl7TTlFcrZEB1kNfFvB9U/pI9CHm1Xp5E0gYr2QJkPtXDGXAJYM5pegsMACMuvO8BLQ/Ywnt8e7Y/9dTbSLMFVm36InCSPAuMfDlJMwHj1urgN9VEteoq/enKKyquG3Hf2RfKCYT7U3LXferhK/j4W6/irXv38MZLL+OV4T5uzIcBJWyBkBQyAxiGQb+Dl14KEiji0cRUIqXruXHnVZrOvOAQF2XLgH4WRtOolNP7buXbyDKx7coyCzXNyb7Pm+H5FuDk5aK7eablv/Bc8sR1J+DZrLwjQna7ZfBjLnriwvtPPHgvfvqtV/H2vXv47Msv4n3jO9t4L/uC6YsiNWAJU+JjiWXK8ypMTJzOxeZaZXNNNvkwfEaZw+1cp+mWJyZvLd0NABUJJ7mrXChPVJ6Yej8oNIHj1nUnzQ1mEpH2BJUfsuvNB4wLqLrKrj0Lmq6Gk4KmEYx72YU3YcK9Ie0BpWAJpHFREgE+ZTA1gHADOEtUkkSZ7Ni8Odl4KPlm3imDKM7nkmeBk/iujb1JoT6ZMi2gQit0UdoKmgNHYZqZJCtrEQfi4/L13G4zMNXtJndcaUdjmZbcdtnypGmnKQEoWX0yEHCcEogiYDiiBPqK7J7IxK/IxzDLSjwFS2xutzn2VikLmrSuVyy2vG0DLi0o+1yQBTCdfEsRYPLp3qIQWqJs8LC69UrAOI+ZTxlU6TgtcKJaeUq8yjimT7aMQ4l9kW1UTjzgPl9jmgZ84v4r+NRnXsa7L17hjfe/hA8cPocbHnFCuSHjMOEwTBgHBnOybk3DBMIAmqa0MmvktDv5yEaWsiAyJXkki6GSkClYyopS9wQS2eaSBxgla+aB7s7UJk3St8p18+LhQVQkA/64B5wkzYIl+bhvA6asO5dL3JsEjg/G6jgm6+FowLSEkpyQYt1O04BPvvte/PxnXsaDlw544/Na3ov1SXgPTDgODB4nMAbQkDe6zFYoHtiApbzLICHNeQAwQr+jWCEf4bHhkz6PgQxYPdHwF4EuQ11uDd0NACW0QWgjd51Nt9sWzJG1KGkagjRzXoLE09ubb0fNoGCMKMHkY4bZY54BRsqfauHB5NXuvIlHjMQaWF6C+8q4JmcV8qvyztrjCahnGAuKKi090+5aIBUKcmnXW5I0ba6+TXf5XnSoatdYmrQdrvt28VMAituOs9suW6S0fY38TxqievvK9SGuPQE2JuajclPkvimPrXlzNmU9WKqesVsAoAsZIp9e6lx7dU+C41Bxoj5nn4Y2bVbRElSo1fqgSpqLfOjchWquA0qcpVgaHk4HnI4jbk4jbnjEDR/SSyDkBa2uX8WfaprIYhYeP6dk9NS48/I1a1A5lepwTdk0oC1TGqyfKc28rVwHvLPgKbRIBaC5asP/2b6qv4DPVXk2Yyl60vMOgOP9iOlEyvsJg/K+unTTTvWlj8w71v6puScRD3ToJAKRedzTK2b6VPJtedkw6W3iMt0tANUjfeBRaTs5TzxpmSfHhNb6pCvsqrzWdXegk1qlJIh8pGR5Smmt204CxotVKv2+MNykGKQBSTiztWkAYxqoskB5dx4G6BYHxxy8KUHkYpUaQMbV51x5UBmsreSodycHFpYRE+LtDCyv5kDTEvBhw8oNbwiiJ6x1qbRngIz5s3UE/FR5YlkCygo7Lm367QzU6nRKv3ScUvvHCXQ65W9DEYgnTIcBdJRBDcCQgmqnA3SG4IGSO09eywHdeK6yQE0lX1/m7fUDBWhxSZOJS9qR6l0lonwn2OftebFEMVBtMxBSpEBz+pxCrfSRVaZyrK65fN+DoGENGpfyzgJFlQUqb55IZfuWsjlvUpA3POLBdIUbGvG5By9geusK7xLw5vEFvDPdw/3pKu1pZwZv99wbsiUquXLyPlBjmTwkWJwVFUGfPa5W59m3gHIL2ZbXxJIGU0YZiDpfy8CVOZc8wEEAcm05w+sKJNu4Nvn1FibUeXZRQbFG5od9tPyfMv+nahFVeuFO+xPO8f7tzPuJSWNqpX7aR3FQ+WKeUpwnMXjKptIpySlN5lM/buJpLUkpz1qgUlvm2OslLwdAzV/P6zN4/3QAKKALkKoiZPQIcQukTJrd88luU+DjnoQEpUuguLU8yVYFySJltzBgBU8jTbWVCYQJg5rLh2yVSns9EcATjhhzP8llNxLjaMYyUHHl2S0MbPxTnUY4cb72rATt9/Oqey2CTEb4emYHEdoOePL69lLUWIqifB0EqgfKgil/3Fqgym8FpKQdDRaHgqfSrrFIDWVWSHFJyGCIs46QCUImi2yhYkDinWDz85galtjJZCmtAwZkoqqA1hqQ9KyDKa8AHfUsUEtuHFunB56sVUEVJ0pesUyVcqlNOU+/CSyhUp6eJhQL1ABKmyXeEKabAQ9Oh2yJqAdvLfDpU0VcQisoybBaIWSPM3BZcZfHqkvZm3vO5UXCVFGR45LOripcmr3i1eK6RrYjAB3x26WF7l4nC8Jj+HY8z4M/Mr/6h2R99CSfGLvhEQMPeNjhvQDt6vKNnk1/VFsehzxohu5MrhEowkRjhVR+ivyASswbir73MiDNRXKg/PEJZ+ipuwegOhNQr1x6FvvuumiC8KvqNA3OBSdbFmSQU+0wriAp+35hgJKAJnD+nYqFChNuqATgnUCYwDhR2YX8NCWhPAwn/S7eIYMrm2YtT2UlHpf4JyrHApRkRZ69Pz33ngqgCO8j9Nl0BZc7ZXy6e+uorFjRm4ZLq1x3BvxY65SuuDO7k1f7PNltD04TME05eHJKYGgi0Cm/fZ3E9cbAlPdlHpA+aQCkSWSC2U/FjC1fA8OmpZlD+SUTDBce2vtj02TMmrYBaNk8r5ieOSL0Y6Dc/WkUojmOLA6aN7hjLe8+z2GDhivlyblMTjOrsPy+P3bO9HPkiSmvwkpK9MHNAcNDwunhgAdTUqI306hAa3JzSv2X+uapfP/RgwD52HAKLs6y7JXoAIiG1HbySw0T1LXunwGvGL3sSzsIylY0M/01UyO59BkwFblhK5BsLE+2rlxHFQ+nsmFkIluiyibTtXGhWjjAws9BXXgPbg4YHgw43Su8P8lXM2ZulQXQBMpWSLnBVI2P5bt5Mp/lGKmK/3mvvDRf5nsxFH6pPMh8ZmWM618ZQpWHgI8L9MQA1OxAhflAK7TkytlT/9ASV4wUX79169m/yvpEbmmniXu6MhvNKXjKQeMCngQ4XdMRAyZc0RFXdMSIARPd4CGScCZIxTgNhJvpoCv2ZGLCkD79MuQd50a08VADF0AYBZSrzueyIk/AVUHx+U1QNGIPWClvLqM1V8lrBIKi9AAoWfedghsDsCxoqi1QEhCegZF8nkVX4xXwRFNZcadB4yaNTgwcT6BBFASBD0htinlb5jtdlclA/mYYRDmQAUlcXHkWTFlwRXmYkubjpSgPeS1YCsuvqPcs0ZYg8p4SDV17cwDKgKA1n/MAyW8BUcUCISuw6j9LokCP06jK8uHxgPE+Ybo34P7pgPvTVQWipJ6/fHHlTSeUoGbpbkql9HtoyBYJ5DEjgyhRprIXkBFCSSNGecmgAqoqJWmf+ZzGNh/B8UrqASg5Xi0DwbG6bSuAhBo82QUEYunJq+4KgBb9B9V1kTdnAuGGB9xMKVD85jhifABMDxPvH0xXeDAdcHLAuVgfsw6VxQSUnbSZdwzK1njoqjyIdUnmKc43SYY3WFZmGRKXnpm7Qe48VajuP7G7/7fQX3PTwd2lC03UPvYpyvfn6nKj5LqLy5nNOPM+KSPEvZfyxAUobaS0Sf/UJYgSd1XaLcuNKwuaXE9HIiJTfc8dWgqcKV235NFct00euzwO0lw5PTcga6l/LWf2g2rT2FnKXENT+SVGAkqmjHUPWneft7BVbbvJYm5CqD5No2MM6txiUnmuyCi7Jg0rFSfqMtWxIn2jNKv+2YzBKFCYtFzOr04GYheOpVNGadNESXZPpN/yFOV5Cl60ekHldaIZv56Xv8bSQq4e2rJNW5l6Fp9qLKYsE1pQ5CgsF4xhM3iq0jv8711DKIttOIv9tWQBkXxubJoIdEp/Ke6pwAYrB13q8j6+jvCZ6Nyb8N6ZMpGbvMuzM3TWnXHh8azGRBhAToAzS5o8Y2WKdh3vBY6Lu85uKlZcd1O1ZQGAYm2iCVfDUd12V3TCNR1xrUHkR1wh7Rd1k115J0pm8isc1ZUH5Ekr93GDEVfIe0ER8vhSpPmBKH8zr3brqSuPyrYFdkWe7E4uWxzIlgbym17w8nYGbH3Y6CvWBtafQRuUuBcXBU6+vgdPBmApAMpvt7plgYlhKkHkplwGPjTJVgUlHxPXrruTnKdX4hQ0OyRuT0gWp9xHusf5cxP2ky+UXXwnSt8zQ9mAUBYaJJYJoEoM4+i6/ZuXScuGzZqVWb9xU45QzFvPCRGaV85Q5HvKIOfVQMCUq8CAUw5DXVeXqWse164b3UgRyQ0sitQEDtvYz7K6N80pRx4wZDfOxITjzYjDA8LpYVqVdZOtU8ccB2NjYQZiXZk3ST+UrEsklgegbOtBMPEwRfhS2ADUKkWDe8R1UUdriagWUZT3jMIbPy8g1vPhUndLgXL2eatloLI+cpWmliegiolrAsep8Lq47pB1aKsrZSEVUMDTzTRiAOPBlODB8Tji3gPg9JBw/5QtjzziOI0NeBad7L1BkI01WfQK8qIaLhsHs0wppPOZxoUyqn2iCr9jGQAM351uqOTB08b57M4AqEvR3PYGduVdRFVwNsx2BvlW28Bx+VWLEdotCwaxHqGUAyP/pqDwaxzxEAfd2mAAab70LRtoVjuVE1JAOcyYuezLIaZTu7lmeF/QCtLZ2x6EHWwDVpQfhjjdTXIKgto0b5K39ddYt2wb9W7jrFsWJMAEfYjL3k8ZzEjeSTc1gQSVs9QNtjZIxUh3Kq9WkHBWLJWWRmGkSRZAZK+nAlVemey0SLOuml4ZU656Iw4UaffN2r7EwJdhLVv/sebVi2ZMlzNWCAkmTlaIIW0ce0oxmqfOUvbmsq0SzS9o8kLMZASWAA0oR3oeNPZFXHRcxq73E+V5sOLs3xO0ijyG5h74ctX4Z67tHPCs6V4GLK9Ry0VoifNuPbmfTh50pbrIgFy3s0oJKe9RYqH4RPqCeZqKTMxRCZ8x+iT3z5qRGep5KvKR2xHechGfisdWBkCoY+FMOWA+vcpcSXcLQDUCx01aFDBuV9+VMtbK1Ha1FPvUgCmqA8fVvQZZlVfAUgFWxXU3ZoAFmnCFI4BDsjwx4ZqOeeXdIcUn5XIqxCQE4b0mAAAgAElEQVS7jU8YQVUMlN2yQMbZE+5oSwN92zP3VcETmZgEw6NmQ02HwjjXuwR1LUuegrTGnRa1a0CVAhg29adeuQySjOtO3HGaPmXgxCkuCkTgIWuDiUpgrcQGMPStPL2py5sYioVJA20FDFnwZQCSTDaSFrBD6wTlbN5OhryCW1FWyweKorI+ABUwqnYdz/XUrRMAprLPTt0PWRClv/Oa4sSEA0EtUDwBwxEYTsCRBxynQZe8i9WqunTpw94oA6RUiYqJ0wApuTeNEiUVawVXQB9EmeZKGtVzircY+dvCvkFTNqJHBZ49MK6AVhdA27x0AWv2R5TtCaYcKM4TgY4AHcumz5IXrcSz7tt6ixw3Lvm8i02HjNkipbIAwZIHUUlfIW3/wnW51bzdON89eQDVG/CMIKbjYhrWJCccfqVB69aLVt6VY/1EyyA7kde7jduYJR84XlbfHXN+CiIfkL4vBDrilK1Q4Ly7OY4AgFPeqfzEA65kvycmgIYcMJ732qApBYVPhMMw4Zh3LgeQ3Xfp+sU9Ku66AQATaTB5wg3lxumu5CrceWoirsBV0dD2puPxWDRCwOTBjRmqyYMpU6eZ2CZ12bFpg9V1B6COYxKrVHbdNdYnuZlT3ukeUBces+z3hDI5Mmk/SVlQMV9L4KzcBwOcUloBX5KmdXO+vK1F93A2ULyX95zQZgvUDGiqlWhfcTJQ3DbGtaOuu0hhms921JaIeh6MSIPIOb2MHXnEdBwwPASGm7Sh4gkpyFgUqdTzJDiJ7Hyha+jz3CHPEEhdeWpu0vmkfDuPgdqdo7uO5weBiwL1Acb6UmDnBmXcDDBeK/OmXAWQzG9PBnSxADrgOeK37jzPdT9mDyi1Pi4AaDagKa3CS+CIjwNGw3sPni0V9615wR8Y05TPjeWJZUKSbQnElZfhMJg0L+1mnvuSUAty/OVWDvJl5+uTCzXsiuazDfrryQaRd80DQbmFN6aqOHGRpQ31LKkFKt/N0bRjJx6xSnmS4O90nK1PWkcCySf9GKcNJtc2TLs2aF0D0N0Ym8By1Ns1zM0B596ni9Btuhalvqbttf3I5Dq5c9+WAUYCsMqqP9bYJpJAcePGq/urz9WiZc6rgHL55bj+Vlpk/UL+kxSdx07+Dd8QV4CoLeeBVQOemnT3a/qxVoVUh5ty9bj7TLLVvEJU6wIXK2dUboms23BdBQMsHOCwZfS3Kssz97r+DXl2Drm6s+CpGb/Tb1Fd3zYhBnuBUUHqrvkyh6cpA1yxxE+cLFA+9qkbItJYoAQAltis5jr9y4Cti1KW7XF4j7gcA+H95Og+zjzjnp68BQo4X2iBClH3kLUPHrdWpp77rqx8Y908U6xPfs8nGzgueQNNuKZTCiJHCTwfmdM+UJxWOQw2LiqT7g3Fgwax+72hbCyUtTbJt4w0/olRxTRJenVvxFVEAGA/NAxUVqfHSR4zs0uP8ntgyeSphUnfUmyanJc8a53q7vkk4EjddeZcAsgnTgG9pwk8DsBpStYneQNLXCuKcEq8pSl/bLgXC8VlQ01riSrWppJG9lj4LG9guXzXZWHf1HrHzzjpZDsLVOryVbpXolbRuz1+assEVJn4vYAa8KQB5SZ4eLDxKAbMUL1HnsSpSIzLKbvmbqYROBKGG05WiGlIVilx3zlLhF5ebn9SJSpzNOXYv2xpGOSCGCn2KVuhBhNETllm83MBeQ6tJcpusAhjyc0y2gSW5y4rnnTk2auVVZaqht8uzSp4y3M5hkuXj0fbjVUlcDywTlnro195R4AurALsQqPikpXVljgR6MgYjsZly8aN13kgxIWrOln4qrLN0FiogdLCmSzPsp1LZQ3Pc62YAvR7iDBzl9ELGmSe61pmkGv3XBV3NwDUFjKCN1fExj9VFiMDpqpVKGh3INfNNOHBFSvgGXLskwaPaxB52sJgcGmgqXwLD+V4yDsontB+K2/iUXcxByP3VWKhZKwJOLW7k9tgcnlzkNV4p+BW+g03zTyTwFilaS9EMyzdZOEIwFJlQeK2TLEmlb6s9Ymqv2xl0s+4cNmKQAPKDZiy1ie7G7nkI9XhvCKl7D6e/fk5vokloJzMJCKgiKRfC6ZcoPnSPfP3j8xvQEb0ni+asdl33XsBcNJzB5Ya5SnljXJV5Wnqlzf2ojQ1zEGacXPeHIkbR900E+leaGzA1apl7BBFLcgtCy2l0ID6WtHKnbl/RRmnRBtY7nF9qmoUrmmSTT9r5pdV050pE1uaOuB5DXgiDvlfgWcvC9XYuAFRPdKvYSBvUcGE4QgTRD4fSE7aB9VslOvIxyw338bCCcAaCog2b/f5MD8/2aWr6SjHMOd1mnn2ZPwrZSCiuw2gnCBUkwH6eRH1XFi9lXe1y67su2RdbbLyLv3JarzinpPf0ZTTvnjQAHNZkTe5S0hWpqG4EfPqvgmj+8xM+uhwCX6vdyf3mm4ghobcyFsiB590sSSC3rvNFmXdkkLL01xZXn4AonzzYlSX0XNTSbYpAKqVdzb2SYGVljf17Sq8SZbuyj3NS3tBeeUdAC6baMrYqiXeuqkgytwTXbjMr3k4VbkKgAHRA0Kly015zyotXm+kOKWeBU6SbxVnThPl2bj1IqDlFagfC1mFto6S2+6kx2JhoFMKIrf7P1klyh2lWvU9Z4VQYQfsQhS22RZMab8xiCrn+b5bIGUK2jvTZe+qQn3gpHkePOf8JfBUgSO4Y9ufgqT/n733+dWtWc6Dnuq19znf/T5f33vtBMeKLyISEcwQyEJBSAyIMgEEGSCExMBCkTJDkRjw409gBBkhWYmQBwxAngQxQEKBTCMZBYGEIzBWHF/n2gmJr339XX/n7L1WMeiu6urq6l5rvfvd+7znnF06+7xr9a/Vq7tX19NV1dX53rv/mZEFwyKF2jgVNy35z28YmIHnVn0X10F35Un9pWNce9v+bpCSuTY4q4u2YbUYNuGXTWS3DaAKUTRYNM5uzayAwPt+Ihw0HqcqdRIj8urQktWAXPxAVQlUdZopR7a80eNcHisIY+ANVrwnqP+nVI5MkHfMu+4K0i9SqPu0ZpWeSsjExqr1To7ynnakJP1oq/fxCq7ahrXG4zNpU8ZSZgkXfUhnQRXHz9LiPFDqF1kQMa+VNvnrznjc5AXQ7rwzRuRVtceunLrjjozhOIkB+boB65obbUlFpSez21b8OyGfo0cE3lhXXgLORBIlE0URZmrbs1zC1B2BFIpNumh2sZOTJx539WdDEdNy1DLRGDRpWACceimDySfM1Pr8ARq/T/Kh2F13MNczc4eegWZpE61FCrEC69buvhpJI5IAPKPGyX7QoPUJpRAls3gmB4oqzxxpZOcmNSyXdnTfcl0gcB2/R1Q5B0HTFDTrQ0zYgTFQjciDzQVySDRgfmVyQ1Hd1U1WBOGNFdTMJJCizhOArH3/mPveSh/3SFS4euYq5SpvKXcU246T95RTGLhsXuLSDqK+BfIYkAOquexkhuFd0o5c0wOmK2xfM5o+OkMfpyfyK5N1VdDFma/IG3qrj6eJAbg3JI8kWTZdVDd/qLE1Jk/uOd6APPQ+Hj6npjuy1XVa2F6Wy8ZqJQ+knkACgLzUqTfirvGaR+sTXD/RsFuf64fFyXIboDjI6gQEu2k+W6LgzxCTY5oReBqUGzavA13sn2lBFeA6cu9ljtPGSQE7bWgkTWeNyQF0wK1ZIE+Ki0CozbPbhkAHato+C8o98hfk9c2izxmlcQDa1rFJ34Cxyz7KWY81AFqkj2UhaR8XeZ+fPpPqn68MDd4XAsCjePetde1t0jXh0TgbfM9H6HYkUF3DxoPDeiCPjiZo2oV6EBH5fpLw/OuMx43fJ+u+oPp8qj6hrNdxkTyJ7VO2iarPUBVemZkWZmzYskSKGNm1QU630YZU7KKsX6hUdDIJrPk82Nq4+JCiYmxO5rBhZMkGmxUCgE6N16j2rjgxT4uaMHyfzkuTRuEeTHi+ExmPZxDDNc6p7xrbp8AGSqRR4oEX6wYsKRuTZxe9eSW1SjsXuxAuLyErLHA5XLjMtMYOShbuzYqNMW4+mZNYHNyhkUrJKv2UtEkepqs6+iRRV9cewTvuq3FqWDPRK5PlFjC58J6x2D8rdZI8VvrUAxhP1v+cqnVWQloZtFK2g4EFUfN1eJ6vAYBVCtEYhkvdrV8gru+pY3pj9fEjeWhrHSjqMCTUb0CGooSRlF9BgbeJAY4P30ji2IR7oOT6bXcMGB9hKPcdsHBjQK4rr+TpwlikTvk6IdGqkkXaqvRx23rJYySBzD4HKQZ5KhkjBT95M0DpGDIdRciSyHyIa04P46ZCDxN2mwaAKom0IK3p/7ZK2gcn6HYAlKXRSwTh4Q4D6sXTkTQm2vZfvY1vXV6VKqH3Or4YSVNOU+8VZBUuJaApoRiPI2GhDJ4WJCyZU4beyaU+C294LAcSZwBXuLumqXZRG3GW+hLD+oTaowaglv9U5BpNLobjHnameRAkhfULv80YOXSLG52ouYu3BxDDrLx0t50twxiVN840G+PxrUz+Jo3YQMmf6E6NBEwnCnPNUucCqvQ4BDE29zODgiXMQdWIXHHDsM+FIgbZpXG/Nq0BUOzSXgaeLFBCY/NinTwPX8e8zwZq3K2I+k4fs2aQsgFVjeNUfkJ7RuqyG69LJUiH3CDTdqtONYHCQMV41ExYMk81QAp9e9jn+9qMzBfaurryHFiyv2fGQHWsGgCuBjBx+HsELPs474Vcw8QGarWg6bjyquXL0J3D6oneAxptwxpYvdSjgihJVcAzasq2GNRpu3HoaV7/9LxY6LNT4VmbJ6D1oeSBlE0npEey+HKt3yfj3gCo6rullFvDneE5qjG69SNln91K01r1ntR9b/KS9wXa1YlQC0p3i3pe8q9y6UgveRvv5MFv4/uJB18YGzAlTt285AlQP1A5bHP37XVTnoCsoP5NuKtTc80xwMx1Hbz/teja5d0QiSqmY5TRn0nfhQPoGGdwnX8deNJnchtvyWIPwmBRGbxfoJqzahxsNc3VyAE//z7NOwfxM4Di77s0QV91EqXRHwb5BmU37wAzBiKg7N/DgiagT1PyhvP1QckjEPS7PLpsovElXKbCtTe1jg0IRJTG/JKRXMK3Pdcw91emRpPWXQ++4xHdngSqEQXUxvbbcUdhkcsCMteWrHuCNkzKio9tqW4L5se2qO8nyQcAJc8b3rAVA3B7vMsKUpcGS0mzIasOs+fyVo0nxuT2fDx5d1XxUT1geEV1Z+CPWqDS/t0E6dINw2xBz8FELcN318TtNQXXvqxmHhTw5MBHLYezkbdc22NbzJEtKn0yYayAqfiESknTcT7tOT9ocryLHMKaZ+q6wtb6IvAJRYB1eSDSKJY01P4SUH3qmCYjLcs0o2mfTxgvtUS4zI1BuWYf3jBdNkzUxDXSBvOHIMwwIe95XB9NYlQ87rWtzCXV3092YZCPcmGwCbe79CJqfUGR2sFw+cgaNQ6qkbi+j6hxiEEbQb1Wl3cmhu5W1TMm5TugOp4tL2mMzH2flPBwamOTbvjCJnnA+KdjQAzGgdYvWHPunQVYBnB4XmnHg60eccgLPclOTHFhkR43pJXxaCSP8caB6j5HpWClruoDDFx5j4AhkBkXBPVSv5XfhLy5hpDHQW4dqPqW0cxdMjGpWs+2u8xZbMJsG01bxr3vibQfjhpQxV1YpMKLVlcAGueZGkYVGNl0QgKiLFkVnnVdkOx9YFwuefNzeylTV99BGlufhSzoiyVnQtf0ON6IQ69JR6t48lUaG6cmHGhcFvRDzMQdeGjj/mBzUqNyPXJz0JVV4twQCEFhlPcpxMF12CZPfM5HTkOJlLk+Ap6aeAn3+aI4CRJQMYp7CjHp93OF/RHHyAJIoLWn2WmbUJXWlb3Td1GeYT1h6umkH7M6lPpG76MAGlJXj/qiMoUHmqCTfe83COgiciB9jOyfjhCZ96EjYz1cOLh85Nq/5J9KCN3z2P3N6PYkUCdpT8frjcYtjYBJc4CwyWdVc43jTJVQ1bPxUiOJKqq7gn4V4JTqSLq1eHiy5+OtXMEagHIWXo63zjUB9Oo8YzfVtQ2qTZSci9e2KemvhGVD88GgKu92mHzaGWiZhE/LN3/D/A4kKJBSKROMjVNJZ8+982o3p5pr1HcJ2dB72yA2T1kKVdrbGJuzlLuYZXORPsk239wujO6AYfd+nTsD4UkFnM18oMwEjZ+qofiMdhmzC98FTjaMfHz5tUbDHRNg82skC0XS1C40jy+gOkNiRj5QdkXo7ylirF7CLWGdHYyKKWRgyriSsR+8d3Fw19jC2KwuTuNLWb62alisFS0/k+YKv4tgfLCP9wCpuYcZD6bPPaN30qdWBRZUhU7srEZV34kfqPTIRX1b7d80PqC47ytvacXatbH1HDx1a9GPga5nqbg4cO/MzT2X/2tIU7tmEB2njwpAzQZAJIUapfO770bOM60EaWk8kjvbpMheCRWE1V14UKBhHXCCgMQbFqLsJlONyIsnciMotN7J9dkKsFL9VSnUhlScZHABXyOZl4hfGRYwuQOEuzA8WQJxCNy4sG4xWoDOVDIjc4wAKpvel6fXXKVApgxrtxQaj4saT5+9AVuq6joNN+lVDi3lkwInbueLulsvfM/ST+a15D1HTaPzmCS4tE/bWevTo2DFaqljlu66lyq05fr4nIddWeYjKOkjuxJrx0jN3Dbv3EaFB/FEjryV3Ughmnh5/wHars+XBVkdKjrfWNRiExgmq5tT9DExUCITZ5rE1FPqNW2K+WewA6Ai8Aw4AD0bAw2gMmMgAFbWFUSrvm37PuKLeTrLYMb2n/SvLBarC4u6C8/SyB7Kq/XqQtw4VdX2KfOaazOrzs2pehBVc5t3Exxm0+lUHtSXJvwoerfjSV+YLpiEJctIfXeExI1BvefQaFxdG1gDcCN1krIAGPunklckWhZEoar22vqItMupGAOJ2udI12wC7/upK/uo7sKAILYAibcSzBU4WYlVRGprJQDRpbPgL6rzK12XBnNLg8EtyDJMcSi9ikCZZyCajvvwoBzNfiUwW3ibPv6IE8VhWQHA83H5xg1mCybMPWCkN116rvFA167DfvNh0V+ULirTPs+DoO7dXD6Y9/XPC2gmONijmW+vcD48QJYXD4UbdgFwdLx3oLKWFdqeBUC1XU1XYmr/ZnQTEqhugHTiBbiGFWRdbgcvKce3tF7G597HbV7rtDLBG4jLjrkKbPT8O3d8i6jvllJ2VtdxBWDFOBxsdvMxNKw54w7cGIPnuuaz8YANCyUA2ahc/UCVdM2hw1T9QWWfUKSSqebcqtK+L2H3EHb7LGxWJ3bfh/kViVIjuZrsvpsdHBz6fiqgh1USVVRzGwqIWoptVKruDIBaXmL1edIM7mIsK+/CqCtzq6210iZdcEn97etpmDE0p7rYa0UEbT/sTSyfIjWMERgv8hrmJ2F1HhtN8JrOMOlQdefSeYkDUL5hx7DEgBzIjC3cxl7mqXy0tYQXNc7DVnwBxYx2eDaaGTCNZBvyC4CK8obQSiCsOsdKIOSsNADitV+lDzJfCX+lGi9tSHZsw3wjto3by47C6ScAyS1wDsZBc0B0y+9YPMzb/D5d6etOfQv0Y0LD5hO69e9Epu+jXZpADbckm5XkehPJExseY6Re6oewGe9mApKNNKZBGkmU9qfxCeXqZKXsTZxtjxO87sNLoE5OxB0QvfKSW9wXdGfe7Rh8eymVlT7VNFRBlKu3ujawDjqHyrb+eSM6I6XqPQRP8t4iA33qULD57dl38OEVODU2U0ckSlKGIfVjIw47FcxZFeO4vMZ7+nMC3RcA0TdPexIIwzQj8BSWB5OuKWOQL1qtN/G1o/ZMGmYkO+2a6pWxdsn29Y6m84uJi9q7S59/vJSvlTpUUNlJIwbP4clf9/wAPLVpav9GkqYu76g8906hWwB53jXILB7zmvBc3++NPQW5FrjuvbutnpdEuQWMtS2zZQylTOT+JnQTEiilkSTqQH+1iDt2mtkbWVsD8UGeLkwkTNVfk0qeTBhgQFFR4WUbKELiLEGynshF4vTAS/O87GCzOtX0NlAqQROXBWXZ9WjKSOBO5G6lU6sLX5uVQuHdsop00qkXo9k3aGc07oeRSo4Mkcszyk8RWOqez/G9qO04uy/glEoZRVykhuJ9Gep+wJHuhCpeyTWXzS6Aq9iREObNp3lK977ipAFNJtR+EnYAwKYxvyPJU5POlkc2Lfd5bZYrfqbU2EDVcJVUDBomEbAKfytzR2NDaepahQsy15RImXKoDT9sByPRLmRoUHwJeeA16LunSR8dUPDPbwDIdb7ijcsc4uzfctzchYUnK30UdwYiKaqJoGOgtYUqg6DhRTVbbwmXQ+sVafERXdpatwWg9mhnUHiwQ+j9P1mVXQ1rpU3eN5QYkFv7Jkvqhdyp7rxhek0PbJzVeFmdl1V0Ky9qS5XVehz6UxQ13oIMrkZtEakkuQAt6w+qGpbPP4aOEXswdYhTP420Of1vlM4vFQs46gCSi5f8Fjw15W4uzhuQA9WAXOKFNgaWclBmi1BVgkVAUf9lRFN9OdVJhBjgLR9xIMGNOg4tGCIxRjfhHiwZTUur+vPc6AX6+VZpuPjuFn9BnmAF3AIjVMbpyqhp2rjOdYGob1TyhE4KdZa5NuehbfWFznij1lcwCzNrSNzOKzWuonphmAMQ1YzTgTfqWrwLeTqYOgygnzIGNL4CqcYBabkne23TYf/dstG4mH/k/qWNQKsxc4BzuDlR3/XmIC141vqLMTmbNPKetu8tqg5AVH7H6C0daKZdOHGIPrwKT+iCUfsU8bQn7wdqRtaDuPU+Pi47CxkWVLuCxqjcSKr6vNUruTckt/VpXC88O4qZ3F9ZpfpB6IgX8BmpGm9rwyyocmnpaNkDGkrHjpDP+gl04YuQoPFrgadBGV69AccUD1X1RFrrJLHxBTRgoFch2vGW3a56gniMeciRcFPmEePhYVo7HkydovK6TQVn59VAVRvRZepbVxmRfPNlGwj8SRf2t00nFzYw6HsHHPs8iPvd9XOX3v4doMMAiogWIvo7RPQ/lvs/Q0R/m4h+g4j+OyJ6c7Ss+YOO1MWCpzYuaee0jSsONGu6akzu3RdYA3KVPhXVnQUwem5ed+6dNyLP9k+1LjW/qhDFo3igCvRUfU31tlrNe5T76MiX2NmeIHi5H6d9VjJSIPvrpU4+XOcu/11526ByL2lJJEq+Dgx41VrnvkCuvfsCo8ZjNmECqqybg8iOypZfbKM8E7Pv0r6vvNuOWwcgnJdP0UdiTX61+Stx/QsmXU6VqXIK4oXhepWdlTz4CTya3K3EqeTxB61H3+3oPNAIEDWMkgm0bqA1OKngJFkj5qieYgBPo3bShNA24y5dLqOzgTF94MMbQEzZP5vfkdX8Je7yhM8ZjIMoTzgGmjRcf21cacs6Hsbz+xkSI/IsgeKLvnfPV7q62DrrWDZjOhz/cO1Q/5rxELT94T5OGLlRVDojgforAH7d3P8XAP5LZv5nAfw+gL90oqyrk/csPot7qoTGuy+wv/6ZqQmjsluu+kf0ef1Ze3kHXyuFCusz+Dj22sV/Dqeleh3K+TA0ksB0i5c9MCGgw4VTEL5LM9cEPs0JCRJZAKjloB5FE9ZlcD19Tvv7kdOzzl+9JML8Uk2Tw7hPB8M4Lc0kLy/UMeJIU1XHLm6PIgZqwzUuen+b0TJLG9cV3OfpwRI0PDQoh8k/+hs9EwOc0QA3HuQbvCPQvf/Q0FqCiJ+0+FUAfeH8N1ukR/ULR1IAFKffQdO3PbjyaWrZMejco0MAioh+AcC/CeCvlXsC8K8D+NWS5FcA/MXTTz9BR6QhndRpAiwA4xEc4u8pyG+kTxF4AVr1nRiVS/lhev3lMQALnHP6uoeHC7swTxQAyMjovs83jb4e+Wpc+v2f+R4CYDU1GA9cFvhdeGzVeFuj+6jhHjzZ8oyXc2K0zznyPoPwBhRFoOrC9r5lkHXN+Wu0Ws0PQj9Rm3w5jMN07JmApNVy22tyz2ykD827m23sLvwUMUDrpuPDGo7PHCj66+MLM/Tv2fz2AGa4G8uCqKgsTPrx6B92xgOhB9AOAMXSR5fWgycybTpo2w6onOx7YoDWjJyvcZB0Xx80dY/s+mqkrRTatmoekn9CEDX6XrXcCVB2dNSI/L8C8J8A+Ha5/1kAP2Jm2ez1AwB/+mBZxygY5E+lkTTGG1svmKjPIDvwqoovl+HUewKMCLoDbwHl92EvmcoSrYWpOWAYjGIoXnw5saj5CKuRLSbi4rW87uBbKB/gWf1AjY91mVFn9JerH+6kaTPaa8bpjpwsMmz8JYxbv4vSzLXMdpVV/T8ZYNPVk9trC6yMpEmPcAEyeJIRsJVteEUN6DZhxrQhHzqMKhnouqLML8y1z0Ky8babDrQrRc+9TbrO/DWbsNHHjXZi+blt5BBwLoXglsk09Wh9QgG4mIEqOGJ0RuSXkvUrR+R89pAZi5qhDDSSCDNIR7uxuiknp9VNEoO6PXkdEPTZkXEwHQMdw+8nvwYku74fkV80y3zOXH0CctmFh23TuXJv52VEskhf3djxYyH3kenXMjnVTQXmZaMJy42HHGPa6ZqAAgckUET0bwH4h8z8v13yACL6y0T0a0T0a+vXX19SxKTs8aqm25HnJDVH6KivpXH++HNcDopzRhKvM+TBYXRdw578uJ6uXeaRJgnA1imgNUvrz7/TPMcewFE6r9JTKZWxgyo0fI8IEF6Douc9fVi+GF11/vqjyfx1FDzBpzuIVA/Q2U/tqI+4qsKbuPI4SXs+5/akKjMKVaFSViC5CoHqWTpSzkzytPf8iXTpDF18ekWxE/W591S4e9oQ+Z2yxL0+GS1sZkIYH7a3OBrQEQnUvwrg3yaifwPAFwB+GsBfBfBdIrorq7hfAPA7UWMslOgAACAASURBVGZm/mUAvwwAb7///QOcoKfeuHneKRKf3C/QA4q6e01cFQQuDKxzS2ptklJR2VmfUNnvU3k27A687CUcJSy5+ixgPOy0xQLGBsZGW/H9VH1HVTXkWNqkLgs4XhVImHgpB1rvsdcQ4UZ05rvWtDrHcr33864tdwCkQgeUpRmPqcz8Sk7qsxmVHOcDf4HGUzkNyvB+oEhwlG9+c7DwKK/mt9ezbgyeM80T1et26Hrz1z/9/fD4LCBom1Dt0P5GR5Jo3mhCJyCSKjUqkACIXCJ92ryohgF6FG/UO3nc80cDZ3TCgfXs0UofBpKHoK7NvSUGQP239eTxewZAR4x9NgZc/sa43oYDrq/dvSl+tFi2J1dovg2gLff9JZSorgmrhIwGfW/OyrM8h6qfp3Y4+f534+2ZpVG7Eihm/s+Z+ReY+Z8B8O8D+F+Y+T8A8L8C+HdLsl8C8DeeXBuhE++1Z/R8ZMKIpTEvu8y25+dZUCZn83lgt0dnDOW9r6zDNFwt7cQ/B52VlHAPnGbSHVXldXFVWtTurBuIgrYg3O/C2yM1Ijf5DlDzvgZsfsr0XPNXaAMlNANPnmZ55X4Apkblys6lq+6elfH/DGMmPP/uiPTAAwwT1uzEisoz0qi+/wbPDSvfpz0DnsbSssF9JEFz4dfq+wYQS98fWEBffPpFJygxaaI2tffNmBislG3hMGPEx/u/CT3FD9R/CuA/JqLfQLYp+OtPKCukmVgv9iFxDjTspsGxHXu9GwPWeyCr7FLoxqAeHXMJLQOpmT7H+oY6+UHNpXzn6jmlD8HEZ8/c5moKcaBJRtXW+XBytk/ZhcHWO9Qc+X5SOypzHajz2nq1AIkKQJLfPbqKaubjAmQXzV9DH0EyaUdSJcfwh8wdPn3AKCbhe5L5I3PA8Dw7Rh333DvRPLIbL1qokXnXmVrPGxoP2yas/ODX5AvBcMRMB8y1NyB3YyH4Haru/HtG48EKWSzQCOgIoBr1nzpRXa+nvrX16urX/doMQbv4/ho+DPDfoZB8j4fU6Y5OeSJn5r8F4G+V698E8C+ffuIHoubQ4KChlllcAUZiQN4cGGwOEvbl5XAbRkW1tmIhwoMZkAsYK2VDcjlEWMI3MVZnkVAREgje4jjXLQ8ssY5NRnfj1ZdXd4b3VBrVh93vSWrBxBiAtPcCXE48yNtEDQCSVd3p9cbP69Z2tCBzr9jcMyBqlCb+xobNUbrK/HWEUUf3nmmOmHnEFCx4sGCJDBOS5FfoG/UCDXMeHiNvgjDHeViHm2eomgYMTALMILNG5jlAKlnSacPa/OZdIFINilXNWo7c09PG9570MZI87Y0Bk8YCyZfyz5fBs/T9QdcV7j6VhUPTrwOD8sYTeTEKrycslCNeuv5me1OohE1Ueg0xToOo2/FEfmWy7TSS8Ih6rA/nJxuQz2iZ9qKpx+Qw4ZeiF3eieZaC6rULlQP130kyk/xYh5nN/fBZQfwFvqBq3U5nGdOJsm59WLw4XQM87T1iJLE6kucadIkvNK3HsYxDILiX/8h7hpLDk88Zls0IwdPe859InYuKRmp3xY90u7zvLUW+ByPaWxB0dmDTwg5WPAKuO/RhAdSZyo7E164Yq646KrYe7crzTi1HtBhDdOvbyR7bIkbksgOvujZgI626bITGhx6PQGPr+yoFH9yeA7Q+8sIvay/byUceVVfltNzaEQF1khiVYQ8VtqDKA59i/yTqO2YGy8HCNo1X60lZXmXXnLknc3UVFXVt8YR2faUdmqlyRvfYAU++bKCVRFDgDwlj5imG49c86ooYwCre9Nu4vY0le7t7dRdWJwZuf1tjeVsxc23j99p/oNJp1LH2by9uVq6px670yd/b9y95ItshvTXj5SoAWiRQJyXyR3hvHatyH6WxN4jHiZXUht8mz/MNy5vX/6OWQD1lcERSqTHokF14rcpODg+WNJas/dMZOgqiZKffDODpUTMHgGQFVQcrek16DoYefC83QzND8kupMywPyjXxu21zq213izRRuQAHwFPEOI88096eGOwXf+NPkECNKFys7WY6AEaDAqdevuV6Vtae+nZWrn1+lKYry6cNVkvXkp4F1Pj+Y3R9f+Yg6dMbvAT4N2F9+hB0m/yHx4ekmS2OBvRRA6hLKTS4PsExRv6djj+/75XGdYK1rSLjLsG4SojL5e7cuyM+rz4EZprRUWGXXp/sjkPdtx1LR86HE3uVXldu0B/RIcNXoInQ9qLwz56OTrAz8NSlHXVCkCeSKAXShyN0epcxQ8/Ce1Eags7gPpRKtb+h64gI/BxgnlMJhrseHiui6Xj8Tlf8II+MD+thvtq/cTnX8xy3OAPsQ3cbo/HdSR7lGn18U8B1x+9tAagLOLkVU89WVtWI3AAV6nfAiSfyU4BKpE1ofUDJeXeivksQX1ASXtV4YblXtsM66kBUKFIBDHfRAM+LxHhwLY+edZeTwIdlD43LWf02Nao7r8IbOdXU/FtW4wkNPJvT5sqNuszuBGSMwdoZegVTT6NAZTRVGwHtStmrIEyaPcPh6TdpHj3KD+wDKmIUNQ6Ak16oo3qM6mIZZLe7zIRpYR5gzABtJAnak0AdlUx0KqPB8yKaAD4N9mPAAYXGJ5gv3mgi8u+8Oh2Vvvfs4ymbkHx9p+rmqN9n4XBhXd9w/Xsi3RaAOkjXPpftqRKli54Z9PalNlCXAK09gLjbxLcmtjpCV5bw7FIkbfI09BdlQOsISL0wvYKpgAJmesiz9FWevQ+c2vjLOlCP8wCObco4SVe119l9WP6Z9tHZehxNf1SltKcqvPDxT6KDXujPnFV7uqzT7RyBMX//tPF88wDqKYcgPjVfUvcF1Y2B+nwqarXqA2pzedvfPRrZUg3rVgzcVdrlnz8o5xKfUEofIwcdVZlRzvWqQVnX/zxMon12UP6Ryelg3aKu/xi77iZpIoXofMkckc7OwkcMhAKwMVB1XOpIGPCOFFGMyC9fh7RHdwxUM9ivc2xw7tQ4XsIQtPMuiDr6F+XDRAoZ1XskTfNSFpt1Et55oI+THiIyff9U28hoY9fMtqmrd9CO8eYC+XVSXn8taS6USH0YAHUFyLz3kV0CEkYHCF+abpx/3gDJGqerV3JWsHYYZO2M9os9kEd0SxKplwQLzS4+s6tuIFkKz8Lbs5s6QOQmt8Mg0M8bE8D5SmOaGgiHTJPjyf7kdzRLflaiE6lkGlXd9vI2UJ036l112JFC62UHoi6dx1zep5xvN33GLPq55mDGYQnUiC5VPR8tK0ecDR+k9X8Tuj0J1EiPeWV6zqNadPfbbrr5i0UqvVm9rbPQJvwg93vp42tumrxd0x5mHR4QdhJsP3k33n6S126+Hg2Pg4iuZzRguKf83eB6TNSDKbWBujINd2gdLuBE4kG/DI/zOFOHa6Y7kLZzYfHcVBxp3hSNAPVMVfpUda2j2wNQQk9Q10mbnFFXJaqquLOONJNxbRAfqUJYiLBQNiS3tJBR9z0DZ7OuDF6ErvVFH62uk54Ye9NT0pRh81gHcv7cu5EfKO9Uk8WHSh1TPPFUTntOOY9KmrwWY0cE78t6BVqe6pEP03O07P0eTdKEYIiCyz2V14Fq7BIDvG1lk0Mu8VlOMugGLGIJXpfWpR/ZwRwFUbacEyq8Tm03U93BxY/e16TvzoXz5fngK3zE5Pr+Ofo9NIK3ajynyvQ7Ucn3dyjdDfrF3l/wWrcLoJ6RbkHSErkyeKWPgF54Ffbs9liv9LJ0dO55gTnqIub6MY3Hk1PsJWehXYWuyAqe5eSIj6jLX5o+CQB1WMr0DCNhJKmyLgyem67xXg0gbww6o8TP+EVNJSTP88gXnzetKkTtn9w4cq4QOiBldubt1j+0uzpU00F5T8j7KVK0ep0aJw3id1bBzSp9YlPyHEw0GxKvVzEkvgadWn+eULFeCqIu2kAQkZPADJ1FooY/53Fb4gcK61r8QF2nXBUM7dhGxQbmgzKHtmYnwnckjJ4+CQB1hOzxJRpWVG4jALK4HXiLOTtPHFtq2ifOKnU33bFyLnne7HiXj47OVpnd7yDNrbgMCGmi9vtQ9DEOnavRDAiF6QeM/ALj8a7o516nMZ5kSBwzyv00Vu0yNh4O0u9WaHCNgV3bhC6WXH1MSoh1ezZp+O7xLdPMUdi+KnSa/wR9NgDqY6Kju/yssfi1QNDY7f5Vir+IPmsm/Uq3RxfaSxwv//iAf7HDvhkZvD8DgO/9/czE0P7+w04OQ9upGT3BvvdD0FMf+1wL9FvYQf4KoC6gsx69u/wHmj2Zo1zm592NVIg3akPxASiyOX0Wsobiw6Nc+vDQtcGT6nHldK9UaZc5jsIvlVLwXPryArSBVIVH5UDrW6Dpou4I0NpRsw03C2AipdpT5e6o4zTPLc2t0vcr6wYCoWsalF88xk177RqT2zhfxgV0GwDqwsrfOgNfPnQFXmlOtz18Xuljo0vmsReaw64hBbg60Df0bBLuK5U73X15ybOfUYI5c1I6C5vRc/b9HunO+pGN2eGC7PV1QNRtAKgT9LluXnuq885PmS7hDSq4e+q8cM2J5WPa4fRKnxeJIbFzpHn2cNlno+dWqz4XHTU2/9AmFNv2LH7APnb66ADUx0BHDbzPNv5C+aDja4CpW5fefXQ0mFw+5Mqtodddd7dBt24sPnpuYaL5AOvnr8ST5qfPwaj7ClKliIYquSturrlp3nMSiL8CqFd6pVd6pVd6pVd6pZP0CqBe6ZVe6ZVe6ZVe6ZVO0iuAeqVXeqVXeqVXeqVXOkmvAOoZaD2oRD2rUl6ZsCJhvUK33Yzx56dCKe4TupVdD0+pxo28widBTzT/+FAmdUwAUgITvcjOwSfNT5fmvWHTnI6Cd7zGnD7crUl0NbRw07znpKf9jw5A3YpN7kvTNUDTp0qXfI8szfnUb/maAOlWwNYrvZInArAs9YwqCb4Vg+CTjO9miAfXs3QvTAKeR4vEz5luo0UuHBw3jWQBrB+6Aq80pxsZPjcjpXqlp9El89gLzWHXcHj4nOP02RbG13JWzdT8PfnZzwiIPF+M+ORZ3vkh5yhmys1l63zRt2avI8+p54u8DQD1kdHGT2u27YDyTp6xcsI6ed4obn2BifnWAayQVPPZq0sEUOmPNHjYKPyq9bhyuleqtDfJjuIvVivlw1w/5LeWwLn6ywJOdDPjZgq6fNwewwyP4RsDpiGQ6p57oB4+nCfpPgRJ3y+9+vaax7RcPMZNe+mY0Ekf7a+N82VcQK8A6gbpqLrOArlrudQfDeIPqTq9pbnklV7p2dVFJwb8iwErQgb/z7AA6N5h9k5HAckL0SEQ1cVfVucPBaKf+thrHvdi6Wrt8YRv+bMBUNKJtjM3EDYmbIMl1coJKwgbZ8PtLA0q5aCVDB01HB/Wr+Q/Ws4lzxsN5Oca4M9KZ6scnYkUpOErGkteneh5GNj5etTLj3HoXI1GQGpPCuVXxUXK9KSqPPcChwAQFSPy89ljNdJ+GttmQ4a5J13YzdNGnVLTYQCiztbh1mkpGwiegaKxe3g8h98f7cfN8p+gW2UVp+goABgBpafQWIVWfl/gK7nGezXziWnPcCA/J9ecLT6f6bEvDgKsMaZMSt5A005Wwrh8fMmyW/9o4vucgc+1KQJSl6j6diRb8l3yQMVT459BSiRG5Dcybk4BxhnTDMDTJdSBrqPG4Z4cGBz1tcQDzyuZSuUwaywLkOhq+1x07bBjn9Xbc2HYnsMxcSacg78JfRIA6izdgsRl+1y3E37s9MJfTLjq+/DD95UupcMSkhu1YfyYNjycnGJ3wdONG7oDzwSmPqIuf2m6XQD1BD2xjMeN6bh0Soy2kbAxTQ23x3nj523MWJmx8obNfS2rOWLoOYCdqhxfCjReazK4xBCajPSWJmVMNAUdJapxwjxElWbvXZ42fWoNzFF2tQzUcezzT2gqVqf2vaZtEpR1A+uMGyOa78byK9Yj38JU4jRPr5c7HXWVT5IASqkYkecSr2lArNQNWIztnkaG17YfDkqfhn3pJRE7EopmXPh84TsM6u/JSptOaAWuAajY9f1z9HsjXbUPBnQHno1jN052jceZEI4Pe/9J7MI7Y1PwBHpOQFHtpPbSzV8ssnOa1VsAo98leFTFdwuSuZshohbA7H0pIyBz1nfKU1f4B7K/dvP1aAikousZDdQ/qsI5WM61BNueSTLhWfwADTetHC7gROIz4OkMPcVe58K00s8vpsdI6fbQwki9OQKtUdhHaQN1hV7fQ9aXgIGju9+e6tRyzy5qK8brQDFWB2Flwlaee9SNwh5w2phuYifD1eklAUIDspKRPp3wTK52UJdX3EuXDht8OinVGandK1U6BaJkNRyuks89d5b8LJiKJAvJPiGlvJX9BUmBgrTNNdRsI/B0oRQiyju0h2ryHGtLngGCKN21iRDbYZ6gI76ojtZ/vJngbPggrf+b0K1hyo5mBmWXlHGGNt2BV3fiCYhZOV/rPbzUp/3dIwVMR8FR8Q9Vd++lLj7Od1yt2dHHKLqYAAJOcKADdSfes9ZpAqImxAfrFnX9x9h1N0lH1Tdw8ZcYuI5AGQfMpmNG1PzOaDQfNICKACwpq/IunT5MnWbOHvfqHBpWe0DqmV8AQqYgJ1LVjf6ifAjUeeFzyJU3UEsGNAIczH0bPwVbsen7py6kOOA/saG4Ud81ke7XpQ8XJXLv1bAwaQ6ApYhuHkBFdG2k/RJOJ7tnBkP6UlcIZ+y1hPakU7tN/CElTpd210sbwB5ReQwkVVYadSuuFV5BWEADINXEP9uzz63gL11IkuzEwvMsLqqU6epFD2kXPJ2hsyq8vfSzfgryvkizHZRAzcbYkfE3AtLh7rs9ydJMvSfxT5zUbmBaNnTBSLCrmm2Sv9oH1QbLajHq0mVJ0/GGXVUKRFlaJfcs8YwN2YDceiFfkSVUI+B0CTCa0VkP6tEqdip2fc4veU9yP4s330mYroio43JJDcZZ7KLsH9DbS/nrRAAlkFXRJQqfyd44PeqyEq4+ea7hG+qk9PuzpJmKx0kkhtIHP4H7vF6Nx+1W9ktVITxIK7QnlVYbKEI2JL7wY29ebfYuTGjUdy5MC4ukNqOHmr4J42YSpaOSp6Cv93f3zSVlAPox4EBCaISteXNc9YU4r05HCVl96+aipxiT+/pOwdVEPb7Lf6I+uwJwErotAPVCFO6UOwOYntj4kQuDBtih7gJcOWEr6sJVHHoO6ioG5PZdjoCmDylMiujot6TXJ7vjUPelY+nYgheiauM0PMol6A8Ju/LqfgoaLwh/pUIzRoo2rANRXdrJKnqw4vY7kJokBzvvtBqfAF5e3gZqrPoK7iPJwwg8ebATlbUrKRqkC5h699yob4f1uF6bHxkfAo6T2XHHxQv92cOjz0g9w4X6aHz7b2Ckuusect3x+1EDqKeIrCPANPbUndRFwWpcFqzW2NsBFZVKnZRLn/FEvmHubsG6MNibMC9enVyDnmNOvt4i4/oUgagn776j1n6LTLimqfG7bXOrbXeLtMNED9vB2PugnFH5wDlGdfE3TnT1byqUQu1m2mnPQYEhmI0kWnvPHT1jVi4CSdRUmunTRsDhRP1OkgVKTOj6PtFR697x2NwzBq9S03wzs5WK8h8eH5LmiKTR0YcFUGc+5Mly2hbjwcKRldZISrN3kK9NJ+WIGg9oDclFjSeAakNV3wnQ8eBpO9g9EUCaHdtij7Wx6WaGp6dErEfpCUx8+N0crAp7wAFUn0+jMhJ6VR7Qg59i15R9PSUQUVbfWXsnSvnPS6pM2fqc8lwkqXOtf9gWr+Do+Wg2yR5R48wm9U7NUK+jnVjdVnbz/da/c+BqREwohsTUjZ89qcQeYJN6zozmczqTJpQ2URu/1/7RtS3H/+3Fzco19aBIYqJlB/f2/Uuezg+SzcZW/YmnE6Gob/u+n9ER3mvHab7fy4B4nFhpXfhtBivqCCR9VADqGakBVUOVVwrVcWcdaZ6llzje5Vr0IU+BP0STBUi+pjB8r4y2POpBkuYt4UedX8524F0ghTrcPUfSnXj8rQ+LF6eJBOoQiDrEbAbPeil6ggTq6DzSSB2aiL2PdBw1VaNGwOkSioDU7FlXolk7XXXuTteRPm4O7I1oOA5seKT2DBNHTCK4v6B/7s5n+TipSl0SIucCKxNS8ULujePWsud9pYQExoJslwTasHLCPa2d9GhlwkKMFcCiYdWI3Kr2NjE+N4cWV/cIVA8yLs+Vv+4divG7BYX+8OQo/GaIGCEXJ+TB/YS5TbOSFDZJgwyaiEqdjn5YkfH42me2vqB2baaembzErRkW5H59/OdIowbw48QOMzN+iQksaf24Zjc2m1sqz8i/zAQC5+xkiuNraINrHRJteh4aF2eKZDyRJ+LTc8muZMyDgBEwcRKaJs0eaJ2A10tso5ncRTRvmP6svWfiNH8Unq+Zc14dA8/hDd4RiwQqybS23+e+Vpvr79nh0p2dk+QtoKkHjW3aUDoZVSxourNnId60BGomzpvtNjhCh1R76HfpxensUS5Jy7Z2UFsDmFDCn2aQLn6g5PiZrl6qWjzv+2m+HfVcPaf0IRjy7Jlpvl1XXAro7jygNSQvZeijihqvU9clGoMmr7rzKr2wXiIpq/dqB3agja+yPf0zAFfEAwbbqXoQM23eUeM06V2Desbiwve2kB+ZA0Y7qzITrWPM28Ac2ZEVOe61R3DMfUOhfe9R24SVH/yafNKv5Bns3l+hLr8fC/65cMx6BOiacRKn39vJdkSNO+q/hAKel6c50hzVq6tfAJ5qhqBddgBRE8fBNer3eMlB0rcJoE4w6JndzlFP2zH4eFluYI3Rq/fxpGpGPaPvIJc6s6vwYo/ko34aMYbnpKj6s1dygAMYzMFqK4V99Vsis6Nu5N9pYkA+UxWGdTL5DI0muuZ9DwKrV4rJMsyO90SMbu9bifLK/UjKMig3M6RzC8pdEinEM4yZ6Pyzabt5RujbewZSA4DT99/guWHl+7R05H2shGz2jv6+Gx99+LX6vnWkWuaOg0D5KEU7SvWVLDCcSAzh+9lLLZu09XJ6nmUAkiM6BKCI6LtE9KtE9HeJ6NeJ6F8hop8hov+ZiP6f8vu9I2XVip5vZHb3o7R+tTVTY23GADyS5iiIMdKlRp1mwI64GKg75KgYihsj8vIW4gNK1Hc57FibKLhyu/By3fqz8CxZsDTyCruZ+PyL5v4UHZyIzhStaXWxQvXeL9JtuYPvygMpzXd0eeEAi6rlROpUwFWjrhOXB0dAEE2M2w+q/maL947CNjqX/pboqvPXQBLRASorkRrmob5MoM9jni3gCHDf50A61XmkPvih2S3sAKoUYhlj/EiKcYkk29t6NfYu0TVM+j0JEnKetq+u/xePhUF9wroH7xi1hw0H4KV2I2/kI8P+sA8TwCmBlyDDAbLPkjqO+37Ac5jq2G/+fP/PAVEjbTranxM6yiL+KoD/iZn/eQD/AoBfB/CfAfibzPxnAfzNcv+idOa4ApvmqEPJ5zIkP+ra4Ixn8tH5fCO7p1jqdvhxH46ONEkAhp4KIJR0RxxaTnJQvB2ehWdVgUY1GHn/Hda9AKyrD9noeTcOmAJ6/vnLfTtTKUSTbrRSdgP2wLd59vM9KilIxCqBvZYaZ6aua+4vWLSNpTrBCmoGYs5QBIii5wfPfMq5eWcXtRdrVor61ufeU93Ontce7TMpZK9PRv3mAOaho3tO0u50S0TfAfCvAfjrAMDM75n5RwD+HQC/UpL9CoC/eP7xE3Ivfw06KpXKkqSBawOIoXc17s5ltIbd1f7JuiyotlDWgkAkYVaCVf1NlTP3VI3XG5BHg3Rl767gMs7aTWyD8D6jvb7go/XzXCQhurBozecBh9tlxCr5oaHn8A5Eqf0SIbSFAqp6rwk78SLGFiWUVsu72d8R2Xhqw/foClqCZ6erzl/PJIXoVsP+ec29GfhOwlDTUceULj1TVBkkZYCfz4982qTc1ctoGIZHdliJQySZGbWlSzuVOgGdJPHs32wc6LsgStNLlDr1bfferbRJs+4BkkKeb4hBOhnpox7jYzyRi3TyjDf6kQ2eHwtSf30ZNum6b8hfj9s2lPYe/ZvQEa76ZwD8IwD/DRH9HSL6a0T0FYCfY+YfljS/C+DnDpR1MR1RI/m4PePpfFhwBRneoHvj6qxS1HgRrQ1wMs41R+n1d6y+84AsqvvKyYFCAVjzNvL1OmJg+mLnVA2A0iXlHOYT1D9nuNL2R7kk6sPg1XimH5MJt2XKr0qhoL9MaJ9zKdk5xr9zBKJO0A2DqavOX0PGCfSTLrf5clgAloSBwuVrJv32mt0zWcP7b7vzF4VzICq/AMByoCzQMNCRFCJasB5+rn9PGw70A86DkCAt+X5x/RP240kmOysnBFFR/Ztwl9YCinK/J627VI1rq8BLXrBdY9dfXx/0YHD0XiNw2T0k/wyBkw/TMoO/CR0BUHcA/iUA/zUz/4sAvoYTdzOH64b8AkR/mYh+jYh+bf366wOPu4xm6ikfd8bAevSsTaVQAwAkwKwJ42oDZVrLGpB7550rtzZXEYibAcW9dunmp9MT3fzjfSkaG06760k1RdrUzc2EKo06Q2NjkT7NCWBkpU+1HBTpwKgug+vpc9rfj5SuO38NJuxwB5f8ck2TwwKGgIHqqRvAg7hnpKrCy48kF7dH3obVh2tc9P424wB49AX3eULpEAaApylrwFQDABcC5qb+TiIZ5hu8I9C9/945cB6onCWVMF04/+05ZO6AVFiImYSG4Nl9TzPw5NLUsi9rpyMA6gcAfsDMf7vc/yryhPR7RPTzAFB+/2GUmZl/mZl/kZl/cfnqq/2nHQC41jjOr1A2HVwOLKDtLD1cWI29K4iRuOqTqUqhIqlQ78bAqOJAxV0Bm/SZrJpNVIYb2nPvIhKQJXW071jfL7XvFEidrxmESQAAIABJREFUPPXG+uO0z0qOcevjKY639xFI6ozEm511GXh0AEzK6cKrOwHrkbyxXxKvvUA1HldPvioH79V3TpJVPZFTncD8kAgM4Gs77HhWx8Xzhnn+01ekz0zXnb+YgK38BUyZNiOZ2oJ4y0Cj/KEUIvqrg152KTGXKB77WRotLiMg1KhoiPUsvKdKISzjjOopar3eeBzu3aFt1qvuchmRam2scmsBEm2tsXn3t0XA6shz7Bjo368bA00aCuoq7QYzHubg5Sgl4jw/LjLHne/7CEB3ntTd+zRjOhz/qO2ANqwZD8E3eKiPt/o3bZ/9l+ffBfDbRPTPlaA/D+D/AvA/APilEvZLAP7GXlnzB12Q5ay0ZIcOG5cbZ5eSZ2Zw3u7Eq2G1PGp+27yt9GnoQNP6fHpuK1/fVx7Nf+wU7WyjQXhEVn1nwyJ7p3Ld+ZI6SU8y7vVZP4EuFHrW+WsmjSg0UhvNpBC+jE4yYxnmXhVPpBWyO/D0MFkH3o9Ink7RBPTVCszyY8xDjoSb8kPXFAPqJY8U9mtUXielesK8esa05Qh1/VsWatmq4HIQla/b3zadXNhA6q8ZfZvstacrK2z/2TgK6Kgn8v8IwH9LRG8A/CaA/xD5c/rviegvAfgtAP/e8cdeSDxHwBtTgwhZwpzkCRCp0VbCEhZaS3gWSViP5Kt4HQchgTrUuXJCKl7JbbqFswRqcXVe2RwGbKREQHtI8cjJ5qZ55+4KrJTNXzdtwcdEvV3LzwbwM5EOASrPm8y3BBcvfMgIbZgIJF8t1SJFgkOJs7QBlZFQAnijjI84S4iwZQNb2krJKQFYq1RKDN8KUApdGHSSJ5h7m04YmpMwUQuk2nmnpm1+XZt11yNw9XGBrKvNX6Pph7sGqQmpC6nhHMTKXic241KTyAdQBiqz3BbJEGdP58TZ0zVRZl5E3Pye+VjVmaIzIk+0QSyLE/jQwq11npjfp59XalwvZWjBSWiAXyRPNh2AAMxSGw4Xf4L63qfmTtKcGQONx/ommrQhrWdyuZf5TdqYyPzuvEeCBc8bgAWcuEigTDrTaIk4tB/O9WnDI0eqYjweeiL3fc/m2raJHQua3j7I9fUV+hw4CKCY+X8H8ItB1J+/7LGjBzmAJB/6kZUWZNDklUzu+kpb4ahdGHLGfJRLPwg2y20h6jDGSglglONdtny8C2rYPdZGsrQV6VM+zgUabqVKkRSrquootJGKVJFHvJt7EOXDu1WCHdQfgmZzfgCSCD4sH54gxLZbOxDiAFYBUTk8WkpSnaXknrkAK/FCnipoolTzDM7QmznDFC/o7N67ufZga48+cPc+J11t/pqsTo8y0HoHFxYMcDaJ9Pszq4eGiXAw8K9H2RdQWSSYZ+gic5BPTSpQGePwGI+IOTYMcQKeUOPJ5TsEnEbXF1Lb+xRc9Wn9GGiOe9ExwPHikduwax3zUo/xkb63wKkC6CPk3RaEqkYzBtj3bceLanwIniJp0wBAXdpUH94T+cmKd8DxyjO+ghBnWyQ2UON83rWA2DSRScN1B56rd3V7YJx2TrrnqI+qmUG9p73VQht56PEvS08dCjZ/org8t0vOO7w8ZBTu1HWqvpNjZKRrrQ3TpDypQ+gQ9Jr0CYKr0+SlHYPw4db1qDyYdJ4pRPlGq2gIECFz34KWM5+tnoNnq1fG2lVUeNP5xcRNgGuTBj0oaiVRmWEPDceD59Dkr3v+AIRFOzDnhut9GeG1BRphunYxfDER1E40r93OFbjHozP+p6bu43cKqjeRPHU2aKaMbhetzT/6zh3dxGHCesCmkJVEOZG1hDG4EU9GJGq4jasfCJW8kFdlJWymDirVKdIkAVGJNiRRg1HeibcgqwAzCCr2SiXdiqxCXMFZIIGqvqv+n6jaVKm9UzUkb2ygYA3eTRnu16vqrJpO7yGrAWqcaA7Pq3pmaiU/ddHVDAWbLli0K8k3VWa7Lh8ZFQcISJwNBgWsNGq9XAlJSxYkJS4F27Dc0URF7K2G5HnMqFF55ALBO+pszs+r78NST+GxBk/rws78YnAPwxQ7KZT/hYv/zKhjnBxednlyfAVD6luHa1u26WZSCElYb0SNw6VsWd3nsd6q7kSCsDE6iXvjmsDUIdEGJGC7z96oU2JNb188EYeSqGgLffNbGGBrPC5/VH9Rw1VVzigq9pZRdsAJmEohRv06I4pu2PwYntWNg0AaRTa0zD+0ETjZ/ncDRySSDO1/VeMCTZ+3Ktz5i6qvJzEiv0vFC73pe/v6biwAIzcWUu3e5m1XdWf7vPweUuGa37HU8bJJ7cNLoEZ0AdOWLE/xqC0gpN5TrForzi3tDjy1XVKAU6VQjdF4Kb/u1Ktl9PWpIGsLVHefO12zCbz9UFf2UUNtA6ZUbVfAU5PmqMSqSKJUfdfEoQE6r0PimWkwtzTgyq92RyvdKL2P79JRHx6Uo9mvtPiRxYg8/hJDYi3LMFF7769H6p1uezoMeOrSz8HTsN982J5kwoU1ZdrnWQAcjIHIRif0Vj9o/pG054imxm8caPJfOLdEC/OuLlaKxmiuh+PdgicbPwBPodRRwXtbH78jb0Y3IYE6SiJxiuMiQ8kMNKwRd3YkWW2i1M6JM7C5K+VnKRIjYTUSKpHuMEB1rbUW2yeLf1YkLJKXqh2U+H+y4EnP1GMjdeLYI3rnJwoibUoKthoDcnuPVhLlyfqFCgd7GBb3xxmykqeG2sV4ExZLpnLg8DuX763MmmKoSRJm66NlF9sptcSU51ERaRfbqCJ14lSkneKmYC3jRM7F8x7NG4DV/lXQhCaP3A8nNOumweRR6VNAe1Knw/SpAzjLKIN3bcZSvyhvpQxg3RAxlULwwBbG/Io0VesIOyfWkoF+s40ny0jVqLixgWrjbTuM7G5C54m1qrptPd9Q284mX+/bhzoVDfk4tPHSGk0F/LU+L3ydUfI2b9uNyiNM7+v/tjwycbW+VDcV2Djta9SxxCK5lIfX9GwnN1Oa9UIuJP1b2J/2vdg+Ze0OmvSRBDLmKyjjVq6hfabvFY0BBZrxGDlq/6ZpPZ3kZx8VgIpoJo6UCUR24m1A87FvRSVnd9wJWEIJt0bkK6cyoWxZGkQStgFkjMiRsICxlh15OYzUjYFV3wHGmBx1950c3yLxYkAueatqr75QdFDyaGcMw6oAgZmYvQ0bdcQgfEQeHAXAqCl+ED4tX36pw7dxPShPXAqYEgDmHJa4TlKJwBubXXicxcsJVczcgKGU04hESn1CGf9READY+n/q6kpowlnUhCOAVEBYHwYFaDPQM111XsMO5iOjSIo0a6OOiUoZ5IBUKY9TywgBZHWwnJfIBrAIMJqpcQRklTocNS5OxQGOqnEI4DuoGser7+SZlka+5hp7LMsIdVCiZZjy2/214KllntQzU6At01x3TXJgaGse+5p9MzSgWsGCfHZcVXRuKupAVBvZg+jSoFq+nfNyuzP8VDCi6mW+qG/v8vxGBCxW1Ut+u1Z9Xh8m9UBtJMtrbJz9te/vwZMdByYN0I8HDbPlRdcn6HZVeJYCKUg0a1nGP1LjiUPNzrjaq8jMV+GBSg6r59epGs/YMUm+iKyqbs/3lDrmnJx/1517N+GI1zS6D312XIOOVvHkq1R3AD7cgYzxEMOhGajZppRiz+ORJCosCxXMuTrvvv/p9pnkpyDswud8ajQ0RDXXHfNuVsfUpocJ9/l8nOWv5VnDXW5PIeIC9o99AhdT1461bSjiAz5PiRsyyqbsnb4L0h+Jmxkud/lKfSMJCjkgOdxU0JQpPNAEnez70AcYoduF59MLHTUt4dH77I11B56afOzav+SPVXiA71MK/mZ0exIos2KqKyoMjeF8mFXZiaiaRQrlHlV9PlXfF1adl1DUeMxFwpTBycN2hyWxSqlWZCnUSrm8lYodFCc8YAFoVTuotUiQ3ruDgx/4rno7bwzIRTqVu7Ie62JVdOIt3QKz1v+TBY3eqFybHgOAdTTMFvQcZJm4DBP5uFEmdplvySzUKPgQbDpZsWXBo0poZFGdyyHQAvCaByQVaRMTQCnVrzOlvNKDFIai5iPouXhe+mR29rH+CuCr4aLOU/Bk/vzhwnWdQS5d0JZB2+6uWWYg81MlRusB1xKhl0g4aQTJf1w/kUYaxciSzpJXJJxqRAxko+KiUuuZswxqbtQ4fp5kMXEYSKIaFR5tSJQNiLcF2Ioncgnf28rOZq4Rv0T2YFi7nb3dto4ePJj2DyVPgSSiAa4WmNjwpg2DNN1LuVtycWTKkP4uvxZ8Nv0MgLfcJwSAyzxEJhzap1wnN5U+slnQlp6XicD2Pe+rcIFWAonE2O6o9j2qgflsl7dIG9lesw+X/rfjAsbTfylvm0ie7DgAmnwz27e2Iy6jj0MCdUXqnEmiBRVNGHpJ1ch9gPdKLgblgLV3Ind+XvVoXtMlA5J6+6fu8GAHDaI6z6gObDvwK5B6sUOER+Rf5SkMm6AgpCnL/GqTE5yEqC/HSob0Hiaf9fFEyd23f9555mlv6B7cOBBkafj+16JPGFQNjUsHq9pOGmEncDOp0+A6/1KTtz6P2nhfH7k0TMtSJKWPdllZR5qwNlDXWilZ5gl079NJXvz7emAUttUgTdBXLcCi8R8G+TwQ9M+VfK5+KnEKy6Gw3KE0xpKA0wPU9bs8WqSPk/RHKXRRoO2K/j3Cd25VtEPw5P7K1GjSuuvBdzyi25NAAbAofi/cGkjKqiqyixJQ4R1pCopOxCrFWYjReCcvecXTuHoQ51QcabLWbQXhHjBONXO6DVvjfXyz0iZUP1NiPG6dZ1r7J6lP46eKSd0X1LDUSJoab+QHAVYjBrb3o0HVTCoHuSgNyvOAIEgTLaLV6DtKG+UtxuE2XryTZ+lStncSw2wynI8JxogcxTt5ngg45XOWoC4LtnZHnr6bA14NoJJ5pV7XdDncnuPHHvSVtmvm/LPgJkr/CQOkXXKMMxJVsL2QrvVxKF3FNSzflv8ZCuZt+BEpBOl8iJDpNXU1H5EHRIkYCzEegcYbNQEaLobEidgYOe+rcaotjA2U9zG/ttEixrmh9okFoZq+pIueBfRgydAuNmCyPzmPeYjPXqWN0LEhe1Nq/tzXtLGmlXqoZxU2mwqsiMuOAx0PY5s3D6iTGQeNGi9l6SMv1r1BbPs0eo5fqOc26PutA4QKLu14OGD7ZsuDA032Fwf6eUK3A6A8OIq4I+oYkQFjjTTJL0w4q82IW7UegOrLCbm8CqbyES+pgClR44E3NTBPKOmKMflWjMjf85J9QoGx0AboLroePLVSqaTSp03BkzmUWFV0Tn0HfxByDJDs7jvrYt8bkEerVAlv+ulKNMLJSiNw5dIo+LHpZfIhNHOMpqP6fBlqdcddrZiAKIjxrhqKcwZCDGNEXn6tdGlJZZyaeyLwktQ+irNlJqoRudRRyikgKZEBQ1TrqeCIjoElXwba9Ox+D5F/3lNmpRumXvJE3WUDrMq4U4ZpBr20uTJRlvFaQDlnwCSgRZgiuAB7GZMOYHB5qFXjcFlgMnP4jVtSFQ3aXXjbQuAFWNIWHvkxIll86fzCskMMet9IWCwQasJJD3ft1HbSfmjLIFeehpkOC6WJJ8j2qQVVVaXLNqoDUmp6YJi93aEn6jwdSGVTQQeim/di+Zfbm0V9Fr+cV9vqNbiCZ+n70t9tnrrDHEDHWxqSMWD6n63KTn6B6u9LDwWuYwAMcx3sxkRNFwKmqClO9v1np8KLyEprunDDFbxR+GaAjydR9alTTAVPNCxrWDdTByt9slIne5gwgEbi5CkaI73uOqxOTxfwyVOMOSK6QhmFVGqjTI2aX02DGt9JeiL13RlL28FXyBTEnbTgrWAMQ0DVvp88Z5zms6VuhdxGt2qcOkinE3YJD5vXraRDKYphNm1H7r3McUq0oQjczVb2yjzPUuiod6+NgFCyYPP4NjwNnobtu/MX5I2axdfHP9uDv1AiZsIOS/kdHekxtX8rFWN3dJQ/33X3mVz/fGW648J8RaN496356jTgyYZH42zwPR+h25FATcj6uOjj6hJMEG2W/SAbh4PUcNK6M9jIeCcnKukFdCxYlgzfdYcbJSTOar4HLFh4U0nUBsYDgDdZj5PjacN7Bu7pEdDdeVkS9R4LtmI4LsbjKxIeeMF7CbPSKU542PIKrzMeZ9I6RgcFt3mqgHnkD6rdvTFGKtFW1D5RHDwkgoiC4uJkxc4mPbfxWQqZE1FJYyVPDBTAY/w/cc0LoDUmT1SqlJeK4uKAZelIxfEBESgl8LaBlgSsG3hJWRS/MMr+b1SVXlJpVJVWlUnK+ITiYmzeSZaEoRmJlQdL4Xl6Nl3U/jv987kDKdpcG/gx3o1PqtfFEFiDTD+IlAmAStNVEkVcbfNkhQ5upRAqAYUuCPI3WtQ4gEqfvAdoS16qkIixgMELY7sDtjtgSWJELobkHPoAiqTbllmq76fmt9RrK9IHzu8m4GMkcbDgYwhULGgaALYhLgj6OYqzzaqfn1GxE9wYKHytGROM0o/IZgEkIKYMKZGAU02XJd+5MnLQufDNvGkATb/PVKwyBhZibFT7nkvfixuDIwdIWz4j/GRjAm+Gv3jpI1M1Gpf+jsbAZoCTSCZtfzR9737h+vrCie22AZQ0pohA2ewmQWngIC4i6+vJh+ffhFR2yyXk06Wrb6ishgOh7LgrtlEF5CRkALbqLLjqsS9iN2VVdo0KT9V0EfCpO/9yqdWxZiuVctIncx9NlF7aZI91GZJO3KP4SdxJMt26y9QraJpMfpJuECbP0+cqLjT2VKLGY1Q1HnHjE0omrozgqar6gAYoceffiSrYSXW3HeToFpPOgidtnxmwccCrSWfvB/n3hsTnSKNxZtZyLoNgp8LAUecwiW8mdgE/blzKGNfnMKAOFqNnlzSslTtGSTlUvk7CAJc87iyDbV7TSKaaajgRZ8F1AXiq9bbSldCmZQ88NemoLwcuDVzcHk36GUA4FnJQHQPcxfU3NQ/XBKNxxjVSwVMZI0fI2z6Jz0Nxoil93x7zM24wuxFp7CEdPXgKxjH5dM07Z7LjAIiB8gg0XWpxcNsAKiIHqkZJNs4Spg3c2UAl/a2uD0BmJ54ugoqkhxgwO+DEHmlRGyjOXsZJDMezW4NFfEKVsAY8mZ161nUB0DrOrGGt6wIrdZI65fdrz8GTd/a+r2a+srpdeS7uWTjnaFLAoLsnzMrmA9VVnZVEoQvLDxH8xAnZ2bx8z5JHjMmLvRMT1KVBYwNVymyNySuIaiRMZvddtW2qoEqkUlXgJ+VbAEQNWDp1sLADVXr/Cp56EmwRvL+XkrO9MN3RMVFG3couZQmIApQbE1AZYzIJLOctBaobAzaATSVArbuXiIR5ihQCCyuAImLc04ZHcMN0Z+SlT/LbM9DBH1owtAeeQvVOA9BcmL82FL1eOP5N/zcLMVuWJiW1letwURkP3iaKmCuIllC2tlD2PdwEafp+T9hgPdAvpbG2u9z3YgM1cmMgj2+MxSVcgNSe9JFhbJ9sWH2XEChLOtsOXbwD076SJ+k2AJSbeE5lLYNF5xJGNzgEEIi0E8grnI0o8zwFRtknFFClTmJMDgIeeME9VqyU1W0ircq+UBYkzjv0Ft6wYMN7AAkb3lAu7wGLuil4wNIdHPzAS1HrLY306WFbWtUd6q8CKQ+o9J1bMOSlUuKPQ9pu5M7gxYkccJL5oHxvjcRI4u2c4a8LCaiq6rgWIBGAyJhc/TGB6wRG8QHDvFABX1TUdSwDMxuPF2NyXkjLRSr3ApTEu3gyYe4v9P3UxLdhHOS1YMlLp3x/7F5/4kQjxitBbsz5sSvtWzc2SB9wNhRGYZylfD06sajlcnKuEinxG0SGiVoVXuKaLlk1TqmvW1Q1R7RQVdXcpxVYGNs9ge+Ae8dEPYiq84n3AWWuNwFPMlChv9Xnk1HbRPelbcJry2Th8gR9eJahhgs6k9eOBb+RpQ2jMj+gmhEQwBuqSYEkLeo8howTAjbT/0keUvJtpH7FshqXG2CjKlYjObQ+nlT6uDD4jrL61saV+JE7i25z0kz6aA3DNbyCYhoZkfv+9aBpJH1015dKoD6sEfmIOfuXOSn1aEHBZTO89wnlnVTqNVr3AULWj5M9YDjnMf6iUF0XdGU0bgla43H7a0GTr7sNm42RDwaUgKcxYQsC9so++pwCMBo1GQKA0eySA1qpEam7AraSJ6D+all9xTojdmfc3kiYThqW98/aSbAT/1lJo9j9GeoAlpu0h0zaSUlmjF7LcWU127zDeo87yWbz0qRktr3JkUGSzqr6jtIen7I+n8i224wBdu3ReyKfqe/CPjtLLm/HkGdjwPO3qK6+bA6eEZTFZlxc4tMvERcwDqCo8BZsnfRyJIXs/Aka0NRIH2GuO4Bl8qKmJXsdttEAPDmQFfbV4Bv39OElUAKvj4TbsAIICNAW8Of9VO/k+cNsvJJzVddZY/LNXD9uC5BWPG6Lujh4AHCPtUiJCCmZc4F4w4ZsbA7kyj3wHTZs2bUBWMGUGopzPvdOpE4PvOBhu2ukTw+8VBWeSJ/Y/hIet9TcVzcF7W48774g9EjO7mMzK0gbBjNImz56CbKrfVOlTorEaG2dJC8B3tgcZiUvYWxcFVA57063nKdyTl6xearn4xXP5BupGwOkVKRJ2XiciyG5ui5YirF4cVYozxYpVSM9WqCgLZIysU8fxI9AkaYdtfnnBJYCspNtI3GK0pj4TvJQwurGBaPSKeFcvI2XvSntBglVJeYNMrkQ1O+y4hDj3dxIgjA2JBZwdFekTHdYke42bPfAds+4X1ZlotZGKrR/AuozPVNUI3EX7tOVe4qkTRZM8EC1E4Cmab9FLxFR0Hw2aTMOYOYnRj8GCGpXyYS6icVIolQSWSRWuXNlDivjQMacGJUXn1BZcj53Y6Ee5pF/72nDRgy627C+qX1/lzakjVW9a73R1wW7ud7I8BozFrYyIRU1HZnxQBom7x65sAiuS6MO+913UnQv7XGAl314AGXJgyYmQAwkJaiEUROGunNF0gC6Gy/S94qNFFB8QpWwrfhtavxC2YOFOT7eBWVX3N7xLvbYlgyuEt7zXWNYrj6fgmNbjuy4G5EFV7338T5MQKrvo2grqqVLt9dGpBNMMzP1z4wBVZlcgg/BgimW/ASQzHBc8qfKrCwQsSBNJEQCnnjLMkFOCbRtUMNxawc1ObZF6q6LcQU/VSpW60J6b+vnJ+1R2/pnRHGvZMivciMmSkHaPqgZssowoW4yWyZqdlWBDRM1hQqD7NRJbNQ3uhNvbgcjEob7srGGUt6Bty3AHW09E3UfX+hTzi7E7AKsA0uVMe4Co0GaSKoUAac91d2MiUZRnn3ZhFSubbM0YwCl/xnav6rSbR6c7aGkbOsfrKmYtK+uIusuzJnQWtW3BRhRYj1IOiFLoCzQ8uRtbfOvrRPaPm/CXZzvW5M2GgMAGhUfEPS7B1To447SbQGoK9BoYrBONUfixmpMXkBU4a52Z16Or78rF0/kZadd6538Dm94zXEChpCanXcZPMVex63kKLJ9AnrjcXkP7zxzNC7CMXRNznmyrNy03OVTKRLalZ2AHx9GbmaSsC49aprmOVQnQ3VrAFTwsxUQb3bkqXTA7shjqlIoYziuYElBlQFSUp+Z7VNQd8/MHRYOAVaU75XG5MfNJUzUgyhbjjJROOPiMnysKkSNijcnldAChREZKQRqGTmq73y7A0ttY9KWjciLM0VhonvU2D0pWkcrjSph1faFWhA12KIuacgYGjeMFcG9tKkHG+j7do+ZRgA67NsjY4DRuLKo4NfMe6X/ieHOx5PwMmoUNEl+I3kqnT9ymmxtoe5pxUoMWjh7Ilcj8v2NAyLlbAEzoQfP6P5G4Fn7fwCeQpCNQZhp46fQzQAoYiOK9mQGQlXXQTldnRTYTDKk6jrZjSc+ocSY3PqEEhcqj5z9mjxuCXcpuy542JY8WWwA0gpgQeKMxB+4+GcCIW2MjTYkrl+8904uxuLZ71MGT9ZwPBuS5zJFTSgG6ysTHlUKlfBYxBGP29IALva/QCN5suq73JZOtAo0g73TVYd9dAUuHM0soyHhQFAjqbKAYhSmYMowq6J5yzvnJKwwKglTtYppKxmHOiloQeACv5E4A6KUsr8nVeGhqu4WAVJFpVfiahhU/cayay9VYMQzaZQHTXBhZMtp00TSKYi64HMiRjV2LRSu5CNwanh8A/YFL5u2z9dU+qceM8SExrA8b14QlU8BSKKGNn6hso+yzFh5S2DaGuZpF2rWKPyeNtzTChBwd79ifcvY3m74YnnA2/SId9sd7ihL2a038sbu0s4jyIyfN6rqOwVJ5H7RGo2Xd1YwVdR+++oc0xUj5orgGi5dQIJTmvSTvp+OAULjY6y6HjAq3VK+SCRVqkQFJFHpf0F2RQWjG18KL7S+E+3iWkDRfVpxl4qqjhl3dyu2t4z1LeOL5QH3tOKecpptsy8MBeXtXwkrfdr2P/X+vjbTv8V4XPt/Bzg9WWV7ElR9nJ7Ir4AcgXZ7f+QQLFKHWR9L6pPJpbNOLjc1EpcjWZwhuOkC67ZAJjU90oVbr+OdwbgFTQPOFm45vaa0qSn4idkn1eriPHM/EKb3BnjsPb9Kh6hqHrowavP6slP9ZUJV6dlnUJu3DYvfv3nHadtRX8YeCHilMUWLiwmj9ivg8L5hAtTHNc+3QKSAD5PH6mhbJ7n5d+TKRGihDQttSCm7MRBDYmDsDyqX6xhr+EGZ+ut9/fOSh1aiQE2evt3QtNUZ8ERc/2YUpgvqQDx4vn2vEfAL+p+a+ODZXVhvrmF/LVnJUpYycu77BCDJ7kzjJwwH3FhEz4v6q1AoJXJtM1XbmjQj6WPYZxfwrA8mgSKeMElByAKUbTp778QQjQQF/eHC4hPKGpPnupTVF4zKrNhCPW4JKTGsd/KHbUHdPrIEAAAgAElEQVRKrPElaU7nOI9IqhauRuTf8L1xW1AkT9udSppE8rQiqXTpsXgiV5cGRuI0vOZWKgXUrat25WGlT524PeqbZtIe9OFB8t0bUl2MzcP9irAAGjkYGGYlbwEJSV6Zy2VFl0phZTzSiup/h4qtgnkD+VhZJE7MxZCcQVgyeFF3Bam4NIAajmdJVHlk587AgDOCA3Gm/uaeXZgHil6y1LRpQGH6A/k+JZpqrTxoL0PDShv01/B/qwpSNU4z1slIGlAlUeqF2uQ3Y0Gdv4q/Mvm+NycZcN+6GpGnLGlIYLy5e8Q3bxn8ZsMXyyO+SA94t93hPq3YVtJ8lhjl8VuVPsH+CeDbSA2HVeIgYUAjeWgkE9IfbK5N23WghYN4tGFd+FEafEfdONgZAyJtaq6l/wvjZ6DaxJVJL2cnHRu8yUNR3SRsVdsy2kAEiPpuw31acY8Vb+8f8eO30L5/mx7wNt1XH2GFLL9ZmbBt5c/wDC792hiOi7RR+tIbjKP0rfb5WPKoeaL+jPodbdqzdDMqPKUGIKEfmC4dA6VzOBSni8pucR0tzjU3JiwlzB/vgmILJWq9h23JPlFYXASUAxWLqHTkGwqU4xZsQ59PCp6MzycBT92BwQ1I6nfe6Xuz6KFrWL/jbsz5DBZ9PkmVPIKCgQ00oKhJ48NLPRsQJOMnAFY+TA3OUcsQlXEuj6pBeVHjcarTV57YShmUrykZVd5WPPrKrrqirlObKjlU2BzbIobmun08AElWimYBjgdR9t19GPuwE6CqKWeS7JMgYeBA3CZmUahjz2Jwm5XNuK3JqhqH6nW25RVD8FKsMSyvnmLlQXXHlaryALWbqaqVdk60tFBe+N3TikQb3t4/YnvDoDcb3qbHrMZJa+M3SJtByzdArahpRo4zqVHpFWAlbW7Ak7V3GqluDgGnEWCaDeIJP+pAsvSvGQezMWBlBnluqcOHxLcXjA8wGQfSdjAAWw4bFsPyAlard/JWGmn73vqAEvB8f7die7sBpu8XOSdv1lzCb9wY8NJDUd0peJY+hblXEO3Ak/cJ5fvVg6advj4Lnm8PQI3IcM+xoTiMsaXsNqh5JA3JJEJiVFk9ktsdeaCqcZH71f5qeD0nD0jFHYLsyMuuDxZs2Rs5kx7JYj2O6867suvOHxjs/VC1TjXbr9raNLRh0k49sOra2rRpFN6md7+OLlrRHaAGOI3i7cQmwMgyLwVL9Rq+XAMsuNge1N13ZbLaAAJn+yYg20sRUM/JA7wH8lbtZ+2ZSEGRB0ht/KBLPGiahU3aFqb8w/j5aLqPlXbGsn19j9kjJspNAijj8OsEBeiFKaoEQrFT2ZlVwJaka7hzWWjmb78yuEi1X+2gCoBaVvA9Y7nf8HZ5VOZqqZV6twxUF2HmPjM9C5zQMUgf14GgAXhq1X0mDi7ed9Skf0X6c5Q6cBwUr/2L2k223s0uPDYgevPpqU7Wvt2A6oSTK59kxCpc2Twgff9mWcFvGMn1vTjTtBTbPwl4oiJ9LO8mUsagjzvwbMeGd2cQXdv8thM8wGoq37fFHn0cAKqMsMiQXI3nCreMgJP6fgIgBwzbHXkaB2NQXiaVRyxZPUecJVFM6hsKKJ5ZmRVpJeRJbKWUkXrKz1uQjdBXJLzb7rGC8G67zwblnA8Lzio76xMqGQPxDKwe5Xdb1IhcdgNuTFi3GsaIXRds3QCvQMp+g2FXNB94wC33BmHEHVy8MIzpjOMfK2DGpxMgglyoACWtKpkixXeUzNNJKlT6Vz7ujatq0PiJkvbIk2EF7Am1PL5LVdJ0V4CTGIwXX1AZqJXfBfUwYT3upb6vpNV40xbank0b1LAmLdm0fftqXkjnBOGfOBEwl0ChbbuhQbFpezM0K2hFHf+SRj6HvNkG0B11ZszL7r0q/ZDtEVR2jkLBtxj/rky4Mwuq7L5lUwnEl+kdEjF++u03SD/1gG99+Q7fvvsGX6Z3+El6g7u04sE4/G3mGaPCUQa6klHZFAa6WtUdlPHpdVERkjEibxgv4BhtH67XaOObcLThnhoV3DCRKUr6Nuj7aAw0Z1+K6xTJr/kKGE3chm+l0MQQf3bZDAGKlNT+ccsH229bAqet2gFz1p4sBTy9Tdlg/KfffoMffvWAb335Ht+++wZfpXf4o/SFujsAjM3ulrBute95S0Z1W+rJlPvUgiiRLvoxUE6oVlUf0EmqtG9gwqXxor6HC3PhZ+i2ANSRASpJee7HRETUM38XQFHnlWsdDDA+otwAEd9Q4vtk5QrC7Ll0GxV/TkVsIa4NrMuC1UqfjOTJuiwARArVqu5s/b0EKdwFcwnZfJcMtqPpQqBUAYllErqiIvMBDEBVu7wz1XJ5lWEBrSpP05QMkkbcGlTOpY40hUHJWXkAV5sVA2IU1OjkaQCOpLGAyNS9BTuub11aD6ZGac/SpUPqk6HBeLNTEptwGYdWiqHD0oIoCS+RCpLq51Bt7RjN0G5VO2UcC4hSYEGQVZC1i/RSqKrKYbyhR7xJj1juVtwva9mF9ajSBzGFaJpHF2U2TC4EPbj2dNKHEAiNgNGEofr0XRpXl5nEfBSnr286V+eUcq/vZsJ0PLhr+zx9pCubXb01je1ny1MbKZX0z0ACWUDUPa14k1Ysd5v2fRq4sOj9CtY69sf21L8h4LHjJQrvKtD3czgO0Ib5Ms7QbQCoCDjZWcOP2iA9CxAqYsrqVLNOJpFLg/yo6p38cUtlK2+WUomReAY/jEcklTJV1wbAUiqkYu0ihWrCUt5B926rRuTvtjuVPInR+EPZxWddFnR2T/a+iWttn7zqzsZ51wUyyFXUXto6mgybvjgSdoCirt6Teyv4IXOPYPi4eCuFknvxPtBKoEwiFSWRSyjc0VyzSb+IeJLAS3FdcJdUyrTdEVSyJMe/GJcFCpYaf1Fo4vx1I1mCCYOJc+HatnDpfFiQ9rMgxtiI3I3TZty1PKuXSJCLkzBxmSG2UJWPQK3vZNiJt3IUQ+I1D349Iy9RcWmQH7KVeW5dExZirBubeSSP14U2fEHv8UV6wJ/64sf44Xf/CN95+w3+xP2P8VV6nyXsxq/DupV5bKtGxLwl8ErgteiiigSKilSCNoBWVOkD13futrJbCZRNO2DGe8wUiMPC+xn5ecv1uZVcdf0s6an2cTMu0OZvJFFUImVukvM3C7qSUxKYOLc7shRqKz7q1jUhpQ1JpISFl4izzC/oAV+kB/zct/4Qv/fdn8J33n6Dn7n7uut7kTxJ3z9uqZE+NRIoNn0v35OMg6CfrfQRZmxoU3t13gg0BcApBMMfJYAaUYOeAaCIJmWAKsCuI1h8QAH11Gn9RQUDuiNPwNNIlYdq//S4LbhLa8mfR+1Dvsm7ERI6dd7Cm/5mFR5VtZ3uwqNObQdkyVPdhVePb3kM1HWR3ye7slAQZK6b8GAVEgOm63DNECxdmq+Mh1Cy1MT3x7vIteCfPHyMbygJTwRsxsi8DELdmacFmUIXncuQnUxBj2fRHXfFjYE1FJcdd3ptpFMtWKqG4x5UtYBJXtbEowdD06793MDSgMgZjagE0DHQRjqKlpE2SQ24t3GNJMsAeylTwFLut7q5QY/+MCq7DLy4HTcbYUv5uxc13uOWui3qX6QHfJXe4U+++TH+9E/9Ab5z/w2+u/wEX6V32UdUIVnUMTKQ2oSJMtWdVyJhatQ25h6eiZJe219IOmmnLQgbAKcOMDVgajAhjeYp6uO5RbkNiPag2s47MOPAA6kOSKMdEzqXLWXOLvZOOk5kfilSc95kzoeq8dYtYUum76n2/Z96+4f4R1/9FL7z5ht855K+X+sEZfseUle7y1L72R8k3fbrWfCseYL+vIQPCX14AGUG1HCSPshtI7WeB1E+zO7QEyClYk1CYw8lIAuQXXqysMvX1lO5qPMeyjl6C9fBaQFUpLbz3sUtGPJuEkYex6Oddy2gCkBTSduA9TLpTbnrlUBVVOys2y0IUhLgxON0jXTKjj07iaG1h8qTVV3RUwFkujNPmRtlfzlrGRwyIciRLbr7DnXHnbgq8EDKNKsFSEwtKPKSojafA09or5+p6z5d6oBSP0A5mMgsrw34bjP8OhAlzNYyEEDVddlwPMflDTTIjEkcaSYUb+WoLg/KNy2MbpVfs6sXABYw7rHi59/8CO++usNPLe/w7fQNUkEtchi6XdTl+QhFAoE6eI0UwUqWBNvVOMnjw2q7RKBoTxUUx7v+G8w3fj4ZpbWzpx8HTTaZQ1x8NwbMczSuAQfVsBwCnrk82+7CDNoy9z20z3SRXnhK3oX5iH/q/g/xZ799jy/Te3x7+eOm7x+KLW6WPgV9v5m+1z+qYMmAnToe+nPvmn6MwHMAokbAqeMpHzWA8uSBVASsCgdk7iUFKraGVU3VQtQGlFtV3sqEJW2qwlNndFTSMhVVHtXDgpEBzJ3sRtiARwBrImyUkGjLkqwCvO6L9Oqb7V6lTiJhsv6d5PrRTGaPxTv5ow5SUiNyawTYgCluvY4zKqCyajm/rVXC+74Rros6wV2L/KwRgaLybA+sFCBJ3SyYQAuW9JgMt6pnoKrcSKpQHmRnvsLJGPIhk9pEZSCVH8aJkFbWFSBtuZxtIQOc8oO8wTiAZkeeXHdACzasvktz78CYBWFRejZhHZALARo6+mRBmUzylqJ3tYNT2yxfjAyKdQzLODWfFzE6l8fNsR/ygVibF4KOVaxFUpnMPPiYzzhbadE6vVvzvPN+y6YFD7zgnh7xVXqHP/et38Rf+PL/xgMIP9re4Bu+x4INj9uC99sdHtYF7x7v8LAmrOVv27LqjlcqUghkg/HGkLx8YitqvIABK3kq7RAZkWtzH2KmBo24rjoCnoDa7uE4bxYp3IVlKTia78t+V50KT+Y6QvEqXtvKLtpy3bkdVzKRloOF1USDkI3QE/BY0r5fFzCA9+sd3q13WO/yJqiv6D3+3Lf+X/yFr/4uVib8wfYW75Fd8rzf7vBuW/Cw5r/3jwseH5dqQD7pe+ln8e/kVbZTqWNkRO5Vu0Dbx4N+Pi11dHR7AGpE+kKOe7okDfZiqEsDlT6VNNV1ARpVnhhEyjEvQAZNgJHgUJVWVWlTUqdiYmQufqKyMCLv1hOkr4cEgxojcXstZL2fW121DbPSJwANeIILj67lPn+HFlWcoAOT0S6Vb76REp0oq0kvQGwCzkbgS8eSKaOGldmIXLxxcQBUYASwkVgZ8CRMkVDVdqVOCp482PFthTbegp3QceagjN0wjeuZwudE8vpzKYRJo80l8w/pmLFFeKZsJ33/LeivYRRlmFWpVMFSIoGgcs0i9igITXGXWXg9btmcwEqhfiY94ueXL/HH/B7f8JqdASPVBZ/MXaq+QXHYCZU42L+qqkEjmYokDkr2fQPmOFTVBeBpBJzOzDVRWhvUDRHKdbBq39HUFE1dml76H+7Xvr9k1HGAesyPACkO+t65xkm04WfSe/zC3bfwE36Pdw+PeF+OIrNHiq26MEft++DIHu170++N5MmltX0bqeh8Pw4ljrDhruMu5VX4mACUp1AMIVIpQGylKogCdEhTNSgHclzRskDO47P2UI9wUilk9waJGXdpVcPybS0HFSfo9WpA2TvKzW0dZDbOMp2rAmsw/rgZaRPqllGpK8uv5ms/DAZgJU2d6wLPXZsJiJqPs+sHE06+nGuTm1kioCWAQm0EYMAQALGFYl+cAR86cYkKrNg/MVBdGmxcpVYiMiAuBpvQimW7pzwQradxBU7GOFx+j4ehgj4b7nb8+ZVuKG0y1HXjTrc+YQ76uMhPzpY8x6Qgzkg0Rb2q45TgzkMzjyV0djHWpUJeCJSZT8a/TGCrpKE6hldkz9Qp4RF5HvjjdI83dyu+fnyDu/ffAgD81vs/iR/ffQtfpt/Bzy/AA2/4B4/fw+8+fgc/fP9d/JP3X+Inj2/wk4d7vHu4w/vHBevjkueVlYDHBIjkgVGkEGi8SVvpg0qWrCFxIHloJA6BYXnDLAcMdSh9umQwW+Ar934cSD9xOwZGmwq8NMqm0eM2ARVAJRRJI9hIKKnmQZG/ExXVbsKaK4Fvljvcb4Sv797gjr4EAPzW+z+BH29f4Ku37/ELyH3/O+v38LsP38XvvPsefv/9l/hmve/6ftsIXPp92PfSl2vte1pN31uAZAEX0NhMNX3pAFQEnJs+QpvuEropAKUHCluOZu8LdQ7kPDQHlOmLrVMJVIkUTLj1DYUtgYgLzyTcpc3sM0lgzu7rczjpbjzd9muAVKINS3Ff8ECLlmLtmR6Kwbj16SRg6ZGXVsJkwJWk9eBpNUDLG457g3G/rZhNu9l0teFN+rODbpSeZnGCjGoRKs62eSwKQr3WII5AVQCi7EQn4epMnKAqErV5Imnc+jEz6SSZDyAuVTJc0ariADg1nLGLMumbM+xcvAdPh8GSi/O/TXk2HH26z4EI6FV4hTgYk56Z6vQ0AFPk+85k7xgrzP1an6EMUyQNxZcZJ4DWwkLN98CPSee3h8c83/zR8kZdrvy9u5/FH9x/C9+//8cANjyA8TsP38Pff/+z+OE338GP3n0L79Y7/PH7e7x/vMsqnLVIH4SJbsiMVBlmAUqitrOG5NaI3AAsAK3qJlLrKRONQVMnkTDXISA+Ose5vm/Ggu3zpu/l14yBRDVtBKTQ93+di8wcJs8yAEv8RGUbTsrqwEcCkEHUw0MGPl8vb7JmBb7v3+MbZvz2+5/FD97/DH747jv4g9L337y/x/vHBQ8PC9bHlKVOj5RVtAKiSn+TGQe7fQ8Y6dRgHDgApf0PxH17ZRD1QQGUfshnSBggm4GEei8gwBuM13T1XtRw+bqo6qj1Um4lUbnSrWG5PfIFJk0VVWxYQVhQwFUZ7VbiJHWRX6+y82o7eQ/v70nIbhSa+WeJJFKn6AnIPaQZmPKPNnxiN6+ZvFpQRa041zI6yWIYn+7i64BW2R1aH1MB2uLqZRhmD3yoASwSblV7EeCxbaJlm2f5Z0d5r0KfOpAyE7Yn++qegeqkbYpxUWYEmbL024QbW2jWlfpbgIUwUXtsih5BJBKuDWUHDGfVXrFbARIe1wXv1jssacMfPmZJ1D94+B7+3vLb+MfbW/zew3fw+w9f4uv1Dd6td3i/LtksYU3YVrt1XZ5tPEhbKRPX+NCmyTHJTiLh+8SAp1DaFACooRQqig+oA84w/TyLKzfSj37+8v0tmXz/W7CkY6Kobdm0A28yd+W2Zki/A2j6PuHd4x3uaMOPH78AAPzOw/fwG8vfxz/ZvsT/9/ht/OjhS3z9mPv+ne37LelYat0WoPaz6fe9vtffEj5V4QXgaRc47fT9EbopCVRIOorKSJFrRV9lVUXe/5PMIPJDrkBAVHkiddrAei2/dfASULZ5iuRJKGURBe4KRBaJlMTpdSnN2y/Va+/vqQInbyAeqe2s3VPj0kClUhZAVS7cXucmsrvvGhXfhQNtRqZHMjVdxWi4vedCaIeD72XGIMyBFMgET+iPSZCkLODEPrxOWlrdMu70mIqIPGiSMOdNPDIY12sTZtOPpFIzCVMnTRqCsz7uc6KpHyhz2QBU1+5Dz9RFGqEG534QZx5Xw0QKuZQkjXFx8QGUuGxOQJYKqC8zlAVAAm8MXgkPDNCSF5DvHxd8ffcGD9uCt8sjfvTwJf6Pt9/HT7Y3+MFPvoufPL7BH777Al+/e4PHLeHdN/fZ/ukhgR9SZoqPCRCVzSOq6kaMhq00wjFRSSdtPpJGhUxzALAiCVQolfJxE+r6WgKjOJqPASJuvuNOhVf6Vk1SLBtEjZd5O79THlMJKN7gayGc/e+AV8Jj6fuvmfCwLvjJ+3u8177/Fv7Pt9/Hu+0OP/jJd/H1w1v80cP/397XxFrXJWU969yXr+lGYzdoCHa3gpFoOiaKIQSDMQYYIBJhQBSjhhAIExMQNYpOiAMHJkR0YDAENAyMiC0JxIHRIANHHWkYoKCRgDbdaaSNNn9+8n7vPeVgrapVVavWzz7n3HvPPXdXcnP3Xv9rVe1Vz6mqvfZb+I3/9y7cC+8Tju8cgHcyiEpvUg0Wf6OtjwCfAzbkveK3tS7Z/xo0C896/I5AlM4/ga4OQIkbbyspoMXWI8kidx5UAVQaIPljDvQqS0AdpfLDrVqSbFzUQcCURlgScK6Ak2+b37IbgSedr+tqC5Q+soDUvQVPMP95+S5GDwCyIuAk6QyeaJ7W1lNWKK2sfL2k8VwF4DIsHZNQUvWRB0wVqKR6rxSsBTcKEaaoDbsUTdxTVLZT15CvOyjz0sBUb2uKxNLnRSIc6T4TcA4nlkV5kAJCfIyGlsG6sWWlKUdtyP8C3I+sUJHfmiLCfSK8OeSfe7/x+i381uEVjpTw62/ehTfHA3719bvxzv0d3i5xL0c++4dddxwDaNwz5QFSb1xZEGT/axCk01rLRKs8I2tTqFgdM05VrP4RCPlbmLhFBkL+q05EHgDIcRW877n4OAbf6ZhAx3KWIr9UcEQ56JRwfyC8KTFsv/n6Lbxzl6//75u38Pr4Cr/++l14fX+Ht19/Rnb5yht3qVidNJ9Tw+cQJEW8d29UNuCZ1yCwOE6Bk+PrKXCD6ToAFEtHLy261trRSl5NErhP8K4qHRslskb5aAO+ZjB2VyxPfMQBpRwHlS1LB7E44HAUsMRv7ukjDw7pKO653G8MinhcOi5qi+WJ598CptSAJ33uk3k5QZfz1ie9QanyUQD5UDgDoGLYqn5h+TQNaHR7khYAH7kGnEjFQeUyZa141MMucVGAtVpp5RUslYzVgRBvRWosRy4uyrSjgJhuc5TWWJP0mHQdqXfGTnMLROgepOnlEIG8NkhKrXcYMFzO75GPUQcbPxsakpIRGUtzcj6n5cFkb84BuCsfmc0nAeMNyo++Q/5e2t3hiLff+Qz82qvPxD0l/NY7r/I3O995hTfvZAV7/7rEO7051FfV36RqaWLLgwog96+qi0UCCmAB1kIhSrTu/cMDNDvKs69MBzIe6SnXRv5Bxo0h5Ln8V3tewbC1j1QGWfaDbkA50MZF3cMEkWc+k4Drwxtl9T6ifAD9CDpkA8HrY8KhuADfPhDefucVfu31u/KLBq/LETzv3OHNO6/yiwjv3NWA8Tcd3hNMALnw+R6WtyOANQBOPg4OiHl8aRB1HQAK6AunzhebZb7M6DsVgKTceEEaEFuhAIjF675sFvlavn4g7jw5toBycPk9JQWkgOMxH4N/VNzQrjwoQMTE1xXMtWBKA6x7VX7ktouCxs2115QKJIVlHCgI2/DUy/duuY0UAqoovwuYBiAqWTDED6+1MGmwlFSfReGpadZBcaIdJ6eFb82hXmuQZPIPti7XicCZWfIZG09nz02TduEJz5tC+joFaeq/A1PmEx9SXgEpldwoTgb2XtBlHKxBkd15KYcVsNWIyjHmdJ9w/+qA44Fw/+YO6UB4OxEOd+XDs/eH8r+8bXVEDhhnhVkA1IGVKQMjAg73bVoIprwyBUq9+oOF59g7A2gMoDTqaZe7SzNFqyvLs+dAFf93110wHQEpNR4Jw2W6g8QfsQzk8w4L/+9QQFVx895DEBfdJ9CrfEr9fTkr7O3DWzgc8qZ4PB4y2H5zqFanN+WE8XtUd90bdZ7XPfPbgikArXt2K+9JzRMY8ryXltNPQ1DXA6A0Gc0WaMheNVIB46RAFOAAlVKbydaLgs65LrvvEpRbD5B0IAvlgRmY2o9sAhZAaeDEeRpU9c94sgBJW57smkCVCdJ4rXzlLQDnRPS+1LRmP4MWxPeUYH/FTTc7GFnLbyhRK3JqeXSzUl1Erp4BJb8sbROd2BgHnnS5FF+HliJOD8BTqMBdP02+SXtAJj9TipaEnIDwxizO3mRBTnNtGpMqRfbU3kVW/kQ2qT4DItp8fUy2UaAGFwPZisAHuJZjDoBDjqM6lL2McuAxkXpVXcW1QFx2dYxVKaaq9I51KKIAWZEGyrD3fwiYZuApUqwufZkUDwErB+KS5beckuW124bCdOG/3ozcf/nUS3lhgJp8RtkQ8C0/HO9TtngmCE/zcQep8D+PncrJ4vmIinyt3bSazwKCyKZpvhgApO49MIrm3OPxKnAKQdNG3j8NgOoBJJ1uyicrmSJ9LFJVMGSzSE4QHXiw4lqlnzcJdtVxQDkA3BWrk46dYpfdPQq4MhYnyPV9wJieJcpYoFS+B073R1uHyjWn6UPSRm/dmR9jVBdO3HcizAHQ8hQI6jJF6ATIABbqFV8KysLe+w1JipcNRobHn8DgsuXU8GphUvmJ10Q1zPIm1yncjJvlCICSv9dWJ8nT6YA6rDPIT506EUBCv0wD+jr1b520i6k394RgvbiySsvlkrpGXVsvuPpPXslL/HlFiQv2z4ZYJvT1IbsDj6WdwzHLUErIwCgBuCvK9ADQG1b+6iEp+46JcRI3XTnPB6gBwpxGqOAKwIHXkmOiOJ+fOe2u6yjXCDRZZWofwKFyRZu3iZK99M8ZW7glTf1w6srAQeUfShvshmVVqPheP+UDpBzWZPLl81LFC5NfQkkSopC/04n8Fh+7+lLhvwbvxeIEShIcHp3vxLwHMLY4Kt43LwgMgJVx3wIN/3NeuwlfiufXaYHqkVegvXyUfUauWyuUVCHXYJOX/cf5jd98r0PE9ffxciUOGK9UT3Ulc9/04/4TWmBVy8Kmu/Y8eLId1vb1br/pKIMVMHUiNRYgTx48aQDYqdtYpwDThiRTAVFFwRiRc3IXgTTdrIwPdUyhctXpDgwZAGMAkZMhD2x6rOwAoxXW98ozMF1t5zmT3px7c9XJHuPbtDhQmNv2Yg5C/ZwHiuuNwVJRhhpQyGGbyhrBPx70oYtALoN7VsokH7uW4PNUXs5RP7B0cLg538m46FQgMRRQ0iDIvYVlFescPEVWqBlwGlmcTja2OpmI9gO7X1C5bmVA+M6gNtXrzNO8LnQouq0EkbcAZR4AACAASURBVHPjCSgfk1bzMXtP6YXlhtMIwB3VgHAGzur0dAFQwudUgVHwSR5Rhho8RWDJxTElfvlB1Z3yXi34Cng26SfQEoBKKX0HgG8pXf8MgG8C8HkAfgjA5wD4KIC/RESvTx+KI890D5qGYIklqNVeUaiwj4kCFEAq/+9LHxwXdfDlFJDS50sdFHfu3Y4bWqDUvXmjTgEnbWWaWZ5g8soaOMBlOpYyLt2XewwagCMNiDxo0srHrHhJaIBPmM6bmpIYVlauSbj8AIs3yjYCUg0IcmkGPIWgKuhD5fu2ff8RYLsFuuj+pX6NNBuvVjJwcql4aGWPiuxVC6vUU3zTSrSmszCWRo9WHq1y1HOAktNicT0gW7QS5DNDKZF8mzFbN5wSJWSLkwY8WjmyYj3a/AYk9YKHy6/E3qvswoMmjZp8wy/Ft5rWbmyritWAJmFAcsyAbEqGv1zJyYDwnYsxL4NNrTnNHKoNlZYPU4XhPa9zeQk8H3nB387jbyeqPUHmp61Nip+jbxkeuG8tBydaHCPQnMdHLb+BYZqmrWBqCqBSSu8H8G0APkREb6eUfhjANwD4agDfQ0Q/lFL6xwC+GcD3LvfcCMIkPcpn0KPNi5AD63NRlmNihQgHooAjn/2kGj8CEsOk4/OO5QmoHwcl+WSLsWyV//eqXz8NTT6YnNNmwInvpZxy6zVuS1VOrFBl2tp1VwepN8wgX01meObRjDRQcqCpIiHeeeJ8Y2FSeWYDSq5JHr4CRnpvAeVNLV8TnNiYBzkCnDxsTaHVYgaaeC46ILkBVbadCDyFFqQJqKKiqLuWpSsHWZfev7rnQAEts/XaBLyzyo7UtSur+c2ASH3CR9x6KljZnBPEsn2oSrjEi2e3HbvwDnkc5qR8Pm8smpZSetWikKpSdMoxVJg6ryhzWeeR8jT/qY7HPYcxgKqz6VklTN6MomfHH9ALWL76/x0ZSPoZLjz1AMy79WSf0qqR1ztB3HqJrVYp5UDyBNC9Oovq4MbL5PniPsvTA8VTd50HzIBYKKSs6z+0MjX8VqwwAMoy+BRL1GFeBEAGWu9OKb0C8B4AnwTw5QA+XPJ/EMDXbe8+pu731BQQsOn9XVysLkG6d1l5dxdbavS5TD0XWpufjIWJ3J8u07yJR627zoMnO2YFhpp5tmszlBNeg8GaPjY1QwnAxWqdpkxQzrSbbF63H6/s1Bj1n2mrUz5s29WT9oJ2w3lFY+71M2L99YjFFrrM/sUKwf3p/Nlm7QFBCq9JFIP/xR27q2q9Bty7P1FYsGn1zx92qa6V8hMLgwogjz7JEc3T/4/GuQSeAt54PlnFSoYPpl+V1vBV89bx2NczZVV+Tid3Pxq/68TzNRhTz93ZO4tJeMR5io9WJtSfOQyzlRfD/wFPfV6K1ibgI/w92nIj3ooMEM2f44DXnqYWKCL6RErpuwF8DMDbAP4tssn700T0phT7OID3z9o6iyI/jaxOBQ/hN/JKeQ6EkySB6hwbVdIpt1PNorlxHWCeEhW3HokG0lYpJg4uj6gfC2Xv/eGYnBYfkmkDxTUY0m/daYuJPnXcDgitAEXlPEV1eiT8srrZszuXrWttLE+lsmmD81T32gNRZcBeS9P8q60kyBolVGHrbIR6uD1qwJRPF0CV4IFNY6Hia382FNfpgSpfzo1rM3C9QnB12f2L4M+BAlheUpsIJUtAFQi5V4Ui0K4sS2IIPdQ2tTWK83wdVpL8nFjLA4oFqg6HEpDU6ffNjwi7HI0yNErMxbc0Vgq5jxW/aQe+fVtHL68FGRRbpWDTcnrwwM72riDJyIKXg0AGah7cdXkjOOU2ZfvjTU39F96mEo7CMsMxVLyORW6kXXbbljXmex5M86zrNeTro7tWaSMLVC5HXb6HMoFtvDd5avxNustbpRUX3vsAfC2ALwDwaQD/EsBXrXaQUvpWAN8KAHfve1+/oNZeOm3rpiw7BaqSRRGKkmePLcid+vOidF6dTE73bj0mPoTz4AYtbjxpt52U3pcj4AQofW0sUBiDJ1WHeH0kUQED1V7jrhOA5QbdSzuX/AbhhtICq0m/uj1uB7UdBlpNnloGm1/4WXJ116ZcNK5AniMw1XXXlbSRlayb5/sajKlu8NQv8wzokvvXu9793q6ccSyTEFUeJiXLGvBDH5lRPumToMqV66yFihI9qjxWiBwszMGZhPwWFZKJmZJ9UI9TnV5tDuH0gu8fEPXfKzLv1gtBE3G+VYaRAtbKefbZllB5BkqWKXpDS/JG7lq9HE4ZGFnQciD3cxnQy5+LujeRhc+qTfOZniIzh+rW5b1BMNhBGo99URrQmfnVucm95lWHj9O361Qd2XYMeCb0+T0ATp7/Kq3O6TTFtRJE/pUAfpGIPgUAKaUfAfBlAN6bUnpVfsV9AMAnospE9H0Avg8A3vXBD8ajDLSifNLFKb4u0ELbhgAlbkbjgsASFQMcPwAAqQaMR3Inlqlonh2KDrvsAaeR5ckHjEue6QuNAEn6tZFXPHCAx8mDBkZSVoGhJk81MxKzQApgz/YhU8+Mf0Ya2HXiJHpWpzCN0x2Ymrn65P5U0HWddLH967e/9wOUSqzIiMSioxSpgG4PprgOyCpRUu2AZZeqQuwpUT0QDbycHJhxFAuWPF/u2+i1PRmsTY4UqP8fxTRttD50LQ+SRiZNrt2Yw9fa9Xw37oM9maj8q/3JoZo9GZCNCtCXBkhDAWkFqA2QTroiIGgomZRmg9NG/gg8exCi13oInIAYMG/le9Bvj/dmvFLWMfdMnbcCoD4G4EtTSu9BNoF/BYCfBPATAL4e+U2WbwTwo+cNZUAicFqLghOVEOhzoXIh/tCwgKiSp8+1SKggKrvvrLrkNHbzGQtWKZNK/0B22W06EgBo4qVq3y1o4vs4Ta2FBmAGWNX2svA6LWoeiuQG1M7rpABy86TWofhv9eayqJtNkMd7i7lXjTqvXxcoNRsLuXzVgN4EAVTg01mHfEBnRyY88OGxjUBSD1hxXlRO9TG8l3bdZIJyz4Auun+JC2+0DnqR+PJAbVr0rcNU97P8IxKWn1D9a3MFl1HPSXXJ6RP2VcA4UL6PVlp2rrxmnhGACoGMvbZpVRmGlipuz7iFKO5D0ihI42utL2AsGppGJ5Mvk5cJvfEwySnLXMfJgLP4puRkgMsw6w/KBejdrnpT0y8aOHcdywbXDfcdThrwvuFfKXPOiwGN+9akddyzEVjydVWapy3WqGkQORF9BDnY8qeQXwE+IP8i+5sA/mpK6eeRXwX+geVehx2eWKdXT4OFYRux+6sHYKSaAimc5YPDexSVWwVPzfAX5jiViy3a8dRN5lzST7AHG4vD75YdpHU3Fd9Wp+0QPEV19Rij/hCU6bQ5Zeeg/2EfOr9T71rowfYvCv4K6SBwURRHNMpbgr6VcjDXCICFVzIDJeTrNQBGAxkeI9lrE3ysA45dmd5RAz3whKCsWVe3jv11oHa9FB/MegfgSfoI+BjyeMB3n9a0HYyhkQEvD6rtaE11+UR2fZp0gsSbmfZckHnyYzkGZbR89ILGj7a/poyeF/R/isuYNAuezJi5DcWT5vkLZMA8t4u0dA4UEX0XgO9yyb8A4Es29bZKhP6mzGaApO6dVYrPCedv4gEZYNScnEdSL5U0mBKRNSq3hRr/mSDgRZ9QzhYqf/ZTOCVviTHuPJvWA1Ndy5Ok1QQT90Q2VspuCLoc0GhTAswbk77uhEKLElPpWluW6uK6eADddwpuFZt18aTa1WLVszT5dGoac+NdJG8NatIjMNUBdv4XZNR213UX1eF6E6B1zXSx/YsVRi/brYtx4ydXiO+1RaI5vsDmJaAN7maLFVsypF1VjmxajfdEOSwRxuqUnAz0DKdVWXWu9Qd/AwW66rJpg8hb5VmvVZ8RWFH3zRya+S0q02CB7PopPgJiCVyWAXk2FY9lv6nHDvQskjzP+pJU0YlH5nWRgdKvloMuGQACxdMOz4FqaUTEU8d3V475rvvrAabIytS1MG7DSw097UnkI6CErJxJgyVfF7AaLwRVNU8O2ZSuC9BIOUJBTixHBlIVHI20ouaABj4VVI0otia1+ZEFrBfvJKMa1IHKl+seWPJTWN1XThVOteQCemZtacAVgSrdnr+O8iMgpijmugJZq+QaDsFUByzNwFNEQ7BkrgdnP0Xk6t4q6bfwGsAkwlKFpy1DIm/k3SklrzlUE4AEGx9toLHIqgdSHGAOtKDPKNlAQespDPdndeNBTANsMAVOQF3fuMwEOGml2wNNPcCkNsnN4suARIMmgiyiNKf2lQRalgH+03FyNU3JQDmd3AOt6r7lvlEvUh6L3Rd8wd68ea4ONOnrLhjqACf4PMz5ztcbALOMo5nTNuY/+adczC/5Ho3wS69cAV+CorVi5SQye10FUWVQ1HRcHm4BVr0BYFKuHYe9b4FYFzgBBjzVh1WDK9cu+fwtmvKBaAV46A0DFgxNy0egDAHoUsPw1ifTjmqg3Tgn83DUBzH9/MiF2LU89dJ6Y1nRIGkbTrwJIpjXZROQP03QFNNlBmCqp0TlR14LpLpKFPy/KNGDyugpUa2gAQOm6pEsk/WQqpdVohYEoSpR8vVjBToFTiPAFBxVsUJeHsQTEoEpqaM+59OTAa4oh5qqYHN10GkNKK8WenN6OcsC80DLRmkk73O8WJMJN2tqr2c8z3kU5mk+tWktfzeDZqd0T/3N9+QAypBTTF0GGt8Jk9Kmqm4G9LV89Aq6WKIAIJFYonSt3BYHkcO8sac/IwPovNWJ2/r1vs2z7rYJcCqTMsCplPHgSwt8Y43S5eDSo+uR9SqiRfBkAVB+2jUY0t1pBdGkqSEmvqZW3GRISQF9JVuRtessLKqXbQaaVF7XMuXTonIj0BWNaXV+V4DJH4Iaa070kOu5H4J0VqYsR9oKpAXau3YisOOsRtWdY/NZzk0ZadsMq5Rr59X9wRIoUv4fKz/+X5Rn6M6BrG3XZcOgKVKcHcBU3UkDAHWiMtX95IZV+sGlKRmQ8wp7MuDTkxo0g7OSXvlMhl862NxYF1Udvm4MDep+uFYRn/X1iOcmjYI0y99lsOz5DjQA+RyD+fUAqKk5YbUdKGWbCiBCPQeqCGt0xEHTlLJGATBtmbgnZpgDUpzfHWpH2/ZcbpHFaUjhZhdNdNzMY1qoRrh5M0XAbADWQisTdfLgRDZCcatjdGOI8iJ3XVP+guTHcQ1GyqemcAkC+dKPPPFmrc7j0TGa3uXrLRLmjCFSyk7SqLbjy/n20Ih19xEBtTyPtrKeG0/yGuDDaRQrX9fHCDzZctvBUzh2394iNW/havCSVJ/FQpVDU9ThmKZeIAMCohzPCliW4JSonKrQ432P58BELTdrre5P4bmzNNZytW4XPM34DlwcOF8PgGJyCknOg+I8z2CdxhotSNPuOlGAyhpVu+VfBjlFx0VJdYKsvj/BHLCgactxBiMLFAyQ4ocwyuML1V4DvFQdJ/hT65ER1NTWP4eaJxryUHtrT2OFivKdvAjbHAhy3Zl7TXrTSq6+mf9gExqKQwSYfHseOE3qzFx9bRqFbffG+dIoOom8ZsLIgZz5A8iDKcaFQ4JYiQAYi4T8/FYVNlqjqqUCVfi4TPnXWCAAIw+rbPZAZKxMaQCq6jptsjqp/kLl6QGTGu/wIM1FEJX57MqaZ1FtMuVbc1kGXNlUgbBYJXmvjmTADra2o79hp9oTy6Maj+e9uY/mE65TzWt5T7EcbAkOj3jOfVCnHWAKlDefPB/Q9QEoTUXZmWDyHmAC1IZDbiEUiKrITNryweW5Ri0XARUtY9Ss+nYNEz6rAWjSY+wBJ1M+Ak9NP649CtJMxx06AURNDY9OKTVpyYEold+zGnERPWYPuEZASufrIY1oBUfPQJMp0wNOKm/ocgs3yWh37NQfje1WiQjpPlgjVoQiSwWkaIBEClA1itS+OWywuASd58I60FhAl8S51P7MgZsGVOl91AEu9b+rSB1FyuksJXoMyq0CpwXQFB6i6TfFxRPIpb5uTMlCIwc9GVBWqVT4QjzGVNpXQErHSPFblKIXU5k7nxpd0lg8GkANGEBl/q/M3fF/+nFfB3j6Lj/F86htU161M+O7SqtzOEFxFboKAKW9ZGeRBldNngJRHmgxiDL3rpxr3sQ7KRdfzjtnDnYCjVUqKLcZPPn8sIMxdT/4fAGK2BgBrRB86c3EgyjdQdSvZqOqb9L8AB0wM0MZrGV3+TpgyNRZBU8ufcUNOLQ+9bD0rQMnTY2lITUKN6lDM0ktjg4MzvcQ945RouBriBxKYLALNNZWLiPmQZpc83NRFHN0OjYQPDfNWqg5h0CqDqJRlB0F2ChRvj62aV1lfKSpAjX3K3Ftq3RU/C5yQOoTGKEMBO49IwOodeUU8oNNk7bAPGaAHgApnia3GwE8YMx7N7gQOJX7+Hpy+KniuU4z7TwRYNZ0FQAqpFCLRmkWCNVdhysUUmCovmRgyzUB5qTqoYJ6vVtoF5+xUA3NKi2FxxmYmwAwuULLwInL9AAVubI+7ykpAkiKf8biFIGo8j/cIzwYUgDNA4ZmkwnWZTPG9Eue4ryRiX0Kkrrp7lnxZSJgFY7jqQXkAYkQuPAI3p1i4og5y3ynTP1v/P9wJ0rXOKkw2FwHGWuLklipVB8RHxMDMX3PXawJcHjic6PI0AVNOt2cHRV8B82DJrl2b3PJuCLFqYKVa56a0DkASj+nPA69jI3bThWgjnvPu3eVThIZ0GVN2zbPVE3tvmBkYWW6gS4KeV/m18qBBTmr7tkGLHcAU8PzUr87h410vQBqRB5IeRA1qjPyGbFyZWtU1Bf3B0g7kTLe+ikXP4ywP2wHT93GTxEaEcoAcD0EzYBQNETP3gGIMukdiuKrOB0IgJQqszS/Tp+9cpvAU68/X37Q9s275bZS/LDXa20RSiqPLRPFBcdWCWOR4G3sSDWORQeJq7450Di0RihZzdUKuEBqhk/SHsI+Nq0JRspTl+9bH2TcketG97ECnuCuR8DJz3XrnqaBK2DlADUN5YPPPRmQZooMZLVGCmRxd6qOlgEiK0tqeNHLC25bM1NZooj3Jd2vbchnD56kLRoDZsBaGmHbMvczwOzyttB1ASivzfTiwH1ceAaWSi1JMIqzIHolUL5yaHoPgJv+dZE3ozPRROPC8/k6z3du66+57FILhHrWp3C8cZnNy+CBTbkcgaUWHOUb+RXH4xqBKNW8mbVeZ5XRYOneuPjS78uz3WkB1PhyIXCagCpveepZqCI6U8KfNY2CjonPOOGySV0U6wLu830CqY8Al3u5Rvkieamv3sIidb5TNzaGSp9+n9QWrJFVCp37Hp2oRKs1IlCinD5SokdvxaL22inPBjBFCljTyplQzBNuWsuB7DmnyYDESOm4t7KXRTKQx+P4zCIje19HDmQh5lOuk1XVDO8Xv1PHPHf8O4Xn0u4qUG501vad7boAFFMHHJk38po6Diw1eX61ah0BUipNlxfXnob0Tana16Llu6Eu/2agqfTbtBMBpxVQ1el7Lf3Eyc9oBIJ6IKpTjpuTeXggpeVvAoBms926HFsAVuji88BplOefpW65tm9PL8JSRWiCyC24LnmHKlCiTBcUqbzNlZQSBUAqRkoHCK8oUdMOqmxHhzw2SnSLPokUaQ80lfJT4CT3tb1TgFMPNNk4qEDZrlKRibq30FgGcqF1GXBASsc2eRkID2V1PLZ7YwV6dQG2bloRUFH3PdDE1yfEta0AJw2+hkD5xINTgWsFUDPyinFrPuI8CRwHlJTVsuH5TuqB0O2cTV5xj6xCI/A0aDPMm7j+HjJ4fPOm3W1nDKK6fXqQNQBSTA2gOmH8y0sagafZL8dLgZ+XAJCmRM3DnYKFsWc/FeXqBKm6UcqmcwTSwbp1eoHGkUsnK+fIhWfb4Sp6mxOFo+ayVYyjGKKpMuXr6BV1Hr9SgtpdV/OprXuMxhCUA9rgYzeHZdLB11AyACDJaeEKqJIOFA9kAJaf4trFugw07l2RLVuNhwRYeVieuuG9SzsDPAkN4pymPI/GcIsHaVYfPEsL7KZd7sUK1QNJvr4szkgT6o1DCb7RWDArTabTnL81cDyibuxUBzDlOkFeINRh/qBdX2Ya+0T84HfyO9SNWyqXfWtTPNyuJSooizZrvUwwv4vhSz9e324AjEZWJ5Pv3XZB+a7rb9D+iyBtgTqgVTbm7CedXkEVWySSWkO2RqSEGnCu15hdMcey8+jDFTnQPMFao7iuCjI2b9wBln8moGS+FGbaG5UogNNcNxEAY+vDwPLglWfs0nG83PJ21sHWTWLxSerIChJ3n7FK5V/nrQwAhfeobc1kAGhfNuB2dLA5tycDrv+27mEx7wNe+/wJv2u6rbMZKIfnQQ34voGuBkB1KVB+0zIaRKGT16uvzA8qHrCtG7QdgZ9TTiI342rSFNgbgZ+ojVksVFRvRbZOlT9BzZelrjsPaEE3Ic5318ZVE8rVBQYeLEUXOI3KrbQTtTkBTzs58gpWAyoTB6NOnD6StUikXMdYI0rAubZGlMyq4IpbT1tLLeBXFofON9ZyuZLn5H7zb0GNvSYK1SvTsH7PfcNtefC00rdRyjweVSEATCtxMaSPspBzoMjIgPBXrEhAPd6glhEL0DHVYPPGqhjIALkT6cseJ8HqsHKQ+6M6/ovxnpr04WdX4HD7BDwJDQBzZGmaAuYTjzJ4OgDFSmwLQBKhcFaosE4AdgAlfT5D5UOVUUAqZ/sOx9JGJqJ5U9VQ6zXPczcmalJmBXwpalx3WwBW09hCvVJGWKxlpQd6onYViOLbCCTZWJYBdTDfJbBGlw0DcNQFTh4MAbJgM0vVsP/VOjdIiYB0jLRsWYj7/C8rrCJgDKrE8pOMEhVrhFaiXPeY8llCLLMpAx+JY1KWCI6LMVsdx9IwWAqAFPcfuatXftu0ri/Xv0o71woxctfNlOgMNKWeYl0gqZvSXAYUkGKLlHbvioyAanzUkgwUZy3XN/qyyEEPSJV8Xrs6/sV5M2ne93ht0jDkt67XtTrNeI5SpgOW2jls4/11W6AigNQDUVohStnOzzMuN8o3BSHlGov9ihaRsW3YmdDh5Sy26VzgFJRrXHcRPUYUcQCiAAeK3FDFElXGOAoi5/tlMGWrnU8rAAoD0OTuTwFPvcDxp2b91RC78Mw36pQCRatQRZkWRSruHWLgQ9W1t0WJcvccZM6KUAeZ83g0kLpH5as+2dwpzy2WiN5Jz6Ei5fueIgWMy24U89J1142A01G3OQBOq1YJbXUCClgmA6yrDJRxpQR278mktQx0LJJTGSh1qgxVag7MVHIgS6BB1SKZD2wbvWH5sgScSrnNwGkRNC3xfQNdJ4CK3GzD8ljXdFGdkWvOl2NihaQFZjaGxwJOvvxqe6u0Vd62lI+sSGfQVJTcLy/ffxifBbRjjID+jGYsGAGnSXkf79TUXwFPO/Vp5r5DuS/KVNw8yhoBwHixjbvGu2S4LpCVBmpwOBKyAjn4fosYploHqAAJQA00VvucVp4zS8RmK4Qv468DK4TMOVCm4XjMG1tKYa4qUX+yfKcvWRtdvhsX52SA+3TrKzLQsUhq4F7LFhbrIHMlQ4CVA7ZKedcdYMGQ+ZC1oxSBywl48jzZ5K6TdoEGPOk81b6uu5Xnq3QdAEqYGigJfrANkOHywYeGPQACXKM9zebA0VQBthuL8OPUYPKRhgxB0KB+D1wtxUrVy6H1KUjbPPUoTknych8GHweyMLQqmXylGBT/oiBzTeGUVoHZiRSyaZIWWZzivEHdqNxsDC+FiGIXHmAW2Ky1tjiUTGONYPeZ3jsaaxSaAGPSDjv+HhqfHdV73V0pT7FAsSUCsPKw0RLxZFYIk98HTo0C1W36eUZz7oAinxa78AjGKnVf+LFqkdTWKC0DqcpAY40Cmm8sGjkA3Eer1VQZ3N9jiULro5EBTut8sy4ATrMXA4ZWxgg0zdy2XG4jXQeAishbhbaAKH+91J+uKz/Fah5ce3qtG9B3IS2zCFqa/i4Nnmb9X5o8EO6BqA31AStSGq17dodWKX3Ptw5zn0tLMVCdtB54msVIDfvl/OUxPYZwPDFFm6w/QJOLRlYnUhEvx2Tf3hKLRg40N7ExzhqVDtr64AKNg1OsRdzdXqqDjLW8hxaG6dqoqXilqoET0AdPgTLlORsF3LjbXN7IXRcpWZ8/owg8DWXAlk8o/AcEYOXx6P0osEaZPSeQAW47ofnGopEDwMqCGvTmAyV98RGvgf63Cj14knlCwLIfn31pwPH1FLC8ce5PC6ACkBNaoaZ1NoCo/msrwb3TkNHazpT5udRrewSa/P2qZSsCT10w1rYfvQGzhWbuthATdwGSGoOSBxs3pSoCfSDV7dz2fREatTMCTUAfOPm6PfCUgvzVsb0UCg/dK2kHu0DW4pDmShSACTI25wexzYmVQaofq5Uc9ykQoJ4ZpNt2ozdBxNLfdurFQWWLAV+PlemWeKfG8tQDSCtuPGOhGChYM+HgF3VHBjyfAbUtMZBm1yvsiwYNkAbZuCiVU6+57SoHxippR11vTmG90Rs6veW13HswFPC7lqWY39zHAnCau/BOU+LXa4ECrEYMwVBNS6IEFdCJlKhum2krmGoG8YC0YjXqpZ0DnIZjWuwjGpN0NMjz+VHZCCQ3AMmNYQakJLud06NhhxHLFqw+JwGnTr9d8DRq55aJCBi+hUf2XinTBIRAyipYqu6eSImSsyjo4w4wP8W8OX2cYv55QLW2NvH1RawQGjyZ/AXgNLNElbGYe3/dnbOeqJIBcdEq/kdASgATrGwQIR0yeg6BdNnbspXJygCAxhrF7eRyFUjlcamx4zRtNgRNQN89668X+C3tRMAJWOP5CCA/KwvUqeSV48rDPirnTR++bA+EcV2mS7kwzo2FOqWNWbktU3tATLnKbkMhIC7tEPHMCAAAFo1JREFUeasT37j161rHIlB/yvgGtAKcwnKngKcNizuKubpZipQmp7ng8exKgymfiELXTdSPd9notrV7DoBxxelg9ERog4v1kFjUt+x5vkwnrSsSwa9965axCs63k7wSjNoKYl7sODvgaSuIAuDP/DL8B8qBlwUAc9McEO5lx/UtQFp9GqYaDSYywEHiSfFZu3eT6it483KkQkLeRusVgKeQIvAkfenrTj/c/xRUBfyN2lvk/fUAKC8YwtyOFapzHVqigFiJmv4fQROu0qjrXt5my5HNMpanEXAyefoX1rz7Lrl4pK4bLhCDmatOxuaVg7tvywcAZYW/PaDVoSULTqfBFSvSKcCp6W0rwLpVqxQB6f6olF1dKeJjBACrRL1FwliHlMWhvNZeLVGlKaT6qjufGVQsRJE7Z2aFSIAJLpY+1HS679y0025o2YWj2jkleDhy4QytEJESjdw9ANJmF14u08iAeUuPxhZJlgF+ycC4+ooM3HFvddMTGXDHXfgAc+kTClAD5s3NCFybuQ7WIrI4SbrmLdDyuvRvearLnGFp1DzvWSDheL6BrgdAjWgVRKHeNx8eninRqE8mH0wu6b7OoL1z6BzQFNVfBU+jdh7Ld7MKohCXAxwoC/J9/a5R0QOZzhpcZGlWQZOUH98vga2VdncKFUn39W9vkdCvoQPVGnWX201AG3jsg8v1MQSEaoWIvqXWsUKIWy+p+TgrxOpvykZUT3Dj8HinwcMe3Lg6w5gYHkdHkabIlRfdd6geUNkBG/oIAwDGIumPJ9BpzqIlLt3I4FD6sFbIVg6AKgsAxCol6Z4imfdJ4cnfvp06x7DtEb85P+JtN+Yt4LXnd2d+K3S1AGoaTM40AEbGGsV5UOX9fbePDjRfWfNp2wttjMaypd0RcPL5E9Bl21kb0irNgsmlHNzydqxR3Cag2o1+TQe/vMe/yh4KMathrAKmTlrs/uvXoV45d/+iYp+EqMZARS6XzknPhpwSFcCkfw1zGreLaiUiKOXorRDehQdAf9KlceUAMZAq89sk3t7NIvNtgROPke+nhyVy+VXL08wKofJCJdpT7tGcAxdsKlbHLv+BBkj5N/UEXLObl6xLd+W8KC8HAKoVXcsCEAKpZYqAExDyWu57lifoMvGblb3jCUJLYwCWQ6Ac8XkBVF0XgHIacejKgyo7uddAYera0+ndcW7RHhMmPOSRB0H60tEE03v7C3hpHOfQCBi55CE4dqC8ce2pcr30JwEOoz5PAU3BfcO2LeBJC8GtAytRFm7F5CTw+j+J+w7ZKuEPXlRnLRHf8Nt4QZque+rbWYB7JByQAgIwtUBTa4QWkQF42urGid6yC60QPeDUUcah5cNM2G00mv9cRLlvyb2dp4F0Oma3sD/WwoAoSasxURogMafzVSwHbI2Se7SPK53gyuq9fR0CJ2DoopVy5/Kbr8tfyG/9HzjpTbzBWaNPRKM5bHl1f9bWrMylgACl8d9F+uikPTB4uijN3iab0BQARHW2WHc4PQ3yL0mzvjp5p4CnafmdMvGG7n/pAuNgZKkf1PO/qhXFaf3hdQNsvQKL2nCAZ4sVYsmVI/cd8DSiSLFFdXxa5ALy+fp/1J/nl0/X1g4N1HrWrJ7CJmpcmP00zJX9QA4AJwsmfdyspkZOBuBJaMLrrtvOU/TcjNY6as/zTteLntWAnt4CRRhu2I0rL3pjDqqN3n1J8yCisUipskMQ9dhKZibYnfzlwzBXwKdra2p9ajbPoE1foIdqFvjrs6au2k53XcuU7uixQNRoGFsA4KIYbI6lelFEwH05nvnA75YzOkltwDhbJFJq3XpUhC+l1hK1aIXwr7dLnrNAWBceqTqxNSrPb6Mr5xQ3DjAPGNftTdw4rSuvBTPJu3W0Eu0Cqo7W1zIQWRdVunHrKbkIXbobLFFdGWArYmSJKo2KLOhPumDj1tbs8S1w6vIa5V7LxOxAVOHtCZZGz29O1/819fiu6OkB1AKFIIozJA1uN+DK47TGvefLSkF3PwUDk3xPWzarSfnuWU4rwKmbNgFPD0DxEQNoQLEfb4NvIjANxLKBZqrtXFd5e2EAPgUvlwROvbSmzCMIwjWRbMBucz04Y/4RFUQpkm/P6dgZDi73xxzowHIXVLz8evsRjRvHzsfV43xvBTi48XZoCJ7g7n3AuKqXvKLTpOJnWJnWugo88X3538Q7dcrlPo62bES6zIz/HMd0RHXn6XVwZ0ZNA8tR+OXdeZ6XVOVA4qIUoJa2tTxG050YFHqHqPp4Jx6b3DvwVNuwMhIFjJuygdVqE1iOwNLE+gRcC4CKwE+gxKYKJKi3CqRyHx0wpet46o3pUnploZ3h4Ze9+icCp9zfhn5GNLPyrdZbsUb5m0UwBfTlbm5Rm+QPaO14g+1554CnYezTSyACiJWAz+MN+HAQZdlTooADVk3AOFsFyAEttGdH+TfzdB1fv8whtD64HysNrycuo5PiYMoYI4Xa9OnBUgTKvEVC1Q2V6UiRqvrUUaRmiTT/Ja3892/eHamCaAE4VMtpa1bzJmaURhZIF/C8BKLKRDQACj8g3WF/42b2fO6Ryu+e86Qti5q3nbSu+3QEngJ+59u1ve06AFREHRAFqId7dtTATGEOQNHKidxd99+Fael0cGA8li1AClgHTr02Tl2XACl3LVG+n4DfXZwULWkHWPfKPbg7a7X9E/DzMLbKt/HQ83xOVJS6vPGkrAkppeziSykrUiqyrNx0AOQsKfOWFivbu2KpAIzbpop7BV/hm3lFYW5x43gXTk4/YW1cnRXwVOs65Th7447To9OmnZJMgWuncfccj3JNuh0zPxXBDycDPf57N10JGDeWSGOJKl3AARmWiSYtqaMpFCCO3HkORAFogJSs/xaKADPPp4wz56n7RibcgakRv0ub1pXnQNI5/C7j2ELXF0Su6VxwQoM2ZmBjoe9Eqfk7l05qczbeC4CnzW2fQ5siGbelD5cqDdqLyum/c2lrm5Ny03luSQ/LPsIvh6sjykqU/wATgGo3YucC0kq9aTYGEiGFwdNxnSmLvBJz6ZuoB5469zXdtrGsvJsxB+AJaA9IjHgxAk+e3zpN6ru6kWWjp5i9FUWRP1S0n+bqNO2ovoB+IPclH+l5+JAq6+Q/4q22PkY0erYifku24k/EcxpP5HosUIS+VWBmiWpuYKXKr21kvfC01b0k6P0C2vQCG9jmMoNxb7I8rY5FGu+UX7VEcRtR335KA5Ewxbew0P16O5tOaGe63KM2R9arLtDq9HjrlioCcH9UVqcSUJ5SOQn6kK0Sh5StEcdj69LRlii2QgB9K4QLHm7ODPKHbOrNTX/yBYA5H0jcfDAuHJMufQ7Ww1EvFkZoEkgsczF51AYNl7ZsbEwHiHqLRWCJIGPNCNw6UUxYxH/Fu+bMsID/AEB3sRUKzto0StPxUDkPhm8jdx7Q4TvQ8r736EeWpzLGBsBp4K7PCRvxVvfjeanaNtanc/gNLFmjrgdAAZtAFNABUlIncO/p9kxDnT4j2rCZPAht6WcJVJ0AnLaO41TqBL51gRQwBsc9oDWoElVdy7g8bVryFQtWr58h4Hqh4ImJjqIsheRS/HCg4nIRJXpXvsNxJHHTAahBxazYHNmzfhz4AWDcOM1YgzZ9HAxg9temfc6f0MiKNTyuoLGudECQpyiQmP+PlKku21OmISBzHWoZ0Pw/FvfeoSypjnOistB6XmGsGwWu3DrPKC08rZ6AilYCAdFg3QMpmXdbzdMIPK3UmbrufFrH+ti47jTAUhbBaikcWAknliem6wJQwBhEIc4bAimfESmAFUDVK9ujrQrlEoDkTMDEtGr6P3kMTYeDeoO3B5aAVG9MW0DzOKvb3FY6SwRWXY+zMZwCnl4MUQ3Y1fEwksa/7vM9UYmLAawFoQOWTLpRigiCxyHfRqtp7adeQjoFRG2hEXjy1idXvm2LumBpFDje/bZZBJ4k7+iAVuumE9IycDyolwWOFlwTVUukkg07nhVQhYDfQdqAjBWK+/FWsQ28j+KThLoutUGDUZ0OWJJrDZ5G5eTSgaXmfsDzgJ4EQE3fqOuBKM6Thtp2m+KNCXLQ8ZZPtIxoBAhGdEn9tOhKXNaJ54CqlX5mIEr66Vukun2tAuIzQO9FocW5aGyx/tqbfis/Qdf6e/ZEZQO+V4pa/3pLh6KMlJWK87U7r+fKi97e8y4bPupABx/rN66grFZFWZoTqp1yHIGoZvrqUzGjNdJty3xNn2o+viznO/eNB0ut8lYK0VujvCtnZHk6EnR8W/dtrHsFjg+K34r/VKyOYomM+C9v5fVBVQLitzK5bO9TL/oNS5Gd4LkPQNRmCsDTsutOl/FzK213XbWm/TG/pa62PPF9FMe4QNdngWIagagNZabWKdPexFK1ShfVpqt9btNiFwNOl6RTgaej1W/pSZ9ScWNH1wQcNoxlWVRevMUpoOh1dZNPcqYTAGuF2tQPWTcOM3ikRFdIrGSIXyEa7KnzV9MX+n4IOuETHIa85SlqMzgniIoMJAG8xSTkLJErlI6UY6GmY3WgitME3MKeDTWSi8bKuTTUlhbddsNxqLY2AbgNZa21kcZys3CIJnDNAAqoD+QWl1r34Z90tcVS9QzoEq8hX7z8Cs1A1JKZcc6+qdvvVDplTR5I1E4S4Uu8AXnLxJtwOZGcyivrWYnWGChx5/h4KOPK0Q1P3DgLCm4WSNxQ5MpbqRdRZHniPoChVaL7Knup33UVOSsV3zdnPgWvtYv1Sb9N6S1PnTOC6jhyPjH/9QQPyGtYznwS/t/dKSujastZFD348rFwm2hkhfIyxmNfpQ7O6IZKjgBPBMQWYt3MvbEqVuuTiXvqWRq1pWqRrhtAMek5rVilIjpFoc66eiQF8iCGgHPafGjDhDzcq+W9SXfOmFXebV77R5CJi8ndqYL1EoET8i9Yur+3FqXDATgeWyXKyo83c21dCCxGjRsnIo55oQ2BxCqveRNL938qiHrMfYSBRy9vJc1bFgJXoFGm7pX3hvelTTocch6pGChSgFr3t2otZCuk3GN6OrmpO5CnLogK+onHFqSNeBBkNcHjs/Y64CaMd+u5eIO0Eb9n9GQAaulk8YhWrFKjemYQJ/Svqz80kLgUXWKcTzHXrUBK6m0HVD165oZIS5cQ2FtajxNJTiPXAIWtC0ziynv88Rk6xZp0ibpAH+yEZZ01oRnLmjId9zEYkIqDCd11ROY/ACR3TAWVOKTc1sGCHz3mnhs2ctNqq9QlaBXAnePS20KrfPTWppWyvc+zRO5Z1eaWOKgntUCdDKKANaV6qrXqpdEDrsNFQGaPj6daqB6CzkVa14TGn1rpXy1R/ZhwOfNJlupwqMDKWyHSwbrx2I3jFKaJg+F8r0Aja8HKm1g9xeleZe++xh7JRGhVWJDj1TKrAEwDE58WHGAauu90nlLATVmmcuaTgCh95tPB8YrdeP6FAF57jl9ajYMarUHPsngKGI5cegsWwN5H5oeu2k5bpl5A5mPBpW3fVnNsQbmODj6l+2NbdkBP7sI7C0TNaPacvhRF8US6+cExweKm/ih0TQBoC72UZ+ASRAAdCUm5Rk4OEgdaF83J49rgFjq5D5xuET7FWnRpikBWU6QDtPhe855UfJu3Po7IH64ajXN01AUfaQE8PM91nyPqrekJ1qWzAsi3WKnC5hz/r/UYA08X9Lhsoyt4rm+FrgY/7IBgp4ckOoKOByQdMM6klaN245AzE3kXzYIiPPtsJmlnvL8O+7mSZ9wGqZ85KHHbObfP0VkrihWKykGZ6eACvV0MWn6hgN/Im4zhXADcxEat6dBhHNSJdDE90A3cnwPhuD33skDPXVvKUWR1DOgqAJSnq1HGO+20006aiAAwiEolyb0fteH19bD9x7AsPEA/J50f5Gk1GLyTngKX3XnjUS6dwnukQ7ZGBUansyySl6AGyL2AX5QX4Le2Pgl4Wmj3uj8mvNNOO+20007XSudawHZ61pS2nrx5VmcpfQrAbwL4X4/W6cPS78Q+l2ujW5kHcBtz+b1E9LueehCXoH3/umra53J9dCvz6O5hjwqgACCl9JNE9MWP2ukD0T6X66NbmQdwW3O5FbolnuxzuU66lbncyjxGtLvwdtppp5122mmnnTbSDqB22mmnnXbaaaedNtJTAKjve4I+H4r2uVwf3co8gNuay63QLfFkn8t10q3M5Vbm0aVHj4Haaaeddtppp512eu60u/B22mmnnXbaaaedNtKjAqiU0lellP5rSunnU0rf+Zh9n0MppQ+mlH4ipfSzKaX/nFL69pL+2Smlf5dS+m/l//ueeqyrlFK6Syn9dErpX5f7L0gpfaTw5l+klN566jGuUErpvSmlD6eU/ktK6edSSn/sOfIlpfQdRbb+U0rpn6eUPvO58uRW6bnuX8Dt7WH7/nV99BL3sEcDUCmlOwD/CMCfAvAhAH8+pfShx+r/THoD4K8R0YcAfCmAv1zG/p0AfpyIvhDAj5f750LfDuDn1P3fA/A9RPT7AfwfAN/8JKPaTv8QwL8hoj8I4A8jz+lZ8SWl9H4A3wbgi4noDyF/9+Mb8Hx5cnP0zPcv4Pb2sH3/uiJ6qXvYY1qgvgTAzxPRLxDRawA/BOBrH7H/k4mIPklEP1Wufx1ZyN+PPP4fLMV+EMDXPc0It1FK6QMA/jSA7y/3CcCXA/hwKfIs5pJS+h0A/gSAHwAAInpNRJ/G8+TLKwDvTim9AvAeAJ/EM+TJDdOz3b+A29rD9v3raunF7WGPCaDeD+CX1P3HS9qzopTS5wP4IgAfAfC5RPTJkvXLAD73iYa1lf4BgL+B+p3tzwHwaSJ6U+6fC2++AMCnAPzTYs7//pTSZ+GZ8YWIPgHguwF8DHnT+VUAH8Xz5Mmt0k3sX8BN7GH7/nVl9FL3sD2IfAOllH4bgH8F4K8Q0a/pPMqvM179K40ppa8B8CtE9NGnHssF6BWAPwrge4noi5A/s2HM3c+BLyXG4WuRN9TfDeCzAHzVkw5qp5uk576H7fvXddJL3cMeE0B9AsAH1f0HStqzoJTSZyBvPP+MiH6kJP/PlNLnlfzPA/ArTzW+DfRlAP5MSum/I7shvhzZD//eYnoFng9vPg7g40T0kXL/YeQN6bnx5SsB/CIRfYqI3gHwI8h8eo48uVV61vsXcDN72L5/XSe9yD3sMQHUfwTwhSUq/y3kALMfe8T+T6biY/8BAD9HRH9fZf0YgG8s198I4Ecfe2xbiYj+FhF9gIg+H5kH/56I/gKAnwDw9aXYc5nLLwP4pZTSHyhJXwHgZ/H8+PIxAF+aUnpPkTWex7PjyQ3Ts92/gNvZw/b962rpRe5hj3qQZkrpq5H913cA/gkR/d1H6/wMSin9cQD/AcDPoPrd/zZyDMEPA/g9AP4HgD9LRP/7SQZ5AqWU/iSAv05EX5NS+n3Iv+g+G8BPA/iLRPRbTzm+FUop/RHkYNK3APwCgG9C/mHwrPiSUvo7AP4c8ttSPw3gW5DjBZ4dT26Vnuv+BdzmHrbvX9dFL3EP208i32mnnXbaaaeddtpIexD5TjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRvr/3qcIby5y71IAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGiCAYAAAA1J1M9AAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACX0ElEQVR4nO2de5gdVZnuv9p7d7oDJI0ESEATiHhBBUcFxQAeFTMno3hGB0YHRSd4Hw1oyBwdmBFUFAOO4yAO4MELeIFhhnHwLj4QlBmO3IRBxQsyCMKoCXiYkJCQTveudf4I2f2tb+319lrVe3d3pd/f8/Cwq9eqVbWrvqralXrftwrnnBNCCCGEEEIIqTGN6V4BQgghhBBCCJksvLEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9vLEhZAZTFIV88IMfzJ7v+9//vhRFId///vd7vk6EEEJCqp6v+8lJJ50kBx544JQs69JLL5WiKOS+++7LnveDH/ygFEWR1Hcmbmcyc+CNDdll2HlS3fnf0NCQPO1pT5OTTz5ZNmzYkDXWhRdeKJdeeml/VtTw7W9/mydpQgiZgdjriv3vpptumpL12Lp1q3zwgx+c1n+sOumkk6Lb4eqrr5629SJE05ruFSCk15x11lmydOlS2bZtm9xwww1y0UUXybe//W258847Zbfddksa48ILL5S9995bTjrppP6urOy4sbngggu63tw89thj0mrxMCWEkOlk53XF8pSnPGVKlr9161b50Ic+JCIiL3nJS5Ln+8xnPiNlWfZsPQYHB+Wzn/1s8Pc/+IM/kD/8wz+UE044QQYHB3u2PEJy4S8mssvx8pe/XA4//HAREXnrW98qCxYskE984hPyta99TV73utdN89rlMTQ0NN2rQAghsx59XakDW7Zskd13310GBgZ6Om6r1ZI3vOEN0fZms9nT5RGSC6VoZJfnmGOOERGRe++9V8bGxuTDH/6wHHTQQTI4OCgHHnig/PVf/7WMjIx0+h944IHy05/+VK6//vrOY3b9L2QbN26U1atXy+LFi2VwcFCe8pSnyLnnnuv9q9h9990nRVHIxz/+cbn44os7y3v+858vt956a6ffSSedJBdccIGIiPdYfydWS/zrX/9a3vWud8nTn/50mTt3rixYsEBe85rXVNI0E0II6S+/+c1v5M1vfrMsXLhQBgcH5VnPepZ8/vOfD/pt27ZNPvjBD8rTnvY0GRoakv3220+OO+44ueeee+S+++6TffbZR0REPvShD3WuEzuvDSeddJLssccecs8998grXvEKmTdvnpx44omdNuuxKctSPvnJT8qhhx4qQ0NDss8++8gf/dEfyQ9/+MNJfdeYx+Y73/mOvOhFL5Ldd99d5s2bJ8cee6z89Kc/nXC8kZEROfXUU2WfffaRefPmyR//8R/Lf/3Xf01qHcmuD5/YkF2ee+65R0REFixYIG9961vlC1/4gvzpn/6p/OVf/qXcfPPNsnbtWvn5z38uV111lYiInHfeeXLKKafIHnvsIX/zN38jIiILFy4UkR1ygBe/+MXym9/8Rt7xjnfIkiVL5Ac/+IGcfvrp8rvf/U7OO+88b9mXX365bN68Wd7xjndIURTysY99TI477jj51a9+JQMDA/KOd7xDfvvb38o111wjX/rSlyb8Lrfeeqv84Ac/kBNOOEGe9KQnyX333ScXXXSRvOQlL5Gf/exnyVI7Qggh6TzyyCPy+9//3vtbURSyYMGC6DwbNmyQF77whVIUhZx88smyzz77yHe+8x15y1veIps2bZLVq1eLiEi73ZZXvvKVsm7dOjnhhBPkPe95j2zevFmuueYaufPOO2X58uVy0UUXyTvf+U75kz/5EznuuONEROTZz352Z1ljY2OyYsUKOfroo+XjH/84vBa85S1vkUsvvVRe/vKXy1vf+lYZGxuTf//3f5ebbrop6amU3Q4DAwMyPDzcte+XvvQlWblypaxYsULOPfdc2bp1q1x00UVy9NFHy3/8x3/AYIO3vvWt8uUvf1le//rXy5FHHinXXXedHHvssROuH5nlOEJ2ES655BInIu7aa691Dz30kHvggQfcFVdc4RYsWODmzp3rvv/97zsRcW9961u9+f73//7fTkTcdddd1/nbs571LPfiF784WMaHP/xht/vuu7tf/vKX3t9PO+0012w23f333++cc+7ee+91IuIWLFjgHn744U6/r33ta05E3De+8Y3O31atWuVih6KIuA984AOd6a1btwZ9brzxRici7otf/GLnb9/73veciLjvfe97XcclhBAyMTuvK93+Gxwc9Pra8/Vb3vIWt99++7nf//73Xr8TTjjBDQ8Pd87nn//8552IuE984hPB8suydM4599BDDwXj72TlypVORNxpp53Wte2AAw7oTF933XVORNy73/3u6LJi7FyO/W/ntXLntrr33nudc85t3rzZ7bnnnu5tb3ubN8769evd8PCw9/cPfOAD3nXwjjvucCLi3vWud3nzvv71r49uB0Kcc45PbMgux/Lly73pAw44QC677DL5wQ9+ICIia9as8dr/8i//Uj7+8Y/Lt771LXnpS18Kx77yyivlRS96kTzhCU/w/tVq+fLlcs4558i//du/dSQAIiJ/9md/Jk94whM60y960YtERORXv/pVpe82d+7czufR0VHZtGmTPOUpT5E999xTbr/9dnnjG99YaVxCCCFxLrjgAnna057m/Q35SZxz8pWvfEVe+9rXinPOu16sWLFCrrjiCrn99tvlqKOOkq985Suy9957yymnnBKMkxqBLCLyzne+c8I+X/nKV6QoCvnABz5QaVlDQ0PyjW98w/ubvsZprrnmGtm4caO87nWv875/s9mUI444Qr73ve9Fl/Ptb39bRETe/e53e39fvXq1XH755ROuJ5m98MaG7HLsvAC1Wi1ZuHChPP3pT5dGoyFXXXWVNBqNIMVm0aJFsueee8qvf/3rCce+++675cc//nFH72x58MEHveklS5Z40zsvAP/93/+d85U6PPbYY7J27Vq55JJL5De/+Y045zptjzzySKUxCSGEYF7wghdkhQc89NBDsnHjRrn44ovl4osv7tpn5/Xinnvukac//emTSsBstVrypCc9acJ+99xzj+y///6y1157VVpOs9kM/vEwxt133y0i4z5Xy/z586Pz/vrXv5ZGoyEHHXSQ9/enP/3piWtKZiu8sSG7HBNdgHL+BcxSlqX84R/+obzvfe/r2p76L3r6hiSHU045RS655BJZvXq1LFu2TIaHh6UoCjnhhBN6GulJCCGkOjvPx294wxtk5cqVXftoj8xkGRwclEZjZuVB7dwGX/rSl2TRokVBO19lQPoBq4rMGg444AApy1LuvvtuecYzntH5+4YNG2Tjxo1ywAEHdP4Wu/k56KCD5NFHH03+F6sUcm60/uVf/kVWrlwpf/d3f9f527Zt22Tjxo09Wx9CCCGTY2eSV7vdnvB6cdBBB8nNN98so6Oj0XjmyfyDnF3Wd7/7XXn44YcrP7XJWZaIyL777pt9zdx5vd75NGsnd911V0/Xkex6zKzbe0L6yCte8QoRkSC57BOf+ISIiJe2svvuu3e9WXjta18rN954o3z3u98N2jZu3ChjY2PZ67X77rt35p+IZrMZPO351Kc+Je12O3u5hBBC+kOz2ZTjjz9evvKVr8idd94ZtD/00EOdz8cff7z8/ve/l3/4h38I+u083+9MOZvsP2Idf/zx4pzrvOyz27J6xYoVK2T+/Pny0Y9+VEZHR4N2vQ0sL3/5y0VE5Pzzz/f+bq/fhFj4xIbMGv7gD/5AVq5cKRdffLFs3LhRXvziF8stt9wiX/jCF+TVr361Fxxw2GGHyUUXXSQf+chH5ClPeYrsu+++cswxx8h73/te+frXvy6vfOUr5aSTTpLDDjtMtmzZIj/5yU/kX/7lX+S+++6TvffeO2u9DjvsMBHZYZJcsWKFNJtNOeGEE7r2feUrXylf+tKXZHh4WJ75zGfKjTfeKNdeey2MHCWEEDI5vvOd78gvfvGL4O9HHnmkPPnJT+46zznnnCPf+9735IgjjpC3ve1t8sxnPlMefvhhuf322+Xaa6+Vhx9+WERE/vzP/1y++MUvypo1a+SWW26RF73oRbJlyxa59tpr5V3vepe86lWvkrlz58ozn/lM+ad/+id52tOeJnvttZcccsghcsghh2R9j5e+9KXyxje+Uc4//3y5++675Y/+6I+kLEv593//d3npS18qJ598cv7GiTB//ny56KKL5I1vfKM873nPkxNOOEH22Wcfuf/+++Vb3/qWHHXUUV1v5kREnvOc58jrXvc6ufDCC+WRRx6RI488UtatWyf/+Z//2bP1I7smvLEhs4rPfvaz8uQnP1kuvfRSueqqq2TRokVy+umnBwkxZ555pvz617+Wj33sY7J582Z58YtfLMccc4zstttucv3118tHP/pRufLKK+WLX/yizJ8/X572tKfJhz70oWiWP+K4446TU045Ra644gr58pe/LM656I3NJz/5SWk2m3LZZZfJtm3b5KijjpJrr71WVqxYUWl7EEIImZgzzzyz698vueSS6I3NwoUL5ZZbbpGzzjpL/vVf/1UuvPBCWbBggTzrWc+Sc889t9Ov2WzKt7/9bTn77LPl8ssvl6985SuyYMECOfroo+XQQw/t9PvsZz8rp5xyipx66qmyfft2+cAHPpB9Y7NznZ/97GfL5z73OXnve98rw8PDcvjhh8uRRx6ZPdZEvP71r5f9999fzjnnHPnbv/1bGRkZkSc+8Ynyohe9SN70pjfBeT//+c/LPvvsI5dddpl89atflWOOOUa+9a1vyeLFi3u+nmTXoXC9fvZICCGEEEIIIVMMPTaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9fbuxueCCC+TAAw+UoaEhOeKII+SWW27p16IIIYSQCeF1iRBCdm36Evf8T//0T/Lnf/7n8ulPf1qOOOIIOe+88+TKK6+Uu+66S/bdd184b1mW8tvf/lbmzZsnRVH0etUIIYQAnHOyefNm2X///aXR2HUe6k/muiTCaxMhhEwXWdcl1wde8IIXuFWrVnWm2+2223///d3atWsnnPeBBx5wIsL/+B//43/8bxr/e+CBB/pxeZg2JnNdco7XJv7H//gf/5vu/1KuSy3pMdu3b5fbbrtNTj/99M7fGo2GLF++XG688cag/8jIiIyMjHSm3eMPkBaf+X5pDA31evUIIYQAym3b5IGzPiLz5s2b7lXpGbnXJZH4teloeYW0ZODxQZqd9mLAv5wWrXibNFuqn2lT80nT/Mtkc7zNqc9BX/Mvmq41Pu3sv3aqYZx5EuXs8nWz7dtQ0+AfVO0yqlIgsUmpF+j3K0o1bYYo2qU/redtm76l6ts2y2irznZM3Vb6bTLW7v5ZRJwepz3mt42p6dFR09bu3k/Eq18RkaKpa9a06ToNalbXs6lLXW+mzatFUM9hzRagzZ/06q0BatbWM6j1nmDr0sXbdJ3auvfqWURETRdt21Ymtdna82vdHAjt+HxevdmaHR1T/drRNil3tI3JqNwg3066LvX8xub3v/+9tNttWbhwoff3hQsXyi9+8Yug/9q1a+VDH/pQ8PfG0BBvbAghZJrYleRWudclkfi1qSUD0ioev7Ep1A/BwtzYqGnbJg3V1oi32RsU/UM068Ym+UfiLL+xKcp4X9PZ72vavLsge7MUb5OGamuYH4JO9S3N/i3UdPADXf2AtNu+MDcvifUsoGbDetZ1aW5smv24sUF1uQve2NgbFFWXRVDgaW3izI2NxNtE16WtWb1vQM3qGt0xrffL4/0eX92U61LPb2xyOf3002XNmjWd6U2bNsnixYuj/d1MvtbO5HXbFQDXsemmmMHrNpO3G4nAc8m0E702NZqdH4Tev3DbC66+qBfglz6i4g+qXt084GXk9E3sbLuBc5ceE97kTAfg++of0+Y+KnkMiP2hr2oveDoYzBv/oW9vCqaVIu0m2jIVx0VV9PHUq98T9vsmf/t+bCd7DlR1Gpw79ZPpzocy+HeAGD2/sdl7772l2WzKhg0bvL9v2LBBFi1aFPQfHByUwcHBXq8GIYQQIiL51yURXpsIIaSO9DzyZs6cOXLYYYfJunXrOn8ry1LWrVsny5Yt6/XiCCGEEAivS4QQMjvoixRtzZo1snLlSjn88MPlBS94gZx33nmyZcsWedOb3lRpvL7Iz3ox5jQ/1ZxJsrwpkWJlyBQqU3HMfjxG7s/363/RzGhZXkWm5Fgr4tr/9DF6sia7JL26LhUDrY7fwJNQNK1fIa7tF+CJQFgPjFlg8jiV6YtEJbGtV+cV/R2shM1uX93csL6HxJVD2yzwvIC+wCtSaD+KCSTw2syJDMongaTNrif0PVSt2Ypysyk5DjQ566Z3jV1PXYvBd4hfG+y1yd8XgYksPp9dVz2KJ5/MqWddT9ajptbFnjv1xOPLLpwTGZEk+nJj82d/9mfy0EMPyZlnninr16+X5zznOXL11VcHxk1CCCFkKuB1iRBCdn36Fh5w8skny8knn9yv4QkhhJAseF0ihJBdm13ntdKEEEIIIYSQWcu0xz33lKrSyorz9Ux3vwuYEia1LSrOXHmRaHNDoWnVBWaQuoyq22wm+3+qLn8qrAVVawYQ7MLUfYpWpg/rSXyKVnP8nR6JkaWBJwG8c8brm+PP0Nh/skR+BegFii8CLRPG6vbhOu1MY6H1/NYT4HkZgoGqYbcpOpaTfTT+oDrS2pn3wXgvZWzGX4JZ2BeC2lXT89pa0NP2nTOoZlPbMuKks2KbEz0+wS6r6vGB66I+J0YXW8IIZ1C0sC7j/pvKvrDgvVv6/Tfx82NwGHap2cKVyR4bPrEhhBBCCCGE1B7e2BBCCCGEEEJqT/2laKlPJLPekpw6ZsZz6ymWyU07OY/0K8bc+k9V4xsq2E1V5Wb9iB7NGSfnO/ZkeRl9AX0v4T7I4rKGzKmv/G47FpFY67uCrHWmo+Oe/ThTINHIke40QRR0I3F5Zj4H2yL9uuCVXo4cKGMZyUMCSZmWplmpjhfNL/Ft8fhCxj+C7QbbgghpHXMbl5sFsh5vDHOct9RPORsFXerr6wT6J13PzXjcM5RdBvOp79ujmo2OIeE+9MexbfFx0D/796KGCxsfriSTztRsgX58oIhyWyfefGZab4xgTNW5NGPq/W2WV6gahlemhJotJqpdPVxyT0IIIYQQQgiZofDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3199ggUDwkkkginXofPD3V42KnV09fQK0/mDEnkjb5K8Y72ihQb3HIH9GvzduDSGe466u22WWkd62+raa6hHvlf0ms7159Pbg45L9B/rW6+vemm2ZLpNHFY2MokFcGeRK0Lh34FQJvQRN4EvQwQVvcg4CjXf0m7GUAy6gIPK/rYre7CHkZ7JB629jjR3sk7HHntZkV0P4B5KECFC3z063dVoszY1b12Fjfg+fvAnVp2hyKNm+k1ayz88FatzUbWU87jerZ0oMazoko13Wa5Quz+0JlTBfmCzsVBR54qLRPCvnC7PlK9wv+oMZsm7rUw+ys2QmiymOzE0IIIYQQQkgt4Y0NIYQQQgghpPbUT4oGJWTxpizpWcVlpD6ezJKQTXdMNHrJeer3mEACkyxpq6zrSZepeV8JyeIqS+YmIFV+VlFuBsuiR1HQfVFIZsWHT36cCSPfUS3oJnROqirJRGozysv6TtFqSdGRooENjqQ7QKbmwNvn9XyBPMd7izqQkkCZGFgXESMPQvG8dhmSBpJRWfTiTDfvvG43k8QlP3C9bWK3GtiZ18jra1qgDgVyncTTSoja9oWSpYmIkfVM8G/Z6C3yXnx5XD4J5XVQdgnms6vtSaNAHdq+qJ6D+UAbIvE3SxhDHj9+CrVLJ5JPelIxI/EqwHmgUNvRmQ0OL6lNF++HIruR9M1bwI51KShFI4QQQgghhMwmeGNDCCGEEEIIqT28sSGEEEIIIYTUnvp5bDJI9tXk+Gagj6eiuWEm6+J7sW4T+FEciqT1hulZTqga1Ohc1TKqRkGjxN0JO6P5En01lX00k/HNJEdYJ/abDFWXATT7qG9Yz2BdgOTYGyOn9qAAOudLkSRaTRX3jDw2aX6FINIZeBI8X431FsA2tLw0D0IwDvQk+E3eMnJO49Z3oRfnpRgb34H6HMRCazuI9TlYz6VusxJ/HasbeJPGF1IY/432L+TYAb2+wK9Q3dhn5g1ik4EXC0U6gzbPH5PThvwv1vvlHYd+V4f8N5qqnrHUc7OIuYabulTbIvSTmUWqYyE41r24ZztOD2rW7IuiDepS+9vKhGcs9NgQQgghhBBCZhO8sSGEEEIIIYTUnvpL0dDjb68fiHTOkIkly80mo5qqKmmbTnLkVjmyPC/KNv4MNpCppeZm9kpS1iOSl5GRUO71zZGb9Uu25o0zjQUN6mkycc8Vy80fw5ZzYtR40DRTzxd1ZqA1LkVDwJhZEI+LIp11JCtsQ1KhDKkO6JslNwPyqMo1mhq/byOjU18vMEGTH4lrYnWj/XyZT1asrt6GZTzGVxroopYhRUPR3yBSuWqkc9CGIspT61mkNxHlwXxSCai6L8EFyKtnM6aJIfcOC1P7vjStJjXbmb85cZ+dwyX3JIQQQgghhJAZCm9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/jw0CRTon+jwCX0dVH00/oqCnO77VxfWpfr8J8gljY040rjekjfvsgXB7ug0KwPOS7Kmx81WNkJ4w7jktlhWPkdhvMnhC4mpa+x3tKlLTtiX6b3K+rpYjwyjoHFJ9aMTDNZvimgl6b+BXQFHQntcAxAj3KtLZX54/G+qLfDRhW+TzJPCOA+RJQP6bYND05SNPQuVYXR0TjYx2bbvvXfd+lkl4bDxsfXl+Mlt7+nO1uOfANwP8a6FXR+J9U3009jisWMPgTRP44lCCggY/UYP4ZR0FPZNq1tKlTl2bHhtCCCGEEELILII3NoQQQgghhJDas2tL0VIJYv6qStgStULBmH2QqU0F8JG3+jxRBi16PovkBuD7a2laUVHeZp/x6rdSZ0nBpgIQ6VyAtmS5mdmGuO8E0xGmQlmJI+HVx4nkXkiGiWRq3bsF48D5wNP+oK/uF+jiplnKWldaTZFuUjQk3QmkLDoeF8hsMuJxvTFRTDOSsNl/6syKe46siwWdt63CCb1sHJ6DVGNpDxgwn42GTrxYhKcH9UXMmIU+P9jo3rZqs8enaoOSn4nkZqmgiG4kN8uQT6Jad0A+6UWbo1hqMTWVU88V5ZN6fQqwL4ImvQKoDO0x2gbLB+d4JDez8cuVa9Yl1qylW5vNtQbwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189gEfhjdlhHNrOWMVSOds5aXmtVrxwEayWn22EApLzIzoPhnaIKw8wGfgzeX0YtOe4yz1uDatshnMV+xaqQz9N8AH82Ecc9g+bF1yWnrEfCYQTUEzh+hVhnsX61VzrAhTHfJknGicc/onwlt4SEfDYiyhbHNejrDr+BJ+8F8O9YttU3ibRkXrmAcPaTnKzGNJTpA9TFoznnAN2S9DN641gtk+8YorKko7pXxfA7BNRScPJFPCRHsw6L7Z7H+LjuO8oXZ3286NhrVsxkT1nPgPYuMKQJ/s3nfybYlPhIIfI16cXa/eNdb8FunjDeJ+J6X8LyjPqOaDZahrmnBcQD8XXocG++c6QtzDXpsCCGEEEIIIbMI3tgQQgghhBBCak89pGhVZRjwMWMPIp2DR7U9GFPM08OqUdC2a2K0q8vQvKRKjiZ8U7r3rDhDpoakCGDjeFHQWTmO6V17Mh8ap1eRzlVlcRl94XyxMfpFqtzMPsFH0cxxJVF43vEiw22cOFhPtE3B4TPtkfC7IG4gIkWzgAhcT24WyJ+AFC3xjeuVI2+B5GfH8vXyTF8k3UmUdwfHEkyEjZ+79PcIInfb8fUMpoGMy1NCB5I2tcw2OHlaeY6OhrbR00jy441hZkNveDdAmWDFevbkZoGkC8gnUa3raHEg5Qz6Zsgng76R+SxeXaD6DVSIWmpo6qn0OsYXKOJ/f1NDlWtW15uVT4Ka1V2hfDJBLumEUjRCCCGEEELILII3NoQQQgghhJDawxsbQgghhBBCSO2ph8cmlRw9eaLmN9DAIv8LGlP1DWSsYBzojUES0Ira+kD3X9ET4Ukyga9jxzC6A1rxDANB4pBZUdCexrlP5oXEVPCqfpiiNKP2wLczYV9AovWrZ6DFFaBmsqKZ0TK8fkbjrOa0x50/3wQrEFsZ+m16Q6sQaYb/JghPCUHEMvJ5AI8N8At4XhkU9xx4esCY1kcDxnHAg5HqsbHA0wO8xqjrrTnnad1/YX0sbbNyXjy7HSfuZfCic5Fvx56Pgf/Gv6bGvTnWAtEzi6de1Yx69mrK1gXwhfl+rv77wnBEuW1LK2Jcv+C3hz3/l7qfaQPxy3ZbeMdCTs3qdTP+G9fQx1q1mkX2mc7XyfhRyyc2hBBCCCGEkNrDGxtCCCGEEEJI7am/FC1RquWQbAyNiWRjwSP9RLlZkM6HpGhgHNsUbalOEX866pMRxRzIbICMyetrl+E99rSSDR0lGH80naNu8yKsM2JJITlSv8S+UPqXEwUNHn/3KtK57/HPaNeDqNegLHoV9xxPPvWlaUADGsyn9yFQGk6UEkrSKFsNKVsJ/yYIpBO+NCsuz0GynjBWt6KErQnaQP1mRedWlKJBwLlLS26CWF0t2wrkZbav+mwlP2qcQKamd6GZT0vYAikckqk5cAFS17vgzFH1PAp/I4E6AbHNsJ6D+br3E5G+yCdhPYNrRWVspDOSheuaBdLKHe3qM5KpoZq166blZ0imFsjNdJOV3ukx4kW6s6W0XxTAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUzmMDdeGV2ypGOps4xgK2IY9NfH3ClEFkigBjVsQBaaXeGTCCFvlvzMyB/0Zrpe1SUNymZ1QC5oLAk6C2/TSYEJLLFPqUbMRj4nwlaJvIGwM9PhInrZx7hrfrkW56Ak018q4gr4HeF0FbbAF2MjTnxNtIz3HNhrgucc/onwmtnt3X76dr+5PjcXN8NI3unyfV16438p0l1mzVc471sehrSmHPebav2jfBboJeBrUqQeSuusYA/w3yWYSeBH0tlP6g933Veu6DjwbV6ETLQPUMj6cenGdDX1jcl5xVs9rDleUZU4u3y4C+MOT/ifvC/GvoxBd/R48NIYQQQgghZDbBGxtCCCGEEEJI7amdFC0HB+RfHratAeZDkc5em308qCdMm10dLUVDkrZgvmgTnA/htNwM5Eg6+5hRP4EskeZG/EeU9s213lui7aNMkHOb2gY1Rma2ItIvk+RdkRUFrR4V9yHSOXxsDtYHyuRAm6UPcc/J54Hg2E7v65WQ2U5+PcfbAjmhd6yBdUHbjDK1nlAOpMY9x5vgW9xBPG2/5WZhW7W+gazHkzGZttS6zJHR6vOalcd4bXGZWk7fvMjd8Y9QpmblqN65Gpx0TNxxisynG4GkzBvU9lUTOfWM5GbJbWZd4HER74slbH4bvFYgYKRz/BpevWbNOKoWK0ebBzWrfyPaSOf4bzv9HR08We6cnVI0QgghhBBCyCyCNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb/HpqrWEflvwJipkc6BflG3Bf4bME6wfDBODzw21isjQNuP/Deex8YIPV3glVHYyEc1UGAt0NpOsw1FLwNZbCxVfTRV56vYN9DgpvpYciKdkf+majQ0iCLNiolOJePYhm12XTzPXLwtrFnVZv9ZCexfT4Mc6JhVU5beWx8jU5C1vYvgWoW4Vrih8asIQFxsjo+mB74D7I2J+xMmXEail6Evcc+B70B9tpHKyH8T9I1H2TZ03+CEHN/e0Mugty/wYIR2V+DN6ZG5zq/ZGVzPQc3G+5a6b4ZnzPMfVfTYWO8T8sYIqNkGrFnTpmOb2yDaPKNmPd8o+B0Y+EahvzZsLDPeYcInNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY4NIfmeFFbOqj9a7kfiumrCtVG1mSOCxQW3BMvSYPdLMly6u6/U9Nv6XKr1sczOmXYjuYN95o7+V2Rb++0KQ5jeuf0Y+Dhd4mIAnIcvcAEDvnAF6VZSPnzpmoMdNfE/EhH0rvuOmHx4bb9cjjw16b4EBaegD3XZ0wnhl4qekYD6Htm/cmpOnDScdymYhZRePTYBXa7YQVRuoNTsffFcM8HWUqe+4sf4E4LEpm+nvCxHoV1ATwNsG36WFfAfmOzSUtyDw1Nhjua18B/bCpa/FGe+/0dsfehnQO7ACUyvw33j9UKMk/2aqXM+29sB8yb4wW4cZPhrvuADj9Oq9TN4+tZ6TdqSf+H4Y+P4z8WsR+m+C99GA5eu2DG8o+n3hvPkmvjiF/u84fGJDCCGEEEIIqT28sSGEEEIIIYTUnvpJ0YBszEqHUuVmYTxh/NlacqRzw3/upiVlSF5m221bE8Y9q2VkRD+jR3z6Kbrtp6dL+1hVPaou7WN68xhbt5dWx+RJ0+zjbxUFDaN744/Nw2enaTK16QCUJZaUld372TYU6QzHzFhGKL9yoC0+n98x3pRVF7rUrNLDHutgdbwUZduox7GP5sH4VhJEpo9yoJByIE+KZkFxsQ7IXGBsMpDOaNkYjGk2dQblZkC2Fo4TX7fkmHVwXrGSG6dlPUGbkuqMxSN3RYy8PIi51ZIfFN0bl/zY1xTovvAcnyHbDSR0iQT7yRvU9O1BPVeNIZ8o7hnKzVJrFkgyc+LLk+VeptYaY0W0zdol9LHQNtumAaSVMCa6jM/nR42DWrfXMFTPXSgztNN8YkMIIYQQQgipPVk3NmvXrpXnP//5Mm/ePNl3333l1a9+tdx1111en23btsmqVatkwYIFsscee8jxxx8vGzZs6OlKE0IIITvhtYkQQohI5o3N9ddfL6tWrZKbbrpJrrnmGhkdHZX/+T//p2zZsqXT59RTT5VvfOMbcuWVV8r1118vv/3tb+W4447r+YoTQgghIrw2EUII2UGWx+bqq6/2pi+99FLZd9995bbbbpP/8T/+hzzyyCPyuc99Ti6//HI55phjRETkkksukWc84xly0003yQtf+MJqa9mLWFLoozFN0H+j+8Ujna2PBnlsGsaPg3w0TeS/0cvvQ9xz20QxO6/NxG3qtsBTk34/7Xlu7Hye7hbEX8J9D2KT+xWHGy89HNsMSI1NDqxmiZHOWR4bpN3N8N/0wuMU7F4Qye4lTtoozIyIZR0vG6RYgvpCcc846ju+fWeYTaxvTOW1qWzlxz1b/IjjnAjc+Pjah1ACTwD2xphzte3b0n0l2teZXxalnq9l44/VBIp7tucV5TtwY7Zt/HMQeavarHejYcdBntq219FvA3HPMPIXeR6BlwGd46v682C6LvKVoIhy6AvLiCEHbdAXZuuyapuuYRBfjnyr2jcj4tdT4OdS6xLUaNt8X28cswLAM4Z8NMh/o78wvr7Hr0ZBPXfB+rgRk/LYPPLIIyIistdee4mIyG233Sajo6OyfPnyTp+DDz5YlixZIjfeeGPXMUZGRmTTpk3ef4QQQkhVeG0ihJDZSeUbm7IsZfXq1XLUUUfJIYccIiIi69evlzlz5siee+7p9V24cKGsX7++6zhr166V4eHhzn+LFy+uukqEEEJmObw2EULI7KVy3POqVavkzjvvlBtuuGFSK3D66afLmjVrOtObNm2qfgHJkQ7BKGj9+NnKzeJSMCw3021x6Zltb5pxtNwsmE9NNxvxjEcrU0OP+LT8zC6vrR9BFnGZWpg5aNct7f7aRkG70tMVmSHjMcICoikh/ZKmxQikCCCKOjU6sWKkc/gmZNsXRUXGl5/cZvBkW0Auatv8qFUznyf3snIZIxuIr1p6nQAVZNb+BaU+JdLKGUa/r02uWXQkW8nqCCjdibcheY6dL/kN6yg6F0jI7HQgARrQn83xo+Yr59g2FduP4o9HjWxsVI1p5DkN1deNmjZ92TDz2e1WgJhdfR21Kmn/LfLpMjVPKhucD9V3QvHOfdKfptYsjnsGcjMU99wj+aStZz2Ort8d02r/2uNA1bCVVqJIf11PDVuXWj45CraT+X62hvU4BTh/BK8d8WrWLAPGPat+zh6/ul/8ZJkU95whRat0Y3PyySfLN7/5Tfm3f/s3edKTntT5+6JFi2T79u2yceNG71/GNmzYIIsWLeo61uDgoAwODlZZDUIIIaQDr02EEDK7yZKiOefk5JNPlquuukquu+46Wbp0qdd+2GGHycDAgKxbt67zt7vuukvuv/9+WbZsWW/WmBBCCFHw2kQIIUQk84nNqlWr5PLLL5evfe1rMm/evI42eXh4WObOnSvDw8Pylre8RdasWSN77bWXzJ8/X0455RRZtmxZ9UQ0QgghBMBrEyGEEJHMG5uLLrpIRERe8pKXeH+/5JJL5KSTThIRkb//+7+XRqMhxx9/vIyMjMiKFSvkwgsv7MnKdgVGEoJcXS+22TR5Ppr44gL/jWpEkc4t67EBPhrbt+X5b/w2z2NTxNsQVseo9dhjRgSr/TdjZvwxEOlsNce+RDQ+nzPr5mmcgx0Vj3T29cBWyBydAP0mIEMbinZTaqQz8qoE2lkUp6rnA56aCZcBtbvxMZN9Q4Zkj0KGj8UZ7XCpCiBIqAUWLq/NbAutnYY+mhwPVWpbzZnKa5NrhZp7kdx43HiRJMc9I0+CbVM+hMCDkBh5K4J9NF7boGkbVMU+aK5/Q+MniEbTP9GU7fEVaG/zV6YcGf+SjRHj8YTeDeVzsPvMemX0brKXJjWzjdUtwHHun/NAbLOdD/hGi3hTdPyuJEeU2zZQz4lxz9PuCzPeLz1t69mpGm4M+b9gmq3xtvaY/6XKkfEVcCO2nse/Y9Osp/aFifHf2J8+AmrWm7a+Uf27F3lq0e8LEF8eALw5XbujsQxZNzb24t6NoaEhueCCC+SCCy7IGZoQQgipBK9NhBBCRCb5HhtCCCGEEEIImQlUjnueNjIe9/tt4NktkiOZtkLJv5DcDEU6W+lZyzx+130HTJuWog004m0tox3Ssi0U92ylaGPq2W3TyMtGi/E2G32tCdvsq5DH19umbzr1rNpub/30P3iLvKcLjEucgqIpYv1EnI4B71V2bk5sJyrZihI2KCFLfXu2TCA3A20NtRNxTLRZPox7VrGoZt8nyxsmeADQUBuylLg0ACWNV4+itm2oaPUChPSAsllI0Zp4Y1aOx9XTOXIzVc/oTe0w8ta2WVmPjsCd47e1lVzHGblZsdv4mX3u7iNe24I9tnY+77/HI17bbx8d7nz+f4/u5rU9tmU8sa5smBXVmpsMmbKYCF7vMmLjtT05u5X1qM9WpgbOuVCKBuL+syL+EZWlaIltoJ5LE9ssXpuZL0M+qdvbVm6G5JND4zugmOv/nhrafXvn817ztnhtT1Q1rOtXRORhVcPbtvgHUNlUK9ow0kpwTWvYwgRSNN3VqiB1DSMZZFCz+rqV8coG//fMxOfT0q4wgE9sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqZ/HJgeg+4z2E6urtXpGHQUdb2uatlZT+V+Ap0bE99XMMT4av813pGiPjZ1vUPVFHpsRI7Iec+PjbG/74lXPtxP4ZlQ/EP28AxWBaESavp7UF2xq/01pPRhe/KQVfiq9aq+sMiDiN2+gyKCon5mG3hygjw3GTIxwttPQR9O2bXo+sw8T25CfwLbpbeqaptbUZKD3BgQeMhB96m1vENMZyOITPVQJ4WBkkpQtkSLhypka/xz4qWDccwHa1GfkSbCRt7ptwLSBSOc2iMDVnhoRkd32GPfVPHHY99G8cO97O58/tM9Pvbb3P3ho5/PNrQO9tt8V8zuft4pP6f20ARs4dMH5U+A3BPLf6Gjahn3dQKp30e5f5JVEHryqpPptTN/K9ZxxHocRzsgXZutb1bD21Ij4vpqhPXxf2H57bup8PmLBfV7bh/e9o/P5jAef47XpGl5fzPPaHtPrFfw01xsueImAmVZemYpR0OHrHYD/RtdwRl3mXrfKjLhnPrEhhBBCCCGE1B7e2BBCCCGEEEJqT+2laA7m3IImL6oxPQrae/xsY/e0NMvGPatpJD0T8WVktm2oOdq1n4jIYFNFajb93Mq5je3Rtsfa489nHzMZnrqtIeD72m2olAjb/ZYgUtqpbWNfPt/Q0iEbqYliudW0nQ/GfaYqkCajN6sqG0icD0aIolIHj5hhFLOZbth4U1WmjTFTQ1puZuZrjLpoW3O7ervzHBONqaJ4SxvL6z3+9tu0JMfWuo109qSHweP+eH2hZOZUOSFKdEYEJRtXEBBAqhStcnQukJt5sp4c6Q6Qouk43EB6ZmU9Ki7XzTEngUElkx7yrzHDu40LbQ6c9/+8tpfP+7Ga8lfulfPv6HzeMDLfa9s6On5tGh3159ve1q8w8FfT36hY1qNlZPa06h3aVtajzmtBrK4eyDR6MjWrzwHnB4fOHT0iNdLZxuhjKZr6nCGfRPHltoa1vLI0cc9OT5t6bqkanr/bNq/twD0e7nz+o+Efe22l2lHHDt/htT20fVx+tm3MyP7Hxr/kdlMXXg2jk4KIVwBWBlmC61YD7Cd9nXbBtV/J1FBdmgPRRSe6QykaIYQQQgghZFbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21N5jkwzUwce7BhaMVB+N8d/otpaZD0U6Dxk/jO4b+GjU9Nym72zZozkeVziv6etFNxdDnc/WH6G9BtZ3gMiJy/UCna3/Rgk6A6m055fw79F1/HOBfA6B6STyecdA0ndS/TA5sYqepjveBqNHJ4h7hpHOylfTsG3aR2P9N6PjCw28OSNa9OuPWbaBWFgRRkwm6unF/x5WQ+9pykFEbOit0BNmTOSvSvTm0EfTG1yzS4y4dPHyaTJqBFlAoCeh0f2ziO+jCfw3Og53Qr+Cmh4w1z/lUZgzx4973mMg7vHcVI5ff/70nhd7bW/d7987n3dv+ZG7uw2MjzM46I/ZVn6F9pjx4OnvGxwvcc9Nw+4M9RXR+SL4DYFi9NW09QD6bWY+9YecqPgA6AsDMfap9ZzhsfF8YaCey1bcU2PbXVDP6hozx3id1fTuc/zfU7qGN6v6FRH5s3te1Pn89v3/zWvTNazrV8SvYV2/O6bHN4AzPqGghkGcuf4tZK1Qnv+mTG8TVJe6zS5Q90uoURdcaOPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFA49A87Q76iOUmxkJjJq2q6LlZ00rU1Nj2ghn23dOY0x99vv6cjMrRRt/XKqlZyK+/Gy4ad/T3HuspMxrs9G5qm8oRVPRp+Y5J4ouTI3sdpPKbZ5GMqRK6DDwZExQphZvs9OB3EzHPY+afaFlaqP+oJ6EbcQftLFd6UCCXagf49vn5o1oiy8f8Qe1Es1StVvpnX9usfnlup7NbOit49GJLtOkr5TNQgobI94NIM9Bklc/OtfMh+RmyW9qN7WsJT+BrMdMq3kL07fZir+mwF7jNOvHhjuf73jgSV7bg/uMx+Paa8MAeC1CQ02XA0aKpqWqZrVslK3z5KlWpg2kWXp1bFsZ6Sf+PrTnWK8tiNWNR+5WBdas7Zsqn0Q1a9tA3LMnL7PyyUBqqcYx9SxqnGbL3+C6plqB/mqc9aN7etM/un+8hh/cd57Xpmt4AFgQ9LEk4tewV78iIkZ6p68r9pjRdgL7O8y7/pm69NrQbwFwTassk368scx4DMMnNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTCYwPsGskgH03gwdA+msCfEffReG1mPi8KurCeGhMzqLSWg00/NlNPDzZ8j81uymOzm/HY7NYYn9694beNKgFr2+gutQ7T6jW9Njiff/88Zr5/qXwHTSOkdGq7tU3cn47bLkurF1WaY/FxXj/TBuOepefkxDYjIWp1H01c6Ip8M0E0dFt/tm0u2qa9K0Gk8/bxQRuj/goUynPTCA9u9dn8241eRobvoTTL0N8/iBPXumKrGwdtnuY4oy58/40taBpweo0X95x4TkB+haAN+Q6A/wZ5ErQ3xnoStK/Gxj1bz40oH0JhPAnN5vj0QNP45VQBjxkTxMPtPcaX/9BQtG3MfKmGdy3217Ol1q1t1tMpf5Sz1xtzHdGnOXu4ligKWo+JTk8gCtruX+Rl8JaHDnnblnNNS/SMBb4wVLOJHpsg0hnEl4c1q6aNv0zXcMPUbEtN29+BI+pAebi9u7+83w+qtj28Jv1bqGHG1MdM06zLmFpPN2B9yOZVF6qGG9aXrHZG8PoO9J4T4BlDvjDvXFbx90ynu/WyAvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT21kKIlkyMdQi/RLVzXzyL+40PbpuVmLSNTa8E2/xmbjhbU0c922sY979bY3vXzjumRrp9FRLZ7UjTzWFM9Z2w3/Tbdt22eTevpshmXqYn4UZVts230OFZu0NZSKdNWlvH95GsBQBtiErK05FlzYn1TJWwojhHGPbtom223bVpiFsjUdNuYkXaq6cJK0UbVcWHqq1DSxlClVnTtZ/sG8wFZCJKT2DhZLXMVI3vxFAUVH9unxGaSyVG2RIqUK2dipHNWG4h09tqsdEfLegKZmpowUh0x51Ud8WzPuU0g3dGMGL3bo+1x+dmcR/wv/MjYbp3Po3bF9bLNdUOvW3Bt0N/RfN9AxuTJQ83O0NsUvOEdxcH3Q9YzJXHPFesZxpfbmGYtnwS1HsrU4hHldn831LSVf6EaHlMroOtXRGTgkXibrf3Y8uy66Bq2ce12WkvvgppNjXsOfvdq+aZZbz2doYROllc/TkkpGiGEEEIIIWQ2wRsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY5PoowkinYGeEGntUcRkE/lvlBCxNUHc86Dy0QyYvrptyMQ96/jnocJv2115bsK451bXzyIio42mavOFrnraRkHrSE8b79wyouOxxvj9ddMIOHX8cxv4nUqwD9G+h1HifYh3nhCwQsmRzsBHg7wbyGODvDkifhy0jW3WPpMg0nlUxW1aj81oosem5ddlofT2hfGFNZQxy/n2NSmUkaYwmm6rk/e9Oqa+1D4MYptBnCvUyYMoaH/Z0dlIj/DinjXgfJFznkERuH4UdNxHA/03wFcSeEyA56YArzuwUbaaMfOlNisfwsCj/sbYWs7pfB4xHht7zfFWU58D7Hqqc0KwLcr4ucs2oYhn81IBvwm9UiDRrwDPD6Ypx3OTWqeoX1bcs67ZnHrWNQuizUXEr9nAu6J9YWY2sOG03+vRsUGvbeDR8c9b23O8Nlv7seXZZesoautZdnYavMLBNzxFVyVA/74q2vF6zoooT/UMR8ZG8IkNIYQQQgghpPbwxoYQQgghhBBSe+ovRdNUlRUFUiUdFZn+uF1P47hnE+8MpgeN3EzLz4I2JT+zMrUhJUWzMjWvzQ14bVpupmVptm3MvMFZf4eWeYYYTo9vm9Eyvk1tpGdbx/qaZ+N+ZLd9dIpkAqANUXW+1CEtGW2ehM3GNifGRKN4Zztt2xrteJs3n42CbqvjYsxowXTbqK8pK9Sj+caYiS9XNWNjYLWEwT5uD+KeEyV8tg1FOnuxzZN8bJ/URirhGmo/Jh7qvXtTu9qhUNbjt5Wp0h170gHxuEHcsz7n+qN4sjEb26wjcFtb/fkea49fj8aAFM1ei/Xy7Xpq6Wgo9bPfPy4rdfoPSJtlt6n3FncgU7PHLpL1SLytZ6cAJEVLjXS259zU+PIg4lhNBNIzs3x9Xrf7F/zW85ZnpfZq5UZK/zdTa4uoNiPtB5HlXs3a35aenM7Us9027fixbl8/EF0DGPVt5ZuqybzCQMD1Dkoru+AY90wIIYQQQgiZTfDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189jk2BeQcM/zYJgmoBXWEc/W86Gnm0HEsfbY+G020nkA9m13/Szi+2oCH4323xRjoM2fT/tqthn/jV6+Xc9BlaVrtdE2/rmhxJd2u+lt2jY61waShIJ9X4B+ztOZBsGZ0TERlb0yGX2TvTJAt418NDAKWkwcctCmxjFxz4WKXxYb96ynSzOo9twMmPm0xtiMKS0V6Wz9Pm2gY4Y+GuPH8eI2TZu3L0ztqb5Zsc1o35Oe41o7/puwX2p0buCxiXtAvGnQFkbeqs8ZbUGUuedJiLdZtB/GRt5uVz6E5mP+GGP6lQIZ598Gur57kdXW82GjdOPnQC9mNzDFgYuTHiPw94I4Xr3ZkFeiX+eAih4b6AsD0eZ62yNfGIp3ttPWK+l5V/wmr55t7WlPsfXRtFQNW/+NPg5QXLk9lrT/p2G+RBn4wvT1xwysPWOoUAI/S0X/DfrtkRk9zbhnQgghhBBCyKyCNzaEEEIIIYSQ2lM/KVpF7KM9JEfST4ODGEkgU0NvjvXij61MDcQ9W7mZnrayMa9NRTjbvkNWwubFRPvzafkZkqmNmmfF+lGt/X4N++gWREPr+Gf0qDjcT937BQQyxPHPUEEW1FMfIp5TpWemL2qDUdCoLYhpNn1B3DNs0/Kvto10Vm+FBnHPts01VVvLr6eGkqa1zRubC1XCUGpn+ubEZLvEfYHinrNkagjK1irhGl1iVLv1S3zFQFbcs5cJa9p6Id2xseZAbgbPqwArwdERuK1t/pgj7fFrhX2lgI3gTV1Pfa2AMh4RT/IV7HPdtWnXRTXaN7XrcYKLmtpP9vxQpsnbsuLfs6T9ahi03jnySShhU5+RfDL4IRaXU6LfejkgaWVrZHwZo6YNySkboGYLIPcK5ZT6eAbSSrMuwTXHbx3/aCOdvZWJzxZeJ120qVsNBzUA4BMbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7di2PDdQlmq6pcc9An2t9HXraxh/rtgHjOWmacVCkM24bj1geEDQfiJAO5hvr2s9ON4woUn//ARPVa7//dqWxDrxJal1HwfYONalp+zdLZFx1PksvvA3AnxG2ue79bN9A0x0ZX0KvjOcBabt4Xzufqg07nxfx3PZryGn/jWnz50PL8/9dB3qB0LaxfhwQ24y2aVX/TdU2Ug3XcL6OfeffE+Od7XQwXyPe5vsVjLa+qfvZNn2A2uWpug/8CWKmU8+rPg7E3GqPgvYniPgeBRSPiwjWq4h/X+ud9DwK9uvp7Q3NK/YclOZRCPx5yH8DfTVVr3FgmIy4Z1TryEfjeZpghDTw38hEHpv47zmNrb1SrfioeZ1FU9WwfdVFatxzAxxbNmbd+sT0qwocuE4HNeTVM6pRO6Pqa2PIU/1eCdemFF/jTvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT28sSGEEEIIIYTUnl3LY9MHcjSZTSWKDTwnsC3HR6Pbxry2OaptjplvjhI/Dpjl67ZgPrA8tJ5NNWbDvrcHTNtto7d30/iWCvVeA+yxARprq/n1Xt7Sm3fTQJDnpSKV32ODfDPBe2vi07ZNvHfVmH2oPTDGi+W9n8a0yZiqxXLAa/KWYedTvprCiIz9d+qYbWHfU6G3DfDRwP0L2nr2rhrSe5oV3mODPAl2RuRXUHr68L0faiS7fsCbA9tyzquJWG9BW003zXtsSs9jk/5OEOyxVJ/BO09EzDa1nhe1OoX5TqnvBIHvEsl6Jwhoq3r2CK6NoK/2yqC2YPt277djWte6rdm4xwb6xEA956BrL3iPzbayaz+RdJ9YjmfY/g71fsNY3xKoE1h63h/sAQX8ew6c6HI9NhmPYfjEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thQNPL4T8EgdPZ5EEcN+FHQ87rnViMvLRPw45IGGlX+NT1vZmB/NbOdTUjSzLfy29OVpuVmwnm68tAZKf76RjG3TAFHQ/vb2miYTxjxzQKqQDAlb6nxAsdclCto+x1bHhZV4IbkbiHT2npu326atjLehMUG8tI7JnEzcs79N7TggClr1DeI2kUyNOrUpxSVK0bx57B+ATM0BuRmS9cA2XTRAumNlPPac68m4gvOxRNGSHCsp05G4ze3+weTF41Y8q0NZj+2LpGj2C7pIPzEx6znRuToK2p5X9Gx2VVLPARP1S4wsz5JPFon13IzXc/BP8AVoA7UPZYlZcc/x2ObGiHpFBYh7zsH7ukaS3zZfSkvvgrhnFF+O6lmtgY02L1TN2q+nr6NBjabK8nbORykaIYQQQgghZDbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21M5j45ARoKKxItDgqs/Iu4E9H7ZtXBfZBPOJ+JHHTaNn1H4c6+MZEBQTrSOdi2hbMJ+A5YG4Z/0dwljs+LbJ2aaeTB3oY0ONtZ6w9VQPd05OpDOaD/tv4r6ZwHOjo5IDH40W75p90Y63aX+MM14ZbzqIkAZxz3rStrl4ZmngufEinY3GOdULhfTuYD+h2RgT3X9ckSgP13J24PGEsboo0hm12eVBv0KaF3VHe9yfkkoQgaumG8ZjM+bFPfcqOjfeZjeAngx8S95k3H9jj0LkuSlU3+Dr9SI6N2enJfptRGzNOtBm5kuuZ+sVifvC0O+5HD81AnlsmqNltE37yxyoX/Q7KIh7ttu71NvGDKx9nKiGbAw5iij3zDngBzP8fSFRdjYFHiwAn9gQQgghhBBCag9vbAghhBBCCCG1p3ZStMogOZIBRTrH+tlpJL9qSHy+HX3j0rCmJymLt1kJm54eMPezOrbZzqeXkbM8XzIXl9rt6Ds+zvYJZHpV2iqry8DbwqcCKDdD5MgUwNP+nHhpr29p29S+MBHL3uNoEM0sJjLci3h2VlIGpG9qTGeiOLXcLJDeBfHWRbyvt01B0WTsC6BswTikBSBVcI3Et2Cnys3AeSYr0tmTm4ED1F4LgeQnjMdNl/ymouU6je1t0DMdFD1doG0BoreDw0dHM9u3v6t9YaU7eiAYBR3sQiQjisfIVwUq/YKLhZoPRDPDegZjhpHOaesiYuSTqXUxAUiKVmwHOd0A9HvG/w7px2hhDgQv/jmQqUU+71g51WSXryPKzXHgjRmXbAffvMumSDrnPg6f2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2lMPj01V0WiiJyLVb2OnA68MiDj223wNZlPiMcq2b0P1bYD5BoJoZv0dbNyz/myWV6QtL/hOwCfUapho6HK8DOE2Bd6kIAo6Va8a7TUB/fLbVPTRoEMEtwGhq5aiB74ZsD45kc7AD+N7bECb9eYo/4317TgQYe3pj7O+L+hbcT+laI7JNNFwoYelC8k+GhSxDPwK4ZhxT48ex8bj6r7BkEDPjzwBCBTTbD02yMuQCvpOE3mI/FcDGL+C57+Jx9xaX4nnu7NRvWrGwGcHzyvAf1MVZP+BvjDbFq9nFPcsKO4Z1HpY38ifkraxUDRzab5wY/vYeBuINkfkvb4ix0+nJpytZz1hFup5c+K+HevpQb8LYJ122d45hz+f2BBCCCGEEEJqz6RubM455xwpikJWr17d+du2bdtk1apVsmDBAtljjz3k+OOPlw0bNkx2PQkhhJAkeG0ihJDZSWUp2q233ir/5//8H3n2s5/t/f3UU0+Vb33rW3LllVfK8PCwnHzyyXLcccfJ//2//3fSKzshGY+qqsZWJkdBZ8imwmkdo+xrYnTkchNI2mz8csPrV4A2fz5vTLi8uIQNzWf7om1RdZ/lxDjqvlOh/slRc6T2DeKH0RipErZgPiuv0BIv0Neum5aKQZkakpSlxz17j9SD7xAZQwRKyqxMD8U29yTSuaoyF3+lXYZ+X5vS457BGJ7EyewJL8rWLhvIzcDb36F0R0vRMl6LkAOSkem2YjQuResV6PuGnfVnu03jkjL4FnfVtyjN91NtzrShLTElqe5ABplaz0HcM9y+3ccQmaBmJb1vVZA0Tddwr+o3T5qmPpu+Dp0j9GRwfotHOntR0DmvPkC/L7p93wT5b6drck/Fo48+KieeeKJ85jOfkSc84Qmdvz/yyCPyuc99Tj7xiU/IMcccI4cddphccskl8oMf/EBuuummKosihBBCkuC1iRBCZjeVbmxWrVolxx57rCxfvtz7+2233Sajo6Pe3w8++GBZsmSJ3HjjjV3HGhkZkU2bNnn/EUIIIbnw2kQIIbObbCnaFVdcIbfffrvceuutQdv69etlzpw5sueee3p/X7hwoaxfv77reGvXrpUPfehDuatBCCGEdOC1iRBCSNaNzQMPPCDvec975JprrpGhoaGerMDpp58ua9as6Uxv2rRJFi9e3JOxNUjpOKloPUWqV8R6TEIPCvLjxH003nxBmxrDPKjz2+JjBr4d8H3RulSlaqRz2NaT1ZlZpHoyUj01pq/17eTEPXvTgR8l7nnx9LpB3HO8DUU6Q/8N8AnBcapmf2f4nSqPOUuY0mtTIZ1dniyhR/4BGJ2b4UkA/hvoM0DxsGC6ql/B+g48j42Kys0dR6PXzV432l6/+Hw7ppV/AMZrW69MZIGmzZkD1vPc2Cho7xxr/DfodJSzm6r6whLrOa8NGBJRtLkdBv0WwLMmYSOcrU+s1yAP0Y7p+DFaeCeCuGcsq9Yl7Vpoa92LmU85kWboy7KkaLfddps8+OCD8rznPU9arZa0Wi25/vrr5fzzz5dWqyULFy6U7du3y8aNG735NmzYIIsWLeo65uDgoMyfP9/7jxBCCEmF1yZCCCEimU9sXvayl8lPfvIT729vetOb5OCDD5a/+qu/ksWLF8vAwICsW7dOjj/+eBERueuuu+T++++XZcuW9W6tCSGEkMfhtYkQQohI5o3NvHnz5JBDDvH+tvvuu8uCBQs6f3/LW94ia9askb322kvmz58vp5xyiixbtkxe+MIX9m6tNX2QFaU+YkexzQ0rL0Nxz+BZsZWt+fOhiGUjDVOPD5vmUaLfBuRmVkLnydTi6xKsd7Bu8e2W+nZr1C9PsgYe1aJiy6nDVGlAjmysyvh2nJxXVhv5lyfVguuNZGpxuVkYI1lG2wogU6sqi8uJX0Yx2UWqhC1Dplakbfpdmqm8NrnChRKxbkD9c7wfjnRWbcEb3iP97LSVrujPk5D1pJ6rIaO+FE2/1R1KzzIWAa/vYLsF20ZLyuy6of2k5WZg3wdR0H5Pf6qITYTLqAySf/WinsGYwbYHbVVl6I1ebSdVw72Ke85ZtyL5PBCPGg/jl0G0uVen6PeUadKLS3gXQdAHUPk9NjH+/u//XhqNhhx//PEyMjIiK1askAsvvLDXiyGEEEKS4bWJEEJ2fSZ9Y/P973/fmx4aGpILLrhALrjggskOTQghhFSC1yZCCJl9VHqPDSGEEEIIIYTMJHouRZtJ9CLyF/loqhJ6TJBXBvhaUJuNZlYCRxv3rKdQhLRdntcvow15jEKPD/AmQb13tGn2UbFkU30zcD4R38uCfDzARyNlaZq0Ft3Unp4PRjobnXp0IsRPIrXLKLr2s+Mi+TOZwai45+DvaB6FS/UroHFA5G5VT0LO6w36QTGaHvfck+WhOFzxNze0S4DoXOgrqerbhJHOPdpnOcvXEeUoChqNAyOkQV1OcCLt9+sdrI8G1XCq5wb/tvHbShjJHq9n7HfyGz2flPV+wa/kGWnS5+vW1q+4Z0IIIYQQQgiZifDGhhBCCCGEEFJ7dmkpWipVH7cjaVQgqcp4PGzlYF6blqlljamlaAVoA1I024bkZ6pvznevSs/iPnu1kIpUjXFO/Uo50ihveRPJpuKlEEq1dJuOY0ZR0EimlhNTHRtfJO87eDHSU6t7TEjG7NqXSrceUUGKBuU5WRInMB+Q50DpTkV6Ff2sI51lzH9ru32rexV6JaezkiatrEFtUKYG0nFtpDiOf+4DvZJWevNVrGew/MlslarWAliX20crrk2cqjWMpKXhiPFXXRSqLVDTpUor0RWoR7HYO+ETG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe2aNxyZHo9jvqOCmEfMjD0oDCf+DcbWvpf/odbPr2YD+m3hfuC36EL0dsAvERE97bHCJtLTAR9MrgDdHe3qwNwVEQQfLS1+1qtArM4OIeWwMyb6DYHwUBd0Hf6AXD2uacpJde4AL/AnNni8jJ97a8yTYWF/Pr5CxZZD/BngNdD0VOdG5VemVZyy1nlHt5WzejDjzfuCMT6zX5NRsuFET45dRnDjyjCHTmAWN2Y2c3/DJPQkhhBBCCCFkhsIbG0IIIYQQQkjt2bWkaH14zNirJ7xImpXT15N/FVbShWRc49+kWTRAm51PydsyvoMGxUJPRC/kZruAuiwkY7P05el7EA2dIT+LUZo60ZI22+ZAWypWpua0tMSuW/qwnowtiMkGUa9eIq+Vwu2SVVxLXOFCKU43ct+sPckxUqU7011J8O3rY/at7b2XolUm2OfxeFxf1mOzkSP9JmrzutlzV4/yjwFQWtmLekazBXKrauNMCaPbOx9LN2caVwRvp6AJSCS9QzZLBlnxtQiT/M3CJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbsWh6bDKrG/vmek3j8MIottiAPSrPielqvTL+pup79YipiHWtJ4PmId9VlmbM5YV8UBd0rUr05qWN0YcaW10xdr9lAVU8N8mfkjINmQ1r7GeRXcNu3m78Mjrchb06/SI3H7dmY1ZZnPTf+kNVWNMlHlkJqPQfHQdryp/tabz1jblT7xKbeY5N6rFfdaoFlrPJAehDQhv4WgU9sCCGEEEIIIbWHNzaEEEIIIYSQ2jNrpWhk8lSNce5FhHPPmEnrMt1Mx6ao/BybkGmikDRZRC+UU1ArGpfuTLc8pyouiHuuCSB6O1CCTfGu0ZIyK0vLkpslxoln1WwfmO7an+oarqyItJHOKDIcysZSI53NjGh5jHsmhBBCCCGEzHZ4Y0MIIYQQQgipPbyxIYQQQgghhNQeemxqRlVfy1TTlHqsJyGTpp52BkICpt2fEMQ9Ty1THn3dK28B8kDoppp6rwJm8Pfw457Tme5jD0aNTzWJ9RyDT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT2Me64ZbVePe9E275nJbGGakzEJ6RUuiHmd2gjaYs6cKV2exU114m6vlpc4TmH2b23jn/X3mGHfoRio9rM6PPammOlevmaSu5S/PgkhhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7aHHhlSmqt+nnFFazhm0LtPNdGyKgtuf1Awn3TXgyJ5Stczt+Un7CWybbjLrV0yxV6YqRaumP0nM5vW2/zRveuurSW0L/Dfoe+hhcmq2D/6YafeJTXENV/120NNjB0UL0eOg+XKWN0n4xIYQQgghhBBSe3hjQwghhBBCCKk9NX3uO3mqRutpGZWVVHltGdoDJOlqV1zP9hQ//q66nv1i2qMTZypWvYKeDjfS+gXzWbWBnmhMwX7Ry2iYYytV+jbBes7Y8pqp6zUbsOfcIrUNSGd6JG/T0ih7CEx5xDEAxT0X0xHr2w/5DBwzcXlWatiHE1LPoqFRzSKpkotO+N3MfFMtu2yY7VJWjHvuFeh47sWx3rPzBZS3ZfY38IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9u5bHpg86017JCcuMaGTUt1T3oraf5/kxm6JUwsi2K0GbnU97iqrdB1eNhbbLr8oMkpD3jkl4XvqyfORdSfa1mDpJ9crYtlQKqyEH65mxCG+cYBl6+XZ9EteFTCuFK5I8Da4XXpkM347no0E6ezDkVGA9CR4zOe45xxuDInC9fhlt3v6dgujcIJl5/A8OLaRqPaPZgu07PtCMO1UOjPvEYK1PAdBvA/qG27ua9ys5CrrH8IkNIYQQQgghpPbwxoYQQgghhBBSe2bwc9/ekhP/W/b56WHb3E+iaOgy496zrcYpQb9e4cni7HdCEdagL9wWIF67Z+wCujUYtzwVoKhkqxvoh44AScES46azpGBTsIFnbLz0bMRJ9/NEjnQHynWQ3kzXdsbJKvHN4c5oV6yUpd+nx2LOgPlL769kzvu+RbSt23RqG14B/Tl9jGT52RRcwwpTwFCaBvWTWqoUr72sUg8kmvH93Q+KVlNNjfV8/MnUbGVJGRojNbI7Z8yqfR6HT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO2ZNR4bRFXdJfJ8tG1bhhC/Dfrq6GTULxxzXOBYGrGj3xZfF7s8FOPs+336r2vNkRX3RBvdJ0BiN9Tlw/ki/Wxn1GYHDfqCfyLRfpUg9VZ5XgrkvwnaGvG2VOx8id9hR9/pM73klC+9OX0g5rEBZHkSPEtCPOY2J1oV+hUqRtKi82iO/7FRqKtOa47fJu3s9bL0ylcRROe6tDboOwgWMv6xKKvNNx0+UV3f0E9WtZ6Dgo7PlrO3q/p0G2gjez6x3nhsqtYw9N9keHEcqq/USOcpvBjxiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7dmkpmgOPMtEbWTX9iBi2Y1hJl44/tm2eNAy1mQeypfe5jLYFcjOwPK9fRluwTb1lxLd3zr7od2R3raiqvPOkYOkb1Mq2tGoMysaQ3KzRME1FtA3K1NQ0jHSeYJv5T/Tj+do50j/KxmpCTIqGNDFWneMdW2aYhou2YYmT6/ZxxzBANpUTf9xv3ID9SbK9v8tDkhsxu61yBC7oC6U7GW1oXapSUbIYyC7d5OsZSaOC1Qr69vfHQMOswFhQw/G+MfBvm/S4Z1TP+DxgF1q1ZhPjpVPaMpLf+cSGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNSe+nts+iCfTNUVI89Haf0vyCuC4p3BvWcpyJtjfTyl+mzintU08vvY5fmenvh8wXoH6xbfbqmeJtQP7U+4r7NyddO7JnteMlatiE5gvHECzwn4Uibu2It0hutt/Dd62kYogyhop3w0QUx0A4zpLU/ibcA3E4C8MkFb4s4B3hwLvTlTS+GKThQv3Pb68MnwqOmYX89vs6N1/KM1EsJYXf3ZpTYF9CriOYrxJ+goaORP6FncPzC+BV4G6DvQ+yndZ1AkexnMeTTXrxADriowjaEhU+sZGEKqesYsqL575stVNZzqqZmInHVzoE6gv8urPXD+QDHkOV4zRZFw7kjpsxM+sSGEEEIIIYTUHt7YEEIIIYQQQmpP/aVoicAntRlSJfwoXsm2ApmakolZSReIbcbjGEmXni9oU2OY3Dy/LT5mECENvi9al6pMFHOY3taT1ZlZpEqlciRNINLY2UfsSNJWUf6lJWYOyNSs3KyAkrK0tvAJPhinKhlys8pjkt6j4p6h0gRIw3y5ohlEp5Ub2Ycv5TE7W5/WzZhInlKANhwlW63YrDxHT7s56T9JoDQNSL/9fvH5gvac2GYUTava7P5Fkp8iUdYzKXk+kguBc3xqPWetd3IsNv7C8LcAnDONhn2VyECzB6PGCTZFVnx7937BOFn7Im0/BVKy1HreCeOeCSGEEEIIIbOJ7Bub3/zmN/KGN7xBFixYIHPnzpVDDz1UfvjDH3banXNy5plnyn777Sdz586V5cuXy913393TlSaEEEI0vDYRQgjJurH57//+bznqqKNkYGBAvvOd78jPfvYz+bu/+zt5whOe0OnzsY99TM4//3z59Kc/LTfffLPsvvvusmLFCtm2bVvPV54QQgjhtYkQQohIpsfm3HPPlcWLF8sll1zS+dvSpUs7n51zct5558n73/9+edWrXiUiIl/84hdl4cKF8tWvflVOOOGEHq12hKxIvGr+jDJRY2x9JSXQ/Ob4cba7cf1m6M2J+29Kr58DbdYroyOk0fJQ9HR8PtsXbYvqnpp0LXhV3XhVYGwz6Iv72ValYa8aIxzMZzXWcX8K9LU0G/E2b76GaYq3weU14m0w+hqlZga+ociYE7WB5SW3AXblWOipvDYV5Y7/JgIdP579JvDKqPOzLW0UnYsiWb0Fxv03UHc/CZAfxvPYGH9Cr+JyNej7hp3153Q/DPIdwEhn1RZ8deBJSPbf5BC/jITXLe98GK/nwgzq1XCwfVWbOd68rrZmreclZ38nUiB/l6rhXtVvng9cfQ46q8+oZm1bGeln2rJ8NNBv1eX7oth0Q9YTm69//ety+OGHy2te8xrZd9995bnPfa585jOf6bTfe++9sn79elm+fHnnb8PDw3LEEUfIjTfe2HXMkZER2bRpk/cfIYQQkgqvTYQQQkQyb2x+9atfyUUXXSRPfepT5bvf/a68853vlHe/+93yhS98QURE1q9fLyIiCxcu9OZbuHBhp82ydu1aGR4e7vy3ePHiKt+DEELILIXXJkIIISKZUrSyLOXwww+Xj370oyIi8tznPlfuvPNO+fSnPy0rV66stAKnn366rFmzpjO9adOm8ALiP3dMHzyxK34bLZCUBXIvIDfz2rA0a1TJzWzfUvUtwXyjzrbp7+CibXY+TyaWsZ5afqb7iYiMlf508jbNkPelPrqt/KC4X5HRqU9bwVPkQEEA23RjPMLZyq2gpM1KvJpKXpETv9xQCw3inlVb06xcc7y+nG3zJHNAppb1fUFf1CbpbYxxxkzptakskmQRnlwFHa9AumllNTA615M/mcZSd/MXWCg5UBglG5e5oBhlBJLnlHPiUrSqsh70nSaOe473FSQp07s+J9K5jPSTCeRmaj17pd5DuzeQYsFzV7yetTQtqHU9KJDFBdLKQIap92H67wR/CCSl9HVypYost1HQdjrGpF5B4p0HTN8S1XPksx3HtBWgDUk5YZ12acup66wnNvvtt58885nP9P72jGc8Q+6//34REVm0aJGIiGzYsMHrs2HDhk6bZXBwUObPn+/9RwghhKTCaxMhhBCRzBubo446Su666y7vb7/85S/lgAMOEJEdZs1FixbJunXrOu2bNm2Sm2++WZYtW9aD1SWEEEJ8eG0ihBAikilFO/XUU+XII4+Uj370o/La175WbrnlFrn44ovl4osvFpEdMpPVq1fLRz7yEXnqU58qS5culTPOOEP2339/efWrX92P9SeEEDLL4bWJEEKISOaNzfOf/3y56qqr5PTTT5ezzjpLli5dKuedd56ceOKJnT7ve9/7ZMuWLfL2t79dNm7cKEcffbRcffXVMjQ01POVzyIjxjI50hn5b0xbG/lIgr5xf4pu2w7awtjm8elRI2DUbXY+vYyc5fn+m7hvZkdfFPecvv1jbZUjS3PiCfsAitSEZPhBUPwwjnsGfQN/itoXTX/Gwmszkc6ex8avPe2jyYl7dt6YZj2Vxwb6b0TMdgOa7hzfDNgXcD5EH+JyZyJTeW1KjXtGdZDsv7HxuOokhNomyJf259MRw/aYmMCDktqG0N4Z67GpSgnK3iEPAvLRIK+M9Q9488XHtHWEPDbQR9OHuGd4vQFR+YWNW06tZzsmiHv2hrHn5iDOPO23QE79Iu+Xm5P93nsRwb9nHPhNio5RB70yZnll/LjwIp0zoqCxLyzSL0LSOfdxsm5sRERe+cpXyitf+cr4wotCzjrrLDnrrLNyhyaEEEIqwWsTIYSQareWhBBCCCGEEDKDyH5iM93YN5t6j+Eqao6CR3vqs32k7belS9F0HHIbzCfiS7WwxMvEL0uza78d01rC1o6OGcwnYHlgPhR9HX7/NClaEOmsP1d8My98m/QMBsrUwBP1PLkZkFTZx+9KYuba5nG0lgrkREEraVoRRDqntXmx0CL+P+XYNk/C5jfZt2l701UlfBlys1SVRI9erE0AhUtU+KE+oNYExC+jeFyvza5g6XU0y9MyF3vBs+dOvfxqoAjc0sh4Wkp/YiU/qfHP8M3sE5z/vc2BpDuB3Cw+X1F2/2z7Bm1x9WL6zpioH5AselJZm/as28zaadklrOcC1bOZUceX2+1kz9VqqVXjni1IitYeaETbdDQ0ipBGv4OCJPcSHKO2DUkrQT0jaWUBYs9TpZWInZupaKfvKz6xIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1p3YemyxcmnY4R3eJoqB9P0gj2jZWGh+LibIdVe2jhb+L9LSNXx51ra6fd0yPqs/WY6Pjpe188eW11X3xaGnmK4H/JmPbYN+SbvOa6mKVwQCfRRDFmeirQfPl+G+s58TTWIMo0GA+7XOxXhk9TtPEwOpcWtuGxlRtNnrai3u2Ou3g+3f/vGPd9HxgWwTbG+xEMF9W/DOZNEV7x38TAY873c/q0r0iAZ0DzyGIztWTRiPvgB+kNMdBA/hTUMSy9tE0jHmk1RjfmG3jsfG8DBXP6uj6HmzeHB+N9ryA+YJIZ1U7wXwoAhdE58JY3aqg64/tq3ebPTa8GjLeTG9x8XqGXkXgU9oxUNyfAv1WCuTvsm3l4PjGGGj4G6NRVPvJ7Vm9yuB9Cv4kiF/2vV/xhaBI58Dr4s1nx1THwWQjyjPinvnEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thStB6DH2GGMsYotNs9Ox2CblZSh2Gbd5u8+LRWzsrHtWjZmlq/bgvnA8tB6apmalZ6NgWm7bfT2bptHsPhtvPE29GhakAykH/RBVpQTBY1kYvrZsZVboelAmqWjoI00zDVV/KWJX3at8Zoqxoy+oaVq0c6nluGCNh0hWsTbjEwt+CcgJClrdO8XTGfIAskMIiJFC4676ITgOtD1Y2VjqrN9w7sXzx60gZXRGjIg4xGZ4LyaiJXuNNV0e8hI37y4Z39jIGkaetu8Jz9Ccbgi8G3sOAJXfW7bNjAflPVEPksXmY83X8Z+QgOhmtWz2XMlkkbpfQHq2Uo5oUwaSS2txLhqDat1bZkdNTbU6Npvx+KrRpTH6zl4DYbua2VjIO7Zk5jZVzb0O6I8YbMEYwP4xIYQQgghhBBSe3hjQwghhBBCCKk9vLEhhBBCCCGE1J5dy2MTaA1V/GWgs0Ua3LiOODV+eMz4QXRs5qiJNJ7TGPOm0z02IO5Z0HyNeFswX6trPzsd+IbU9w+WlxHp7PlvwPbO0aRW1dX2zPjQi2FQFGfQpn0l/saA/hvtmwnagB/HxigrvW5h5wPxyygKumjG2/y45/Tl4bjnnL7dP+/oG29DGnaoKa/YRqpRlEUYhypdbAdoe+vj0P7zIvIreLp0ZHQwbcrnYc8BWiMP/Qnie1ByzqsFiMfVHoWxQX+MAc9j05u4Z89jOYGnCMbj6thm60lAbV52rz+k5yOwlhPtZYCemoy2YJehfaiGCc5dnlnGX6Sq4QL5b4BxJ/SNFtE2mzvu12z8d4L9faEJ457HV9xGOrdVDbeCuOf4caAJXl+h13MCX5jnq4Ex5PYcEffKwIhy7b8Bkc4w7tnSpS0lYn8nfGJDCCGEEEIIqT28sSGEEEIIIYTUHt7YEEIIIYQQQmrPruWxAQTaSq3fDHSX459hRrhZBvSKKF/JWKOMtomIjCmB42gj7mvZ5ga8tiE3Ot5WzvHathWqzfmeHj2OnQ8tb6TU8/ltej77/eC2sd4ksL2RPtZ7VwESu4N3HCCKPr1oBHllYv1s38rvsUFt1kfSMDpm3R684wb4UbTPpenXSaHecaPfabOjrRltEzVt32NTtuL+G/QuHmMvS35XTfBOn6p+GKRvrwo9N5UoykS9N/TY6B1q2+J+BfxPkXqBwEyB6g74E0Sw/zQV6y3QHoUx8x6bweb4tarV9q+bBfAopPpkAw+Cfe+H6ht4ZbRfwb6rRvsVrFdG9w08NsBHg95xE+nXU+D5CdSzq1jPehlm2zvkUQMeFPRbLwddw8F7bJTHZiDj3UvYM6wnsMdG0HuSvHfVmDb07iVQz4LecQM9NomesZ3d7bEJ4BMbQgghhBBCSO3hjQ0hhBBCCCGk9tRPipbz6NB7ZGc1R2mxlXZxbfWYr21kU231PK1tJDA6ttjKrUZN3xbsG4971nKwAfMs0ZObKcla2OZLyvSYKO7ZrudIqWOi49tCxI+Kbps2vY3DuOfxz0imZnGJ/Xql+QmkYdGJCUhc1UDChmRqSH7lScis9Mz0VaVhH0druZlr2cfo4wMVLbOMtmobMwvU8jNz/HjytpaZL1EWF0rv4tNou2HpX7wwskoPSURIzynGRIqd5Qe2t3f1AcdkqBqrKOuJLsBId6ykoxFvCyLRUexsYlyule7o1x205/pjtNR1DMl4LCW6vnvx1vHoWhEj3TF9YaQzkOdUjs5FbZppkaLFl194+8LujNQF2kETpZUiMM5c1zD6DWFrr6XsBIPmdR1jqoYHG/5vrdS450A+CX4HQTll0Db+MajZMSUNAzHkgdzMazNjej+2zHxIptYFKL808IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk99fPYIKrqTkGkc2m8I1qrHHo+xqet56SpzAxjhYl3BnHPI4XveWmV423WR6OnB0rjsSnmqM/GY6Minm1ss/bcjNg24L/xI5xtWyM6jbap9TTpfRPGI8Y11tDAUNVX04f458reHKQ5tl4RZVSC3hzkIzHttq/e/VbX63lVjJ5fxz8XLSOwHVODDvinMafmK43HRnt8yiDuWa+LmDYzDbdNvK0Xcc8BVdtIJYoyoveuuB8CT5qumRy/AqCh9POlHRT4xaznpmzHj5828KZqP4GOdxbxPQpju/nzzW2OX6taZr4GuBbr5QdeIBCHiz0JfpMXgYt8NBn+G+ijgdG5EiXFv9AZJrWGUT/gDbLXH9HnWVvP3jnYXgzV6zrshcv4QXUNB54q8FvPW5zZiNonZn00Y7uLavP9N7b2vVVRn4PfQdoLZK+h1jPnxZBbX5hqG7Nt6jPy2IB6Ds5XqC3z93oxFv4tBp/YEEIIIYQQQmoPb2wIIYQQQgghtaf+UrTUx1mBVEk9yoRvrfeH9KVR5lG8eszacvYxvZKimef9241Uy4vGNI8udYzygJGpeVI089x8i5KbDZhnerrNxj1r+ZmVqel10Z9F/Ihn+33HjM5HS8yCCO3EN0hnvakXRRBKYlu/8J7P2sjWaJOfEGtlAmqTBtKHREkVlMuILzezK9BUcreyZaUAWrflb/CGms+ZY0Ta4/XmrNxsQEkUjVymbKo2Ox+Ke7ayNbU6VgqB9pO33ZD0L0emFutH+kLRDmVJ3Tuqjzn7E7xh3qsfK9100Ql/tax0Bcoj4zIXZ2XaWtYDCtHGPc9rbut8Ht3DX+/dGts7nweBFM3iyZTtenpvX49Ldex0A0l3kEwNveEdvandyoF6GJ0bQ39DFFGO6tkuH711Q/cNztXwAqy2r10gkkm3/Voo9TUG/NazaEnZHq0Rr210j/HPuzW3e2229mPLC6Roar3td0A1DOVmqC5NW8OLkAbzgXq2wHru1p9xz4QQQgghhJDZBG9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/j40mIwJRtwWzVfR1aH/ImNF9ah2ojn7e0dfEITfGxYTbjXelqcZ5zIgdm0qE2DCCxKbqO8cIKLeWg+rzHNM2Pv1Y2/fY6HWz6+m1tU1b23xf7ccBum3raYKRnmA/Ie9Vsq9mEjrmuIvGUDXyF82HPB9WG+3FFtsZnemr/Sl+m/bV2CROz89m9z302Ki2Ab9NT2u/jYgf9xxEOqsynTDuGUQ6w7aiiLYl70NDsq+G/pue0BgTaeysj8RtGkS3Az9VAepHkC4dxeOqA80OqU+dwXFuvWU6Ntr45draBwCK0kbg7qE8NtuH/S813Nra+byhMT86ZvgqgKLr5x2dgcfGehLUNIp0Rv6bHE9CanRublRutA3Ub9CEahZ4Nb02cP4PUsi15yTYGKqf2fZ2d4vnsbHeFfX7oh3/7WHRXhldvyIio8PxNlv7seXZdUFxz7aGRdesWZyuZ5s8DSPKQRR0L3xhlm717Rj3TAghhBBCCJlN8MaGEEIIIYQQUntqIUXzIgErjoHePh/EE+rHfjY60JNG+feFTaWzaZvHmA0dadyYIO65rSRl5hvr6aCtHW9rqmkbBe1J0dqDflt7XIo2YuOelcRsBMjNbNxz207rbQPkfYEsELS5xJoJ6yLyeaKBKpITqZksR8qQCXjHQel/Qd3XKsEadns3E+PTzaNqb5E2ClprawKZgoqQnuOvXKnkZ/bt6Fo+Y6U0uq+dL5SbAUmZlj4gWURGBLBuw28Hj0s2SG+oEveMpIVBdK73pnYzWzwdHb+mwA/yNaui5Cmmfkp7/VMr4Mb8vlo+M2qlNKpo7SsM9mo+Or78fbZF21pmo6NXL4yN6fU0G1FNh9Izv6te1aBNS36QrAe+xd1vQ7IeGOnco7hnb0hUs7Zv6qsBcq63ioZZIoqCLmz8PohI17VRmpodA9JKLSnbq7nFX4G9R1Tbo15To9hnfHlmTH3MBLI4XcOjfputYa12C9ra8bbkKOheySczZf/2+EPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT218Nh4QI0mivW187luHx+fjkdFav2mscp4Ot/CRDpr7fKoiTu2fpjtxfhusZrnfrC5PdT5/Kjx2DzWjsc962nrE9Jxz/b72kjnUe2xMW16m1r/DdKUI1MCinGsDTmRzpX9N5HPXfrq7W/9OP68RvOrPpdhEK36bAdVvazHRvto5hit/4COe7Y+obhvBnluUDR04NFLjN7GPpoJpklfabSdNMbC87ILTHHjIL8c8mFBvwI6zqwnTTcFWb3Kr1bY61183ZzR6LfHxlfInvPteV2zqPVI5/NzFv+X17Zva/P4os21cLSML69U0w54ElC8847p8c9BpLP2MiBPQh/8CkFbcAGM94UgH00Rb9TrBusZReObevY2TVDP8Shom1guo2pMez5W023jxRoFPmHNooGN3vQfLBmvYV2/O9ZN/Q40F0q9PH0sifg1HEQxj8ZrOIh01m02Chr5whI9Yzk16/VLqFHrz0XwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFqwqUKrloVyxTM7Ip9bko7ONR9SjRrEpRxGU2OZTe41kTj6jWe9Q889WSssfKOdG2INJZPUrV0jMR/7GqlakhmYKN7dRtdnuXXltcboYjnTNydfuvCsQSlarxsVoKAN/8bGccbwzmC2QD6hG32VAoalavuJUp6D/oOGkzm7SN3MyhSGc1baVoukyRvCzoC+QV9p+OfJma35a6f1EbjJAmPSEW91yAt6NbHDxe45JIT/ID5KFVZT3o+BQRKb36Ndc/dYxuH/CvB4+OxiXN8xvjEc//ctC1XttN28Y39JYx8yqCUXVtGvHHbG9X62YlZEq60zAyHivP8SKdR/02vS/wW9zj8wWRzl48rt3Buk3S23qE0wOj84yRe3k1C6Lxw0h/1WTPx+C6FUjTJH48aT9B2TRy+oHx6S3b47+L5jX8iPJ/OujqzudbRvx10zWs61fEr2GvfkW8Gi62m5oFNWzbkHzSq+EyvS010tm+TiLWL0bRRf4bg09sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb3HptBeiiCTNj4f0mgWoM2pGVEUdOC/8TTVZsXa1Tw2pVk3HUloowRHGuO7epPRKupxRoxXRo+53awninTWvpogwtmsN/TRAK8M2odepCn0V9k2SWMyOmbkl+jBfIEuX2uVkXcjiHvW236CY0vHPQeRzi7a5nmDAj+K0hUbfW45oP038fkCr0Ez3qa3WxDvbA9R4JVBHoleeGWq+mbQYUDSaYyFUf/dQNsXxazrWke1FezQVL+CadOHViMoSusbUrVtDlj9fbc3ff/AI625nc/3DSzw2r4z+OzO5xcO/dRr++am54zP9+he/phbx8ccHTE/ZUbGD9jGiHn1gvIoNIxvBnkSwujceJsA/43nozHntVS/Qhj3HG+rTPxUHdS2X89xrxk8V9pLTNn9s4iI/pkSHopxz42t79JbN3+kMVXDm1pDXtt9c8Zr8WpVvyIiR+17R+fztx55jtf2q83jtb9xy1yvbXSb+lIj/gVH13Aj8NiImdZx5qYNeb8q+sK8Gs6oy9yadWMT99kJn9gQQgghhBBCag9vbAghhBBCCCG1p/ZSNEjqoy4gcbJyL/3s0sZ0amla2za2wT1k0zz3A9I0L9LZrFtLPa8dM5KubcX4rrZvcNbjhPI29fZdM6aWuwVt+i26dswg7rmI9tXbNIx71o+xrRRNktp69di+ZxGbnlQJRK8iGZNtQrIXtC203Kri26tF/JoN38CuIqWttBNIa7C8Li4F82Oa43KzQDIBZGvBOLoNRG8Hy0DSsMTo4CxpI6lEJSkakBZaaYfXFkh30mRqSNZjU1e1csimDzdABLz9Um11wnDmp8VW9fm/3LDX9r2xp3U+3/XoQq/tt4+O9/1/j+7mtT22ZTw61231l9fYpqQ7JnJXS3eCqFwb6awuzfBN7Ui60wZyM7vBXbwtWdZjmcS52xsGRZT3oJ7tbw/dF9UsfJ2D+HYFHGdufl+oz9vEjxr/rarh68ee4rW9bss+4/0e9Wv9YVXD27b4EdLuMfUbbZuRT6oankg+qduDSGcQ9+zVM5CbhW1qwm57W9+azIhyStEIIYQQQgghswre2BBCCCGEEEJqD29sCCGEEEIIIbWnfh6bHC0pyidE3gIXF/A7HU0cCAjH2wIvQWO8r/USiPgCfteICxMd8MOMKh1kszBxgYkmEDumXt6YEXXrmGbrsdHTQdyz+f5jIO7Z+752u3lxxGD/gvkCwGYqoAmiIqneCTFeGeCxsbsaaqOBjwWuDNxQYJzAshaPdPY1uOnb3otGRv6XQO+tJlCbmDjoquOgfYFiuYFPKYCem57TaDtpjIXbPDheoxMiTh+IKNrb/tOjmob+G+tz0PUK/De2lMrAA6LHsZ2RH3L8p8bWUb9tZNu412D9f8/z59NezW3G6KYjcG2kc6InIWgDkc6BX8Hz2BgfDfQrxNuwxyYxVhcxUb+KXj5Yz/qcG//JJE0b6a92d8Ncw70o6Ak8NnqRTevjAbVf6N8lbX++baqG12/zf0Y/pGq4PWaOAxXjXASRzuPLaNpI5+3qM4gkF0n30QS1rmo4qD3dF/howm0ocbzr+8QF7Lqcc2PwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFs6TKZ8Cb04OnYPqxZ/BsTc1nH4+qvoFsSt1D2tQ6+1Z3/UTWSsN0HHLTPO7XcrMmkLOhuGeLlpGhdbFyM0/CZqKuw0hnLUWLxz2Hb8wG8aagzZchIh2IxMmK0EQayfjiA/EXkJQhqVIgZ/Ea1eesf+bIkKaBdfGjIuMygWDpMO45sQ3IxOAb30X8KGwgFwrakMxILw+pJyvGQlOW1huKMZGd5YCOV38mf1JfK7AULS6lDGSdStliZWqlOglORtajCeLZgcSqMTq+cuV2I895TMnNzFvr9TLCWFslY7VyHCQ301Id8GZ22x5K0dKkO1iKhuS38fmwZDreNhmwFA3Usxd/ny4N1j9hXNP/Uuh1DjazXG+3shVvC+pZ70NTe6WSirnHjAxfT9rjYAzUs6q1QG6mI8pBjdpxsBStD/JJZ4/f7v0sKTVbtifusxM+sSGEEEIIIYTUHt7YEEIIIYQQQmoPb2wIIYQQQgghtaf+HhtNupVhAp+F+gh0/kEEbOCriQHEpCIiynNi/TdaT9o2wkTtq7E+lqqUiT4aG+HstQFPzY7peKSz57EprfEB+GH0ODlR34g+aZejoFhfa7IBX9crk7j1a3JfT61PGFOttOgwkt1vgt6g5PUCYyItuPXUwL4V27IinePzwUOdvpqeU7SdFI97QXJ8NRrfr2C9muqz8Zyg+tUegdIkI/fDr+DMMjz9/pg5j6tfGtbz4h1rwLoX6P61X2HMtqnl5fhm7DiJPppgGcBHg3wHKDpX76iwDcxXkbz4ct0GfDRFvJ5hND+IKHfWpwQ8ZHYfer40VF/ml3Kpa9iuN7Bo6+PJHiOexwXUZVij8WkbQ94Ay0A+Gl3D2GMTHzM08MXn60a3iP1o3+SeItJut+WMM86QpUuXyty5c+Wggw6SD3/4w96Pb+ecnHnmmbLffvvJ3LlzZfny5XL33XfnLIYQQghJhtcmQgghIpk3Nueee65cdNFF8g//8A/y85//XM4991z52Mc+Jp/61Kc6fT72sY/J+eefL5/+9Kfl5ptvlt13311WrFgh27Zt6/nKE0IIIbw2EUIIEcmUov3gBz+QV73qVXLssceKiMiBBx4o//iP/yi33HKLiOz4F7HzzjtP3v/+98urXvUqERH54he/KAsXLpSvfvWrcsIJJ1Rby148Wg0e3cajoB16rAsf26vYYvsMH62a0ato+UFhH926eJuWg1kljSYcM965BN9XT9soaD1t5WV2HCRFc54sD8SUBsvQE+LTj0jnHOKl5z/Fz5ARpUZBB19Jz2dlU+mLj45pVyj4vlpqg96mjVYmVfJj+troUQEysZxIZxjNnCxPAvOhCPpZKj2bymtTY8wFkfldgfs6rldBb2pHsi3vuhFIbrSk18xXUdYTSNHUtAPyLyjzBFI0JNsK36Le/bOdtvIWGNsMpDtBdC6U9agJEI+L5WbxmGgLfPs7AEqBAylaYj0HNavqEsgug+u7rjUgmxIRKcHvBFizus1GKqPjEP32SqwLJEUL6zkuNwvipmGkM5BdwrjnuEQS1h6q5y70TYp25JFHyrp16+SXv/yliIj86Ec/khtuuEFe/vKXi4jIvffeK+vXr5fly5d35hkeHpYjjjhCbrzxxpxFEUIIIUnw2kQIIUQk84nNaaedJps2bZKDDz5Yms2mtNttOfvss+XEE08UEZH169eLiMjChQu9+RYuXNhps4yMjMjIyEhnetOmTVlfgBBCyOyG1yZCCCEimU9s/vmf/1kuu+wyufzyy+X222+XL3zhC/Lxj39cvvCFL1RegbVr18rw8HDnv8WLF1ceixBCyOyD1yZCCCEimU9s3vve98ppp53W0SMfeuih8utf/1rWrl0rK1eulEWLFomIyIYNG2S//fbrzLdhwwZ5znOe03XM008/XdasWdOZ3rRpE76ABCJNre+zPguQc+vi2n7kwfCGtHpkrbu0kcZK7Gi9Ig2rLVULCdp0dK4RNOpRkzTgCWivTJg+WXT9LGJimkHbjnb1GURKB7Jibz8BoSvQKsMo6BkG8mBoiTPSRlvNq9fX6mpzoqD1+lhdLYh0Tj7WqpIRmyxoG2bEPaNxHFoGGpNApvLa1Bh10kg5UQA/lz53233tRSoH0bloviLapg+mIFa37P55x5jm+qM0+tq3I2J8D/aNBlU9aalRssBLELapayjwzdh229ZAUdAg7hlGWCfH6qZ7bLL6aetIO95WuZ6D2ovPB/03ntcrXs8i4u9/40fRcc92nAKdj1Nj+20TivpG/pfE2HHbHsaQV/PR9KIus+brQmO0Tx6brVu3SqPhz9JsNqV83J21dOlSWbRokaxbt67TvmnTJrn55ptl2bJlXcccHByU+fPne/8RQgghqfDaRAghRCTzic3/+l//S84++2xZsmSJPOtZz5L/+I//kE984hPy5je/WUREiqKQ1atXy0c+8hF56lOfKkuXLpUzzjhD9t9/f3n1q1/dj/UnhBAyy+G1iRBCiEjmjc2nPvUpOeOMM+Rd73qXPPjgg7L//vvLO97xDjnzzDM7fd73vvfJli1b5O1vf7ts3LhRjj76aLn66qtlaGio5ys/IUCJhuVI6vGojQfU3ezzLv3I2UZaaomVeaYeKHe8OOD4I99Aiqa6Bk+RE6VpKPoZScHCKOj4mGE0c+I4pd2mcZlaL+RmVtoIx+wVQCrlR0GjnOiMMdXnsJ5Vv4mioFOPNSuF07OhfVgVFMVZUaYmYrYVkqnB2Ob0dUOqSzhmrN8uxlRemxrt7nHPMOYV7E8Yzx7Ic/TnuEzNHjsNfY7NidUF0lUbM4ukaDCmOrEuYfyxkXuh6FwoucmQ7vjRuSA2OpDQASkckMjj6Nx45G6vQDXb73qGMjUrl7Qx5EiiCWRqSG7sx1tLOkB+BSOVQVtluRmKKM+o2WSJpB0T1WkXaZpdX0ThXE+U7D1j06ZNMjw8LAd89CPSePyCA/Xs+iQdFF+8TVCbHtP+EPSWZ28s1M63OlN0Q4LGCX7cpt3YWGbdjY3uG8ynFxD/JVig+ewNL/jxHp5cinjf2PLMOHDMDC06elcMfKdCzjhg20T7dRmnEjP4xgZd5MNzme5nf7WCMYvu/cK28THLbdvk13/9fnnkkUcov1LsvDYd9bIPSqsV3gzBH+jWK5Nah8GPvdQ2s26eX8G2gTGbqK9E+/LGpvt6BmPW9MZmRtdzULPxvtpjE5wfeWPTfcxpurEZG9smP7j2g0nXJVpUCSGEEEIIIbWHNzaEEEIIIYSQ2pPlsZmRgEdd8BGhp+0Aj8/sbECq5EfnWrmIehxqxizawEcTyNS8KdBmllHx+TSKW471s32DCOdgZq2XBeOCmOhAbobqAlH1MX7V+ZAfBfRFEqdgSN1mH6nrx892Pt3XPka2fdH2Bv4bXZbQt1OVHNkL2r4ZEbWwDUjY8P6Ny2Mr2736pVnZxSnGnBRdijPYDd4fjH7fkwHa64g+58XP/1gKVtGvAGJ1w76mrS3RNi11zInH9RdgZkuU/+ZEMVftC+NxgVQIytQC+S9oA4dySpRuN4JIZ39Q01dN5NQzlJtFxpAJ6tn+TmjG+yL/DYzmB+djSEXpd/WaNW3teA1Vr1k1YeV13jEK2hCP92uMpdcxn9gQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNpTf48NoPD8IcAkgKKCbbRqGdcj47x0rcm0RgN/0rMkAP8NEimGfptqQnwoz0UxzZF+XccE0dD4XTXxiOPKbZH1mrBvBp7nJdFTEywfeDAc8F4F/i7vHRbxxQeraesblCX2ZsXn6wc9i3tO9eoE2uy0NqhhT1z2hH1JJRqjpTTswSIC/5kw8CvoOrDHnT6Wbd014wez1rr3w3+T1TfHd9aLuOeqUdDAG5PTt7KPxkbuQg+G9keAkyWKhc4g8JF5MfYV67lp6kn3tf6X1Gjx4PdF3CeWU88wproH51XkcYH+m4lq1qX1hTULXudglycoXhrEl0f7RWi00wubT2wIIYQQQgghtYc3NoQQQgghhJDaUzspWiBzQXqZ5Dag+UFtQdyzfiQHHl2iKFcR/7kukKnZdYPSoR4Ax0Rys0CahKKZ0ThWpgba0HyxfuLLF6cDpDZz8bIwbeZRvHqMbh8Ve8vLiYI208nFByJbg9l6UcRo1+dI0cC4ULaWEffsUscE60L6T9Eupej2Gnj7Rm51Hg+OSX282re4K7mOlRR7yg4rV0QyNT1fjqyntOcS/dlKqoFMLVVKmQOQovkRtLYNSWdA3xzpTqLcLJS+xcfUOz+U3iG9b7wJYveT+v5Bzep6tnIzfRwE9aSk5k3x25BMLVF2GSwjq55VW1AYMnnAMTrtNWvH1DHRVormHYdWpqb7IdnlxEVajFGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPbXz2ASg7Fyt/TOiSC8SEBkWAu0fMBPoaGKgkQ9001CjD5aPYqJ7pGPGcc9ovsS4ZbsM6JUB49i2EmyA1O8E4wnBGDnkRDrH+pm+YZOu9figwXxafwziVEUm8Mr4K4MX2meSLVRZxyjomxUpDc5Jif4bWNr04vSExlj3uGe4fQP9fvy65b82wPgovXja+Hk08BnolQORxhP6FXTEP/ArZHlMqwI8Np4fJSO6tlcRuMiTkOpzCE660MsA/Dc9wtuHqJ6tB8OLATfz6foCVmNYz8F2slHU6pgJfDz6WIv7aMJzbg+KGHpOzOK039XOlxU1HuknGT6atm2r6r9JK9Sd24Vxz4QQQgghhJBZBW9sCCGEEEIIIbWn/lI0DVKNTdQ3Np+VNOnnhfZxbOKgUN0m5hFsxZjXYBGJz6eDKGbYGbWB7wv6hnKzSL+gDY0fn86Kd54KLQ94wu6JIOPJlAHeMPZxuxooUHKiR+MZfeF8qTHRvSI1/rlfcc9AZpr8dvacMqT8rPeMOQlery5dNrX+Z0NzHdFxuUH9NEBx6XHsP0sCWY8+7otAwtZ7WU9ObYPFYVkVlKLpNiDdAVG5O6bjbfCN6yjuGcjNfJla+nz+epl1SYjS7QwLJFZF1Xpuao0iuP6AmGhUz2LmC15poNcb1bOVYerXJJjFo8JE7gi/ox2ymoQsq2/FmkVyM1iz3u8C8KMhRWVm1wnAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUw2OjpXU5mnGk9deeF9zRjAliDb0ITzsOiHK18ceJeuScxEHXB7E9joLOMABV9dGkLiPQsqZ6euLDZ9GriOPEr5uXEq00xmZOOA74TkhXXDU+vGdU9axV9dEEy3DxfqnrBg4Remr6TzHalqJshw32nwl1F3uy1tPGI+D7aEwb8t8gvwLyPOrrmF0X5AfN8Cv4vlHg44i2dOmb6EmAXgYUtyzmsg28MoGXITnuOcN/04635XhuEN72t/XseajifpjC7nu92sh/E/ho9BjGswXq2Xq/4DVdfyXrzUHnXPBIILWG7fJgNLJuC+aL14m9FletWT/u2V8B6P0CMdV+Pv3EF/+i3eWcG4FPbAghhBBCCCG1hzc2hBBCCCGEkNpTDymaBkXgVtT8FGa+ZGka0uNYvAxAOyaI70Nvip9u2UlVWRGSm6FxKsrbsiKdpwIt2ciRf+nvlBP1jcb0+oGIVis7AQsJnion6uT69cZsTdX49DyZ2uTlZjOtZMk4RbsthXSRRdhXA3gzAelOkHEMZGpIA4MkN3o2K9Xx5G4grlX8CNzgQAexut6YKCrXypiQjApdppHczJP1xONw7fLz3tQOpGhaUlaW8Ta7fT2J0eRkPUmAenYNf0ehKGi9T61EslCx6S6odS03A9dJdL0RMZI201XVc3gYxu0DqC79Yxv9JoxPh/HlQF4WRDPr9cyo2TJeX5VrVq83iJAO6NJGKRohhBBCCCFkVsEbG0IIIYQQQkjt4Y0NIYQQQgghpPbUz2PTDwLfTg+ioAMPQjyaEhomEqNjp4VUI8BEGtgqY9pxgkjPalHQyNNTpM43HfQiChpFOCP/jf2D1SMnbpteScMhqSU7UT/ko0HLS/XRoPlQXxQ9Pd3ni12FsbaIS9B7e/H/5lzieVX8f1/UXgN7HvP8CraAtF/A/JtlcgRthgweXv8CI0DaykBPjQWe/3Vb3DeE/Ak71ifuEYCxzSoSF8fq2ozhRE9COz5frnfBA9Ss161p/Rmq9qz/Rh8rqNZz/p1dL36C2Qq0afT+NdHq/rkTtNnlpXq7M3w03noGnjFUlwLaZlDNWrq10WNDCCGEEEIImU3wxoYQQgghhBBSe3ZtKZqfVxvvByU4IAoa5eqix/SWLNla4phTTa/kZVnjjn8MZBmJ84WSshm0TVHJAKVHqizN9kVKpQmTzYv4Y3S4SVEMer9BsbNZr0CfYDo2boYUzYG2ysygUq8TRbvty2uiHbU8B8Q2B2+7b6huVlKm4nGh3MyXfei+cLfn/FOnHagB2vrw2oJUuVm4fdVn8IZ1kYx4XPQ29kDCVia2AemOjdxFb3+PjdENIEWDUd864tjK1HQ9m7rU8rOgTReGlYk1E+tZBNd0gb4TGKMXNWsp49dQGOGMYsFBfdemZjv9KUUjhBBCCCGEzCJ4Y0MIIYQQQgipPbyxIYQQQgghhNSe+ntsPD+MaYJ+lGrRp9Zz44+Y6I0JBzUD5Zgkakiq/8WQHOE8UVviNpyOdFyUmOphJfvgOEiOOAbzBesCDifsqbHjzKCCnoyvRpEc41zRC4XGnEkWsV2W0TGRRnPHZxTVr3wBhYm51Xp67RewhIeZ9hbk+GjSvDnOzAmja+13RychtUhbo1VPAak+mjAKGvlmTN9+xOPCNjVtPQm6zXoSdF+7Lpocj43xtRRl0b2f4Br2xjC1p301QVtTzWeLpp3qNfNrOqhnL3Udvd4BmVqrAX00dnmoDcWQB56xGtZspw89NoQQQgghhJBZBG9sCCGEEEIIIbWn/lI0gJeajHVqZsZ4E1xeorbEBXm4cNBq9EqS0gul0ERPv1P1MxUlbDlR1FAW0Q8JG8hGDiQbaF1AaqXXrWJdTBz3rD72o56ztmnFZejF9UiWliU368GYYd8ZJPXbVRhrizTGdnyGUjT174YNsx90XK05YJ2Ny1X4l6b+R0FDaVoj3jcYR0fZCsDGYqdIVCRP1pP8Znaz/GAcFDddNR5Xtdk4XkmN1UVvaM+SojXibU1QX2Yb4stBxShovW72+LH71FsXU8+NeC1411Q7X+o1DkrrkWTQ9NU1hOrZzDslkc6q3oKa9eoS1LOVt3UboxyL9zHwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189ig2NkM3X8/oqC92YCQOPCU5MTj6iYk9JwCaX2yN8aSs26pfTN8NJrKnpp+bV9gDPOioCsODyXWGWVZOe45WKHEfr3yjE3xOJV9NBl9GfE8tbixMXE7Nf4FiGrWXhmrIddZttavoLwMrohrz4NDsAF8O57nJB7THKTa2tVOjM4NVq5IPHm1M06sif4FGOkcxOpaH40ax66b54eJjxPG8ybG42bE6mqfgwtidfXJGXgZRPx6bqT7WjwPWavptyH/hB4fREFLYcYs9H4xA5muXu2jejY+OK8tJ+654m8Wbxl2k3n1NME4OtI56IvqsgeRzmg+6/3S5x3rv/H6lY//jx4bQgghhBBCyCyCNzaEEEIIIYSQ2lM/KVoOQBqGVVyJGa05UrCqjy5zJG0ziapSrcrzVZSb9Wr5OaTGiedEQSfKIHOYKBnUX4FKTb2ThvWYSZVB6nfK+O7Jhzoq9hm6rWtHe0yk7CJFM1HFTst+mr4+Bh8TIDZZS7qsbEpJSQKZsvfWeCDNCuKrwasJSr+vlvKgmGh4fc0gOS53ErIeX8aVIWnTbYEMEY2ZFgXtxowsx4uwbsfbcqRoRiLpRXbbSHJdN1aqpMcIlofqUh0HRkPmxZkb6VkY2wzWILGeLb2o4aB+QT3BaHHUN5CNxeWxBapLT5KZEemsJZJAPhkeB11q1lGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPfX32KR6C3JibhMF9lk6yxwvRep8uwoVvUJZ3hlveVM8HyInaTwxCjpncZU79yaVtTp98BRVpmrqedX1rlz4pBe40TFxO70IOmLZ+lOaVvyvAF4ZT6duxyxBWxHXyGv9fJBc6+Lr4swyvEXkGEl15G4/zggoOldsm54vw6+A+qI2Gzed6ldAngQ7pvbcmFhdh8Y0FLpmrR9HtTnjJytslK/XqLwyZr1do1rN+oPY+UCcufV+oXrWnhvzCAD6u1LJ8n55K2rGiddX1eUHY+q6Qecre/7wPGOmRkAUdLeadfTYEEIIIYQQQmYTvLEhhBBCCCGE1J76S9E0VeNpKz5V7JkCpqImZSalPU+LOqYfy5xulU/VKOhEehW1imPIe7OIqsvvB1NyrPViw82gc8Kuihtriyt2yCK0/MyhSGcbBa3fDh5IyoBMzRsEtAWRt1raASRsMCpXcH1plZx9i7v3newywJjeIPGmnOjc1DGzQLKeYJlov8VlY748x77FXUVBB5IfFblrZVtm/3rttp51FLRdBqrZxBjhQP4E/tm9APKyAD1uMy5TK8w4njTNHjOanMcDE6Rtp5Alg6talzn1i6SOKC5d12VCzToH5I4GPrEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWnFh4bkHJbnV5oa6tqhXvErEt9ncHfty/7oh+1PgVFM5O8X7WF23DGsiPu+fEdpHwIQXK7joK2/oFCR6Sm//uiHieYrRcRtBOhl2H9N5XHVJ9z4u8rLy/R42L75vgVUvshv4LF898YDxOK3PXajG/HLkPXs92/el77ugHPq2LQ65pTs962N6OiQybIM+/zybSqbyarLuJdYTQ0GDfHq1Mgrwxatq4ZW7O6r417boeeMcY9E0IIIYQQQmYVvLEhhBBCCCGE1J5aSNE0M1p+NZPXjcxeKGsipHeUbZHHo2+9U759G3sZlwAl/5tiRXmZlZn0LObdW4Y/jSSoXjwvkgZlfN2evP29X4B1C2SJFcaA2MhdHQU9ZuQ8DRvpDCRHXmxytVXrGUimBtYtOC76LVPLoB+/bSsfI/04tuw5UNWpjSH34p93Rpsz7pkQQgghhBAym+CNDSGEEEIIIaT2zDgp2s5HUuW2bdO8JoQQMvvYee618oDZzs7tMSaj45IpJa+wso/Ca4vLMIrgbd1KclGYf3ssxnU2rm01N6qviUxzahwHUthcadOu7PL1Z9NXS/HAP5n2Sv4DZTZ6k9r94iU8mTHb/r7wlmGUMN5+a5tlaCmNHVPvX7TvS5MU5UkbfUmZlxjlRk1bu3u/HYP66wZq1psO1lvXs5UMqWIo/Zp1XqHE6zms2QK0+Xg13QA1a+sZ1HpPCM4X8TZdp8F5xkob1XTRtm1lUptNKfNq3e5f0OZKXZfxmnVGZubX8462MRl9vG3i69KMu7HZvHmziIg8cNZHpnlNCCFk9rJ582YZHh6e7tWYMey8Nt0g3x7/o/59N2JmsNOEzDSs9UtPjwohM46U61LhZtg/y5VlKb/97W/FOSdLliyRBx54QObPnz/dqzWj2LRpkyxevJjbxsDt0h1ulzjcNiHOOdm8ebPsv//+0mhQrbwTXpswPJbicNt0h9slDreNT851acY9sWk0GvKkJz1JNm3aJCIi8+fP506NwG3THW6X7nC7xOG28eGTmhBem9LgdonDbdMdbpc43DbjpF6X+M9xhBBCCCGEkNrDGxtCCCGEEEJI7ZmxNzaDg4PygQ98QAYHB6d7VWYc3Dbd4XbpDrdLHG4bkgtrpjvcLnG4bbrD7RKH26Y6My48gBBCCCGEEEJymbFPbAghhBBCCCEkFd7YEEIIIYQQQmoPb2wIIYQQQgghtYc3NoQQQgghhJDaM2NvbC644AI58MADZWhoSI444gi55ZZbpnuVppS1a9fK85//fJk3b57su+++8upXv1ruuusur8+2bdtk1apVsmDBAtljjz3k+OOPlw0bNkzTGk8P55xzjhRFIatXr+78bTZvl9/85jfyhje8QRYsWCBz586VQw89VH74wx922p1zcuaZZ8p+++0nc+fOleXLl8vdd989jWvcf9rttpxxxhmydOlSmTt3rhx00EHy4Q9/WHRuymzcLiSf2X5dEuG1KRVem8bhdak7vDb1CTcDueKKK9ycOXPc5z//effTn/7Uve1tb3N77rmn27Bhw3Sv2pSxYsUKd8kll7g777zT3XHHHe4Vr3iFW7JkiXv00Uc7ff7iL/7CLV682K1bt8798Ic/dC984QvdkUceOY1rPbXccsst7sADD3TPfvaz3Xve857O32frdnn44YfdAQcc4E466SR38803u1/96lfuu9/9rvvP//zPTp9zzjnHDQ8Pu69+9avuRz/6kfvjP/5jt3TpUvfYY49N45r3l7PPPtstWLDAffOb33T33nuvu/LKK90ee+zhPvnJT3b6zMbtQvLgdWkHvDZNDK9N4/C6FIfXpv4wI29sXvCCF7hVq1Z1ptvtttt///3d2rVrp3GtppcHH3zQiYi7/vrrnXPObdy40Q0MDLgrr7yy0+fnP/+5ExF34403TtdqThmbN292T33qU90111zjXvziF3cuHrN5u/zVX/2VO/roo6PtZVm6RYsWub/927/t/G3jxo1ucHDQ/eM//uNUrOK0cOyxx7o3v/nN3t+OO+44d+KJJzrnZu92IXnwutQdXpt8eG3y4XUpDq9N/WHGSdG2b98ut912myxfvrzzt0ajIcuXL5cbb7xxGtdsennkkUdERGSvvfYSEZHbbrtNRkdHve108MEHy5IlS2bFdlq1apUce+yx3vcXmd3b5etf/7ocfvjh8prXvEb23Xdfee5znyuf+cxnOu333nuvrF+/3ts2w8PDcsQRR+zS2+bII4+UdevWyS9/+UsREfnRj34kN9xwg7z85S8Xkdm7XUg6vC7F4bXJh9cmH16X4vDa1B9a070Clt///vfSbrdl4cKF3t8XLlwov/jFL6ZpraaXsixl9erVctRRR8khhxwiIiLr16+XOXPmyJ577un1Xbhwoaxfv34a1nLquOKKK+T222+XW2+9NWibzdvlV7/6lVx00UWyZs0a+eu//mu59dZb5d3vfrfMmTNHVq5c2fn+3Y6tXXnbnHbaabJp0yY5+OCDpdlsSrvdlrPPPltOPPFEEZFZu11IOrwudYfXJh9em0J4XYrDa1N/mHE3NiRk1apVcuedd8oNN9ww3asy7TzwwAPynve8R6655hoZGhqa7tWZUZRlKYcffrh89KMfFRGR5z73uXLnnXfKpz/9aVm5cuU0r9308c///M9y2WWXyeWXXy7Petaz5I477pDVq1fL/vvvP6u3CyGThdemcXht6g6vS3F4beoPM06Ktvfee0uz2QySQjZs2CCLFi2aprWaPk4++WT55je/Kd/73vfkSU96UufvixYtku3bt8vGjRu9/rv6drrtttvkwQcflOc973nSarWk1WrJ9ddfL+eff760Wi1ZuHDhrNwuIiL77befPPOZz/T+9oxnPEPuv/9+EZHO959tx9Z73/teOe200+SEE06QQw89VN74xjfKqaeeKmvXrhWR2btdSDq8LoXw2uTDa1N3eF2Kw2tTf5hxNzZz5syRww47TNatW9f5W1mWsm7dOlm2bNk0rtnU4pyTk08+Wa666iq57rrrZOnSpV77YYcdJgMDA952uuuuu+T+++/fpbfTy172MvnJT34id9xxR+e/ww8/XE488cTO59m4XUREjjrqqCB29Ze//KUccMABIiKydOlSWbRokbdtNm3aJDfffPMuvW22bt0qjYZ/qms2m1KWpYjM3u1C0uF1aRxem7rDa1N3eF2Kw2tTn5ju9IJuXHHFFW5wcNBdeuml7mc/+5l7+9vf7vbcc0+3fv366V61KeOd73ynGx4edt///vfd7373u85/W7du7fT5i7/4C7dkyRJ33XXXuR/+8Idu2bJlbtmyZdO41tODTp5xbvZul1tuucW1Wi139tlnu7vvvttddtllbrfddnNf/vKXO33OOecct+eee7qvfe1r7sc//rF71atetctHR65cudI98YlP7ERq/uu//qvbe++93fve975On9m4XUgevC7tgNemdHht4nUJwWtTf5iRNzbOOfepT33KLVmyxM2ZM8e94AUvcDfddNN0r9KUIiJd/7vkkks6fR577DH3rne9yz3hCU9wu+22m/uTP/kT97vf/W76VnqasBeP2bxdvvGNb7hDDjnEDQ4OuoMPPthdfPHFXntZlu6MM85wCxcudIODg+5lL3uZu+uuu6ZpbaeGTZs2ufe85z1uyZIlbmhoyD35yU92f/M3f+NGRkY6fWbjdiH5zPbrknO8NuXAa9MOeF3qDq9N/aFwTr3ilBBCCCGEEEJqyIzz2BBCCCGEEEJILryxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7eGNDSGEEEIIIaT28MaGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG15/8DDbwFDayzgUwAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 720x432 with 2 Axes>"
+       "<Figure size 1000x600 with 2 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -624,7 +713,7 @@
     "Ex, Ey = np.gradient(SOR_sol)\n",
     "E = np.sqrt(Ex**2+Ey**2) # Magnitude of Electric field\n",
     "axes[1].imshow(E)\n",
-    "axes[1].set_title('Electric Field');"
+    "_ = axes[1].set_title('Electric Field')"
    ]
   },
   {
@@ -639,7 +728,14 @@
   {
    "cell_type": "code",
    "execution_count": 15,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:10.809584Z",
+     "iopub.status.busy": "2024-08-14T18:39:10.809382Z",
+     "iopub.status.idle": "2024-08-14T18:39:11.999833Z",
+     "shell.execute_reply": "2024-08-14T18:39:11.998970Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -651,14 +747,12 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEtCAYAAADHtl7HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9fdBuW3IX9Ou9n/c9d+7H3JmbmcTJ5GYCIpqgVahggl8VK4KiRiwtIoIpEDVlWakyJTHGFEVRpQhSJJoCLWssCUiiEA0gShACGjSJhYhKhRCJQBImk8xkkjsf9+uc8z7Pbv9Yq3v16tVrfzzvc855zzm7q9732Xt97929V/92d6+1iZmx00477bTTTjvttNN6Gp70AHbaaaeddtppp52eNtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROd46I6DcQ0Z9ZWfa3E9F3Puox7bTTTk+eiOg3EdEPPKa+Vs9DK9v7U0T0G1eWZSL6RZ28x3YPdpqnHUA950REP0FE7xLRW0T0SSL6A0T08oo6//iF+v+SPFkcJI2Zv4uZf9Ul2t9pp52eLnJzkvz9vgu238w5EZ07D+U59KEb/7/IzL+amf/g+SPf6a7RDqB2AoCvZuaXAfx9AH4ZgN/6hMez0047Pd/01cz8svn7+sfZ+RK4WkG/243/j1xkYDvdKdoB1E5KzPxxAH8KwN9NRP8sEf0IEX2GiL6fiL4UAIjoDwH4YgD/Q36z+qac/hVE9EO5/F8moq+UdnP9f5+IfpCI3iSiP0NEH8jZ/2v+/Uxu71d4EzURfTsRfYyIPkdEf4mI/pHHcDt22mmnO05E9HcR0fcR0RtE9NeI6GtM3nuI6FuJ6CeJ6LNE9ANE9B7055wfJKL/mIh+HsBvD+ahX2L6+iQRfcvGsX4/Ef1r5vw3E9GPEtGniehPE9FHOvU+j4j+RJ7//g8Af/uWfnd6dLQDqJ2UiOh1AP8UgDcB/DcAvgHABwF8LxJgumbmrwXwt1DeEH83EX0YwJ8E8B8AeA3ANwL4HiL6oGn+1wP4VwB8PoDrXAYA/tH8+77c3v8eDO0vAvilue3/GsB/S0QvXOq6d9ppp6ePiOglAN+HNCd8PoBfB+A/I6Ivy0V+D4C/H8A/iDR3fBOACf0558sB/E0AXwDgd7i+XgHwZwH8TwC+EMAvAvDnbjH2XwPgWwD880hz7P+GNOdG9J8CuA/gQwB+c/7b6Q7QDqB2AoA/TkSfAfADAP48gL8K4E8y8/cx8w3SRPQepIkoon8ZwPcy8/cy88TM3wfg/0QCY0Lfwcw/xszvAvhuJEC0ipj5O5n555n5yMzfCuAegL9z60XutNNOTw398WzNlr9/PSjzzwD4CWb+jjw3/N8AvgfAryWiAQlo/FvM/HFmPjHzDzHzg5k+f5qZf29u692gr08w87cy831mfpOZ/8JMW99oxv5zQf6/AeB3MvOPMvMRwH8I4Jd6KxQRjQD+BQC/jZnfZua/AmCPo7ojtAOonQDgn2Pm9zHzR5j530R6w/pJyWTmCcDHAHy4U/8jSJOWTngA/mGkNyahT5jjdwDMBqpbIqJvzKbuz+a2XwXwgaV6O+2001NLMifJ338RlPkIgC93885vAPC3Ic0PLwD4Gxv6/NhM3usb2/o9ZuzRXPURAN9uxv0GAEI7x34QwMGN7Sex052g2wbK7fRs0k8D+HvkhIgIaQL5eE5iV/5jAP4QM0dviUvk26ooxzt9E4CvAvAjzDwR0aeRJpuddtrp+aWPAfjzzPwrfUa2QN1Hihf6yy67N+fMzUUfQ3IRXoo+BuB3MPN3LZT7FIAj0vz7/+a0L77gOHa6Be0WqJ0i+m4A/zQRfRURXQH4LQAeAPihnP9JAL/QlP9OAF9NRP8EEY1E9AIRfSURfdGKvj6FFJfwCzv5ryBNIJ8CcCCi3wbgvdsvaaeddnrG6H8E8IuJ6GuJ6Cr//XIi+tJsNf/9AL6NiL4wz0u/gojuYXnO6fX1ISL6BiK6R0SvENGX32Ls/zmAf4+IfgkAENGrRPRrfSFmPgH4o0hB7S/m+K5Ve0nt9OhpB1A7NcTMfw0prun3Avg5AF+NFDT+MBf5nQB+azY/fyMzfwyABEV+Cunt6t/BCvli5neQAjZ/MLf3Fa7In0YK3PwxJNP1fcyb2nfaaaenn2SVr/z9MV+Amd8E8KuQLEM/jRQm8B8hxUgCaaHKDyMtQnkj5w0r5pyGcl+/Emku/ASA/w/AP3buxTHzH8vj+cNE9DkAfwXAr+4U/3qkkIdPAPgDAL7j3H53uiwR86wHZaeddtppp5122mknR7sFaqeddtppp5122mkj7QBqp5122mmnnXbaaSPdCkAR0T+Zd3/960T0zZca1E477bTT46B9Dttpp53OpbNjoPIGXz+GFFj3U0iBev8SM//Vyw1vp5122unR0D6H7bTTTreh21ig/gEAf52Z/2ZenfWHkVZi7bTTTjs9DbTPYTvttNPZdJuNND+Mejn5TyF9S6hL40sv8eG1127R5U477fQ00fGNN3B6++27uunppjnsmu7xC3ipJJD+Q9prtk0v271SfdzNi/IluU7g5q76dtrsVURnsmutN2OuWNAG+SRfht0Bu8xuPneOUx/cbVMGlnlvjk3CPL9nz339uj9LrQx06rrsx0KzfI4LNbwGOvxmd24OwvM53gPFE8fNuN/Ep3+OmT+IgB75TuRE9HUAvg4Axve/Hx/+t7/hUXe500473RH6+Lf9J096CLciO3+9gBfx5fRVSZHRABoIGMdUbhxT+jAkMDWkMhizkX8cU3ouAz02aQB4KMdaN5dlouQzsOeAS8sDH0y+pOVzdufeD8FnAijyim6SBtmUMeds6k3phCYudXJ9mqYqjZjTsdST9qYp1WeTdppM2XTMWm9K+QBwOuX0ScsyM3A6pa5Pp5SeeQ9kng+U+T20/M+ygcGU6/Ff+OfObX7Mb5cGrJYDwAGwCwDnCgBFfAaAiUs5yyvP2yjN8pe55rfPt/zOfEzyMAETV/xmzT+BRTbyGP4s/3fdT+fcBkB9HGl7eaEvQvnUhxIzfxTARwHg3uuvr3pFiVH1TnedwreHnXa6u7Q4h9n56730GlfgKRN5xTPcYgI7V4mtpAY8XbRtakHUViJqLQ5RmqQ7cwEPBJqw3hq2OJ4hKVMakLR5Bk8dHjeysKqPC/LCtnUbOXyaqCcfm5ogtULRQOAp8xuYtaTdBkD9RQB/BxH9AqRJ59cB+PXnNPREANNzIlsAFr42d8Fu3D197IBqB3Db6Xl6DlraPocJeKIgfHQYqnKqwHzZyt2zjgHnWoW20mw/kvWEn7MKqA0EnG4xoIGS1ULaGYZkrZBfIPN8Ak81cK4AigcuNLTpj4oaC+K6ahexPgVtXmTe74Ei4dNW0CRAeCBgGoBhqvltywHK7yU6G0Ax85GIvh7pUxsjgN/PzD+yuZ1HKV/Pt3IotHQfHtGEeLGHqdvBI2x7C11KiJ+ECS+M7Xjso3gitHkOo9bycJbFQehSFoLHoaQpOF4rrhewENyajHurNxZrhdDzAcW9GABidd+tpaWydpxhfRT33uMiO+QpyJ+zEK7huym3yYrpLZD2/Iz7Q0Rg057y+9SpgFvGQDHz9wL43rPr30YGLiE/z4miWJzo1tyHM+c/4fGtsMFt596nxSf8qMe5lglzxZ6SW7mWts1hJq4FTnkSFTBFzhIlZV1501AaS2TR8MqycReuG/msQs4UWp/m+N160NYpwCXFqnE9HCvsXnu2XTkeKLURAqMB4FO2apg87X9I8VcjgYNn08c+pToBrwYjGzZvqHnLt3X9hkHmLv5pC0WyJWmeLxUIclNNlhOVjYHANg7Kk5OPOZlKLluu+X2qQVXqnrMVylgVqYA24R9BAsrLc46bzjjxGILIe3S2rnjc9WbocenlWxsmonFubdO28bheJs/t54KMuYtxXWdf3iV8rIxnDkRtpVgZOm0zxArtsdOTfEk1YSTLZUktPfFYHOg6x6o1DCloOGw/u3UmDsuJdariveN5BaAjMDRnXeqB5Etbm9a29bi+UXKGlWoVAOeYj+lZRS1rUk5ioOSFZsW4nhiA2kRb5OcMWbvrBopzxreoG3ttrpmTtprwt9KWds+4OY8EFD0KkNsrutaQtOi6jSbyFY1LkTv+3FyaiCitvCoJ6deuvAJq5TmnSA2F1oeetYnMiryorF15ZfLmAsgb69Na3t5mLggsWPPlqW+VWgo+t0pVYl4GMjelxFTRBLAo1XEsijXqEyj8B0LrY1hnDXmZiFZL9oDOgjVrNv5pDXiKLFFzPAitlWa6CRYEhC66ANTwQCAfB+fLenec4f1qfgd0twHUmitYKY+b9exdND3MkbvApevtm099u3ONrCy3hZbaWcnIzex70ux+BACsdw9mb6HNXLqJzyOQMkoznRrQVCnPct4sX9fy5k/rSNlyU2cVpSEmOBfSQoXBtF9d43JfDRldJ+0ldw2Sks0KTZWmUayMGdfOAPDkXDgDkiLUcddxLzygrMSzFgfj6iNkC4MPLgaAYUr1x7FYISLLlZUBD569+867b+f4b9uRK7yNFcoB5y54Osfq1LEy9uJfZ128ti0FvGhBGriMm2vel3a43PNpqvmNbG2ijfwO6O4CqAuApycCmm6rTM4dgh/7wsWvjk161NYmSxfqYxMbn2Rs1hxtlSMfczDXtCq6pTY7s+DzTEtBwM51d6sg89TA/Hkvbam93mV0mrIKvKsAlyxK57jd1tCS+687HCqxMZhq145vM+A7ebDjV95tiGlaHf+UQVZkYQRqEL0Ium4LnmxdD3ywYfqwchEB5rV1F4uaIPHIlWdp5cKAJwKgFifuufyZvOV21zJlXbGL1r/E23ylRGeulSk6nK+6ZG1aAFqLD9Ns3vxNWWTrGrbfcl6/hBGGuycbB7DSuhi/Ic4kdE1abdvPJJGzNgDmLdZaEYbAErFi80Qp7+tqX04xesWpx1RZHVa77nwbHYryVOE5SxQFVoTGCmXLSr4MxuZrA9xaMuzy9lQosErIsYl5kXs9WRAlG5kCxLmSV7ReBgL+U8XTDv8RgCdnkYr4HZVtZADoW59mwNNaa1djFeyBKKscOPNSrJ9icZxz/wmoAmqeidvOW6X8eGws1EAAxszPzO/E6HxNRlBXgPK7Z4Hq8e5RAqctk/+jUhRr213rUpsra+9HcPMWrVNzb5pLb6ERnQmezgZka/J9X9uKn0VLfcwO2WdGja2wUhHP3PLn3iJlwY3ROoHbJp06K8GcIvTpXhmsiVPxsU89ilx3K8HTKpoDUd6V58q3bVEb95QVpgdVleKW1VlReybAmIDitrGWKCC7gYqbp22rA56b8Q+NbNTXgiIfPRmZWxG3ki4JnmxZMtajCERVtMTrpU1U7blx4zX8JtORswizrtYz7YnFsSC7VRbEuwWgNoKnWeA0N9GvkZGtc8ilNexKK8JsnTWAasafMwukzgFKW6nD4PMtWfPdbWbho7r+nn7dMoy1shC91M65+LrBDTMDfJbIr7CqQIjbH0iUp6VK2bpPd9j8TF6htfFK1J8HI2V4DnhaIXiNMp0DUX6M1spk3Spz7pkVsTG6K3lVxwAtC6I0zzRc7X/U4aP2jUo2yPI0+p0FSyU9WiywegEBBW1X/ZTDLnBaoUPqjU1z4tq4N7gpJQPmyo3n0zqgquK338JCnsMmHkoGC2C07Y5PmQVqA3gKJ4xzANPShL9RIfAF3s6JjfCv7lgqb8zvufw6AenN5fVA1BZw1SsX7bvSLbsxHQu39xw2XgJMyaDWtjUjKk0TPevTjFWqC6SeVxBFKN+nAxBZoSrFaS0P3nVDgetO26VaUdo2gU4aNa47IPNOx4Oc1oKnswLJAzmqgFQkzwOAKY8Nxn1jP+Jqg8l17FzcOEDftWPBF1ACyqv+7XkBUWm/J4YqT0KyROS89vo7/Jf+/Z5fEf+1LQHc1PLW5nfSlhYQ9L5/uJnvncmmAdB2jBGIQg2Y1dXnY6GACixVVkdv8cIGflMaUMVvub45nju6OwAqottOxnP1z83LdAmwtLZdWvJRLineOaAT1Zv146xs+za0Jfp/I3i6CHB6VJanNW64qHw0t3ea1MQe6lp7659Ldx6hcdH0volXfdbFKMawWYqPI+q47iJaG2t66VV40iZ5xRctQbdiRLVlYr4/QujaCTbObOqJUlVlXWKiKhePdekAKN/Ec9QDTw7gdsfT4XkFoGfTXJ2mHdMXsHkBwVnUWZ0Xl22Bb8NboHXlWuq6DGf4DdT8BlqeL9DdBVABM5sJIZrAe0IQpc8IzGqAdEmhi4iXx7JotYoUY2R5iCxSQcD5KkvUucBqreVpZVqXPbdw9WnbjxA/8Nr7twCOu2xfskhZnT7n0nveKIpvSgk5P7A6ybG8JY9DnWbL5XRvfWpWXVEQNEy2vinrrQ2Rwu1ZLFYS2TnGu+6yjPbioXSczjLB8gkVaThboVJ/2ZUTuXaq/Z0CqwSQ7wkBJ3HXGRePtJMtEGzdOvaaI+A7ON4CNXjO+eysUVU5z+/c3qz7tuO6W2V5ani/nvmVpREJAGu6esjyWGD5yVo+3MIicuXl8VeWSOeFAxK/AQKdpqoekIEac9nvyfIbCHg+T3cDQDXAqC2y6oFeC5I6bc0Cla3KY2v5OevRQnk/7sZiFQKktWkxkFrtzpujcwGIr7cWOJ0Jms4GSnP1FuRj1Qo538cCEJLTpukewPZ1vWHyebNCkbMyWPLumg546sbBmLTuqqswmLy/pD20bOSkfgxUW0X6UQpiQ6qXKzOPVCAKVmFCQdScK6+xTIgVwlkcwoBycxyCKFtOr7MAKaHuoxpZHJf4D9SuW60fyMMG92012LXgqeL70oSEcD7rxb51XXraXuFfuAJTeeMWC6RSLb/tdUoaUSsL1kIplkIg3Hl+zfYIdwNALdBZlqeVwKkLmpYA0FaAtERL7S25dzqAqgJTW4BU01+tPR+H7lxleVoDnnrj7LF+6boucd1rrUv21NVpY5OCegGvI5Z36y7K5fMGosyk69Ptr1eeotQWlOfaoOEw5sUqTqM0Z7+H1gNPcyuQorzJKEArSxZEaT9tUHnXldfZXLPaSHPImVUams0zE4jygEzGj1rZWh73NlX0btqq3Rg8d+OeDEUbp3Zdd3bPp4iX54CnHuujdGNtBFBZHCWdhD9T4kUVD5UBc3cBgS6Ks7FuaBcQ2Lo5rQuaBURZip7pFZtpPnkAtTBBL4KnJeDkzkPAtEVgnhTNjaVnQUAHTEUK1mvVEFgtgCgPvNz58l5QMxd5CeAU1dkIrlbn35Y6b3w2v2ul6oFtx9sQZ3lZ8nW8Feq5Iqo+JpySzM3w2xn0gJNXnB48WYUbpmHeZWMUsFeY7bm5lkaRL9wOuQVc12WjyIroZQXbuG5QB5WbGrZOvZ+QsXgF49W0wFXIeaUVeUVtV2AJ8AKg7p7ZG9CRgQg4ecujk4uLyYD0tRY4ReBrgSiYKxRImUlI+Tjwsjsvct36BQNAcu+BAOvi8246WH6j8LriN7X8FlriOxqcewdojnm3BE+b+ruEkiBe93frfjpp54DHxfNHhBzcU7u1m0XwFNXZCp7Y/D1qWuqrk3eu1W5T/vNKoqQiJRiBp7ANqvNU6bXlZwOCA6osT37ctr2ojerTMdtAclPWtVWXLWPQ4yUtFFm81uyLFFh3mvzoN7IS+Xo9GfDpntcR2Mp5Z1sf566tSks/TB54lSJb+V5/FsbmdRpa4DVHPAuvZSEt4psv13t+I/526MlboCw1D5vN4265zVanc4BWNI7FsmsLbmizJ+FRcviGMGORcqb3qu2OJWrRCnUJ4s4xVgAnX34NmJgZ/+P2VnWDyT3PTHq4I0WPRx0RCC1RUtZboawQRNbQZ4kWdgm3x+E2BXOWp4U0238YNN6xOKyxOtVz7XYGshNEMqua2AzVWym8dWLJMlFFw/itDbppqcXIMgHkDRjFOmEtUoCxSKxQ4k4GeMYiaS1PLO6jcy1PNk/6OccCKePaSJHFEYitjgAaSxS52WeW3yDQCU1aa4lCtcWB6j2xPlp+5/Rm24KnOQZqNRKeAUMXA07nxkmtpaV2PHjR9IWKETAy53J/KiDVKTsHjC4dBnP2Asg5oHUmcDrb5XhbUt50ugyAU5VuwE5VT8r0ytumt4Co54IojpUAKuXZuGtsfuSysfk2zbQRrrizLhvbvwFXXYW5Ajhtc+XYAZo4F+lH3TJSRipDQVWoWLeszJO2ozSgjZ2RoUj8dxTyErl2fJ47D4GT/HYCy31weBc8Vf0hlgELnjpyoHW0f4rTZ0jnJgeWNc/wNnXNNa+BFjQv8ZvZtGcpCDY/h9/VBS7fiDsLoCrqWZ96x7gAeNoSK7U2fy31lKPPWwumFsAQE8cgKmpH23hMGrQDiqhXJjhfBE9L5bXc8vVuBZLdJqvgf44O+6BIzlHSWqsR1snrs25R2kIOqFhqgoP9b7SdQc9lA3RXW7U7k5t+bMA40CjNesl73W/VXkS9OQiBqMr1iWIUIDXZAGJnoahAVGk3skR1V+b5NKDdjNEHEBurk/CQfL5tt7onjhc9198SeO4FjJu2VgWMm7ZWgWgZU9SOpwBINnyPgBTgdBYKr4MtLFI/Vh7QBIcLvxUwRcHmen351y8SQAFSwAow1aG7A6B6ArERPHGvfHRe5S0Arq31b0UbNRYH/UdPgwVSbkKsrFFRuQh8zbnyNo2/DKZqYyt4smVuC5rW7kflaeM9aAIxwyYjXnLL8qYMKr411qiQpy3LGzlYEs9nGHSFQCk6dy63BjgBFUhq0nKdXrBw111D0TF0LM3qLJu/ds6bA1NVsTI3iIuEGI01KtmaLEjKAjShcfF0A43ztj6Y3JDFGlUpbEYVQAwUBc6c3Ht6QSse6IjvDvj69C1u282LBpaA00q3bQioxPoTqRuzl5LONXlHdxJLVL7tJJakfAxQ2gCchd9FHjTgezL9jqlsxVvm1voo4My6cT0Y9DzXi1rm/d0BUFuoB6TW1mnybmGtehRBMXOWpUa79dJmLETkynbHYcqtrbO17Ebqgqc5mgFPcdD1BvB0ieuMeBn03cQduYHNWpnM8dpyS1S187xsZ7DCEtGzOACB4pzpZ06B+ePG8mSVZqQwgTpty5wXlQvmia5I2P2dzJjJum+MRUL3ibJlvWXCtwUUBRi5clSxGqXqY2Kk3BpaAs9yLd7q5K2Mro1wu4pMoevWH28ET2udCqGB3FqShALL4+ycKfxG0Fbut5cXWh/9Xl/RVgk2P9oBfYbuNoCasya5tK7lqXcPNq/o63B97URzNvWkzXUcWJVizeuqO+U5Gxdl6wZWqO4wQ5DSr9LkL9XvAaK1wGnNCsBHCaBWkr/L6a2vnslWW5micgFWX7JCPVexUET9GKieZWoOOM247EKXzYLlaa3VqQFNfipZCxosEeA3U9S+GMUaJRkjpTITG7GKLFHQOBkS8yjzdsuEsVBpuihQu6Qd6C9rb645uE/RIoMF4BRbo0p7ofXRtXdr66OOtX+5Parf/4yM5XsnCwqs5bHeoiLJQhMXRdmSxcXyKO0kWcgTGfdi3iTA3KRLHaDlueRvoCcLoIKxLk7GYZ0N4GnTar4FkLWUfluKrAEWuGga1eUaZbcApMK3xyAuqlNWtGj1xtkDTjO0ZMAIb/Ma8HQucFo6n6t7Bm1acUetCFir1CxAckCqKWPzbbcbrFPPLEWrlDoWqFBp+vxIcQ6ufkdxNivtqGNpWABOazdSDDcmtPmmIjlBLiJVgAlTUq5dxSrHZoVeibGyQAvhii0AbUyMBVj2Uq31pMLIKwX+DBnYBJ61DlrwnIdZH+c6c3LgL+8Cz7adwzxotkCqTDl9fktdcemV/NxFD0hZCyZQAanqMi3Pm1WX6+juWqAioBMwe7PlaU3ZJxUP1XPXATVwadKctlwAOu144/IViIrKPioKwA/18lfWB/rg6VzgdGmP1WyAODArDz13WiUaUTtN3SAfwS0IwT1d/qbcNeq9oXZcKV2Lg+Q5UFW14RWnabNncUj5Z4Inc8gdQ1svPW1UKIVKu+230qQrqkCU3+5ArVFSIW+4Ga3YkmvWHcur++/Akn7CowCsMs6ZSd0r1hm3GxDIwBJ41nqmS2N59HlVfnMs/c5YH4FQr55jfazAsnkJK+rIgCGG8kq7zvKyaTGB/fSLChW1AeY6Lq4CzYGA50syENDdAFCe8UHeavAUtrECZM2BpiWAJcnbZS9sNwbBC41bS9Ns+Y41yitQD6IiLRqkbdahLMLcH2oIniJgtASc1oImLwobLFGr8rXhmawAoCw1W+Mrg6zQAUmmjxBbhyBpftzPNBGVPXs8uVVT/njehYNli0OuG1kcFNT0FGYEmiKwFPB1SaGqIpNNm+1zlxWZyEz9YeE0OJW7PG801iiRU0YTXC4unrJVUwZV3hoVufXUfZeHbR+uqb7mHrgK700kB3Ogac5d5/NH047lZS6/CJwiOUCdVl3fzKaX1hKp7VTzCWuavryJLOT+lN9ynPlN6qLN09dU2kjTmQSgUy6L4sY1LrrGZSuJIc8R8niJ7gaA8rT1LfacCb0Hnhqw1CknSWv7ngsM77RZMThyw3mFKMdSfjaOKdKYKylq71LlH6FVZ1V/54Knc8YdAdIov8ZCfbZFgMi59VaBqOcZJK2lSLlsdeOg5uWS1am024KgKAbLK81wZ/MAPG2xQlSWJmlH5FRcfgqaCO230mq5btw85hloPv8SBhkHq/QCq1MFooD62G3EuHg/oh3QzW+3fjcdjodxucXFAlaGeuDJNT0HmnrlFExVfHW8VhkI+L3K+mjqKE+NTMC0LbyMLI16AQYUG+vUVrqbAEookhsVAGeeCMsGwCgCRFXaTBsIZPmcwB2VoKWqwYQXmnw00x1zWwad/N54GbUVqjfuxxFNzPXvnOUpctetiZGaLRedR3XOpLVN2LvMPsO/4SnP6DwQlX+fNOvvDEXLnSP3m9CCxUHLh0qP4kBxAKHFodG4yK4AACAASURBVKMwmxVZAyoh6irTFTwtU4g0DiNLnCxT8kxGFinRk2JNEheduHkoD4SBJk4GsvRdxpGVJeqAYw1GFhpKO4jcORoXs3z99c0oN2zZjSt5G3cVp1peelan1XIAV86PfYYuYn0Eh9tbeOtjZY2C5WlkjTL5AqaGIhvW2hS68TbQkwNQc8BnoWwDnsI6MwBrI3CiqG6vnm9mTrMSwLOzVFu3+qDmEkiSJtYAqYXZsomH8kp2C60p71nUA09L7a4ET2vB1aa+N1LIPn9/3XkIpkwZi5/0XoiiCYBSSD5vTZ1nkJjQd+EBK9x4Ui4GTlrGu+xWAKdSF6ZcHzjNbq64gacVGM91K1BlFKiAKbFYWJdNpFi9NUpXa3EQYJ7lUVzfrIq3dvMASPOYWpucYgUq3tEKhRqCJdfOxYBTLj8LnBp9Wc/73uq45MqTcft5rwLNuW4FqgLgXH1k2PKboLKz2q0XASlGDZ7zfVHdZVx4YAukyz3cQnfbAgVsA1h6PgOwIu3XAUiz1qag7Vmw1CFfhz1I0QwzBlGERia6/h2K67YDcXlrANJtQFQ01nNoDuDMgScOyvv2emVm+r4VeaCEgK1c53fb8WIwh5EdINpdeStpyY0XuerOUJylvY7ilPaN8qyU7WDrrwNOWx/N3lRVrA7FpVN9SsPKc/WeZwLGbYB4vrbZgGPXpvZduYuCCxzcAz2Z+7VEi248KSfnhg++zDky4F2+AThaA5zm+N5VHbaMAFtrcTKuXL/7vLQ769bjmufp2qFu3Jqf9Wo9AG4fKqM0nyUXXhGEDvhRBrv8JfA0167PA/rWpmpeXABhHbJu9n4ZkaQ6vdqNmrjKr6xScxrWAi2fL3kzIGo2oBylfhHWTrmgWjMWO0IHehrXnU8HWvA0WzY+nnXldegcV144Mbl2fFA52wOnj4PqCoxSnpnEpP+VIEpZ6so/NzRWE0FYxCvLlLagMIFukHjP6lS5aaxSXAOaQgBlxxteWp+qZ8XNYe6FRq1IquDqdG3CuXnAMDuHU2nHWiYAdesBJo1zmrVIAcYqVV9/ZalYQ40b15zMWBy1bGB19HW2ygCwEjzbyz7nWQ5fUKk+N3qtskg5fmsdMu1l8Fy59fK4a54nUFTxHKiBkpAJgm9Wmm+gOwOgNlEPPK3N7+Qtgae1wGnupWUurw4atxmlb7VQVYJUgI+CtMjkMAdoVBkG9Ux+uLXBpegM8BG3Mw+eun0ugauAVgOmGaBh21j06Ar7LZvmwMwKoLMqhul5A0oh0byiFOoBJ2AbeLKKLtiaQNsNFGe3HU235dyY7HhXUj115fbEgpQL2BeratNMZ6GwAens2hPrRMl3m2/aIHOpo+ColANQrFJAcfcgAFNr70EAmlK6kwFfPpIB3F4GGpftWuC08dptXK6dkvSc0VggG37bsSDzXN2s1OwdpW2ptYkrnsO2QWUMQM13oOb9VrqbAMrzTxk/c6FLbrsIVOU6IXCy8tm1RM2M4wxKz3jbaD05sUmnthRTAdzeGlUpQZM3N+Qe6Oqmr9HGZ5AHN9xLnwdP6wPP42H0rGVbys7dniiLAzZXb18WIDnx7eVpTFSF3kw5Mqy8FAh72okQfzMrU3dDyhnQpPXmFN0Wq9OCwvRj6FujupfZUhfYm/gWa5VSeUpzD6GOj6qsE4RkXQCgbj1rjfLtaBxM7k/jo4x1Ip9rjBaglikZotKScg02Vg0B00rgrPUXgFPosnXAKbRgNjLhxuXHvUQGbNa853r+kE7k/ltPy1T4Z5vVbQ+Ym53rfUxVsUI6IGXGJuNqYrfMM70m5s3S3QJQUYC2B08REGrace35Oh44LVmbNG1+vBfRH9Sss0PtorPpEZhaCaRMf+3InTbsgSWb58pEQYez5IGOT5+pE4KnOYC0BlQZmgNW58RG9byoUjcyHGq2Y7PNZ5vggZRrqExu+Z6B14MlLF7iM0s9a4JSzw0WgSbTTqQ0w/iWPCfOxjg5hdltR/q6BIDyx35OsO4ZUa7Sj1esHkhJoDejgLIMpGzQcdVO9aKRE3U/oQXFaq9jBjBX1OiGQA4uLAO2zlbw3AVU0bXMUW9uFF4AaMCzybfgOXTl6j5OhefaxmQmy1zHXrvytsf3amLN/W20vt0tALWWekBmC6iaKbMInlYAp60B5TZ4vFWIRVAqd65VlMSpDVV+gSbudrCScttNLNSj0qgbgU5VxrWxKhZqrr0l4HTO9bdIuWq7cdGhw9acvxj87cBRE/IWgbcZMXouaUZRCs0Bp5RvwE8Ul+L2dIoUp9bvKM7SfhlDCJbIj9eNcQU1lgMzzOpcT+yGBE5cuVxX6NbLY2/cekC1d1TlMsplrVUqVWC99iqo3LmUNtEccAL6Vkeg5kX324po5Ia9bFkeV8dGDnx/9vI3XHuFQSRNeKhlDK+qgoa3PZ4XfFS3w3C7zxs+G6tUcemW67d8L+M9j+F3F0CFqCRKc+CJOmmmbGN58sDJgyYbZO67r8DW+SiCGq2ZdZ0+4SIUkmceIB12ERyY0s2HPAX8KFUSXc92PubqUYGltRQBoK1uO54HY1HemqDzsI0Z6gGhqg3DykoUvCJ0Ih9hs8jCVFmiyFsGTBmXFo1XB3SL5+BOEwHsXTbRxNsBS1GaV5g9wKNKU/g+BGlWYQ5tG/3jeoybrBFsFBfbNBTQwyjTiTx73kKh0418QNY0yChuniroON8rTgk05BnQBZrHaK4WUzZBxbea33pgSfNd2pky0AsOl/KNtaknA2ZMvbF2ic0ttTuPw82helx4ztkKKfKjx0Nuy/Bc2uegnUofWb77vv28ai9j5vuOS3QnANTF3nDn2rkweJoDTueA2bJiwD7V1ASPq7w4q5S1SPWsUU2AeQSGVgKkRxlMHrUa6eRZ91kEnhauKwJJa4HTOZiheZDtvQ9AyioLUQOMUOTCDj0CUWjb6aVVYhKVfVZpATABfSXUBSprN0HsKM7IotCzMjTAaVaZtpfqyYueTas/FFvyVP58bBP81GTqZ+uEtzJIv37bA7+7tbdKyXnqk2seTisuvEcReJbrRUcGlnYQd/yaddcpj6lNQ3vcHdMaIoNxm5ik0mR83LdCysIA+/Fqu1hAy2cAbS1S9ZYFPXmpL5D89hUb6E4AqC4pQ83sX6EYA3oiYOTSiFy+ZJv254BTBJqi+fS8/aAAv6lmtLohZcjDURC3j4sjLICoqvO6TC3VRrsugauV4KuqslR+DiQBBUTOgZ8I6/YA0EzdrkWqN86g7NzkFCmjXhk2CT2X36xLL0yj9sKWwNECwHumiGg2iNzfp9l9dlYozc1xTq6NWHlSk1+Pw51H12flWbKiFxX9JXPMSdGyuSZOZVIaV+0k62eek2x8VE6zn/HQNuzcz9BgcxLQVMlsFFRc8tZQ6O6kIP8MGdD6a2UAKFbSUEY646nG278WPzEpkMkn1pqU0riWBzkWlxrnMlTy02HAcwvSRI+xaSePVS3mnu864Fw0invaqL/uHoBqmMl1XlRej1twFAIdBUulvAdOa0GTzd8KpjxgKtam0p514bG/PJunl5YfSgChS09AlJU4Eao1gKlqKn+0kztlt5IHKxGYsWmR626pjutnETj59F793nU4asq7ycl5bPW+NpanoCtNM7yYLefSVAnBBZR7WgJVzygx0LrwPLnsKKZllbVJjnsrqihoZ4XCXGORmAVR/nIN3hGBYvvM2D9pVJSmf0bNM12V6QApALGbJyvVEEwB6urpKVZta4MrobsCE+4+9tx0UseCppw2t6qugKqNMrBw3FBvfueiNppzD6gszw1g6vFcb47qpZzW3TcMDZjSdoXsqspIwJ9aAHWpuIlKGB3gqSxNffCkTWmZFiTNAae1FqjeLuQ2UNy68CoXHIx89Ga6EAB1tPHckB+jaeGivawFNwvgqVe/697rjaUHRrRBo5Dsw0+GBQ6sEh4NayqW86Pr56mnaA4OFGaVvqQ4vXI0fbXWgd7nO6Q8BWltuahu77oai6oD65qHIqrUpNn9m1w5177Pa3altvOX6ai4ctLEqefG1aPXYwdvgdVWWgOcgFoGmvvvZMC2QwF/FmSgl7YkB811BPyvXvAYDZ/t8SzPNbF27UmBxX3D7H3XoRW+67jleZyCQPLg2pfo7gAooBGUfjnzxEbgx94YqsuHsU49q5MDYOQBmS3bHM+M31GxOBWwJG2w1WIuzW5UR7ke67WQ1oosUVVguXXbmVr1qQNRftKqBNCUtXndG7CQ78o01icDeCIQtGR5WrQ69QBWMPZZ7NzJ82BJ26GSXKUFrKjK+TYRs8GnVfXsmM2Y2HY4Rz3A+JRTA2rCfYDMSbgqq/5dvfkhoVLAPAR52g6FeVomatf2q+MP7kFwort7++cp/+kcN5nphAPrhLxAMEBqrWrzK8uE9NWzTOiFmvr2uvyDcYuNFUPADCAEzfm3can1ZKDiNwVp9pecvEQyhID3dszxJbI76Llvl3ie0lgXFijAFd4CycuhMmB4aPjOoOqzQDXvqRpT99rOZPkTB1Cr3motUFpbjjh021XFg3nCgqc1wOk2LjwAallyqUHJ/MCwbbMGQWRADpOk2TnDxEXB5vNKRjxCWgmiAo/quvINAHNtRGnolIvac/2uJqrr9zmPygJVWaRMueZN0ACpECD5vvKEtHhzGZVsPRdE6CvIqtwMaDLHaz65cZa7LgJMTR9BvhlPqFD9ZVqQH7hhKnkUpTkUIG7EGeqeE/cafJk46NjGxdhv7EXBw1IPuT1NIxikBd0WYStF1sEmvbm/F5SB5uPDnfoOdLXHpe/5C5ZfA2LN/Gh5DiDHPZVyMtdI+L+VFy1j+G7ntiZo3QWcp+E73tv5kqied1Wwts1oTxZALTCoCh6P6hqwVE9QTrtZIKTHpVwFngKrU+y264MqfzxHzSdaqhEBrYqqgZS69mAmHqYsZJJGlZWr2hrB27F1UrR5bhh+duuQvlFspQ7YWarjrVHd9vxxD1AF53Mgq0lfQw67LnPeKoEaVHmlFb40ZOXVlIerwyYWauV1VKjtUi75O0ZzMVCtAm2PQ2tDPp8N8N5ocaisGEP9GynbEJBF12Gv1z4L5lgt5AyQtRyJ0jTnTd5QvlUnskm6EWKen3hGoXK8q3l6J5DCTuaBSqFuVqbBm/MiaLLnjws8e3lw9ar27LgjquY/0vMez6WKWpqUp6a+Bd7S/5pgcySwpBtyosN7adPyuZlk1054iZ64BSqkuWuYBUvpPFxJl+vZPLJ5qOtGwMmCpq7rzg13WFAkk7rrMpCyxwKOsnWpAU0mXYEVuFiijDXKLgL173L1PlHlYZgFVVKbzHYGViC9yy+gJXdXD6SAKQQ/Yd0OGCtmYTeWqO4SuPLji84jkttWIaJcncrt19uukwEKW3yZ0myDaXTccmj674Iqey1Rw88TGeDRy7cUrsIb3PlccK+Lk4ksBrPWBjmOFKYBVatdOv5yK6VZjquXmawcRbGyzZP9d7L7hQG1HhFDrVHFtYMiqFK3CUancmw1N1C5+Mo1lDLNta59e4iKmbQ5wOTzIxmIwZK0Zeo6oMyEkM9ap0ozY9rAe+GtpnHm32TSxapowI/OVcb1pp9g4VLHAqaKtwKyozw7QM97m6ZF10zWMd09AHXOxGyYHuWtsgZtAE9VNWfFApZBkyUpq0AKRgYULFnQVNL9OLrB5HJ9oNUvVYtkB/qYiOyDgrr/1ZaqubIzaYuWqbk2UB7ScMlsAEwqFx2151WZqH/q5HfK+v7LuBcmUqDsQfa80MK1zgInm+ZjnHJeJeJeYVblVoCnnrJ1QKwao1PkzXUbkF9MRenPi1IF4lG7a+y1azemAbtPk5QRpVleFsw+QNKWHrt9n4yLD6ZMasc8uP65WEuufLiJagSeIl5k8GTbjoC0LR/LSN12Y3EM2vO8989/NDcpALb3wgsAuTLuRbAyXFNQpqpHBqE5lrHjPRzvGzluGb0WVC0CKCJ6HcB/BeALcpcfZeZvJ6LXAPwRAF8C4CcAfA0zf3pVr1tJGcB1WmCNmgsa9247BT9DAUkRcArTcpcWLJ3jwitDLxciQGgS8AQgtjzVaVbM6pUMeXowlqg6sNzPPvamGgnObYRWKFtmDQVaWYS/LTvXTi0W1duvtMtBXgCEllx6fctUMPl2KHwwK4VZJl1vXXLPfak6k19ZnUyB2XMgjoUKyt11uvT8NbsPFNBaqKyibNLccRrwsptG0tZYHKgAp7IcHkWJWguUrRNdZihgULecdc/5NAUt1iJlX0pFCZNTpqosgSqQvHpWyVgj2OVTKWcH7NNmLBSryN2vCDCn4Rj+RUDlUlZHw980nlJHx+b5Hcid9msvx89/UzmXY+F3ccsKT50VUvjeyExdx/K0yIbjuxmTWsLcWHWnc9Tpnvxmmz1aY4E6AvgtzPx/EdErAP4SEX0fgN8E4M8x8+8iom8G8M0A/t1VvXoKwEbz8WAt20tr24i2KiCbNwN+InedtTYNLs0e98Ik4ninRFPASY2909ctXybNPAKoVNvmPBsXpSAKZT5qJkLC5SxUlyIPZOTYgSR9Aw4md8kP87g9jsCSz09p7UTcsChi2UyRdsUkFEwVzrpmbb5Vcgb/qHR40GTq2D6q7jlQqIzwWu4gXWz+qpRPRF6J9kBTeL7wyY21irMCUFQpRY2D8eDLK1agsZQ071T+N8sOZSXKgLrmfDlVrMjxToNJz7ExunJLqhOAqd6jTOS1Fvl8H31gc/UsFGWgluGArwoMFiiUiQ5oSufonD8m8ByWC66lA6Aa/lt++MnJyEBiS1Y+UWycWIemMldVsUydxQmcE8oxlzlRxmP5X6+sSj9nKr5FAMXMPwPgZ/Lxm0T0owA+DODXAPjKXOwPAvh+nAuggD4w2tyOA14GPCEEPeiAJWhZ76YbKoBV2hpMHZiyvTFORjJHQrE8Oa1rgRTn9us9o2oQVd7u6uBxcN7moNi/ofFQWg7oxkKlrsx1IE67LQjzD6htfgYENfV77Tkwtd0qVQMnbwHrjdXmV9aeoHoEpBw28t2ViUzad5OEjGkVGLKIy2uqp4guPn917sGqjRQDhannK4ATUCtMa0mQvAZsOcVZKUwHnBrLhIzZjKeR9eBPyimOcQpVwdGQ5jyaTNC4rNJzoErHlxWwvh6SKSf3jBOQSkP0Xwb1z1sLpjRvdBU9BbLQk4NLycBaq5PfvdyD50YeyJUDQjBlgbLeFxfDpuUFuJh4KAU9AqSm4gOhzHPLe+TjVIaKUHHpQrsLeF8N3VWojOvCt426a1MMFBF9CYC/F8BfAPAFeXICgE8gmcgfHUWa0wia37LArriT8gRJrwGTtzI157kJAU7e0lTOI1DV58iIGkQpKMq/InRTdtWNGTipa0+BlA0mR+PSayxRZAPHDYiS2c/cRy1UpUVa2JVZC6q4FKmaCMGH1UptOx5MyfmcNcmCpzngZEFT2F40rpmHsbvFhplo1Xytkynpg68+fdNN2VyuZV3FApNpJ57qrQ0B2PJlPKi64yDr9vMXNavwZl1dPt8va59RmABW7eXU5BlXjSpLq0Sz0uwp1vTLsy6dSu7VZUNqRVCAdHLluPSjZTnfF4YGD4siFpdOcdmUvquA8MZtZ49bN4+em2tJhxTPO6VAfR+iIp3nOgRMuUz/mKq0cBVlY0mkFijDyIHls+GvgsUB+jmdxgpp74HOt1S764RvQ+Gf5k9tGoiWFxgAzu2X5QVo3Hue95JU+F0xvE8rgdRqAEVELwP4HgDfwMyfI7vXCTNTJ+iHiL4OwNcBwPj+96/qi3tSrMIVgKnuuKHgyaf7Idt4Jz1HDYwi8LQGOEXPHKMOIhfLkqYB+by2Sg0IVu9x/J27MOAcM/JBJtRzDiStbnAFLdTtucWiSXCpTlOmB8SkzgIgasawQjQbM7cWrsGJBzfaPpV2JYtNvjbfYZ8HRg0gmgNCdxwk9egS89f1i+/rPxJBehc8kcuPFKdtwypRX6f6JTNHmr6iNJS8WrFy7O5pLwUG2+f5AtAYS6tEc18ipypiVOdV95FCsS9tm2egKs/lWJuT8igDN0b4QsFzUVGH941MUCe/A6B1/B0ZqMq6cvB1QrlABZQ9wK7SB27AWXPdApYUlFIBRigASfkX8FTkQFlStE6dbvnEdRuWyZbfDc5l2455ttwk7OVpDa0CUER0hTT5fBcz/9Gc/Eki+hAz/wwRfQjAz0Z1mfmjAD4KAPdef70MccNEFOYr0502Jaj1ybqe/VYFFiwNw5SvEwqSpBvrrhtNsLkFTXps6iA49mStTzpRGEBlLU5DLiFAyuZZzg+DBVGk1wWg2JlMHRtUbl15ek9V0t3M5OisQPKwoc65apA4fxYMsTnekJ7a5bgMfLl2/HPvAdGbqkxqogR0prCagwDv1rPF59KLjGEZNBmgppNb9Gw+BYDqUvPXy6+9zt0YKKfwZi0RTjlUCtMoyGjjy1BBzgQId61OkjYmpYl8XCtcrpWoChDKc5AtT+KmoYmTm44BOlGxNlDOH1BZo3RakfbEGkUIrVFqeVjY3Tq2SATMsQ+Nf/tcOZe1AKojC+4593ndPaCcPHg3W+Ou9e7Z/NtYq0bD5xGtWy/LhR2nzmkTmYDxPEdOiecAQCcUi5TUFeskQxcOVNZFsSpO5rM7Mge5shHv00Ad7+GOqzTHJ3t9K2nNKjwC8F8C+FFm/jaT9ScA/EYAvyv//vfbul7qGPXEPDNJe6tRAVnubjjwFMVCRe64BJJQ5VXHuY0hyIfLAwpwGo31aCDWdAVPSHNNA6SI9WsDao1q4HNp2+5crjEB7PZprZSo2fKgp5kfB7Xsq489eHF5HgxJm+tAFTfpkbWpC6wcqcXITkRGIdkJQ8tRC4BSkWqNZYN/bB8NC2fAkt5PaeMpAEdLdPH5y1sRwjLlMLI2LClNLeOAEyAK09QNgJGWs8rTK1gFUFzONTaGS31RogTonm8iy1YhngCaUhC0rqorpp9CJ2hcC1B+FSDlNAXuPshcFOjg5JtcPZn/8r31LwzV86gPGOlYKj5toO6LUZSmxx3g5NJq0JzrevDsAdQo5UpeAVCFz1X+yKadwn8AZZXlhOKCPWWZkPJy06P5g1AWGeSmmzg5qctcbbhpQXSX9zZA3MaqehkwvLD6YyvP11ig/iEAXwvgh4no/8lp34I08Xw3Ef2rAH4SwNds6/oMCiajMB8RqCqAqKpSgara1WfBE4Cu1SkCToP7teT3fkIGTwKUhCau3Xn68sbJrXfiPBaUAPNyjbWkVC9XWZKS8LFKzexeUg2QMpPjpQBVBxD1yjXHM3VXgyqsAE8ctBmNfwZIyX3zrgQPlnyeBVFAmTC0/FxF14hOPjCTywzZMuTGLmB7TTuPmS46f1UusLkyQl6JBkrTthuBqMgiYTfDDPMdeEoTFdTKMImSHE2dkYvS1Xwj1AQw2FgKUKxJIPDAaoFQmrJg2GfC7MWj+tauvMrFKF9nFWRubn87y9lnQJ4LA6RcXccipbOnM9fQFvCseV4GgqDu7gpLHyPl80UeRkCtTsYSqWmW9yqD5sEWHp6gL+g0wW1UypmnNe8ZaZw6Z+R0BUSGwQxKAJ5j3muincvYlsl6zcmABdAw9c6hNavwfgCNaCh91Vm9VhMMx+nolZEHOh3r3k5GMJv9y6QcTJ4AJqrBkw0UF+A0qouP1eLkQdNgQNWAFqzFFiiUlXd5YBMTJIh8yFYnBVL5DVCsUWN+YE5TeXZO9Y1DO72YmQvyACAfZxCVhb5ZkbcGNNlubgOsKoDT7ucxB6I8UIrAk4qR2cMkpXNbB21bQNAugGhrAy2LVrmmB98IrJ107YQK6CoV+wZKE2v96NZrd2zS7BDNeOzLo31b08nJXpef0e4oXXL+sm/0vfyKKsUZK8vZ4zBomEqeyIYPGhZFKWnWPSPWpeyum0YUi9OBU5mRE4AaGHRIyIYGTvvlMYGnNG/wicDHIcnWSMkCdUK2RgFEEljOoEGUIxXgBShQAqFy7dSIKc0/PshcG/B/KL/s5o40jdXPqCpu1HU3UQ88mby57Qwiy1MXOFfygMJvSWtcsSZtMMDJWBmnQ/pNMpDkAIcp8UN4D4BPqWE+UbI8TemXp8z3Y7owynMIZd5rmnHh2ff8JbdexHtrtbRB5spP5W+wHxSMHFSMa5Pm6O7tRA70AdZStQBoRfs0WfDUKxPVidx11hoFJPAUAadeLJTMA0Oj8YrVCXDxUmJ1AioXnX4Drxo/FBgB7U7kSTkGwGiLKeG2YGmu6QWg1JSNAFaPGnDEbZ9VvvmFO0YBX3NjpzYJKb6IGrCib2WSZgBLA8hyngVB4es62nYadx1H9Sm4Mc8vrXfh9ZWmb8e763yZXpB49BseG9dcsUqZNLE4DAlA0cCg/DsQYxin9PJ2GsBgTBjAzHmiktW9acCi6FQxksFChPIyIDJmrwtF5lN7aOVR7gmKIm5E2DwjlbKmepdqUdoB+zbTLHCq0trjteCp96IVyUb1ImZdswKuJGjcWpvGBKCU9wODhuRLmyjznAicTUnp1lJKHynHRBEwlXGQvJEH8q5JVkbkcoL7WfFeDlDLC9t2DX/rtNJ49a28DXR3ANTSwAnliZCbYdKq/ZuCtOiTLH5/p3GYmoDxgbhYoPK5tzqJxUnKRdaolD5h4kE7nPKBWJkAgLgEjB+RXtuISa1RQAbmKC69AaTB5ZElqliYDNiyihEomjQLuwaa29mHTTm444h6+dYUrGn9ZqJmo+MmzYOeCAhZ8NTJA1C99dTluMpvrFbdiyhKQu+5Tnakk6DqDYbGgpBMftJvtsDqNhim72pesKArAlGWrDbaSckHkUefgWiUxExaT2navsJv1xkZ6AYKR+4ZSTskmZkOAEZO4ClbH+hqwnCYMAwT7t07YiDGvasjrscTGMC7D69wmgbcHEfcPDyAmXB6TOk9WQAAIABJREFUyMkSQXl+m5LxgCYkS0WWuQkMquJUoIrWghx16cHl6Y7hXP0AqCwSPYtU+fVaWNrY8AHtgGY3T/Vp/tidR8Bp1tLo0wxYmjK/i/WJwYf0ixHgQ3Jj0NUEOkwYBsb1vZv0ezjihasjTtOAdx9eYWLCzc2I43EEnwjTzVgsUkdo4LgGlRP0JZ5M8LneM6BOy3Ur3htkldI4nJ95juezx+cx/W4AqGjsEfK0x5UWbcuRKzNnbaqtSdA0b3U6ZIBlAdJIU2VlEkA10FS1XSxQU2VNmrKWPGbfgICpiQkHTAVkIQedT4PGS51y2mkaNLj8pIo+nftv6AGkb4WaJm+MZCagPHtFadVrnrnh6ZtUNTO3Gi4icGQtSz3rT5MWgKhzwFMLmMxYJm7HU42Bm2sqClMEEpX8puBYroCU/tl9ntyeT2yvmVBdf5VmfitrlVyDHWNTfyMznzUiwO8DJTTvvqvTPGjSNA+geooTNViqVtmRBU2og4JHycvKkwC+yv7/MQEnDIzD1QlX10eM44SX7j3E1TDh5esHePnqAY7TgM8e3oOb04i3H16BiDFNA4ADphOl/h4OaZM7IIMqxnDMwprBXDKfFyClgcU2wNzcpl6gMcGsFHTPn74omDyV+2AOS+mWcVhHjvddwNQ73wKcArCkPI8AtYlrE1ClYOqQgfPAwFWyNo3XJxyuThjHCS/ee4jr8YSXrh7ilev7OE4jPnv1Ah6eRrw7XuH+wytME+GGoO5cxlDu25RvtvBebjLlC7e8l5itOd7nOS/anRxGBpT/bg6srO2GF1ucLZ7uBoAy1N0DaokMsGrmshXWp7ZMGUfkrhPLkgVTBwVNUwFTtp1cx8Y7CR1wqqxTQLYuGcBSBZVzWbk3EFfuvGpVnwFRgAdUqCwUF1ONF23MUNSmB1a9tG49btJ6b67k6tRgyvQZ5bPDH1SW6opSJtNfYnuOR3PgR0GOkQ0Zl3cFVpNG9Iu2nVDRRPcvGMOzTt37cYYS9RaoSnECxepklGMFsqTdobTj46Z0iwIDsmw6shsHA4PGCTQmAHUYJ9y7OuLl64e4Nx7xBS+8iQ+98Fm8e7rCx4b3462bewCAaRpwnBinYzJ5TVNWyuLW47wmbkjWB6tf7UtHZW0141dZ9PdZrhf1irtQJE37Us43h0DW14r12eA5/3ZlYAk8mfQmza2u07ZyfBPLcZYBOkwJQB1OOBxOuD4c8VLm/ee/50186IXP4d3TFX6K3od3jtcAgNM0pL9j0j9gBp84AacB0L0Eh8Jny9etvNeVl9IeCv+r97yWDbnsfPo5dOcAVEMGGFXHJs1/fiUd14Hjc0Hjg7reXHA4CkDyLjtx1x2GSS1OgyuTjlO5kYqrbwLhxISJBwVRR04OuYkJx2kEKKVJUPkAwkRUzplwnAa1RA1yP6ahcudNTBiGqdqxXO6JuOkI9tjtC2VF1Er6BamZqCoA4zVTUN8Cpvy3xpok7c2WNR/H9O46uwMvmLvuPWmnWlFDVOJBxG1gnf/651ES1ALFhPJ1cZKJhStAVikVc80CqggLQMvcYy2HOu95Iu/CA7AKPNnjyIWnli2nLLVPr0gHhIpVl61HS9QPEkDOGjCOwwQ6pGDxq+sjhoHx0gsP8dL1Q7x49RAffvGzeO/hXfzyl38cX/7Cx/Cp6R7+l7e+DB9/8D787INX8MnhFTw8jXiTGDc3BxxpxIkYPGVYM1COJ6AUTH4iVZJA2n16sC8J8lkQkmeuTAcq6/ZlhPMN1eMs5DbIHKjdeyYdUZo5nXsJC8F0BJ5supUBd9yNcfOWJcP/WZdttFhgFDng5LLNvD9k3r/4wkO8eH2Dl64e4ote+gxeOjzAL3v5x/EV7/lJvHF6Af/z9Zfhpx+8Dz/74GX87PAKHpxGEDFubkachhEnIPGeSIEUAOVzeYlc5r3ehzynRt9YTPJR+J94ZoTGMhNm/kKcv5WeKIA6y2xmQFGVbOcfI/W9oHDAb3iJyvpEpowHT94SNQeeRnNeLjy1OxHjZhq1nTKWDOjM0yjWKHHpyRi8BUqu5cRl/Cdzo8VCJRYpoHw7r7uFQY8uDaY2tEWdB2S2XQeemlUYDohVwMyWadrrgCcDwMBIn7YQoJMBqr5RAZLSYphsWZKHvwE95p4UQGbAmB071WUvSr6/Z42M0vM0Z4XoWR/Yt2cBkSvfunfiX7VImHMFV6Jw5Y9YLVASLDyOEw7jCffGI14Yb/C+q3fw6uFdfOHVp/HFhxfx0vQuPnB4E+9M13j7eA/3xiOA9CI5jROmiTDlrQzEipAsHZQ30eRkmTIbLPKQ5X4y7xBZlhhmrrciLbKej/Wegqo4JqlaiWZVPpeLZHftM+LKLAInf05t2YqvkhfxO8gT63aVpgHkrFYo4XvN+wn3DkfcOxzxytV9vHp4Fx+++jR+weEFvEjv4rXDW4n3p2vl/f1hwjQSpomAYcjzE1WyR1kOyDFmjvdVOXNspzaui1UJEW9n+X0G3SkLlLrv9Oa5c0k2N7e7cSZxDYgqi5T5Lh4KeLIB45HlaQyA0mE4NcDpajg1IOpAJwVRx2lUK5S6AnlIFimQWXoHTBgwUbI2SeyAWKI493ucBgVR4zDpFgc+HqrczNqVJ9qUMg9kE80GVKlWN7PbWuqBrVngY6TeAJqmjk2vQEzJI1e/G/cE14bZbbcBSVEacwJKpg8pCyobDfKQ3a2D3BwUpSb5eUgSKO7T2NxTC7jY3BMPusrrvKtLBVRZa5QWs+kwbduOn3FiILZACS0o0lZ5UqkTKc0gcFwBkrVm+m0KKKXZzTIhaRIwPiahpUMKGB+zy+4wTnj5+iFevfcuXr26jy++9wZeO7yF9w33AVzjCoQPX30aI0048YC3T9d453iNh6eyv8N0GsADcJpkqQulfhkqMOp402eZdWJXK4HZL6pmggFGXOclS5OZm9g+AKYNOMXq2rF8WkW+rDmPLI6rZMCDpoV4J2uVskC5bF3AKQYty4NYHsdxwvX1EYdhwkvXD/HK1QO8/947hvfvAhjxAhFev/55XNEJExPePl7j/ulKrVAAwNOAaSLwRGmfKAhP5Eaw2y8qH3jeyzxl3H2WRaXN0kTFf9u+21Cz7tulb6Q7BaA2kbetGrCECiwBPddds0VBx/J0oBpUDQYQSb4AJyDFQsnx9ZBQ+r3hqIL3AAecYILBmTIwMseg9FbHjOM05mPCRFzionKat0QlZyDUTRfFQxVLVGqs+fZdpRjndiYXrZvSdbfiR0XRJIiuONTgSMvG4Cn6jcom1x2bY1PuZI6l3IkxnJJViA9UQMcAde0pkJKJUyaVPCESkN7eE/I3aWUyrVnm4qHcPeuCKnP/KjYuTDI9fPzMEbn7EuQLRZYIrzC1nBwP7tikRS67Kl+WpAuYEmWa3TgKnsw2BcNhwuFwwuGQAdQw4aXDQ7x6dR8fvH4TH7n+FD5/fBOvDUcA17iiAV94+CxeHB7g/nSFN25ewvVwxLvHqzQWJhwPSYlOI0FmJFV2ERrXAGDZ564vT6o45dzKv9u1WsYTKdJKvgPZP5dinvvzADTZY8/nAEDpr1lxZzdHhfI+A2pZbad7fCGBJ+H94YRDDhh//7138IHrt/CR65/DBw+fw2vDQwDvwRUN+PD4Wbwy3Md9vsLP37yEt4/38PbVtd7r02lI+4GJG6/He1BeGZWv1264SihuOuO2rbCPnauBug+nEzygalZa3oLfTw+AUsHqX23zEhBMdCqrxvrkV8p5y5NdrVe76OzfZALLS1zUiASuRkwYacJIwAkDBmbcYMSQZ4vJaDU5Fndd2v5g1L6sO28ghv1+niX5CLGAqBNTZVXyFiZdkedA0Wqy5c/VqAvAaHEI/s3C/vpjKc9tmSa9SisTcQWeJE5qEqDFwMQFZIGRl06m7z2h3GO1MpH9rlcCruAy91SU5YVMfm09KptsyrU2yj8CRnNgiU2HnTJhP88IzbrqojJWadrykeKsytfteOuUd+FYt13lwpMgclGidh4lscRDXy4Pw5St6mV18QmEN6YDHvA7eMgD7vOVjmsAa5gCARiGtASemdLmixOpC0+vzyh/kjc+eaTkkaBcxT6Xck5GDA0Wsd4hOw2lTMDu/6T5Vo65bseSn4e68u151qQF4MnzNABPVTra/KYcjByodYq1X1B23xnej2IMQAk5mXjAG9M17t88wATCfU6QIemzpOMOEqoyTLk9LPOeoN9FVF5TnvGcbOu7vTRDZfrxfA7Yqe+jep8NQ6r9wDyt0D13D0CtmKBqaxNgZVKsT/a7dvbcb1lg0wnJlw/EYClZmtLEIsHjh+GkE4gcH+iEq2yhkt8XhhtcUdmd6cQJRI2YEqACYwKlmKj8RjVMowaSlx03zb5R2VI1EdtVnOn+TIPuESUPjnXliXXKx0LpbSTUZm1pV2cs88ZwCZoBORV4QTuZRWDHv6EUC1IBO7YsmTRbVo8nSWdznEBS+kimAVEGOBEz6Mh5x3AAhyEdD1RcL0DRGrKhnYArmeFtOZuW38AJhl9sJheum5c3eM2ncv1sylVvcjbNKC65V88qWGqIUK1y61EDlsxxozAlzytDoHXh5WMt7yxP6saRcuK60Q0yUxoOyfJEA3TV1dV4wr0x/V4PJ7WY3/ABb0/38MP3X8ePP/ggXhnv4xe/8DN43/AOThhwGE645mOqz0ccpwEPx7Tdy3QaMB2yBSp/ZFh3cicTq3SiZInIApvCB6gCTGKN4BHi5S7ybQKO1ULl5wKIjFOVxshzAkz5iKdxckseLNm0ngwEgKoCU0NdttrvywaMG3eeuG5Zg8e5WB7zirthyNbHccK18H484t54xIgJNzzibb7GD7/zOv7Wg9fw8vgAX/qejyvvr4cj7g1jxfvD4ZTj4OZ5D/NWqPMLgPJNKFS8t5ZGzYv+0Dm3vyh6QeXhTHryAMoJV1xm3RX6gHGb1tuRvA4kr9NtwHi811NOg8RItdYpiYe6yqDqBEqgKnNtIgJ4yr9DAmhZmvSYjHWMWS1Ttm913bHs6ZQ0m7gvrRUqXSOQJitz46neSVjuhazG62rKR6RFl9huQZUSt/V8OQ+qpJ7+GqBVtSduO61frEvlL4MnAVfMJY0AnBg85od2YlAyE2pgeXprQwFBBqjInEN5LGLBUgtUCHCCrRA6ZXdaQe5eLW2kGYGlxjIRKU5TxwMtX74CVVJOYqFU6WbBld8MxIchWx/k18R5Asn6dIMRn7x5FT/+9ufh1av7+KLrN/De4T6AYomQMIZxmLJVnEDDBOIxvcARi0lc++aByn5mDGd5kIT6PjXWCNTPiLVIAYHI2wRIe3lO3GKN6JSLNtJclAEHprwlqufiy4M21kao5Uk/Al1ZHeu/IVughGeH/Cs65YQBN3zAzx1fxt946wN49brl/dVwmuf9YHiv822e58z1E1C2J2C1vdcWyVzVOkfcdNYcW9aRSajUnmfiBnryAGqO/EREJbZJb3xO12KEKuYppXGpohaneMuCHnhqAsYpmS+vaKosT2J1qixQGUDdG25SoDgNNYAiABNwItYtxiceMIKBIe8PNcjeTxMOUg85TdrK1yDxUKzHxZVHSPfLuvFEHP0qvFkr1C1pJSZeV4+DPAE6bPO5LmuOi9WplKvSTcC4WqdOqCxPEu+klqcTl7TTlFcrZEB1kNfFvB9U/pI9CHm1Xp5E0gYr2QJkPtXDGXAJYM5pegsMACMuvO8BLQ/Ywnt8e7Y/9dTbSLMFVm36InCSPAuMfDlJMwHj1urgN9VEteoq/enKKyquG3Hf2RfKCYT7U3LXferhK/j4W6/irXv38MZLL+OV4T5uzIcBJWyBkBQyAxiGQb+Dl14KEiji0cRUIqXruXHnVZrOvOAQF2XLgH4WRtOolNP7buXbyDKx7coyCzXNyb7Pm+H5FuDk5aK7eablv/Bc8sR1J+DZrLwjQna7ZfBjLnriwvtPPHgvfvqtV/H2vXv47Msv4n3jO9t4L/uC6YsiNWAJU+JjiWXK8ypMTJzOxeZaZXNNNvkwfEaZw+1cp+mWJyZvLd0NABUJJ7mrXChPVJ6Yej8oNIHj1nUnzQ1mEpH2BJUfsuvNB4wLqLrKrj0Lmq6Gk4KmEYx72YU3YcK9Ie0BpWAJpHFREgE+ZTA1gHADOEtUkkSZ7Ni8Odl4KPlm3imDKM7nkmeBk/iujb1JoT6ZMi2gQit0UdoKmgNHYZqZJCtrEQfi4/L13G4zMNXtJndcaUdjmZbcdtnypGmnKQEoWX0yEHCcEogiYDiiBPqK7J7IxK/IxzDLSjwFS2xutzn2VikLmrSuVyy2vG0DLi0o+1yQBTCdfEsRYPLp3qIQWqJs8LC69UrAOI+ZTxlU6TgtcKJaeUq8yjimT7aMQ4l9kW1UTjzgPl9jmgZ84v4r+NRnXsa7L17hjfe/hA8cPocbHnFCuSHjMOEwTBgHBnOybk3DBMIAmqa0MmvktDv5yEaWsiAyJXkki6GSkClYyopS9wQS2eaSBxgla+aB7s7UJk3St8p18+LhQVQkA/64B5wkzYIl+bhvA6asO5dL3JsEjg/G6jgm6+FowLSEkpyQYt1O04BPvvte/PxnXsaDlw544/Na3ov1SXgPTDgODB4nMAbQkDe6zFYoHtiApbzLICHNeQAwQr+jWCEf4bHhkz6PgQxYPdHwF4EuQ11uDd0NACW0QWgjd51Nt9sWzJG1KGkagjRzXoLE09ubb0fNoGCMKMHkY4bZY54BRsqfauHB5NXuvIlHjMQaWF6C+8q4JmcV8qvyztrjCahnGAuKKi090+5aIBUKcmnXW5I0ba6+TXf5XnSoatdYmrQdrvt28VMAituOs9suW6S0fY38TxqievvK9SGuPQE2JuajclPkvimPrXlzNmU9WKqesVsAoAsZIp9e6lx7dU+C41Bxoj5nn4Y2bVbRElSo1fqgSpqLfOjchWquA0qcpVgaHk4HnI4jbk4jbnjEDR/SSyDkBa2uX8WfaprIYhYeP6dk9NS48/I1a1A5lepwTdk0oC1TGqyfKc28rVwHvLPgKbRIBaC5asP/2b6qv4DPVXk2Yyl60vMOgOP9iOlEyvsJg/K+unTTTvWlj8w71v6puScRD3ToJAKRedzTK2b6VPJtedkw6W3iMt0tANUjfeBRaTs5TzxpmSfHhNb6pCvsqrzWdXegk1qlJIh8pGR5Smmt204CxotVKv2+MNykGKQBSTiztWkAYxqoskB5dx4G6BYHxxy8KUHkYpUaQMbV51x5UBmsreSodycHFpYRE+LtDCyv5kDTEvBhw8oNbwiiJ6x1qbRngIz5s3UE/FR5YlkCygo7Lm367QzU6nRKv3ScUvvHCXQ65W9DEYgnTIcBdJRBDcCQgmqnA3SG4IGSO09eywHdeK6yQE0lX1/m7fUDBWhxSZOJS9qR6l0lonwn2OftebFEMVBtMxBSpEBz+pxCrfSRVaZyrK65fN+DoGENGpfyzgJFlQUqb55IZfuWsjlvUpA3POLBdIUbGvG5By9geusK7xLw5vEFvDPdw/3pKu1pZwZv99wbsiUquXLyPlBjmTwkWJwVFUGfPa5W59m3gHIL2ZbXxJIGU0YZiDpfy8CVOZc8wEEAcm05w+sKJNu4Nvn1FibUeXZRQbFG5od9tPyfMv+nahFVeuFO+xPO8f7tzPuJSWNqpX7aR3FQ+WKeUpwnMXjKptIpySlN5lM/buJpLUkpz1qgUlvm2OslLwdAzV/P6zN4/3QAKKALkKoiZPQIcQukTJrd88luU+DjnoQEpUuguLU8yVYFySJltzBgBU8jTbWVCYQJg5rLh2yVSns9EcATjhhzP8llNxLjaMYyUHHl2S0MbPxTnUY4cb72rATt9/Oqey2CTEb4emYHEdoOePL69lLUWIqifB0EqgfKgil/3Fqgym8FpKQdDRaHgqfSrrFIDWVWSHFJyGCIs46QCUImi2yhYkDinWDz85galtjJZCmtAwZkoqqA1hqQ9KyDKa8AHfUsUEtuHFunB56sVUEVJ0pesUyVcqlNOU+/CSyhUp6eJhQL1ABKmyXeEKabAQ9Oh2yJqAdvLfDpU0VcQisoybBaIWSPM3BZcZfHqkvZm3vO5UXCVFGR45LOripcmr3i1eK6RrYjAB3x26WF7l4nC8Jj+HY8z4M/Mr/6h2R99CSfGLvhEQMPeNjhvQDt6vKNnk1/VFsehzxohu5MrhEowkRjhVR+ivyASswbir73MiDNRXKg/PEJZ+ipuwegOhNQr1x6FvvuumiC8KvqNA3OBSdbFmSQU+0wriAp+35hgJKAJnD+nYqFChNuqATgnUCYwDhR2YX8NCWhPAwn/S7eIYMrm2YtT2UlHpf4JyrHApRkRZ69Pz33ngqgCO8j9Nl0BZc7ZXy6e+uorFjRm4ZLq1x3BvxY65SuuDO7k1f7PNltD04TME05eHJKYGgi0Cm/fZ3E9cbAlPdlHpA+aQCkSWSC2U/FjC1fA8OmpZlD+SUTDBce2vtj02TMmrYBaNk8r5ieOSL0Y6Dc/WkUojmOLA6aN7hjLe8+z2GDhivlyblMTjOrsPy+P3bO9HPkiSmvwkpK9MHNAcNDwunhgAdTUqI306hAa3JzSv2X+uapfP/RgwD52HAKLs6y7JXoAIiG1HbySw0T1LXunwGvGL3sSzsIylY0M/01UyO59BkwFblhK5BsLE+2rlxHFQ+nsmFkIluiyibTtXGhWjjAws9BXXgPbg4YHgw43Su8P8lXM2ZulQXQBMpWSLnBVI2P5bt5Mp/lGKmK/3mvvDRf5nsxFH6pPMh8ZmWM618ZQpWHgI8L9MQA1OxAhflAK7TkytlT/9ASV4wUX79169m/yvpEbmmniXu6MhvNKXjKQeMCngQ4XdMRAyZc0RFXdMSIARPd4CGScCZIxTgNhJvpoCv2ZGLCkD79MuQd50a08VADF0AYBZSrzueyIk/AVUHx+U1QNGIPWClvLqM1V8lrBIKi9AAoWfedghsDsCxoqi1QEhCegZF8nkVX4xXwRFNZcadB4yaNTgwcT6BBFASBD0htinlb5jtdlclA/mYYRDmQAUlcXHkWTFlwRXmYkubjpSgPeS1YCsuvqPcs0ZYg8p4SDV17cwDKgKA1n/MAyW8BUcUCISuw6j9LokCP06jK8uHxgPE+Ybo34P7pgPvTVQWipJ6/fHHlTSeUoGbpbkql9HtoyBYJ5DEjgyhRprIXkBFCSSNGecmgAqoqJWmf+ZzGNh/B8UrqASg5Xi0DwbG6bSuAhBo82QUEYunJq+4KgBb9B9V1kTdnAuGGB9xMKVD85jhifABMDxPvH0xXeDAdcHLAuVgfsw6VxQSUnbSZdwzK1njoqjyIdUnmKc43SYY3WFZmGRKXnpm7Qe48VajuP7G7/7fQX3PTwd2lC03UPvYpyvfn6nKj5LqLy5nNOPM+KSPEvZfyxAUobaS0Sf/UJYgSd1XaLcuNKwuaXE9HIiJTfc8dWgqcKV235NFct00euzwO0lw5PTcga6l/LWf2g2rT2FnKXENT+SVGAkqmjHUPWneft7BVbbvJYm5CqD5No2MM6txiUnmuyCi7Jg0rFSfqMtWxIn2jNKv+2YzBKFCYtFzOr04GYheOpVNGadNESXZPpN/yFOV5Cl60ekHldaIZv56Xv8bSQq4e2rJNW5l6Fp9qLKYsE1pQ5CgsF4xhM3iq0jv8711DKIttOIv9tWQBkXxubJoIdEp/Ke6pwAYrB13q8j6+jvCZ6Nyb8N6ZMpGbvMuzM3TWnXHh8azGRBhAToAzS5o8Y2WKdh3vBY6Lu85uKlZcd1O1ZQGAYm2iCVfDUd12V3TCNR1xrUHkR1wh7Rd1k115J0pm8isc1ZUH5Ekr93GDEVfIe0ER8vhSpPmBKH8zr3brqSuPyrYFdkWe7E4uWxzIlgbym17w8nYGbH3Y6CvWBtafQRuUuBcXBU6+vgdPBmApAMpvt7plgYlhKkHkplwGPjTJVgUlHxPXrruTnKdX4hQ0OyRuT0gWp9xHusf5cxP2ky+UXXwnSt8zQ9mAUBYaJJYJoEoM4+i6/ZuXScuGzZqVWb9xU45QzFvPCRGaV85Q5HvKIOfVQMCUq8CAUw5DXVeXqWse164b3UgRyQ0sitQEDtvYz7K6N80pRx4wZDfOxITjzYjDA8LpYVqVdZOtU8ccB2NjYQZiXZk3ST+UrEsklgegbOtBMPEwRfhS2ADUKkWDe8R1UUdriagWUZT3jMIbPy8g1vPhUndLgXL2eatloLI+cpWmliegiolrAsep8Lq47pB1aKsrZSEVUMDTzTRiAOPBlODB8Tji3gPg9JBw/5QtjzziOI0NeBad7L1BkI01WfQK8qIaLhsHs0wppPOZxoUyqn2iCr9jGQAM351uqOTB08b57M4AqEvR3PYGduVdRFVwNsx2BvlW28Bx+VWLEdotCwaxHqGUAyP/pqDwaxzxEAfd2mAAab70LRtoVjuVE1JAOcyYuezLIaZTu7lmeF/QCtLZ2x6EHWwDVpQfhjjdTXIKgto0b5K39ddYt2wb9W7jrFsWJMAEfYjL3k8ZzEjeSTc1gQSVs9QNtjZIxUh3Kq9WkHBWLJWWRmGkSRZAZK+nAlVemey0SLOuml4ZU656Iw4UaffN2r7EwJdhLVv/sebVi2ZMlzNWCAkmTlaIIW0ce0oxmqfOUvbmsq0SzS9o8kLMZASWAA0oR3oeNPZFXHRcxq73E+V5sOLs3xO0ijyG5h74ctX4Z67tHPCs6V4GLK9Ry0VoifNuPbmfTh50pbrIgFy3s0oJKe9RYqH4RPqCeZqKTMxRCZ8x+iT3z5qRGep5KvKR2xHechGfisdWBkCoY+FMOWA+vcpcSXcLQDUCx01aFDBuV9+VMtbK1Ha1FPvUgCmqA8fVvQZZlVfAUgFWxXU3ZoAFmnCFI4BDsjwx4ZqOeeXdIcUn5XIqxCQE4b0mAAAgAElEQVS7jU8YQVUMlN2yQMbZE+5oSwN92zP3VcETmZgEw6NmQ02HwjjXuwR1LUuegrTGnRa1a0CVAhg29adeuQySjOtO3HGaPmXgxCkuCkTgIWuDiUpgrcQGMPStPL2py5sYioVJA20FDFnwZQCSTDaSFrBD6wTlbN5OhryCW1FWyweKorI+ABUwqnYdz/XUrRMAprLPTt0PWRClv/Oa4sSEA0EtUDwBwxEYTsCRBxynQZe8i9WqunTpw94oA6RUiYqJ0wApuTeNEiUVawVXQB9EmeZKGtVzircY+dvCvkFTNqJHBZ49MK6AVhdA27x0AWv2R5TtCaYcKM4TgY4AHcumz5IXrcSz7tt6ixw3Lvm8i02HjNkipbIAwZIHUUlfIW3/wnW51bzdON89eQDVG/CMIKbjYhrWJCccfqVB69aLVt6VY/1EyyA7kde7jduYJR84XlbfHXN+CiIfkL4vBDrilK1Q4Ly7OY4AgFPeqfzEA65kvycmgIYcMJ732qApBYVPhMMw4Zh3LgeQ3Xfp+sU9Ku66AQATaTB5wg3lxumu5CrceWoirsBV0dD2puPxWDRCwOTBjRmqyYMpU6eZ2CZ12bFpg9V1B6COYxKrVHbdNdYnuZlT3ukeUBces+z3hDI5Mmk/SVlQMV9L4KzcBwOcUloBX5KmdXO+vK1F93A2ULyX95zQZgvUDGiqlWhfcTJQ3DbGtaOuu0hhms921JaIeh6MSIPIOb2MHXnEdBwwPASGm7Sh4gkpyFgUqdTzJDiJ7Hyha+jz3CHPEEhdeWpu0vmkfDuPgdqdo7uO5weBiwL1Acb6UmDnBmXcDDBeK/OmXAWQzG9PBnSxADrgOeK37jzPdT9mDyi1Pi4AaDagKa3CS+CIjwNGw3sPni0V9615wR8Y05TPjeWJZUKSbQnElZfhMJg0L+1mnvuSUAty/OVWDvJl5+uTCzXsiuazDfrryQaRd80DQbmFN6aqOHGRpQ31LKkFKt/N0bRjJx6xSnmS4O90nK1PWkcCySf9GKcNJtc2TLs2aF0D0N0Ym8By1Ns1zM0B596ni9Btuhalvqbttf3I5Dq5c9+WAUYCsMqqP9bYJpJAcePGq/urz9WiZc6rgHL55bj+Vlpk/UL+kxSdx07+Dd8QV4CoLeeBVQOemnT3a/qxVoVUh5ty9bj7TLLVvEJU6wIXK2dUboms23BdBQMsHOCwZfS3Kssz97r+DXl2Drm6s+CpGb/Tb1Fd3zYhBnuBUUHqrvkyh6cpA1yxxE+cLFA+9qkbItJYoAQAltis5jr9y4Cti1KW7XF4j7gcA+H95Og+zjzjnp68BQo4X2iBClH3kLUPHrdWpp77rqx8Y908U6xPfs8nGzgueQNNuKZTCiJHCTwfmdM+UJxWOQw2LiqT7g3Fgwax+72hbCyUtTbJt4w0/olRxTRJenVvxFVEAGA/NAxUVqfHSR4zs0uP8ntgyeSphUnfUmyanJc8a53q7vkk4EjddeZcAsgnTgG9pwk8DsBpStYneQNLXCuKcEq8pSl/bLgXC8VlQ01riSrWppJG9lj4LG9guXzXZWHf1HrHzzjpZDsLVOryVbpXolbRuz1+assEVJn4vYAa8KQB5SZ4eLDxKAbMUL1HnsSpSIzLKbvmbqYROBKGG05WiGlIVilx3zlLhF5ebn9SJSpzNOXYv2xpGOSCGCn2KVuhBhNETllm83MBeQ6tJcpusAhjyc0y2gSW5y4rnnTk2auVVZaqht8uzSp4y3M5hkuXj0fbjVUlcDywTlnro195R4AurALsQqPikpXVljgR6MgYjsZly8aN13kgxIWrOln4qrLN0FiogdLCmSzPsp1LZQ3Pc62YAvR7iDBzl9ELGmSe61pmkGv3XBV3NwDUFjKCN1fExj9VFiMDpqpVKGh3INfNNOHBFSvgGXLskwaPaxB52sJgcGmgqXwLD+V4yDsontB+K2/iUXcxByP3VWKhZKwJOLW7k9tgcnlzkNV4p+BW+g03zTyTwFilaS9EMyzdZOEIwFJlQeK2TLEmlb6s9Ymqv2xl0s+4cNmKQAPKDZiy1ie7G7nkI9XhvCKl7D6e/fk5vokloJzMJCKgiKRfC6ZcoPnSPfP3j8xvQEb0ni+asdl33XsBcNJzB5Ya5SnljXJV5Wnqlzf2ojQ1zEGacXPeHIkbR900E+leaGzA1apl7BBFLcgtCy2l0ID6WtHKnbl/RRmnRBtY7nF9qmoUrmmSTT9r5pdV050pE1uaOuB5DXgiDvlfgWcvC9XYuAFRPdKvYSBvUcGE4QgTRD4fSE7aB9VslOvIxyw338bCCcAaCog2b/f5MD8/2aWr6SjHMOd1mnn2ZPwrZSCiuw2gnCBUkwH6eRH1XFi9lXe1y67su2RdbbLyLv3JarzinpPf0ZTTvnjQAHNZkTe5S0hWpqG4EfPqvgmj+8xM+uhwCX6vdyf3mm4ghobcyFsiB590sSSC3rvNFmXdkkLL01xZXn4AonzzYlSX0XNTSbYpAKqVdzb2SYGVljf17Sq8SZbuyj3NS3tBeeUdAC6baMrYqiXeuqkgytwTXbjMr3k4VbkKgAHRA0Kly015zyotXm+kOKWeBU6SbxVnThPl2bj1IqDlFagfC1mFto6S2+6kx2JhoFMKIrf7P1klyh2lWvU9Z4VQYQfsQhS22RZMab8xiCrn+b5bIGUK2jvTZe+qQn3gpHkePOf8JfBUgSO4Y9ufgqT/n733+dWtWc6Dnuq19znf/T5f33vtBMeKLyISEcwQyEJBSAyIMgEEGSCExMBCkTJDkRjw409gBBkhWYmQBwxAngQxQEKBTCMZBYGEIzBWHF/n2gmJr339XX/n7L1WMeiu6urq6l5rvfvd+7znnF06+7xr9a/Vq7tX19NV1dX53rv/mZEFwyKF2jgVNy35z28YmIHnVn0X10F35Un9pWNce9v+bpCSuTY4q4u2YbUYNuGXTWS3DaAKUTRYNM5uzayAwPt+Ihw0HqcqdRIj8urQktWAXPxAVQlUdZopR7a80eNcHisIY+ANVrwnqP+nVI5MkHfMu+4K0i9SqPu0ZpWeSsjExqr1To7ynnakJP1oq/fxCq7ahrXG4zNpU8ZSZgkXfUhnQRXHz9LiPFDqF1kQMa+VNvnrznjc5AXQ7rwzRuRVtceunLrjjozhOIkB+boB65obbUlFpSez21b8OyGfo0cE3lhXXgLORBIlE0URZmrbs1zC1B2BFIpNumh2sZOTJx539WdDEdNy1DLRGDRpWACceimDySfM1Pr8ARq/T/Kh2F13MNczc4eegWZpE61FCrEC69buvhpJI5IAPKPGyX7QoPUJpRAls3gmB4oqzxxpZOcmNSyXdnTfcl0gcB2/R1Q5B0HTFDTrQ0zYgTFQjciDzQVySDRgfmVyQ1Hd1U1WBOGNFdTMJJCizhOArH3/mPveSh/3SFS4euYq5SpvKXcU246T95RTGLhsXuLSDqK+BfIYkAOquexkhuFd0o5c0wOmK2xfM5o+OkMfpyfyK5N1VdDFma/IG3qrj6eJAbg3JI8kWTZdVDd/qLE1Jk/uOd6APPQ+Hj6npjuy1XVa2F6Wy8ZqJQ+knkACgLzUqTfirvGaR+sTXD/RsFuf64fFyXIboDjI6gQEu2k+W6LgzxCTY5oReBqUGzavA13sn2lBFeA6cu9ljtPGSQE7bWgkTWeNyQF0wK1ZIE+Ki0CozbPbhkAHato+C8o98hfk9c2izxmlcQDa1rFJ34Cxyz7KWY81AFqkj2UhaR8XeZ+fPpPqn68MDd4XAsCjePetde1t0jXh0TgbfM9H6HYkUF3DxoPDeiCPjiZo2oV6EBH5fpLw/OuMx43fJ+u+oPp8qj6hrNdxkTyJ7VO2iarPUBVemZkWZmzYskSKGNm1QU630YZU7KKsX6hUdDIJrPk82Nq4+JCiYmxO5rBhZMkGmxUCgE6N16j2rjgxT4uaMHyfzkuTRuEeTHi+ExmPZxDDNc6p7xrbp8AGSqRR4oEX6wYsKRuTZxe9eSW1SjsXuxAuLyErLHA5XLjMtMYOShbuzYqNMW4+mZNYHNyhkUrJKv2UtEkepqs6+iRRV9cewTvuq3FqWDPRK5PlFjC58J6x2D8rdZI8VvrUAxhP1v+cqnVWQloZtFK2g4EFUfN1eJ6vAYBVCtEYhkvdrV8gru+pY3pj9fEjeWhrHSjqMCTUb0CGooSRlF9BgbeJAY4P30ji2IR7oOT6bXcMGB9hKPcdsHBjQK4rr+TpwlikTvk6IdGqkkXaqvRx23rJYySBzD4HKQZ5KhkjBT95M0DpGDIdRciSyHyIa04P46ZCDxN2mwaAKom0IK3p/7ZK2gcn6HYAlKXRSwTh4Q4D6sXTkTQm2vZfvY1vXV6VKqH3Or4YSVNOU+8VZBUuJaApoRiPI2GhDJ4WJCyZU4beyaU+C294LAcSZwBXuLumqXZRG3GW+hLD+oTaowaglv9U5BpNLobjHnameRAkhfULv80YOXSLG52ouYu3BxDDrLx0t50twxiVN840G+PxrUz+Jo3YQMmf6E6NBEwnCnPNUucCqvQ4BDE29zODgiXMQdWIXHHDsM+FIgbZpXG/Nq0BUOzSXgaeLFBCY/NinTwPX8e8zwZq3K2I+k4fs2aQsgFVjeNUfkJ7RuqyG69LJUiH3CDTdqtONYHCQMV41ExYMk81QAp9e9jn+9qMzBfaurryHFiyv2fGQHWsGgCuBjBx+HsELPs474Vcw8QGarWg6bjyquXL0J3D6oneAxptwxpYvdSjgihJVcAzasq2GNRpu3HoaV7/9LxY6LNT4VmbJ6D1oeSBlE0npEey+HKt3yfj3gCo6rullFvDneE5qjG69SNln91K01r1ntR9b/KS9wXa1YlQC0p3i3pe8q9y6UgveRvv5MFv4/uJB18YGzAlTt285AlQP1A5bHP37XVTnoCsoP5NuKtTc80xwMx1Hbz/teja5d0QiSqmY5TRn0nfhQPoGGdwnX8deNJnchtvyWIPwmBRGbxfoJqzahxsNc3VyAE//z7NOwfxM4Di77s0QV91EqXRHwb5BmU37wAzBiKg7N/DgiagT1PyhvP1QckjEPS7PLpsovElXKbCtTe1jg0IRJTG/JKRXMK3Pdcw91emRpPWXQ++4xHdngSqEQXUxvbbcUdhkcsCMteWrHuCNkzKio9tqW4L5se2qO8nyQcAJc8b3rAVA3B7vMsKUpcGS0mzIasOs+fyVo0nxuT2fDx5d1XxUT1geEV1Z+CPWqDS/t0E6dINw2xBz8FELcN318TtNQXXvqxmHhTw5MBHLYezkbdc22NbzJEtKn0yYayAqfiESknTcT7tOT9ocryLHMKaZ+q6wtb6IvAJRYB1eSDSKJY01P4SUH3qmCYjLcs0o2mfTxgvtUS4zI1BuWYf3jBdNkzUxDXSBvOHIMwwIe95XB9NYlQ87rWtzCXV3092YZCPcmGwCbe79CJqfUGR2sFw+cgaNQ6qkbi+j6hxiEEbQb1Wl3cmhu5W1TMm5TugOp4tL2mMzH2flPBwamOTbvjCJnnA+KdjQAzGgdYvWHPunQVYBnB4XmnHg60eccgLPclOTHFhkR43pJXxaCSP8caB6j5HpWClruoDDFx5j4AhkBkXBPVSv5XfhLy5hpDHQW4dqPqW0cxdMjGpWs+2u8xZbMJsG01bxr3vibQfjhpQxV1YpMKLVlcAGueZGkYVGNl0QgKiLFkVnnVdkOx9YFwuefNzeylTV99BGlufhSzoiyVnQtf0ON6IQ69JR6t48lUaG6cmHGhcFvRDzMQdeGjj/mBzUqNyPXJz0JVV4twQCEFhlPcpxMF12CZPfM5HTkOJlLk+Ap6aeAn3+aI4CRJQMYp7CjHp93OF/RHHyAJIoLWn2WmbUJXWlb3Td1GeYT1h6umkH7M6lPpG76MAGlJXj/qiMoUHmqCTfe83COgiciB9jOyfjhCZ96EjYz1cOLh85Nq/5J9KCN3z2P3N6PYkUCdpT8frjcYtjYBJc4CwyWdVc43jTJVQ1bPxUiOJKqq7gn4V4JTqSLq1eHiy5+OtXMEagHIWXo63zjUB9Oo8YzfVtQ2qTZSci9e2KemvhGVD88GgKu92mHzaGWiZhE/LN3/D/A4kKJBSKROMjVNJZ8+982o3p5pr1HcJ2dB72yA2T1kKVdrbGJuzlLuYZXORPsk239wujO6AYfd+nTsD4UkFnM18oMwEjZ+qofiMdhmzC98FTjaMfHz5tUbDHRNg82skC0XS1C40jy+gOkNiRj5QdkXo7ylirF7CLWGdHYyKKWRgyriSsR+8d3Fw19jC2KwuTuNLWb62alisFS0/k+YKv4tgfLCP9wCpuYcZD6bPPaN30qdWBRZUhU7srEZV34kfqPTIRX1b7d80PqC47ytvacXatbH1HDx1a9GPga5nqbg4cO/MzT2X/2tIU7tmEB2njwpAzQZAJIUapfO770bOM60EaWk8kjvbpMheCRWE1V14UKBhHXCCgMQbFqLsJlONyIsnciMotN7J9dkKsFL9VSnUhlScZHABXyOZl4hfGRYwuQOEuzA8WQJxCNy4sG4xWoDOVDIjc4wAKpvel6fXXKVApgxrtxQaj4saT5+9AVuq6joNN+lVDi3lkwInbueLulsvfM/ST+a15D1HTaPzmCS4tE/bWevTo2DFaqljlu66lyq05fr4nIddWeYjKOkjuxJrx0jN3Dbv3EaFB/FEjryV3Ughmnh5/wHars+XBVkdKjrfWNRiExgmq5tT9DExUCITZ5rE1FPqNW2K+WewA6Ai8Aw4AD0bAw2gMmMgAFbWFUSrvm37PuKLeTrLYMb2n/SvLBarC4u6C8/SyB7Kq/XqQtw4VdX2KfOaazOrzs2pehBVc5t3Exxm0+lUHtSXJvwoerfjSV+YLpiEJctIfXeExI1BvefQaFxdG1gDcCN1krIAGPunklckWhZEoar22vqItMupGAOJ2udI12wC7/upK/uo7sKAILYAibcSzBU4WYlVRGprJQDRpbPgL6rzK12XBnNLg8EtyDJMcSi9ikCZZyCajvvwoBzNfiUwW3ibPv6IE8VhWQHA83H5xg1mCybMPWCkN116rvFA167DfvNh0V+ULirTPs+DoO7dXD6Y9/XPC2gmONijmW+vcD48QJYXD4UbdgFwdLx3oLKWFdqeBUC1XU1XYmr/ZnQTEqhugHTiBbiGFWRdbgcvKce3tF7G597HbV7rtDLBG4jLjrkKbPT8O3d8i6jvllJ2VtdxBWDFOBxsdvMxNKw54w7cGIPnuuaz8YANCyUA2ahc/UCVdM2hw1T9QWWfUKSSqebcqtK+L2H3EHb7LGxWJ3bfh/kViVIjuZrsvpsdHBz6fiqgh1USVVRzGwqIWoptVKruDIBaXmL1edIM7mIsK+/CqCtzq6210iZdcEn97etpmDE0p7rYa0UEbT/sTSyfIjWMERgv8hrmJ2F1HhtN8JrOMOlQdefSeYkDUL5hx7DEgBzIjC3cxl7mqXy0tYQXNc7DVnwBxYx2eDaaGTCNZBvyC4CK8obQSiCsOsdKIOSsNADitV+lDzJfCX+lGi9tSHZsw3wjto3by47C6ScAyS1wDsZBc0B0y+9YPMzb/D5d6etOfQv0Y0LD5hO69e9Epu+jXZpADbckm5XkehPJExseY6Re6oewGe9mApKNNKZBGkmU9qfxCeXqZKXsTZxtjxO87sNLoE5OxB0QvfKSW9wXdGfe7Rh8eymVlT7VNFRBlKu3ujawDjqHyrb+eSM6I6XqPQRP8t4iA33qULD57dl38OEVODU2U0ckSlKGIfVjIw47FcxZFeO4vMZ7+nMC3RcA0TdPexIIwzQj8BSWB5OuKWOQL1qtN/G1o/ZMGmYkO+2a6pWxdsn29Y6m84uJi9q7S59/vJSvlTpUUNlJIwbP4clf9/wAPLVpav9GkqYu76g8906hWwB53jXILB7zmvBc3++NPQW5FrjuvbutnpdEuQWMtS2zZQylTOT+JnQTEiilkSTqQH+1iDt2mtkbWVsD8UGeLkwkTNVfk0qeTBhgQFFR4WUbKELiLEGynshF4vTAS/O87GCzOtX0NlAqQROXBWXZ9WjKSOBO5G6lU6sLX5uVQuHdsop00qkXo9k3aGc07oeRSo4Mkcszyk8RWOqez/G9qO04uy/glEoZRVykhuJ9Gep+wJHuhCpeyTWXzS6Aq9iREObNp3lK977ipAFNJtR+EnYAwKYxvyPJU5POlkc2Lfd5bZYrfqbU2EDVcJVUDBomEbAKfytzR2NDaepahQsy15RImXKoDT9sByPRLmRoUHwJeeA16LunSR8dUPDPbwDIdb7ijcsc4uzfctzchYUnK30UdwYiKaqJoGOgtYUqg6DhRTVbbwmXQ+sVafERXdpatwWg9mhnUHiwQ+j9P1mVXQ1rpU3eN5QYkFv7Jkvqhdyp7rxhek0PbJzVeFmdl1V0Ky9qS5XVehz6UxQ13oIMrkZtEakkuQAt6w+qGpbPP4aOEXswdYhTP420Of1vlM4vFQs46gCSi5f8Fjw15W4uzhuQA9WAXOKFNgaWclBmi1BVgkVAUf9lRFN9OdVJhBjgLR9xIMGNOg4tGCIxRjfhHiwZTUur+vPc6AX6+VZpuPjuFn9BnmAF3AIjVMbpyqhp2rjOdYGob1TyhE4KdZa5NuehbfWFznij1lcwCzNrSNzOKzWuonphmAMQ1YzTgTfqWrwLeTqYOgygnzIGNL4CqcYBabkne23TYf/dstG4mH/k/qWNQKsxc4BzuDlR3/XmIC141vqLMTmbNPKetu8tqg5AVH7H6C0daKZdOHGIPrwKT+iCUfsU8bQn7wdqRtaDuPU+Pi47CxkWVLuCxqjcSKr6vNUruTckt/VpXC88O4qZ3F9ZpfpB6IgX8BmpGm9rwyyocmnpaNkDGkrHjpDP+gl04YuQoPFrgadBGV69AccUD1X1RFrrJLHxBTRgoFch2vGW3a56gniMeciRcFPmEePhYVo7HkydovK6TQVn59VAVRvRZepbVxmRfPNlGwj8SRf2t00nFzYw6HsHHPs8iPvd9XOX3v4doMMAiogWIvo7RPQ/lvs/Q0R/m4h+g4j+OyJ6c7Ss+YOO1MWCpzYuaee0jSsONGu6akzu3RdYA3KVPhXVnQUwem5ed+6dNyLP9k+1LjW/qhDFo3igCvRUfU31tlrNe5T76MiX2NmeIHi5H6d9VjJSIPvrpU4+XOcu/11526ByL2lJJEq+Dgx41VrnvkCuvfsCo8ZjNmECqqybg8iOypZfbKM8E7Pv0r6vvNuOWwcgnJdP0UdiTX61+Stx/QsmXU6VqXIK4oXhepWdlTz4CTya3K3EqeTxB61H3+3oPNAIEDWMkgm0bqA1OKngJFkj5qieYgBPo3bShNA24y5dLqOzgTF94MMbQEzZP5vfkdX8Je7yhM8ZjIMoTzgGmjRcf21cacs6Hsbz+xkSI/IsgeKLvnfPV7q62DrrWDZjOhz/cO1Q/5rxELT94T5OGLlRVDojgforAH7d3P8XAP5LZv5nAfw+gL90oqyrk/csPot7qoTGuy+wv/6ZqQmjsluu+kf0ef1Ze3kHXyuFCusz+Dj22sV/Dqeleh3K+TA0ksB0i5c9MCGgw4VTEL5LM9cEPs0JCRJZAKjloB5FE9ZlcD19Tvv7kdOzzl+9JML8Uk2Tw7hPB8M4Lc0kLy/UMeJIU1XHLm6PIgZqwzUuen+b0TJLG9cV3OfpwRI0PDQoh8k/+hs9EwOc0QA3HuQbvCPQvf/Q0FqCiJ+0+FUAfeH8N1ukR/ULR1IAFKffQdO3PbjyaWrZMejco0MAioh+AcC/CeCvlXsC8K8D+NWS5FcA/MXTTz9BR6QhndRpAiwA4xEc4u8pyG+kTxF4AVr1nRiVS/lhev3lMQALnHP6uoeHC7swTxQAyMjovs83jb4e+Wpc+v2f+R4CYDU1GA9cFvhdeGzVeFuj+6jhHjzZ8oyXc2K0zznyPoPwBhRFoOrC9r5lkHXN+Wu0Ws0PQj9Rm3w5jMN07JmApNVy22tyz2ykD827m23sLvwUMUDrpuPDGo7PHCj66+MLM/Tv2fz2AGa4G8uCqKgsTPrx6B92xgOhB9AOAMXSR5fWgycybTpo2w6onOx7YoDWjJyvcZB0Xx80dY/s+mqkrRTatmoekn9CEDX6XrXcCVB2dNSI/L8C8J8A+Ha5/1kAP2Jm2ez1AwB/+mBZxygY5E+lkTTGG1svmKjPIDvwqoovl+HUewKMCLoDbwHl92EvmcoSrYWpOWAYjGIoXnw5saj5CKuRLSbi4rW87uBbKB/gWf1AjY91mVFn9JerH+6kaTPaa8bpjpwsMmz8JYxbv4vSzLXMdpVV/T8ZYNPVk9trC6yMpEmPcAEyeJIRsJVteEUN6DZhxrQhHzqMKhnouqLML8y1z0Ky8babDrQrRc+9TbrO/DWbsNHHjXZi+blt5BBwLoXglsk09Wh9QgG4mIEqOGJ0RuSXkvUrR+R89pAZi5qhDDSSCDNIR7uxuiknp9VNEoO6PXkdEPTZkXEwHQMdw+8nvwYku74fkV80y3zOXH0CctmFh23TuXJv52VEskhf3djxYyH3kenXMjnVTQXmZaMJy42HHGPa6ZqAAgckUET0bwH4h8z8v13yACL6y0T0a0T0a+vXX19SxKTs8aqm25HnJDVH6KivpXH++HNcDopzRhKvM+TBYXRdw578uJ6uXeaRJgnA1imgNUvrz7/TPMcewFE6r9JTKZWxgyo0fI8IEF6Douc9fVi+GF11/vqjyfx1FDzBpzuIVA/Q2U/tqI+4qsKbuPI4SXs+5/akKjMKVaFSViC5CoHqWTpSzkzytPf8iXTpDF18ekWxE/W591S4e9oQ+Z2yxL0+GS1sZkIYH7a3OBrQEQnUvwrg3yaifwPAFwB+GsBfBfBdIrorq7hfAPA7UWMslOgAACAASURBVGZm/mUAvwwAb7///QOcoKfeuHneKRKf3C/QA4q6e01cFQQuDKxzS2ptklJR2VmfUNnvU3k27A687CUcJSy5+ixgPOy0xQLGBsZGW/H9VH1HVTXkWNqkLgs4XhVImHgpB1rvsdcQ4UZ05rvWtDrHcr33864tdwCkQgeUpRmPqcz8Sk7qsxmVHOcDf4HGUzkNyvB+oEhwlG9+c7DwKK/mt9ezbgyeM80T1et26Hrz1z/9/fD4LCBom1Dt0P5GR5Jo3mhCJyCSKjUqkACIXCJ92ryohgF6FG/UO3nc80cDZ3TCgfXs0UofBpKHoK7NvSUGQP239eTxewZAR4x9NgZc/sa43oYDrq/dvSl+tFi2J1dovg2gLff9JZSorgmrhIwGfW/OyrM8h6qfp3Y4+f534+2ZpVG7Eihm/s+Z+ReY+Z8B8O8D+F+Y+T8A8L8C+HdLsl8C8DeeXBuhE++1Z/R8ZMKIpTEvu8y25+dZUCZn83lgt0dnDOW9r6zDNFwt7cQ/B52VlHAPnGbSHVXldXFVWtTurBuIgrYg3O/C2yM1Ijf5DlDzvgZsfsr0XPNXaAMlNANPnmZ55X4Apkblys6lq+6elfH/DGMmPP/uiPTAAwwT1uzEisoz0qi+/wbPDSvfpz0DnsbSssF9JEFz4dfq+wYQS98fWEBffPpFJygxaaI2tffNmBislG3hMGPEx/u/CT3FD9R/CuA/JqLfQLYp+OtPKCukmVgv9iFxDjTspsGxHXu9GwPWeyCr7FLoxqAeHXMJLQOpmT7H+oY6+UHNpXzn6jmlD8HEZ8/c5moKcaBJRtXW+XBytk/ZhcHWO9Qc+X5SOypzHajz2nq1AIkKQJLfPbqKaubjAmQXzV9DH0EyaUdSJcfwh8wdPn3AKCbhe5L5I3PA8Dw7Rh333DvRPLIbL1qokXnXmVrPGxoP2yas/ODX5AvBcMRMB8y1NyB3YyH4Haru/HtG48EKWSzQCOgIoBr1nzpRXa+nvrX16urX/doMQbv4/ho+DPDfoZB8j4fU6Y5OeSJn5r8F4G+V698E8C+ffuIHoubQ4KChlllcAUZiQN4cGGwOEvbl5XAbRkW1tmIhwoMZkAsYK2VDcjlEWMI3MVZnkVAREgje4jjXLQ8ssY5NRnfj1ZdXd4b3VBrVh93vSWrBxBiAtPcCXE48yNtEDQCSVd3p9cbP69Z2tCBzr9jcMyBqlCb+xobNUbrK/HWEUUf3nmmOmHnEFCx4sGCJDBOS5FfoG/UCDXMeHiNvgjDHeViHm2eomgYMTALMILNG5jlAKlnSacPa/OZdIFINilXNWo7c09PG9570MZI87Y0Bk8YCyZfyz5fBs/T9QdcV7j6VhUPTrwOD8sYTeTEKrycslCNeuv5me1OohE1Ueg0xToOo2/FEfmWy7TSS8Ih6rA/nJxuQz2iZ9qKpx+Qw4ZeiF3eieZaC6rULlQP130kyk/xYh5nN/fBZQfwFvqBq3U5nGdOJsm59WLw4XQM87T1iJLE6kucadIkvNK3HsYxDILiX/8h7hpLDk88Zls0IwdPe859InYuKRmp3xY90u7zvLUW+ByPaWxB0dmDTwg5WPAKuO/RhAdSZyo7E164Yq646KrYe7crzTi1HtBhDdOvbyR7bIkbksgOvujZgI626bITGhx6PQGPr+yoFH9yeA7Q+8sIvay/byUceVVfltNzaEQF1khiVYQ8VtqDKA59i/yTqO2YGy8HCNo1X60lZXmXXnLknc3UVFXVt8YR2faUdmqlyRvfYAU++bKCVRFDgDwlj5imG49c86ooYwCre9Nu4vY0le7t7dRdWJwZuf1tjeVsxc23j99p/oNJp1LH2by9uVq6px670yd/b9y95ItshvTXj5SoAWiRQJyXyR3hvHatyH6WxN4jHiZXUht8mz/MNy5vX/6OWQD1lcERSqTHokF14rcpODg+WNJas/dMZOgqiZKffDODpUTMHgGQFVQcrek16DoYefC83QzND8kupMywPyjXxu21zq213izRRuQAHwFPEOI88096eGOwXf+NPkECNKFys7WY6AEaDAqdevuV6Vtae+nZWrn1+lKYry6cNVkvXkp4F1Pj+Y3R9f+Yg6dMbvAT4N2F9+hB0m/yHx4ekmS2OBvRRA6hLKTS4PsExRv6djj+/75XGdYK1rSLjLsG4SojL5e7cuyM+rz4EZprRUWGXXp/sjkPdtx1LR86HE3uVXldu0B/RIcNXoInQ9qLwz56OTrAz8NSlHXVCkCeSKAXShyN0epcxQ8/Ce1Eags7gPpRKtb+h64gI/BxgnlMJhrseHiui6Xj8Tlf8II+MD+thvtq/cTnX8xy3OAPsQ3cbo/HdSR7lGn18U8B1x+9tAagLOLkVU89WVtWI3AAV6nfAiSfyU4BKpE1ofUDJeXeivksQX1ASXtV4YblXtsM66kBUKFIBDHfRAM+LxHhwLY+edZeTwIdlD43LWf02Nao7r8IbOdXU/FtW4wkNPJvT5sqNuszuBGSMwdoZegVTT6NAZTRVGwHtStmrIEyaPcPh6TdpHj3KD+wDKmIUNQ6Ak16oo3qM6mIZZLe7zIRpYR5gzABtJAnak0AdlUx0KqPB8yKaAD4N9mPAAYXGJ5gv3mgi8u+8Oh2Vvvfs4ymbkHx9p+rmqN9n4XBhXd9w/Xsi3RaAOkjXPpftqRKli54Z9PalNlCXAK09gLjbxLcmtjpCV5bw7FIkbfI09BdlQOsISL0wvYKpgAJmesiz9FWevQ+c2vjLOlCP8wCObco4SVe119l9WP6Z9tHZehxNf1SltKcqvPDxT6KDXujPnFV7uqzT7RyBMX//tPF88wDqKYcgPjVfUvcF1Y2B+nwqarXqA2pzedvfPRrZUg3rVgzcVdrlnz8o5xKfUEofIwcdVZlRzvWqQVnX/zxMon12UP6Ryelg3aKu/xi77iZpIoXofMkckc7OwkcMhAKwMVB1XOpIGPCOFFGMyC9fh7RHdwxUM9ivc2xw7tQ4XsIQtPMuiDr6F+XDRAoZ1XskTfNSFpt1Et55oI+THiIyff9U28hoY9fMtqmrd9CO8eYC+XVSXn8taS6USH0YAHUFyLz3kV0CEkYHCF+abpx/3gDJGqerV3JWsHYYZO2M9os9kEd0SxKplwQLzS4+s6tuIFkKz8Lbs5s6QOQmt8Mg0M8bE8D5SmOaGgiHTJPjyf7kdzRLflaiE6lkGlXd9vI2UJ036l112JFC62UHoi6dx1zep5xvN33GLPq55mDGYQnUiC5VPR8tK0ecDR+k9X8Tuj0J1EiPeWV6zqNadPfbbrr5i0UqvVm9rbPQJvwg93vp42tumrxd0x5mHR4QdhJsP3k33n6S126+Hg2Pg4iuZzRguKf83eB6TNSDKbWBujINd2gdLuBE4kG/DI/zOFOHa6Y7kLZzYfHcVBxp3hSNAPVMVfpUda2j2wNQQk9Q10mbnFFXJaqquLOONJNxbRAfqUJYiLBQNiS3tJBR9z0DZ7OuDF6ErvVFH62uk54Ye9NT0pRh81gHcv7cu5EfKO9Uk8WHSh1TPPFUTntOOY9KmrwWY0cE78t6BVqe6pEP03O07P0eTdKEYIiCyz2V14Fq7BIDvG1lk0Mu8VlOMugGLGIJXpfWpR/ZwRwFUbacEyq8Tm03U93BxY/e16TvzoXz5fngK3zE5Pr+Ofo9NIK3ajynyvQ7Ucn3dyjdDfrF3l/wWrcLoJ6RbkHSErkyeKWPgF54Ffbs9liv9LJ0dO55gTnqIub6MY3Hk1PsJWehXYWuyAqe5eSIj6jLX5o+CQB1WMr0DCNhJKmyLgyem67xXg0gbww6o8TP+EVNJSTP88gXnzetKkTtn9w4cq4QOiBldubt1j+0uzpU00F5T8j7KVK0ep0aJw3id1bBzSp9YlPyHEw0GxKvVzEkvgadWn+eULFeCqIu2kAQkZPADJ1FooY/53Fb4gcK61r8QF2nXBUM7dhGxQbmgzKHtmYnwnckjJ4+CQB1hOzxJRpWVG4jALK4HXiLOTtPHFtq2ifOKnU33bFyLnne7HiXj47OVpnd7yDNrbgMCGmi9vtQ9DEOnavRDAiF6QeM/ALj8a7o516nMZ5kSBwzyv00Vu0yNh4O0u9WaHCNgV3bhC6WXH1MSoh1ezZp+O7xLdPMUdi+KnSa/wR9NgDqY6Kju/yssfi1QNDY7f5Vir+IPmsm/Uq3RxfaSxwv//iAf7HDvhkZvD8DgO/9/czE0P7+w04OQ9upGT3BvvdD0FMf+1wL9FvYQf4KoC6gsx69u/wHmj2Zo1zm592NVIg3akPxASiyOX0Wsobiw6Nc+vDQtcGT6nHldK9UaZc5jsIvlVLwXPryArSBVIVH5UDrW6Dpou4I0NpRsw03C2AipdpT5e6o4zTPLc2t0vcr6wYCoWsalF88xk177RqT2zhfxgV0GwDqwsrfOgNfPnQFXmlOtz18Xuljo0vmsReaw64hBbg60Df0bBLuK5U73X15ybOfUYI5c1I6C5vRc/b9HunO+pGN2eGC7PV1QNRtAKgT9LluXnuq885PmS7hDSq4e+q8cM2J5WPa4fRKnxeJIbFzpHn2cNlno+dWqz4XHTU2/9AmFNv2LH7APnb66ADUx0BHDbzPNv5C+aDja4CpW5fefXQ0mFw+5Mqtodddd7dBt24sPnpuYaL5AOvnr8ST5qfPwaj7ClKliIYquSturrlp3nMSiL8CqFd6pVd6pVd6pVd6pZP0CqBe6ZVe6ZVe6ZVe6ZVO0iuAeqVXeqVXeqVXeqVXOkmvAOoZaD2oRD2rUl6ZsCJhvUK33Yzx56dCKe4TupVdD0+pxo28widBTzT/+FAmdUwAUgITvcjOwSfNT5fmvWHTnI6Cd7zGnD7crUl0NbRw07znpKf9jw5A3YpN7kvTNUDTp0qXfI8szfnUb/maAOlWwNYrvZInArAs9YwqCb4Vg+CTjO9miAfXs3QvTAKeR4vEz5luo0UuHBw3jWQBrB+6Aq80pxsZPjcjpXqlp9El89gLzWHXcHj4nOP02RbG13JWzdT8PfnZzwiIPF+M+ORZ3vkh5yhmys1l63zRt2avI8+p54u8DQD1kdHGT2u27YDyTp6xcsI6ed4obn2BifnWAayQVPPZq0sEUOmPNHjYKPyq9bhyuleqtDfJjuIvVivlw1w/5LeWwLn6ywJOdDPjZgq6fNwewwyP4RsDpiGQ6p57oB4+nCfpPgRJ3y+9+vaax7RcPMZNe+mY0Ekf7a+N82VcQK8A6gbpqLrOArlrudQfDeIPqTq9pbnklV7p2dVFJwb8iwErQgb/z7AA6N5h9k5HAckL0SEQ1cVfVucPBaKf+thrHvdi6Wrt8YRv+bMBUNKJtjM3EDYmbIMl1coJKwgbZ8PtLA0q5aCVDB01HB/Wr+Q/Ws4lzxsN5Oca4M9KZ6scnYkUpOErGkteneh5GNj5etTLj3HoXI1GQGpPCuVXxUXK9KSqPPcChwAQFSPy89ljNdJ+GttmQ4a5J13YzdNGnVLTYQCiztbh1mkpGwiegaKxe3g8h98f7cfN8p+gW2UVp+goABgBpafQWIVWfl/gK7nGezXziWnPcCA/J9ecLT6f6bEvDgKsMaZMSt5A005Wwrh8fMmyW/9o4vucgc+1KQJSl6j6diRb8l3yQMVT459BSiRG5Dcybk4BxhnTDMDTJdSBrqPG4Z4cGBz1tcQDzyuZSuUwaywLkOhq+1x07bBjn9Xbc2HYnsMxcSacg78JfRIA6izdgsRl+1y3E37s9MJfTLjq+/DD95UupcMSkhu1YfyYNjycnGJ3wdONG7oDzwSmPqIuf2m6XQD1BD2xjMeN6bh0Soy2kbAxTQ23x3nj523MWJmx8obNfS2rOWLoOYCdqhxfCjReazK4xBCajPSWJmVMNAUdJapxwjxElWbvXZ42fWoNzFF2tQzUcezzT2gqVqf2vaZtEpR1A+uMGyOa78byK9Yj38JU4jRPr5c7HXWVT5IASqkYkecSr2lArNQNWIztnkaG17YfDkqfhn3pJRE7EopmXPh84TsM6u/JSptOaAWuAajY9f1z9HsjXbUPBnQHno1jN052jceZEI4Pe/9J7MI7Y1PwBHpOQFHtpPbSzV8ssnOa1VsAo98leFTFdwuSuZshohbA7H0pIyBz1nfKU1f4B7K/dvP1aAikousZDdQ/qsI5WM61BNueSTLhWfwADTetHC7gROIz4OkMPcVe58K00s8vpsdI6fbQwki9OQKtUdhHaQN1hV7fQ9aXgIGju9+e6tRyzy5qK8brQDFWB2Flwlaee9SNwh5w2phuYifD1eklAUIDspKRPp3wTK52UJdX3EuXDht8OinVGandK1U6BaJkNRyuks89d5b8LJiKJAvJPiGlvJX9BUmBgrTNNdRsI/B0oRQiyju0h2ryHGtLngGCKN21iRDbYZ6gI76ojtZ/vJngbPggrf+b0K1hyo5mBmWXlHGGNt2BV3fiCYhZOV/rPbzUp/3dIwVMR8FR8Q9Vd++lLj7Od1yt2dHHKLqYAAJOcKADdSfes9ZpAqImxAfrFnX9x9h1N0lH1Tdw8ZcYuI5AGQfMpmNG1PzOaDQfNICKACwpq/IunT5MnWbOHvfqHBpWe0DqmV8AQqYgJ1LVjf6ifAjUeeFzyJU3UEsGNAIczH0bPwVbsen7py6kOOA/saG4Ud81ke7XpQ8XJXLv1bAwaQ6ApYhuHkBFdG2k/RJOJ7tnBkP6UlcIZ+y1hPakU7tN/CElTpd210sbwB5ReQwkVVYadSuuFV5BWEADINXEP9uzz63gL11IkuzEwvMsLqqU6epFD2kXPJ2hsyq8vfSzfgryvkizHZRAzcbYkfE3AtLh7rs9ydJMvSfxT5zUbmBaNnTBSLCrmm2Sv9oH1QbLajHq0mVJ0/GGXVUKRFlaJfcs8YwN2YDceiFfkSVUI+B0CTCa0VkP6tEqdip2fc4veU9yP4s330mYroio43JJDcZZ7KLsH9DbS/nrRAAlkFXRJQqfyd44PeqyEq4+ea7hG+qk9PuzpJmKx0kkhtIHP4H7vF6Nx+1W9ktVITxIK7QnlVYbKEI2JL7wY29ebfYuTGjUdy5MC4ukNqOHmr4J42YSpaOSp6Cv93f3zSVlAPox4EBCaISteXNc9YU4r05HCVl96+aipxiT+/pOwdVEPb7Lf6I+uwJwErotAPVCFO6UOwOYntj4kQuDBtih7gJcOWEr6sJVHHoO6ioG5PZdjoCmDylMiujot6TXJ7vjUPelY+nYgheiauM0PMol6A8Ju/LqfgoaLwh/pUIzRoo2rANRXdrJKnqw4vY7kJokBzvvtBqfAF5e3gZqrPoK7iPJwwg8ebATlbUrKRqkC5h699yob4f1uF6bHxkfAo6T2XHHxQv92cOjz0g9w4X6aHz7b2Ckuusect3x+1EDqKeIrCPANPbUndRFwWpcFqzW2NsBFZVKnZRLn/FEvmHubsG6MNibMC9enVyDnmNOvt4i4/oUgagn776j1n6LTLimqfG7bXOrbXeLtMNED9vB2PugnFH5wDlGdfE3TnT1byqUQu1m2mnPQYEhmI0kWnvPHT1jVi4CSdRUmunTRsDhRP1OkgVKTOj6PtFR697x2NwzBq9S03wzs5WK8h8eH5LmiKTR0YcFUGc+5Mly2hbjwcKRldZISrN3kK9NJ+WIGg9oDclFjSeAakNV3wnQ8eBpO9g9EUCaHdtij7Wx6WaGp6dErEfpCUx8+N0crAp7wAFUn0+jMhJ6VR7Qg59i15R9PSUQUVbfWXsnSvnPS6pM2fqc8lwkqXOtf9gWr+Do+Wg2yR5R48wm9U7NUK+jnVjdVnbz/da/c+BqREwohsTUjZ89qcQeYJN6zozmczqTJpQ2URu/1/7RtS3H/+3Fzco19aBIYqJlB/f2/Uuezg+SzcZW/YmnE6Gob/u+n9ER3mvHab7fy4B4nFhpXfhtBivqCCR9VADqGakBVUOVVwrVcWcdaZ6llzje5Vr0IU+BP0STBUi+pjB8r4y2POpBkuYt4UedX8524F0ghTrcPUfSnXj8rQ+LF6eJBOoQiDrEbAbPeil6ggTq6DzSSB2aiL2PdBw1VaNGwOkSioDU7FlXolk7XXXuTteRPm4O7I1oOA5seKT2DBNHTCK4v6B/7s5n+TipSl0SIucCKxNS8ULujePWsud9pYQExoJslwTasHLCPa2d9GhlwkKMFcCiYdWI3Kr2NjE+N4cWV/cIVA8yLs+Vv+4divG7BYX+8OQo/GaIGCEXJ+TB/YS5TbOSFDZJgwyaiEqdjn5YkfH42me2vqB2baaembzErRkW5H59/OdIowbw48QOMzN+iQksaf24Zjc2m1sqz8i/zAQC5+xkiuNraINrHRJteh4aF2eKZDyRJ+LTc8muZMyDgBEwcRKaJs0eaJ2A10tso5ncRTRvmP6svWfiNH8Unq+Zc14dA8/hDd4RiwQqybS23+e+Vpvr79nh0p2dk+QtoKkHjW3aUDoZVSxourNnId60BGomzpvtNjhCh1R76HfpxensUS5Jy7Z2UFsDmFDCn2aQLn6g5PiZrl6qWjzv+2m+HfVcPaf0IRjy7Jlpvl1XXAro7jygNSQvZeijihqvU9clGoMmr7rzKr2wXiIpq/dqB3agja+yPf0zAFfEAwbbqXoQM23eUeM06V2Desbiwve2kB+ZA0Y7qzITrWPM28Ac2ZEVOe61R3DMfUOhfe9R24SVH/yafNKv5Bns3l+hLr8fC/65cMx6BOiacRKn39vJdkSNO+q/hAKel6c50hzVq6tfAJ5qhqBddgBRE8fBNer3eMlB0rcJoE4w6JndzlFP2zH4eFluYI3Rq/fxpGpGPaPvIJc6s6vwYo/ko34aMYbnpKj6s1dygAMYzMFqK4V99Vsis6Nu5N9pYkA+UxWGdTL5DI0muuZ9DwKrV4rJMsyO90SMbu9bifLK/UjKMig3M6RzC8pdEinEM4yZ6Pyzabt5RujbewZSA4DT99/guWHl+7R05H2shGz2jv6+Gx99+LX6vnWkWuaOg0D5KEU7SvWVLDCcSAzh+9lLLZu09XJ6nmUAkiM6BKCI6LtE9KtE9HeJ6NeJ6F8hop8hov+ZiP6f8vu9I2XVip5vZHb3o7R+tTVTY23GADyS5iiIMdKlRp1mwI64GKg75KgYihsj8vIW4gNK1Hc57FibKLhyu/By3fqz8CxZsDTyCruZ+PyL5v4UHZyIzhStaXWxQvXeL9JtuYPvygMpzXd0eeEAi6rlROpUwFWjrhOXB0dAEE2M2w+q/maL947CNjqX/pboqvPXQBLRASorkRrmob5MoM9jni3gCHDf50A61XmkPvih2S3sAKoUYhlj/EiKcYkk29t6NfYu0TVM+j0JEnKetq+u/xePhUF9wroH7xi1hw0H4KV2I2/kI8P+sA8TwCmBlyDDAbLPkjqO+37Ac5jq2G/+fP/PAVEjbTranxM6yiL+KoD/iZn/eQD/AoBfB/CfAfibzPxnAfzNcv+idOa4ApvmqEPJ5zIkP+ra4Ixn8tH5fCO7p1jqdvhxH46ONEkAhp4KIJR0RxxaTnJQvB2ehWdVgUY1GHn/Hda9AKyrD9noeTcOmAJ6/vnLfTtTKUSTbrRSdgP2wLd59vM9KilIxCqBvZYaZ6aua+4vWLSNpTrBCmoGYs5QBIii5wfPfMq5eWcXtRdrVor61ufeU93Ontce7TMpZK9PRv3mAOaho3tO0u50S0TfAfCvAfjrAMDM75n5RwD+HQC/UpL9CoC/eP7xE3Ivfw06KpXKkqSBawOIoXc17s5ltIbd1f7JuiyotlDWgkAkYVaCVf1NlTP3VI3XG5BHg3Rl767gMs7aTWyD8D6jvb7go/XzXCQhurBozecBh9tlxCr5oaHn8A5Eqf0SIbSFAqp6rwk78SLGFiWUVsu72d8R2Xhqw/foClqCZ6erzl/PJIXoVsP+ec29GfhOwlDTUceULj1TVBkkZYCfz4982qTc1ctoGIZHdliJQySZGbWlSzuVOgGdJPHs32wc6LsgStNLlDr1bfferbRJs+4BkkKeb4hBOhnpox7jYzyRi3TyjDf6kQ2eHwtSf30ZNum6b8hfj9s2lPYe/ZvQEa76ZwD8IwD/DRH9HSL6a0T0FYCfY+YfljS/C+DnDpR1MR1RI/m4PePpfFhwBRneoHvj6qxS1HgRrQ1wMs41R+n1d6y+84AsqvvKyYFCAVjzNvL1OmJg+mLnVA2A0iXlHOYT1D9nuNL2R7kk6sPg1XimH5MJt2XKr0qhoL9MaJ9zKdk5xr9zBKJO0A2DqavOX0PGCfSTLrf5clgAloSBwuVrJv32mt0zWcP7b7vzF4VzICq/AMByoCzQMNCRFCJasB5+rn9PGw70A86DkCAt+X5x/RP240kmOysnBFFR/Ztwl9YCinK/J627VI1rq8BLXrBdY9dfXx/0YHD0XiNw2T0k/wyBkw/TMoO/CR0BUHcA/iUA/zUz/4sAvoYTdzOH64b8AkR/mYh+jYh+bf366wOPu4xm6ikfd8bAevSsTaVQAwAkwKwJ42oDZVrLGpB7550rtzZXEYibAcW9dunmp9MT3fzjfSkaG06760k1RdrUzc2EKo06Q2NjkT7NCWBkpU+1HBTpwKgug+vpc9rfj5SuO38NJuxwB5f8ck2TwwKGgIHqqRvAg7hnpKrCy48kF7dH3obVh2tc9P424wB49AX3eULpEAaApylrwFQDABcC5qb+TiIZ5hu8I9C9/945cB6onCWVMF04/+05ZO6AVFiImYSG4Nl9TzPw5NLUsi9rpyMA6gcAfsDMf7vc/yryhPR7RPTzAFB+/2GUmZl/mZl/kZl/cfnqq/2nHQC41jjOr1A2HVwOLKDtLD1cWI29K4iRuOqTqUqhIqlQ78bAqOJAxV0Bm/SZrJpNVIYb2nPvIhKQJXW071jfL7XvFEidrxmESQAAIABJREFUPPXG+uO0z0qOcevjKY639xFI6ozEm511GXh0AEzK6cKrOwHrkbyxXxKvvUA1HldPvioH79V3TpJVPZFTncD8kAgM4Gs77HhWx8Xzhnn+01ekz0zXnb+YgK38BUyZNiOZ2oJ4y0Cj/KEUIvqrg152KTGXKB77WRotLiMg1KhoiPUsvKdKISzjjOopar3eeBzu3aFt1qvuchmRam2scmsBEm2tsXn3t0XA6shz7Bjo368bA00aCuoq7QYzHubg5Sgl4jw/LjLHne/7CEB3ntTd+zRjOhz/qO2ANqwZD8E3eKiPt/o3bZ/9l+ffBfDbRPTPlaA/D+D/AvA/APilEvZLAP7GXlnzB12Q5ay0ZIcOG5cbZ5eSZ2Zw3u7Eq2G1PGp+27yt9GnoQNP6fHpuK1/fVx7Nf+wU7WyjQXhEVn1nwyJ7p3Ld+ZI6SU8y7vVZP4EuFHrW+WsmjSg0UhvNpBC+jE4yYxnmXhVPpBWyO/D0MFkH3o9Ink7RBPTVCszyY8xDjoSb8kPXFAPqJY8U9mtUXielesK8esa05Qh1/VsWatmq4HIQla/b3zadXNhA6q8ZfZvstacrK2z/2TgK6Kgn8v8IwH9LRG8A/CaA/xD5c/rviegvAfgtAP/e8cdeSDxHwBtTgwhZwpzkCRCp0VbCEhZaS3gWSViP5Kt4HQchgTrUuXJCKl7JbbqFswRqcXVe2RwGbKREQHtI8cjJ5qZ55+4KrJTNXzdtwcdEvV3LzwbwM5EOASrPm8y3BBcvfMgIbZgIJF8t1SJFgkOJs7QBlZFQAnijjI84S4iwZQNb2krJKQFYq1RKDN8KUApdGHSSJ5h7m04YmpMwUQuk2nmnpm1+XZt11yNw9XGBrKvNX6Pph7sGqQmpC6nhHMTKXic241KTyAdQBiqz3BbJEGdP58TZ0zVRZl5E3Pye+VjVmaIzIk+0QSyLE/jQwq11npjfp59XalwvZWjBSWiAXyRPNh2AAMxSGw4Xf4L63qfmTtKcGQONx/ommrQhrWdyuZf5TdqYyPzuvEeCBc8bgAWcuEigTDrTaIk4tB/O9WnDI0eqYjweeiL3fc/m2raJHQua3j7I9fUV+hw4CKCY+X8H8ItB1J+/7LGjBzmAJB/6kZUWZNDklUzu+kpb4ahdGHLGfJRLPwg2y20h6jDGSglglONdtny8C2rYPdZGsrQV6VM+zgUabqVKkRSrquootJGKVJFHvJt7EOXDu1WCHdQfgmZzfgCSCD4sH54gxLZbOxDiAFYBUTk8WkpSnaXknrkAK/FCnipoolTzDM7QmznDFC/o7N67ufZga48+cPc+J11t/pqsTo8y0HoHFxYMcDaJ9Pszq4eGiXAw8K9H2RdQWSSYZ+gic5BPTSpQGePwGI+IOTYMcQKeUOPJ5TsEnEbXF1Lb+xRc9Wn9GGiOe9ExwPHikduwax3zUo/xkb63wKkC6CPk3RaEqkYzBtj3bceLanwIniJp0wBAXdpUH94T+cmKd8DxyjO+ghBnWyQ2UON83rWA2DSRScN1B56rd3V7YJx2TrrnqI+qmUG9p73VQht56PEvS08dCjZ/org8t0vOO7w8ZBTu1HWqvpNjZKRrrQ3TpDypQ+gQ9Jr0CYKr0+SlHYPw4db1qDyYdJ4pRPlGq2gIECFz34KWM5+tnoNnq1fG2lVUeNP5xcRNgGuTBj0oaiVRmWEPDceD59Dkr3v+AIRFOzDnhut9GeG1BRphunYxfDER1E40r93OFbjHozP+p6bu43cKqjeRPHU2aKaMbhetzT/6zh3dxGHCesCmkJVEOZG1hDG4EU9GJGq4jasfCJW8kFdlJWymDirVKdIkAVGJNiRRg1HeibcgqwAzCCr2SiXdiqxCXMFZIIGqvqv+n6jaVKm9UzUkb2ygYA3eTRnu16vqrJpO7yGrAWqcaA7Pq3pmaiU/ddHVDAWbLli0K8k3VWa7Lh8ZFQcISJwNBgWsNGq9XAlJSxYkJS4F27Dc0URF7K2G5HnMqFF55ALBO+pszs+r78NST+GxBk/rws78YnAPwxQ7KZT/hYv/zKhjnBxednlyfAVD6luHa1u26WZSCElYb0SNw6VsWd3nsd6q7kSCsDE6iXvjmsDUIdEGJGC7z96oU2JNb188EYeSqGgLffNbGGBrPC5/VH9Rw1VVzigq9pZRdsAJmEohRv06I4pu2PwYntWNg0AaRTa0zD+0ETjZ/ncDRySSDO1/VeMCTZ+3Ktz5i6qvJzEiv0vFC73pe/v6biwAIzcWUu3e5m1XdWf7vPweUuGa37HU8bJJ7cNLoEZ0AdOWLE/xqC0gpN5TrForzi3tDjy1XVKAU6VQjdF4Kb/u1Ktl9PWpIGsLVHefO12zCbz9UFf2UUNtA6ZUbVfAU5PmqMSqSKJUfdfEoQE6r0PimWkwtzTgyq92RyvdKL2P79JRHx6Uo9mvtPiRxYg8/hJDYi3LMFF7769H6p1uezoMeOrSz8HTsN982J5kwoU1ZdrnWQAcjIHIRif0Vj9o/pG054imxm8caPJfOLdEC/OuLlaKxmiuh+PdgicbPwBPodRRwXtbH78jb0Y3IYE6SiJxiuMiQ8kMNKwRd3YkWW2i1M6JM7C5K+VnKRIjYTUSKpHuMEB1rbUW2yeLf1YkLJKXqh2U+H+y4EnP1GMjdeLYI3rnJwoibUoKthoDcnuPVhLlyfqFCgd7GBb3xxmykqeG2sV4ExZLpnLg8DuX763MmmKoSRJm66NlF9sptcSU51ERaRfbqCJ14lSkneKmYC3jRM7F8x7NG4DV/lXQhCaP3A8nNOumweRR6VNAe1Knw/SpAzjLKIN3bcZSvyhvpQxg3RAxlULwwBbG/Io0VesIOyfWkoF+s40ny0jVqLixgWrjbTuM7G5C54m1qrptPd9Q284mX+/bhzoVDfk4tPHSGk0F/LU+L3ydUfI2b9uNyiNM7+v/tjwycbW+VDcV2Djta9SxxCK5lIfX9GwnN1Oa9UIuJP1b2J/2vdg+Ze0OmvSRBDLmKyjjVq6hfabvFY0BBZrxGDlq/6ZpPZ3kZx8VgIpoJo6UCUR24m1A87FvRSVnd9wJWEIJt0bkK6cyoWxZGkQStgFkjMiRsICxlh15OYzUjYFV3wHGmBx1950c3yLxYkAueatqr75QdFDyaGcMw6oAgZmYvQ0bdcQgfEQeHAXAqCl+ED4tX36pw7dxPShPXAqYEgDmHJa4TlKJwBubXXicxcsJVczcgKGU04hESn1CGf9READY+n/q6kpowlnUhCOAVEBYHwYFaDPQM111XsMO5iOjSIo0a6OOiUoZ5IBUKY9TywgBZHWwnJfIBrAIMJqpcQRklTocNS5OxQGOqnEI4DuoGser7+SZlka+5hp7LMsIdVCiZZjy2/214KllntQzU6At01x3TXJgaGse+5p9MzSgWsGCfHZcVXRuKupAVBvZg+jSoFq+nfNyuzP8VDCi6mW+qG/v8vxGBCxW1Ut+u1Z9Xh8m9UBtJMtrbJz9te/vwZMdByYN0I8HDbPlRdcn6HZVeJYCKUg0a1nGP1LjiUPNzrjaq8jMV+GBSg6r59epGs/YMUm+iKyqbs/3lDrmnJx/1517N+GI1zS6D312XIOOVvHkq1R3AD7cgYzxEMOhGajZppRiz+ORJCosCxXMuTrvvv/p9pnkpyDswud8ajQ0RDXXHfNuVsfUpocJ9/l8nOWv5VnDXW5PIeIC9o99AhdT1461bSjiAz5PiRsyyqbsnb4L0h+Jmxkud/lKfSMJCjkgOdxU0JQpPNAEnez70AcYoduF59MLHTUt4dH77I11B56afOzav+SPVXiA71MK/mZ0exIos2KqKyoMjeF8mFXZiaiaRQrlHlV9PlXfF1adl1DUeMxFwpTBycN2hyWxSqlWZCnUSrm8lYodFCc8YAFoVTuotUiQ3ruDgx/4rno7bwzIRTqVu7Ie62JVdOIt3QKz1v+TBY3eqFybHgOAdTTMFvQcZJm4DBP5uFEmdplvySzUKPgQbDpZsWXBo0poZFGdyyHQAvCaByQVaRMTQCnVrzOlvNKDFIai5iPouXhe+mR29rH+CuCr4aLOU/Bk/vzhwnWdQS5d0JZB2+6uWWYg81MlRusB1xKhl0g4aQTJf1w/kUYaxciSzpJXJJxqRAxko+KiUuuZswxqbtQ4fp5kMXEYSKIaFR5tSJQNiLcF2Ioncgnf28rOZq4Rv0T2YFi7nb3dto4ePJj2DyVPgSSiAa4WmNjwpg2DNN1LuVtycWTKkP4uvxZ8Nv0MgLfcJwSAyzxEJhzap1wnN5U+slnQlp6XicD2Pe+rcIFWAonE2O6o9j2qgflsl7dIG9lesw+X/rfjAsbTfylvm0ie7DgAmnwz27e2Iy6jj0MCdUXqnEmiBRVNGHpJ1ch9gPdKLgblgLV3Ind+XvVoXtMlA5J6+6fu8GAHDaI6z6gObDvwK5B6sUOER+Rf5SkMm6AgpCnL/GqTE5yEqC/HSob0Hiaf9fFEyd23f9555mlv6B7cOBBkafj+16JPGFQNjUsHq9pOGmEncDOp0+A6/1KTtz6P2nhfH7k0TMtSJKWPdllZR5qwNlDXWilZ5gl079NJXvz7emAUttUgTdBXLcCi8R8G+TwQ9M+VfK5+KnEKy6Gw3KE0xpKA0wPU9bs8WqSPk/RHKXRRoO2K/j3Cd25VtEPw5P7K1GjSuuvBdzyi25NAAbAofi/cGkjKqiqyixJQ4R1pCopOxCrFWYjReCcvecXTuHoQ51QcabLWbQXhHjBONXO6DVvjfXyz0iZUP1NiPG6dZ1r7J6lP46eKSd0X1LDUSJoab+QHAVYjBrb3o0HVTCoHuSgNyvOAIEgTLaLV6DtKG+UtxuE2XryTZ+lStncSw2wynI8JxogcxTt5ngg45XOWoC4LtnZHnr6bA14NoJJ5pV7XdDncnuPHHvSVtmvm/LPgJkr/CQOkXXKMMxJVsL2QrvVxKF3FNSzflv8ZCuZt+BEpBOl8iJDpNXU1H5EHRIkYCzEegcYbNQEaLobEidgYOe+rcaotjA2U9zG/ttEixrmh9okFoZq+pIueBfRgydAuNmCyPzmPeYjPXqWN0LEhe1Nq/tzXtLGmlXqoZxU2mwqsiMuOAx0PY5s3D6iTGQeNGi9l6SMv1r1BbPs0eo5fqOc26PutA4QKLu14OGD7ZsuDA032Fwf6eUK3A6A8OIq4I+oYkQFjjTTJL0w4q82IW7UegOrLCbm8CqbyES+pgClR44E3NTBPKOmKMflWjMjf85J9QoGx0AboLroePLVSqaTSp03BkzmUWFV0Tn0HfxByDJDs7jvrYt8bkEerVAlv+ulKNMLJSiNw5dIo+LHpZfIhNHOMpqP6fBlqdcddrZiAKIjxrhqKcwZCDGNEXn6tdGlJZZyaeyLwktQ+irNlJqoRudRRyikgKZEBQ1TrqeCIjoElXwba9Ox+D5F/3lNmpRumXvJE3WUDrMq4U4ZpBr20uTJRlvFaQDlnwCSgRZgiuAB7GZMOYHB5qFXjcFlgMnP4jVtSFQ3aXXjbQuAFWNIWHvkxIll86fzCskMMet9IWCwQasJJD3ft1HbSfmjLIFeehpkOC6WJJ8j2qQVVVaXLNqoDUmp6YJi93aEn6jwdSGVTQQeim/di+Zfbm0V9Fr+cV9vqNbiCZ+n70t9tnrrDHEDHWxqSMWD6n63KTn6B6u9LDwWuYwAMcx3sxkRNFwKmqClO9v1np8KLyEprunDDFbxR+GaAjydR9alTTAVPNCxrWDdTByt9slIne5gwgEbi5CkaI73uOqxOTxfwyVOMOSK6QhmFVGqjTI2aX02DGt9JeiL13RlL28FXyBTEnbTgrWAMQ0DVvp88Z5zms6VuhdxGt2qcOkinE3YJD5vXraRDKYphNm1H7r3McUq0oQjczVb2yjzPUuiod6+NgFCyYPP4NjwNnobtu/MX5I2axdfHP9uDv1AiZsIOS/kdHekxtX8rFWN3dJQ/33X3mVz/fGW648J8RaN496356jTgyYZH42zwPR+h25FATcj6uOjj6hJMEG2W/SAbh4PUcNK6M9jIeCcnKukFdCxYlgzfdYcbJSTOar4HLFh4U0nUBsYDgDdZj5PjacN7Bu7pEdDdeVkS9R4LtmI4LsbjKxIeeMF7CbPSKU542PIKrzMeZ9I6RgcFt3mqgHnkD6rdvTFGKtFW1D5RHDwkgoiC4uJkxc4mPbfxWQqZE1FJYyVPDBTAY/w/cc0LoDUmT1SqlJeK4uKAZelIxfEBESgl8LaBlgSsG3hJWRS/MMr+b1SVXlJpVJVWlUnK+ITiYmzeSZaEoRmJlQdL4Xl6Nl3U/jv987kDKdpcG/gx3o1PqtfFEFiDTD+IlAmAStNVEkVcbfNkhQ5upRAqAYUuCPI3WtQ4gEqfvAdoS16qkIixgMELY7sDtjtgSWJELobkHPoAiqTbllmq76fmt9RrK9IHzu8m4GMkcbDgYwhULGgaALYhLgj6OYqzzaqfn1GxE9wYKHytGROM0o/IZgEkIKYMKZGAU02XJd+5MnLQufDNvGkATb/PVKwyBhZibFT7nkvfixuDIwdIWz4j/GRjAm+Gv3jpI1M1Gpf+jsbAZoCTSCZtfzR9737h+vrCie22AZQ0pohA2ewmQWngIC4i6+vJh+ffhFR2yyXk06Wrb6ishgOh7LgrtlEF5CRkALbqLLjqsS9iN2VVdo0KT9V0EfCpO/9yqdWxZiuVctIncx9NlF7aZI91GZJO3KP4SdxJMt26y9QraJpMfpJuECbP0+cqLjT2VKLGY1Q1HnHjE0omrozgqar6gAYoceffiSrYSXW3HeToFpPOgidtnxmwccCrSWfvB/n3hsTnSKNxZtZyLoNgp8LAUecwiW8mdgE/blzKGNfnMKAOFqNnlzSslTtGSTlUvk7CAJc87iyDbV7TSKaaajgRZ8F1AXiq9bbSldCmZQ88NemoLwcuDVzcHk36GUA4FnJQHQPcxfU3NQ/XBKNxxjVSwVMZI0fI2z6Jz0Nxoil93x7zM24wuxFp7CEdPXgKxjH5dM07Z7LjAIiB8gg0XWpxcNsAKiIHqkZJNs4Spg3c2UAl/a2uD0BmJ54ugoqkhxgwO+DEHmlRGyjOXsZJDMezW4NFfEKVsAY8mZ161nUB0DrOrGGt6wIrdZI65fdrz8GTd/a+r2a+srpdeS7uWTjnaFLAoLsnzMrmA9VVnZVEoQvLDxH8xAnZ2bx8z5JHjMmLvRMT1KVBYwNVymyNySuIaiRMZvddtW2qoEqkUlXgJ+VbAEQNWDp1sLADVXr/Cp56EmwRvL+XkrO9MN3RMVFG3couZQmIApQbE1AZYzIJLOctBaobAzaATSVArbuXiIR5ihQCCyuAImLc04ZHcMN0Z+SlT/LbM9DBH1owtAeeQvVOA9BcmL82FL1eOP5N/zcLMVuWJiW1letwURkP3iaKmCuIllC2tlD2PdwEafp+T9hgPdAvpbG2u9z3YgM1cmMgj2+MxSVcgNSe9JFhbJ9sWH2XEChLOtsOXbwD076SJ+k2AJSbeE5lLYNF5xJGNzgEEIi0E8grnI0o8zwFRtknFFClTmJMDgIeeME9VqyU1W0ircq+UBYkzjv0Ft6wYMN7AAkb3lAu7wGLuil4wNIdHPzAS1HrLY306WFbWtUd6q8CKQ+o9J1bMOSlUuKPQ9pu5M7gxYkccJL5oHxvjcRI4u2c4a8LCaiq6rgWIBGAyJhc/TGB6wRG8QHDvFABX1TUdSwDMxuPF2NyXkjLRSr3ApTEu3gyYe4v9P3UxLdhHOS1YMlLp3x/7F5/4kQjxitBbsz5sSvtWzc2SB9wNhRGYZylfD06sajlcnKuEinxG0SGiVoVXuKaLlk1TqmvW1Q1R7RQVdXcpxVYGNs9ge+Ae8dEPYiq84n3AWWuNwFPMlChv9Xnk1HbRPelbcJry2Th8gR9eJahhgs6k9eOBb+RpQ2jMj+gmhEQwBuqSYEkLeo8howTAjbT/0keUvJtpH7FshqXG2CjKlYjObQ+nlT6uDD4jrL61saV+JE7i25z0kz6aA3DNbyCYhoZkfv+9aBpJH1015dKoD6sEfmIOfuXOSn1aEHBZTO89wnlnVTqNVr3AULWj5M9YDjnMf6iUF0XdGU0bgla43H7a0GTr7sNm42RDwaUgKcxYQsC9so++pwCMBo1GQKA0eySA1qpEam7AraSJ6D+all9xTojdmfc3kiYThqW98/aSbAT/1lJo9j9GeoAlpu0h0zaSUlmjF7LcWU127zDeo87yWbz0qRktr3JkUGSzqr6jtIen7I+n8i224wBdu3ReyKfqe/CPjtLLm/HkGdjwPO3qK6+bA6eEZTFZlxc4tMvERcwDqCo8BZsnfRyJIXs/Aka0NRIH2GuO4Bl8qKmJXsdttEAPDmQFfbV4Bv39OElUAKvj4TbsAIICNAW8Of9VO/k+cNsvJJzVddZY/LNXD9uC5BWPG6Lujh4AHCPtUiJCCmZc4F4w4ZsbA7kyj3wHTZs2bUBWMGUGopzPvdOpE4PvOBhu2ukTw+8VBWeSJ/Y/hIet9TcVzcF7W48774g9EjO7mMzK0gbBjNImz56CbKrfVOlTorEaG2dJC8B3tgcZiUvYWxcFVA57063nKdyTl6xearn4xXP5BupGwOkVKRJ2XiciyG5ui5YirF4cVYozxYpVSM9WqCgLZIysU8fxI9AkaYdtfnnBJYCspNtI3GK0pj4TvJQwurGBaPSKeFcvI2XvSntBglVJeYNMrkQ1O+y4hDj3dxIgjA2JBZwdFekTHdYke42bPfAds+4X1ZlotZGKrR/AuozPVNUI3EX7tOVe4qkTRZM8EC1E4Cmab9FLxFR0Hw2aTMOYOYnRj8GCGpXyYS6icVIolQSWSRWuXNlDivjQMacGJUXn1BZcj53Y6Ee5pF/72nDRgy627C+qX1/lzakjVW9a73R1wW7ud7I8BozFrYyIRU1HZnxQBom7x65sAiuS6MO+913UnQv7XGAl314AGXJgyYmQAwkJaiEUROGunNF0gC6Gy/S94qNFFB8QpWwrfhtavxC2YOFOT7eBWVX3N7xLvbYlgyuEt7zXWNYrj6fgmNbjuy4G5EFV7338T5MQKrvo2grqqVLt9dGpBNMMzP1z4wBVZlcgg/BgimW/ASQzHBc8qfKrCwQsSBNJEQCnnjLMkFOCbRtUMNxawc1ObZF6q6LcQU/VSpW60J6b+vnJ+1R2/pnRHGvZMivciMmSkHaPqgZssowoW4yWyZqdlWBDRM1hQqD7NRJbNQ3uhNvbgcjEob7srGGUt6Bty3AHW09E3UfX+hTzi7E7AKsA0uVMe4Co0GaSKoUAac91d2MiUZRnn3ZhFSubbM0YwCl/xnav6rSbR6c7aGkbOsfrKmYtK+uIusuzJnQWtW3BRhRYj1IOiFLoCzQ8uRtbfOvrRPaPm/CXZzvW5M2GgMAGhUfEPS7B1To447SbQGoK9BoYrBONUfixmpMXkBU4a52Z16Or78rF0/kZadd6538Dm94zXEChpCanXcZPMVex63kKLJ9AnrjcXkP7zxzNC7CMXRNznmyrNy03OVTKRLalZ2AHx9GbmaSsC49aprmOVQnQ3VrAFTwsxUQb3bkqXTA7shjqlIoYziuYElBlQFSUp+Z7VNQd8/MHRYOAVaU75XG5MfNJUzUgyhbjjJROOPiMnysKkSNijcnldAChREZKQRqGTmq73y7A0ttY9KWjciLM0VhonvU2D0pWkcrjSph1faFWhA12KIuacgYGjeMFcG9tKkHG+j7do+ZRgA67NsjY4DRuLKo4NfMe6X/ieHOx5PwMmoUNEl+I3kqnT9ymmxtoe5pxUoMWjh7Ilcj8v2NAyLlbAEzoQfP6P5G4Fn7fwCeQpCNQZhp46fQzQAoYiOK9mQGQlXXQTldnRTYTDKk6jrZjSc+ocSY3PqEEhcqj5z9mjxuCXcpuy542JY8WWwA0gpgQeKMxB+4+GcCIW2MjTYkrl+8904uxuLZ71MGT9ZwPBuS5zJFTSgG6ysTHlUKlfBYxBGP29IALva/QCN5suq73JZOtAo0g73TVYd9dAUuHM0soyHhQFAjqbKAYhSmYMowq6J5yzvnJKwwKglTtYppKxmHOiloQeACv5E4A6KUsr8nVeGhqu4WAVJFpVfiahhU/cayay9VYMQzaZQHTXBhZMtp00TSKYi64HMiRjV2LRSu5CNwanh8A/YFL5u2z9dU+qceM8SExrA8b14QlU8BSKKGNn6hso+yzFh5S2DaGuZpF2rWKPyeNtzTChBwd79ifcvY3m74YnnA2/SId9sd7ihL2a038sbu0s4jyIyfN6rqOwVJ5H7RGo2Xd1YwVdR+++oc0xUj5orgGi5dQIJTmvSTvp+OAULjY6y6HjAq3VK+SCRVqkQFJFHpf0F2RQWjG18KL7S+E+3iWkDRfVpxl4qqjhl3dyu2t4z1LeOL5QH3tOKecpptsy8MBeXtXwkrfdr2P/X+vjbTv8V4XPt/Bzg9WWV7ElR9nJ7Ir4AcgXZ7f+QQLFKHWR9L6pPJpbNOLjc1EpcjWZwhuOkC67ZAJjU90oVbr+OdwbgFTQPOFm45vaa0qSn4idkn1eriPHM/EKb3BnjsPb9Kh6hqHrowavP6slP9ZUJV6dlnUJu3DYvfv3nHadtRX8YeCHilMUWLiwmj9ivg8L5hAtTHNc+3QKSAD5PH6mhbJ7n5d+TKRGihDQttSCm7MRBDYmDsDyqX6xhr+EGZ+ut9/fOSh1aiQE2evt3QtNUZ8ERc/2YUpgvqQDx4vn2vEfAL+p+a+ODZXVhvrmF/LVnJUpYycu77BCDJ7kzjJwwH3FhEz4v6q1AoJXJtM1XbmjQj6WPYZxfwrA8mgSKeMElByAKUbTp778QQjQQF/eHC4hPKGpPnupTVF4zKrNhCPW4JKTGsd/KHbUHdPrIEAAAgAElEQVRKrPElaU7nOI9IqhauRuTf8L1xW1AkT9udSppE8rQiqXTpsXgiV5cGRuI0vOZWKgXUrat25WGlT524PeqbZtIe9OFB8t0bUl2MzcP9irAAGjkYGGYlbwEJSV6Zy2VFl0phZTzSiup/h4qtgnkD+VhZJE7MxZCcQVgyeFF3Bam4NIAajmdJVHlk587AgDOCA3Gm/uaeXZgHil6y1LRpQGH6A/k+JZpqrTxoL0PDShv01/B/qwpSNU4z1slIGlAlUeqF2uQ3Y0Gdv4q/Mvm+NycZcN+6GpGnLGlIYLy5e8Q3bxn8ZsMXyyO+SA94t93hPq3YVtJ8lhjl8VuVPsH+CeDbSA2HVeIgYUAjeWgkE9IfbK5N23WghYN4tGFd+FEafEfdONgZAyJtaq6l/wvjZ6DaxJVJL2cnHRu8yUNR3SRsVdsy2kAEiPpuw31acY8Vb+8f8eO30L5/mx7wNt1XH2GFLL9ZmbBt5c/wDC792hiOi7RR+tIbjKP0rfb5WPKoeaL+jPodbdqzdDMqPKUGIKEfmC4dA6VzOBSni8pucR0tzjU3JiwlzB/vgmILJWq9h23JPlFYXASUAxWLqHTkGwqU4xZsQ59PCp6MzycBT92BwQ1I6nfe6Xuz6KFrWL/jbsz5DBZ9PkmVPIKCgQ00oKhJ48NLPRsQJOMnAFY+TA3OUcsQlXEuj6pBeVHjcarTV57YShmUrykZVd5WPPrKrrqirlObKjlU2BzbIobmun08AElWimYBjgdR9t19GPuwE6CqKWeS7JMgYeBA3CZmUahjz2Jwm5XNuK3JqhqH6nW25RVD8FKsMSyvnmLlQXXHlaryALWbqaqVdk60tFBe+N3TikQb3t4/YnvDoDcb3qbHrMZJa+M3SJtByzdArahpRo4zqVHpFWAlbW7Ak7V3GqluDgGnEWCaDeIJP+pAsvSvGQezMWBlBnluqcOHxLcXjA8wGQfSdjAAWw4bFsPyAlard/JWGmn73vqAEvB8f7die7sBpu8XOSdv1lzCb9wY8NJDUd0peJY+hblXEO3Ak/cJ5fvVg6advj4Lnm8PQI3IcM+xoTiMsaXsNqh5JA3JJEJiVFk9ktsdeaCqcZH71f5qeD0nD0jFHYLsyMuuDxZs2Rs5kx7JYj2O6867suvOHxjs/VC1TjXbr9raNLRh0k49sOra2rRpFN6md7+OLlrRHaAGOI3i7cQmwMgyLwVL9Rq+XAMsuNge1N13ZbLaAAJn+yYg20sRUM/JA7wH8lbtZ+2ZSEGRB0ht/KBLPGiahU3aFqb8w/j5aLqPlXbGsn19j9kjJspNAijj8OsEBeiFKaoEQrFT2ZlVwJaka7hzWWjmb78yuEi1X+2gCoBaVvA9Y7nf8HZ5VOZqqZV6twxUF2HmPjM9C5zQMUgf14GgAXhq1X0mDi7ed9Skf0X6c5Q6cBwUr/2L2k223s0uPDYgevPpqU7Wvt2A6oSTK59kxCpc2Twgff9mWcFvGMn1vTjTtBTbPwl4oiJ9LO8mUsagjzvwbMeGd2cQXdv8thM8wGoq37fFHn0cAKqMsMiQXI3nCreMgJP6fgIgBwzbHXkaB2NQXiaVRyxZPUecJVFM6hsKKJ5ZmRVpJeRJbKWUkXrKz1uQjdBXJLzb7rGC8G67zwblnA8Lzio76xMqGQPxDKwe5Xdb1IhcdgNuTFi3GsaIXRds3QCvQMp+g2FXNB94wC33BmHEHVy8MIzpjOMfK2DGpxMgglyoACWtKpkixXeUzNNJKlT6Vz7ujatq0PiJkvbIk2EF7Am1PL5LVdJ0V4CTGIwXX1AZqJXfBfUwYT3upb6vpNV40xbank0b1LAmLdm0fftqXkjnBOGfOBEwl0ChbbuhQbFpezM0K2hFHf+SRj6HvNkG0B11ZszL7r0q/ZDtEVR2jkLBtxj/rky4Mwuq7L5lUwnEl+kdEjF++u03SD/1gG99+Q7fvvsGX6Z3+El6g7u04sE4/G3mGaPCUQa6klHZFAa6WtUdlPHpdVERkjEibxgv4BhtH67XaOObcLThnhoV3DCRKUr6Nuj7aAw0Z1+K6xTJr/kKGE3chm+l0MQQf3bZDAGKlNT+ccsH229bAqet2gFz1p4sBTy9Tdlg/KfffoMffvWAb335Ht+++wZfpXf4o/SFujsAjM3ulrBute95S0Z1W+rJlPvUgiiRLvoxUE6oVlUf0EmqtG9gwqXxor6HC3PhZ+i2ANSRASpJee7HRETUM38XQFHnlWsdDDA+otwAEd9Q4vtk5QrC7Ll0GxV/TkVsIa4NrMuC1UqfjOTJuiwARArVqu5s/b0EKdwFcwnZfJcMtqPpQqBUAYllErqiIvMBDEBVu7wz1XJ5lWEBrSpP05QMkkbcGlTOpY40hUHJWXkAV5sVA2IU1OjkaQCOpLGAyNS9BTuub11aD6ZGac/SpUPqk6HBeLNTEptwGYdWiqHD0oIoCS+RCpLq51Bt7RjN0G5VO2UcC4hSYEGQVZC1i/RSqKrKYbyhR7xJj1juVtwva9mF9ajSBzGFaJpHF2U2TC4EPbj2dNKHEAiNgNGEofr0XRpXl5nEfBSnr286V+eUcq/vZsJ0PLhr+zx9pCubXb01je1ny1MbKZX0z0ACWUDUPa14k1Ysd5v2fRq4sOj9CtY69sf21L8h4LHjJQrvKtD3czgO0Ib5Ms7QbQCoCDjZWcOP2iA9CxAqYsrqVLNOJpFLg/yo6p38cUtlK2+WUomReAY/jEcklTJV1wbAUiqkYu0ihWrCUt5B926rRuTvtjuVPInR+EPZxWddFnR2T/a+iWttn7zqzsZ51wUyyFXUXto6mgybvjgSdoCirt6Teyv4IXOPYPi4eCuFknvxPtBKoEwiFSWRSyjc0VyzSb+IeJLAS3FdcJdUyrTdEVSyJMe/GJcFCpYaf1Fo4vx1I1mCCYOJc+HatnDpfFiQ9rMgxtiI3I3TZty1PKuXSJCLkzBxmSG2UJWPQK3vZNiJt3IUQ+I1D349Iy9RcWmQH7KVeW5dExZirBubeSSP14U2fEHv8UV6wJ/64sf44Xf/CN95+w3+xP2P8VV6nyXsxq/DupV5bKtGxLwl8ErgteiiigSKilSCNoBWVOkD13futrJbCZRNO2DGe8wUiMPC+xn5ecv1uZVcdf0s6an2cTMu0OZvJFFUImVukvM3C7qSUxKYOLc7shRqKz7q1jUhpQ1JpISFl4izzC/oAV+kB/zct/4Qv/fdn8J33n6Dn7n7uut7kTxJ3z9uqZE+NRIoNn0v35OMg6CfrfQRZmxoU3t13gg0BcApBMMfJYAaUYOeAaCIJmWAKsCuI1h8QAH11Gn9RQUDuiNPwNNIlYdq//S4LbhLa8mfR+1Dvsm7ERI6dd7Cm/5mFR5VtZ3uwqNObQdkyVPdhVePb3kM1HWR3ye7slAQZK6b8GAVEgOm63DNECxdmq+Mh1Cy1MT3x7vIteCfPHyMbygJTwRsxsi8DELdmacFmUIXncuQnUxBj2fRHXfFjYE1FJcdd3ptpFMtWKqG4x5UtYBJXtbEowdD06793MDSgMgZjagE0DHQRjqKlpE2SQ24t3GNJMsAeylTwFLut7q5QY/+MCq7DLy4HTcbYUv5uxc13uOWui3qX6QHfJXe4U+++TH+9E/9Ab5z/w2+u/wEX6V32UdUIVnUMTKQ2oSJMtWdVyJhatQ25h6eiZJe219IOmmnLQgbAKcOMDVgajAhjeYp6uO5RbkNiPag2s47MOPAA6kOSKMdEzqXLWXOLvZOOk5kfilSc95kzoeq8dYtYUum76n2/Z96+4f4R1/9FL7z5ht855K+X+sEZfseUle7y1L72R8k3fbrWfCseYL+vIQPCX14AGUG1HCSPshtI7WeB1E+zO7QEyClYk1CYw8lIAuQXXqysMvX1lO5qPMeyjl6C9fBaQFUpLbz3sUtGPJuEkYex6Oddy2gCkBTSduA9TLpTbnrlUBVVOys2y0IUhLgxON0jXTKjj07iaG1h8qTVV3RUwFkujNPmRtlfzlrGRwyIciRLbr7DnXHnbgq8EDKNKsFSEwtKPKSojafA09or5+p6z5d6oBSP0A5mMgsrw34bjP8OhAlzNYyEEDVddlwPMflDTTIjEkcaSYUb+WoLg/KNy2MbpVfs6sXABYw7rHi59/8CO++usNPLe/w7fQNUkEtchi6XdTl+QhFAoE6eI0UwUqWBNvVOMnjw2q7RKBoTxUUx7v+G8w3fj4ZpbWzpx8HTTaZQ1x8NwbMczSuAQfVsBwCnrk82+7CDNoy9z20z3SRXnhK3oX5iH/q/g/xZ799jy/Te3x7+eOm7x+KLW6WPgV9v5m+1z+qYMmAnToe+nPvmn6MwHMAokbAqeMpHzWA8uSBVASsCgdk7iUFKraGVU3VQtQGlFtV3sqEJW2qwlNndFTSMhVVHtXDgpEBzJ3sRtiARwBrImyUkGjLkqwCvO6L9Oqb7V6lTiJhsv6d5PrRTGaPxTv5ow5SUiNyawTYgCluvY4zKqCyajm/rVXC+74Rros6wV2L/KwRgaLybA+sFCBJ3SyYQAuW9JgMt6pnoKrcSKpQHmRnvsLJGPIhk9pEZSCVH8aJkFbWFSBtuZxtIQOc8oO8wTiAZkeeXHdACzasvktz78CYBWFRejZhHZALARo6+mRBmUzylqJ3tYNT2yxfjAyKdQzLODWfFzE6l8fNsR/ygVibF4KOVaxFUpnMPPiYzzhbadE6vVvzvPN+y6YFD7zgnh7xVXqHP/et38Rf+PL/xgMIP9re4Bu+x4INj9uC99sdHtYF7x7v8LAmrOVv27LqjlcqUghkg/HGkLx8YitqvIABK3kq7RAZkWtzH2KmBo24rjoCnoDa7uE4bxYp3IVlKTia78t+V50KT+Y6QvEqXtvKLtpy3bkdVzKRloOF1USDkI3QE/BY0r5fFzCA9+sd3q13WO/yJqiv6D3+3Lf+X/yFr/4uVib8wfYW75Fd8rzf7vBuW/Cw5r/3jwseH5dqQD7pe+ln8e/kVbZTqWNkRO5Vu0Dbx4N+Pi11dHR7AGpE+kKOe7okDfZiqEsDlT6VNNV1ARpVnhhEyjEvQAZNgJHgUJVWVWlTUqdiYmQufqKyMCLv1hOkr4cEgxojcXstZL2fW121DbPSJwANeIILj67lPn+HFlWcoAOT0S6Vb76REp0oq0kvQGwCzkbgS8eSKaOGldmIXLxxcQBUYASwkVgZ8CRMkVDVdqVOCp482PFthTbegp3QceagjN0wjeuZwudE8vpzKYRJo80l8w/pmLFFeKZsJ33/LeivYRRlmFWpVMFSIoGgcs0i9igITXGXWXg9btmcwEqhfiY94ueXL/HH/B7f8JqdASPVBZ/MXaq+QXHYCZU42L+qqkEjmYokDkr2fQPmOFTVBeBpBJzOzDVRWhvUDRHKdbBq39HUFE1dml76H+7Xvr9k1HGAesyPACkO+t65xkm04WfSe/zC3bfwE36Pdw+PeF+OIrNHiq26MEft++DIHu170++N5MmltX0bqeh8Pw4ljrDhruMu5VX4mACUp1AMIVIpQGylKogCdEhTNSgHclzRskDO47P2UI9wUilk9waJGXdpVcPybS0HFSfo9WpA2TvKzW0dZDbOMp2rAmsw/rgZaRPqllGpK8uv5ms/DAZgJU2d6wLPXZsJiJqPs+sHE06+nGuTm1kioCWAQm0EYMAQALGFYl+cAR86cYkKrNg/MVBdGmxcpVYiMiAuBpvQimW7pzwQradxBU7GOFx+j4ehgj4b7nb8+ZVuKG0y1HXjTrc+YQ76uMhPzpY8x6Qgzkg0Rb2q45TgzkMzjyV0djHWpUJeCJSZT8a/TGCrpKE6hldkz9Qp4RF5HvjjdI83dyu+fnyDu/ffAgD81vs/iR/ffQtfpt/Bzy/AA2/4B4/fw+8+fgc/fP9d/JP3X+Inj2/wk4d7vHu4w/vHBevjkueVlYDHBIjkgVGkEGi8SVvpg0qWrCFxIHloJA6BYXnDLAcMdSh9umQwW+Ar934cSD9xOwZGmwq8NMqm0eM2ARVAJRRJI9hIKKnmQZG/ExXVbsKaK4Fvljvcb4Sv797gjr4EAPzW+z+BH29f4Ku37/ELyH3/O+v38LsP38XvvPsefv/9l/hmve/6ftsIXPp92PfSl2vte1pN31uAZAEX0NhMNX3pAFQEnJs+QpvuEropAKUHCluOZu8LdQ7kPDQHlOmLrVMJVIkUTLj1DYUtgYgLzyTcpc3sM0lgzu7rczjpbjzd9muAVKINS3Ff8ECLlmLtmR6Kwbj16SRg6ZGXVsJkwJWk9eBpNUDLG457g3G/rZhNu9l0teFN+rODbpSeZnGCjGoRKs62eSwKQr3WII5AVQCi7EQn4epMnKAqErV5Imnc+jEz6SSZDyAuVTJc0ariADg1nLGLMumbM+xcvAdPh8GSi/O/TXk2HH26z4EI6FV4hTgYk56Z6vQ0AFPk+85k7xgrzP1an6EMUyQNxZcZJ4DWwkLN98CPSee3h8c83/zR8kZdrvy9u5/FH9x/C9+//8cANjyA8TsP38Pff/+z+OE338GP3n0L79Y7/PH7e7x/vMsqnLVIH4SJbsiMVBlmAUqitrOG5NaI3AAsAK3qJlLrKRONQVMnkTDXISA+Ose5vm/Ggu3zpu/l14yBRDVtBKTQ93+di8wcJs8yAEv8RGUbTsrqwEcCkEHUw0MGPl8vb7JmBb7v3+MbZvz2+5/FD97/DH747jv4g9L337y/x/vHBQ8PC9bHlKVOj5RVtAKiSn+TGQe7fQ8Y6dRgHDgApf0PxH17ZRD1QQGUfshnSBggm4GEei8gwBuM13T1XtRw+bqo6qj1Um4lUbnSrWG5PfIFJk0VVWxYQVhQwFUZ7VbiJHWRX6+y82o7eQ/v70nIbhSa+WeJJFKn6AnIPaQZmPKPNnxiN6+ZvFpQRa041zI6yWIYn+7i64BW2R1aH1MB2uLqZRhmD3yoASwSblV7EeCxbaJlm2f5Z0d5r0KfOpAyE7Yn++qegeqkbYpxUWYEmbL024QbW2jWlfpbgIUwUXtsih5BJBKuDWUHDGfVXrFbARIe1wXv1jssacMfPmZJ1D94+B7+3vLb+MfbW/zew3fw+w9f4uv1Dd6td3i/LtksYU3YVrt1XZ5tPEhbKRPX+NCmyTHJTiLh+8SAp1DaFACooRQqig+oA84w/TyLKzfSj37+8v0tmXz/W7CkY6Kobdm0A28yd+W2Zki/A2j6PuHd4x3uaMOPH78AAPzOw/fwG8vfxz/ZvsT/9/ht/OjhS3z9mPv+ne37LelYat0WoPaz6fe9vtffEj5V4QXgaRc47fT9EbopCVRIOorKSJFrRV9lVUXe/5PMIPJDrkBAVHkiddrAei2/dfASULZ5iuRJKGURBe4KRBaJlMTpdSnN2y/Va+/vqQInbyAeqe2s3VPj0kClUhZAVS7cXucmsrvvGhXfhQNtRqZHMjVdxWi4vedCaIeD72XGIMyBFMgET+iPSZCkLODEPrxOWlrdMu70mIqIPGiSMOdNPDIY12sTZtOPpFIzCVMnTRqCsz7uc6KpHyhz2QBU1+5Dz9RFGqEG534QZx5Xw0QKuZQkjXFx8QGUuGxOQJYKqC8zlAVAAm8MXgkPDNCSF5DvHxd8ffcGD9uCt8sjfvTwJf6Pt9/HT7Y3+MFPvoufPL7BH777Al+/e4PHLeHdN/fZ/ukhgR9SZoqPCRCVzSOq6kaMhq00wjFRSSdtPpJGhUxzALAiCVQolfJxE+r6WgKjOJqPASJuvuNOhVf6Vk1SLBtEjZd5O79THlMJKN7gayGc/e+AV8Jj6fuvmfCwLvjJ+3u8177/Fv7Pt9/Hu+0OP/jJd/H1w1v80cP/397XxFrXJWU969yXr+lGYzdoCHa3gpFoOiaKIQSDMQYYIBJhQBSjhhAIExMQNYpOiAMHJkR0YDAENAyMiC0JxIHRIANHHWkYoKCRgDbdaaSNNn9+8n7vPeVgrapVVavWzz7n3HvPPXdXcnP3Xv9rVe1Vz6mqvfZb+I3/9y7cC+8Tju8cgHcyiEpvUg0Wf6OtjwCfAzbkveK3tS7Z/xo0C896/I5AlM4/ga4OQIkbbyspoMXWI8kidx5UAVQaIPljDvQqS0AdpfLDrVqSbFzUQcCURlgScK6Ak2+b37IbgSedr+tqC5Q+soDUvQVPMP95+S5GDwCyIuAk6QyeaJ7W1lNWKK2sfL2k8VwF4DIsHZNQUvWRB0wVqKR6rxSsBTcKEaaoDbsUTdxTVLZT15CvOyjz0sBUb2uKxNLnRSIc6T4TcA4nlkV5kAJCfIyGlsG6sWWlKUdtyP8C3I+sUJHfmiLCfSK8OeSfe7/x+i381uEVjpTw62/ehTfHA3719bvxzv0d3i5xL0c++4dddxwDaNwz5QFSb1xZEGT/axCk01rLRKs8I2tTqFgdM05VrP4RCPlbmLhFBkL+q05EHgDIcRW877n4OAbf6ZhAx3KWIr9UcEQ56JRwfyC8KTFsv/n6Lbxzl6//75u38Pr4Cr/++l14fX+Ht19/Rnb5yht3qVidNJ9Tw+cQJEW8d29UNuCZ1yCwOE6Bk+PrKXCD6ToAFEtHLy261trRSl5NErhP8K4qHRslskb5aAO+ZjB2VyxPfMQBpRwHlS1LB7E44HAUsMRv7ukjDw7pKO653G8MinhcOi5qi+WJ598CptSAJ33uk3k5QZfz1ie9QanyUQD5UDgDoGLYqn5h+TQNaHR7khYAH7kGnEjFQeUyZa141MMucVGAtVpp5RUslYzVgRBvRWosRy4uyrSjgJhuc5TWWJP0mHQdqXfGTnMLROgepOnlEIG8NkhKrXcYMFzO75GPUQcbPxsakpIRGUtzcj6n5cFkb84BuCsfmc0nAeMNyo++Q/5e2t3hiLff+Qz82qvPxD0l/NY7r/I3O995hTfvZAV7/7rEO7051FfV36RqaWLLgwog96+qi0UCCmAB1kIhSrTu/cMDNDvKs69MBzIe6SnXRv5Bxo0h5Ln8V3tewbC1j1QGWfaDbkA50MZF3cMEkWc+k4Drwxtl9T6ifAD9CDpkA8HrY8KhuADfPhDefucVfu31u/KLBq/LETzv3OHNO6/yiwjv3NWA8Tcd3hNMALnw+R6WtyOANQBOPg4OiHl8aRB1HQAK6AunzhebZb7M6DsVgKTceEEaEFuhAIjF675sFvlavn4g7jw5toBycPk9JQWkgOMxH4N/VNzQrjwoQMTE1xXMtWBKA6x7VX7ktouCxs2115QKJIVlHCgI2/DUy/duuY0UAqoovwuYBiAqWTDED6+1MGmwlFSfReGpadZBcaIdJ6eFb82hXmuQZPIPti7XicCZWfIZG09nz02TduEJz5tC+joFaeq/A1PmEx9SXgEpldwoTgb2XtBlHKxBkd15KYcVsNWIyjHmdJ9w/+qA44Fw/+YO6UB4OxEOd+XDs/eH8r+8bXVEDhhnhVkA1IGVKQMjAg73bVoIprwyBUq9+oOF59g7A2gMoDTqaZe7SzNFqyvLs+dAFf93110wHQEpNR4Jw2W6g8QfsQzk8w4L/+9QQFVx895DEBfdJ9CrfEr9fTkr7O3DWzgc8qZ4PB4y2H5zqFanN+WE8XtUd90bdZ7XPfPbgikArXt2K+9JzRMY8ryXltNPQ1DXA6A0Gc0WaMheNVIB46RAFOAAlVKbydaLgs65LrvvEpRbD5B0IAvlgRmY2o9sAhZAaeDEeRpU9c94sgBJW57smkCVCdJ4rXzlLQDnRPS+1LRmP4MWxPeUYH/FTTc7GFnLbyhRK3JqeXSzUl1Erp4BJb8sbROd2BgHnnS5FF+HliJOD8BTqMBdP02+SXtAJj9TipaEnIDwxizO3mRBTnNtGpMqRfbU3kVW/kQ2qT4DItp8fUy2UaAGFwPZisAHuJZjDoBDjqM6lL2McuAxkXpVXcW1QFx2dYxVKaaq9I51KKIAWZEGyrD3fwiYZuApUqwufZkUDwErB+KS5beckuW124bCdOG/3ozcf/nUS3lhgJp8RtkQ8C0/HO9TtngmCE/zcQep8D+PncrJ4vmIinyt3bSazwKCyKZpvhgApO49MIrm3OPxKnAKQdNG3j8NgOoBJJ1uyicrmSJ9LFJVMGSzSE4QHXiw4lqlnzcJdtVxQDkA3BWrk46dYpfdPQq4MhYnyPV9wJieJcpYoFS+B073R1uHyjWn6UPSRm/dmR9jVBdO3HcizAHQ8hQI6jJF6ATIABbqFV8KysLe+w1JipcNRobHn8DgsuXU8GphUvmJ10Q1zPIm1yncjJvlCICSv9dWJ8nT6YA6rDPIT506EUBCv0wD+jr1b520i6k394RgvbiySsvlkrpGXVsvuPpPXslL/HlFiQv2z4ZYJvT1IbsDj6WdwzHLUErIwCgBuCvK9ADQG1b+6iEp+46JcRI3XTnPB6gBwpxGqOAKwIHXkmOiOJ+fOe2u6yjXCDRZZWofwKFyRZu3iZK99M8ZW7glTf1w6srAQeUfShvshmVVqPheP+UDpBzWZPLl81LFC5NfQkkSopC/04n8Fh+7+lLhvwbvxeIEShIcHp3vxLwHMLY4Kt43LwgMgJVx3wIN/3NeuwlfiufXaYHqkVegvXyUfUauWyuUVCHXYJOX/cf5jd98r0PE9ffxciUOGK9UT3Ulc9/04/4TWmBVy8Kmu/Y8eLId1vb1br/pKIMVMHUiNRYgTx48aQDYqdtYpwDThiRTAVFFwRiRc3IXgTTdrIwPdUyhctXpDgwZAGMAkZMhD2x6rOwAoxXW98ozMF1t5zmT3px7c9XJHuPbtDhQmNv2Yg5C/ZwHiuuNwVJRhhpQyGGbyhrBPx70oYtALoN7VsokH7uW4PNUXs5RP7B0cLg538m46FQgMRRQ0iDIvYVlFescPEVWqBlwGlmcTja2OpmI9gO7X1C5bmVA+M6gNtXrzNO8LnQouq0EkbcAZR4AACAASURBVHPjCSgfk1bzMXtP6YXlhtMIwB3VgHAGzur0dAFQwudUgVHwSR5Rhho8RWDJxTElfvlB1Z3yXi34Cng26SfQEoBKKX0HgG8pXf8MgG8C8HkAfgjA5wD4KIC/RESvTx+KI890D5qGYIklqNVeUaiwj4kCFEAq/+9LHxwXdfDlFJDS50sdFHfu3Y4bWqDUvXmjTgEnbWWaWZ5g8soaOMBlOpYyLt2XewwagCMNiDxo0srHrHhJaIBPmM6bmpIYVlauSbj8AIs3yjYCUg0IcmkGPIWgKuhD5fu2ff8RYLsFuuj+pX6NNBuvVjJwcql4aGWPiuxVC6vUU3zTSrSmszCWRo9WHq1y1HOAktNicT0gW7QS5DNDKZF8mzFbN5wSJWSLkwY8WjmyYj3a/AYk9YKHy6/E3qvswoMmjZp8wy/Ft5rWbmyritWAJmFAcsyAbEqGv1zJyYDwnYsxL4NNrTnNHKoNlZYPU4XhPa9zeQk8H3nB387jbyeqPUHmp61Nip+jbxkeuG8tBydaHCPQnMdHLb+BYZqmrWBqCqBSSu8H8G0APkREb6eUfhjANwD4agDfQ0Q/lFL6xwC+GcD3LvfcCMIkPcpn0KPNi5AD63NRlmNihQgHooAjn/2kGj8CEsOk4/OO5QmoHwcl+WSLsWyV//eqXz8NTT6YnNNmwInvpZxy6zVuS1VOrFBl2tp1VwepN8wgX01meObRjDRQcqCpIiHeeeJ8Y2FSeWYDSq5JHr4CRnpvAeVNLV8TnNiYBzkCnDxsTaHVYgaaeC46ILkBVbadCDyFFqQJqKKiqLuWpSsHWZfev7rnQAEts/XaBLyzyo7UtSur+c2ASH3CR9x6KljZnBPEsn2oSrjEi2e3HbvwDnkc5qR8Pm8smpZSetWikKpSdMoxVJg6ryhzWeeR8jT/qY7HPYcxgKqz6VklTN6MomfHH9ALWL76/x0ZSPoZLjz1AMy79WSf0qqR1ztB3HqJrVYp5UDyBNC9Oovq4MbL5PniPsvTA8VTd50HzIBYKKSs6z+0MjX8VqwwAMoy+BRL1GFeBEAGWu9OKb0C8B4AnwTw5QA+XPJ/EMDXbe8+pu731BQQsOn9XVysLkG6d1l5dxdbavS5TD0XWpufjIWJ3J8u07yJR627zoMnO2YFhpp5tmszlBNeg8GaPjY1QwnAxWqdpkxQzrSbbF63H6/s1Bj1n2mrUz5s29WT9oJ2w3lFY+71M2L99YjFFrrM/sUKwf3p/Nlm7QFBCq9JFIP/xR27q2q9Bty7P1FYsGn1zx92qa6V8hMLgwogjz7JEc3T/4/GuQSeAt54PlnFSoYPpl+V1vBV89bx2NczZVV+Tid3Pxq/68TzNRhTz93ZO4tJeMR5io9WJtSfOQyzlRfD/wFPfV6K1ibgI/w92nIj3ooMEM2f44DXnqYWKCL6RErpuwF8DMDbAP4tssn700T0phT7OID3z9o6iyI/jaxOBQ/hN/JKeQ6EkySB6hwbVdIpt1PNorlxHWCeEhW3HokG0lYpJg4uj6gfC2Xv/eGYnBYfkmkDxTUY0m/daYuJPnXcDgitAEXlPEV1eiT8srrZszuXrWttLE+lsmmD81T32gNRZcBeS9P8q60kyBolVGHrbIR6uD1qwJRPF0CV4IFNY6Hia382FNfpgSpfzo1rM3C9QnB12f2L4M+BAlheUpsIJUtAFQi5V4Ui0K4sS2IIPdQ2tTWK83wdVpL8nFjLA4oFqg6HEpDU6ffNjwi7HI0yNErMxbc0Vgq5jxW/aQe+fVtHL68FGRRbpWDTcnrwwM72riDJyIKXg0AGah7cdXkjOOU2ZfvjTU39F96mEo7CMsMxVLyORW6kXXbbljXmex5M86zrNeTro7tWaSMLVC5HXb6HMoFtvDd5avxNustbpRUX3vsAfC2ALwDwaQD/EsBXrXaQUvpWAN8KAHfve1+/oNZeOm3rpiw7BaqSRRGKkmePLcid+vOidF6dTE73bj0mPoTz4AYtbjxpt52U3pcj4AQofW0sUBiDJ1WHeH0kUQED1V7jrhOA5QbdSzuX/AbhhtICq0m/uj1uB7UdBlpNnloGm1/4WXJ116ZcNK5AniMw1XXXlbSRlayb5/sajKlu8NQv8wzokvvXu9793q6ccSyTEFUeJiXLGvBDH5lRPumToMqV66yFihI9qjxWiBwszMGZhPwWFZKJmZJ9UI9TnV5tDuH0gu8fEPXfKzLv1gtBE3G+VYaRAtbKefbZllB5BkqWKXpDS/JG7lq9HE4ZGFnQciD3cxnQy5+LujeRhc+qTfOZniIzh+rW5b1BMNhBGo99URrQmfnVucm95lWHj9O361Qd2XYMeCb0+T0ATp7/Kq3O6TTFtRJE/pUAfpGIPgUAKaUfAfBlAN6bUnpVfsV9AMAnospE9H0Avg8A3vXBD8ajDLSifNLFKb4u0ELbhgAlbkbjgsASFQMcPwAAqQaMR3Inlqlonh2KDrvsAaeR5ckHjEue6QuNAEn6tZFXPHCAx8mDBkZSVoGhJk81MxKzQApgz/YhU8+Mf0Ya2HXiJHpWpzCN0x2Ymrn65P5U0HWddLH967e/9wOUSqzIiMSioxSpgG4PprgOyCpRUu2AZZeqQuwpUT0QDbycHJhxFAuWPF/u2+i1PRmsTY4UqP8fxTRttD50LQ+SRiZNrt2Yw9fa9Xw37oM9maj8q/3JoZo9GZCNCtCXBkhDAWkFqA2QTroiIGgomZRmg9NG/gg8exCi13oInIAYMG/le9Bvj/dmvFLWMfdMnbcCoD4G4EtTSu9BNoF/BYCfBPATAL4e+U2WbwTwo+cNZUAicFqLghOVEOhzoXIh/tCwgKiSp8+1SKggKrvvrLrkNHbzGQtWKZNK/0B22W06EgBo4qVq3y1o4vs4Ta2FBmAGWNX2svA6LWoeiuQG1M7rpABy86TWofhv9eayqJtNkMd7i7lXjTqvXxcoNRsLuXzVgN4EAVTg01mHfEBnRyY88OGxjUBSD1hxXlRO9TG8l3bdZIJyz4Auun+JC2+0DnqR+PJAbVr0rcNU97P8IxKWn1D9a3MFl1HPSXXJ6RP2VcA4UL6PVlp2rrxmnhGACoGMvbZpVRmGlipuz7iFKO5D0ihI42utL2AsGppGJ5Mvk5cJvfEwySnLXMfJgLP4puRkgMsw6w/KBejdrnpT0y8aOHcdywbXDfcdThrwvuFfKXPOiwGN+9akddyzEVjydVWapy3WqGkQORF9BDnY8qeQXwE+IP8i+5sA/mpK6eeRXwX+geVehx2eWKdXT4OFYRux+6sHYKSaAimc5YPDexSVWwVPzfAX5jiViy3a8dRN5lzST7AHG4vD75YdpHU3Fd9Wp+0QPEV19Rij/hCU6bQ5Zeeg/2EfOr9T71rowfYvCv4K6SBwURRHNMpbgr6VcjDXCICFVzIDJeTrNQBGAxkeI9lrE3ysA45dmd5RAz3whKCsWVe3jv11oHa9FB/MegfgSfoI+BjyeMB3n9a0HYyhkQEvD6rtaE11+UR2fZp0gsSbmfZckHnyYzkGZbR89ILGj7a/poyeF/R/isuYNAuezJi5DcWT5vkLZMA8t4u0dA4UEX0XgO9yyb8A4Es29bZKhP6mzGaApO6dVYrPCedv4gEZYNScnEdSL5U0mBKRNSq3hRr/mSDgRZ9QzhYqf/ZTOCVviTHuPJvWA1Ndy5Ok1QQT90Q2VspuCLoc0GhTAswbk77uhEKLElPpWluW6uK6eADddwpuFZt18aTa1WLVszT5dGoac+NdJG8NatIjMNUBdv4XZNR213UX1eF6E6B1zXSx/YsVRi/brYtx4ydXiO+1RaI5vsDmJaAN7maLFVsypF1VjmxajfdEOSwRxuqUnAz0DKdVWXWu9Qd/AwW66rJpg8hb5VmvVZ8RWFH3zRya+S0q02CB7PopPgJiCVyWAXk2FY9lv6nHDvQskjzP+pJU0YlH5nWRgdKvloMuGQACxdMOz4FqaUTEU8d3V475rvvrAabIytS1MG7DSw097UnkI6CErJxJgyVfF7AaLwRVNU8O2ZSuC9BIOUJBTixHBlIVHI20ouaABj4VVI0otia1+ZEFrBfvJKMa1IHKl+seWPJTWN1XThVOteQCemZtacAVgSrdnr+O8iMgpijmugJZq+QaDsFUByzNwFNEQ7BkrgdnP0Xk6t4q6bfwGsAkwlKFpy1DIm/k3SklrzlUE4AEGx9toLHIqgdSHGAOtKDPKNlAQespDPdndeNBTANsMAVOQF3fuMwEOGml2wNNPcCkNsnN4suARIMmgiyiNKf2lQRalgH+03FyNU3JQDmd3AOt6r7lvlEvUh6L3Rd8wd68ea4ONOnrLhjqACf4PMz5ztcbALOMo5nTNuY/+adczC/5Ho3wS69cAV+CorVi5SQye10FUWVQ1HRcHm4BVr0BYFKuHYe9b4FYFzgBBjzVh1WDK9cu+fwtmvKBaAV46A0DFgxNy0egDAHoUsPw1ifTjmqg3Tgn83DUBzH9/MiF2LU89dJ6Y1nRIGkbTrwJIpjXZROQP03QFNNlBmCqp0TlR14LpLpKFPy/KNGDyugpUa2gAQOm6pEsk/WQqpdVohYEoSpR8vVjBToFTiPAFBxVsUJeHsQTEoEpqaM+59OTAa4oh5qqYHN10GkNKK8WenN6OcsC80DLRmkk73O8WJMJN2tqr2c8z3kU5mk+tWktfzeDZqd0T/3N9+QAypBTTF0GGt8Jk9Kmqm4G9LV89Aq6WKIAIJFYonSt3BYHkcO8sac/IwPovNWJ2/r1vs2z7rYJcCqTMsCplPHgSwt8Y43S5eDSo+uR9SqiRfBkAVB+2jUY0t1pBdGkqSEmvqZW3GRISQF9JVuRtessLKqXbQaaVF7XMuXTonIj0BWNaXV+V4DJH4Iaa070kOu5H4J0VqYsR9oKpAXau3YisOOsRtWdY/NZzk0ZadsMq5Rr59X9wRIoUv4fKz/+X5Rn6M6BrG3XZcOgKVKcHcBU3UkDAHWiMtX95IZV+sGlKRmQ8wp7MuDTkxo0g7OSXvlMhl862NxYF1Udvm4MDep+uFYRn/X1iOcmjYI0y99lsOz5DjQA+RyD+fUAqKk5YbUdKGWbCiBCPQeqCGt0xEHTlLJGATBtmbgnZpgDUpzfHWpH2/ZcbpHFaUjhZhdNdNzMY1qoRrh5M0XAbADWQisTdfLgRDZCcatjdGOI8iJ3XVP+guTHcQ1GyqemcAkC+dKPPPFmrc7j0TGa3uXrLRLmjCFSyk7SqLbjy/n20Ih19xEBtTyPtrKeG0/yGuDDaRQrX9fHCDzZctvBUzh2394iNW/havCSVJ/FQpVDU9ThmKZeIAMCohzPCliW4JSonKrQ432P58BELTdrre5P4bmzNNZytW4XPM34DlwcOF8PgGJyCknOg+I8z2CdxhotSNPuOlGAyhpVu+VfBjlFx0VJdYKsvj/BHLCgactxBiMLFAyQ4ocwyuML1V4DvFQdJ/hT65ER1NTWP4eaJxryUHtrT2OFivKdvAjbHAhy3Zl7TXrTSq6+mf9gExqKQwSYfHseOE3qzFx9bRqFbffG+dIoOom8ZsLIgZz5A8iDKcaFQ4JYiQAYi4T8/FYVNlqjqqUCVfi4TPnXWCAAIw+rbPZAZKxMaQCq6jptsjqp/kLl6QGTGu/wIM1FEJX57MqaZ1FtMuVbc1kGXNlUgbBYJXmvjmTADra2o79hp9oTy6Maj+e9uY/mE65TzWt5T7EcbAkOj3jOfVCnHWAKlDefPB/Q9QEoTUXZmWDyHmAC1IZDbiEUiKrITNryweW5Ri0XARUtY9Ss+nYNEz6rAWjSY+wBJ1M+Ak9NP649CtJMxx06AURNDY9OKTVpyYEold+zGnERPWYPuEZASufrIY1oBUfPQJMp0wNOKm/ocgs3yWh37NQfje1WiQjpPlgjVoQiSwWkaIBEClA1itS+OWywuASd58I60FhAl8S51P7MgZsGVOl91AEu9b+rSB1FyuksJXoMyq0CpwXQFB6i6TfFxRPIpb5uTMlCIwc9GVBWqVT4QjzGVNpXQErHSPFblKIXU5k7nxpd0lg8GkANGEBl/q/M3fF/+nFfB3j6Lj/F86htU161M+O7SqtzOEFxFboKAKW9ZGeRBldNngJRHmgxiDL3rpxr3sQ7KRdfzjtnDnYCjVUqKLcZPPn8sIMxdT/4fAGK2BgBrRB86c3EgyjdQdSvZqOqb9L8AB0wM0MZrGV3+TpgyNRZBU8ufcUNOLQ+9bD0rQMnTY2lITUKN6lDM0ktjg4MzvcQ945RouBriBxKYLALNNZWLiPmQZpc83NRFHN0OjYQPDfNWqg5h0CqDqJRlB0F2ChRvj62aV1lfKSpAjX3K3Ftq3RU/C5yQOoTGKEMBO49IwOodeUU8oNNk7bAPGaAHgApnia3GwE8YMx7N7gQOJX7+Hpy+KniuU4z7TwRYNZ0FQAqpFCLRmkWCNVdhysUUmCovmRgyzUB5qTqoYJ6vVtoF5+xUA3NKi2FxxmYmwAwuULLwInL9AAVubI+7ykpAkiKf8biFIGo8j/cIzwYUgDNA4ZmkwnWZTPG9Eue4ryRiX0Kkrrp7lnxZSJgFY7jqQXkAYkQuPAI3p1i4og5y3ynTP1v/P9wJ0rXOKkw2FwHGWuLklipVB8RHxMDMX3PXawJcHjic6PI0AVNOt2cHRV8B82DJrl2b3PJuCLFqYKVa56a0DkASj+nPA69jI3bThWgjnvPu3eVThIZ0GVN2zbPVE3tvmBkYWW6gS4KeV/m18qBBTmr7tkGLHcAU8PzUr87h410vQBqRB5IeRA1qjPyGbFyZWtU1Bf3B0g7kTLe+ikXP4ywP2wHT93GTxEaEcoAcD0EzYBQNETP3gGIMukdiuKrOB0IgJQqszS/Tp+9cpvAU68/X37Q9s275bZS/LDXa20RSiqPLRPFBcdWCWOR4G3sSDWORQeJq7450Di0RihZzdUKuEBqhk/SHsI+Nq0JRspTl+9bH2TcketG97ECnuCuR8DJz3XrnqaBK2DlADUN5YPPPRmQZooMZLVGCmRxd6qOlgEiK0tqeNHLC25bM1NZooj3Jd2vbchnD56kLRoDZsBaGmHbMvczwOzyttB1ASivzfTiwH1ceAaWSi1JMIqzIHolUL5yaHoPgJv+dZE3ozPRROPC8/k6z3du66+57FILhHrWp3C8cZnNy+CBTbkcgaUWHOUb+RXH4xqBKNW8mbVeZ5XRYOneuPjS78uz3WkB1PhyIXCagCpveepZqCI6U8KfNY2CjonPOOGySV0U6wLu830CqY8Al3u5Rvkieamv3sIidb5TNzaGSp9+n9QWrJFVCp37Hp2oRKs1IlCinD5SokdvxaL22inPBjBFCljTyplQzBNuWsuB7DmnyYDESOm4t7KXRTKQx+P4zCIje19HDmQh5lOuk1XVDO8Xv1PHPHf8O4Xn0u4qUG501vad7boAFFMHHJk38po6Diw1eX61ah0BUipNlxfXnob0Tana16Llu6Eu/2agqfTbtBMBpxVQ1el7Lf3Eyc9oBIJ6IKpTjpuTeXggpeVvAoBms926HFsAVuji88BplOefpW65tm9PL8JSRWiCyC24LnmHKlCiTBcUqbzNlZQSBUAqRkoHCK8oUdMOqmxHhzw2SnSLPokUaQ80lfJT4CT3tb1TgFMPNNk4qEDZrlKRibq30FgGcqF1GXBASsc2eRkID2V1PLZ7YwV6dQG2bloRUFH3PdDE1yfEta0AJw2+hkD5xINTgWsFUDPyinFrPuI8CRwHlJTVsuH5TuqB0O2cTV5xj6xCI/A0aDPMm7j+HjJ4fPOm3W1nDKK6fXqQNQBSTA2gOmH8y0sagafZL8dLgZ+XAJCmRM3DnYKFsWc/FeXqBKm6UcqmcwTSwbp1eoHGkUsnK+fIhWfb4Sp6mxOFo+ayVYyjGKKpMuXr6BV1Hr9SgtpdV/OprXuMxhCUA9rgYzeHZdLB11AyACDJaeEKqJIOFA9kAJaf4trFugw07l2RLVuNhwRYeVieuuG9SzsDPAkN4pymPI/GcIsHaVYfPEsL7KZd7sUK1QNJvr4szkgT6o1DCb7RWDArTabTnL81cDyibuxUBzDlOkFeINRh/qBdX2Ya+0T84HfyO9SNWyqXfWtTPNyuJSooizZrvUwwv4vhSz9e324AjEZWJ5Pv3XZB+a7rb9D+iyBtgTqgVTbm7CedXkEVWySSWkO2RqSEGnCu15hdMcey8+jDFTnQPMFao7iuCjI2b9wBln8moGS+FGbaG5UogNNcNxEAY+vDwPLglWfs0nG83PJ21sHWTWLxSerIChJ3n7FK5V/nrQwAhfeobc1kAGhfNuB2dLA5tycDrv+27mEx7wNe+/wJv2u6rbMZKIfnQQ34voGuBkB1KVB+0zIaRKGT16uvzA8qHrCtG7QdgZ9TTiI342rSFNgbgZ+ojVksVFRvRbZOlT9BzZelrjsPaEE3Ic5318ZVE8rVBQYeLEUXOI3KrbQTtTkBTzs58gpWAyoTB6NOnD6StUikXMdYI0rAubZGlMyq4IpbT1tLLeBXFofON9ZyuZLn5H7zb0GNvSYK1SvTsH7PfcNtefC00rdRyjweVSEATCtxMaSPspBzoMjIgPBXrEhAPd6glhEL0DHVYPPGqhjIALkT6cseJ8HqsHKQ+6M6/ovxnpr04WdX4HD7BDwJDQBzZGmaAuYTjzJ4OgDFSmwLQBKhcFaosE4AdgAlfT5D5UOVUUAqZ/sOx9JGJqJ5U9VQ6zXPczcmalJmBXwpalx3WwBW09hCvVJGWKxlpQd6onYViOLbCCTZWJYBdTDfJbBGlw0DcNQFTh4MAbJgM0vVsP/VOjdIiYB0jLRsWYj7/C8rrCJgDKrE8pOMEhVrhFaiXPeY8llCLLMpAx+JY1KWCI6LMVsdx9IwWAqAFPcfuatXftu0ri/Xv0o71woxctfNlOgMNKWeYl0gqZvSXAYUkGKLlHbvioyAanzUkgwUZy3XN/qyyEEPSJV8Xrs6/sV5M2ne93ht0jDkt67XtTrNeI5SpgOW2jls4/11W6AigNQDUVohStnOzzMuN8o3BSHlGov9ihaRsW3YmdDh5Sy26VzgFJRrXHcRPUYUcQCiAAeK3FDFElXGOAoi5/tlMGWrnU8rAAoD0OTuTwFPvcDxp2b91RC78Mw36pQCRatQRZkWRSruHWLgQ9W1t0WJcvccZM6KUAeZ83g0kLpH5as+2dwpzy2WiN5Jz6Ei5fueIgWMy24U89J1142A01G3OQBOq1YJbXUCClgmA6yrDJRxpQR278mktQx0LJJTGSh1qgxVag7MVHIgS6BB1SKZD2wbvWH5sgScSrnNwGkRNC3xfQNdJ4CK3GzD8ljXdFGdkWvOl2NihaQFZjaGxwJOvvxqe6u0Vd62lI+sSGfQVJTcLy/ffxifBbRjjID+jGYsGAGnSXkf79TUXwFPO/Vp5r5DuS/KVNw8yhoBwHixjbvGu2S4LpCVBmpwOBKyAjn4fosYploHqAAJQA00VvucVp4zS8RmK4Qv468DK4TMOVCm4XjMG1tKYa4qUX+yfKcvWRtdvhsX52SA+3TrKzLQsUhq4F7LFhbrIHMlQ4CVA7ZKedcdYMGQ+ZC1oxSBywl48jzZ5K6TdoEGPOk81b6uu5Xnq3QdAEqYGigJfrANkOHywYeGPQACXKM9zebA0VQBthuL8OPUYPKRhgxB0KB+D1wtxUrVy6H1KUjbPPUoTknych8GHweyMLQqmXylGBT/oiBzTeGUVoHZiRSyaZIWWZzivEHdqNxsDC+FiGIXHmAW2Ky1tjiUTGONYPeZ3jsaaxSaAGPSDjv+HhqfHdV73V0pT7FAsSUCsPKw0RLxZFYIk98HTo0C1W36eUZz7oAinxa78AjGKnVf+LFqkdTWKC0DqcpAY40Cmm8sGjkA3Eer1VQZ3N9jiULro5EBTut8sy4ATrMXA4ZWxgg0zdy2XG4jXQeAishbhbaAKH+91J+uKz/Fah5ce3qtG9B3IS2zCFqa/i4Nnmb9X5o8EO6BqA31AStSGq17dodWKX3Ptw5zn0tLMVCdtB54msVIDfvl/OUxPYZwPDFFm6w/QJOLRlYnUhEvx2Tf3hKLRg40N7ExzhqVDtr64AKNg1OsRdzdXqqDjLW8hxaG6dqoqXilqoET0AdPgTLlORsF3LjbXN7IXRcpWZ8/owg8DWXAlk8o/AcEYOXx6P0osEaZPSeQAW47ofnGopEDwMqCGvTmAyV98RGvgf63Cj14knlCwLIfn31pwPH1FLC8ce5PC6ACkBNaoaZ1NoCo/msrwb3TkNHazpT5udRrewSa/P2qZSsCT10w1rYfvQGzhWbuthATdwGSGoOSBxs3pSoCfSDV7dz2fREatTMCTUAfOPm6PfCUgvzVsb0UCg/dK2kHu0DW4pDmShSACTI25wexzYmVQaofq5Uc9ykQoJ4ZpNt2ozdBxNLfdurFQWWLAV+PlemWeKfG8tQDSCtuPGOhGChYM+HgF3VHBjyfAbUtMZBm1yvsiwYNkAbZuCiVU6+57SoHxippR11vTmG90Rs6veW13HswFPC7lqWY39zHAnCau/BOU+LXa4ECrEYMwVBNS6IEFdCJlKhum2krmGoG8YC0YjXqpZ0DnIZjWuwjGpN0NMjz+VHZCCQ3AMmNYQakJLud06NhhxHLFqw+JwGnTr9d8DRq55aJCBi+hUf2XinTBIRAyipYqu6eSImSsyjo4w4wP8W8OX2cYv55QLW2NvH1RawQGjyZ/AXgNLNElbGYe3/dnbOeqJIBcdEq/kdASgATrGwQIR0yeg6BdNnbspXJygCAxhrF7eRyFUjlcamx4zRtNgRNQN89668X+C3tRMAJWOP5CCA/KwvUqeSV48rDPirnTR++bA+EcV2mS7kwzo2FOqWNWbktU3tATLnKbkMhIC7tEPHMCAAAFo1JREFUeasT37j161rHIlB/yvgGtAKcwnKngKcNizuKubpZipQmp7ng8exKgymfiELXTdSPd9notrV7DoBxxelg9ERog4v1kFjUt+x5vkwnrSsSwa9965axCs63k7wSjNoKYl7sODvgaSuIAuDP/DL8B8qBlwUAc9McEO5lx/UtQFp9GqYaDSYywEHiSfFZu3eT6it483KkQkLeRusVgKeQIvAkfenrTj/c/xRUBfyN2lvk/fUAKC8YwtyOFapzHVqigFiJmv4fQROu0qjrXt5my5HNMpanEXAyefoX1rz7Lrl4pK4bLhCDmatOxuaVg7tvywcAZYW/PaDVoSULTqfBFSvSKcCp6W0rwLpVqxQB6f6olF1dKeJjBACrRL1FwliHlMWhvNZeLVGlKaT6qjufGVQsRJE7Z2aFSIAJLpY+1HS679y0025o2YWj2jkleDhy4QytEJESjdw9ANJmF14u08iAeUuPxhZJlgF+ycC4+ooM3HFvddMTGXDHXfgAc+kTClAD5s3NCFybuQ7WIrI4SbrmLdDyuvRvearLnGFp1DzvWSDheL6BrgdAjWgVRKHeNx8eninRqE8mH0wu6b7OoL1z6BzQFNVfBU+jdh7Ld7MKohCXAxwoC/J9/a5R0QOZzhpcZGlWQZOUH98vga2VdncKFUn39W9vkdCvoQPVGnWX201AG3jsg8v1MQSEaoWIvqXWsUKIWy+p+TgrxOpvykZUT3Dj8HinwcMe3Lg6w5gYHkdHkabIlRfdd6geUNkBG/oIAwDGIumPJ9BpzqIlLt3I4FD6sFbIVg6AKgsAxCol6Z4imfdJ4cnfvp06x7DtEb85P+JtN+Yt4LXnd2d+K3S1AGoaTM40AEbGGsV5UOX9fbePDjRfWfNp2wttjMaypd0RcPL5E9Bl21kb0irNgsmlHNzydqxR3Cag2o1+TQe/vMe/yh4KMathrAKmTlrs/uvXoV45d/+iYp+EqMZARS6XzknPhpwSFcCkfw1zGreLaiUiKOXorRDehQdAf9KlceUAMZAq89sk3t7NIvNtgROPke+nhyVy+VXL08wKofJCJdpT7tGcAxdsKlbHLv+BBkj5N/UEXLObl6xLd+W8KC8HAKoVXcsCEAKpZYqAExDyWu57lifoMvGblb3jCUJLYwCWQ6Ac8XkBVF0XgHIacejKgyo7uddAYera0+ndcW7RHhMmPOSRB0H60tEE03v7C3hpHOfQCBi55CE4dqC8ce2pcr30JwEOoz5PAU3BfcO2LeBJC8GtAytRFm7F5CTw+j+J+w7ZKuEPXlRnLRHf8Nt4QZque+rbWYB7JByQAgIwtUBTa4QWkQF42urGid6yC60QPeDUUcah5cNM2G00mv9cRLlvyb2dp4F0Oma3sD/WwoAoSasxURogMafzVSwHbI2Se7SPK53gyuq9fR0CJ2DoopVy5/Kbr8tfyG/9HzjpTbzBWaNPRKM5bHl1f9bWrMylgACl8d9F+uikPTB4uijN3iab0BQARHW2WHc4PQ3yL0mzvjp5p4CnafmdMvGG7n/pAuNgZKkf1PO/qhXFaf3hdQNsvQKL2nCAZ4sVYsmVI/cd8DSiSLFFdXxa5ALy+fp/1J/nl0/X1g4N1HrWrJ7CJmpcmP00zJX9QA4AJwsmfdyspkZOBuBJaMLrrtvOU/TcjNY6as/zTteLntWAnt4CRRhu2I0rL3pjDqqN3n1J8yCisUipskMQ9dhKZibYnfzlwzBXwKdra2p9ajbPoE1foIdqFvjrs6au2k53XcuU7uixQNRoGFsA4KIYbI6lelFEwH05nvnA75YzOkltwDhbJFJq3XpUhC+l1hK1aIXwr7dLnrNAWBceqTqxNSrPb6Mr5xQ3DjAPGNftTdw4rSuvBTPJu3W0Eu0Cqo7W1zIQWRdVunHrKbkIXbobLFFdGWArYmSJKo2KLOhPumDj1tbs8S1w6vIa5V7LxOxAVOHtCZZGz29O1/819fiu6OkB1AKFIIozJA1uN+DK47TGvefLSkF3PwUDk3xPWzarSfnuWU4rwKmbNgFPD0DxEQNoQLEfb4NvIjANxLKBZqrtXFd5e2EAPgUvlwROvbSmzCMIwjWRbMBucz04Y/4RFUQpkm/P6dgZDi73xxzowHIXVLz8evsRjRvHzsfV43xvBTi48XZoCJ7g7n3AuKqXvKLTpOJnWJnWugo88X3538Q7dcrlPo62bES6zIz/HMd0RHXn6XVwZ0ZNA8tR+OXdeZ6XVOVA4qIUoJa2tTxG050YFHqHqPp4Jx6b3DvwVNuwMhIFjJuygdVqE1iOwNLE+gRcC4CKwE+gxKYKJKi3CqRyHx0wpet46o3pUnploZ3h4Ze9+icCp9zfhn5GNLPyrdZbsUb5m0UwBfTlbm5Rm+QPaO14g+1554CnYezTSyACiJWAz+MN+HAQZdlTooADVk3AOFsFyAEttGdH+TfzdB1fv8whtD64HysNrycuo5PiYMoYI4Xa9OnBUgTKvEVC1Q2V6UiRqvrUUaRmiTT/Ja3892/eHamCaAE4VMtpa1bzJmaURhZIF/C8BKLKRDQACj8g3WF/42b2fO6Ryu+e86Qti5q3nbSu+3QEngJ+59u1ve06AFREHRAFqId7dtTATGEOQNHKidxd99+Fael0cGA8li1AClgHTr02Tl2XACl3LVG+n4DfXZwULWkHWPfKPbg7a7X9E/DzMLbKt/HQ83xOVJS6vPGkrAkppeziSykrUiqyrNx0AOQsKfOWFivbu2KpAIzbpop7BV/hm3lFYW5x43gXTk4/YW1cnRXwVOs65Th7447To9OmnZJMgWuncfccj3JNuh0zPxXBDycDPf57N10JGDeWSGOJKl3AARmWiSYtqaMpFCCO3HkORAFogJSs/xaKADPPp4wz56n7RibcgakRv0ub1pXnQNI5/C7j2ELXF0Su6VxwQoM2ZmBjoe9Eqfk7l05qczbeC4CnzW2fQ5siGbelD5cqDdqLyum/c2lrm5Ny03luSQ/LPsIvh6sjykqU/wATgGo3YucC0kq9aTYGEiGFwdNxnSmLvBJz6ZuoB5469zXdtrGsvJsxB+AJaA9IjHgxAk+e3zpN6ru6kWWjp5i9FUWRP1S0n+bqNO2ovoB+IPclH+l5+JAq6+Q/4q22PkY0erYifku24k/EcxpP5HosUIS+VWBmiWpuYKXKr21kvfC01b0k6P0C2vQCG9jmMoNxb7I8rY5FGu+UX7VEcRtR335KA5Ewxbew0P16O5tOaGe63KM2R9arLtDq9HjrlioCcH9UVqcSUJ5SOQn6kK0Sh5StEcdj69LRlii2QgB9K4QLHm7ODPKHbOrNTX/yBYA5H0jcfDAuHJMufQ7Ww1EvFkZoEkgsczF51AYNl7ZsbEwHiHqLRWCJIGPNCNw6UUxYxH/Fu+bMsID/AEB3sRUKzto0StPxUDkPhm8jdx7Q4TvQ8r736EeWpzLGBsBp4K7PCRvxVvfjeanaNtanc/gNLFmjrgdAAZtAFNABUlIncO/p9kxDnT4j2rCZPAht6WcJVJ0AnLaO41TqBL51gRQwBsc9oDWoElVdy7g8bVryFQtWr58h4Hqh4ImJjqIsheRS/HCg4nIRJXpXvsNxJHHTAahBxazYHNmzfhz4AWDcOM1YgzZ9HAxg9temfc6f0MiKNTyuoLGudECQpyiQmP+PlKku21OmISBzHWoZ0Pw/FvfeoSypjnOistB6XmGsGwWu3DrPKC08rZ6AilYCAdFg3QMpmXdbzdMIPK3UmbrufFrH+ti47jTAUhbBaikcWAknliem6wJQwBhEIc4bAimfESmAFUDVK9ujrQrlEoDkTMDEtGr6P3kMTYeDeoO3B5aAVG9MW0DzOKvb3FY6SwRWXY+zMZwCnl4MUQ3Y1fEwksa/7vM9UYmLAawFoQOWTLpRigiCxyHfRqtp7adeQjoFRG2hEXjy1idXvm2LumBpFDje/bZZBJ4k7+iAVuumE9IycDyolwWOFlwTVUukkg07nhVQhYDfQdqAjBWK+/FWsQ28j+KThLoutUGDUZ0OWJJrDZ5G5eTSgaXmfsDzgJ4EQE3fqOuBKM6Thtp2m+KNCXLQ8ZZPtIxoBAhGdEn9tOhKXNaJ54CqlX5mIEr66Vukun2tAuIzQO9FocW5aGyx/tqbfis/Qdf6e/ZEZQO+V4pa/3pLh6KMlJWK87U7r+fKi97e8y4bPupABx/rN66grFZFWZoTqp1yHIGoZvrqUzGjNdJty3xNn2o+viznO/eNB0ut8lYK0VujvCtnZHk6EnR8W/dtrHsFjg+K34r/VKyOYomM+C9v5fVBVQLitzK5bO9TL/oNS5Gd4LkPQNRmCsDTsutOl/FzK213XbWm/TG/pa62PPF9FMe4QNdngWIagagNZabWKdPexFK1ShfVpqt9btNiFwNOl6RTgaej1W/pSZ9ScWNH1wQcNoxlWVRevMUpoOh1dZNPcqYTAGuF2tQPWTcOM3ikRFdIrGSIXyEa7KnzV9MX+n4IOuETHIa85SlqMzgniIoMJAG8xSTkLJErlI6UY6GmY3WgitME3MKeDTWSi8bKuTTUlhbddsNxqLY2AbgNZa21kcZys3CIJnDNAAqoD+QWl1r34Z90tcVS9QzoEq8hX7z8Cs1A1JKZcc6+qdvvVDplTR5I1E4S4Uu8AXnLxJtwOZGcyivrWYnWGChx5/h4KOPK0Q1P3DgLCm4WSNxQ5MpbqRdRZHniPoChVaL7Knup33UVOSsV3zdnPgWvtYv1Sb9N6S1PnTOC6jhyPjH/9QQPyGtYznwS/t/dKSujastZFD348rFwm2hkhfIyxmNfpQ7O6IZKjgBPBMQWYt3MvbEqVuuTiXvqWRq1pWqRrhtAMek5rVilIjpFoc66eiQF8iCGgHPafGjDhDzcq+W9SXfOmFXebV77R5CJi8ndqYL1EoET8i9Yur+3FqXDATgeWyXKyo83c21dCCxGjRsnIo55oQ2BxCqveRNL938qiHrMfYSBRy9vJc1bFgJXoFGm7pX3hvelTTocch6pGChSgFr3t2otZCuk3GN6OrmpO5CnLogK+onHFqSNeBBkNcHjs/Y64CaMd+u5eIO0Eb9n9GQAaulk8YhWrFKjemYQJ/Svqz80kLgUXWKcTzHXrUBK6m0HVD165oZIS5cQ2FtajxNJTiPXAIWtC0ziynv88Rk6xZp0ibpAH+yEZZ01oRnLmjId9zEYkIqDCd11ROY/ACR3TAWVOKTc1sGCHz3mnhs2ctNqq9QlaBXAnePS20KrfPTWppWyvc+zRO5Z1eaWOKgntUCdDKKANaV6qrXqpdEDrsNFQGaPj6daqB6CzkVa14TGn1rpXy1R/ZhwOfNJlupwqMDKWyHSwbrx2I3jFKaJg+F8r0Aja8HKm1g9xeleZe++xh7JRGhVWJDj1TKrAEwDE58WHGAauu90nlLATVmmcuaTgCh95tPB8YrdeP6FAF57jl9ajYMarUHPsngKGI5cegsWwN5H5oeu2k5bpl5A5mPBpW3fVnNsQbmODj6l+2NbdkBP7sI7C0TNaPacvhRF8US6+cExweKm/ih0TQBoC72UZ+ASRAAdCUm5Rk4OEgdaF83J49rgFjq5D5xuET7FWnRpikBWU6QDtPhe855UfJu3Po7IH64ajXN01AUfaQE8PM91nyPqrekJ1qWzAsi3WKnC5hz/r/UYA08X9Lhsoyt4rm+FrgY/7IBgp4ckOoKOByQdMM6klaN245AzE3kXzYIiPPtsJmlnvL8O+7mSZ9wGqZ85KHHbObfP0VkrihWKykGZ6eACvV0MWn6hgN/Im4zhXADcxEat6dBhHNSJdDE90A3cnwPhuD33skDPXVvKUWR1DOgqAJSnq1HGO+20006aiAAwiEolyb0fteH19bD9x7AsPEA/J50f5Gk1GLyTngKX3XnjUS6dwnukQ7ZGBUansyySl6AGyL2AX5QX4Le2Pgl4Wmj3uj8mvNNOO+20007XSudawHZ61pS2nrx5VmcpfQrAbwL4X4/W6cPS78Q+l2ujW5kHcBtz+b1E9LueehCXoH3/umra53J9dCvz6O5hjwqgACCl9JNE9MWP2ukD0T6X66NbmQdwW3O5FbolnuxzuU66lbncyjxGtLvwdtppp5122mmnnTbSDqB22mmnnXbaaaedNtJTAKjve4I+H4r2uVwf3co8gNuay63QLfFkn8t10q3M5Vbm0aVHj4Haaaeddtppp512eu60u/B22mmnnXbaaaedNtKjAqiU0lellP5rSunnU0rf+Zh9n0MppQ+mlH4ipfSzKaX/nFL69pL+2Smlf5dS+m/l//ueeqyrlFK6Syn9dErpX5f7L0gpfaTw5l+klN566jGuUErpvSmlD6eU/ktK6edSSn/sOfIlpfQdRbb+U0rpn6eUPvO58uRW6bnuX8Dt7WH7/nV99BL3sEcDUCmlOwD/CMCfAvAhAH8+pfShx+r/THoD4K8R0YcAfCmAv1zG/p0AfpyIvhDAj5f750LfDuDn1P3fA/A9RPT7AfwfAN/8JKPaTv8QwL8hoj8I4A8jz+lZ8SWl9H4A3wbgi4noDyF/9+Mb8Hx5cnP0zPcv4Pb2sH3/uiJ6qXvYY1qgvgTAzxPRLxDRawA/BOBrH7H/k4mIPklEP1Wufx1ZyN+PPP4fLMV+EMDXPc0It1FK6QMA/jSA7y/3CcCXA/hwKfIs5pJS+h0A/gSAHwAAInpNRJ/G8+TLKwDvTim9AvAeAJ/EM+TJDdOz3b+A29rD9v3raunF7WGPCaDeD+CX1P3HS9qzopTS5wP4IgAfAfC5RPTJkvXLAD73iYa1lf4BgL+B+p3tzwHwaSJ6U+6fC2++AMCnAPzTYs7//pTSZ+GZ8YWIPgHguwF8DHnT+VUAH8Xz5Mmt0k3sX8BN7GH7/nVl9FL3sD2IfAOllH4bgH8F4K8Q0a/pPMqvM179K40ppa8B8CtE9NGnHssF6BWAPwrge4noi5A/s2HM3c+BLyXG4WuRN9TfDeCzAHzVkw5qp5uk576H7fvXddJL3cMeE0B9AsAH1f0HStqzoJTSZyBvPP+MiH6kJP/PlNLnlfzPA/ArTzW+DfRlAP5MSum/I7shvhzZD//eYnoFng9vPg7g40T0kXL/YeQN6bnx5SsB/CIRfYqI3gHwI8h8eo48uVV61vsXcDN72L5/XSe9yD3sMQHUfwTwhSUq/y3kALMfe8T+T6biY/8BAD9HRH9fZf0YgG8s198I4Ecfe2xbiYj+FhF9gIg+H5kH/56I/gKAnwDw9aXYc5nLLwP4pZTSHyhJXwHgZ/H8+PIxAF+aUnpPkTWex7PjyQ3Ts92/gNvZw/b962rpRe5hj3qQZkrpq5H913cA/gkR/d1H6/wMSin9cQD/AcDPoPrd/zZyDMEPA/g9AP4HgD9LRP/7SQZ5AqWU/iSAv05EX5NS+n3Iv+g+G8BPA/iLRPRbTzm+FUop/RHkYNK3APwCgG9C/mHwrPiSUvo7AP4c8ttSPw3gW5DjBZ4dT26Vnuv+BdzmHrbvX9dFL3EP208i32mnnXbaaaeddtpIexD5TjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRvr/3qcIby5y71IAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGiCAYAAAA1J1M9AAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACX0ElEQVR4nO2de5gdVZnuv9p7d7oDJI0ESEATiHhBBUcFxQAeFTMno3hGB0YHRSd4Hw1oyBwdmBFUFAOO4yAO4MELeIFhhnHwLj4QlBmO3IRBxQsyCMKoCXiYkJCQTveudf4I2f2tb+319lrVe3d3pd/f8/Cwq9eqVbWrvqralXrftwrnnBNCCCGEEEIIqTGN6V4BQgghhBBCCJksvLEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9vLEhZAZTFIV88IMfzJ7v+9//vhRFId///vd7vk6EEEJCqp6v+8lJJ50kBx544JQs69JLL5WiKOS+++7LnveDH/ygFEWR1Hcmbmcyc+CNDdll2HlS3fnf0NCQPO1pT5OTTz5ZNmzYkDXWhRdeKJdeeml/VtTw7W9/mydpQgiZgdjriv3vpptumpL12Lp1q3zwgx+c1n+sOumkk6Lb4eqrr5629SJE05ruFSCk15x11lmydOlS2bZtm9xwww1y0UUXybe//W258847Zbfddksa48ILL5S9995bTjrppP6urOy4sbngggu63tw89thj0mrxMCWEkOlk53XF8pSnPGVKlr9161b50Ic+JCIiL3nJS5Ln+8xnPiNlWfZsPQYHB+Wzn/1s8Pc/+IM/kD/8wz+UE044QQYHB3u2PEJy4S8mssvx8pe/XA4//HAREXnrW98qCxYskE984hPyta99TV73utdN89rlMTQ0NN2rQAghsx59XakDW7Zskd13310GBgZ6Om6r1ZI3vOEN0fZms9nT5RGSC6VoZJfnmGOOERGRe++9V8bGxuTDH/6wHHTQQTI4OCgHHnig/PVf/7WMjIx0+h944IHy05/+VK6//vrOY3b9L2QbN26U1atXy+LFi2VwcFCe8pSnyLnnnuv9q9h9990nRVHIxz/+cbn44os7y3v+858vt956a6ffSSedJBdccIGIiPdYfydWS/zrX/9a3vWud8nTn/50mTt3rixYsEBe85rXVNI0E0II6S+/+c1v5M1vfrMsXLhQBgcH5VnPepZ8/vOfD/pt27ZNPvjBD8rTnvY0GRoakv3220+OO+44ueeee+S+++6TffbZR0REPvShD3WuEzuvDSeddJLssccecs8998grXvEKmTdvnpx44omdNuuxKctSPvnJT8qhhx4qQ0NDss8++8gf/dEfyQ9/+MNJfdeYx+Y73/mOvOhFL5Ldd99d5s2bJ8cee6z89Kc/nXC8kZEROfXUU2WfffaRefPmyR//8R/Lf/3Xf01qHcmuD5/YkF2ee+65R0REFixYIG9961vlC1/4gvzpn/6p/OVf/qXcfPPNsnbtWvn5z38uV111lYiInHfeeXLKKafIHnvsIX/zN38jIiILFy4UkR1ygBe/+MXym9/8Rt7xjnfIkiVL5Ac/+IGcfvrp8rvf/U7OO+88b9mXX365bN68Wd7xjndIURTysY99TI477jj51a9+JQMDA/KOd7xDfvvb38o111wjX/rSlyb8Lrfeeqv84Ac/kBNOOEGe9KQnyX333ScXXXSRvOQlL5Gf/exnyVI7Qggh6TzyyCPy+9//3vtbURSyYMGC6DwbNmyQF77whVIUhZx88smyzz77yHe+8x15y1veIps2bZLVq1eLiEi73ZZXvvKVsm7dOjnhhBPkPe95j2zevFmuueYaufPOO2X58uVy0UUXyTvf+U75kz/5EznuuONEROTZz352Z1ljY2OyYsUKOfroo+XjH/84vBa85S1vkUsvvVRe/vKXy1vf+lYZGxuTf//3f5ebbrop6amU3Q4DAwMyPDzcte+XvvQlWblypaxYsULOPfdc2bp1q1x00UVy9NFHy3/8x3/AYIO3vvWt8uUvf1le//rXy5FHHinXXXedHHvssROuH5nlOEJ2ES655BInIu7aa691Dz30kHvggQfcFVdc4RYsWODmzp3rvv/97zsRcW9961u9+f73//7fTkTcdddd1/nbs571LPfiF784WMaHP/xht/vuu7tf/vKX3t9PO+0012w23f333++cc+7ee+91IuIWLFjgHn744U6/r33ta05E3De+8Y3O31atWuVih6KIuA984AOd6a1btwZ9brzxRici7otf/GLnb9/73veciLjvfe97XcclhBAyMTuvK93+Gxwc9Pra8/Vb3vIWt99++7nf//73Xr8TTjjBDQ8Pd87nn//8552IuE984hPB8suydM4599BDDwXj72TlypVORNxpp53Wte2AAw7oTF933XVORNy73/3u6LJi7FyO/W/ntXLntrr33nudc85t3rzZ7bnnnu5tb3ubN8769evd8PCw9/cPfOAD3nXwjjvucCLi3vWud3nzvv71r49uB0Kcc45PbMgux/Lly73pAw44QC677DL5wQ9+ICIia9as8dr/8i//Uj7+8Y/Lt771LXnpS18Kx77yyivlRS96kTzhCU/w/tVq+fLlcs4558i//du/dSQAIiJ/9md/Jk94whM60y960YtERORXv/pVpe82d+7czufR0VHZtGmTPOUpT5E999xTbr/9dnnjG99YaVxCCCFxLrjgAnna057m/Q35SZxz8pWvfEVe+9rXinPOu16sWLFCrrjiCrn99tvlqKOOkq985Suy9957yymnnBKMkxqBLCLyzne+c8I+X/nKV6QoCvnABz5QaVlDQ0PyjW98w/ubvsZprrnmGtm4caO87nWv875/s9mUI444Qr73ve9Fl/Ptb39bRETe/e53e39fvXq1XH755ROuJ5m98MaG7HLsvAC1Wi1ZuHChPP3pT5dGoyFXXXWVNBqNIMVm0aJFsueee8qvf/3rCce+++675cc//nFH72x58MEHveklS5Z40zsvAP/93/+d85U6PPbYY7J27Vq55JJL5De/+Y045zptjzzySKUxCSGEYF7wghdkhQc89NBDsnHjRrn44ovl4osv7tpn5/Xinnvukac//emTSsBstVrypCc9acJ+99xzj+y///6y1157VVpOs9kM/vEwxt133y0i4z5Xy/z586Pz/vrXv5ZGoyEHHXSQ9/enP/3piWtKZiu8sSG7HBNdgHL+BcxSlqX84R/+obzvfe/r2p76L3r6hiSHU045RS655BJZvXq1LFu2TIaHh6UoCjnhhBN6GulJCCGkOjvPx294wxtk5cqVXftoj8xkGRwclEZjZuVB7dwGX/rSl2TRokVBO19lQPoBq4rMGg444AApy1LuvvtuecYzntH5+4YNG2Tjxo1ywAEHdP4Wu/k56KCD5NFHH03+F6sUcm60/uVf/kVWrlwpf/d3f9f527Zt22Tjxo09Wx9CCCGTY2eSV7vdnvB6cdBBB8nNN98so6Oj0XjmyfyDnF3Wd7/7XXn44YcrP7XJWZaIyL777pt9zdx5vd75NGsnd911V0/Xkex6zKzbe0L6yCte8QoRkSC57BOf+ISIiJe2svvuu3e9WXjta18rN954o3z3u98N2jZu3ChjY2PZ67X77rt35p+IZrMZPO351Kc+Je12O3u5hBBC+kOz2ZTjjz9evvKVr8idd94ZtD/00EOdz8cff7z8/ve/l3/4h38I+u083+9MOZvsP2Idf/zx4pzrvOyz27J6xYoVK2T+/Pny0Y9+VEZHR4N2vQ0sL3/5y0VE5Pzzz/f+bq/fhFj4xIbMGv7gD/5AVq5cKRdffLFs3LhRXvziF8stt9wiX/jCF+TVr361Fxxw2GGHyUUXXSQf+chH5ClPeYrsu+++cswxx8h73/te+frXvy6vfOUr5aSTTpLDDjtMtmzZIj/5yU/kX/7lX+S+++6TvffeO2u9DjvsMBHZYZJcsWKFNJtNOeGEE7r2feUrXylf+tKXZHh4WJ75zGfKjTfeKNdeey2MHCWEEDI5vvOd78gvfvGL4O9HHnmkPPnJT+46zznnnCPf+9735IgjjpC3ve1t8sxnPlMefvhhuf322+Xaa6+Vhx9+WERE/vzP/1y++MUvypo1a+SWW26RF73oRbJlyxa59tpr5V3vepe86lWvkrlz58ozn/lM+ad/+id52tOeJnvttZcccsghcsghh2R9j5e+9KXyxje+Uc4//3y5++675Y/+6I+kLEv593//d3npS18qJ598cv7GiTB//ny56KKL5I1vfKM873nPkxNOOEH22Wcfuf/+++Vb3/qWHHXUUV1v5kREnvOc58jrXvc6ufDCC+WRRx6RI488UtatWyf/+Z//2bP1I7smvLEhs4rPfvaz8uQnP1kuvfRSueqqq2TRokVy+umnBwkxZ555pvz617+Wj33sY7J582Z58YtfLMccc4zstttucv3118tHP/pRufLKK+WLX/yizJ8/X572tKfJhz70oWiWP+K4446TU045Ra644gr58pe/LM656I3NJz/5SWk2m3LZZZfJtm3b5KijjpJrr71WVqxYUWl7EEIImZgzzzyz698vueSS6I3NwoUL5ZZbbpGzzjpL/vVf/1UuvPBCWbBggTzrWc+Sc889t9Ov2WzKt7/9bTn77LPl8ssvl6985SuyYMECOfroo+XQQw/t9PvsZz8rp5xyipx66qmyfft2+cAHPpB9Y7NznZ/97GfL5z73OXnve98rw8PDcvjhh8uRRx6ZPdZEvP71r5f9999fzjnnHPnbv/1bGRkZkSc+8Ynyohe9SN70pjfBeT//+c/LPvvsI5dddpl89atflWOOOUa+9a1vyeLFi3u+nmTXoXC9fvZICCGEEEIIIVMMPTaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9fbuxueCCC+TAAw+UoaEhOeKII+SWW27p16IIIYSQCeF1iRBCdm36Evf8T//0T/Lnf/7n8ulPf1qOOOIIOe+88+TKK6+Uu+66S/bdd184b1mW8tvf/lbmzZsnRVH0etUIIYQAnHOyefNm2X///aXR2HUe6k/muiTCaxMhhEwXWdcl1wde8IIXuFWrVnWm2+2223///d3atWsnnPeBBx5wIsL/+B//43/8bxr/e+CBB/pxeZg2JnNdco7XJv7H//gf/5vu/1KuSy3pMdu3b5fbbrtNTj/99M7fGo2GLF++XG688cag/8jIiIyMjHSm3eMPkBaf+X5pDA31evUIIYQAym3b5IGzPiLz5s2b7lXpGbnXJZH4teloeYW0ZODxQZqd9mLAv5wWrXibNFuqn2lT80nT/Mtkc7zNqc9BX/Mvmq41Pu3sv3aqYZx5EuXs8nWz7dtQ0+AfVO0yqlIgsUmpF+j3K0o1bYYo2qU/redtm76l6ts2y2irznZM3Vb6bTLW7v5ZRJwepz3mt42p6dFR09bu3k/Eq18RkaKpa9a06ToNalbXs6lLXW+mzatFUM9hzRagzZ/06q0BatbWM6j1nmDr0sXbdJ3auvfqWURETRdt21Ymtdna82vdHAjt+HxevdmaHR1T/drRNil3tI3JqNwg3066LvX8xub3v/+9tNttWbhwoff3hQsXyi9+8Yug/9q1a+VDH/pQ8PfG0BBvbAghZJrYleRWudclkfi1qSUD0ioev7Ep1A/BwtzYqGnbJg3V1oi32RsU/UM068Ym+UfiLL+xKcp4X9PZ72vavLsge7MUb5OGamuYH4JO9S3N/i3UdPADXf2AtNu+MDcvifUsoGbDetZ1aW5smv24sUF1uQve2NgbFFWXRVDgaW3izI2NxNtE16WtWb1vQM3qGt0xrffL4/0eX92U61LPb2xyOf3002XNmjWd6U2bNsnixYuj/d1MvtbO5HXbFQDXsemmmMHrNpO3G4nAc8m0E702NZqdH4Tev3DbC66+qBfglz6i4g+qXt084GXk9E3sbLuBc5ceE97kTAfg++of0+Y+KnkMiP2hr2oveDoYzBv/oW9vCqaVIu0m2jIVx0VV9PHUq98T9vsmf/t+bCd7DlR1Gpw79ZPpzocy+HeAGD2/sdl7772l2WzKhg0bvL9v2LBBFi1aFPQfHByUwcHBXq8GIYQQIiL51yURXpsIIaSO9DzyZs6cOXLYYYfJunXrOn8ry1LWrVsny5Yt6/XiCCGEEAivS4QQMjvoixRtzZo1snLlSjn88MPlBS94gZx33nmyZcsWedOb3lRpvL7Iz3ox5jQ/1ZxJsrwpkWJlyBQqU3HMfjxG7s/363/RzGhZXkWm5Fgr4tr/9DF6sia7JL26LhUDrY7fwJNQNK1fIa7tF+CJQFgPjFlg8jiV6YtEJbGtV+cV/R2shM1uX93csL6HxJVD2yzwvIC+wCtSaD+KCSTw2syJDMongaTNrif0PVSt2Ypysyk5DjQ566Z3jV1PXYvBd4hfG+y1yd8XgYksPp9dVz2KJ5/MqWddT9ajptbFnjv1xOPLLpwTGZEk+nJj82d/9mfy0EMPyZlnninr16+X5zznOXL11VcHxk1CCCFkKuB1iRBCdn36Fh5w8skny8knn9yv4QkhhJAseF0ihJBdm13ntdKEEEIIIYSQWcu0xz33lKrSyorz9Ux3vwuYEia1LSrOXHmRaHNDoWnVBWaQuoyq22wm+3+qLn8qrAVVawYQ7MLUfYpWpg/rSXyKVnP8nR6JkaWBJwG8c8brm+PP0Nh/skR+BegFii8CLRPG6vbhOu1MY6H1/NYT4HkZgoGqYbcpOpaTfTT+oDrS2pn3wXgvZWzGX4JZ2BeC2lXT89pa0NP2nTOoZlPbMuKks2KbEz0+wS6r6vGB66I+J0YXW8IIZ1C0sC7j/pvKvrDgvVv6/Tfx82NwGHap2cKVyR4bPrEhhBBCCCGE1B7e2BBCCCGEEEJqT/2laKlPJLPekpw6ZsZz6ymWyU07OY/0K8bc+k9V4xsq2E1V5Wb9iB7NGSfnO/ZkeRl9AX0v4T7I4rKGzKmv/G47FpFY67uCrHWmo+Oe/ThTINHIke40QRR0I3F5Zj4H2yL9uuCVXo4cKGMZyUMCSZmWplmpjhfNL/Ft8fhCxj+C7QbbgghpHXMbl5sFsh5vDHOct9RPORsFXerr6wT6J13PzXjcM5RdBvOp79ujmo2OIeE+9MexbfFx0D/796KGCxsfriSTztRsgX58oIhyWyfefGZab4xgTNW5NGPq/W2WV6gahlemhJotJqpdPVxyT0IIIYQQQgiZofDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3199ggUDwkkkginXofPD3V42KnV09fQK0/mDEnkjb5K8Y72ihQb3HIH9GvzduDSGe466u22WWkd62+raa6hHvlf0ms7159Pbg45L9B/rW6+vemm2ZLpNHFY2MokFcGeRK0Lh34FQJvQRN4EvQwQVvcg4CjXf0m7GUAy6gIPK/rYre7CHkZ7JB629jjR3sk7HHntZkV0P4B5KECFC3z063dVoszY1b12Fjfg+fvAnVp2hyKNm+k1ayz88FatzUbWU87jerZ0oMazoko13Wa5Quz+0JlTBfmCzsVBR54qLRPCvnC7PlK9wv+oMZsm7rUw+ys2QmiymOzE0IIIYQQQkgt4Y0NIYQQQgghpPbUT4oGJWTxpizpWcVlpD6ezJKQTXdMNHrJeer3mEACkyxpq6zrSZepeV8JyeIqS+YmIFV+VlFuBsuiR1HQfVFIZsWHT36cCSPfUS3oJnROqirJRGozysv6TtFqSdGRooENjqQ7QKbmwNvn9XyBPMd7izqQkkCZGFgXESMPQvG8dhmSBpJRWfTiTDfvvG43k8QlP3C9bWK3GtiZ18jra1qgDgVyncTTSoja9oWSpYmIkfVM8G/Z6C3yXnx5XD4J5XVQdgnms6vtSaNAHdq+qJ6D+UAbIvE3SxhDHj9+CrVLJ5JPelIxI/EqwHmgUNvRmQ0OL6lNF++HIruR9M1bwI51KShFI4QQQgghhMwmeGNDCCGEEEIIqT28sSGEEEIIIYTUnvp5bDJI9tXk+Gagj6eiuWEm6+J7sW4T+FEciqT1hulZTqga1Ohc1TKqRkGjxN0JO6P5En01lX00k/HNJEdYJ/abDFWXATT7qG9Yz2BdgOTYGyOn9qAAOudLkSRaTRX3jDw2aX6FINIZeBI8X431FsA2tLw0D0IwDvQk+E3eMnJO49Z3oRfnpRgb34H6HMRCazuI9TlYz6VusxJ/HasbeJPGF1IY/432L+TYAb2+wK9Q3dhn5g1ik4EXC0U6gzbPH5PThvwv1vvlHYd+V4f8N5qqnrHUc7OIuYabulTbIvSTmUWqYyE41r24ZztOD2rW7IuiDepS+9vKhGcs9NgQQgghhBBCZhO8sSGEEEIIIYTUnvpL0dDjb68fiHTOkIkly80mo5qqKmmbTnLkVjmyPC/KNv4MNpCppeZm9kpS1iOSl5GRUO71zZGb9Uu25o0zjQUN6mkycc8Vy80fw5ZzYtR40DRTzxd1ZqA1LkVDwJhZEI+LIp11JCtsQ1KhDKkO6JslNwPyqMo1mhq/byOjU18vMEGTH4lrYnWj/XyZT1asrt6GZTzGVxroopYhRUPR3yBSuWqkc9CGIspT61mkNxHlwXxSCai6L8EFyKtnM6aJIfcOC1P7vjStJjXbmb85cZ+dwyX3JIQQQgghhJAZCm9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/jw0CRTon+jwCX0dVH00/oqCnO77VxfWpfr8J8gljY040rjekjfvsgXB7ug0KwPOS7Kmx81WNkJ4w7jktlhWPkdhvMnhC4mpa+x3tKlLTtiX6b3K+rpYjwyjoHFJ9aMTDNZvimgl6b+BXQFHQntcAxAj3KtLZX54/G+qLfDRhW+TzJPCOA+RJQP6bYND05SNPQuVYXR0TjYx2bbvvXfd+lkl4bDxsfXl+Mlt7+nO1uOfANwP8a6FXR+J9U3009jisWMPgTRP44lCCggY/UYP4ZR0FPZNq1tKlTl2bHhtCCCGEEELILII3NoQQQgghhJDas2tL0VIJYv6qStgStULBmH2QqU0F8JG3+jxRBi16PovkBuD7a2laUVHeZp/x6rdSZ0nBpgIQ6VyAtmS5mdmGuO8E0xGmQlmJI+HVx4nkXkiGiWRq3bsF48D5wNP+oK/uF+jiplnKWldaTZFuUjQk3QmkLDoeF8hsMuJxvTFRTDOSsNl/6syKe46siwWdt63CCb1sHJ6DVGNpDxgwn42GTrxYhKcH9UXMmIU+P9jo3rZqs8enaoOSn4nkZqmgiG4kN8uQT6Jad0A+6UWbo1hqMTWVU88V5ZN6fQqwL4ImvQKoDO0x2gbLB+d4JDez8cuVa9Yl1qylW5vNtQbwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189gEfhjdlhHNrOWMVSOds5aXmtVrxwEayWn22EApLzIzoPhnaIKw8wGfgzeX0YtOe4yz1uDatshnMV+xaqQz9N8AH82Ecc9g+bF1yWnrEfCYQTUEzh+hVhnsX61VzrAhTHfJknGicc/onwlt4SEfDYiyhbHNejrDr+BJ+8F8O9YttU3ibRkXrmAcPaTnKzGNJTpA9TFoznnAN2S9DN641gtk+8YorKko7pXxfA7BNRScPJFPCRHsw6L7Z7H+LjuO8oXZ3286NhrVsxkT1nPgPYuMKQJ/s3nfybYlPhIIfI16cXa/eNdb8FunjDeJ+J6X8LyjPqOaDZahrmnBcQD8XXocG++c6QtzDXpsCCGEEEIIIbMI3tgQQgghhBBCak89pGhVZRjwMWMPIp2DR7U9GFPM08OqUdC2a2K0q8vQvKRKjiZ8U7r3rDhDpoakCGDjeFHQWTmO6V17Mh8ap1eRzlVlcRl94XyxMfpFqtzMPsFH0cxxJVF43vEiw22cOFhPtE3B4TPtkfC7IG4gIkWzgAhcT24WyJ+AFC3xjeuVI2+B5GfH8vXyTF8k3UmUdwfHEkyEjZ+79PcIInfb8fUMpoGMy1NCB5I2tcw2OHlaeY6OhrbR00jy441hZkNveDdAmWDFevbkZoGkC8gnUa3raHEg5Qz6Zsgng76R+SxeXaD6DVSIWmpo6qn0OsYXKOJ/f1NDlWtW15uVT4Ka1V2hfDJBLumEUjRCCCGEEELILII3NoQQQgghhJDawxsbQgghhBBCSO2ph8cmlRw9eaLmN9DAIv8LGlP1DWSsYBzojUES0Ira+kD3X9ET4Ukyga9jxzC6A1rxDANB4pBZUdCexrlP5oXEVPCqfpiiNKP2wLczYV9AovWrZ6DFFaBmsqKZ0TK8fkbjrOa0x50/3wQrEFsZ+m16Q6sQaYb/JghPCUHEMvJ5AI8N8At4XhkU9xx4esCY1kcDxnHAg5HqsbHA0wO8xqjrrTnnad1/YX0sbbNyXjy7HSfuZfCic5Fvx56Pgf/Gv6bGvTnWAtEzi6de1Yx69mrK1gXwhfl+rv77wnBEuW1LK2Jcv+C3hz3/l7qfaQPxy3ZbeMdCTs3qdTP+G9fQx1q1mkX2mc7XyfhRyyc2hBBCCCGEkNrDGxtCCCGEEEJI7am/FC1RquWQbAyNiWRjwSP9RLlZkM6HpGhgHNsUbalOEX866pMRxRzIbICMyetrl+E99rSSDR0lGH80naNu8yKsM2JJITlSv8S+UPqXEwUNHn/3KtK57/HPaNeDqNegLHoV9xxPPvWlaUADGsyn9yFQGk6UEkrSKFsNKVsJ/yYIpBO+NCsuz0GynjBWt6KErQnaQP1mRedWlKJBwLlLS26CWF0t2wrkZbav+mwlP2qcQKamd6GZT0vYAikckqk5cAFS17vgzFH1PAp/I4E6AbHNsJ6D+br3E5G+yCdhPYNrRWVspDOSheuaBdLKHe3qM5KpoZq166blZ0imFsjNdJOV3ukx4kW6s6W0XxTAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUzmMDdeGV2ypGOps4xgK2IY9NfH3ClEFkigBjVsQBaaXeGTCCFvlvzMyB/0Zrpe1SUNymZ1QC5oLAk6C2/TSYEJLLFPqUbMRj4nwlaJvIGwM9PhInrZx7hrfrkW56Ak018q4gr4HeF0FbbAF2MjTnxNtIz3HNhrgucc/onwmtnt3X76dr+5PjcXN8NI3unyfV16438p0l1mzVc471sehrSmHPebav2jfBboJeBrUqQeSuusYA/w3yWYSeBH0tlP6g933Veu6DjwbV6ETLQPUMj6cenGdDX1jcl5xVs9rDleUZU4u3y4C+MOT/ifvC/GvoxBd/R48NIYQQQgghZDbBGxtCCCGEEEJI7amdFC0HB+RfHratAeZDkc5em308qCdMm10dLUVDkrZgvmgTnA/htNwM5Eg6+5hRP4EskeZG/EeU9s213lui7aNMkHOb2gY1Rma2ItIvk+RdkRUFrR4V9yHSOXxsDtYHyuRAm6UPcc/J54Hg2E7v65WQ2U5+PcfbAjmhd6yBdUHbjDK1nlAOpMY9x5vgW9xBPG2/5WZhW7W+gazHkzGZttS6zJHR6vOalcd4bXGZWk7fvMjd8Y9QpmblqN65Gpx0TNxxisynG4GkzBvU9lUTOfWM5GbJbWZd4HER74slbH4bvFYgYKRz/BpevWbNOKoWK0ebBzWrfyPaSOf4bzv9HR08We6cnVI0QgghhBBCyCyCNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb/HpqrWEflvwJipkc6BflG3Bf4bME6wfDBODzw21isjQNuP/Deex8YIPV3glVHYyEc1UGAt0NpOsw1FLwNZbCxVfTRV56vYN9DgpvpYciKdkf+majQ0iCLNiolOJePYhm12XTzPXLwtrFnVZv9ZCexfT4Mc6JhVU5beWx8jU5C1vYvgWoW4Vrih8asIQFxsjo+mB74D7I2J+xMmXEail6Evcc+B70B9tpHKyH8T9I1H2TZ03+CEHN/e0Mugty/wYIR2V+DN6ZG5zq/ZGVzPQc3G+5a6b4ZnzPMfVfTYWO8T8sYIqNkGrFnTpmOb2yDaPKNmPd8o+B0Y+EahvzZsLDPeYcInNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY4NIfmeFFbOqj9a7kfiumrCtVG1mSOCxQW3BMvSYPdLMly6u6/U9Nv6XKr1sczOmXYjuYN95o7+V2Rb++0KQ5jeuf0Y+Dhd4mIAnIcvcAEDvnAF6VZSPnzpmoMdNfE/EhH0rvuOmHx4bb9cjjw16b4EBaegD3XZ0wnhl4qekYD6Htm/cmpOnDScdymYhZRePTYBXa7YQVRuoNTsffFcM8HWUqe+4sf4E4LEpm+nvCxHoV1ATwNsG36WFfAfmOzSUtyDw1Nhjua18B/bCpa/FGe+/0dsfehnQO7ACUyvw33j9UKMk/2aqXM+29sB8yb4wW4cZPhrvuADj9Oq9TN4+tZ6TdqSf+H4Y+P4z8WsR+m+C99GA5eu2DG8o+n3hvPkmvjiF/u84fGJDCCGEEEIIqT28sSGEEEIIIYTUnvpJ0YBszEqHUuVmYTxh/NlacqRzw3/upiVlSF5m221bE8Y9q2VkRD+jR3z6Kbrtp6dL+1hVPaou7WN68xhbt5dWx+RJ0+zjbxUFDaN744/Nw2enaTK16QCUJZaUld372TYU6QzHzFhGKL9yoC0+n98x3pRVF7rUrNLDHutgdbwUZduox7GP5sH4VhJEpo9yoJByIE+KZkFxsQ7IXGBsMpDOaNkYjGk2dQblZkC2Fo4TX7fkmHVwXrGSG6dlPUGbkuqMxSN3RYy8PIi51ZIfFN0bl/zY1xTovvAcnyHbDSR0iQT7yRvU9O1BPVeNIZ8o7hnKzVJrFkgyc+LLk+VeptYaY0W0zdol9LHQNtumAaSVMCa6jM/nR42DWrfXMFTPXSgztNN8YkMIIYQQQgipPVk3NmvXrpXnP//5Mm/ePNl3333l1a9+tdx1111en23btsmqVatkwYIFsscee8jxxx8vGzZs6OlKE0IIITvhtYkQQohI5o3N9ddfL6tWrZKbbrpJrrnmGhkdHZX/+T//p2zZsqXT59RTT5VvfOMbcuWVV8r1118vv/3tb+W4447r+YoTQgghIrw2EUII2UGWx+bqq6/2pi+99FLZd9995bbbbpP/8T/+hzzyyCPyuc99Ti6//HI55phjRETkkksukWc84xly0003yQtf+MJqa9mLWFLoozFN0H+j+8Ujna2PBnlsGsaPg3w0TeS/0cvvQ9xz20QxO6/NxG3qtsBTk34/7Xlu7Hye7hbEX8J9D2KT+xWHGy89HNsMSI1NDqxmiZHOWR4bpN3N8N/0wuMU7F4Qye4lTtoozIyIZR0vG6RYgvpCcc846ju+fWeYTaxvTOW1qWzlxz1b/IjjnAjc+Pjah1ACTwD2xphzte3b0n0l2teZXxalnq9l44/VBIp7tucV5TtwY7Zt/HMQeavarHejYcdBntq219FvA3HPMPIXeR6BlwGd46v682C6LvKVoIhy6AvLiCEHbdAXZuuyapuuYRBfjnyr2jcj4tdT4OdS6xLUaNt8X28cswLAM4Z8NMh/o78wvr7Hr0ZBPXfB+rgRk/LYPPLIIyIistdee4mIyG233Sajo6OyfPnyTp+DDz5YlixZIjfeeGPXMUZGRmTTpk3ef4QQQkhVeG0ihJDZSeUbm7IsZfXq1XLUUUfJIYccIiIi69evlzlz5siee+7p9V24cKGsX7++6zhr166V4eHhzn+LFy+uukqEEEJmObw2EULI7KVy3POqVavkzjvvlBtuuGFSK3D66afLmjVrOtObNm2qfgHJkQ7BKGj9+NnKzeJSMCw3021x6Zltb5pxtNwsmE9NNxvxjEcrU0OP+LT8zC6vrR9BFnGZWpg5aNct7f7aRkG70tMVmSHjMcICoikh/ZKmxQikCCCKOjU6sWKkc/gmZNsXRUXGl5/cZvBkW0Auatv8qFUznyf3snIZIxuIr1p6nQAVZNb+BaU+JdLKGUa/r02uWXQkW8nqCCjdibcheY6dL/kN6yg6F0jI7HQgARrQn83xo+Yr59g2FduP4o9HjWxsVI1p5DkN1deNmjZ92TDz2e1WgJhdfR21Kmn/LfLpMjVPKhucD9V3QvHOfdKfptYsjnsGcjMU99wj+aStZz2Ort8d02r/2uNA1bCVVqJIf11PDVuXWj45CraT+X62hvU4BTh/BK8d8WrWLAPGPat+zh6/ul/8ZJkU95whRat0Y3PyySfLN7/5Tfm3f/s3edKTntT5+6JFi2T79u2yceNG71/GNmzYIIsWLeo61uDgoAwODlZZDUIIIaQDr02EEDK7yZKiOefk5JNPlquuukquu+46Wbp0qdd+2GGHycDAgKxbt67zt7vuukvuv/9+WbZsWW/WmBBCCFHw2kQIIUQk84nNqlWr5PLLL5evfe1rMm/evI42eXh4WObOnSvDw8Pylre8RdasWSN77bWXzJ8/X0455RRZtmxZ9UQ0QgghBMBrEyGEEJHMG5uLLrpIRERe8pKXeH+/5JJL5KSTThIRkb//+7+XRqMhxx9/vIyMjMiKFSvkwgsv7MnKdgVGEoJcXS+22TR5Ppr44gL/jWpEkc4t67EBPhrbt+X5b/w2z2NTxNsQVseo9dhjRgSr/TdjZvwxEOlsNce+RDQ+nzPr5mmcgx0Vj3T29cBWyBydAP0mIEMbinZTaqQz8qoE2lkUp6rnA56aCZcBtbvxMZN9Q4Zkj0KGj8UZ7XCpCiBIqAUWLq/NbAutnYY+mhwPVWpbzZnKa5NrhZp7kdx43HiRJMc9I0+CbVM+hMCDkBh5K4J9NF7boGkbVMU+aK5/Q+MniEbTP9GU7fEVaG/zV6YcGf+SjRHj8YTeDeVzsPvMemX0brKXJjWzjdUtwHHun/NAbLOdD/hGi3hTdPyuJEeU2zZQz4lxz9PuCzPeLz1t69mpGm4M+b9gmq3xtvaY/6XKkfEVcCO2nse/Y9Osp/aFifHf2J8+AmrWm7a+Uf27F3lq0e8LEF8eALw5XbujsQxZNzb24t6NoaEhueCCC+SCCy7IGZoQQgipBK9NhBBCRCb5HhtCCCGEEEIImQlUjnueNjIe9/tt4NktkiOZtkLJv5DcDEU6W+lZyzx+130HTJuWog004m0tox3Ssi0U92ylaGPq2W3TyMtGi/E2G32tCdvsq5DH19umbzr1rNpub/30P3iLvKcLjEucgqIpYv1EnI4B71V2bk5sJyrZihI2KCFLfXu2TCA3A20NtRNxTLRZPox7VrGoZt8nyxsmeADQUBuylLg0ACWNV4+itm2oaPUChPSAsllI0Zp4Y1aOx9XTOXIzVc/oTe0w8ta2WVmPjsCd47e1lVzHGblZsdv4mX3u7iNe24I9tnY+77/HI17bbx8d7nz+f4/u5rU9tmU8sa5smBXVmpsMmbKYCF7vMmLjtT05u5X1qM9WpgbOuVCKBuL+syL+EZWlaIltoJ5LE9ssXpuZL0M+qdvbVm6G5JND4zugmOv/nhrafXvn817ztnhtT1Q1rOtXRORhVcPbtvgHUNlUK9ow0kpwTWvYwgRSNN3VqiB1DSMZZFCz+rqV8coG//fMxOfT0q4wgE9sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqZ/HJgeg+4z2E6urtXpGHQUdb2uatlZT+V+Ap0bE99XMMT4av813pGiPjZ1vUPVFHpsRI7Iec+PjbG/74lXPtxP4ZlQ/EP28AxWBaESavp7UF2xq/01pPRhe/KQVfiq9aq+sMiDiN2+gyKCon5mG3hygjw3GTIxwttPQR9O2bXo+sw8T25CfwLbpbeqaptbUZKD3BgQeMhB96m1vENMZyOITPVQJ4WBkkpQtkSLhypka/xz4qWDccwHa1GfkSbCRt7ptwLSBSOc2iMDVnhoRkd32GPfVPHHY99G8cO97O58/tM9Pvbb3P3ho5/PNrQO9tt8V8zuft4pP6f20ARs4dMH5U+A3BPLf6Gjahn3dQKp30e5f5JVEHryqpPptTN/K9ZxxHocRzsgXZutb1bD21Ij4vpqhPXxf2H57bup8PmLBfV7bh/e9o/P5jAef47XpGl5fzPPaHtPrFfw01xsueImAmVZemYpR0OHrHYD/RtdwRl3mXrfKjLhnPrEhhBBCCCGE1B7e2BBCCCGEEEJqT+2laA7m3IImL6oxPQrae/xsY/e0NMvGPatpJD0T8WVktm2oOdq1n4jIYFNFajb93Mq5je3Rtsfa489nHzMZnrqtIeD72m2olAjb/ZYgUtqpbWNfPt/Q0iEbqYliudW0nQ/GfaYqkCajN6sqG0icD0aIolIHj5hhFLOZbth4U1WmjTFTQ1puZuZrjLpoW3O7ervzHBONqaJ4SxvL6z3+9tu0JMfWuo109qSHweP+eH2hZOZUOSFKdEYEJRtXEBBAqhStcnQukJt5sp4c6Q6Qouk43EB6ZmU9Ki7XzTEngUElkx7yrzHDu40LbQ6c9/+8tpfP+7Ga8lfulfPv6HzeMDLfa9s6On5tGh3159ve1q8w8FfT36hY1qNlZPa06h3aVtajzmtBrK4eyDR6MjWrzwHnB4fOHT0iNdLZxuhjKZr6nCGfRPHltoa1vLI0cc9OT5t6bqkanr/bNq/twD0e7nz+o+Efe22l2lHHDt/htT20fVx+tm3MyP7Hxr/kdlMXXg2jk4KIVwBWBlmC61YD7Cd9nXbBtV/J1FBdmgPRRSe6QykaIYQQQgghZFbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21N5jkwzUwce7BhaMVB+N8d/otpaZD0U6Dxk/jO4b+GjU9Nym72zZozkeVziv6etFNxdDnc/WH6G9BtZ3gMiJy/UCna3/Rgk6A6m055fw79F1/HOBfA6B6STyecdA0ndS/TA5sYqepjveBqNHJ4h7hpHOylfTsG3aR2P9N6PjCw28OSNa9OuPWbaBWFgRRkwm6unF/x5WQ+9pykFEbOit0BNmTOSvSvTm0EfTG1yzS4y4dPHyaTJqBFlAoCeh0f2ziO+jCfw3Og53Qr+Cmh4w1z/lUZgzx4973mMg7vHcVI5ff/70nhd7bW/d7987n3dv+ZG7uw2MjzM46I/ZVn6F9pjx4OnvGxwvcc9Nw+4M9RXR+SL4DYFi9NW09QD6bWY+9YecqPgA6AsDMfap9ZzhsfF8YaCey1bcU2PbXVDP6hozx3id1fTuc/zfU7qGN6v6FRH5s3te1Pn89v3/zWvTNazrV8SvYV2/O6bHN4AzPqGghkGcuf4tZK1Qnv+mTG8TVJe6zS5Q90uoURdcaOPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFA49A87Q76iOUmxkJjJq2q6LlZ00rU1Nj2ghn23dOY0x99vv6cjMrRRt/XKqlZyK+/Gy4ad/T3HuspMxrs9G5qm8oRVPRp+Y5J4ouTI3sdpPKbZ5GMqRK6DDwZExQphZvs9OB3EzHPY+afaFlaqP+oJ6EbcQftLFd6UCCXagf49vn5o1oiy8f8Qe1Es1StVvpnX9usfnlup7NbOit49GJLtOkr5TNQgobI94NIM9Bklc/OtfMh+RmyW9qN7WsJT+BrMdMq3kL07fZir+mwF7jNOvHhjuf73jgSV7bg/uMx+Paa8MAeC1CQ02XA0aKpqWqZrVslK3z5KlWpg2kWXp1bFsZ6Sf+PrTnWK8tiNWNR+5WBdas7Zsqn0Q1a9tA3LMnL7PyyUBqqcYx9SxqnGbL3+C6plqB/mqc9aN7etM/un+8hh/cd57Xpmt4AFgQ9LEk4tewV78iIkZ6p68r9pjRdgL7O8y7/pm69NrQbwFwTassk368scx4DMMnNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTCYwPsGskgH03gwdA+msCfEffReG1mPi8KurCeGhMzqLSWg00/NlNPDzZ8j81uymOzm/HY7NYYn9694beNKgFr2+gutQ7T6jW9Njiff/88Zr5/qXwHTSOkdGq7tU3cn47bLkurF1WaY/FxXj/TBuOepefkxDYjIWp1H01c6Ip8M0E0dFt/tm0u2qa9K0Gk8/bxQRuj/goUynPTCA9u9dn8241eRobvoTTL0N8/iBPXumKrGwdtnuY4oy58/40taBpweo0X95x4TkB+haAN+Q6A/wZ5ErQ3xnoStK/Gxj1bz40oH0JhPAnN5vj0QNP45VQBjxkTxMPtPcaX/9BQtG3MfKmGdy3217Ol1q1t1tMpf5Sz1xtzHdGnOXu4ligKWo+JTk8gCtruX+Rl8JaHDnnblnNNS/SMBb4wVLOJHpsg0hnEl4c1q6aNv0zXcMPUbEtN29+BI+pAebi9u7+83w+qtj28Jv1bqGHG1MdM06zLmFpPN2B9yOZVF6qGG9aXrHZG8PoO9J4T4BlDvjDvXFbx90ynu/WyAvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT21kKIlkyMdQi/RLVzXzyL+40PbpuVmLSNTa8E2/xmbjhbU0c922sY979bY3vXzjumRrp9FRLZ7UjTzWFM9Z2w3/Tbdt22eTevpshmXqYn4UZVts230OFZu0NZSKdNWlvH95GsBQBtiErK05FlzYn1TJWwojhHGPbtom223bVpiFsjUdNuYkXaq6cJK0UbVcWHqq1DSxlClVnTtZ/sG8wFZCJKT2DhZLXMVI3vxFAUVH9unxGaSyVG2RIqUK2dipHNWG4h09tqsdEfLegKZmpowUh0x51Ud8WzPuU0g3dGMGL3bo+1x+dmcR/wv/MjYbp3Po3bF9bLNdUOvW3Bt0N/RfN9AxuTJQ83O0NsUvOEdxcH3Q9YzJXHPFesZxpfbmGYtnwS1HsrU4hHldn831LSVf6EaHlMroOtXRGTgkXibrf3Y8uy66Bq2ce12WkvvgppNjXsOfvdq+aZZbz2doYROllc/TkkpGiGEEEIIIWQ2wRsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY5PoowkinYGeEGntUcRkE/lvlBCxNUHc86Dy0QyYvrptyMQ96/jnocJv2115bsK451bXzyIio42mavOFrnraRkHrSE8b79wyouOxxvj9ddMIOHX8cxv4nUqwD9G+h1HifYh3nhCwQsmRzsBHg7wbyGODvDkifhy0jW3WPpMg0nlUxW1aj81oosem5ddlofT2hfGFNZQxy/n2NSmUkaYwmm6rk/e9Oqa+1D4MYptBnCvUyYMoaH/Z0dlIj/DinjXgfJFznkERuH4UdNxHA/03wFcSeEyA56YArzuwUbaaMfOlNisfwsCj/sbYWs7pfB4xHht7zfFWU58D7Hqqc0KwLcr4ucs2oYhn81IBvwm9UiDRrwDPD6Ypx3OTWqeoX1bcs67ZnHrWNQuizUXEr9nAu6J9YWY2sOG03+vRsUGvbeDR8c9b23O8Nlv7seXZZesoautZdnYavMLBNzxFVyVA/74q2vF6zoooT/UMR8ZG8IkNIYQQQgghpPbwxoYQQgghhBBSe+ovRdNUlRUFUiUdFZn+uF1P47hnE+8MpgeN3EzLz4I2JT+zMrUhJUWzMjWvzQ14bVpupmVptm3MvMFZf4eWeYYYTo9vm9Eyvk1tpGdbx/qaZ+N+ZLd9dIpkAqANUXW+1CEtGW2ehM3GNifGRKN4Zztt2xrteJs3n42CbqvjYsxowXTbqK8pK9Sj+caYiS9XNWNjYLWEwT5uD+KeEyV8tg1FOnuxzZN8bJ/URirhGmo/Jh7qvXtTu9qhUNbjt5Wp0h170gHxuEHcsz7n+qN4sjEb26wjcFtb/fkea49fj8aAFM1ei/Xy7Xpq6Wgo9bPfPy4rdfoPSJtlt6n3FncgU7PHLpL1SLytZ6cAJEVLjXS259zU+PIg4lhNBNIzs3x9Xrf7F/zW85ZnpfZq5UZK/zdTa4uoNiPtB5HlXs3a35aenM7Us9027fixbl8/EF0DGPVt5ZuqybzCQMD1Dkoru+AY90wIIYQQQgiZTfDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189jk2BeQcM/zYJgmoBXWEc/W86Gnm0HEsfbY+G020nkA9m13/Szi+2oCH4323xRjoM2fT/tqthn/jV6+Xc9BlaVrtdE2/rmhxJd2u+lt2jY61waShIJ9X4B+ztOZBsGZ0TERlb0yGX2TvTJAt418NDAKWkwcctCmxjFxz4WKXxYb96ynSzOo9twMmPm0xtiMKS0V6Wz9Pm2gY4Y+GuPH8eI2TZu3L0ztqb5Zsc1o35Oe41o7/puwX2p0buCxiXtAvGnQFkbeqs8ZbUGUuedJiLdZtB/GRt5uVz6E5mP+GGP6lQIZ598Gur57kdXW82GjdOPnQC9mNzDFgYuTHiPw94I4Xr3ZkFeiX+eAih4b6AsD0eZ62yNfGIp3ttPWK+l5V/wmr55t7WlPsfXRtFQNW/+NPg5QXLk9lrT/p2G+RBn4wvT1xwysPWOoUAI/S0X/DfrtkRk9zbhnQgghhBBCyKyCNzaEEEIIIYSQ2lM/KVpF7KM9JEfST4ODGEkgU0NvjvXij61MDcQ9W7mZnrayMa9NRTjbvkNWwubFRPvzafkZkqmNmmfF+lGt/X4N++gWREPr+Gf0qDjcT937BQQyxPHPUEEW1FMfIp5TpWemL2qDUdCoLYhpNn1B3DNs0/Kvto10Vm+FBnHPts01VVvLr6eGkqa1zRubC1XCUGpn+ubEZLvEfYHinrNkagjK1irhGl1iVLv1S3zFQFbcs5cJa9p6Id2xseZAbgbPqwArwdERuK1t/pgj7fFrhX2lgI3gTV1Pfa2AMh4RT/IV7HPdtWnXRTXaN7XrcYKLmtpP9vxQpsnbsuLfs6T9ahi03jnySShhU5+RfDL4IRaXU6LfejkgaWVrZHwZo6YNySkboGYLIPcK5ZT6eAbSSrMuwTXHbx3/aCOdvZWJzxZeJ120qVsNBzUA4BMbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7di2PDdQlmq6pcc9An2t9HXraxh/rtgHjOWmacVCkM24bj1geEDQfiJAO5hvr2s9ON4woUn//ARPVa7//dqWxDrxJal1HwfYONalp+zdLZFx1PksvvA3AnxG2ue79bN9A0x0ZX0KvjOcBabt4Xzufqg07nxfx3PZryGn/jWnz50PL8/9dB3qB0LaxfhwQ24y2aVX/TdU2Ug3XcL6OfeffE+Od7XQwXyPe5vsVjLa+qfvZNn2A2uWpug/8CWKmU8+rPg7E3GqPgvYniPgeBRSPiwjWq4h/X+ud9DwK9uvp7Q3NK/YclOZRCPx5yH8DfTVVr3FgmIy4Z1TryEfjeZpghDTw38hEHpv47zmNrb1SrfioeZ1FU9WwfdVFatxzAxxbNmbd+sT0qwocuE4HNeTVM6pRO6Pqa2PIU/1eCdemFF/jTvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT28sSGEEEIIIYTUnl3LY9MHcjSZTSWKDTwnsC3HR6Pbxry2OaptjplvjhI/Dpjl67ZgPrA8tJ5NNWbDvrcHTNtto7d30/iWCvVeA+yxARprq/n1Xt7Sm3fTQJDnpSKV32ODfDPBe2vi07ZNvHfVmH2oPTDGi+W9n8a0yZiqxXLAa/KWYedTvprCiIz9d+qYbWHfU6G3DfDRwP0L2nr2rhrSe5oV3mODPAl2RuRXUHr68L0faiS7fsCbA9tyzquJWG9BW003zXtsSs9jk/5OEOyxVJ/BO09EzDa1nhe1OoX5TqnvBIHvEsl6Jwhoq3r2CK6NoK/2yqC2YPt277djWte6rdm4xwb6xEA956BrL3iPzbayaz+RdJ9YjmfY/g71fsNY3xKoE1h63h/sAQX8ew6c6HI9NhmPYfjEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thQNPL4T8EgdPZ5EEcN+FHQ87rnViMvLRPw45IGGlX+NT1vZmB/NbOdTUjSzLfy29OVpuVmwnm68tAZKf76RjG3TAFHQ/vb2miYTxjxzQKqQDAlb6nxAsdclCto+x1bHhZV4IbkbiHT2npu326atjLehMUG8tI7JnEzcs79N7TggClr1DeI2kUyNOrUpxSVK0bx57B+ATM0BuRmS9cA2XTRAumNlPPac68m4gvOxRNGSHCsp05G4ze3+weTF41Y8q0NZj+2LpGj2C7pIPzEx6znRuToK2p5X9Gx2VVLPARP1S4wsz5JPFon13IzXc/BP8AVoA7UPZYlZcc/x2ObGiHpFBYh7zsH7ukaS3zZfSkvvgrhnFF+O6lmtgY02L1TN2q+nr6NBjabK8nbORykaIYQQQgghZDbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21M5j45ARoKKxItDgqs/Iu4E9H7ZtXBfZBPOJ+JHHTaNn1H4c6+MZEBQTrSOdi2hbMJ+A5YG4Z/0dwljs+LbJ2aaeTB3oY0ONtZ6w9VQPd05OpDOaD/tv4r6ZwHOjo5IDH40W75p90Y63aX+MM14ZbzqIkAZxz3rStrl4ZmngufEinY3GOdULhfTuYD+h2RgT3X9ckSgP13J24PGEsboo0hm12eVBv0KaF3VHe9yfkkoQgaumG8ZjM+bFPfcqOjfeZjeAngx8S95k3H9jj0LkuSlU3+Dr9SI6N2enJfptRGzNOtBm5kuuZ+sVifvC0O+5HD81AnlsmqNltE37yxyoX/Q7KIh7ttu71NvGDKx9nKiGbAw5iij3zDngBzP8fSFRdjYFHiwAn9gQQgghhBBCag9vbAghhBBCCCG1p3ZStMogOZIBRTrH+tlpJL9qSHy+HX3j0rCmJymLt1kJm54eMPezOrbZzqeXkbM8XzIXl9rt6Ds+zvYJZHpV2iqry8DbwqcCKDdD5MgUwNP+nHhpr29p29S+MBHL3uNoEM0sJjLci3h2VlIGpG9qTGeiOLXcLJDeBfHWRbyvt01B0WTsC6BswTikBSBVcI3Et2Cnys3AeSYr0tmTm4ED1F4LgeQnjMdNl/ymouU6je1t0DMdFD1doG0BoreDw0dHM9u3v6t9YaU7eiAYBR3sQiQjisfIVwUq/YKLhZoPRDPDegZjhpHOaesiYuSTqXUxAUiKVmwHOd0A9HvG/w7px2hhDgQv/jmQqUU+71g51WSXryPKzXHgjRmXbAffvMumSDrnPg6f2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2lMPj01V0WiiJyLVb2OnA68MiDj223wNZlPiMcq2b0P1bYD5BoJoZv0dbNyz/myWV6QtL/hOwCfUapho6HK8DOE2Bd6kIAo6Va8a7TUB/fLbVPTRoEMEtwGhq5aiB74ZsD45kc7AD+N7bECb9eYo/4317TgQYe3pj7O+L+hbcT+laI7JNNFwoYelC8k+GhSxDPwK4ZhxT48ex8bj6r7BkEDPjzwBCBTTbD02yMuQCvpOE3mI/FcDGL+C57+Jx9xaX4nnu7NRvWrGwGcHzyvAf1MVZP+BvjDbFq9nFPcsKO4Z1HpY38ifkraxUDRzab5wY/vYeBuINkfkvb4ix0+nJpytZz1hFup5c+K+HevpQb8LYJ122d45hz+f2BBCCCGEEEJqz6RubM455xwpikJWr17d+du2bdtk1apVsmDBAtljjz3k+OOPlw0bNkx2PQkhhJAkeG0ihJDZSWUp2q233ir/5//8H3n2s5/t/f3UU0+Vb33rW3LllVfK8PCwnHzyyXLcccfJ//2//3fSKzshGY+qqsZWJkdBZ8imwmkdo+xrYnTkchNI2mz8csPrV4A2fz5vTLi8uIQNzWf7om1RdZ/lxDjqvlOh/slRc6T2DeKH0RipErZgPiuv0BIv0Neum5aKQZkakpSlxz17j9SD7xAZQwRKyqxMD8U29yTSuaoyF3+lXYZ+X5vS457BGJ7EyewJL8rWLhvIzcDb36F0R0vRMl6LkAOSkem2YjQuResV6PuGnfVnu03jkjL4FnfVtyjN91NtzrShLTElqe5ABplaz0HcM9y+3ccQmaBmJb1vVZA0Tddwr+o3T5qmPpu+Dp0j9GRwfotHOntR0DmvPkC/L7p93wT5b6drck/Fo48+KieeeKJ85jOfkSc84Qmdvz/yyCPyuc99Tj7xiU/IMcccI4cddphccskl8oMf/EBuuummKosihBBCkuC1iRBCZjeVbmxWrVolxx57rCxfvtz7+2233Sajo6Pe3w8++GBZsmSJ3HjjjV3HGhkZkU2bNnn/EUIIIbnw2kQIIbObbCnaFVdcIbfffrvceuutQdv69etlzpw5sueee3p/X7hwoaxfv77reGvXrpUPfehDuatBCCGEdOC1iRBCSNaNzQMPPCDvec975JprrpGhoaGerMDpp58ua9as6Uxv2rRJFi9e3JOxNUjpOKloPUWqV8R6TEIPCvLjxH003nxBmxrDPKjz2+JjBr4d8H3RulSlaqRz2NaT1ZlZpHoyUj01pq/17eTEPXvTgR8l7nnx9LpB3HO8DUU6Q/8N8AnBcapmf2f4nSqPOUuY0mtTIZ1dniyhR/4BGJ2b4UkA/hvoM0DxsGC6ql/B+g48j42Kys0dR6PXzV432l6/+Hw7ppV/AMZrW69MZIGmzZkD1vPc2Cho7xxr/DfodJSzm6r6whLrOa8NGBJRtLkdBv0WwLMmYSOcrU+s1yAP0Y7p+DFaeCeCuGcsq9Yl7Vpoa92LmU85kWboy7KkaLfddps8+OCD8rznPU9arZa0Wi25/vrr5fzzz5dWqyULFy6U7du3y8aNG735NmzYIIsWLeo65uDgoMyfP9/7jxBCCEmF1yZCCCEimU9sXvayl8lPfvIT729vetOb5OCDD5a/+qu/ksWLF8vAwICsW7dOjj/+eBERueuuu+T++++XZcuW9W6tCSGEkMfhtYkQQohI5o3NvHnz5JBDDvH+tvvuu8uCBQs6f3/LW94ia9askb322kvmz58vp5xyiixbtkxe+MIX9m6tNX2QFaU+YkexzQ0rL0Nxz+BZsZWt+fOhiGUjDVOPD5vmUaLfBuRmVkLnydTi6xKsd7Bu8e2W+nZr1C9PsgYe1aJiy6nDVGlAjmysyvh2nJxXVhv5lyfVguuNZGpxuVkYI1lG2wogU6sqi8uJX0Yx2UWqhC1Dplakbfpdmqm8NrnChRKxbkD9c7wfjnRWbcEb3iP97LSVrujPk5D1pJ6rIaO+FE2/1R1KzzIWAa/vYLsF20ZLyuy6of2k5WZg3wdR0H5Pf6qITYTLqAySf/WinsGYwbYHbVVl6I1ebSdVw72Ke85ZtyL5PBCPGg/jl0G0uVen6PeUadKLS3gXQdAHUPk9NjH+/u//XhqNhhx//PEyMjIiK1askAsvvLDXiyGEEEKS4bWJEEJ2fSZ9Y/P973/fmx4aGpILLrhALrjggskOTQghhFSC1yZCCJl9VHqPDSGEEEIIIYTMJHouRZtJ9CLyF/loqhJ6TJBXBvhaUJuNZlYCRxv3rKdQhLRdntcvow15jEKPD/AmQb13tGn2UbFkU30zcD4R38uCfDzARyNlaZq0Ft3Unp4PRjobnXp0IsRPIrXLKLr2s+Mi+TOZwai45+DvaB6FS/UroHFA5G5VT0LO6w36QTGaHvfck+WhOFzxNze0S4DoXOgrqerbhJHOPdpnOcvXEeUoChqNAyOkQV1OcCLt9+sdrI8G1XCq5wb/tvHbShjJHq9n7HfyGz2flPV+wa/kGWnS5+vW1q+4Z0IIIYQQQgiZifDGhhBCCCGEEFJ7dmkpWipVH7cjaVQgqcp4PGzlYF6blqlljamlaAVoA1I024bkZ6pvznevSs/iPnu1kIpUjXFO/Uo50ihveRPJpuKlEEq1dJuOY0ZR0EimlhNTHRtfJO87eDHSU6t7TEjG7NqXSrceUUGKBuU5WRInMB+Q50DpTkV6Ff2sI51lzH9ru32rexV6JaezkiatrEFtUKYG0nFtpDiOf+4DvZJWevNVrGew/MlslarWAliX20crrk2cqjWMpKXhiPFXXRSqLVDTpUor0RWoR7HYO+ETG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe2aNxyZHo9jvqOCmEfMjD0oDCf+DcbWvpf/odbPr2YD+m3hfuC36EL0dsAvERE97bHCJtLTAR9MrgDdHe3qwNwVEQQfLS1+1qtArM4OIeWwMyb6DYHwUBd0Hf6AXD2uacpJde4AL/AnNni8jJ97a8yTYWF/Pr5CxZZD/BngNdD0VOdG5VemVZyy1nlHt5WzejDjzfuCMT6zX5NRsuFET45dRnDjyjCHTmAWN2Y2c3/DJPQkhhBBCCCFkhsIbG0IIIYQQQkjt2bWkaH14zNirJ7xImpXT15N/FVbShWRc49+kWTRAm51PydsyvoMGxUJPRC/kZruAuiwkY7P05el7EA2dIT+LUZo60ZI22+ZAWypWpua0tMSuW/qwnowtiMkGUa9eIq+Vwu2SVVxLXOFCKU43ct+sPckxUqU7011J8O3rY/at7b2XolUm2OfxeFxf1mOzkSP9JmrzutlzV4/yjwFQWtmLekazBXKrauNMCaPbOx9LN2caVwRvp6AJSCS9QzZLBlnxtQiT/M3CJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbsWh6bDKrG/vmek3j8MIottiAPSrPielqvTL+pup79YipiHWtJ4PmId9VlmbM5YV8UBd0rUr05qWN0YcaW10xdr9lAVU8N8mfkjINmQ1r7GeRXcNu3m78Mjrchb06/SI3H7dmY1ZZnPTf+kNVWNMlHlkJqPQfHQdryp/tabz1jblT7xKbeY5N6rFfdaoFlrPJAehDQhv4WgU9sCCGEEEIIIbWHNzaEEEIIIYSQ2jNrpWhk8lSNce5FhHPPmEnrMt1Mx6ao/BybkGmikDRZRC+UU1ArGpfuTLc8pyouiHuuCSB6O1CCTfGu0ZIyK0vLkpslxoln1WwfmO7an+oarqyItJHOKDIcysZSI53NjGh5jHsmhBBCCCGEzHZ4Y0MIIYQQQgipPbyxIYQQQgghhNQeemxqRlVfy1TTlHqsJyGTpp52BkICpt2fEMQ9Ty1THn3dK28B8kDoppp6rwJm8Pfw457Tme5jD0aNTzWJ9RyDT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT2Me64ZbVePe9E275nJbGGakzEJ6RUuiHmd2gjaYs6cKV2exU114m6vlpc4TmH2b23jn/X3mGHfoRio9rM6PPammOlevmaSu5S/PgkhhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7aHHhlSmqt+nnFFazhm0LtPNdGyKgtuf1Awn3TXgyJ5Stczt+Un7CWybbjLrV0yxV6YqRaumP0nM5vW2/zRveuurSW0L/Dfoe+hhcmq2D/6YafeJTXENV/120NNjB0UL0eOg+XKWN0n4xIYQQgghhBBSe3hjQwghhBBCCKk9NX3uO3mqRutpGZWVVHltGdoDJOlqV1zP9hQ//q66nv1i2qMTZypWvYKeDjfS+gXzWbWBnmhMwX7Ry2iYYytV+jbBes7Y8pqp6zUbsOfcIrUNSGd6JG/T0ih7CEx5xDEAxT0X0xHr2w/5DBwzcXlWatiHE1LPoqFRzSKpkotO+N3MfFMtu2yY7VJWjHvuFeh47sWx3rPzBZS3ZfY38IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9u5bHpg86017JCcuMaGTUt1T3oraf5/kxm6JUwsi2K0GbnU97iqrdB1eNhbbLr8oMkpD3jkl4XvqyfORdSfa1mDpJ9crYtlQKqyEH65mxCG+cYBl6+XZ9EteFTCuFK5I8Da4XXpkM347no0E6ezDkVGA9CR4zOe45xxuDInC9fhlt3v6dgujcIJl5/A8OLaRqPaPZgu07PtCMO1UOjPvEYK1PAdBvA/qG27ua9ys5CrrH8IkNIYQQQgghpPbwxoYQQgghhBBSe2bwc9/ekhP/W/b56WHb3E+iaOgy496zrcYpQb9e4cni7HdCEdagL9wWIF67Z+wCujUYtzwVoKhkqxvoh44AScES46azpGBTsIFnbLz0bMRJ9/NEjnQHynWQ3kzXdsbJKvHN4c5oV6yUpd+nx2LOgPlL769kzvu+RbSt23RqG14B/Tl9jGT52RRcwwpTwFCaBvWTWqoUr72sUg8kmvH93Q+KVlNNjfV8/MnUbGVJGRojNbI7Z8yqfR6HT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO2ZNR4bRFXdJfJ8tG1bhhC/Dfrq6GTULxxzXOBYGrGj3xZfF7s8FOPs+336r2vNkRX3RBvdJ0BiN9Tlw/ki/Wxn1GYHDfqCfyLRfpUg9VZ5XgrkvwnaGvG2VOx8id9hR9/pM73klC+9OX0g5rEBZHkSPEtCPOY2J1oV+hUqRtKi82iO/7FRqKtOa47fJu3s9bL0ylcRROe6tDboOwgWMv6xKKvNNx0+UV3f0E9WtZ6Dgo7PlrO3q/p0G2gjez6x3nhsqtYw9N9keHEcqq/USOcpvBjxiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7dmkpmgOPMtEbWTX9iBi2Y1hJl44/tm2eNAy1mQeypfe5jLYFcjOwPK9fRluwTb1lxLd3zr7od2R3raiqvPOkYOkb1Mq2tGoMysaQ3KzRME1FtA3K1NQ0jHSeYJv5T/Tj+do50j/KxmpCTIqGNDFWneMdW2aYhou2YYmT6/ZxxzBANpUTf9xv3ID9SbK9v8tDkhsxu61yBC7oC6U7GW1oXapSUbIYyC7d5OsZSaOC1Qr69vfHQMOswFhQw/G+MfBvm/S4Z1TP+DxgF1q1ZhPjpVPaMpLf+cSGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNSe+nts+iCfTNUVI89Haf0vyCuC4p3BvWcpyJtjfTyl+mzintU08vvY5fmenvh8wXoH6xbfbqmeJtQP7U+4r7NyddO7JnteMlatiE5gvHECzwn4Uibu2It0hutt/Dd62kYogyhop3w0QUx0A4zpLU/ibcA3E4C8MkFb4s4B3hwLvTlTS+GKThQv3Pb68MnwqOmYX89vs6N1/KM1EsJYXf3ZpTYF9CriOYrxJ+goaORP6FncPzC+BV4G6DvQ+yndZ1AkexnMeTTXrxADriowjaEhU+sZGEKqesYsqL575stVNZzqqZmInHVzoE6gv8urPXD+QDHkOV4zRZFw7kjpsxM+sSGEEEIIIYTUHt7YEEIIIYQQQmpP/aVoicAntRlSJfwoXsm2ApmakolZSReIbcbjGEmXni9oU2OY3Dy/LT5mECENvi9al6pMFHOY3taT1ZlZpEqlciRNINLY2UfsSNJWUf6lJWYOyNSs3KyAkrK0tvAJPhinKhlys8pjkt6j4p6h0gRIw3y5ohlEp5Ub2Ycv5TE7W5/WzZhInlKANhwlW63YrDxHT7s56T9JoDQNSL/9fvH5gvac2GYUTava7P5Fkp8iUdYzKXk+kguBc3xqPWetd3IsNv7C8LcAnDONhn2VyECzB6PGCTZFVnx7937BOFn7Im0/BVKy1HreCeOeCSGEEEIIIbOJ7Bub3/zmN/KGN7xBFixYIHPnzpVDDz1UfvjDH3banXNy5plnyn777Sdz586V5cuXy913393TlSaEEEI0vDYRQgjJurH57//+bznqqKNkYGBAvvOd78jPfvYz+bu/+zt5whOe0OnzsY99TM4//3z59Kc/LTfffLPsvvvusmLFCtm2bVvPV54QQgjhtYkQQohIpsfm3HPPlcWLF8sll1zS+dvSpUs7n51zct5558n73/9+edWrXiUiIl/84hdl4cKF8tWvflVOOOGEHq12hKxIvGr+jDJRY2x9JSXQ/Ob4cba7cf1m6M2J+29Kr58DbdYroyOk0fJQ9HR8PtsXbYvqnpp0LXhV3XhVYGwz6Iv72ValYa8aIxzMZzXWcX8K9LU0G/E2b76GaYq3weU14m0w+hqlZga+ociYE7WB5SW3AXblWOipvDYV5Y7/JgIdP579JvDKqPOzLW0UnYsiWb0Fxv03UHc/CZAfxvPYGH9Cr+JyNej7hp3153Q/DPIdwEhn1RZ8deBJSPbf5BC/jITXLe98GK/nwgzq1XCwfVWbOd68rrZmreclZ38nUiB/l6rhXtVvng9cfQ46q8+oZm1bGeln2rJ8NNBv1eX7oth0Q9YTm69//ety+OGHy2te8xrZd9995bnPfa585jOf6bTfe++9sn79elm+fHnnb8PDw3LEEUfIjTfe2HXMkZER2bRpk/cfIYQQkgqvTYQQQkQyb2x+9atfyUUXXSRPfepT5bvf/a68853vlHe/+93yhS98QURE1q9fLyIiCxcu9OZbuHBhp82ydu1aGR4e7vy3ePHiKt+DEELILIXXJkIIISKZUrSyLOXwww+Xj370oyIi8tznPlfuvPNO+fSnPy0rV66stAKnn366rFmzpjO9adOm8ALiP3dMHzyxK34bLZCUBXIvIDfz2rA0a1TJzWzfUvUtwXyjzrbp7+CibXY+TyaWsZ5afqb7iYiMlf508jbNkPelPrqt/KC4X5HRqU9bwVPkQEEA23RjPMLZyq2gpM1KvJpKXpETv9xQCw3inlVb06xcc7y+nG3zJHNAppb1fUFf1CbpbYxxxkzptakskmQRnlwFHa9AumllNTA615M/mcZSd/MXWCg5UBglG5e5oBhlBJLnlHPiUrSqsh70nSaOe473FSQp07s+J9K5jPSTCeRmaj17pd5DuzeQYsFzV7yetTQtqHU9KJDFBdLKQIap92H67wR/CCSl9HVypYost1HQdjrGpF5B4p0HTN8S1XPksx3HtBWgDUk5YZ12acup66wnNvvtt58885nP9P72jGc8Q+6//34REVm0aJGIiGzYsMHrs2HDhk6bZXBwUObPn+/9RwghhKTCaxMhhBCRzBubo446Su666y7vb7/85S/lgAMOEJEdZs1FixbJunXrOu2bNm2Sm2++WZYtW9aD1SWEEEJ8eG0ihBAikilFO/XUU+XII4+Uj370o/La175WbrnlFrn44ovl4osvFpEdMpPVq1fLRz7yEXnqU58qS5culTPOOEP2339/efWrX92P9SeEEDLL4bWJEEKISOaNzfOf/3y56qqr5PTTT5ezzjpLli5dKuedd56ceOKJnT7ve9/7ZMuWLfL2t79dNm7cKEcffbRcffXVMjQ01POVzyIjxjI50hn5b0xbG/lIgr5xf4pu2w7awtjm8elRI2DUbXY+vYyc5fn+m7hvZkdfFPecvv1jbZUjS3PiCfsAitSEZPhBUPwwjnsGfQN/itoXTX/Gwmszkc6ex8avPe2jyYl7dt6YZj2Vxwb6b0TMdgOa7hzfDNgXcD5EH+JyZyJTeW1KjXtGdZDsv7HxuOokhNomyJf259MRw/aYmMCDktqG0N4Z67GpSgnK3iEPAvLRIK+M9Q9488XHtHWEPDbQR9OHuGd4vQFR+YWNW06tZzsmiHv2hrHn5iDOPO23QE79Iu+Xm5P93nsRwb9nHPhNio5RB70yZnll/LjwIp0zoqCxLyzSL0LSOfdxsm5sRERe+cpXyitf+cr4wotCzjrrLDnrrLNyhyaEEEIqwWsTIYSQareWhBBCCCGEEDKDyH5iM93YN5t6j+Eqao6CR3vqs32k7belS9F0HHIbzCfiS7WwxMvEL0uza78d01rC1o6OGcwnYHlgPhR9HX7/NClaEOmsP1d8My98m/QMBsrUwBP1PLkZkFTZx+9KYuba5nG0lgrkREEraVoRRDqntXmx0CL+P+XYNk/C5jfZt2l701UlfBlys1SVRI9erE0AhUtU+KE+oNYExC+jeFyvza5g6XU0y9MyF3vBs+dOvfxqoAjc0sh4Wkp/YiU/qfHP8M3sE5z/vc2BpDuB3Cw+X1F2/2z7Bm1x9WL6zpioH5AselJZm/as28zaadklrOcC1bOZUceX2+1kz9VqqVXjni1IitYeaETbdDQ0ipBGv4OCJPcSHKO2DUkrQT0jaWUBYs9TpZWInZupaKfvKz6xIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1p3YemyxcmnY4R3eJoqB9P0gj2jZWGh+LibIdVe2jhb+L9LSNXx51ra6fd0yPqs/WY6Pjpe188eW11X3xaGnmK4H/JmPbYN+SbvOa6mKVwQCfRRDFmeirQfPl+G+s58TTWIMo0GA+7XOxXhk9TtPEwOpcWtuGxlRtNnrai3u2Ou3g+3f/vGPd9HxgWwTbG+xEMF9W/DOZNEV7x38TAY873c/q0r0iAZ0DzyGIztWTRiPvgB+kNMdBA/hTUMSy9tE0jHmk1RjfmG3jsfG8DBXP6uj6HmzeHB+N9ryA+YJIZ1U7wXwoAhdE58JY3aqg64/tq3ebPTa8GjLeTG9x8XqGXkXgU9oxUNyfAv1WCuTvsm3l4PjGGGj4G6NRVPvJ7Vm9yuB9Cv4kiF/2vV/xhaBI58Dr4s1nx1THwWQjyjPinvnEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thStB6DH2GGMsYotNs9Ox2CblZSh2Gbd5u8+LRWzsrHtWjZmlq/bgvnA8tB6apmalZ6NgWm7bfT2bptHsPhtvPE29GhakAykH/RBVpQTBY1kYvrZsZVboelAmqWjoI00zDVV/KWJX3at8Zoqxoy+oaVq0c6nluGCNh0hWsTbjEwt+CcgJClrdO8XTGfIAskMIiJFC4676ITgOtD1Y2VjqrN9w7sXzx60gZXRGjIg4xGZ4LyaiJXuNNV0e8hI37y4Z39jIGkaetu8Jz9Ccbgi8G3sOAJXfW7bNjAflPVEPksXmY83X8Z+QgOhmtWz2XMlkkbpfQHq2Uo5oUwaSS2txLhqDat1bZkdNTbU6Npvx+KrRpTH6zl4DYbua2VjIO7Zk5jZVzb0O6I8YbMEYwP4xIYQQgghhBBSe3hjQwghhBBCCKk9vLEhhBBCCCGE1J5dy2MTaA1V/GWgs0Ua3LiOODV+eMz4QXRs5qiJNJ7TGPOm0z02IO5Z0HyNeFswX6trPzsd+IbU9w+WlxHp7PlvwPbO0aRW1dX2zPjQi2FQFGfQpn0l/saA/hvtmwnagB/HxigrvW5h5wPxyygKumjG2/y45/Tl4bjnnL7dP+/oG29DGnaoKa/YRqpRlEUYhypdbAdoe+vj0P7zIvIreLp0ZHQwbcrnYc8BWiMP/Qnie1ByzqsFiMfVHoWxQX+MAc9j05u4Z89jOYGnCMbj6thm60lAbV52rz+k5yOwlhPtZYCemoy2YJehfaiGCc5dnlnGX6Sq4QL5b4BxJ/SNFtE2mzvu12z8d4L9faEJ457HV9xGOrdVDbeCuOf4caAJXl+h13MCX5jnq4Ex5PYcEffKwIhy7b8Bkc4w7tnSpS0lYn8nfGJDCCGEEEIIqT28sSGEEEIIIYTUHt7YEEIIIYQQQmrPruWxAQTaSq3fDHSX459hRrhZBvSKKF/JWKOMtomIjCmB42gj7mvZ5ga8tiE3Ot5WzvHathWqzfmeHj2OnQ8tb6TU8/ltej77/eC2sd4ksL2RPtZ7VwESu4N3HCCKPr1oBHllYv1s38rvsUFt1kfSMDpm3R684wb4UbTPpenXSaHecaPfabOjrRltEzVt32NTtuL+G/QuHmMvS35XTfBOn6p+GKRvrwo9N5UoykS9N/TY6B1q2+J+BfxPkXqBwEyB6g74E0Sw/zQV6y3QHoUx8x6bweb4tarV9q+bBfAopPpkAw+Cfe+H6ht4ZbRfwb6rRvsVrFdG9w08NsBHg95xE+nXU+D5CdSzq1jPehlm2zvkUQMeFPRbLwddw8F7bJTHZiDj3UvYM6wnsMdG0HuSvHfVmDb07iVQz4LecQM9NomesZ3d7bEJ4BMbQgghhBBCSO3hjQ0hhBBCCCGk9tRPipbz6NB7ZGc1R2mxlXZxbfWYr21kU231PK1tJDA6ttjKrUZN3xbsG4971nKwAfMs0ZObKcla2OZLyvSYKO7ZrudIqWOi49tCxI+Kbps2vY3DuOfxz0imZnGJ/Xql+QmkYdGJCUhc1UDChmRqSH7lScis9Mz0VaVhH0druZlr2cfo4wMVLbOMtmobMwvU8jNz/HjytpaZL1EWF0rv4tNou2HpX7wwskoPSURIzynGRIqd5Qe2t3f1AcdkqBqrKOuJLsBId6ykoxFvCyLRUexsYlyule7o1x205/pjtNR1DMl4LCW6vnvx1vHoWhEj3TF9YaQzkOdUjs5FbZppkaLFl194+8LujNQF2kETpZUiMM5c1zD6DWFrr6XsBIPmdR1jqoYHG/5vrdS450A+CX4HQTll0Db+MajZMSUNAzHkgdzMazNjej+2zHxIptYFKL808IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk99fPYIKrqTkGkc2m8I1qrHHo+xqet56SpzAxjhYl3BnHPI4XveWmV423WR6OnB0rjsSnmqM/GY6Minm1ss/bcjNg24L/xI5xtWyM6jbap9TTpfRPGI8Y11tDAUNVX04f458reHKQ5tl4RZVSC3hzkIzHttq/e/VbX63lVjJ5fxz8XLSOwHVODDvinMafmK43HRnt8yiDuWa+LmDYzDbdNvK0Xcc8BVdtIJYoyoveuuB8CT5qumRy/AqCh9POlHRT4xaznpmzHj5828KZqP4GOdxbxPQpju/nzzW2OX6taZr4GuBbr5QdeIBCHiz0JfpMXgYt8NBn+G+ijgdG5EiXFv9AZJrWGUT/gDbLXH9HnWVvP3jnYXgzV6zrshcv4QXUNB54q8FvPW5zZiNonZn00Y7uLavP9N7b2vVVRn4PfQdoLZK+h1jPnxZBbX5hqG7Nt6jPy2IB6Ds5XqC3z93oxFv4tBp/YEEIIIYQQQmoPb2wIIYQQQgghtaf+UrTUx1mBVEk9yoRvrfeH9KVR5lG8eszacvYxvZKimef9241Uy4vGNI8udYzygJGpeVI089x8i5KbDZhnerrNxj1r+ZmVqel10Z9F/Ihn+33HjM5HS8yCCO3EN0hnvakXRRBKYlu/8J7P2sjWaJOfEGtlAmqTBtKHREkVlMuILzezK9BUcreyZaUAWrflb/CGms+ZY0Ta4/XmrNxsQEkUjVymbKo2Ox+Ke7ayNbU6VgqB9pO33ZD0L0emFutH+kLRDmVJ3Tuqjzn7E7xh3qsfK9100Ql/tax0Bcoj4zIXZ2XaWtYDCtHGPc9rbut8Ht3DX+/dGts7nweBFM3iyZTtenpvX49Ldex0A0l3kEwNveEdvandyoF6GJ0bQ39DFFGO6tkuH711Q/cNztXwAqy2r10gkkm3/Voo9TUG/NazaEnZHq0Rr210j/HPuzW3e2229mPLC6Roar3td0A1DOVmqC5NW8OLkAbzgXq2wHru1p9xz4QQQgghhJDZBG9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/j40mIwJRtwWzVfR1aH/ImNF9ah2ojn7e0dfEITfGxYTbjXelqcZ5zIgdm0qE2DCCxKbqO8cIKLeWg+rzHNM2Pv1Y2/fY6HWz6+m1tU1b23xf7ccBum3raYKRnmA/Ie9Vsq9mEjrmuIvGUDXyF82HPB9WG+3FFtsZnemr/Sl+m/bV2CROz89m9z302Ki2Ab9NT2u/jYgf9xxEOqsynTDuGUQ6w7aiiLYl70NDsq+G/pue0BgTaeysj8RtGkS3Az9VAepHkC4dxeOqA80OqU+dwXFuvWU6Ntr45draBwCK0kbg7qE8NtuH/S813Nra+byhMT86ZvgqgKLr5x2dgcfGehLUNIp0Rv6bHE9CanRublRutA3Ub9CEahZ4Nb02cP4PUsi15yTYGKqf2fZ2d4vnsbHeFfX7oh3/7WHRXhldvyIio8PxNlv7seXZdUFxz7aGRdesWZyuZ5s8DSPKQRR0L3xhlm717Rj3TAghhBBCCJlN8MaGEEIIIYQQUntqIUXzIgErjoHePh/EE+rHfjY60JNG+feFTaWzaZvHmA0dadyYIO65rSRl5hvr6aCtHW9rqmkbBe1J0dqDflt7XIo2YuOelcRsBMjNbNxz207rbQPkfYEsELS5xJoJ6yLyeaKBKpITqZksR8qQCXjHQel/Qd3XKsEadns3E+PTzaNqb5E2ClprawKZgoqQnuOvXKnkZ/bt6Fo+Y6U0uq+dL5SbAUmZlj4gWURGBLBuw28Hj0s2SG+oEveMpIVBdK73pnYzWzwdHb+mwA/yNaui5Cmmfkp7/VMr4Mb8vlo+M2qlNKpo7SsM9mo+Or78fbZF21pmo6NXL4yN6fU0G1FNh9Izv6te1aBNS36QrAe+xd1vQ7IeGOnco7hnb0hUs7Zv6qsBcq63ioZZIoqCLmz8PohI17VRmpodA9JKLSnbq7nFX4G9R1Tbo15To9hnfHlmTH3MBLI4XcOjfputYa12C9ra8bbkKOheySczZf/2+EPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT218Nh4QI0mivW187luHx+fjkdFav2mscp4Ot/CRDpr7fKoiTu2fpjtxfhusZrnfrC5PdT5/Kjx2DzWjsc962nrE9Jxz/b72kjnUe2xMW16m1r/DdKUI1MCinGsDTmRzpX9N5HPXfrq7W/9OP68RvOrPpdhEK36bAdVvazHRvto5hit/4COe7Y+obhvBnluUDR04NFLjN7GPpoJpklfabSdNMbC87ILTHHjIL8c8mFBvwI6zqwnTTcFWb3Kr1bY61183ZzR6LfHxlfInvPteV2zqPVI5/NzFv+X17Zva/P4os21cLSML69U0w54ElC8847p8c9BpLP2MiBPQh/8CkFbcAGM94UgH00Rb9TrBusZReObevY2TVDP8Shom1guo2pMez5W023jxRoFPmHNooGN3vQfLBmvYV2/O9ZN/Q40F0q9PH0sifg1HEQxj8ZrOIh01m02Chr5whI9Yzk16/VLqFHrz0XwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFqwqUKrloVyxTM7Ip9bko7ONR9SjRrEpRxGU2OZTe41kTj6jWe9Q889WSssfKOdG2INJZPUrV0jMR/7GqlakhmYKN7dRtdnuXXltcboYjnTNydfuvCsQSlarxsVoKAN/8bGccbwzmC2QD6hG32VAoalavuJUp6D/oOGkzm7SN3MyhSGc1baVoukyRvCzoC+QV9p+OfJma35a6f1EbjJAmPSEW91yAt6NbHDxe45JIT/ID5KFVZT3o+BQRKb36Ndc/dYxuH/CvB4+OxiXN8xvjEc//ctC1XttN28Y39JYx8yqCUXVtGvHHbG9X62YlZEq60zAyHivP8SKdR/02vS/wW9zj8wWRzl48rt3Buk3S23qE0wOj84yRe3k1C6Lxw0h/1WTPx+C6FUjTJH48aT9B2TRy+oHx6S3b47+L5jX8iPJ/OujqzudbRvx10zWs61fEr2GvfkW8Gi62m5oFNWzbkHzSq+EyvS010tm+TiLWL0bRRf4bg09sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb3HptBeiiCTNj4f0mgWoM2pGVEUdOC/8TTVZsXa1Tw2pVk3HUloowRHGuO7epPRKupxRoxXRo+53awninTWvpogwtmsN/TRAK8M2odepCn0V9k2SWMyOmbkl+jBfIEuX2uVkXcjiHvW236CY0vHPQeRzi7a5nmDAj+K0hUbfW45oP038fkCr0Ez3qa3WxDvbA9R4JVBHoleeGWq+mbQYUDSaYyFUf/dQNsXxazrWke1FezQVL+CadOHViMoSusbUrVtDlj9fbc3ff/AI625nc/3DSzw2r4z+OzO5xcO/dRr++am54zP9+he/phbx8ccHTE/ZUbGD9jGiHn1gvIoNIxvBnkSwujceJsA/43nozHntVS/Qhj3HG+rTPxUHdS2X89xrxk8V9pLTNn9s4iI/pkSHopxz42t79JbN3+kMVXDm1pDXtt9c8Zr8WpVvyIiR+17R+fztx55jtf2q83jtb9xy1yvbXSb+lIj/gVH13Aj8NiImdZx5qYNeb8q+sK8Gs6oy9yadWMT99kJn9gQQgghhBBCag9vbAghhBBCCCG1p/ZSNEjqoy4gcbJyL/3s0sZ0amla2za2wT1k0zz3A9I0L9LZrFtLPa8dM5KubcX4rrZvcNbjhPI29fZdM6aWuwVt+i26dswg7rmI9tXbNIx71o+xrRRNktp69di+ZxGbnlQJRK8iGZNtQrIXtC203Kri26tF/JoN38CuIqWttBNIa7C8Li4F82Oa43KzQDIBZGvBOLoNRG8Hy0DSsMTo4CxpI6lEJSkakBZaaYfXFkh30mRqSNZjU1e1csimDzdABLz9Um11wnDmp8VW9fm/3LDX9r2xp3U+3/XoQq/tt4+O9/1/j+7mtT22ZTw61231l9fYpqQ7JnJXS3eCqFwb6awuzfBN7Ui60wZyM7vBXbwtWdZjmcS52xsGRZT3oJ7tbw/dF9UsfJ2D+HYFHGdufl+oz9vEjxr/rarh68ee4rW9bss+4/0e9Wv9YVXD27b4EdLuMfUbbZuRT6oankg+qduDSGcQ9+zVM5CbhW1qwm57W9+azIhyStEIIYQQQgghswre2BBCCCGEEEJqD29sCCGEEEIIIbWnfh6bHC0pyidE3gIXF/A7HU0cCAjH2wIvQWO8r/USiPgCfteICxMd8MOMKh1kszBxgYkmEDumXt6YEXXrmGbrsdHTQdyz+f5jIO7Z+752u3lxxGD/gvkCwGYqoAmiIqneCTFeGeCxsbsaaqOBjwWuDNxQYJzAshaPdPY1uOnb3otGRv6XQO+tJlCbmDjoquOgfYFiuYFPKYCem57TaDtpjIXbPDheoxMiTh+IKNrb/tOjmob+G+tz0PUK/De2lMrAA6LHsZ2RH3L8p8bWUb9tZNu412D9f8/z59NezW3G6KYjcG2kc6InIWgDkc6BX8Hz2BgfDfQrxNuwxyYxVhcxUb+KXj5Yz/qcG//JJE0b6a92d8Ncw70o6Ak8NnqRTevjAbVf6N8lbX++baqG12/zf0Y/pGq4PWaOAxXjXASRzuPLaNpI5+3qM4gkF0n30QS1rmo4qD3dF/howm0ocbzr+8QF7Lqcc2PwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFs6TKZ8Cb04OnYPqxZ/BsTc1nH4+qvoFsSt1D2tQ6+1Z3/UTWSsN0HHLTPO7XcrMmkLOhuGeLlpGhdbFyM0/CZqKuw0hnLUWLxz2Hb8wG8aagzZchIh2IxMmK0EQayfjiA/EXkJQhqVIgZ/Ea1eesf+bIkKaBdfGjIuMygWDpMO45sQ3IxOAb30X8KGwgFwrakMxILw+pJyvGQlOW1huKMZGd5YCOV38mf1JfK7AULS6lDGSdStliZWqlOglORtajCeLZgcSqMTq+cuV2I895TMnNzFvr9TLCWFslY7VyHCQ301Id8GZ22x5K0dKkO1iKhuS38fmwZDreNhmwFA3Usxd/ny4N1j9hXNP/Uuh1DjazXG+3shVvC+pZ70NTe6WSirnHjAxfT9rjYAzUs6q1QG6mI8pBjdpxsBStD/JJZ4/f7v0sKTVbtifusxM+sSGEEEIIIYTUHt7YEEIIIYQQQmoPb2wIIYQQQgghtaf+HhtNupVhAp+F+gh0/kEEbOCriQHEpCIiynNi/TdaT9o2wkTtq7E+lqqUiT4aG+HstQFPzY7peKSz57EprfEB+GH0ODlR34g+aZejoFhfa7IBX9crk7j1a3JfT61PGFOttOgwkt1vgt6g5PUCYyItuPXUwL4V27IinePzwUOdvpqeU7SdFI97QXJ8NRrfr2C9muqz8Zyg+tUegdIkI/fDr+DMMjz9/pg5j6tfGtbz4h1rwLoX6P61X2HMtqnl5fhm7DiJPppgGcBHg3wHKDpX76iwDcxXkbz4ct0GfDRFvJ5hND+IKHfWpwQ8ZHYfer40VF/ml3Kpa9iuN7Bo6+PJHiOexwXUZVij8WkbQ94Ay0A+Gl3D2GMTHzM08MXn60a3iP1o3+SeItJut+WMM86QpUuXyty5c+Wggw6SD3/4w96Pb+ecnHnmmbLffvvJ3LlzZfny5XL33XfnLIYQQghJhtcmQgghIpk3Nueee65cdNFF8g//8A/y85//XM4991z52Mc+Jp/61Kc6fT72sY/J+eefL5/+9Kfl5ptvlt13311WrFgh27Zt6/nKE0IIIbw2EUIIEcmUov3gBz+QV73qVXLssceKiMiBBx4o//iP/yi33HKLiOz4F7HzzjtP3v/+98urXvUqERH54he/KAsXLpSvfvWrcsIJJ1Rby148Wg0e3cajoB16rAsf26vYYvsMH62a0ato+UFhH926eJuWg1kljSYcM965BN9XT9soaD1t5WV2HCRFc54sD8SUBsvQE+LTj0jnHOKl5z/Fz5ARpUZBB19Jz2dlU+mLj45pVyj4vlpqg96mjVYmVfJj+troUQEysZxIZxjNnCxPAvOhCPpZKj2bymtTY8wFkfldgfs6rldBb2pHsi3vuhFIbrSk18xXUdYTSNHUtAPyLyjzBFI0JNsK36Le/bOdtvIWGNsMpDtBdC6U9agJEI+L5WbxmGgLfPs7AEqBAylaYj0HNavqEsgug+u7rjUgmxIRKcHvBFizus1GKqPjEP32SqwLJEUL6zkuNwvipmGkM5BdwrjnuEQS1h6q5y70TYp25JFHyrp16+SXv/yliIj86Ec/khtuuEFe/vKXi4jIvffeK+vXr5fly5d35hkeHpYjjjhCbrzxxpxFEUIIIUnw2kQIIUQk84nNaaedJps2bZKDDz5Yms2mtNttOfvss+XEE08UEZH169eLiMjChQu9+RYuXNhps4yMjMjIyEhnetOmTVlfgBBCyOyG1yZCCCEimU9s/vmf/1kuu+wyufzyy+X222+XL3zhC/Lxj39cvvCFL1RegbVr18rw8HDnv8WLF1ceixBCyOyD1yZCCCEimU9s3vve98ppp53W0SMfeuih8utf/1rWrl0rK1eulEWLFomIyIYNG2S//fbrzLdhwwZ5znOe03XM008/XdasWdOZ3rRpE76ABCJNre+zPguQc+vi2n7kwfCGtHpkrbu0kcZK7Gi9Ig2rLVULCdp0dK4RNOpRkzTgCWivTJg+WXT9LGJimkHbjnb1GURKB7Jibz8BoSvQKsMo6BkG8mBoiTPSRlvNq9fX6mpzoqD1+lhdLYh0Tj7WqpIRmyxoG2bEPaNxHFoGGpNApvLa1Bh10kg5UQA/lz53233tRSoH0bloviLapg+mIFa37P55x5jm+qM0+tq3I2J8D/aNBlU9aalRssBLELapayjwzdh229ZAUdAg7hlGWCfH6qZ7bLL6aetIO95WuZ6D2ovPB/03ntcrXs8i4u9/40fRcc92nAKdj1Nj+20TivpG/pfE2HHbHsaQV/PR9KIus+brQmO0Tx6brVu3SqPhz9JsNqV83J21dOlSWbRokaxbt67TvmnTJrn55ptl2bJlXcccHByU+fPne/8RQgghqfDaRAghRCTzic3/+l//S84++2xZsmSJPOtZz5L/+I//kE984hPy5je/WUREiqKQ1atXy0c+8hF56lOfKkuXLpUzzjhD9t9/f3n1q1/dj/UnhBAyy+G1iRBCiEjmjc2nPvUpOeOMM+Rd73qXPPjgg7L//vvLO97xDjnzzDM7fd73vvfJli1b5O1vf7ts3LhRjj76aLn66qtlaGio5ys/IUCJhuVI6vGojQfU3ezzLv3I2UZaaomVeaYeKHe8OOD4I99Aiqa6Bk+RE6VpKPoZScHCKOj4mGE0c+I4pd2mcZlaL+RmVtoIx+wVQCrlR0GjnOiMMdXnsJ5Vv4mioFOPNSuF07OhfVgVFMVZUaYmYrYVkqnB2Ob0dUOqSzhmrN8uxlRemxrt7nHPMOYV7E8Yzx7Ic/TnuEzNHjsNfY7NidUF0lUbM4ukaDCmOrEuYfyxkXuh6FwoucmQ7vjRuSA2OpDQASkckMjj6Nx45G6vQDXb73qGMjUrl7Qx5EiiCWRqSG7sx1tLOkB+BSOVQVtluRmKKM+o2WSJpB0T1WkXaZpdX0ThXE+U7D1j06ZNMjw8LAd89CPSePyCA/Xs+iQdFF+8TVCbHtP+EPSWZ28s1M63OlN0Q4LGCX7cpt3YWGbdjY3uG8ynFxD/JVig+ewNL/jxHp5cinjf2PLMOHDMDC06elcMfKdCzjhg20T7dRmnEjP4xgZd5MNzme5nf7WCMYvu/cK28THLbdvk13/9fnnkkUcov1LsvDYd9bIPSqsV3gzBH+jWK5Nah8GPvdQ2s26eX8G2gTGbqK9E+/LGpvt6BmPW9MZmRtdzULPxvtpjE5wfeWPTfcxpurEZG9smP7j2g0nXJVpUCSGEEEIIIbWHNzaEEEIIIYSQ2pPlsZmRgEdd8BGhp+0Aj8/sbECq5EfnWrmIehxqxizawEcTyNS8KdBmllHx+TSKW471s32DCOdgZq2XBeOCmOhAbobqAlH1MX7V+ZAfBfRFEqdgSN1mH6nrx892Pt3XPka2fdH2Bv4bXZbQt1OVHNkL2r4ZEbWwDUjY8P6Ny2Mr2736pVnZxSnGnBRdijPYDd4fjH7fkwHa64g+58XP/1gKVtGvAGJ1w76mrS3RNi11zInH9RdgZkuU/+ZEMVftC+NxgVQIytQC+S9oA4dySpRuN4JIZ39Q01dN5NQzlJtFxpAJ6tn+TmjG+yL/DYzmB+djSEXpd/WaNW3teA1Vr1k1YeV13jEK2hCP92uMpdcxn9gQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNpTf48NoPD8IcAkgKKCbbRqGdcj47x0rcm0RgN/0rMkAP8NEimGfptqQnwoz0UxzZF+XccE0dD4XTXxiOPKbZH1mrBvBp7nJdFTEywfeDAc8F4F/i7vHRbxxQeraesblCX2ZsXn6wc9i3tO9eoE2uy0NqhhT1z2hH1JJRqjpTTswSIC/5kw8CvoOrDHnT6Wbd014wez1rr3w3+T1TfHd9aLuOeqUdDAG5PTt7KPxkbuQg+G9keAkyWKhc4g8JF5MfYV67lp6kn3tf6X1Gjx4PdF3CeWU88wproH51XkcYH+m4lq1qX1hTULXudglycoXhrEl0f7RWi00wubT2wIIYQQQgghtYc3NoQQQgghhJDaUzspWiBzQXqZ5Dag+UFtQdyzfiQHHl2iKFcR/7kukKnZdYPSoR4Ax0Rys0CahKKZ0ThWpgba0HyxfuLLF6cDpDZz8bIwbeZRvHqMbh8Ve8vLiYI208nFByJbg9l6UcRo1+dI0cC4ULaWEffsUscE60L6T9Eupej2Gnj7Rm51Hg+OSX282re4K7mOlRR7yg4rV0QyNT1fjqyntOcS/dlKqoFMLVVKmQOQovkRtLYNSWdA3xzpTqLcLJS+xcfUOz+U3iG9b7wJYveT+v5Bzep6tnIzfRwE9aSk5k3x25BMLVF2GSwjq55VW1AYMnnAMTrtNWvH1DHRVormHYdWpqb7IdnlxEVajFGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPbXz2ASg7Fyt/TOiSC8SEBkWAu0fMBPoaGKgkQ9001CjD5aPYqJ7pGPGcc9ovsS4ZbsM6JUB49i2EmyA1O8E4wnBGDnkRDrH+pm+YZOu9figwXxafwziVEUm8Mr4K4MX2meSLVRZxyjomxUpDc5Jif4bWNr04vSExlj3uGe4fQP9fvy65b82wPgovXja+Hk08BnolQORxhP6FXTEP/ArZHlMqwI8Np4fJSO6tlcRuMiTkOpzCE660MsA/Dc9wtuHqJ6tB8OLATfz6foCVmNYz8F2slHU6pgJfDz6WIv7aMJzbg+KGHpOzOK039XOlxU1HuknGT6atm2r6r9JK9Sd24Vxz4QQQgghhJBZBW9sCCGEEEIIIbWn/lI0DVKNTdQ3Np+VNOnnhfZxbOKgUN0m5hFsxZjXYBGJz6eDKGbYGbWB7wv6hnKzSL+gDY0fn86Kd54KLQ94wu6JIOPJlAHeMPZxuxooUHKiR+MZfeF8qTHRvSI1/rlfcc9AZpr8dvacMqT8rPeMOQlery5dNrX+Z0NzHdFxuUH9NEBx6XHsP0sCWY8+7otAwtZ7WU9ObYPFYVkVlKLpNiDdAVG5O6bjbfCN6yjuGcjNfJla+nz+epl1SYjS7QwLJFZF1Xpuao0iuP6AmGhUz2LmC15poNcb1bOVYerXJJjFo8JE7gi/ox2ymoQsq2/FmkVyM1iz3u8C8KMhRWVm1wnAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUw2OjpXU5mnGk9deeF9zRjAliDb0ITzsOiHK18ceJeuScxEHXB7E9joLOMABV9dGkLiPQsqZ6euLDZ9GriOPEr5uXEq00xmZOOA74TkhXXDU+vGdU9axV9dEEy3DxfqnrBg4Remr6TzHalqJshw32nwl1F3uy1tPGI+D7aEwb8t8gvwLyPOrrmF0X5AfN8Cv4vlHg44i2dOmb6EmAXgYUtyzmsg28MoGXITnuOcN/04635XhuEN72t/XseajifpjC7nu92sh/E/ho9BjGswXq2Xq/4DVdfyXrzUHnXPBIILWG7fJgNLJuC+aL14m9FletWT/u2V8B6P0CMdV+Pv3EF/+i3eWcG4FPbAghhBBCCCG1hzc2hBBCCCGEkNpTDymaBkXgVtT8FGa+ZGka0uNYvAxAOyaI70Nvip9u2UlVWRGSm6FxKsrbsiKdpwIt2ciRf+nvlBP1jcb0+oGIVis7AQsJnion6uT69cZsTdX49DyZ2uTlZjOtZMk4RbsthXSRRdhXA3gzAelOkHEMZGpIA4MkN3o2K9Xx5G4grlX8CNzgQAexut6YKCrXypiQjApdppHczJP1xONw7fLz3tQOpGhaUlaW8Ta7fT2J0eRkPUmAenYNf0ehKGi9T61EslCx6S6odS03A9dJdL0RMZI201XVc3gYxu0DqC79Yxv9JoxPh/HlQF4WRDPr9cyo2TJeX5VrVq83iJAO6NJGKRohhBBCCCFkVsEbG0IIIYQQQkjt4Y0NIYQQQgghpPbUz2PTDwLfTg+ioAMPQjyaEhomEqNjp4VUI8BEGtgqY9pxgkjPalHQyNNTpM43HfQiChpFOCP/jf2D1SMnbpteScMhqSU7UT/ko0HLS/XRoPlQXxQ9Pd3ni12FsbaIS9B7e/H/5lzieVX8f1/UXgN7HvP8CraAtF/A/JtlcgRthgweXv8CI0DaykBPjQWe/3Vb3DeE/Ak71ifuEYCxzSoSF8fq2ozhRE9COz5frnfBA9Ss161p/Rmq9qz/Rh8rqNZz/p1dL36C2Qq0afT+NdHq/rkTtNnlpXq7M3w03noGnjFUlwLaZlDNWrq10WNDCCGEEEIImU3wxoYQQgghhBBSe3ZtKZqfVxvvByU4IAoa5eqix/SWLNla4phTTa/kZVnjjn8MZBmJ84WSshm0TVHJAKVHqizN9kVKpQmTzYv4Y3S4SVEMer9BsbNZr0CfYDo2boYUzYG2ysygUq8TRbvty2uiHbU8B8Q2B2+7b6huVlKm4nGh3MyXfei+cLfn/FOnHagB2vrw2oJUuVm4fdVn8IZ1kYx4XPQ29kDCVia2AemOjdxFb3+PjdENIEWDUd864tjK1HQ9m7rU8rOgTReGlYk1E+tZBNd0gb4TGKMXNWsp49dQGOGMYsFBfdemZjv9KUUjhBBCCCGEzCJ4Y0MIIYQQQgipPbyxIYQQQgghhNSe+ntsPD+MaYJ+lGrRp9Zz44+Y6I0JBzUD5Zgkakiq/8WQHOE8UVviNpyOdFyUmOphJfvgOEiOOAbzBesCDifsqbHjzKCCnoyvRpEc41zRC4XGnEkWsV2W0TGRRnPHZxTVr3wBhYm51Xp67RewhIeZ9hbk+GjSvDnOzAmja+13RychtUhbo1VPAak+mjAKGvlmTN9+xOPCNjVtPQm6zXoSdF+7Lpocj43xtRRl0b2f4Br2xjC1p301QVtTzWeLpp3qNfNrOqhnL3Udvd4BmVqrAX00dnmoDcWQB56xGtZspw89NoQQQgghhJBZBG9sCCGEEEIIIbWn/lI0gJeajHVqZsZ4E1xeorbEBXm4cNBq9EqS0gul0ERPv1P1MxUlbDlR1FAW0Q8JG8hGDiQbaF1AaqXXrWJdTBz3rD72o56ztmnFZejF9UiWliU368GYYd8ZJPXbVRhrizTGdnyGUjT174YNsx90XK05YJ2Ny1X4l6b+R0FDaVoj3jcYR0fZCsDGYqdIVCRP1pP8Znaz/GAcFDddNR5Xtdk4XkmN1UVvaM+SojXibU1QX2Yb4stBxShovW72+LH71FsXU8+NeC1411Q7X+o1DkrrkWTQ9NU1hOrZzDslkc6q3oKa9eoS1LOVt3UboxyL9zHwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189ig2NkM3X8/oqC92YCQOPCU5MTj6iYk9JwCaX2yN8aSs26pfTN8NJrKnpp+bV9gDPOioCsODyXWGWVZOe45WKHEfr3yjE3xOJV9NBl9GfE8tbixMXE7Nf4FiGrWXhmrIddZttavoLwMrohrz4NDsAF8O57nJB7THKTa2tVOjM4NVq5IPHm1M06sif4FGOkcxOpaH40ax66b54eJjxPG8ybG42bE6mqfgwtidfXJGXgZRPx6bqT7WjwPWavptyH/hB4fREFLYcYs9H4xA5muXu2jejY+OK8tJ+654m8Wbxl2k3n1NME4OtI56IvqsgeRzmg+6/3S5x3rv/H6lY//jx4bQgghhBBCyCyCNzaEEEIIIYSQ2lM/KVoOQBqGVVyJGa05UrCqjy5zJG0ziapSrcrzVZSb9Wr5OaTGiedEQSfKIHOYKBnUX4FKTb2ThvWYSZVB6nfK+O7Jhzoq9hm6rWtHe0yk7CJFM1HFTst+mr4+Bh8TIDZZS7qsbEpJSQKZsvfWeCDNCuKrwasJSr+vlvKgmGh4fc0gOS53ErIeX8aVIWnTbYEMEY2ZFgXtxowsx4uwbsfbcqRoRiLpRXbbSHJdN1aqpMcIlofqUh0HRkPmxZkb6VkY2wzWILGeLb2o4aB+QT3BaHHUN5CNxeWxBapLT5KZEemsJZJAPhkeB11q1lGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPfX32KR6C3JibhMF9lk6yxwvRep8uwoVvUJZ3hlveVM8HyInaTwxCjpncZU79yaVtTp98BRVpmrqedX1rlz4pBe40TFxO70IOmLZ+lOaVvyvAF4ZT6duxyxBWxHXyGv9fJBc6+Lr4swyvEXkGEl15G4/zggoOldsm54vw6+A+qI2Gzed6ldAngQ7pvbcmFhdh8Y0FLpmrR9HtTnjJytslK/XqLwyZr1do1rN+oPY+UCcufV+oXrWnhvzCAD6u1LJ8n55K2rGiddX1eUHY+q6Qecre/7wPGOmRkAUdLeadfTYEEIIIYQQQmYTvLEhhBBCCCGE1J76S9E0VeNpKz5V7JkCpqImZSalPU+LOqYfy5xulU/VKOhEehW1imPIe7OIqsvvB1NyrPViw82gc8Kuihtriyt2yCK0/MyhSGcbBa3fDh5IyoBMzRsEtAWRt1raASRsMCpXcH1plZx9i7v3newywJjeIPGmnOjc1DGzQLKeYJlov8VlY748x77FXUVBB5IfFblrZVtm/3rttp51FLRdBqrZxBjhQP4E/tm9APKyAD1uMy5TK8w4njTNHjOanMcDE6Rtp5Alg6talzn1i6SOKC5d12VCzToH5I4GPrEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWnFh4bkHJbnV5oa6tqhXvErEt9ncHfty/7oh+1PgVFM5O8X7WF23DGsiPu+fEdpHwIQXK7joK2/oFCR6Sm//uiHieYrRcRtBOhl2H9N5XHVJ9z4u8rLy/R42L75vgVUvshv4LF898YDxOK3PXajG/HLkPXs92/el77ugHPq2LQ65pTs962N6OiQybIM+/zybSqbyarLuJdYTQ0GDfHq1Mgrwxatq4ZW7O6r417boeeMcY9E0IIIYQQQmYVvLEhhBBCCCGE1J5aSNE0M1p+NZPXjcxeKGsipHeUbZHHo2+9U759G3sZlwAl/5tiRXmZlZn0LObdW4Y/jSSoXjwvkgZlfN2evP29X4B1C2SJFcaA2MhdHQU9ZuQ8DRvpDCRHXmxytVXrGUimBtYtOC76LVPLoB+/bSsfI/04tuw5UNWpjSH34p93Rpsz7pkQQgghhBAym+CNDSGEEEIIIaT2zDgp2s5HUuW2bdO8JoQQMvvYee618oDZzs7tMSaj45IpJa+wso/Ca4vLMIrgbd1KclGYf3ssxnU2rm01N6qviUxzahwHUthcadOu7PL1Z9NXS/HAP5n2Sv4DZTZ6k9r94iU8mTHb/r7wlmGUMN5+a5tlaCmNHVPvX7TvS5MU5UkbfUmZlxjlRk1bu3u/HYP66wZq1psO1lvXs5UMqWIo/Zp1XqHE6zms2QK0+Xg13QA1a+sZ1HpPCM4X8TZdp8F5xkob1XTRtm1lUptNKfNq3e5f0OZKXZfxmnVGZubX8462MRl9vG3i69KMu7HZvHmziIg8cNZHpnlNCCFk9rJ582YZHh6e7tWYMey8Nt0g3x7/o/59N2JmsNOEzDSs9UtPjwohM46U61LhZtg/y5VlKb/97W/FOSdLliyRBx54QObPnz/dqzWj2LRpkyxevJjbxsDt0h1ulzjcNiHOOdm8ebPsv//+0mhQrbwTXpswPJbicNt0h9slDreNT851acY9sWk0GvKkJz1JNm3aJCIi8+fP506NwG3THW6X7nC7xOG28eGTmhBem9LgdonDbdMdbpc43DbjpF6X+M9xhBBCCCGEkNrDGxtCCCGEEEJI7ZmxNzaDg4PygQ98QAYHB6d7VWYc3Dbd4XbpDrdLHG4bkgtrpjvcLnG4bbrD7RKH26Y6My48gBBCCCGEEEJymbFPbAghhBBCCCEkFd7YEEIIIYQQQmoPb2wIIYQQQgghtYc3NoQQQgghhJDaM2NvbC644AI58MADZWhoSI444gi55ZZbpnuVppS1a9fK85//fJk3b57su+++8upXv1ruuusur8+2bdtk1apVsmDBAtljjz3k+OOPlw0bNkzTGk8P55xzjhRFIatXr+78bTZvl9/85jfyhje8QRYsWCBz586VQw89VH74wx922p1zcuaZZ8p+++0nc+fOleXLl8vdd989jWvcf9rttpxxxhmydOlSmTt3rhx00EHy4Q9/WHRuymzcLiSf2X5dEuG1KRVem8bhdak7vDb1CTcDueKKK9ycOXPc5z//effTn/7Uve1tb3N77rmn27Bhw3Sv2pSxYsUKd8kll7g777zT3XHHHe4Vr3iFW7JkiXv00Uc7ff7iL/7CLV682K1bt8798Ic/dC984QvdkUceOY1rPbXccsst7sADD3TPfvaz3Xve857O32frdnn44YfdAQcc4E466SR38803u1/96lfuu9/9rvvP//zPTp9zzjnHDQ8Pu69+9avuRz/6kfvjP/5jt3TpUvfYY49N45r3l7PPPtstWLDAffOb33T33nuvu/LKK90ee+zhPvnJT3b6zMbtQvLgdWkHvDZNDK9N4/C6FIfXpv4wI29sXvCCF7hVq1Z1ptvtttt///3d2rVrp3GtppcHH3zQiYi7/vrrnXPObdy40Q0MDLgrr7yy0+fnP/+5ExF34403TtdqThmbN292T33qU90111zjXvziF3cuHrN5u/zVX/2VO/roo6PtZVm6RYsWub/927/t/G3jxo1ucHDQ/eM//uNUrOK0cOyxx7o3v/nN3t+OO+44d+KJJzrnZu92IXnwutQdXpt8eG3y4XUpDq9N/WHGSdG2b98ut912myxfvrzzt0ajIcuXL5cbb7xxGtdsennkkUdERGSvvfYSEZHbbrtNRkdHve108MEHy5IlS2bFdlq1apUce+yx3vcXmd3b5etf/7ocfvjh8prXvEb23Xdfee5znyuf+cxnOu333nuvrF+/3ts2w8PDcsQRR+zS2+bII4+UdevWyS9/+UsREfnRj34kN9xwg7z85S8Xkdm7XUg6vC7F4bXJh9cmH16X4vDa1B9a070Clt///vfSbrdl4cKF3t8XLlwov/jFL6ZpraaXsixl9erVctRRR8khhxwiIiLr16+XOXPmyJ577un1Xbhwoaxfv34a1nLquOKKK+T222+XW2+9NWibzdvlV7/6lVx00UWyZs0a+eu//mu59dZb5d3vfrfMmTNHVq5c2fn+3Y6tXXnbnHbaabJp0yY5+OCDpdlsSrvdlrPPPltOPPFEEZFZu11IOrwudYfXJh9em0J4XYrDa1N/mHE3NiRk1apVcuedd8oNN9ww3asy7TzwwAPynve8R6655hoZGhqa7tWZUZRlKYcffrh89KMfFRGR5z73uXLnnXfKpz/9aVm5cuU0r9308c///M9y2WWXyeWXXy7Petaz5I477pDVq1fL/vvvP6u3CyGThdemcXht6g6vS3F4beoPM06Ktvfee0uz2QySQjZs2CCLFi2aprWaPk4++WT55je/Kd/73vfkSU96UufvixYtku3bt8vGjRu9/rv6drrtttvkwQcflOc973nSarWk1WrJ9ddfL+eff760Wi1ZuHDhrNwuIiL77befPPOZz/T+9oxnPEPuv/9+EZHO959tx9Z73/teOe200+SEE06QQw89VN74xjfKqaeeKmvXrhWR2btdSDq8LoXw2uTDa1N3eF2Kw2tTf5hxNzZz5syRww47TNatW9f5W1mWsm7dOlm2bNk0rtnU4pyTk08+Wa666iq57rrrZOnSpV77YYcdJgMDA952uuuuu+T+++/fpbfTy172MvnJT34id9xxR+e/ww8/XE488cTO59m4XUREjjrqqCB29Ze//KUccMABIiKydOlSWbRokbdtNm3aJDfffPMuvW22bt0qjYZ/qms2m1KWpYjM3u1C0uF1aRxem7rDa1N3eF2Kw2tTn5ju9IJuXHHFFW5wcNBdeuml7mc/+5l7+9vf7vbcc0+3fv366V61KeOd73ynGx4edt///vfd7373u85/W7du7fT5i7/4C7dkyRJ33XXXuR/+8Idu2bJlbtmyZdO41tODTp5xbvZul1tuucW1Wi139tlnu7vvvttddtllbrfddnNf/vKXO33OOecct+eee7qvfe1r7sc//rF71atetctHR65cudI98YlP7ERq/uu//qvbe++93fve975On9m4XUgevC7tgNemdHht4nUJwWtTf5iRNzbOOfepT33KLVmyxM2ZM8e94AUvcDfddNN0r9KUIiJd/7vkkks6fR577DH3rne9yz3hCU9wu+22m/uTP/kT97vf/W76VnqasBeP2bxdvvGNb7hDDjnEDQ4OuoMPPthdfPHFXntZlu6MM85wCxcudIODg+5lL3uZu+uuu6ZpbaeGTZs2ufe85z1uyZIlbmhoyD35yU92f/M3f+NGRkY6fWbjdiH5zPbrknO8NuXAa9MOeF3qDq9N/aFwTr3ilBBCCCGEEEJqyIzz2BBCCCGEEEJILryxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7eGNDSGEEEIIIaT28MaGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG15/8DDbwFDayzgUwAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 720x432 with 2 Axes>"
+       "<Figure size 1000x600 with 2 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -678,7 +772,7 @@
     "Ex, Ey = np.gradient(SOR_sol)\n",
     "E = np.sqrt(Ex**2+Ey**2) # Magnitude of Electric field\n",
     "axes[1].imshow(E)\n",
-    "axes[1].set_title('Electric Field');"
+    "_ = axes[1].set_title('Electric Field')"
    ]
   },
   {
@@ -693,18 +787,23 @@
   {
    "cell_type": "code",
    "execution_count": 16,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:39:12.008455Z",
+     "iopub.status.busy": "2024-08-14T18:39:12.008267Z",
+     "iopub.status.idle": "2024-08-14T18:41:03.640235Z",
+     "shell.execute_reply": "2024-08-14T18:41:03.638498Z"
+    }
+   },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3gU5fbA8e9JQgg9lFBDb0pTIFRRUJGmV1CxYAEUQUWv2MstP+/VW+xcEUEpChbaVVSuDVF61YBIkWLoVYL0TuD8/pgXXWMCYcnuZLPn8zz7ZOaddt7dzZydeWfeEVXFGGOMCUaM3wEYY4yJXJZEjDHGBM2SiDHGmKBZEjHGGBM0SyLGGGOCZknEGGNM0CyJmDMSkVEi8g+fti0i8paI7BaRb7KYfouIfOlHbAExvC4if/UzBmP8YkkkAonIehHZISJFAsruFJHpPoYVKm2AK4BkVW2eeaKqvqeqHU6Ni4iKSK1QBSMivUVkdqYY7lbVZ0K1zVARkfoi8qWI7BKRPSKyUES6BExPFJGhIrJdRA6JyFIRuT3TOtaLyGEROeDmGyUiRcNfm9AL9XcrUlkSiVyxwAC/gzhbIhJ7lotUBdar6sFQxBNIROJCvY085n/AFKA8UBa4H9gHICLxwFd4738roATwKPCsiDyUaT1/UNWiwIVAY+DJcAQfxHfJN/n6u6Wq9oqwF7AeeALYBSS6sjuB6W64GqBAXMAy04E73XBvYA4wENgDrAVau/JNwA6gV8Cyo4DX8XY4+4EZQNWA6ee5abuAVcANmZYdCnwGHATaZ1GfisAkt3wa0NeV9wGOACeAA8Dfs1i2NzDbDc909T7o5r/RlV8FLHZ1nQs0yvRePg4sAY4Cce69XePq+gNwjZv3/Ezx7Amo4z8C1tnX1WOXq1fFgGkK3A386OJ5DRA3rZZ7b/cCO4Hx2Xz+nwP3ZSr7HrgWEPe57sBLCEuBBlmso4yLJTGbbfRx6yiSqfxGV/fiAe9f+4DpzwOfnua7Ox34N/CNi+9joFTA9P8C2917MBOof7rvEnAl8J1b1ybgbwHzV3N1vN1N2+3e+2bu894DDM4U3x3ACjfvZNz3PLe+W37vO0Lx8j0AewXxobl/XGDiqZ0XZ59EMtw/VyzwD2Cj26EVBDrg7UCLuvlHufFL3PRX+HXHXcT9g96OtwNujLcDrBew7F7gIrwj34Qs6jMTGAIk4P2aTQcuC4h19mnei99Md/WuFTDeGG9n2MLVtZd7/woGvJeLgcpAIVd2PV5ii8HbaR4EKmQXDwFJBLjM1b+Je69eBWZmiu8TIBGo4urayU0bC/z51PsEtMmmzj2BOQHj9fB2YgWBjsBCt37BS3wVsliH4CWyT4BuQLlM08cBo7NYLs59dzoGfhfdcDJe0nrlNJ/XdGAL0MB9dz4A3g2YfgdQzNXlP8DiTO/zb75LQDugoRtvBPwEdMv0f/C6m7cD3o+Aj/COvCq570ZbN39XvOR/vqvnX4C5ufndyo8v3wOwVxAf2q9JpIH7p0ri7JPIjwHTGrr5ywWU/Qxc6IZHAeMCphXF+zVeGW8nOytTfG8ATwUs+/Zp6lLZratYQNm/gVEBsZ5LEhkKPJNpmVUBO471wB1neL8XA12zi4ffJpGRwPOZ3qvjQLWA+NoETJ8APOGG3waG4bX/nC6eYniJraob/yfwphu+DFgNtARizrCeZGAw3lHXSbxkXttN+wp4NpvltgO3BLx/B/B+ZCjwNdkc3QR8D58NGK8HHANis5g30a2zRE6+S26e/wADM/0fVMr0vb4xYPwD4AE3/DnQJ2BaDHAo4H3O9e9WfnhZm0gEU9VleL8knwhi8Z8Chg+79WUuC2wg3RSw3QN4p2oq4p0zb+EaZveIyB7gFrzz7L9bNgsVgV2quj+gbAPer8TcUBV4OFN8ld12s4xPRHqKyOKA+Rvgnf7JiYp48QO/vFc/89v6bA8YPsSv7/NjeEcI34jIchG5I6sNuPfqU+AmV9QDeM9Nm4qXGF4DdojIMBEpns16NqvqfapaE+99OoiXyMA7mqqQeRl3br+Mm35KN1UthndUcB5nfq8C3+8NQAGgjIjEisizIrJGRPbh7YTJtL7Mn1ULEZkmIukishfvdFXm7Wf+Xmf3Pa8KvBLwue/C+zyy+y6e9XcrP7IkEvmewjsHH/hFP9UIXTigLHCnHozKpwbc1TelgK14/yQzVDUx4FVUVe8JWFZPs96tQCkRKRZQVgXvlEdu2AT8M1N8hVV1bFbxiUhVYDhwH1BaVROBZXg7k9/Mm42teDuXU+srApQmB/VR1e2q2ldVKwJ3AUNOczXQWKCHiLTCO1UzLWA9g1S1Kd6v/Dp4DeJn2vYmvMTTwBV9BXQOvALQuQ7v/P78LNYxA+9o4cUzbK5ywHAVvCO1ncDNeKeU2uM15Fdz80jA/Jnf/zF47U6VVbUE3qkrITibgLsyfVcKqerc08yf4+9WfmVJJMKpahowHu/KmlNl6Xg7rVvdr7s7gJrnuKkuItLGXbXzDDDf7Xg+AeqIyG0iUsC9monI+TmMfxNeg+S/RSRBRBrhNeq+G2ScPwE1AsaHA3e7X6wiIkVE5MpMSStQEbx//HQAd0lrg4DpPwHJ7n3IyljgdhG5UEQKAv8CFqjq+jMFLiLXi0iyG93t4jiZzeyf4SWrp/Ea4E+6dTRzdS2A92PiSFbrEJGSIvJ3EaklIjEiUgavPeJUcngH2Az8V0Squc+1IzAIr/F6bzZx/Qe4QkQuOE1VbxWReiJS2MX/vqqewDtNdxTvyK0w3nt3JsXwjmSPiEhzvEQUrNeBJ0WkPoCIlBCR6wOmn+t3K1+yJJI/PI238wvUF+8X6M9Afbwd9bkYg3fUswtoCtwKv5xa6YB3amUr3qma5/AaRnOqB96vzq3Ah3jtKV8FGeffgNHu9MINqpqK914Mxtsxp+G1a2RJVX8AXgLm4e00GuJdyXbKVGA5sF1Edmax/FfAX/HOtW/DS943ZZ4vG82ABSJyAO/X9QBVXZtNnEfxLqxoj/fZnFIcb+e2G+9U0c/AC1ms4hjee/4V3pVNy/B24L0D1t8e79f2AjfPy8CfVTWr9Z2KKx3vlNj/naae7+AdsWzHO4o69QPobRfzFryr4n53tJOF/sDTIrLfbXNCDpbJkqp+iPfdHedOpy0DOgfM8jfO4buVX526tNAYY0JOvBti31XVEX7HYnKHHYkYY4wJmiURY4wxQbPTWcYYY4JmRyLGGGOCln87BctGmTJltFq1an6HYYwxEWXhwoU7VTUpc3nUJZFq1aqRmprqdxjGGBNRRGRDVuV2OssYY0zQLIkYY4wJmiURY4wxQbMkYowxJmiWRIwxxgTNkogxxpigWRIxxhgTNEsiOTRmwUZmrk73OwxjjMlTLInkwLGMk7y3YAN9305l3pqf/Q7HGGPyDEsiORAfF8PbdzSnaunC9Bn9Lanrd/kdkjHG5AmWRHKodNGCvHtnC8oXT6D3W9+yeNMev0MyxhjfWRI5C2WLJTCmb0tKFYmn58gFLNuS3WOmjTEmOlgSOUvlSyQwpm8LiiUU4NaRC/hh6z6/QzLGGN9YEglCcsnCjO3bkkIFYrl15AJWbd/vd0jGGOMLSyJBqlK6MGP6tiQuRrhlxHx+/MkSiTEm+lgSOQfVyxRhbL+WiAg9hi8gbccBv0MyxpiwsiRyjmomFWVs3xYA9Bg+nzXplkiMMdEjZElERN4UkR0isiyLaQ+LiIpIGTcuIjJIRNJEZImINAmYt5eI/OhevQLKm4rIUrfMIBGRUNXlTGqVLcbYvi1QVXoMs0RijIkeoTwSGQV0ylwoIpWBDsDGgOLOQG336gcMdfOWAp4CWgDNgadEpKRbZijQN2C5320rnGqXK8aYvi05qcpNw+bbqS1jTFQIWRJR1ZlAVrd2DwQeAzSgrCvwtnrmA4kiUgHoCExR1V2quhuYAnRy04qr6nxVVeBtoFuo6pJTdcoVY2zflqh6p7YskRhj8ruwtomISFdgi6p+n2lSJWBTwPhmV3a68s1ZlGe33X4ikioiqenpoe1EsXa5Yozr1wJVuGmYXbVljMnfwpZERKQw8Cfg/8K1zVNUdZiqpqhqSlJSUsi3V6usl0hEvCMSSyTGmPwqnEciNYHqwPcish5IBhaJSHlgC1A5YN5kV3a68uQsyvMML5G0JEaEm4bNtxsSjTH5UtiSiKouVdWyqlpNVavhnYJqoqrbgUlAT3eVVktgr6puAyYDHUSkpGtQ7wBMdtP2iUhLd1VWT+DjcNUlp2omFWVcv5bExQo9hs+3LlKMMflOKC/xHQvMA+qKyGYR6XOa2T8D1gJpwHCgP4Cq7gKeAb51r6ddGW6eEW6ZNcDnoajHuaqRVJRx/VpRMC6Gm0fMt04bjTH5ingXN0WPlJQUTU1NDft2N/58iB7D57PvyHHevqM5jauUPPNCxhiTR4jIQlVNyVxud6yHSZXShZlwdytKFYnn1hEL+NYebGWMyQcsiYRRpcRCjO/XinIlEug58hvmpu30OyRjjDknlkTCrHyJBMb3a0WVUoW5fdS3TF+1w++QjDEmaJZEfJBUrCBj+7WkZlJR+r29kC+Xb/c7JGOMCYolEZ+UKhLP2L4tOb9ice55bxEfL85Tt7kYY0yOWBLxUYnCBXjvzhakVC3JA+MXM/abjWdeyBhj8hBLIj4rWjCOUbc355LaSTw5cSkjZq31OyRjjMkxSyJ5QKH4WIb1bEqn+uX5x6creOWrH4m2+3eMMZHJkkgeUTAulsE3N+baJpUY+NVq/v35Skskxpg8L87vAMyv4mJjeLH7BRQtGMewmWvZfySDf3RrQGyMbw9tNMaY07IkksfExAh/v7o+RQvGMWT6GvYfOc7LN1xIfJwdNBpj8h5LInmQiPBYp/MoUagA//58JQeOZjD0lqYUio/1OzRjjPkN+3mbh93Vtib/vrYhM1anc9vIBew9fNzvkIwx5jcsieRxPZpXYXCPJny/eQ83vjGPHfuO+B2SMcb8wpJIBLiyUQXe7N2MjbsO0f31eWz4+aDfIRljDGBJJGJcXDuJMX1bsu/Ica4bOo/lW+3hVsYY/1kSiSAXVk7k/btbUSBWuOmN+cxf+7PfIRljopwlkQhTq2wxPrinNWWLF6Tnm99YD8DGGF9ZEolAFRML8f7dralXoTh3v7vQOm40xvgmZElERN4UkR0isiyg7AURWSkiS0TkQxFJDJj2pIikicgqEekYUN7JlaWJyBMB5dVFZIErHy8i8aGqS15Uskg8Y/q24JI6XseN1t+WMcYPoTwSGQV0ylQ2BWigqo2A1cCTACJSD7gJqO+WGSIisSISC7wGdAbqAT3cvADPAQNVtRawG+gTwrrkSYXj4xjeM4XuTZMZ+NVq/vzRMjJOnPQ7LGNMFAlZElHVmcCuTGVfqmqGG50PJLvhrsA4VT2qquuANKC5e6Wp6lpVPQaMA7qKiACXAe+75UcD3UJVl7ysQGwML3RvRP92NRmzYCN3v7uIw8dO+B2WMSZK+NkmcgfwuRuuBGwKmLbZlWVXXhrYE5CQTpVnSUT6iUiqiKSmp6fnUvh5x6luUv5+dX2+XvkTt4yYz+6Dx/wOyxgTBXxJIiLyZyADeC8c21PVYaqaoqopSUlJ4dikL3q1rsaQm5uwbOs+ur8+l027DvkdkjEmnwt7EhGR3sBVwC36a0vwFqBywGzJriy78p+BRBGJy1Qe9To3rMC7fVqQvv8o1w6dy9LNdlOiMSZ0wppERKQT8BhwtaoG/kyeBNwkIgVFpDpQG/gG+Bao7a7EisdrfJ/kks80oLtbvhfwcbjqkdc1r16Kif1bEx8bw43D5jFt5Q6/QzLG5FOhvMR3LDAPqCsim0WkDzAYKAZMEZHFIvI6gKouByYAPwBfAPeq6gnX5nEfMBlYAUxw8wI8DjwkIml4bSQjQ1WXSFSrbDE+7N+aGklFuPPtVMYssHtJjDG5T6Lt3oKUlBRNTU31O4ywOXg0g3vHLGL6qnT6t6vJIx3qEmNPSjTGnCURWaiqKZnL7Y71fK5IwThG9EyhR/MqDJm+hgfGL+Zohl0CbIzJHfZkwygQFxvDv65pQOVShXj+i1Vs33uEN25rSskiUXWTvzEmBOxIJEqICP3b1WJQj8Ys3rSHa4fOZf1Oey6JMebcWBKJMldfUJH3+rZgz6FjXDNkDqnrd515IWOMyYYlkSjUrFopJva/iMTC8dw8fAEffWe32BhjgmNJJEpVL1OED/u3pnGVRB4Yv5iBU1ZbL8DGmLNmSSSKJRaO550+LejeNJlXvv6R+8ct5shxu3LLGJNzdnVWlIuP83oBrpFUhOe/WMXm3YcYdlsKScUK+h2aMSYC2JGI+eXKrddvbcKKbfvo9tocVm7f53dYxpgIYEnE/KJTgwr8967WZJw8yXVD5vLVDz/5HZIxJo+zJGJ+o2FyCT6+tw01korS951UXp+xxhrcjTHZsiRifqd8iQQm3NWKLg0r8OznK3n4v99bg7sxJkvWsG6yVCg+lsE9GlOnbDEGfrWadTsP8sZtTSlbLMHv0IwxeYgdiZhsiQgD2tdm6C1NWLltP10Hz7GHXBljfsOSiDmjzg0r8P49rYgR4fo35jLp+61+h2SMySMsiZgcqV+xBB/fdxENK5Xg/rHf8dwXKzlx0hrcjYl2lkRMjpUpWpD37mzJzS2qMHT6Gu4c/S17Dx/3OyxjjI8siZizEh8Xw7+uacg/ujVg1o876fbaHNJ27Pc7LGOMT0L5jPU3RWSHiCwLKCslIlNE5Ef3t6QrFxEZJCJpIrJERJoELNPLzf+jiPQKKG8qIkvdMoNExJ75Gka3tqzKmL4t2X/kON1em8uXy7f7HZIxxgehPBIZBXTKVPYE8LWq1ga+duMAnYHa7tUPGApe0gGeAloAzYGnTiUeN0/fgOUyb8uEWPPqpZh0XxtqJBWh3zsLGThlNSetncSYqBKyJKKqM4HMTzzqCox2w6OBbgHlb6tnPpAoIhWAjsAUVd2lqruBKUAnN624qs5X73bqtwPWZcKoYmIhJtzV6peegPu+ncq+I9ZOYky0CHebSDlV3eaGtwPl3HAlYFPAfJtd2enKN2dRniUR6SciqSKSmp6efm41ML+TUCCWF7o34umu9ZmxOp2ug+ew+idrJzEmGvjWsO6OIMJy7kNVh6lqiqqmJCUlhWOTUUdE6NmqmmsnyaDba3P4dMm2My9ojIlo4U4iP7lTUbi/O1z5FqBywHzJrux05clZlBufNa9eik/vb8N55Ytx75hF/OuzFWScOOl3WMaYEAl3EpkEnLrCqhfwcUB5T3eVVktgrzvtNRnoICIlXYN6B2Cym7ZPRFq6q7J6BqzL+Kxc8QTG9WtFz1ZVGTZzLbeOXED6/qN+h2WMCYFQXuI7FpgH1BWRzSLSB3gWuEJEfgTau3GAz4C1QBowHOgPoKq7gGeAb93raVeGm2eEW2YN8Hmo6mLOXnxcDE93bcDLN1zA4k17uOrVWSzckPk6C2NMpJNoe1ZESkqKpqam+h1GVPlh6z7ufnchW/cc5s9Xnk/v1tWw23qMiSwislBVUzKX2x3rJuTqVSzO//7YhnZ1k/j7/37gvrHfceBoht9hGWNygSURExYlChVg2G0pPNapLp8v3cbVg2fbZcDG5AOWREzYxMQI/dvV4r07W7LvcAZdB89h4qLNZ17QGJNnWRIxYdeqZmk+u78NDZNL8NCE73ly4hJ7/K4xEcqSiPFF2eIJjLmzBfe0q8nYbzZxzZC5rNt50O+wjDFnyZKI8U1cbAyPdzqPN3unsG3vYf7w6mw+WWJPTTQmkuQoiYjI8yJSXEQKiMjXIpIuIreGOjgTHS47rxyf3n8xdcoV5b4x3/GXj5ba6S1jIkROj0Q6qOo+4CpgPVALeDRUQZnoUymxEOPvakW/S2rw7vyNXGunt4yJCDlNInHu75XAf1V1b4jiMVGsQGwMf+pyPm/2TmHr3sNcNWgWHy+2LtGMyctymkQ+EZGVQFPgaxFJAo6ELiwTzS47rxyf3X8x51UozoBxi3ns/e85dMxuTjQmL8pRElHVJ4DWQIqqHgcO4j1IypiQqJhYiPH9WnLfpbX478LN/OHV2azYts/vsIwxmZzN1VnnATeKSE+gO16PusaETFxsDI90rMu7fVqw70gGXV+bwzvz1hNt/b0Zk5fl9Oqsd4AXgTZAM/f6XUdcxoTCRbXK8PmAi2lVozR//Xg5d7+7kD2HjvkdljGGHPbiKyIrgHqaD34CWi++kevkSeXNOet47ouVJBUtyMAbL6RFjdJ+h2VMVDjXXnyXAeVzNyRjzk5MjHDnxTX44J7WxMfF0GP4fF7+cpU9OdEYH+U0iZQBfhCRySIy6dQrlIEZk51GyYl8cv/FXNM4mUFT07hx2Hw27Trkd1jGRKWcns5qm1W5qs7I9YhCzE5n5S8fL97CXz5cBsA/rmlA1wsr+RyRMfnTOZ3OcsliJVDMvVZEYgIx+U/XCyvx2YCLqVO+GAPGLebB8YvZf+S432EZEzVyenXWDcA3wPXADcACEekeysCMyanKpQozvl9LHmhfm48Xb6HzK7NIXW/PczcmHHLaJvJnoJmq9lLVnkBz4K/BblREHhSR5SKyTETGikiCiFQXkQUikiYi40Uk3s1b0I2nuenVAtbzpCtfJSIdg43HRL642BgeaF+H/97dChG44Y15vPzlKo5bo7sxIZXTJBKjqjsCxn8+i2V/Q0QqAffj3f3eAIgFbgKeAwaqai1gN9DHLdIH2O3KB7r5EJF6brn6QCdgiIjEBhOTyT+aVi3FZwGN7t2HzmVt+gG/wzIm38ppIvjCXZnVW0R6A58Cn53DduOAQiISBxQGtgGXAe+76aOBbm64qxvHTb9cRMSVj1PVo6q6DkjDO0IyUa5YQgFeuuEChtzShA27DtFl0Czenb/B7nQ3JgRy2rD+KDAMaORew1T18WA2qKpb8O5+34iXPPYCC4E9qnqql73NwKnLbCoBm9yyGW7+0oHlWSzzGyLST0RSRSQ1PT09mLBNBOrSsAKTH7iEZtVK8ZePlnH7qG/Zsc/6DTUmN+X4lJSqfqCqD7nXh8FuUERK4h1FVAcqAkXwTkeFjKoOU9UUVU1JSkoK5aZMHlOueAKjb2/O36+uz/y1P9PhPzP5dMk2v8MyJt84bRIRkdnu734R2Rfw2i8iwXap2h5Yp6rprkfgicBFQKI7vQWQDJx6kMQWoLKLIw4ogdcm80t5FssY84uYGKFX62p8ev/FVC1VmHvHLGLAuO/Ye8guBTbmXJ02iahqG/e3mKoWD3gVU9XiQW5zI9BSRAq7to3LgR+AaXi9AwP0Aj52w5PcOG76VNeH1yTgJnf1VnWgNt5lyMZkqWZSUT64pzUPtq/Dp0u20fE/M5m52k5vGnMuzqYX3zOW5YSqLsBrIF8ELHUxDAMeBx4SkTS8No+RbpGRQGlX/hDwhFvPcmACXgL6ArhXVe3B3Oa04mJjGNC+Nh/2v4iiCXH0fPMb/vLRUg4etYdeGROMnHZ7skhVmwSMxwFLVLVeKIMLBev2xJxy5PgJXpy8ipFz1lGlVGFevP4CmlUr5XdYxuRJQXV74m7m2w80CmwPAX7i19NNxkSkhAKx/OWqeozt25KTqtzwxjz+9dkKjhy3A1pjciqnRyL/VtUnwxBPyNmRiMnKgaMZ/OuzFYxZsJGaSUV46YYLubByot9hGZNnZHckkqMk4lZQEq/xOuFUmarOzLUIw8SSiDmdmavTeeKDJWzfd4S72tZkwOW1SShgHSEYc069+IrIncBMYDLwd/f3b7kZoDF5wSV1kvjiwUvo3jSZodPXcNWrs/lu426/wzImz8rpzYYD8J6rvkFVLwUaA3tCFpUxPiqeUIDnu1/AqNubcfBoBtcNncu/P7e2EmOyktMkckRVj4DXq66qrgTqhi4sY/zXrm5ZJj94CTekVOaNGWvpMmgWCzdYF/PGBMppEtksIonAR8AUEfkY2BC6sIzJG4onFODZ6xrxTp/mHD1+ku6vz+Pp//3AoWN2X4kxcBYN678s4D0qtwTwhaoeC0lUIWQN6yZYB45m8NznK3ln/gYqlyrEs9c24qJaZfwOy5iwCLphXURiRWTlqXFVnaGqkyIxgRhzLooWjOOZbg0Y368lcTEx3DJiAU98sIS9h60PLhO9zphEXFciq0SkShjiMSbPa1GjNJ8PuJi72tZgQuomOgycwZQffvI7LGN8kdM2kZLAchH5WkQmnXqFMjBj8rKEArE82fl8Prr3IkoWjqfv26ncN2YROw8c9Ts0Y8Iq7syzAOfwPHVj8rNGyYlMuq8Nb8xYw6tT05idtpM/dzmf7k2T8TqpNiZ/y+mTDWcA64ECbvhbvF54jYl68XEx/PHy2nw2oA21kory6PtLuHXkAjb8fNDv0IwJuZzesd4Xr/v2N1xRJbzLfY0xTq2yxZhwVyv+0a0BSzbtpcPAmQydvobjJ076HZoxIZPTNpF78Z4+uA9AVX8EyoYqKGMiVUyMcGvLqkx5qC3t6ibx3BcruXrwHL7fZB08mPwpp0nkaOAlve55Imd3g4kxUaR8iQTeuC2F129tyq6DR7lmyBz+Nmk5B+zhVyafyWkSmSEifwIKicgVwH+B/4UuLGPyh04NyjPlobbc2rIqo+et54qXZ/Dl8u1+h2VMrslpEnkCSMd7nO1dwGeq+ueQRWVMPlI8oQBPd23AxHtaU6JQAfq9s5A7R6eyefchv0Mz5pzlNIn8UVWHq+r1qtpdVYeLyIBgNyoiiSLyvoisFJEVItJKREqJyBQR+dH9LenmFREZJCJpIrJERAIf09vLzf+jiPQKNh5jwqFxlZL8749t+FOX85iTtpMrXp7JsJnW8G4iW06TSFY76N7nsN1X8PreOg+4AFiBd7TztarWBr524wCd8R6GVRvoBwwFEJFSwFNAC6A58NSpxGNMXlUgNoZ+l9RkykOXcFGt0vzrs5X84dXZLNxgzywxkelMz1jvISL/A6oH3qkuItOAoPrEFpESwCXASABVPaaqe4CuwGg322igmxvuCrytnvlAoohUADoCU1R1l6ruBqYAnczoOI0AABPkSURBVIKJyZhwSy5ZmOE9U3jjtqbsPXyc7q/P5cmJS9lzyLqkM5HlTHeszwW2AWWAlwLK9wNLgtxmdbz2lbdE5AJgId5Dr8qp6jY3z3agnBuuBGwKWH6zK8uu/HdEpB/eUQxVqlgXYCZvEBE61i9Pm1plGDhlNW/NXc/k5dt5svN5dse7iRinPRJR1Q2qOl1VW7nee0+9FqlqsNcqxgFNgKGq2hg4yK+nrk5tV8nFS4hVdZiqpqhqSlJSUm6t1phcUaRgHH+5qh7/u68N1csU4dH3l3DDG/NYuX2f36EZc0ZnOp21X0T2ZfHaLyLBfsM3A5tVdYEbfx8vqfzkTlPh/u5w07cAlQOWT3Zl2ZUbE5HqVSzOf+9qxfPXNWJN+kGuHDSbZz75we4tMXnamY5Eiqlq8SxexVS1eDAbVNXtwCYROfV43cuBH4BJ/NqA3wv42A1PAnq6q7RaAnvdaa/JQAcRKeka1Du4MmMiVkyMcEOzykx9uC03NqvMm3PWcflL05n0/VbO9gFyxoTDWT/ZMFc2KnIhMAKIB9YCt+MltAlAFbxH796gqrvEOzE8GK/R/BBwu6qmuvXcAfzJrfafqvrWmbZtTzY0kWTxpj389aNlLN2yl1Y1SvN01/rULlfM77BMFMruyYa+JBE/WRIxkebESWXsNxt5YfIqDh7NoHfragxoX5tiCQX8Ds1EkaAfj2uM8Ves69Rx6sNtua5JMiPnrOOyl2YwcdFmO8VlfGdJxJgIUbpoQZ7r3ogP+19ExRIJPDThe65/fR7Lt+71OzQTxSyJGBNhLqycyIf9L+K56xqybudB/vDqbP7ykd2oaPxhScSYCBQTI9zYrApTH2lHz1bVGLNgI+1enM478zdw4qSd4jLhY0nEmAhWolAB/nZ1fT4bcDHnly/OXz9axpWDZjFvzc9+h2aihCURY/KB88oXZ0zfFgy9pQn7j2TQY/h8+r+3kE27rLt5E1qWRIzJJ0SEzg0r8PXDbXnoijpMXbmD9i/P4KUvV3HomN31bkLDkogx+UxCgVjuv7w2Ux9uR8f65Xl1ahqXvjidD7/bzElrLzG5zJKIMflUxcRCDOrRmA/uaUW54gk8OP57rh06l0Ub7dklJvdYEjEmn2tatRQf9b+IF6+/gK17DnPtkLkMGPcdW/cc9js0kw9YEjEmCsTECN2bJjPtkXbcd2ktPl+2nUtfnM5LX3pdqRgTLEsixkSRIgXjeKRjXaY+3JYOAe0lE1I3WXuJCYolEWOiUHLJwrzaozEf3NOaiomFeOz9Jfxh8Gzmrtnpd2gmwlgSMSaKNa1akon3tOaVmy5kz6Hj3Dx8AXeOTmVN+gG/QzMRwpKIMVEuJkboemElvn64LY92rMv8tT/TYeBM/u/jZfx84Kjf4Zk8zpKIMQbw7i+599JaTHukHTc1q8x7CzbS7oXpDJ2+hiPHT/gdnsmjLIkYY34jqVhB/nlNQ74YcDHNqpfiuS9WcpndrGiyYUnEGJOl2uWK8WbvZozp24JSReN5cPz3/GHwbOakWeO7+ZVvSUREYkXkOxH5xI1XF5EFIpImIuNFJN6VF3TjaW56tYB1POnKV4lIR39qYkz+1rpmGSbd24aBN17AnkPHuWXEAnq9+Q0rt+/zOzSTB/h5JDIAWBEw/hwwUFVrAbuBPq68D7DblQ908yEi9YCbgPpAJ2CIiMSGKXZjokpMjHBN42S+frgtf+pyHt9t3E2XV2bx2Pvfs33vEb/DMz7yJYmISDJwJTDCjQtwGfC+m2U00M0Nd3XjuOmXu/m7AuNU9aiqrgPSgObhqYEx0SmhQCz9LqnJzMcu5Y6LqvPRd1tp9+I0Xpi8kn1HjvsdnvGBX0ci/wEeA0668dLAHlU91f/CZqCSG64EbAJw0/e6+X8pz2IZY0wIJRaO5y9X1ePrh9vSsX55Xpu2hkuen8aIWWs5mmFXckWTsCcREbkK2KGqC8O4zX4ikioiqenp6eHarDH5XuVShXnlpsZ88sc2NKxUgn98uoLLXpzBxEWb7TG9UcKPI5GLgKtFZD0wDu801itAoojEuXmSgS1ueAtQGcBNLwH8HFiexTK/oarDVDVFVVOSkpJytzbGGBpUKsE7fVrwbp8WlCxSgIcmfM+Vg2YxbeUOVC2Z5GdhTyKq+qSqJqtqNbyG8amqegswDejuZusFfOyGJ7lx3PSp6n0rJwE3uau3qgO1gW/CVA1jTBba1Pau5BrUozGHjp3g9lHfcuOw+SzcsMvv0EyI5KX7RB4HHhKRNLw2j5GufCRQ2pU/BDwBoKrLgQnAD8AXwL2qaidjjfFZTIxw9QUV+eqhtjzTtT7rdh7kuqHzuHP0t3ZZcD4k0XaomZKSoqmpqX6HYUzUOHQsg7fmrOf1GWs4cDSDay6sxINX1KFyqcJ+h2bOgogsVNWU35VbEjHGhMOeQ8cYOmMNo+as56QqNzevwr2X1aJssQS/QzM5YEnEsSRijL+27z3CoKk/Mv7bTcTHxnD7RdW465KalChcwO/QzGlYEnEsiRiTN6zfeZCXp6xm0vdbKZ4Qx11ta3L7RdUoHB935oVN2FkScSyJGJO3/LB1Hy9+uYqpK3dQpmhB7ru0Jj1aVKFgnPVilJdYEnEsiRiTN6Wu38ULk1exYN0uKpZI4P7La3Nd02QKxOali0ijV3ZJxD4dY0yekFKtFOP6teTdPi0oWzyBJyYu5YqXZ/DRd1vs7vc8zJKIMSbPEBHa1C7Dh/1bM6JnCoXi43hg/GI6vzKTL5Zts7vf8yBLIsaYPEdEaF+vHJ/+sQ2Db25Mxknl7ncX8YfBs5m2yrpSyUssiRhj8qyYGOGqRhX58oFLePF676FYt7/1Ld1fn8dce8JinmAN68aYiHEs4yQTUjcxeGoa2/cdoWWNUjzcoS7NqpXyO7R8z67OciyJGBP5jhw/wdhvNvLatDXsPHCUi2uX4cEr6tCkSkm/Q8u3LIk4lkSMyT8OHzvBO/PX8/qMtew6eIxL6ybx4BV1aJSc6Hdo+Y4lEceSiDH5z8GjGYyet55hM9ey59Bx2p9fjgevqE39iiX8Di3fsCTiWBIxJv/af+Q4o+asZ/istew7kkHH+uV4oH0dzq9Q3O/QIp4lEceSiDH5397Dx3lz9jrenL2O/Ucz6NygPA+0r0Pd8sX8Di1iWRJxLIkYEz32HjrOyNlreXPOeg4ey6BLwwo8cHltapezZHK2LIk4lkSMiT57Dh1j+Ky1jJqznkPHT3Blwwrcf3lt6lgyyTFLIo4lEWOi1+6Dxxgx25JJMCyJOJZEjDGZk0mXhhUYYMnktPJML74iUllEponIDyKyXEQGuPJSIjJFRH50f0u6chGRQSKSJiJLRKRJwLp6ufl/FJFe4a6LMSYylSwSz6Mdz2P245fRv11Npq/cQcf/zOTeMYtY/dN+v8OLKGE/EhGRCkAFVV0kIsWAhUA3oDewS1WfFZEngJKq+riIdAH+CHQBWgCvqGoLESkFpAIpgLr1NFXV3afbvh2JGGMy233QazMZPdeOTLKTZ45EVHWbqi5yw/uBFUAloCsw2s02Gi+x4MrfVs98INEloo7AFFXd5RLHFKBTGKtijMknShaJ57FOdmQSDF978RWRakBjYAFQTlW3uUnbgXJuuBKwKWCxza4su/KsttNPRFJFJDU9PT3X4jfG5C92muvs+ZZERKQo8AHwgKruC5ym3jm2XDvPpqrDVDVFVVOSkpJya7XGmHzqdMlk1XZLJoF8SSIiUgAvgbynqhNd8U/uNNWpdpMdrnwLUDlg8WRXll25McbkiqySSadXLJkE8uPqLAFGAitU9eWASZOAU1dY9QI+Dijv6a7Sagnsdae9JgMdRKSku5Krgyszxphcle2RyXuWTPy4OqsNMAtYCpx0xX/CaxeZAFQBNgA3qOoul3QG4zWaHwJuV9VUt6473LIA/1TVt860fbs6yxhzrrK6z+T+y2rn67657GZDx5KIMSa37D54jJGz1/HWnHUcPPbrHfD5MZlYEnEsiRhjctupZDJq7noOHM3gyoYVGNA+f91nkmfuEzHGmPymZJF4HulYl9mPX8p9l9Zi+iqvzeT+sd+xJv2A3+ExJ20nA8Z9x66Dx3J93XG5vkZjjIlSiYW9ZHJHm+oMm+ndAf/Jkq1c0ziZ+y+vRdXSRcIek6oycMpqtuw5TJGCsbm+fjsSMcaYXFaqSDxPdD6PWY9fSp821flkyVYue2kGj7+/hM27D4U1ltlpO0ndsJv+l9aiYFzuJxFrEzHGmBDbse8IQ6avYcyCjShKj+ZVuO/SWpQtnhDS7aoq1w2dy/a9R5j2aLtzSiLWJmKMMT4pWzyBv11dn+mPtqN708qMWbCRS16YxrOfr2TvoeMh2+6sH3eyaOOekB2FgCURY4wJm4qJhfj3tQ35+uG2dG5QgTdmruHi56cyZHoah4+dyNVtqSoDv1pNxRIJXJ+SnKvrDmRJxBhjwqxq6SIMvPFCPrv/YppVK8XzX6zi0henMyF1EydO5k4Tw/TV6Xy3cQ/3Xha6oxCwJGKMMb45v0JxRvZuxvh+LSlXIoHH3l/ClYNmMSdt5zmtd236AR6Z8D1VSxfm+qaVz7zAObAkYowxPmtRozQf9W/Nazc34eCxDG4ZsYC731nIpl1nfyXXtr2HuW3kNwC81bsZ8XGh3c1bEjHGmDxARLiyUQWmPNiWRzvWZcbqdC5/eQavTUvj+ImTZ14BsOvgMW4b+Q37Dh9n9B3NqZFUNMRRWxIxxpg8JaFALPdeWoupj7Sl/flleWHyKrq9NoflW/eedrm5a3ZyzZA5bNx1iOG9UmhQqURY4rUkYowxeVCFEoUYcktTXr+1CT/tO0rXwXN4cfIqjmb89iquvYeP8+TEJdw8fAECvNunBS1rlA5bnNbtiTHG5GGdGlSgZY3SPPPJCgZPS+OL5dt57rpGFE+I4935G5i4aAsHj2VwV9saPNi+DgkFQnclVlbsjnVjjIkQ01ft4M8fLmPr3sOoQnxsDF0alufOi2uE/PRVdnes25GIMcZEiHZ1yzL5wUsYMWsthQrE0r1pMqWLFvQ1JksixhgTQYoWjOOB9nX8DuMX1rBujDEmaBGfRESkk4isEpE0EXnC73iMMSaaRHQSEZFY4DWgM1AP6CEi9fyNyhhjokdEJxGgOZCmqmtV9RgwDujqc0zGGBM1Ij2JVAI2BYxvdmXGGGPCINKTSI6ISD8RSRWR1PT0dL/DMcaYfCPSk8gWILCf42RX9huqOkxVU1Q1JSkpKWzBGWNMfhfpSeRboLaIVBeReOAmYJLPMRljTNSI+G5PRKQL8B8gFnhTVf95hvnTgQ1Bbq4McG5Pi4lMVu/oYvWOLjmtd1VV/d2pnIhPIuEkIqlZ9R2T31m9o4vVO7qca70j/XSWMcYYH1kSMcYYEzRLImdnmN8B+MTqHV2s3tHlnOptbSLGGGOCZkcixhhjgmZJxBhjTNAsiWQiIm+KyA4RWZbNdBGRQa7r+SUi0iTcMYZCDup9i6vvUhGZKyIXhDvGUDhTvQPmayYiGSLSPVyxhVJO6i0i7URksYgsF5EZ4YwvlHLwXS8hIv8Tke9d3W8Pd4y5TUQqi8g0EfnB1WlAFvMEtW+zJPJ7o4BOp5neGajtXv2AoWGIKRxGcfp6rwPaqmpD4BnyTyPkKE5f71OPHHgO+DIcAYXJKE5TbxFJBIYAV6tqfeD6MMUVDqM4/Wd+L/CDql4AtANecj1iRLIM4GFVrQe0BO7N4rEZQe3bLIlkoqozgV2nmaUr8LZ65gOJIlIhPNGFzpnqrapzVXW3G52P109ZxMvB5w3wR+ADYEfoIwqPHNT7ZmCiqm5080dT3RUoJiICFHXzZoQjtlBR1W2qusgN7wdW8Psez4Pat1kSOXvW/Tz0AT73O4hwEJFKwDXknyPOnKoDlBSR6SKyUER6+h1QGA0Gzge2AkuBAap60t+Qco+IVAMaAwsyTQpq3xaXW4GZ6CAil+IlkTZ+xxIm/wEeV9WT3g/TqBEHNAUuBwoB80Rkvqqu9jessOgILAYuA2oCU0Rklqru8zescyciRfGOqh/IrfpYEjl7Oep+Pj8SkUbACKCzqv7sdzxhkgKMcwmkDNBFRDJU9SN/wwq5zcDPqnoQOCgiM4ELgGhIIrcDz6p3E12aiKwDzgO+8TescyMiBfASyHuqOjGLWYLat9nprLM3CejprmRoCexV1W1+BxVqIlIFmAjcFiW/RgFQ1eqqWk1VqwHvA/2jIIEAfAy0EZE4ESkMtMA7jx4NNuIdgSEi5YC6wFpfIzpHrn1nJLBCVV/OZrag9m12JJKJiIzFuyKjjIhsBp4CCgCo6uvAZ0AXIA04hPerJeLloN7/B5QGhrhf5Rn5ocfTHNQ7XzpTvVV1hYh8ASwBTgIjVPW0l0FHihx85s8Ao0RkKSB4pzMjvYv4i4DbgKUistiV/QmoAue2b7NuT4wxxgTNTmcZY4wJmiURY4wxQbMkYowxJmiWRIwxxgTNkogxxpigWRIxxhgTNEsixhhjgmZJxBifiMijInK/Gx4oIlPd8GUi8p6/0RmTM5ZEjPHPLOBiN5wCFHX9G10MzPQtKmPOgiURY/yzEGgqIsWBo8A8vGRyMV6CMSbPs76zjPGJqh53PcT2Bubi9VN1KVCL6Ons0EQ4OxIxxl+zgEfwTl/NAu4GvlPr1M5ECEsixvhrFlABmKeqPwFHsFNZJoJYL77GGGOCZkcixhhjgmZJxBhjTNAsiRhjjAmaJRFjjDFBsyRijDEmaJZEjDHGBM2SiDHGmKD9P2PrmZNxg3m6AAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvQklEQVR4nO3dd1QU198G8GeX3nYBFRBBxIYdFBSxFxSVGEuMXbGX2E2MmmJJ02iMLdYYa+wmmsSOFQs2BBVUbIgFAQXpStv7/uGPfV1BBQSGhedzzp7jztyd+c6wOA8zd+7IhBACRERERPROcqkLICIiItIGDE1EREREucDQRERERJQLDE1EREREucDQRERERJQLDE1EREREucDQRERERJQLDE1EREREucDQRERERJQLDE1E+XDixAnIZDLs2rVL6lJyJSoqCj169ECZMmUgk8mwaNGit7aVyWSYNWtWkdX2oe7fvw+ZTIb169dLXQoRlXAMTVRsrV+/HjKZDIaGhnj8+HG2+a1atUKdOnUkqEz7TJo0CYcOHcL06dOxadMmdOjQIdefPXv2LGbNmoW4uLjCKzAXtmzZ8s6wV1olJSVh5syZqFOnDkxMTFCmTBm4uLhgwoQJiIiIyNb+zJkz6NatG6ytrWFgYIBKlSph5MiRePDgQba2s2bNgkwmU7/09PRQqVIljB8/XvLvg7bYv3+/Vv0RQu+mK3UBRO+TmpqKuXPnYunSpVKXorWOHTuGLl264Isvvnhv2xcvXkBX9///azh79ixmz56NQYMGwdzcvBCrfLctW7YgODgYEydO1Jju4OCAFy9eQE9PT5rCJJSeno4WLVrg5s2b8PHxwbhx45CUlISQkBBs2bIF3bp1g62trbr90qVLMWHCBFSuXBnjxo1D+fLlcePGDaxZswbbt2/H/v370aRJk2zrWbFiBUxNTZGcnIyjR49i6dKluHz5Mk6fPl2Um6uV9u/fj2XLljE4lRAMTVTsubi44Pfff8f06dM1DgClQXJyMkxMTD54OdHR0bkOPIaGhh+8vtxISUmBsbHxBy8n62xkabRnzx4EBgZi8+bN6Nu3r8a8ly9fIi0tTf3+zJkzmDhxIpo1a4aDBw9q7PvRo0ejadOm6NGjB0JCQmBhYaGxrB49eqBs2bIAgJEjR6J3797Yvn07Lly4gEaNGhXiFuZORkYGVCoV9PX1pS6lSAgh8PLlSxgZGUldSqnDy3NU7H311VfIzMzE3Llz39nuXX1b3uynk3XZ4datW+jfvz+USiXKlSuHb7/9FkIIPHz4EF26dIFCoYCNjQ0WLFiQ4zozMzPx1VdfwcbGBiYmJvj444/x8OHDbO3Onz+PDh06QKlUwtjYGC1btsSZM2c02mTVdP36dfTt2xcWFhZo1qzZO7f53r17+PTTT2FpaQljY2M0btwY+/btU8/PusQphMCyZcvUl1ne5fV9NWvWLEyZMgUA4OjoqP78/fv31e3//PNPuLq6wsjICJaWlujdu3e2fZB1KTUgIAAtWrSAsbExvvrqKwDAP//8A29vb9ja2sLAwABVqlTB999/j8zMTI3P79u3D+Hh4eoaKlWqBODtP/djx46hefPmMDExgbm5Obp06YIbN27kuM/v3LmjPpOmVCoxePBgpKSkaLT19fVFs2bNYG5uDlNTUzg5Oam34W3q1KmD1q1bZ5uuUqlQoUIF9OjRQz1t27ZtcHV1hZmZGRQKBerWrYvFixe/c/l3794FADRt2jTbPENDQygUCvX777//HjKZDBs2bMgWVqtUqYJ58+bhyZMnWLVq1TvXCQDNmzfXWP+7vP6zb9KkCYyMjODo6IiVK1dqtEtLS8OMGTPg6uoKpVIJExMTNG/eHMePH9dol/Xz/uWXX7Bo0SJUqVIFBgYGuH79er6WsWzZMlSuXBnGxsZo3749Hj58CCEEvv/+e9jZ2cHIyAhdunRBbGxstm07cOCA+jtmZmYGb29vhISEqOcPGjQIy5YtAwCNy5xZVCoVFi1ahNq1a8PQ0BDW1tYYOXIknj9/rrGeSpUq4aOPPsKhQ4fg5uYGIyOjXP2cqODxTBMVe46Ojhg4cCB+//13TJs2rUDPNvXq1Qs1a9bE3LlzsW/fPvzwww+wtLTEqlWr0KZNG/z888/YvHkzvvjiCzRs2BAtWrTQ+PyPP/4ImUyGqVOnIjo6GosWLYKnpyeCgoLUfwUeO3YMHTt2hKurK2bOnAm5XI5169ahTZs2OHXqVLa/1D/99FNUq1YNP/30E4QQb609KioKTZo0QUpKCsaPH48yZcpgw4YN+Pjjj7Fr1y5069YNLVq0wKZNmzBgwAC0a9cOAwcOzNP+6d69O27duoWtW7di4cKF6rMN5cqVU2//t99+i549e2LYsGF4+vQpli5dihYtWiAwMFDj7FZMTAw6duyI3r17o3///rC2tgbwKtiZmppi8uTJMDU1xbFjxzBjxgwkJCRg/vz5AICvv/4a8fHxePToERYuXAgAMDU1fWvdR44cQceOHVG5cmXMmjULL168wNKlS9G0aVNcvnxZHbiy9OzZE46OjpgzZw4uX76MNWvWwMrKCj///DMAICQkBB999BHq1auH7777DgYGBrhz50624PumXr16YdasWYiMjISNjY16+unTpxEREYHevXsDeBXI+vTpg7Zt26rXeePGDZw5cwYTJkx46/IdHBwAABs3bsQ333zz1kCckpKCo0ePonnz5nB0dHxrrSNGjMDevXsxbdq0d25XVmh+84zU2zx//hydOnVCz5490adPH+zYsQOjR4+Gvr4+hgwZAgBISEjAmjVr0KdPHwwfPhyJiYn4448/4OXlhQsXLsDFxUVjmevWrcPLly8xYsQIGBgYwNLSMs/L2Lx5M9LS0jBu3DjExsZi3rx56NmzJ9q0aYMTJ05g6tSpuHPnDpYuXYovvvgCa9euVX9206ZN8PHxgZeXF37++WekpKRgxYoVaNasGQIDA9V9xSIiIuDr64tNmzZl2y8jR47E+vXrMXjwYIwfPx5hYWH47bffEBgYiDNnzmhccg4NDUWfPn0wcuRIDB8+HE5OTrna91TABFExtW7dOgFAXLx4Udy9e1fo6uqK8ePHq+e3bNlS1K5dW/0+LCxMABDr1q3LtiwAYubMmer3M2fOFADEiBEj1NMyMjKEnZ2dkMlkYu7cuerpz58/F0ZGRsLHx0c97fjx4wKAqFChgkhISFBP37FjhwAgFi9eLIQQQqVSiWrVqgkvLy+hUqnU7VJSUoSjo6No165dtpr69OmTq/0zceJEAUCcOnVKPS0xMVE4OjqKSpUqiczMTI3tHzNmTK6W++a+mj9/vgAgwsLCNNrdv39f6OjoiB9//FFj+rVr14Surq7G9JYtWwoAYuXKldnWl5KSkm3ayJEjhbGxsXj58qV6mre3t3BwcMjWNqefu4uLi7CyshIxMTHqaVeuXBFyuVwMHDhQPS1rnw8ZMkRjmd26dRNlypRRv1+4cKEAIJ4+fZpt/e8SGhoqAIilS5dqTP/ss8+EqampetsnTJggFAqFyMjIyNPyU1JShJOTkwAgHBwcxKBBg8Qff/whoqKiNNoFBQUJAGLChAnvXF69evWEpaWl+n3W/gkNDRVPnz4V9+/fF2vXrhVGRkaiXLlyIjk5+b01Zv3sFyxYoJ6Wmpqq/hmlpaUJIV79/qWmpmp89vnz58La2lrj55P181YoFCI6OlqjfV6XUa5cOREXF6eePn36dAFAODs7i/T0dPX0Pn36CH19ffX3MTExUZibm4vhw4drrCsyMlIolUqN6WPGjBE5HWpPnTolAIjNmzdrTD948GC26Q4ODgKAOHjwYLblUNHi5TnSCpUrV8aAAQOwevVqPHnypMCWO2zYMPW/dXR04ObmBiEEhg4dqp5ubm4OJycn3Lt3L9vnBw4cCDMzM/X7Hj16oHz58ti/fz8AICgoCLdv30bfvn0RExODZ8+e4dmzZ0hOTkbbtm3h5+cHlUqlscxRo0blqvb9+/ejUaNGGpfwTE1NMWLECNy/fx/Xr1/P3U7Ip7///hsqlQo9e/ZUb9ezZ89gY2ODatWqZbskYmBggMGDB2dbzuv9MhITE/Hs2TM0b94cKSkpuHnzZp7revLkCYKCgjBo0CBYWlqqp9erVw/t2rVT/2xe9+Y+b968OWJiYpCQkAAA6jNm//zzT7af17tUr14dLi4u2L59u3paZmYmdu3ahc6dO6u33dzcHMnJyfD19c31soFX++78+fPqS6jr16/H0KFDUb58eYwbNw6pqakAXu1XABrf1ZyYmZmpt/l1Tk5OKFeuHCpVqoQhQ4agatWqOHDgQK77pOnq6mLkyJHq9/r6+hg5ciSio6MREBAA4NXvX1afJJVKhdjYWGRkZMDNzQ2XL1/OtsxPPvlEfcYzS16X8emnn0KpVKrfu7u7AwD69++vcTOEu7s70tLS1Hfx+vr6Ii4uDn369NH47uvo6MDd3T3bdz8nO3fuhFKpRLt27TSW4erqClNT02zLcHR0hJeX13uXS4WLoYm0xjfffIOMjIz39m3Ki4oVK2q8VyqVMDQ0VF+Gen36m/0MAKBatWoa72UyGapWraq+fHH79m0AgI+PD8qVK6fxWrNmDVJTUxEfH6+xjLddPnlTeHh4jqfoa9asqZ5fmG7fvg0hBKpVq5Zt227cuIHo6GiN9hUqVMixo25ISAi6desGpVIJhUKBcuXKoX///gCQbd/kRtZ2v23fZIXW1735Pci67JT1M+/VqxeaNm2KYcOGwdraGr1798aOHTtyFaB69eqFM2fOqA+4J06cQHR0NHr16qVu89lnn6F69ero2LEj7OzsMGTIEBw8eDBX26tUKjFv3jzcv38f9+/fxx9//AEnJyf89ttv+P777wH8f1jKCk9vk5iYmGOw+uuvv+Dr64stW7agcePGiI6OzlMnZFtb22w3NFSvXh0ANPrHbdiwAfXq1YOhoSHKlCmDcuXKYd++fTl+D972e5KXZeT0+w8A9vb2OU7P+j5k/V63adMm23f/8OHD2b77Obl9+zbi4+NhZWWVbRlJSUnZlpHb/xeocLFPE2mNypUro3///li9enWOfS7e1p/j9Q7Fb9LR0cnVNADv7F/0NlkH1fnz52frT5Hlzb452nJHjEqlgkwmw4EDB3LcZ7nZrri4OLRs2RIKhQLfffcdqlSpAkNDQ1y+fBlTp07N01mdD/G+n7mRkRH8/Pxw/Phx7Nu3DwcPHsT27dvRpk0bHD58+K2fB16FpunTp2Pnzp2YOHEiduzYAaVSqTFWlpWVFYKCgnDo0CEcOHAABw4cwLp16zBw4EBs2LAh19vh4OCAIUOGoFu3bqhcuTI2b96MH374AVWrVoWuri6uXr361s+mpqYiNDQUbm5u2ea1aNFC/YdE586dUbduXfTr1w8BAQGQywvmb+8///wTgwYNQteuXTFlyhRYWVlBR0cHc+bMybHDeU7fp7wu420/t/d9H7K+l5s2bdLoq5bl9bNUb6NSqWBlZYXNmzfnOP/Ns2ja8v9CScfQRFrlm2++wZ9//qnuLPu6rLMDbw66V5hnXLL+4swihMCdO3dQr149AK/uSgIAhUIBT0/PAl23g4MDQkNDs03PuqSV1Un4Q70tjFapUgVCCDg6OqrPGuTViRMnEBMTg7///lujk31YWFiu63hT1na/bd+ULVs2X8M4yOVytG3bFm3btsWvv/6Kn376CV9//TWOHz/+zp+to6MjGjVqhO3bt2Ps2LH4+++/0bVrVxgYGGi009fXR+fOndG5c2eoVCp89tlnWLVqFb799ltUrVo1T7VaWFigSpUqCA4OBgCYmJigdevWOHbsGMLDw3P8buzYsQOpqan46KOP3rlsU1NTzJw5E4MHD8aOHTvUndnfJSIiItvwGbdu3QIAdaf8Xbt2oXLlyvj77781ftYzZ8587/KzFMQyciPr99rKyuq9v9fv+v05cuQImjZtykCkRXh5jrRKlSpV0L9/f6xatQqRkZEa8xQKBcqWLQs/Pz+N6cuXLy+0ejZu3KhxyWPXrl148uQJOnbsCABwdXVFlSpV8MsvvyApKSnb558+fZrvdXfq1AkXLlyAv7+/elpycjJWr16NSpUqoVatWvle9uuyDnRvhtHu3btDR0cHs2fPznYWTgiBmJiY9y476y/61z+flpaW48/MxMQkV5frypcvDxcXF2zYsEGj5uDgYBw+fBidOnV67zLelNPt5llnDrP6Db1Lr169cO7cOaxduxbPnj3TuDQHINu+ksvl6uD9ruVfuXIFz549yzY9PDwc169f17hE+c0330AIgUGDBuHFixca7cPCwvDll1+ifPnyGn2P3qZfv36ws7PL8Y+XnGRkZGjcIp+WloZVq1ahXLlycHV1BZDzd+H8+fMa3+/3KYhl5IaXlxcUCgV++uknpKenZ5v/+u/1235/evbsiczMTPUl1NdlZGRwxPViimeaSOt8/fXX2LRpE0JDQ1G7dm2NecOGDcPcuXMxbNgwuLm5wc/PT/0XbWGwtLREs2bNMHjwYERFRWHRokWoWrUqhg8fDuDVwW/NmjXo2LEjateujcGDB6NChQp4/Pgxjh8/DoVCgf/++y9f6542bRq2bt2Kjh07Yvz48bC0tMSGDRsQFhaGv/76q8Aum2Qd1L7++mv07t0benp66Ny5M6pUqYIffvgB06dPx/3799G1a1eYmZkhLCwMu3fvxogRI947AnmTJk1gYWEBHx8fjB8/HjKZDJs2bcrxUqirqyu2b9+OyZMno2HDhjA1NUXnzp1zXO78+fPRsWNHeHh4YOjQoeohB5RKZb5GZv7uu+/g5+cHb29vODg4IDo6GsuXL4ednd17x9ICXh0gv/jiC3zxxRewtLTMdnZi2LBhiI2NRZs2bWBnZ4fw8HAsXboULi4u6j5qOfH19cXMmTPx8ccfo3HjxjA1NcW9e/ewdu1apKamamxrixYt8Msvv2Dy5MmoV68eBg0ahPLly+PmzZv4/fffoVKpsH///lwNI6Cnp4cJEyZgypQpOHjw4Hsfy2Nra4uff/4Z9+/fR/Xq1bF9+3YEBQVh9erV6tvqP/roI/z999/o1q0bvL29ERYWhpUrV6JWrVo5/sGRk4JYRm4oFAqsWLECAwYMQIMGDdC7d2+UK1cODx48wL59+9C0aVP89ttvAP7/92f8+PHw8vKCjo4OevfujZYtW2LkyJGYM2cOgoKC0L59e+jp6eH27dvYuXMnFi9erDGOFxUTUtyyR5Qbrw858CYfHx8BQGPIASFe3YI9dOhQoVQqhZmZmejZs6eIjo5+65ADb95C7uPjI0xMTLKt783hDbKGHNi6dauYPn26sLKyEkZGRsLb21uEh4dn+3xgYKDo3r27KFOmjDAwMBAODg6iZ8+e4ujRo++t6V3u3r0revToIczNzYWhoaFo1KiR2Lt3b7Z2+IAhB4QQ4vvvvxcVKlQQcrk82/ADf/31l2jWrJkwMTERJiYmokaNGmLMmDEiNDRU3ebN/fe6M2fOiMaNGwsjIyNha2srvvzyS3Ho0CEBQBw/flzdLikpSfTt21eYm5urb7EX4u1DTRw5ckQ0bdpUGBkZCYVCITp37iyuX7+u0eZt+zzru5e1nUePHhVdunQRtra2Ql9fX9ja2oo+ffqIW7duvX+H/k/Tpk0FADFs2LBs83bt2iXat28vrKyshL6+vqhYsaIYOXKkePLkyTuXee/ePTFjxgzRuHFjYWVlJXR1dUW5cuWEt7e3OHbsWI6f8fPzE126dBFly5YVenp6omLFimL48OHi/v372dq+6zsZHx8vlEqlaNmy5TtrzPrZX7p0SXh4eAhDQ0Ph4OAgfvvtN412KpVK/PTTT8LBwUEYGBiI+vXri7179wofHx+NoSayft7z58/Ptq4PXUbW7/XOnTs1pr/t/6Ljx48LLy8voVQqhaGhoahSpYoYNGiQuHTpkrpNRkaGGDdunChXrpyQyWTZhh9YvXq1cHV1FUZGRsLMzEzUrVtXfPnllyIiIkLdxsHBQXh7e79zP1PRkAmRj96tREREudCqVSs8e/ZM3b+KSJuxTxMRERFRLjA0EREREeUCQxMRERFRLrBPExEREVEu8EwTERERUS4wNBERERHlAge3LCAqlQoREREwMzPL9eMeiIiISFpCCCQmJsLW1va9gwIzNBWQiIiIbE/GJiIiIu3w8OFD2NnZvbMNQ1MBMTMzA/BqpysUComrISIiotxISEiAvb29+jj+LgxNBSTrkpxCoWBoIiIi0jK56VrDjuBEREREucDQRERERJQLDE1EREREucDQRERERJQLDE1EREREucDQRERERJQLDE1EREREucDQRERERJQLDE1EREREucDQRERERJQLDE1EREREucDQRERERJQLDE1a4OydZ0hKzZC6DCIiolKNoamY23bhAfr/cR4TtwUiUyWkLoeIiKjUYmgq5pxszKCrI8eRG9GYs/+G1OUQERGVWgxNxVz9ihZY8KkzAGDN6TBsOf9A4oqIiIhKJ4YmLdDZ2RaT21UHAHz7TzBO334mcUVERESlD0OTlhjXpiq6utgiUyUwenMA7kQnSV0SERFRqcLQpCVkMhnmflIPrg4WSHyZgSHrLyI2OU3qsoiIiEoNhiYtYqing1UDXGFnYYQHsSkYuekSUjMypS6LiIioVGBo0jJlTQ2wblBDmBno4uL955j21zUIwaEIiIiIChtDkxaqZm2G5f0bQEcuw+7Ax1hy9I7UJREREZV4DE1aqnm1cvihax0AwMIjt/BP0GOJKyIiIirZGJq0WJ9GFTGiRWUAwJSdV3HpfqzEFREREZVcDE1abmqHGmhfyxppmSoM33gJ958lS10SERFRicTQpOV05DIs6u2CenZKPE9Jx+D1F/GcQxEQEREVOIamEsBYXxdrfNxQwdwIYc+SMXJTAIciICIiKmAMTSWElZkh1g1+NRTBhfuxmLLzKlQqDkVARERUUBiaSpDq1mZY0d8VunIZ/r0SgV99b0ldEhERUYnB0FTCNKtWFj91rwsA+O34Hey4+FDiioiIiEoGSUOTn58fOnfuDFtbW8hkMuzZs+etbUeNGgWZTIZFixZpTI+NjUW/fv2gUChgbm6OoUOHIilJ82G2V69eRfPmzWFoaAh7e3vMmzcv2/J37tyJGjVqwNDQEHXr1sX+/fsLYhMl0dPNHmNbVwUATN99DSdvPZW4IiIiIu0naWhKTk6Gs7Mzli1b9s52u3fvxrlz52Bra5ttXr9+/RASEgJfX1/s3bsXfn5+GDFihHp+QkIC2rdvDwcHBwQEBGD+/PmYNWsWVq9erW5z9uxZ9OnTB0OHDkVgYCC6du2Krl27Ijg4uOA2toh93r46utWvgEyVwGd/BiAkIl7qkoiIiLSbKCYAiN27d2eb/ujRI1GhQgURHBwsHBwcxMKFC9Xzrl+/LgCIixcvqqcdOHBAyGQy8fjxYyGEEMuXLxcWFhYiNTVV3Wbq1KnCyclJ/b5nz57C29tbY73u7u5i5MiRua4/Pj5eABDx8fG5/kxhS03PFL1X+QuHqXtFwx98xaPnKVKXREREVKzk5fhdrPs0qVQqDBgwAFOmTEHt2rWzzff394e5uTnc3NzU0zw9PSGXy3H+/Hl1mxYtWkBfX1/dxsvLC6GhoXj+/Lm6jaenp8ayvby84O/v/9baUlNTkZCQoPEqbvR15Vg5wBXVrU0RnZiKwesuIP5FutRlERERaaViHZp+/vln6OrqYvz48TnOj4yMhJWVlcY0XV1dWFpaIjIyUt3G2tpao03W+/e1yZqfkzlz5kCpVKpf9vb2edu4IqI00sO6wY1gZWaAW1FJGP1nANIyVFKXRUREpHWKbWgKCAjA4sWLsX79eshkMqnLyWb69OmIj49Xvx4+LL53qVUwN8LaQQ1hoq+Ds3djMPWvqxCCYzgRERHlRbENTadOnUJ0dDQqVqwIXV1d6OrqIjw8HJ9//jkqVaoEALCxsUF0dLTG5zIyMhAbGwsbGxt1m6ioKI02We/f1yZrfk4MDAygUCg0XsVZnQpKLO/vCh25DLsDH+OXw6FSl0RERKRVim1oGjBgAK5evYqgoCD1y9bWFlOmTMGhQ4cAAB4eHoiLi0NAQID6c8eOHYNKpYK7u7u6jZ+fH9LT/78vj6+vL5ycnGBhYaFuc/ToUY31+/r6wsPDo7A3s0i1rF4Oc7q9GsNp2fG72HL+gcQVERERaQ9dKVeelJSEO3fuqN+HhYUhKCgIlpaWqFixIsqUKaPRXk9PDzY2NnBycgIA1KxZEx06dMDw4cOxcuVKpKenY+zYsejdu7d6eIK+ffti9uzZGDp0KKZOnYrg4GAsXrwYCxcuVC93woQJaNmyJRYsWABvb29s27YNly5d0hiWoKTo2dAej+NeYPHR2/hmzzXYKA3Qpob1+z9IRERUykl6punSpUuoX78+6tevDwCYPHky6tevjxkzZuR6GZs3b0aNGjXQtm1bdOrUCc2aNdMIO0qlEocPH0ZYWBhcXV3x+eefY8aMGRpjOTVp0gRbtmzB6tWr4ezsjF27dmHPnj2oU6dOwW1sMTLRsxo+dbWDSgBjNgfiysM4qUsiIiIq9mSCPYILREJCApRKJeLj44t9/yYASM9UYcj6izh1+xnKmurjr9FN4FDGROqyiIiIilRejt/Ftk8TFS49HTlW9HdFbVsFniWlYeDaC3iWlCp1WURERMUWQ1MpZmqgi3WDG8Le0gjhMSkYsv4iklMzpC6LiIioWGJoKuWszAyxYXAjWJro4+qjeHy2+TLSMzn4JRER0ZsYmgiVy5niDx83GOnp4OStp5j21zUOfklERPQGhiYCANSvaIHl/RpARy7DX5cfYd4hDn5JRET0OoYmUmtdwwpzur8a/HLFibtYfyZM4oqIiIiKD4Ym0tDTzR5TvF4NHjp773XsvRohcUVERETFA0MTZfNZqyoY6OEAIYDJ26/g7N1nUpdEREQkOYYmykYmk2Fm59roVNcGaZkqjNwYgOsRCVKXRUREJCmGJsqRjlyGX3u6wN3REompGfBZdwEPYlKkLouIiEgyDE30VoZ6Ovjdxw01bMzwNDEVA9aex9NEjhpORESlE0MTvZPCUA8bhzRCRUtjhMekwGftBSS8TJe6LCIioiLH0ETvZaUwxKahjVDW1ADXnyRg+IZLeJmeKXVZRERERYqhiXLFoYwJNgxpCDMDXZwPi8X4rYHI4ONWiIioFGFoolyrbavE7z5u0NeV4/D1KHy1m49bISKi0oOhifKkceUyWNqnPuQyYMelR5h78KbUJRERERUJhibKM6/aNpj7ST0AwKqT97Dq5F2JKyIiIip8DE2ULz3d7PFVpxoAgDkHbmLHxYcSV0RERFS4GJoo30a0qIJRLasAAKb9fRWHQiIlroiIiKjwMDTRB5nawQm93OyhEsC4rYE4e4fPqSMiopKJoYk+iEwmw4/d6qBDbRukZagwbOMlBD2Mk7osIiKiAsfQRB9MV0eOxX1c0KxqWaSkZWLQugsIjUyUuiwiIqICxdBEBcJAVwerBriifkVzxKWkY8Af5/mAXyIiKlEYmqjAmBjoYt2ghnCyNkN0Yir6/XEOUQkvpS6LiIioQDA0UYEyN9bHpqGvHvD7MPYF+q85j9jkNKnLIiIi+mAMTVTgrBSG2DzMHdYKA9yOToLP2gtIeJkudVlEREQfhKGJCoW9pTE2D3OHpYk+rj2Ox9D1F/EiLVPqsoiIiPKNoYkKTVUrM2wc0ghmhrq4eP85Rmy6hNQMBiciItJODE1UqOpUUGL94IYw0tPBqdvPMH5rIDIyVVKXRURElGcMTVToXB0s8ftAN+jryHEoJApTdl2FSiWkLouIiChPGJqoSDSrVhbL+jWAjlyG3YGP8c0/wRCCwYmIiLQHQxMVmXa1rLGwlwtkMmDL+Qf4cd8NBiciItIaDE1UpD52tsXP3esBANacDsOiI7clroiIiCh3GJqoyPVsaI+ZnWsBABYfvY3VfnclroiIiOj9GJpIEoObOmKKlxMA4Kf9N7Hh7H1pCyIiInoPhiaSzJjWVTG2dVUAwMx/Q7D1wgOJKyIiIno7SUOTn58fOnfuDFtbW8hkMuzZs0c9Lz09HVOnTkXdunVhYmICW1tbDBw4EBERERrLiI2NRb9+/aBQKGBubo6hQ4ciKSlJo83Vq1fRvHlzGBoawt7eHvPmzctWy86dO1GjRg0YGhqibt262L9/f6FsM2n6vH11DG/uCAD4avc17Ap4JHFFREREOZM0NCUnJ8PZ2RnLli3LNi8lJQWXL1/Gt99+i8uXL+Pvv/9GaGgoPv74Y412/fr1Q0hICHx9fbF37174+flhxIgR6vkJCQlo3749HBwcEBAQgPnz52PWrFlYvXq1us3Zs2fRp08fDB06FIGBgejatSu6du2K4ODgwtt4AgDIZDJ81akmfDwcIATw5a4r+PdKxPs/SEREVMRkopjc8y2TybB792507dr1rW0uXryIRo0aITw8HBUrVsSNGzdQq1YtXLx4EW5ubgCAgwcPolOnTnj06BFsbW2xYsUKfP3114iMjIS+vj4AYNq0adizZw9u3rwJAOjVqxeSk5Oxd+9e9boaN24MFxcXrFy5Mlf1JyQkQKlUIj4+HgqFIp97ofRSqQS+3nMNWy88hI5chmV966NDnfJSl0VERCVcXo7fWtWnKT4+HjKZDObm5gAAf39/mJubqwMTAHh6ekIul+P8+fPqNi1atFAHJgDw8vJCaGgonj9/rm7j6empsS4vLy/4+/u/tZbU1FQkJCRovCj/5HIZfuxaF90bVECmSmDc1kAcuR4ldVlERERqWhOaXr58ialTp6JPnz7qJBgZGQkrKyuNdrq6urC0tERkZKS6jbW1tUabrPfva5M1Pydz5syBUqlUv+zt7T9sAwlyuQzzezjjY2dbpGcKfLb5Mk6ERktdFhEREQAtCU3p6eno2bMnhBBYsWKF1OUAAKZPn474+Hj16+HDh1KXVCLoyGX4taczOtaxQVqmCiM2BeD07WdSl0VERFT8Q1NWYAoPD4evr6/G9UYbGxtER2ueicjIyEBsbCxsbGzUbaKiNC/zZL1/X5us+TkxMDCAQqHQeFHB0NWRY0mf+mhXyxppGSoM23gR5+7FSF0WERGVcsU6NGUFptu3b+PIkSMoU6aMxnwPDw/ExcUhICBAPe3YsWNQqVRwd3dXt/Hz80N6erq6ja+vL5ycnGBhYaFuc/ToUY1l+/r6wsPDo7A2jd5DT0eO3/rWR2uncniZrsKQ9Rdx8X6s1GUREVEpJmloSkpKQlBQEIKCggAAYWFhCAoKwoMHD5Ceno4ePXrg0qVL2Lx5MzIzMxEZGYnIyEikpaUBAGrWrIkOHTpg+PDhuHDhAs6cOYOxY8eid+/esLW1BQD07dsX+vr6GDp0KEJCQrB9+3YsXrwYkydPVtcxYcIEHDx4EAsWLMDNmzcxa9YsXLp0CWPHji3yfUL/z0BXByv6u6J5tbJIScvEoLUXEBDO4ERERBIREjp+/LgAkO3l4+MjwsLCcpwHQBw/fly9jJiYGNGnTx9hamoqFAqFGDx4sEhMTNRYz5UrV0SzZs2EgYGBqFChgpg7d262Wnbs2CGqV68u9PX1Re3atcW+ffvytC3x8fECgIiPj8/XvqC3e5GWIfr+7i8cpu4VtWccFAHhsVKXREREJURejt/FZpwmbcdxmgrXi7RMDFl/Ef73YmBmoIuNQxuhfkULqcsiIiItV2LHaaLSy0hfB38McoO7oyUSUzMw8I8LuPIwTuqyiIioFGFoIq1hrK+LdYMbolGlV8Gp/x/nGZyIiKjIMDSRVskKTg0rWSDxJYMTEREVHYYm0jomBrpYP7gRgxMRERUphibSSgxORERU1BiaSGvlFJyCGJyIiKiQMDSRVssKTo0qWSLxZQYGrDmPyw+eS10WERGVQAxNpPVMDP53V91rwxEEhDM4ERFRwWJoohLh1Rmnhmhc2RJJqRkY+Md5XOKz6oiIqAAxNFGJYayvi3WDGqFJlTJITsvEwLUXcCGMwYmIiAoGQxOVKEb6OvjDpyGaVX31kF+ftRdw9u4zqcsiIqISgKGJShwjfR2s8XFDi+rl8CI9E4PXXYTfradSl0VERFqOoYlKJEM9Hawe4Io2NayQmqHCsA2XcOxmlNRlERGRFmNoohLLUE8HK/u7wqu2NdIyVRi5KQCHQiKlLouIiLQUQxOVaPq6cvzWtwG865VHeqbAmM2XsfdqhNRlERGRFmJoohJPT0eOxb1c0K1+BWSoBMZvDcTuwEdSl0VERFqGoYlKBV0dOX751Bk93eygEsDkHVew/eIDqcsiIiItwtBEpYaOXIa53euhf+OKEAKY+tc1bPK/L3VZRESkJRiaqFSRy2X4vksdDG3mCAD49p8QrDl1T+KqiIhIGzA0Uakjk8nwjXdNfNaqCgDgh3038Nux2xJXRURExR1DE5VKMpkMU7ycMLlddQDAL4dv4eeDNyGEkLgyIiIqrhiaqNSSyWQY37YavvGuCQBYceIuZv0bApWKwYmIiLJjaKJSb1jzyvixWx3IZMAG/3BM/esqMhmciIjoDQxNRAD6uTvg157OkMuAnQGPMH5bINIyVFKXRURExQhDE9H/dKtvh2V9G0BPR4Z9V59g5KZLeJmeKXVZRERUTDA0Eb2mY93y+H2gGwz15Dge+hQ+ay8gKTVD6rKIiKgYYGgiekMrJytsHOIOUwNdnA+LRb815xGXkiZ1WUREJDGGJqIcNHK0xJbh7rAw1sOVh3HoteocohNeSl0WERFJiKGJ6C3q2Zlj+0gPWJkZIDQqEZ+u8sfD2BSpyyIiIokwNBG9Q3VrM+wa1QT2lkYIj0lBj5VncTsqUeqyiIhIAgxNRO9RsYwxdo1qgmpWpohKSEXPVf648jBO6rKIiKiIMTQR5YK1whA7RnrA2d4cz1PS0ff3czh795nUZRERURFiaCLKJQsTfWwe5o4mVcogOS0Tg9ZdxOGQSKnLIiKiIsLQRJQHpga6WDuoIdrXskZahgqjN1/GroBHUpdFRERFgKGJKI8M9XSwvF8DfOpqh0yVwBc7r2DNqXtSl0VERIWMoYkoH3R15JjXox6GN3cEAPyw7wbmH7oJIfigXyKikkrS0OTn54fOnTvD1tYWMpkMe/bs0ZgvhMCMGTNQvnx5GBkZwdPTE7dv39ZoExsbi379+kGhUMDc3BxDhw5FUlKSRpurV6+iefPmMDQ0hL29PebNm5etlp07d6JGjRowNDRE3bp1sX///gLfXipZZDIZvupUE1M71AAALDt+F1/tDkamisGJiKgkkjQ0JScnw9nZGcuWLctx/rx587BkyRKsXLkS58+fh4mJCby8vPDy5f+PzNyvXz+EhITA19cXe/fuhZ+fH0aMGKGen5CQgPbt28PBwQEBAQGYP38+Zs2ahdWrV6vbnD17Fn369MHQoUMRGBiIrl27omvXrggODi68jacSQSaTYXSrKpjTvS7kMmDrhQcYs/kyH/RLRFQSiWICgNi9e7f6vUqlEjY2NmL+/PnqaXFxccLAwEBs3bpVCCHE9evXBQBx8eJFdZsDBw4ImUwmHj9+LIQQYvny5cLCwkKkpqaq20ydOlU4OTmp3/fs2VN4e3tr1OPu7i5GjhyZ6/rj4+MFABEfH5/rz1DJcuBahKj21X7hMHWv6LXqrEh4kSZ1SURE9B55OX4X2z5NYWFhiIyMhKenp3qaUqmEu7s7/P39AQD+/v4wNzeHm5ubuo2npyfkcjnOnz+vbtOiRQvo6+ur23h5eSE0NBTPnz9Xt3l9PVltstaTk9TUVCQkJGi8qHTrUKc81g9pCFMDXZy7F4veq8/haWKq1GUREVEBKbahKTLy1fg31tbWGtOtra3V8yIjI2FlZaUxX1dXF5aWlhptclrG6+t4W5us+TmZM2cOlEql+mVvb5/XTaQSqEmVstg2ojHKmuojJCIBPVaexYMYPq+OiKgkKLahqbibPn064uPj1a+HDx9KXRIVE3UqKDWeV9d9xVkEP46XuiwiIvpAxTY02djYAACioqI0pkdFRann2djYIDo6WmN+RkYGYmNjNdrktIzX1/G2Nlnzc2JgYACFQqHxIspSqawJ/hrdBLXKK/AsKRW9V5/DmTt87AoRkTYrtqHJ0dERNjY2OHr0qHpaQkICzp8/Dw8PDwCAh4cH4uLiEBAQoG5z7NgxqFQquLu7q9v4+fkhPT1d3cbX1xdOTk6wsLBQt3l9PVltstZDlB9WZobYPrIxPCqXQVJqBgatu4B/r0RIXRYREeWTpKEpKSkJQUFBCAoKAvCq83dQUBAePHgAmUyGiRMn4ocffsC///6La9euYeDAgbC1tUXXrl0BADVr1kSHDh0wfPhwXLhwAWfOnMHYsWPRu3dv2NraAgD69u0LfX19DB06FCEhIdi+fTsWL16MyZMnq+uYMGECDh48iAULFuDmzZuYNWsWLl26hLFjxxb1LqESxsxQD+uHNIR3vfJIzxQYvzUQa0+HSV0WERHlRxHczfdWx48fFwCyvXx8fIQQr4Yd+Pbbb4W1tbUwMDAQbdu2FaGhoRrLiImJEX369BGmpqZCoVCIwYMHi8TERI02V65cEc2aNRMGBgaiQoUKYu7cudlq2bFjh6hevbrQ19cXtWvXFvv27cvTtnDIAXqXzEyVmLHnmnCYulc4TN0rftp3XWRmqqQui4io1MvL8VsmBJ/7UBASEhKgVCoRHx/P/k2UIyEEVpy8i3kHQwEAXV1sMa+HM/R1i+1VciKiEi8vx2/+b01URGQyGT5rVRULPnWGrlyGPUERGLL+IhJfpr//w0REJDmGJqIi9omrHdb4uMFYXwen7zxDr1XnEJ3w8v0fJCIiSTE0EUmglZOVehDM608S0G35WdyJTpS6LCIiegeGJiKJ1LMzx1+jm8CxrAkex73AJyv8cSEsVuqyiIjoLRiaiCTkUObVIJj1K5oj/kU6+v9xHvuuPpG6LCIiygFDE5HELE30sWVYY7SvZY20DBXGbr2MNafuSV0WERG9gaGJqBgw0tfBiv6uGOjhACGAH/bdwKx/Q5Cp4oggRETFBUMTUTGhI5dh9se1Mb1jDQDA+rP3MfrPALxIy5S4MiIiAhiaiIoVmUyGkS2r4Le+9aGvK8fh61Ho8/s5PEtKlbo0IqJSj6GJqBj6qJ4tNg9zh7mxHoIexqH78rO4+zRJ6rKIiEo1hiaiYqphJUv8NboJ7C2N8CA2Bd2Xn8X5ezFSl0VEVGoxNBEVY1XKmWL3Z03hYv9qSIIBf1zAnsDHUpdFRFQqMTQRFXNlTQ2wbURjdKxjg7RMFSZuD8LSo7fBZ20TERUthiYiLWCop4NlfRtgZIvKAIAFvrcwZddVpGWoJK6MiKj0YGgi0hJyuQzTO9XEj93qQEcuw66AR/BZewHxKelSl0ZEVCowNBFpmX7uDvjDxw2mBrrwvxeD7ivO4EFMitRlERGVeAxNRFqolZMVdo32gK3SEHefJqPr8jMICOfDfomIClO+QtOLFy+QkvL/f9mGh4dj0aJFOHz4cIEVRkTvVsNGgT1jmqJuBSVik9PQ5/fz+PdKhNRlERGVWPkKTV26dMHGjRsBAHFxcXB3d8eCBQvQpUsXrFixokALJKK3s1IYYvvIxmj3v4f9jt8aiMVHeGcdEVFhyFdounz5Mpo3bw4A2LVrF6ytrREeHo6NGzdiyZIlBVogEb2bsb4uVvZ3xfDmjgCAhUduYcK2ILxM5zPriIgKUr5CU0pKCszMzAAAhw8fRvfu3SGXy9G4cWOEh4cXaIFE9H46chm+9q6Fud3rQlcuw79XItB79TlEJ76UujQiohIjX6GpatWq2LNnDx4+fIhDhw6hffv2AIDo6GgoFIoCLZCIcq93o4rYOLQRlEavnlnXbdlZ3HiSIHVZREQlQr5C04wZM/DFF1+gUqVKcHd3h4eHB4BXZ53q169foAUSUd40qVIWuz9rAseyJngc9wI9VpzFketRUpdFRKT1ZCKfPUYjIyPx5MkTODs7Qy5/lb0uXLgAhUKBGjVqFGiR2iAhIQFKpRLx8fE820bFQlxKGj7bfBln78ZAJgOmd6yB4c0rQyaTSV0aEVGxkZfjd75DE2liaKLiKD1ThRn/hGDrhQcAgE9d7fBjt7rQ1+UQbUREQN6O37r5WUFycjLmzp2Lo0ePIjo6GiqV5vOv7t27l5/FElEB09OR46dudVDNyhQ/7LuOnQGPEB6TghX9G6CMqYHU5RERaZV8haZhw4bh5MmTGDBgAMqXL8/T/UTFmEwmw5BmjnAsZ4JxWwJx4X4suiw7gzU+bqhhw7OiRES5la/Lc+bm5ti3bx+aNm1aGDVpJV6eI21wOyoRwzZeQnhMCkz0dbCod320q2UtdVlERJLJy/E7Xx0bLCwsYGlpma/iiEg61azNsOezpvCoXAbJaZkYsekSlh2/wxHEiYhyIV+h6fvvv8eMGTM0nj9HRNrBwkQfG4c2Qv/GFSEEMP9QKCZu5wjiRETvk6/Lc/Xr18fdu3chhEClSpWgp6enMf/y5csFVqC24OU50kab/O9j1n/XkakScLZTYtUAN9goDaUui4ioyBT63XNdu3bNz8eIqJgZ4FEJVcqZ4rMtl3HlUTw+/u00Vg90g4u9udSlEREVOxynqYDwTBNps/CYZAzbcAm3o5OgryvHz5/URbf6dlKXRURU6IpscMuAgADcuHEDAFC7du1S/QgVhibSdokv0zFpexCO3IgGAIxsURlfdqgBHTmHFCGikqvQQ1N0dDR69+6NEydOwNzcHAAQFxeH1q1bY9u2bShXrly+CtdmDE1UEqhUAr8cDsXyE3cBAC2rl8OS3vWhNNZ7zyeJiLRToQ85MG7cOCQmJiIkJASxsbGIjY1FcHAwEhISMH78+HwVnZPMzEx8++23cHR0hJGREapUqYLvv/9e4/ZoIQRmzJiB8uXLw8jICJ6enrh9+7bGcmJjY9GvXz8oFAqYm5tj6NChSEpK0mhz9epVNG/eHIaGhrC3t8e8efMKbDuItIVcLsOXHWpgaZ/6MNST4+Stp+i6/AzuRCdKXRoRkfREPigUCnHhwoVs08+fPy+USmV+FpmjH3/8UZQpU0bs3btXhIWFiZ07dwpTU1OxePFidZu5c+cKpVIp9uzZI65cuSI+/vhj4ejoKF68eKFu06FDB+Hs7CzOnTsnTp06JapWrSr69Omjnh8fHy+sra1Fv379RHBwsNi6daswMjISq1atynWt8fHxAoCIj48vmI0nkti1R3GiyZyjwmHqXlF7xkHhGxIpdUlERAUuL8fvfIUmU1NTERgYmG365cuXhZmZWX4WmSNvb28xZMgQjWndu3cX/fr1E0IIoVKphI2NjZg/f756flxcnDAwMBBbt24VQghx/fp1AUBcvHhR3ebAgQNCJpOJx48fCyGEWL58ubCwsBCpqanqNlOnThVOTk65rpWhiUqiZ4kvxacrzwqHqXuFw9S9YpHvLZGZqZK6LCKiApOX43e+Ls+1adMGEyZMQEREhHra48ePMWnSJLRt27YgToABAJo0aYKjR4/i1q1bAIArV67g9OnT6NixIwAgLCwMkZGR8PT0VH9GqVTC3d0d/v7+AAB/f3+Ym5vDzc1N3cbT0xNyuRznz59Xt2nRogX09fXVbby8vBAaGornz5/nWFtqaioSEhI0XkQlTRlTA2we5o6BHg4AgIVHbmHUnwFIfJkucWVEREUvX6Hpt99+Q0JCAipVqoQqVaqgSpUqcHR0REJCApYuXVpgxU2bNg29e/dGjRo1oKenh/r162PixIno168fACAyMhIAYG2t+ewsa2tr9bzIyEhYWVlpzNfV1YWlpaVGm5yW8fo63jRnzhwolUr1y97e/gO3lqh40tOR47sudTCvRz3o68hx+HoUui47g3tPk97/YSKiEiRfg1va29vj8uXLOHLkCG7evAkAqFmzpsYZn4KwY8cObN68GVu2bEHt2rURFBSEiRMnwtbWFj4+PgW6rryaPn06Jk+erH6fkJDA4EQlWk83e1SzMsWoPwNw92kyuvx2Bot6u6BtTT7wl4hKh3yFJgCQyWRo164d2rVrV5D1aJgyZYr6bBMA1K1bF+Hh4ZgzZw58fHxgY2MDAIiKikL58uXVn4uKioKLiwsAwMbGBtHR0RrLzcjIQGxsrPrzNjY2iIqK0miT9T6rzZsMDAxgYGDw4RtJpEXqV7TAf+Oa4bM/L+NS+HMM3XAJE9pWw4S21SDneE5EVMLlOjQtWbIEI0aMgKGhIZYsWfLOtgU17EBKSgrkcs0riDo6OlCpVAAAR0dH2NjY4OjRo+qQlJCQgPPnz2P06NEAAA8PD8TFxSEgIACurq4AgGPHjkGlUsHd3V3d5uuvv0Z6err6OXq+vr5wcnKChYVFgWwLUUlhZWaILcMb44d917HRPxyLj97GtcfxWNjLBUojjudERCVXrge3dHR0xKVLl1CmTBk4Ojq+fYEyGe7du1cgxQ0aNAhHjhzBqlWrULt2bQQGBmLEiBEYMmQIfv75ZwDAzz//jLlz52LDhg1wdHTEt99+i6tXr+L69eswNHz14NGOHTsiKioKK1euRHp6OgYPHgw3Nzds2bIFABAfHw8nJye0b98eU6dORXBwMIYMGYKFCxdixIgRuaqVg1tSabQr4BG+2n0NaRkqVCpjjFUD3OBkYyZ1WUREuVZkj1EpbImJifj222+xe/duREdHw9bWFn369MGMGTPUd7oJITBz5kysXr0acXFxaNasGZYvX47q1aurlxMbG4uxY8fiv//+g1wuxyeffIIlS5bA1NRU3ebq1asYM2YMLl68iLJly2LcuHGYOnVqrmtlaKLS6tqjeIz6MwCP417ASE8H83rUQ2dnW6nLIiLKlUIPTd999x2++OILGBsba0x/8eIF5s+fjxkzZuR1kVqPoYlKs9jkNIzbehln7sQAAIY1c8S0jjWgq5OvG3SJiIpMoYcmHR0dPHnyJNut/DExMbCyskJmZmZeF6n1GJqotMvIVOGXw7ew8uSr59Y1rmyJ3/o2QFlT3jBBRMVXoT97TggBmSz7nTJXrlyBpaVlfhZJRFpOV0eOaR1rYEW/BjDR18G5e7H4aMlpXH6Q8wCxRETaJk9DDlhYWEAmk0Emk6F69eoawSkzMxNJSUkYNWpUgRdJRNqjY93yqGZtipGbXo3n1GuVP2Z0ro3+7hVz/GOLiEhb5Ony3IYNGyCEwJAhQ7Bo0SIolUr1PH19fVSqVAkeHh6FUmhxx8tzRJoSX6bjy11XcSD41aj63RtUwI9d68JIX0fiyoiI/l+h92k6efIkmjRpoh7TiBiaiHIihMDvp+5h7oGbUAmgho0ZVg1whUMZE6lLIyICUMRDDrx8+RJpaWka00pjaGBoInq7s3efYdyWQMQkp0FhqItfe7rAsxYfv0JE0iv0juApKSkYO3YsrKysYGJiAgsLC40XEdHrmlQpi73jm6F+RXMkvMzAsI2XMO/gTWRkqqQujYgo1/IVmqZMmYJjx45hxYoVMDAwwJo1azB79mzY2tpi48aNBV0jEZUA5ZVG2D7CA4OaVAIALD9xFwPXXsCzpFRpCyMiyqV8XZ6rWLEiNm7ciFatWkGhUODy5cuoWrUqNm3ahK1bt2L//v2FUWuxxstzRLn375UITPvrKlLSMmGtMMCyvg3gVonDlRBR0Sv0y3OxsbGoXLkygFf9l2JjYwEAzZo1g5+fX34WSUSlyMfOtvh3bFNUtTJFVEIqeq8+hzWn7qEYP9WJiCh/oaly5coICwsDANSoUQM7duwAAPz3338wNzcvsOKIqOSqamWGf8Y0RWdnW2SoBH7YdwOj/gxA/It0qUsjIspRvkLT4MGDceXKFQDAtGnTsGzZMhgaGmLSpEmYMmVKgRZIRCWXiYEulvR2wfdd60BfR45DIVHovPQ0gh/HS10aEVE2HzzkAACEh4cjICAAVatWRb169QqiLq3DPk1EH+bqozh8tvkyHj1/AX1dOWZ8VAv9OIo4ERWyQu3TlJ6ejrZt2+L27dvqaQ4ODujevXupDUxE9OHq2Zlj37jm8KxpjbQMFb7ZE4wJ24KQlJohdWlERADyEZr09PRw9erVwqiFiEo5pbEefh/oiq861YCOXIZ/r0Tg499O42ZkgtSlERHlr09T//798ccffxR0LUREkMlkGNGiCraPaAwbhSHuPU1G12VnsOPiQ95dR0SS0s3PhzIyMrB27VocOXIErq6uMDHRfI7Ur7/+WiDFEVHp5VbJEvsnNMek7UE4eespvvzrKs7di8H3XevAxCBf/3UREX2QfHUEb9269dsXKJPh2LFjH1SUNmJHcKLCoVIJrDh5FwsOh0IlgCrlTLCsXwPUsOHvGRF9uCJ9YC+9wtBEVLguhMVi/NZARCa8hIGuHLM+ro3eDe15dx0RfZBCHxE8y507d3Do0CG8ePECANjfgIgKTSPHV5frWjmVQ2qGCtP/vsa764ioSOUrNMXExKBt27aoXr06OnXqhCdPngAAhg4dis8//7xACyQiymJpoo+1Pg0xreP/313XeelphERwMEwiKnz5Ck2TJk2Cnp4eHjx4AGNjY/X0Xr164eDBgwVWHBHRm+RyGUa1rIIdIxvDVmmIsGfJ6Lb8LDadC+fZbiIqVPkKTYcPH8bPP/8MOzs7jenVqlVDeHh4gRRGRPQurg6W2De+OTxrWiEtQ4Vv9wRj7JZAPruOiApNvkJTcnKyxhmmLLGxsTAwMPjgooiIcsPCRB+/D3TDN941oSuXYd+1J/BecgqXHzyXujQiKoHyFZqaN2+OjRs3qt/LZDKoVCrMmzfvncMREBEVNJlMhmHNK2PnKA/YWxrh0fMX+HSlP5afuAOVipfriKjg5GvIgeDgYLRt2xYNGjTAsWPH8PHHHyMkJASxsbE4c+YMqlSpUhi1FmsccoBIegkv0/H17mD8dyUCANC0ahks7OkCK4WhxJURUXFV6EMO1KlTB7du3UKzZs3QpUsXJCcno3v37ggMDCyVgYmIigeFoR6W9HbBvE/qwUhPB2fuxKDj4lM4HhotdWlEVALk60zTgwcPYG+f86ByDx48QMWKFQukOG3CM01Excud6ESM3RKIm5GJAIBhzRzxZYca0Nf9oOHpiKiEKfQzTY6Ojnj69Gm26TExMXB0dMzPIomIClRVKzPsGdMUPh4OAIA1p8PQY+VZ3H+WLHFlRKSt8hWahBA5nmVKSkqCoSH7DhBR8WCop4PZXepg9QBXmBvr4eqjeHgvOYXdgY+kLo2ItFCeHhU+efJkAK/uVvn22281hh3IzMzE+fPn4eLiUqAFEhF9qPa1bVDXTokJ24JwISwWk7ZfwcnQp/i+ax2YGepJXR4RaYk8habAwEAAr840Xbt2Dfr6+up5+vr6cHZ2xhdffFGwFRIRFYDySiNsHd4Yy47fweKjt7EnKAIBD55jce/6aFDRQuryiEgL5Ksj+ODBg7FkyRKYmZkVRk1aiR3BibRHQHgsJmwLwqPnL6Ajl2Fi22r4rHVV6MizdzsgopItL8fvPIWm7t2756rd33//ndtFlhgMTUTa5c0xnRpVssSvvZxhZ5H9aQdEVHLl5fidp8tzSqXygwojIioussZ0alm9HGb+E4wL92PRcfEp/NC1Drq4VJC6PCIqhvJ1eY6y45kmIu0VHpOMiduDEPggDgDQrX4FzO5SGwp2Eicq8Qp9nKai9PjxY/Tv3x9lypSBkZER6tati0uXLqnnCyEwY8YMlC9fHkZGRvD09MTt27c1lhEbG4t+/fpBoVDA3NwcQ4cORVJSkkabq1evonnz5jA0NIS9vT3mzZtXJNtHRNJzKGOCnSM9MKFtNchlwO7Ax+i0+BQu3Y+VujQiKkaKdWh6/vw5mjZtCj09PRw4cADXr1/HggULYGHx/3e6zJs3D0uWLMHKlStx/vx5mJiYwMvLCy9fvlS36devH0JCQuDr64u9e/fCz88PI0aMUM9PSEhA+/bt4eDggICAAMyfPx+zZs3C6tWri3R7iUg6ujpyTGpXXePBvz1X+eNX31vIyFRJXR4RFQPF+vLctGnTcObMGZw6dSrH+UII2Nra4vPPP1cPdRAfHw9ra2usX78evXv3xo0bN1CrVi1cvHgRbm5uAICDBw+iU6dOePToEWxtbbFixQp8/fXXiIyMVA+jMG3aNOzZswc3b97MVa28PEdUciS+TMfMf0Lwd+BjAED9iuZY1MsFDmVMJK6MiApaibk89++//8LNzQ2ffvoprKysUL9+ffz+++/q+WFhYYiMjISnp6d6mlKphLu7O/z9/QEA/v7+MDc3VwcmAPD09IRcLsf58+fVbVq0aKEx7pSXlxdCQ0Px/PnzHGtLTU1FQkKCxouISgYzQz382ssFi3u7wMxQF4EP4tBp8SnsuPgQxfjvTCIqZMU6NN27dw8rVqxAtWrVcOjQIYwePRrjx4/Hhg0bAACRkZEAAGtra43PWVtbq+dFRkbCyspKY76uri4sLS012uS0jNfX8aY5c+ZAqVSqX/b29h+4tURU3HRxqYADE5qjkaMlktMy8eVfVzHqzwDEJqdJXRoRSaBYhyaVSoUGDRrgp59+Qv369TFixAgMHz4cK1eulLo0TJ8+HfHx8erXw4cPpS6JiAqBnYUxtg5vjC87OEFPR4ZDIVHwWuSH46HRUpdGREWsWIem8uXLo1atWhrTatasiQcPHgAAbGxsAABRUVEabaKiotTzbGxsEB2t+Z9bRkYGYmNjNdrktIzX1/EmAwMDKBQKjRcRlUw6chk+a1UVuz9riqpWpniamIrB6y7i2z3BeJGWKXV5RFREinVoatq0KUJDQzWm3bp1Cw4ODgAAR0dH2NjY4OjRo+r5CQkJOH/+PDw8PAAAHh4eiIuLQ0BAgLrNsWPHoFKp4O7urm7j5+eH9PR0dRtfX184OTlp3KlHRKVbnQpK7B3XDIOaVAIAbDoXDu8lpxD0ME7SuoioaBTr0DRp0iScO3cOP/30E+7cuYMtW7Zg9erVGDNmDABAJpNh4sSJ+OGHH/Dvv//i2rVrGDhwIGxtbdG1a1cAr85MdejQAcOHD8eFCxdw5swZjB07Fr1794atrS0AoG/fvtDX18fQoUMREhKC7du3Y/HixZg8ebJUm05ExZShng5mfVwbm4Y2grXCAPeeJeOTFWex6MgtpHNoAqISrVgPOQAAe/fuxfTp03H79m04Ojpi8uTJGD58uHq+EAIzZ87E6tWrERcXh2bNmmH58uWoXr26uk1sbCzGjh2L//77D3K5HJ988gmWLFkCU1NTdZurV69izJgxuHjxIsqWLYtx48Zh6tSpua6TQw4QlT5xKWn4Zk8w9l59AgBwtjfHrz2dUaWc6Xs+SUTFRaE9sJfejqGJqPT6J+gxvtkTjMSXGTDUk+OrTjUxoLEDZDKZ1KUR0XuUmHGaiIi0QReXCjg0sQWaVi2Dl+kqzPgnBAPXXkBk/Mv3f5iItAZDExFRAbA1N8KmIe6Y1bkWDHTlOHX7GdovPIl/gh5zQEyiEoKhiYiogMjlMgxq6oh945vD2U6JhJcZmLAtCGO2XEZMUqrU5RHRB2JoIiIqYFWtTLFrdBNM8qwOXbkM+69FwmuRHw6H5PyEASLSDgxNRESFQE9Hjgme1bBnTFNUtzbFs6Q0jNgUgMk7ghD/Iv39CyCiYoehiYioENWpoMR/45phZMvKkMmAvy8/RodFfvC79VTq0ogojxiaiIgKmYGuDqZ3rIldozxQqYwxnsS/xMC1F/DNnmtITs2QujwiyiWGJiKiIuLqYIn9E5rDx+PVo6D+PPcAHRefwoWwWIkrI6LcYGgiIipCxvq6mN2lDjYPc4et0hAPYlPQa7U/vt97nQ//JSrmGJqIiCTQtGpZHJzUAj3d7CAE8MfpMHRacgoB4TzrRFRcMTQREUlEYaiHeT2csW5QQ1grDBD2LBk9Vvrjx33X8TKdZ52IihuGJiIiibWuYYXDE1vikwavzjr9firrrNNzqUsjotcwNBERFQNKYz0s6OmMP3zcYGVmgHtPk9Fj5VmedSIqRhiaiIiKkbY1reE7qSW6N6jw/2edFp/Cpfvs60QkNYYmIqJiRmmsh197umDtIDdYKwxw71kyPl3lj+/+4x12RFJiaCIiKqba1LDG4Ukt0cP1VV+ntWfC0GGxH87di5G6NKJSiaGJiKgYUxrp4ZdPnbFucEOUVxoiPCYFvVefw4x/gjmaOFERY2giItICrZ2scGhSC/RpZA8A2OgfjvYL/XD69jOJKyMqPRiaiIi0hMJQD3O618OfQ91RwdwIj+NeoP8f5zF111XEv0iXujyiEo+hiYhIyzSrVhaHJ7VQP8Nu+6WHaL/wJI5cj5K4MqKSjaGJiEgLmRi8eobdjpEeqFTGGFEJqRi28RLGbw1ETFKq1OURlUgMTUREWqyRoyUOTmyBES0qQy4D/r0SgXYL/fBP0GMIIaQuj6hEYWgiItJyhno6+KpTTez+rClq2JghNjkNE7YFYdiGS3gS/0Lq8ohKDIYmIqISwtneHP+ObYbJ7apDT0eGozej0f5XP/x5LhwqFc86EX0ohiYiohJEX1eO8W2rYd/45nCxN0diaga+2ROM3r+fw72nSVKXR6TVGJqIiEqg6tZm+Gt0E8z4qBaM9HRwISwWHRafwvITd5CeqZK6PCKtxNBERFRC6chlGNLMEYcntUDzamWRlqHCvIOh6PLbGVx7FC91eURah6GJiKiEs7c0xsYhjbDgU2eYG+vh+pMEdFl2Gj/tv8EHABPlAUMTEVEpIJPJ8ImrHY5MbomPnW2hEsBqv3tov+gkTt1+KnV5RFqBoYmIqBQpa2qAJX3qY+0gN9gqDfEw9gUG/HEBk3cEITY5TeryiIo1hiYiolKoTQ1rHJ7cEoOaVIJMBvx9+TE8fz2J3YGPOCgm0VswNBERlVKmBrqY9XFt/D26iXpQzEnbr2Dg2gt4EJMidXlExQ5DExFRKVe/ogX+G9cMU7ycoK8rx6nbz9B+0UmsOHGXwxMQvYahiYiIoKcjx5jWVXFoYgs0qVIGL9NV+PngTXReehqBD55LXR5RscDQREREao5lTbB5mDt++dQZFsZ6uBmZiO4rzmLGP8FIfJkudXlEkmJoIiIiDTKZDD1c7XD081bo3qAChAA2+ofD89eTOBj8hB3FqdTSqtA0d+5cyGQyTJw4UT3t5cuXGDNmDMqUKQNTU1N88skniIqK0vjcgwcP4O3tDWNjY1hZWWHKlCnIyMjQaHPixAk0aNAABgYGqFq1KtavX18EW0REVHxZmujj154u2DzMHZXKGCMqIRWj/ryM4RsDEBH3QuryiIqc1oSmixcvYtWqVahXr57G9EmTJuG///7Dzp07cfLkSURERKB79+7q+ZmZmfD29kZaWhrOnj2LDRs2YP369ZgxY4a6TVhYGLy9vdG6dWsEBQVh4sSJGDZsGA4dOlRk20dEVFw1rVoWBye2wNjWVaErl+HIjSi0+/Uk1p4OQ6aKZ52o9JAJLTjPmpSUhAYNGmD58uX44Ycf4OLigkWLFiE+Ph7lypXDli1b0KNHDwDAzZs3UbNmTfj7+6Nx48Y4cOAAPvroI0RERMDa2hoAsHLlSkydOhVPnz6Fvr4+pk6din379iE4OFi9zt69eyMuLg4HDx7MVY0JCQlQKpWIj4+HQqEo+J1ARFQM3IpKxPS/ryEg/FXn8LoVlPixWx3UszOXtjCifMrL8VsrzjSNGTMG3t7e8PT01JgeEBCA9PR0jek1atRAxYoV4e/vDwDw9/dH3bp11YEJALy8vJCQkICQkBB1mzeX7eXlpV5GTlJTU5GQkKDxIiIq6apbm2HnSA/82K0OFIa6uPY4Hl2WncHMf4KRwI7iVMIV+9C0bds2XL58GXPmzMk2LzIyEvr6+jA3N9eYbm1tjcjISHWb1wNT1vysee9qk5CQgBcvcr5uP2fOHCiVSvXL3t4+X9tHRKRt5HIZ+rk74OjnrdDFxRZCABv8w+G54CT2Xo1gR3EqsYp1aHr48CEmTJiAzZs3w9DQUOpyNEyfPh3x8fHq18OHD6UuiYioSJUzM8Di3vXx51B3OJY1QXRiKsZuCcSgdRc5ojiVSMU6NAUEBCA6OhoNGjSArq4udHV1cfLkSSxZsgS6urqwtrZGWloa4uLiND4XFRUFGxsbAICNjU22u+my3r+vjUKhgJGRUY61GRgYQKFQaLyIiEqjZtXK4sCE5pjQthr0deQ4eesp2i08iWXH7yAtgyOKU8lRrENT27Ztce3aNQQFBalfbm5u6Nevn/rfenp6OHr0qPozoaGhePDgATw8PAAAHh4euHbtGqKjo9VtfH19oVAoUKtWLXWb15eR1SZrGURE9G6GejqY1K46DkxsjiZVyiA1Q4X5h0LRackp+N+Nkbo8ogKhFXfPva5Vq1bqu+cAYPTo0di/fz/Wr18PhUKBcePGAQDOnj0L4NWQAy4uLrC1tcW8efMQGRmJAQMGYNiwYfjpp58AvBpyoE6dOhgzZgyGDBmCY8eOYfz48di3bx+8vLxyVRfvniMiekUIgT1Bj/HD3huISU4DAHSrXwFfdaqJcmYGEldHpKnE3T33LgsXLsRHH32ETz75BC1atICNjQ3+/vtv9XwdHR3s3bsXOjo68PDwQP/+/TFw4EB899136jaOjo7Yt28ffH194ezsjAULFmDNmjW5DkxERPT/ZDIZutW3w7HPW6F/44qQyYDdgY/RZsEJbPS/z7GdSGtp3Zmm4opnmoiIcnblYRy+2ROMa4/jAbwa2+mHrnXgbG8ubWFEKGVnmoiIqHhztjfHnjFN8X2X2jD739hOXZefwde7ryE+hWM7kfZgaCIiokKnI5dhgEclHPu8FbrXf/UQ4M3nH6DNghPYFfCIYzuRVuDluQLCy3NERLl37l4Mvt0TjNvRSQCAhpUs8H3XOqhhw/8/qWjl5fjN0FRAGJqIiPImLUOFtWfCsPjIbbxIz4SOXAYfj0qY1K4azAz1pC6PSgn2aSIiomJPX1eOUS2r4OjnLdGprg0yVQJrz4ShzYKT+CfoMS/ZUbHD0ERERJKyNTfC8n6u2DCkERzLmuBpYiombAtC39/P43ZUotTlEakxNBERUbHQsno5HJzYHF+0rw5DPTn878Wg4+JTmLP/BpJTM6Quj4ihiYiIig8DXR2MbVMNvpNaol0ta2SoBFb53UPbBSex7+oTXrIjSTE0ERFRsWNvaYzfB7ph7SA32FsaITLhJcZsuYx+a3jJjqTDu+cKCO+eIyIqHC/TM7Hy5F2sOHEXqRkq6MplGNSkEiZ48i47+nAcckACDE1ERIXrYWwKvt97HYevRwEAypoaYHrHGuhWvwLkcpnE1ZG2YmiSAEMTEVHROBEajdn/XUfYs2QAgKuDBWZ/XBt1Kiglroy0EUOTBBiaiIiKTmpGJtaevo+lx24jJS0TchnQ170ivmjvBHNjfanLIy3CwS2JiKhEM9DVwehWrwbG/KheeagE8Oe5B2j9ywlsOf8AmSqeD6CCxzNNBYRnmoiIpHP27jPM+jcEt6JePcuunp0Ssz+ujfoVLSSujIo7Xp6TAEMTEZG00jNV2OQfjoW+t5D4v8Ewe7rZ4csONVDW1EDi6qi44uU5IiIqdfR05BjSzBHHvmiFHq52AIAdlx6h9S8nsPZ0GNIzVRJXSNqOZ5oKCM80EREVLwHhzzHz32AEP04AAFS3NsWszrXRpGpZiSuj4oSX5yTA0EREVPxkqgS2X3yI+Ydu4nlKOgCgU10bfNWpJuwsjCWujooDhiYJMDQRERVf8Snp+NU3FJvOhUMlAANdOUa1rIJRLavASF9H6vJIQgxNEmBoIiIq/m48ScDs/0Jw7l4sAKCCuRG+6lQTneraQCbjqOKlEUOTBBiaiIi0gxAC+69F4qf9N/A47gUAwN3RErM+ro2a5fn/d2nD0CQBhiYiIu3yIi0Tq/z+/0HAchnQz90Bk9tVh4UJRxUvLRiaJMDQRESknR49T8Gc/Tex79oTAIC5sR4+b1cdfRpVhK4OR+Yp6RiaJMDQRESk3fzvxmD2fyG4GZkIAKhhY4YZH9XiEAUlHEOTBBiaiIi0X0amClsvPMAC31uI+98QBR1q2+Br75qwt+QQBSURQ5MEGJqIiEqO58lpWHTkFv7838N/9XXlGN7cEZ+1qgoTA12py6MCxNAkAYYmIqKSJzQyEd/tDcGZOzEAACszA0zrWANdXSpALucQBSUBQ5MEGJqIiEomIQQOX4/Cj/tu4EFsCgDAxd4cMzvXQv2KFhJXRx+KoUkCDE1ERCVbakYm1p6+j9+O3UZyWiYAoHv9CviyQw3YKA0lro7yi6FJAgxNRESlQ3TCS8w7FIpdAY8AAEZ6OvisVRUMb1EZhnp8JIu2YWiSAEMTEVHpcuVhHL7bex0B4c8BvHoky7SONfBRvfJ8JIsWYWiSAEMTEVHpI4TAv1ciMPfATTyJfwkAaFjJAjM+qo26dkqJq6PcYGiSAEMTEVHplfVIlpUn7+JlugoyGdCjgR2mdHCClRn7OxVnDE0SYGgiIqIn8S/w84Gb2BMUAQAw0dfBmDZVMaSpI/s7FVN5OX4X64fqzJkzBw0bNoSZmRmsrKzQtWtXhIaGarR5+fIlxowZgzJlysDU1BSffPIJoqKiNNo8ePAA3t7eMDY2hpWVFaZMmYKMjAyNNidOnECDBg1gYGCAqlWrYv369YW9eUREVMKUVxphUe/6+PuzJnC2N0dyWibmHQxFu4UnceDaE/A8hXYr1qHp5MmTGDNmDM6dOwdfX1+kp6ejffv2SE5OVreZNGkS/vvvP+zcuRMnT55EREQEunfvrp6fmZkJb29vpKWl4ezZs9iwYQPWr1+PGTNmqNuEhYXB29sbrVu3RlBQECZOnIhhw4bh0KFDRbq9RERUMjSoaIHdo5tgYS9n2CgM8TD2BUZvvozeq88hJCJe6vIon7Tq8tzTp09hZWWFkydPokWLFoiPj0e5cuWwZcsW9OjRAwBw8+ZN1KxZE/7+/mjcuDEOHDiAjz76CBEREbC2tgYArFy5ElOnTsXTp0+hr6+PqVOnYt++fQgODlavq3fv3oiLi8PBgwdzVRsvzxERUU5S0jKw8sRdrPK7h9SMV/2dernZ4/P2TihnZiB1eaVeibk896b4+Ffp3NLSEgAQEBCA9PR0eHp6qtvUqFEDFStWhL+/PwDA398fdevWVQcmAPDy8kJCQgJCQkLUbV5fRlabrGUQERHll7G+Lia3d8LRz1vio3rlIQSw7eJDtP7lBFadvIvUjEypS6Rc0prQpFKpMHHiRDRt2hR16tQBAERGRkJfXx/m5uYaba2trREZGalu83pgypqfNe9dbRISEvDixYsc60lNTUVCQoLGi4iI6G3sLIzxW98G2DXKA3UrKJGUmoE5B26i/UI/HAqJZH8nLaA1oWnMmDEIDg7Gtm3bpC4FwKtO6kqlUv2yt7eXuiQiItICbpUs8c+Yppjfox7KmRkgPCYFIzcFoP8f53Ezkn+AF2daEZrGjh2LvXv34vjx47Czs1NPt7GxQVpaGuLi4jTaR0VFwcbGRt3mzbvpst6/r41CoYCRkVGONU2fPh3x8fHq18OHDz9oG4mIqPSQy2X41M0ex79ohTGtq0BfV44zd2LQafEpfL37GmKSUqUukXJQrEOTEAJjx47F7t27cezYMTg6OmrMd3V1hZ6eHo4ePaqeFhoaigcPHsDDwwMA4OHhgWvXriE6OlrdxtfXFwqFArVq1VK3eX0ZWW2ylpETAwMDKBQKjRcREVFemBroYopXDRyd3BKd6tpAJYDN5x+g1S8nsObUPaRlqKQukV5TrO+e++yzz7Blyxb8888/cHJyUk9XKpXqM0CjR4/G/v37sX79eigUCowbNw4AcPbsWQCvhhxwcXGBra0t5s2bh8jISAwYMADDhg3DTz/9BODVkAN16tTBmDFjMGTIEBw7dgzjx4/Hvn374OXllataefccERF9qHP3YvDdf9dx/cmry3SVy5rga++aaFPDis+zKyQlZkTwt31B1q1bh0GDBgF4Nbjl559/jq1btyI1NRVeXl5Yvny5+tIbAISHh2P06NE4ceIETExM4OPjg7lz50JXV1fd5sSJE5g0aRKuX78OOzs7fPvtt+p15AZDExERFYRMlcDOSw/xy+FQPEtKAwA0r1YW335UC9WtzSSuruQpMaFJmzA0ERFRQUp8mY7fjt/ButP3kZapgo5chn7uFTHJszosTPSlLq/EYGiSAEMTEREVhvCYZPy47wYOX391w5LSSA8TPauhf2MH6OkU667JWoGhSQIMTUREVJjO3nmG7/Zex83IRABAVStTfONdE62crCSuTLsxNEmAoYmIiApbpkpg28UHWHD4FmKTX/V3au1UDt98VAtVyplKXJ12YmiSAEMTEREVlfgX6Vh69DbWn72PDJWArlyGgR6VMKFtNSiN9aQuT6swNEmAoYmIiIravadJ+Gn/DRy58WosQgtjPXze3gl9GlWEjpxDFOQGQ5MEGJqIiEgqp24/xfd7r+NWVBIAoGZ5BWZ1rgX3ymUkrqxgCCHwLCkN5cwMCnzZeTl+s9s9ERGRlmterRz2j2+O2R/XhtJIDzeeJKDX6nMYs+UyHsfl/OB5bXL2bgyazD2Kb/Zck7QOhiYiIqISQFdHDp8mlXD8i1bo514Rchmw7+oTtF1wAouP3MbL9EypS8y3tafDkJ4poCPxqOgMTURERCWIpYk+fuxWF/+Na4ZGlSzxMl2FhUduoe2Ckzhw7Qm0rVdO2LNkHL35qs/WoKaO72lduBiaiIiISqDatkpsH9kYS/vUR3mlIR7HvcDozZfR9/fzCP3fWE/aYN2ZMABA2xpWcCxrImktDE1EREQllEwmQ2dnWxz9vCXGt6kKfV05/O/FoNOSU/juv+tIeJkudYnvFJ+Sjp2XHgEAhjST9iwTwNBERERU4hnr62JyeyccndwSXrWtkakSWHsmDG1+OYFdAY+gUhXPS3bbLz3Ai/RMOFmboUkV6e8EZGgiIiIqJewtjbFqgBs2DGmEymVN8CwpDV/svIIeK88iJCJe6vI0ZGSqsOFsOABgSLNKkEncCRxgaCIiIip1WlYvh4MTW2Baxxow1tfB5Qdx6Lz0NGb/F4LEYnLJ7vD1KDyOewFLE310cakgdTkAGJqIiIhKJX1dOUa1rIJjn7fCR/XKQyWAdWfuo+2Ck/j3SoTkd9mtPf2qA3h/94ow1NORtJYsDE1ERESlmI3SEL/1bYBNQxvBsawJohNTMX5rIAb8cQH3nyVLUtOVh3G4FP4cejoy9G/sIEkNOWFoIiIiIjSvVg4HJzbH5+2qw0BXjtN3nsFrkR+WHb+DtAxVkdaSNcxA53q2sFIYFum634WhiYiIiAAABro6GNe2Gg5PaoFmVcsiNUOF+YdC8dHSUwgIjy2SGvzvxuC/q08AAIMlHszyTQxNREREpMGhjAk2DW2Ehb2cYWmij1tRSfhkhT9m/RuClLSMQlvvo+cpGLPlMjJVAt0bVEBdO2WhrSs/GJqIiIgoG5lMhm717XB0ckv0cLUDAKw/ex8dF5/ChbCCP+v0Ii0TIzYGIDY5DXUrKPFTt7oFvo4PxdBEREREb2Vhoo9fPnXG+sENUV5piPCYFPRa7Y/v/ruOF2kF8xBgIQSm/nUV158koIyJPlYNcC02d8y9jqGJiIiI3quVkxUOTWqBnm52EAJYeyYM3ktO4XpEwgcv+/dT9/DvlQjoymVY3q8BbM2NCqDigsfQRERERLmiMNTDvB7OWDe4IawVBrj3LBndlp/B1gsP8j2u08HgJ5h74CYAYEbnWnCvLP3jUt6GoYmIiIjypLWTFQ5MaIHWTuWQmqHC9L+vYdL2ICSn5r6TeFqGCj/uu45Rf16GSgA93ewwoBiNyZQThiYiIiLKM0sTffzh0xDTOtaAjlyGPUER6Pzbadx48v7LdQ9jU/DpKn/8furVeEyDmlTCD13rFovny70LQxMRERHli1wuw6iWVbBtRGPYKAxx72kyui57++U6IQT2Xo1ApyWncOVhHBSGulg1wBWzPq4Nfd3iH0lkQuqHy5QQCQkJUCqViI+Ph0KhkLocIiKiIhWbnIbJO4JwIvQpAOBjZ1v81L0uTA10oVIJHL4ehRUn7uDKo3gAQIOK5ljSpz7sLIylLDtPx2+GpgLC0ERERKWdSiWwyu8efjkcikyVgGNZEwxo7IAtFx7gTnQSAMBAV47hzStjgmc16OlIf3aJoUkCDE1ERESvBITHYtyWQETEv1RPMzPUhY9HJQxqWgllTQ0krE5TXo7fukVUExEREZUSrg6W2De+Ob7ecw3XHsejn7sD+rlXhJmhntSlfRCGJiIiIipwFib6WN7PVeoyCpT0FxOJiIiItABDExEREVEuMDQRERER5QJDExEREVEuMDQRERER5QJD0xuWLVuGSpUqwdDQEO7u7rhw4YLUJREREVExwND0mu3bt2Py5MmYOXMmLl++DGdnZ3h5eSE6Olrq0oiIiEhiDE2v+fXXXzF8+HAMHjwYtWrVwsqVK2FsbIy1a9dKXRoRERFJjKHpf9LS0hAQEABPT0/1NLlcDk9PT/j7+2drn5qaioSEBI0XERERlVwMTf/z7NkzZGZmwtraWmO6tbU1IiMjs7WfM2cOlEql+mVvb19UpRIREZEEGJryafr06YiPj1e/Hj58KHVJREREVIj47Ln/KVu2LHR0dBAVFaUxPSoqCjY2NtnaGxgYwMCg+DylmYiIiAoXzzT9j76+PlxdXXH06FH1NJVKhaNHj8LDw0PCyoiIiKg44Jmm10yePBk+Pj5wc3NDo0aNsGjRIiQnJ2Pw4MFSl0ZEREQSY2h6Ta9evfD06VPMmDEDkZGRcHFxwcGDB7N1Ds+JEAIAeBcdERGRFsk6bmcdx99FJnLTit7r0aNHvIOOiIhISz18+BB2dnbvbMPQVEBUKhUiIiJgZmYGmUxWoMtOSEiAvb09Hj58CIVCUaDLpuy4v4sW93fR4v4uWtzfRSs/+1sIgcTERNja2kIuf3dXb16eKyByufy9CfVDKRQK/tIVIe7vosX9XbS4v4sW93fRyuv+ViqVuWrHu+eIiIiIcoGhiYiIiCgXGJq0gIGBAWbOnMnBNIsI93fR4v4uWtzfRYv7u2gV9v5mR3AiIiKiXOCZJiIiIqJcYGgiIiIiygWGJiIiIqJcYGgiIiIiygWGJon5+fmhc+fOsLW1hUwmw549e977mRMnTqBBgwYwMDBA1apVsX79+kKvs6TI6/7++++/0a5dO5QrVw4KhQIeHh44dOhQ0RRbAuTn+53lzJkz0NXVhYuLS6HVV9LkZ3+npqbi66+/hoODAwwMDFCpUiWsXbu28IstAfKzvzdv3gxnZ2cYGxujfPnyGDJkCGJiYgq/2BJgzpw5aNiwIczMzGBlZYWuXbsiNDT0vZ/buXMnatSoAUNDQ9StWxf79+/Pdw0MTRJLTk6Gs7Mzli1blqv2YWFh8Pb2RuvWrREUFISJEydi2LBhPJDnUl73t5+fH9q1a4f9+/cjICAArVu3RufOnREYGFjIlZYMed3fWeLi4jBw4EC0bdu2kCormfKzv3v27ImjR4/ijz/+QGhoKLZu3QonJ6dCrLLkyOv+PnPmDAYOHIihQ4ciJCQEO3fuxIULFzB8+PBCrrRkOHnyJMaMGYNz587B19cX6enpaN++PZKTk9/6mbNnz6JPnz4YOnQoAgMD0bVrV3Tt2hXBwcH5K0JQsQFA7N69+51tvvzyS1G7dm2Nab169RJeXl6FWFnJlJv9nZNatWqJ2bNnF3xBJVxe9nevXr3EN998I2bOnCmcnZ0Lta6SKjf7+8CBA0KpVIqYmJiiKaoEy83+nj9/vqhcubLGtCVLlogKFSoUYmUlV3R0tAAgTp48+dY2PXv2FN7e3hrT3N3dxciRI/O1Tp5p0jL+/v7w9PTUmObl5QV/f3+JKipdVCoVEhMTYWlpKXUpJda6detw7949zJw5U+pSSrx///0Xbm5umDdvHipUqIDq1avjiy++wIsXL6QurUTy8PDAw4cPsX//fgghEBUVhV27dqFTp05Sl6aV4uPjAeCd/x8X9DGTD+zVMpGRkbC2ttaYZm1tjYSEBLx48QJGRkYSVVY6/PLLL0hKSkLPnj2lLqVEun37NqZNm4ZTp05BV5f/PRW2e/fu4fTp0zA0NMTu3bvx7NkzfPbZZ4iJicG6deukLq/Eadq0KTZv3oxevXrh5cuXyMjIQOfOnfN8+Zpe/QE7ceJENG3aFHXq1Hlru7cdMyMjI/O1Xp5pIsqlLVu2YPbs2dixYwesrKykLqfEyczMRN++fTF79mxUr15d6nJKBZVKBZlMhs2bN6NRo0bo1KkTfv31V2zYsIFnmwrB9evXMWHCBMyYMQMBAQE4ePAg7t+/j1GjRkldmtYZM2YMgoODsW3btiJdL/+U0zI2NjaIiorSmBYVFQWFQsGzTIVo27ZtGDZsGHbu3JntVC8VjMTERFy6dAmBgYEYO3YsgFcHdSEEdHV1cfjwYbRp00biKkuW8uXLo0KFClAqleppNWvWhBACjx49QrVq1SSsruSZM2cOmjZtiilTpgAA6tWrBxMTEzRv3hw//PADypcvL3GF2mHs2LHYu3cv/Pz8YGdn9862bztm2tjY5GvdPNOkZTw8PHD06FGNab6+vvDw8JCoopJv69atGDx4MLZu3Qpvb2+pyymxFAoFrl27hqCgIPVr1KhRcHJyQlBQENzd3aUuscRp2rQpIiIikJSUpJ5269YtyOXy9x6MKO9SUlIgl2sednV0dAAAgo+BfS8hBMaOHYvdu3fj2LFjcHR0fO9nCvqYyTNNEktKSsKdO3fU78PCwhAUFARLS0tUrFgR06dPx+PHj7Fx40YAwKhRo/Dbb7/hyy+/xJAhQ3Ds2DHs2LED+/btk2oTtEpe9/eWLVvg4+ODxYsXw93dXX0d3MjISOOvc8pZXva3XC7P1jfBysoKhoaG7+yzQP8vr9/vvn374vvvv8fgwYMxe/ZsPHv2DFOmTMGQIUN45joX8rq/O3fujOHDh2PFihXw8vLCkydPMHHiRDRq1Ai2trZSbYbWGDNmDLZs2YJ//vkHZmZm6v+PlUql+vs6cOBAVKhQAXPmzAEATJgwAS1btsSCBQvg7e2Nbdu24dKlS1i9enX+isjXPXdUYI4fPy4AZHv5+PgIIYTw8fERLVu2zPYZFxcXoa+vLypXrizWrVtX5HVrq7zu75YtW76zPb1bfr7fr+OQA3mTn/1948YN4enpKYyMjISdnZ2YPHmySElJKfritVB+9veSJUtErVq1hJGRkShfvrzo16+fePToUdEXr4Vy2tcANI6BLVu2zPb/844dO0T16tWFvr6+qF27tti3b1++a5D9rxAiIiIiegf2aSIiIiLKBYYmIiIiolxgaCIiIiLKBYYmIiIiolxgaCIiIiLKBYYmIiIiolxgaCIiIiLKBYYmIiIiolxgaCIiIiLKBYYmIiIiolxgaCIiesPevXthbm6OzMxMAEBQUBBkMhmmTZumbjNs2DD0799fqhKJSAIMTUREb2jevDkSExMRGBgIADh58iTKli2LEydOqNucPHkSrVq1kqZAIpIEQxMR0RuUSiVcXFzUIenEiROYNGkSAgMDkZSUhMePH+POnTto2bKltIUSUZFiaCIiykHLli1x4sQJCCFw6tQpdO/eHTVr1sTp06dx8uRJ2Nraolq1alKXSURFSFfqAoiIiqNWrVph7dq1uHLlCvT09FCjRg20atUKJ06cwPPnz3mWiagU4pkmIqIcZPVrWrhwoTogZYWmEydOsD8TUSnE0ERElAMLCwvUq1cPmzdvVgekFi1a4PLly7h16xbPNBGVQgxNRERv0bJlS2RmZqpDk6WlJWrVqgUbGxs4OTlJWxwRFTmZEEJIXQQRERFRccczTURERES5wNBERERElAsMTURERES5wNBERERElAsMTURERES5wNBERERElAsMTURERES5wNBERERElAsMTURERES5wNBERERElAsMTURERES5wNBERERElAv/BzTa2GAKgifxAAAAAElFTkSuQmCC",
       "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
+       "<Figure size 640x480 with 1 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -715,7 +814,7 @@
     "    SOR_info = solverinfo()\n",
     "    SOR_info.w = w\n",
     "    tol = 1e-9\n",
-    "    SOR_sol = solve_poisson(u, tol, SOR_info, SOR)\n",
+    "    _ = solve_poisson(u, tol, SOR_info, SOR)\n",
     "    return SOR_info.iterations\n",
     "\n",
     "w = np.arange(1.0, 1.99, 0.01)\n",
@@ -723,7 +822,7 @@
     "plt.plot(w, iterations)\n",
     "plt.title('Number of iterations vs SOR parameter')\n",
     "plt.xlabel('w')\n",
-    "plt.ylabel('Iterations');"
+    "_ = plt.ylabel('Iterations')"
    ]
   },
   {
@@ -740,11 +839,18 @@
   {
    "cell_type": "code",
    "execution_count": 17,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:41:03.645445Z",
+     "iopub.status.busy": "2024-08-14T18:41:03.644042Z",
+     "iopub.status.idle": "2024-08-14T18:41:03.657693Z",
+     "shell.execute_reply": "2024-08-14T18:41:03.656439Z"
+    }
+   },
    "outputs": [],
    "source": [
     "@jit\n",
-    "def jacobi(x, source, solverinfo):\n",
+    "def jacobi(x, source, solverinfo): # pylint: disable=function-redefined\n",
     "    \"\"\"Performs one iteration of the jacobi method\n",
     "    \n",
     "    Arguments:\n",
@@ -782,7 +888,14 @@
   {
    "cell_type": "code",
    "execution_count": 18,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:41:03.661618Z",
+     "iopub.status.busy": "2024-08-14T18:41:03.661004Z",
+     "iopub.status.idle": "2024-08-14T18:41:03.670789Z",
+     "shell.execute_reply": "2024-08-14T18:41:03.669648Z"
+    }
+   },
    "outputs": [],
    "source": [
     "# This spec is required for Numba jit compilation\n",
@@ -796,7 +909,7 @@
     "class NAG_solverinfo:\n",
     "    \"\"\"A class used to get information to/from a solver\n",
     "    \"\"\"\n",
-    "    def __init__(self, N=50, w=1):\n",
+    "    def __init__(self, N=50, _w=1):\n",
     "        self.iterations = 0\n",
     "        self.w = 1 # Used for SOR and ignored for everything else\n",
     "        self.source = np.zeros((N, N))"
@@ -805,7 +918,14 @@
   {
    "cell_type": "code",
    "execution_count": 19,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:41:03.674740Z",
+     "iopub.status.busy": "2024-08-14T18:41:03.674371Z",
+     "iopub.status.idle": "2024-08-14T18:41:03.684314Z",
+     "shell.execute_reply": "2024-08-14T18:41:03.683156Z"
+    }
+   },
    "outputs": [],
    "source": [
     "@jit\n",
@@ -818,7 +938,7 @@
     "    solverinfo - Takes a solverinfo object to get info in/out of the solver\n",
     "    \"\"\"\n",
     "    N = int(np.sqrt(x.size))\n",
-    "    x.shape = (N, N) # Make x 2D because that's how I think\n",
+    "    x = x.reshape(N, N) # Make x 2D because that's how I think\n",
     "    nextx = np.zeros((N, N))\n",
     "    h = 1/(N-1)\n",
     "    # loop over the grid\n",
@@ -826,10 +946,10 @@
     "    # the boundary condition that x = 0 at the edges.\n",
     "    for i in range(1, N - 1):\n",
     "        for j in range(1, N - 1):\n",
-    "           nextx[j, i] = 0.25 * (x[j+1, i] + x[j, i+1] + x[j-1, i] + x[j, i-1]) + 0.25*h**2*solverinfo.source[j, i]\n",
+    "            nextx[j, i] = 0.25 * (x[j+1, i] + x[j, i+1] + x[j-1, i] + x[j, i-1]) + 0.25*h**2*solverinfo.source[j, i]\n",
     "    solverinfo.iterations += 1\n",
     "    nextx -= x  # NAG requires this rather than nextx itself\n",
-    "    nextx.shape = N*N  # Make nextx 1D since that's what NAG needs\n",
+    "    nextx = nextx.reshape(N*N)  # Make nextx 1D since that's what NAG needs\n",
     "    return nextx"
    ]
   },
@@ -845,12 +965,19 @@
   {
    "cell_type": "code",
    "execution_count": 20,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:41:03.689523Z",
+     "iopub.status.busy": "2024-08-14T18:41:03.689154Z",
+     "iopub.status.idle": "2024-08-14T18:41:13.704343Z",
+     "shell.execute_reply": "2024-08-14T18:41:13.703337Z"
+    }
+   },
    "outputs": [],
    "source": [
     "N = 100\n",
     "x0 = init_problem(N)\n",
-    "x0.shape = N*N\n",
+    "x0 = x0.reshape(N*N)\n",
     "NAG_jacobi_info = NAG_solverinfo()\n",
     "nag_source = source(N)\n",
     "NAG_jacobi_info.source = nag_source \n",
@@ -862,7 +989,14 @@
   {
    "cell_type": "code",
    "execution_count": 21,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:41:13.710321Z",
+     "iopub.status.busy": "2024-08-14T18:41:13.710130Z",
+     "iopub.status.idle": "2024-08-14T18:41:13.932287Z",
+     "shell.execute_reply": "2024-08-14T18:41:13.931225Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -874,14 +1008,12 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEtCAYAAADHtl7HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9fdBuW3IX9Ou9n/c9d+7H3JmbmcTJ5GYCIpqgVahggl8VK4KiRiwtIoIpEDVlWakyJTHGFEVRpQhSJJoCLWssCUiiEA0gShACGjSJhYhKhRCJQBImk8xkkjsf9+uc8z7Pbv9Yq3v16tVrfzzvc855zzm7q9732Xt97929V/92d6+1iZmx00477bTTTjvttNN6Gp70AHbaaaeddtppp52eNtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROd46I6DcQ0Z9ZWfa3E9F3Puox7bTTTk+eiOg3EdEPPKa+Vs9DK9v7U0T0G1eWZSL6RZ28x3YPdpqnHUA950REP0FE7xLRW0T0SSL6A0T08oo6//iF+v+SPFkcJI2Zv4uZf9Ul2t9pp52eLnJzkvz9vgu238w5EZ07D+U59KEb/7/IzL+amf/g+SPf6a7RDqB2AoCvZuaXAfx9AH4ZgN/6hMez0047Pd/01cz8svn7+sfZ+RK4WkG/243/j1xkYDvdKdoB1E5KzPxxAH8KwN9NRP8sEf0IEX2GiL6fiL4UAIjoDwH4YgD/Q36z+qac/hVE9EO5/F8moq+UdnP9f5+IfpCI3iSiP0NEH8jZ/2v+/Uxu71d4EzURfTsRfYyIPkdEf4mI/pHHcDt22mmnO05E9HcR0fcR0RtE9NeI6GtM3nuI6FuJ6CeJ6LNE9ANE9B7055wfJKL/mIh+HsBvD+ahX2L6+iQRfcvGsX4/Ef1r5vw3E9GPEtGniehPE9FHOvU+j4j+RJ7//g8Af/uWfnd6dLQDqJ2UiOh1AP8UgDcB/DcAvgHABwF8LxJgumbmrwXwt1DeEH83EX0YwJ8E8B8AeA3ANwL4HiL6oGn+1wP4VwB8PoDrXAYA/tH8+77c3v8eDO0vAvilue3/GsB/S0QvXOq6d9ppp6ePiOglAN+HNCd8PoBfB+A/I6Ivy0V+D4C/H8A/iDR3fBOACf0558sB/E0AXwDgd7i+XgHwZwH8TwC+EMAvAvDnbjH2XwPgWwD880hz7P+GNOdG9J8CuA/gQwB+c/7b6Q7QDqB2AoA/TkSfAfADAP48gL8K4E8y8/cx8w3SRPQepIkoon8ZwPcy8/cy88TM3wfg/0QCY0Lfwcw/xszvAvhuJEC0ipj5O5n555n5yMzfCuAegL9z60XutNNOTw398WzNlr9/PSjzzwD4CWb+jjw3/N8AvgfAryWiAQlo/FvM/HFmPjHzDzHzg5k+f5qZf29u692gr08w87cy831mfpOZ/8JMW99oxv5zQf6/AeB3MvOPMvMRwH8I4Jd6KxQRjQD+BQC/jZnfZua/AmCPo7ojtAOonQDgn2Pm9zHzR5j530R6w/pJyWTmCcDHAHy4U/8jSJOWTngA/mGkNyahT5jjdwDMBqpbIqJvzKbuz+a2XwXwgaV6O+2001NLMifJ338RlPkIgC93885vAPC3Ic0PLwD4Gxv6/NhM3usb2/o9ZuzRXPURAN9uxv0GAEI7x34QwMGN7Sex052g2wbK7fRs0k8D+HvkhIgIaQL5eE5iV/5jAP4QM0dviUvk26ooxzt9E4CvAvAjzDwR0aeRJpuddtrp+aWPAfjzzPwrfUa2QN1Hihf6yy67N+fMzUUfQ3IRXoo+BuB3MPN3LZT7FIAj0vz7/+a0L77gOHa6Be0WqJ0i+m4A/zQRfRURXQH4LQAeAPihnP9JAL/QlP9OAF9NRP8EEY1E9AIRfSURfdGKvj6FFJfwCzv5ryBNIJ8CcCCi3wbgvdsvaaeddnrG6H8E8IuJ6GuJ6Cr//XIi+tJsNf/9AL6NiL4wz0u/gojuYXnO6fX1ISL6BiK6R0SvENGX32Ls/zmAf4+IfgkAENGrRPRrfSFmPgH4o0hB7S/m+K5Ve0nt9OhpB1A7NcTMfw0prun3Avg5AF+NFDT+MBf5nQB+azY/fyMzfwyABEV+Cunt6t/BCvli5neQAjZ/MLf3Fa7In0YK3PwxJNP1fcyb2nfaaaenn2SVr/z9MV+Amd8E8KuQLEM/jRQm8B8hxUgCaaHKDyMtQnkj5w0r5pyGcl+/Emku/ASA/w/AP3buxTHzH8vj+cNE9DkAfwXAr+4U/3qkkIdPAPgDAL7j3H53uiwR86wHZaeddtppp5122mknR7sFaqeddtppp5122mkj7QBqp5122mmnnXbaaSPdCkAR0T+Zd3/960T0zZca1E477bTT46B9Dttpp53OpbNjoPIGXz+GFFj3U0iBev8SM//Vyw1vp5122unR0D6H7bTTTreh21ig/gEAf52Z/2ZenfWHkVZi7bTTTjs9DbTPYTvttNPZdJuNND+Mejn5TyF9S6hL40sv8eG1127R5U477fQ00fGNN3B6++27uunppjnsmu7xC3ipJJD+Q9prtk0v271SfdzNi/IluU7g5q76dtrsVURnsmutN2OuWNAG+SRfht0Bu8xuPneOUx/cbVMGlnlvjk3CPL9nz339uj9LrQx06rrsx0KzfI4LNbwGOvxmd24OwvM53gPFE8fNuN/Ep3+OmT+IgB75TuRE9HUAvg4Axve/Hx/+t7/hUXe500473RH6+Lf9J096CLciO3+9gBfx5fRVSZHRABoIGMdUbhxT+jAkMDWkMhizkX8cU3ouAz02aQB4KMdaN5dlouQzsOeAS8sDH0y+pOVzdufeD8FnAijyim6SBtmUMeds6k3phCYudXJ9mqYqjZjTsdST9qYp1WeTdppM2XTMWm9K+QBwOuX0ScsyM3A6pa5Pp5SeeQ9kng+U+T20/M+ygcGU6/Ff+OfObX7Mb5cGrJYDwAGwCwDnCgBFfAaAiUs5yyvP2yjN8pe55rfPt/zOfEzyMAETV/xmzT+BRTbyGP4s/3fdT+fcBkB9HGl7eaEvQvnUhxIzfxTARwHg3uuvr3pFiVH1TnedwreHnXa6u7Q4h9n56730GlfgKRN5xTPcYgI7V4mtpAY8XbRtakHUViJqLQ5RmqQ7cwEPBJqw3hq2OJ4hKVMakLR5Bk8dHjeysKqPC/LCtnUbOXyaqCcfm5ogtULRQOAp8xuYtaTdBkD9RQB/BxH9AqRJ59cB+PXnNPREANNzIlsAFr42d8Fu3D197IBqB3Db6Xl6DlraPocJeKIgfHQYqnKqwHzZyt2zjgHnWoW20mw/kvWEn7MKqA0EnG4xoIGS1ULaGYZkrZBfIPN8Ak81cK4AigcuNLTpj4oaC+K6ahexPgVtXmTe74Ei4dNW0CRAeCBgGoBhqvltywHK7yU6G0Ax85GIvh7pUxsjgN/PzD+yuZ1HKV/Pt3IotHQfHtGEeLGHqdvBI2x7C11KiJ+ECS+M7Xjso3gitHkOo9bycJbFQehSFoLHoaQpOF4rrhewENyajHurNxZrhdDzAcW9GABidd+tpaWydpxhfRT33uMiO+QpyJ+zEK7huym3yYrpLZD2/Iz7Q0Rg057y+9SpgFvGQDHz9wL43rPr30YGLiE/z4miWJzo1tyHM+c/4fGtsMFt596nxSf8qMe5lglzxZ6SW7mWts1hJq4FTnkSFTBFzhIlZV1501AaS2TR8MqycReuG/msQs4UWp/m+N160NYpwCXFqnE9HCvsXnu2XTkeKLURAqMB4FO2apg87X9I8VcjgYNn08c+pToBrwYjGzZvqHnLt3X9hkHmLv5pC0WyJWmeLxUIclNNlhOVjYHANg7Kk5OPOZlKLluu+X2qQVXqnrMVylgVqYA24R9BAsrLc46bzjjxGILIe3S2rnjc9WbocenlWxsmonFubdO28bheJs/t54KMuYtxXWdf3iV8rIxnDkRtpVgZOm0zxArtsdOTfEk1YSTLZUktPfFYHOg6x6o1DCloOGw/u3UmDsuJdariveN5BaAjMDRnXeqB5Etbm9a29bi+UXKGlWoVAOeYj+lZRS1rUk5ioOSFZsW4nhiA2kRb5OcMWbvrBopzxreoG3ttrpmTtprwt9KWds+4OY8EFD0KkNsrutaQtOi6jSbyFY1LkTv+3FyaiCitvCoJ6deuvAJq5TmnSA2F1oeetYnMiryorF15ZfLmAsgb69Na3t5mLggsWPPlqW+VWgo+t0pVYl4GMjelxFTRBLAo1XEsijXqEyj8B0LrY1hnDXmZiFZL9oDOgjVrNv5pDXiKLFFzPAitlWa6CRYEhC66ANTwQCAfB+fLenec4f1qfgd0twHUmitYKY+b9exdND3MkbvApevtm099u3ONrCy3hZbaWcnIzex70ux+BACsdw9mb6HNXLqJzyOQMkoznRrQVCnPct4sX9fy5k/rSNlyU2cVpSEmOBfSQoXBtF9d43JfDRldJ+0ldw2Sks0KTZWmUayMGdfOAPDkXDgDkiLUcddxLzygrMSzFgfj6iNkC4MPLgaAYUr1x7FYISLLlZUBD569+867b+f4b9uRK7yNFcoB5y54Osfq1LEy9uJfZ128ti0FvGhBGriMm2vel3a43PNpqvmNbG2ijfwO6O4CqAuApycCmm6rTM4dgh/7wsWvjk161NYmSxfqYxMbn2Rs1hxtlSMfczDXtCq6pTY7s+DzTEtBwM51d6sg89TA/Hkvbam93mV0mrIKvKsAlyxK57jd1tCS+687HCqxMZhq145vM+A7ebDjV95tiGlaHf+UQVZkYQRqEL0Ium4LnmxdD3ywYfqwchEB5rV1F4uaIPHIlWdp5cKAJwKgFifuufyZvOV21zJlXbGL1r/E23ylRGeulSk6nK+6ZG1aAFqLD9Ns3vxNWWTrGrbfcl6/hBGGuycbB7DSuhi/Ic4kdE1abdvPJJGzNgDmLdZaEYbAErFi80Qp7+tqX04xesWpx1RZHVa77nwbHYryVOE5SxQFVoTGCmXLSr4MxuZrA9xaMuzy9lQosErIsYl5kXs9WRAlG5kCxLmSV7ReBgL+U8XTDv8RgCdnkYr4HZVtZADoW59mwNNaa1djFeyBKKscOPNSrJ9icZxz/wmoAmqeidvOW6X8eGws1EAAxszPzO/E6HxNRlBXgPK7Z4Hq8e5RAqctk/+jUhRr213rUpsra+9HcPMWrVNzb5pLb6ERnQmezgZka/J9X9uKn0VLfcwO2WdGja2wUhHP3PLn3iJlwY3ROoHbJp06K8GcIvTpXhmsiVPxsU89ilx3K8HTKpoDUd6V58q3bVEb95QVpgdVleKW1VlReybAmIDitrGWKCC7gYqbp22rA56b8Q+NbNTXgiIfPRmZWxG3ki4JnmxZMtajCERVtMTrpU1U7blx4zX8JtORswizrtYz7YnFsSC7VRbEuwWgNoKnWeA0N9GvkZGtc8ilNexKK8JsnTWAasafMwukzgFKW6nD4PMtWfPdbWbho7r+nn7dMoy1shC91M65+LrBDTMDfJbIr7CqQIjbH0iUp6VK2bpPd9j8TF6htfFK1J8HI2V4DnhaIXiNMp0DUX6M1spk3Spz7pkVsTG6K3lVxwAtC6I0zzRc7X/U4aP2jUo2yPI0+p0FSyU9WiywegEBBW1X/ZTDLnBaoUPqjU1z4tq4N7gpJQPmyo3n0zqgquK338JCnsMmHkoGC2C07Y5PmQVqA3gKJ4xzANPShL9RIfAF3s6JjfCv7lgqb8zvufw6AenN5fVA1BZw1SsX7bvSLbsxHQu39xw2XgJMyaDWtjUjKk0TPevTjFWqC6SeVxBFKN+nAxBZoSrFaS0P3nVDgetO26VaUdo2gU4aNa47IPNOx4Oc1oKnswLJAzmqgFQkzwOAKY8Nxn1jP+Jqg8l17FzcOEDftWPBF1ACyqv+7XkBUWm/J4YqT0KyROS89vo7/Jf+/Z5fEf+1LQHc1PLW5nfSlhYQ9L5/uJnvncmmAdB2jBGIQg2Y1dXnY6GACixVVkdv8cIGflMaUMVvub45nju6OwAqottOxnP1z83LdAmwtLZdWvJRLineOaAT1Zv146xs+za0Jfp/I3i6CHB6VJanNW64qHw0t3ea1MQe6lp7659Ldx6hcdH0volXfdbFKMawWYqPI+q47iJaG2t66VV40iZ5xRctQbdiRLVlYr4/QujaCTbObOqJUlVlXWKiKhePdekAKN/Ec9QDTw7gdsfT4XkFoGfTXJ2mHdMXsHkBwVnUWZ0Xl22Bb8NboHXlWuq6DGf4DdT8BlqeL9DdBVABM5sJIZrAe0IQpc8IzGqAdEmhi4iXx7JotYoUY2R5iCxSQcD5KkvUucBqreVpZVqXPbdw9WnbjxA/8Nr7twCOu2xfskhZnT7n0nveKIpvSgk5P7A6ybG8JY9DnWbL5XRvfWpWXVEQNEy2vinrrQ2Rwu1ZLFYS2TnGu+6yjPbioXSczjLB8gkVaThboVJ/2ZUTuXaq/Z0CqwSQ7wkBJ3HXGRePtJMtEGzdOvaaI+A7ON4CNXjO+eysUVU5z+/c3qz7tuO6W2V5ani/nvmVpREJAGu6esjyWGD5yVo+3MIicuXl8VeWSOeFAxK/AQKdpqoekIEac9nvyfIbCHg+T3cDQDXAqC2y6oFeC5I6bc0Cla3KY2v5OevRQnk/7sZiFQKktWkxkFrtzpujcwGIr7cWOJ0Jms4GSnP1FuRj1Qo538cCEJLTpukewPZ1vWHyebNCkbMyWPLumg546sbBmLTuqqswmLy/pD20bOSkfgxUW0X6UQpiQ6qXKzOPVCAKVmFCQdScK6+xTIgVwlkcwoBycxyCKFtOr7MAKaHuoxpZHJf4D9SuW60fyMMG92012LXgqeL70oSEcD7rxb51XXraXuFfuAJTeeMWC6RSLb/tdUoaUSsL1kIplkIg3Hl+zfYIdwNALdBZlqeVwKkLmpYA0FaAtERL7S25dzqAqgJTW4BU01+tPR+H7lxleVoDnnrj7LF+6boucd1rrUv21NVpY5OCegGvI5Z36y7K5fMGosyk69Ptr1eeotQWlOfaoOEw5sUqTqM0Z7+H1gNPcyuQorzJKEArSxZEaT9tUHnXldfZXLPaSHPImVUams0zE4jygEzGj1rZWh73NlX0btqq3Rg8d+OeDEUbp3Zdd3bPp4iX54CnHuujdGNtBFBZHCWdhD9T4kUVD5UBc3cBgS6Ks7FuaBcQ2Lo5rQuaBURZip7pFZtpPnkAtTBBL4KnJeDkzkPAtEVgnhTNjaVnQUAHTEUK1mvVEFgtgCgPvNz58l5QMxd5CeAU1dkIrlbn35Y6b3w2v2ul6oFtx9sQZ3lZ8nW8Feq5Iqo+JpySzM3w2xn0gJNXnB48WYUbpmHeZWMUsFeY7bm5lkaRL9wOuQVc12WjyIroZQXbuG5QB5WbGrZOvZ+QsXgF49W0wFXIeaUVeUVtV2AJ8AKg7p7ZG9CRgQg4ecujk4uLyYD0tRY4ReBrgSiYKxRImUlI+Tjwsjsvct36BQNAcu+BAOvi8246WH6j8LriN7X8FlriOxqcewdojnm3BE+b+ruEkiBe93frfjpp54DHxfNHhBzcU7u1m0XwFNXZCp7Y/D1qWuqrk3eu1W5T/vNKoqQiJRiBp7ANqvNU6bXlZwOCA6osT37ctr2ojerTMdtAclPWtVWXLWPQ4yUtFFm81uyLFFh3mvzoN7IS+Xo9GfDpntcR2Mp5Z1sf566tSks/TB54lSJb+V5/FsbmdRpa4DVHPAuvZSEt4psv13t+I/526MlboCw1D5vN4265zVanc4BWNI7FsmsLbmizJ+FRcviGMGORcqb3qu2OJWrRCnUJ4s4xVgAnX34NmJgZ/+P2VnWDyT3PTHq4I0WPRx0RCC1RUtZboawQRNbQZ4kWdgm3x+E2BXOWp4U0238YNN6xOKyxOtVz7XYGshNEMqua2AzVWym8dWLJMlFFw/itDbppqcXIMgHkDRjFOmEtUoCxSKxQ4k4GeMYiaS1PLO6jcy1PNk/6OccCKePaSJHFEYitjgAaSxS52WeW3yDQCU1aa4lCtcWB6j2xPlp+5/Rm24KnOQZqNRKeAUMXA07nxkmtpaV2PHjR9IWKETAy53J/KiDVKTsHjC4dBnP2Asg5oHUmcDrb5XhbUt50ugyAU5VuwE5VT8r0ytumt4Co54IojpUAKuXZuGtsfuSysfk2zbQRrrizLhvbvwFXXYW5Ajhtc+XYAZo4F+lH3TJSRipDQVWoWLeszJO2ozSgjZ2RoUj8dxTyErl2fJ47D4GT/HYCy31weBc8Vf0hlgELnjpyoHW0f4rTZ0jnJgeWNc/wNnXNNa+BFjQv8ZvZtGcpCDY/h9/VBS7fiDsLoCrqWZ96x7gAeNoSK7U2fy31lKPPWwumFsAQE8cgKmpH23hMGrQDiqhXJjhfBE9L5bXc8vVuBZLdJqvgf44O+6BIzlHSWqsR1snrs25R2kIOqFhqgoP9b7SdQc9lA3RXW7U7k5t+bMA40CjNesl73W/VXkS9OQiBqMr1iWIUIDXZAGJnoahAVGk3skR1V+b5NKDdjNEHEBurk/CQfL5tt7onjhc9198SeO4FjJu2VgWMm7ZWgWgZU9SOpwBINnyPgBTgdBYKr4MtLFI/Vh7QBIcLvxUwRcHmen351y8SQAFSwAow1aG7A6B6ArERPHGvfHRe5S0Arq31b0UbNRYH/UdPgwVSbkKsrFFRuQh8zbnyNo2/DKZqYyt4smVuC5rW7kflaeM9aAIxwyYjXnLL8qYMKr411qiQpy3LGzlYEs9nGHSFQCk6dy63BjgBFUhq0nKdXrBw111D0TF0LM3qLJu/ds6bA1NVsTI3iIuEGI01KtmaLEjKAjShcfF0A43ztj6Y3JDFGlUpbEYVQAwUBc6c3Ht6QSse6IjvDvj69C1u282LBpaA00q3bQioxPoTqRuzl5LONXlHdxJLVL7tJJakfAxQ2gCchd9FHjTgezL9jqlsxVvm1voo4My6cT0Y9DzXi1rm/d0BUFuoB6TW1mnybmGtehRBMXOWpUa79dJmLETkynbHYcqtrbO17Ebqgqc5mgFPcdD1BvB0ieuMeBn03cQduYHNWpnM8dpyS1S187xsZ7DCEtGzOACB4pzpZ06B+ePG8mSVZqQwgTpty5wXlQvmia5I2P2dzJjJum+MRUL3ibJlvWXCtwUUBRi5clSxGqXqY2Kk3BpaAs9yLd7q5K2Mro1wu4pMoevWH28ET2udCqGB3FqShALL4+ycKfxG0Fbut5cXWh/9Xl/RVgk2P9oBfYbuNoCasya5tK7lqXcPNq/o63B97URzNvWkzXUcWJVizeuqO+U5Gxdl6wZWqO4wQ5DSr9LkL9XvAaK1wGnNCsBHCaBWkr/L6a2vnslWW5micgFWX7JCPVexUET9GKieZWoOOM247EKXzYLlaa3VqQFNfipZCxosEeA3U9S+GMUaJRkjpTITG7GKLFHQOBkS8yjzdsuEsVBpuihQu6Qd6C9rb645uE/RIoMF4BRbo0p7ofXRtXdr66OOtX+5Parf/4yM5XsnCwqs5bHeoiLJQhMXRdmSxcXyKO0kWcgTGfdi3iTA3KRLHaDlueRvoCcLoIKxLk7GYZ0N4GnTar4FkLWUfluKrAEWuGga1eUaZbcApMK3xyAuqlNWtGj1xtkDTjO0ZMAIb/Ma8HQucFo6n6t7Bm1acUetCFir1CxAckCqKWPzbbcbrFPPLEWrlDoWqFBp+vxIcQ6ufkdxNivtqGNpWABOazdSDDcmtPmmIjlBLiJVgAlTUq5dxSrHZoVeibGyQAvhii0AbUyMBVj2Uq31pMLIKwX+DBnYBJ61DlrwnIdZH+c6c3LgL+8Cz7adwzxotkCqTDl9fktdcemV/NxFD0hZCyZQAanqMi3Pm1WX6+juWqAioBMwe7PlaU3ZJxUP1XPXATVwadKctlwAOu144/IViIrKPioKwA/18lfWB/rg6VzgdGmP1WyAODArDz13WiUaUTtN3SAfwS0IwT1d/qbcNeq9oXZcKV2Lg+Q5UFW14RWnabNncUj5Z4Inc8gdQ1svPW1UKIVKu+230qQrqkCU3+5ArVFSIW+4Ga3YkmvWHcur++/Akn7CowCsMs6ZSd0r1hm3GxDIwBJ41nqmS2N59HlVfnMs/c5YH4FQr55jfazAsnkJK+rIgCGG8kq7zvKyaTGB/fSLChW1AeY6Lq4CzYGA50syENDdAFCe8UHeavAUtrECZM2BpiWAJcnbZS9sNwbBC41bS9Ns+Y41yitQD6IiLRqkbdahLMLcH2oIniJgtASc1oImLwobLFGr8rXhmawAoCw1W+Mrg6zQAUmmjxBbhyBpftzPNBGVPXs8uVVT/njehYNli0OuG1kcFNT0FGYEmiKwFPB1SaGqIpNNm+1zlxWZyEz9YeE0OJW7PG801iiRU0YTXC4unrJVUwZV3hoVufXUfZeHbR+uqb7mHrgK700kB3Ogac5d5/NH047lZS6/CJwiOUCdVl3fzKaX1hKp7VTzCWuavryJLOT+lN9ynPlN6qLN09dU2kjTmQSgUy6L4sY1LrrGZSuJIc8R8niJ7gaA8rT1LfacCb0Hnhqw1CknSWv7ngsM77RZMThyw3mFKMdSfjaOKdKYKylq71LlH6FVZ1V/54Knc8YdAdIov8ZCfbZFgMi59VaBqOcZJK2lSLlsdeOg5uWS1am024KgKAbLK81wZ/MAPG2xQlSWJmlH5FRcfgqaCO230mq5btw85hloPv8SBhkHq/QCq1MFooD62G3EuHg/oh3QzW+3fjcdjodxucXFAlaGeuDJNT0HmnrlFExVfHW8VhkI+L3K+mjqKE+NTMC0LbyMLI16AQYUG+vUVrqbAEookhsVAGeeCMsGwCgCRFXaTBsIZPmcwB2VoKWqwYQXmnw00x1zWwad/N54GbUVqjfuxxFNzPXvnOUpctetiZGaLRedR3XOpLVN2LvMPsO/4SnP6DwQlX+fNOvvDEXLnSP3m9CCxUHLh0qP4kBxAKHFodG4yK4AACAASURBVKMwmxVZAyoh6irTFTwtU4g0DiNLnCxT8kxGFinRk2JNEheduHkoD4SBJk4GsvRdxpGVJeqAYw1GFhpKO4jcORoXs3z99c0oN2zZjSt5G3cVp1peelan1XIAV86PfYYuYn0Eh9tbeOtjZY2C5WlkjTL5AqaGIhvW2hS68TbQkwNQc8BnoWwDnsI6MwBrI3CiqG6vnm9mTrMSwLOzVFu3+qDmEkiSJtYAqYXZsomH8kp2C60p71nUA09L7a4ET2vB1aa+N1LIPn9/3XkIpkwZi5/0XoiiCYBSSD5vTZ1nkJjQd+EBK9x4Ui4GTlrGu+xWAKdSF6ZcHzjNbq64gacVGM91K1BlFKiAKbFYWJdNpFi9NUpXa3EQYJ7lUVzfrIq3dvMASPOYWpucYgUq3tEKhRqCJdfOxYBTLj8LnBp9Wc/73uq45MqTcft5rwLNuW4FqgLgXH1k2PKboLKz2q0XASlGDZ7zfVHdZVx4YAukyz3cQnfbAgVsA1h6PgOwIu3XAUiz1qag7Vmw1CFfhz1I0QwzBlGERia6/h2K67YDcXlrANJtQFQ01nNoDuDMgScOyvv2emVm+r4VeaCEgK1c53fb8WIwh5EdINpdeStpyY0XuerOUJylvY7ilPaN8qyU7WDrrwNOWx/N3lRVrA7FpVN9SsPKc/WeZwLGbYB4vrbZgGPXpvZduYuCCxzcAz2Z+7VEi248KSfnhg++zDky4F2+AThaA5zm+N5VHbaMAFtrcTKuXL/7vLQ769bjmufp2qFu3Jqf9Wo9AG4fKqM0nyUXXhGEDvhRBrv8JfA0167PA/rWpmpeXABhHbJu9n4ZkaQ6vdqNmrjKr6xScxrWAi2fL3kzIGo2oBylfhHWTrmgWjMWO0IHehrXnU8HWvA0WzY+nnXldegcV144Mbl2fFA52wOnj4PqCoxSnpnEpP+VIEpZ6so/NzRWE0FYxCvLlLagMIFukHjP6lS5aaxSXAOaQgBlxxteWp+qZ8XNYe6FRq1IquDqdG3CuXnAMDuHU2nHWiYAdesBJo1zmrVIAcYqVV9/ZalYQ40b15zMWBy1bGB19HW2ygCwEjzbyz7nWQ5fUKk+N3qtskg5fmsdMu1l8Fy59fK4a54nUFTxHKiBkpAJgm9Wmm+gOwOgNlEPPK3N7+Qtgae1wGnupWUurw4atxmlb7VQVYJUgI+CtMjkMAdoVBkG9Ux+uLXBpegM8BG3Mw+eun0ugauAVgOmGaBh21j06Ar7LZvmwMwKoLMqhul5A0oh0byiFOoBJ2AbeLKKLtiaQNsNFGe3HU235dyY7HhXUj115fbEgpQL2BeratNMZ6GwAens2hPrRMl3m2/aIHOpo+ColANQrFJAcfcgAFNr70EAmlK6kwFfPpIB3F4GGpftWuC08dptXK6dkvSc0VggG37bsSDzXN2s1OwdpW2ptYkrnsO2QWUMQM13oOb9VrqbAMrzTxk/c6FLbrsIVOU6IXCy8tm1RM2M4wxKz3jbaD05sUmnthRTAdzeGlUpQZM3N+Qe6Oqmr9HGZ5AHN9xLnwdP6wPP42H0rGVbys7dniiLAzZXb18WIDnx7eVpTFSF3kw5Mqy8FAh72okQfzMrU3dDyhnQpPXmFN0Wq9OCwvRj6FujupfZUhfYm/gWa5VSeUpzD6GOj6qsE4RkXQCgbj1rjfLtaBxM7k/jo4x1Ip9rjBaglikZotKScg02Vg0B00rgrPUXgFPosnXAKbRgNjLhxuXHvUQGbNa853r+kE7k/ltPy1T4Z5vVbQ+Ym53rfUxVsUI6IGXGJuNqYrfMM70m5s3S3QJQUYC2B08REGrace35Oh44LVmbNG1+vBfRH9Sss0PtorPpEZhaCaRMf+3InTbsgSWb58pEQYez5IGOT5+pE4KnOYC0BlQZmgNW58RG9byoUjcyHGq2Y7PNZ5vggZRrqExu+Z6B14MlLF7iM0s9a4JSzw0WgSbTTqQ0w/iWPCfOxjg5hdltR/q6BIDyx35OsO4ZUa7Sj1esHkhJoDejgLIMpGzQcdVO9aKRE3U/oQXFaq9jBjBX1OiGQA4uLAO2zlbw3AVU0bXMUW9uFF4AaMCzybfgOXTl6j5OhefaxmQmy1zHXrvytsf3amLN/W20vt0tALWWekBmC6iaKbMInlYAp60B5TZ4vFWIRVAqd65VlMSpDVV+gSbudrCScttNLNSj0qgbgU5VxrWxKhZqrr0l4HTO9bdIuWq7cdGhw9acvxj87cBRE/IWgbcZMXouaUZRCs0Bp5RvwE8Ul+L2dIoUp9bvKM7SfhlDCJbIj9eNcQU1lgMzzOpcT+yGBE5cuVxX6NbLY2/cekC1d1TlMsplrVUqVWC99iqo3LmUNtEccAL6Vkeg5kX324po5Ia9bFkeV8dGDnx/9vI3XHuFQSRNeKhlDK+qgoa3PZ4XfFS3w3C7zxs+G6tUcemW67d8L+M9j+F3F0CFqCRKc+CJOmmmbGN58sDJgyYbZO67r8DW+SiCGq2ZdZ0+4SIUkmceIB12ERyY0s2HPAX8KFUSXc92PubqUYGltRQBoK1uO54HY1HemqDzsI0Z6gGhqg3DykoUvCJ0Ih9hs8jCVFmiyFsGTBmXFo1XB3SL5+BOEwHsXTbRxNsBS1GaV5g9wKNKU/g+BGlWYQ5tG/3jeoybrBFsFBfbNBTQwyjTiTx73kKh0418QNY0yChuniroON8rTgk05BnQBZrHaK4WUzZBxbea33pgSfNd2pky0AsOl/KNtaknA2ZMvbF2ic0ttTuPw82helx4ztkKKfKjx0Nuy/Bc2uegnUofWb77vv28ai9j5vuOS3QnANTF3nDn2rkweJoDTueA2bJiwD7V1ASPq7w4q5S1SPWsUU2AeQSGVgKkRxlMHrUa6eRZ91kEnhauKwJJa4HTOZiheZDtvQ9AyioLUQOMUOTCDj0CUWjb6aVVYhKVfVZpATABfSXUBSprN0HsKM7IotCzMjTAaVaZtpfqyYueTas/FFvyVP58bBP81GTqZ+uEtzJIv37bA7+7tbdKyXnqk2seTisuvEcReJbrRUcGlnYQd/yaddcpj6lNQ3vcHdMaIoNxm5ik0mR83LdCysIA+/Fqu1hAy2cAbS1S9ZYFPXmpL5D89hUb6E4AqC4pQ83sX6EYA3oiYOTSiFy+ZJv254BTBJqi+fS8/aAAv6lmtLohZcjDURC3j4sjLICoqvO6TC3VRrsugauV4KuqslR+DiQBBUTOgZ8I6/YA0EzdrkWqN86g7NzkFCmjXhk2CT2X36xLL0yj9sKWwNECwHumiGg2iNzfp9l9dlYozc1xTq6NWHlSk1+Pw51H12flWbKiFxX9JXPMSdGyuSZOZVIaV+0k62eek2x8VE6zn/HQNuzcz9BgcxLQVMlsFFRc8tZQ6O6kIP8MGdD6a2UAKFbSUEY646nG278WPzEpkMkn1pqU0riWBzkWlxrnMlTy02HAcwvSRI+xaSePVS3mnu864Fw0invaqL/uHoBqmMl1XlRej1twFAIdBUulvAdOa0GTzd8KpjxgKtam0p514bG/PJunl5YfSgChS09AlJU4Eao1gKlqKn+0kztlt5IHKxGYsWmR626pjutnETj59F793nU4asq7ycl5bPW+NpanoCtNM7yYLefSVAnBBZR7WgJVzygx0LrwPLnsKKZllbVJjnsrqihoZ4XCXGORmAVR/nIN3hGBYvvM2D9pVJSmf0bNM12V6QApALGbJyvVEEwB6urpKVZta4MrobsCE+4+9tx0UseCppw2t6qugKqNMrBw3FBvfueiNppzD6gszw1g6vFcb47qpZzW3TcMDZjSdoXsqspIwJ9aAHWpuIlKGB3gqSxNffCkTWmZFiTNAae1FqjeLuQ2UNy68CoXHIx89Ga6EAB1tPHckB+jaeGivawFNwvgqVe/697rjaUHRrRBo5Dsw0+GBQ6sEh4NayqW86Pr56mnaA4OFGaVvqQ4vXI0fbXWgd7nO6Q8BWltuahu77oai6oD65qHIqrUpNn9m1w5177Pa3altvOX6ai4ctLEqefG1aPXYwdvgdVWWgOcgFoGmvvvZMC2QwF/FmSgl7YkB811BPyvXvAYDZ/t8SzPNbF27UmBxX3D7H3XoRW+67jleZyCQPLg2pfo7gAooBGUfjnzxEbgx94YqsuHsU49q5MDYOQBmS3bHM+M31GxOBWwJG2w1WIuzW5UR7ke67WQ1oosUVVguXXbmVr1qQNRftKqBNCUtXndG7CQ78o01icDeCIQtGR5WrQ69QBWMPZZ7NzJ82BJ26GSXKUFrKjK+TYRs8GnVfXsmM2Y2HY4Rz3A+JRTA2rCfYDMSbgqq/5dvfkhoVLAPAR52g6FeVomatf2q+MP7kFwort7++cp/+kcN5nphAPrhLxAMEBqrWrzK8uE9NWzTOiFmvr2uvyDcYuNFUPADCAEzfm3can1ZKDiNwVp9pecvEQyhID3dszxJbI76Llvl3ie0lgXFijAFd4CycuhMmB4aPjOoOqzQDXvqRpT99rOZPkTB1Cr3motUFpbjjh021XFg3nCgqc1wOk2LjwAallyqUHJ/MCwbbMGQWRADpOk2TnDxEXB5vNKRjxCWgmiAo/quvINAHNtRGnolIvac/2uJqrr9zmPygJVWaRMueZN0ACpECD5vvKEtHhzGZVsPRdE6CvIqtwMaDLHaz65cZa7LgJMTR9BvhlPqFD9ZVqQH7hhKnkUpTkUIG7EGeqeE/cafJk46NjGxdhv7EXBw1IPuT1NIxikBd0WYStF1sEmvbm/F5SB5uPDnfoOdLXHpe/5C5ZfA2LN/Gh5DiDHPZVyMtdI+L+VFy1j+G7ntiZo3QWcp+E73tv5kqied1Wwts1oTxZALTCoCh6P6hqwVE9QTrtZIKTHpVwFngKrU+y264MqfzxHzSdaqhEBrYqqgZS69mAmHqYsZJJGlZWr2hrB27F1UrR5bhh+duuQvlFspQ7YWarjrVHd9vxxD1AF53Mgq0lfQw67LnPeKoEaVHmlFb40ZOXVlIerwyYWauV1VKjtUi75O0ZzMVCtAm2PQ2tDPp8N8N5ocaisGEP9GynbEJBF12Gv1z4L5lgt5AyQtRyJ0jTnTd5QvlUnskm6EWKen3hGoXK8q3l6J5DCTuaBSqFuVqbBm/MiaLLnjws8e3lw9ar27LgjquY/0vMez6WKWpqUp6a+Bd7S/5pgcySwpBtyosN7adPyuZlk1054iZ64BSqkuWuYBUvpPFxJl+vZPLJ5qOtGwMmCpq7rzg13WFAkk7rrMpCyxwKOsnWpAU0mXYEVuFiijDXKLgL173L1PlHlYZgFVVKbzHYGViC9yy+gJXdXD6SAKQQ/Yd0OGCtmYTeWqO4SuPLji84jkttWIaJcncrt19uukwEKW3yZ0myDaXTccmj674Iqey1Rw88TGeDRy7cUrsIb3PlccK+Lk4ksBrPWBjmOFKYBVatdOv5yK6VZjquXmawcRbGyzZP9d7L7hQG1HhFDrVHFtYMiqFK3CUancmw1N1C5+Mo1lDLNta59e4iKmbQ5wOTzIxmIwZK0Zeo6oMyEkM9ap0ozY9rAe+GtpnHm32TSxapowI/OVcb1pp9g4VLHAqaKtwKyozw7QM97m6ZF10zWMd09AHXOxGyYHuWtsgZtAE9VNWfFApZBkyUpq0AKRgYULFnQVNL9OLrB5HJ9oNUvVYtkB/qYiOyDgrr/1ZaqubIzaYuWqbk2UB7ScMlsAEwqFx2151WZqH/q5HfK+v7LuBcmUqDsQfa80MK1zgInm+ZjnHJeJeJeYVblVoCnnrJ1QKwao1PkzXUbkF9MRenPi1IF4lG7a+y1azemAbtPk5QRpVleFsw+QNKWHrt9n4yLD6ZMasc8uP65WEuufLiJagSeIl5k8GTbjoC0LR/LSN12Y3EM2vO8989/NDcpALb3wgsAuTLuRbAyXFNQpqpHBqE5lrHjPRzvGzluGb0WVC0CKCJ6HcB/BeALcpcfZeZvJ6LXAPwRAF8C4CcAfA0zf3pVr1tJGcB1WmCNmgsa9247BT9DAUkRcArTcpcWLJ3jwitDLxciQGgS8AQgtjzVaVbM6pUMeXowlqg6sNzPPvamGgnObYRWKFtmDQVaWYS/LTvXTi0W1duvtMtBXgCEllx6fctUMPl2KHwwK4VZJl1vXXLPfak6k19ZnUyB2XMgjoUKyt11uvT8NbsPFNBaqKyibNLccRrwsptG0tZYHKgAp7IcHkWJWguUrRNdZihgULecdc/5NAUt1iJlX0pFCZNTpqosgSqQvHpWyVgj2OVTKWcH7NNmLBSryN2vCDCn4Rj+RUDlUlZHw980nlJHx+b5Hcid9msvx89/UzmXY+F3ccsKT50VUvjeyExdx/K0yIbjuxmTWsLcWHWnc9Tpnvxmmz1aY4E6AvgtzPx/EdErAP4SEX0fgN8E4M8x8+8iom8G8M0A/t1VvXoKwEbz8WAt20tr24i2KiCbNwN+InedtTYNLs0e98Ik4ninRFPASY2909ctXybNPAKoVNvmPBsXpSAKZT5qJkLC5SxUlyIPZOTYgSR9Aw4md8kP87g9jsCSz09p7UTcsChi2UyRdsUkFEwVzrpmbb5Vcgb/qHR40GTq2D6q7jlQqIzwWu4gXWz+qpRPRF6J9kBTeL7wyY21irMCUFQpRY2D8eDLK1agsZQ071T+N8sOZSXKgLrmfDlVrMjxToNJz7ExunJLqhOAqd6jTOS1Fvl8H31gc/UsFGWgluGArwoMFiiUiQ5oSufonD8m8ByWC66lA6Aa/lt++MnJyEBiS1Y+UWycWIemMldVsUydxQmcE8oxlzlRxmP5X6+sSj9nKr5FAMXMPwPgZ/Lxm0T0owA+DODXAPjKXOwPAvh+nAuggD4w2tyOA14GPCEEPeiAJWhZ76YbKoBV2hpMHZiyvTFORjJHQrE8Oa1rgRTn9us9o2oQVd7u6uBxcN7moNi/ofFQWg7oxkKlrsx1IE67LQjzD6htfgYENfV77Tkwtd0qVQMnbwHrjdXmV9aeoHoEpBw28t2ViUzad5OEjGkVGLKIy2uqp4guPn917sGqjRQDhannK4ATUCtMa0mQvAZsOcVZKUwHnBrLhIzZjKeR9eBPyimOcQpVwdGQ5jyaTNC4rNJzoErHlxWwvh6SKSf3jBOQSkP0Xwb1z1sLpjRvdBU9BbLQk4NLycBaq5PfvdyD50YeyJUDQjBlgbLeFxfDpuUFuJh4KAU9AqSm4gOhzHPLe+TjVIaKUHHpQrsLeF8N3VWojOvCt426a1MMFBF9CYC/F8BfAPAFeXICgE8gmcgfHUWa0wia37LArriT8gRJrwGTtzI157kJAU7e0lTOI1DV58iIGkQpKMq/InRTdtWNGTipa0+BlA0mR+PSayxRZAPHDYiS2c/cRy1UpUVa2JVZC6q4FKmaCMGH1UptOx5MyfmcNcmCpzngZEFT2F40rpmHsbvFhplo1Xytkynpg68+fdNN2VyuZV3FApNpJ57qrQ0B2PJlPKi64yDr9vMXNavwZl1dPt8va59RmABW7eXU5BlXjSpLq0Sz0uwp1vTLsy6dSu7VZUNqRVCAdHLluPSjZTnfF4YGD4siFpdOcdmUvquA8MZtZ49bN4+em2tJhxTPO6VAfR+iIp3nOgRMuUz/mKq0cBVlY0mkFijDyIHls+GvgsUB+jmdxgpp74HOt1S764RvQ+Gf5k9tGoiWFxgAzu2X5QVo3Hue95JU+F0xvE8rgdRqAEVELwP4HgDfwMyfI7vXCTNTJ+iHiL4OwNcBwPj+96/qi3tSrMIVgKnuuKHgyaf7Idt4Jz1HDYwi8LQGOEXPHKMOIhfLkqYB+by2Sg0IVu9x/J27MOAcM/JBJtRzDiStbnAFLdTtucWiSXCpTlOmB8SkzgIgasawQjQbM7cWrsGJBzfaPpV2JYtNvjbfYZ8HRg0gmgNCdxwk9egS89f1i+/rPxJBehc8kcuPFKdtwypRX6f6JTNHmr6iNJS8WrFy7O5pLwUG2+f5AtAYS6tEc18ipypiVOdV95FCsS9tm2egKs/lWJuT8igDN0b4QsFzUVGH941MUCe/A6B1/B0ZqMq6cvB1QrlABZQ9wK7SB27AWXPdApYUlFIBRigASfkX8FTkQFlStE6dbvnEdRuWyZbfDc5l2455ttwk7OVpDa0CUER0hTT5fBcz/9Gc/Eki+hAz/wwRfQjAz0Z1mfmjAD4KAPdef70MccNEFOYr0502Jaj1ybqe/VYFFiwNw5SvEwqSpBvrrhtNsLkFTXps6iA49mStTzpRGEBlLU5DLiFAyuZZzg+DBVGk1wWg2JlMHRtUbl15ek9V0t3M5OisQPKwoc65apA4fxYMsTnekJ7a5bgMfLl2/HPvAdGbqkxqogR0prCagwDv1rPF59KLjGEZNBmgppNb9Gw+BYDqUvPXy6+9zt0YKKfwZi0RTjlUCtMoyGjjy1BBzgQId61OkjYmpYl8XCtcrpWoChDKc5AtT+KmoYmTm44BOlGxNlDOH1BZo3RakfbEGkUIrVFqeVjY3Tq2SATMsQ+Nf/tcOZe1AKojC+4593ndPaCcPHg3W+Ou9e7Z/NtYq0bD5xGtWy/LhR2nzmkTmYDxPEdOiecAQCcUi5TUFeskQxcOVNZFsSpO5rM7Mge5shHv00Ad7+GOqzTHJ3t9K2nNKjwC8F8C+FFm/jaT9ScA/EYAvyv//vfbul7qGPXEPDNJe6tRAVnubjjwFMVCRe64BJJQ5VXHuY0hyIfLAwpwGo31aCDWdAVPSHNNA6SI9WsDao1q4HNp2+5crjEB7PZprZSo2fKgp5kfB7Xsq489eHF5HgxJm+tAFTfpkbWpC6wcqcXITkRGIdkJQ8tRC4BSkWqNZYN/bB8NC2fAkt5PaeMpAEdLdPH5y1sRwjLlMLI2LClNLeOAEyAK09QNgJGWs8rTK1gFUFzONTaGS31RogTonm8iy1YhngCaUhC0rqorpp9CJ2hcC1B+FSDlNAXuPshcFOjg5JtcPZn/8r31LwzV86gPGOlYKj5toO6LUZSmxx3g5NJq0JzrevDsAdQo5UpeAVCFz1X+yKadwn8AZZXlhOKCPWWZkPJy06P5g1AWGeSmmzg5qctcbbhpQXSX9zZA3MaqehkwvLD6YyvP11ig/iEAXwvgh4no/8lp34I08Xw3Ef2rAH4SwNds6/oMCiajMB8RqCqAqKpSgara1WfBE4Cu1SkCToP7teT3fkIGTwKUhCau3Xn68sbJrXfiPBaUAPNyjbWkVC9XWZKS8LFKzexeUg2QMpPjpQBVBxD1yjXHM3VXgyqsAE8ctBmNfwZIyX3zrgQPlnyeBVFAmTC0/FxF14hOPjCTywzZMuTGLmB7TTuPmS46f1UusLkyQl6JBkrTthuBqMgiYTfDDPMdeEoTFdTKMImSHE2dkYvS1Xwj1AQw2FgKUKxJIPDAaoFQmrJg2GfC7MWj+tauvMrFKF9nFWRubn87y9lnQJ4LA6RcXccipbOnM9fQFvCseV4GgqDu7gpLHyPl80UeRkCtTsYSqWmW9yqD5sEWHp6gL+g0wW1UypmnNe8ZaZw6Z+R0BUSGwQxKAJ5j3muincvYlsl6zcmABdAw9c6hNavwfgCNaCh91Vm9VhMMx+nolZEHOh3r3k5GMJv9y6QcTJ4AJqrBkw0UF+A0qouP1eLkQdNgQNWAFqzFFiiUlXd5YBMTJIh8yFYnBVL5DVCsUWN+YE5TeXZO9Y1DO72YmQvyACAfZxCVhb5ZkbcGNNlubgOsKoDT7ucxB6I8UIrAk4qR2cMkpXNbB21bQNAugGhrAy2LVrmmB98IrJ107YQK6CoV+wZKE2v96NZrd2zS7BDNeOzLo31b08nJXpef0e4oXXL+sm/0vfyKKsUZK8vZ4zBomEqeyIYPGhZFKWnWPSPWpeyum0YUi9OBU5mRE4AaGHRIyIYGTvvlMYGnNG/wicDHIcnWSMkCdUK2RgFEEljOoEGUIxXgBShQAqFy7dSIKc0/PshcG/B/KL/s5o40jdXPqCpu1HU3UQ88mby57Qwiy1MXOFfygMJvSWtcsSZtMMDJWBmnQ/pNMpDkAIcp8UN4D4BPqWE+UbI8TemXp8z3Y7owynMIZd5rmnHh2ff8JbdexHtrtbRB5spP5W+wHxSMHFSMa5Pm6O7tRA70AdZStQBoRfs0WfDUKxPVidx11hoFJPAUAadeLJTMA0Oj8YrVCXDxUmJ1AioXnX4Drxo/FBgB7U7kSTkGwGiLKeG2YGmu6QWg1JSNAFaPGnDEbZ9VvvmFO0YBX3NjpzYJKb6IGrCib2WSZgBLA8hyngVB4es62nYadx1H9Sm4Mc8vrXfh9ZWmb8e763yZXpB49BseG9dcsUqZNLE4DAlA0cCg/DsQYxin9PJ2GsBgTBjAzHmiktW9acCi6FQxksFChPIyIDJmrwtF5lN7aOVR7gmKIm5E2DwjlbKmepdqUdoB+zbTLHCq0trjteCp96IVyUb1ImZdswKuJGjcWpvGBKCU9wODhuRLmyjznAicTUnp1lJKHynHRBEwlXGQvJEH8q5JVkbkcoL7WfFeDlDLC9t2DX/rtNJ49a28DXR3ANTSwAnliZCbYdKq/ZuCtOiTLH5/p3GYmoDxgbhYoPK5tzqJxUnKRdaolD5h4kE7nPKBWJkAgLgEjB+RXtuISa1RQAbmKC69AaTB5ZElqliYDNiyihEomjQLuwaa29mHTTm444h6+dYUrGn9ZqJmo+MmzYOeCAhZ8NTJA1C99dTluMpvrFbdiyhKQu+5Tnakk6DqDYbGgpBMftJvtsDqNhim72pesKArAlGWrDbaSckHkUefgWiUxExaT2navsJv1xkZ6AYKR+4ZSTskmZkOAEZO4ClbH+hqwnCYMAwT7t07YiDGvasjrscTGMC7D69wmgbcHEfcPDyAmXB6TOk9WQAAIABJREFUyMkSQXl+m5LxgCYkS0WWuQkMquJUoIrWghx16cHl6Y7hXP0AqCwSPYtU+fVaWNrY8AHtgGY3T/Vp/tidR8Bp1tLo0wxYmjK/i/WJwYf0ixHgQ3Jj0NUEOkwYBsb1vZv0ezjihasjTtOAdx9eYWLCzc2I43EEnwjTzVgsUkdo4LgGlRP0JZ5M8LneM6BOy3Ur3htkldI4nJ95juezx+cx/W4AqGjsEfK0x5UWbcuRKzNnbaqtSdA0b3U6ZIBlAdJIU2VlEkA10FS1XSxQU2VNmrKWPGbfgICpiQkHTAVkIQedT4PGS51y2mkaNLj8pIo+nftv6AGkb4WaJm+MZCagPHtFadVrnrnh6ZtUNTO3Gi4icGQtSz3rT5MWgKhzwFMLmMxYJm7HU42Bm2sqClMEEpX8puBYroCU/tl9ntyeT2yvmVBdf5VmfitrlVyDHWNTfyMznzUiwO8DJTTvvqvTPGjSNA+geooTNViqVtmRBU2og4JHycvKkwC+yv7/MQEnDIzD1QlX10eM44SX7j3E1TDh5esHePnqAY7TgM8e3oOb04i3H16BiDFNA4ADphOl/h4OaZM7IIMqxnDMwprBXDKfFyClgcU2wNzcpl6gMcGsFHTPn74omDyV+2AOS+mWcVhHjvddwNQ73wKcArCkPI8AtYlrE1ClYOqQgfPAwFWyNo3XJxyuThjHCS/ee4jr8YSXrh7ilev7OE4jPnv1Ah6eRrw7XuH+wytME+GGoO5cxlDu25RvtvBebjLlC7e8l5itOd7nOS/anRxGBpT/bg6srO2GF1ucLZ7uBoAy1N0DaokMsGrmshXWp7ZMGUfkrhPLkgVTBwVNUwFTtp1cx8Y7CR1wqqxTQLYuGcBSBZVzWbk3EFfuvGpVnwFRgAdUqCwUF1ONF23MUNSmB1a9tG49btJ6b67k6tRgyvQZ5bPDH1SW6opSJtNfYnuOR3PgR0GOkQ0Zl3cFVpNG9Iu2nVDRRPcvGMOzTt37cYYS9RaoSnECxepklGMFsqTdobTj46Z0iwIDsmw6shsHA4PGCTQmAHUYJ9y7OuLl64e4Nx7xBS+8iQ+98Fm8e7rCx4b3462bewCAaRpwnBinYzJ5TVNWyuLW47wmbkjWB6tf7UtHZW0141dZ9PdZrhf1irtQJE37Us43h0DW14r12eA5/3ZlYAk8mfQmza2u07ZyfBPLcZYBOkwJQB1OOBxOuD4c8VLm/ee/50186IXP4d3TFX6K3od3jtcAgNM0pL9j0j9gBp84AacB0L0Eh8Jny9etvNeVl9IeCv+r97yWDbnsfPo5dOcAVEMGGFXHJs1/fiUd14Hjc0Hjg7reXHA4CkDyLjtx1x2GSS1OgyuTjlO5kYqrbwLhxISJBwVRR04OuYkJx2kEKKVJUPkAwkRUzplwnAa1RA1yP6ahcudNTBiGqdqxXO6JuOkI9tjtC2VF1Er6BamZqCoA4zVTUN8Cpvy3xpok7c2WNR/H9O46uwMvmLvuPWmnWlFDVOJBxG1gnf/651ES1ALFhPJ1cZKJhStAVikVc80CqggLQMvcYy2HOu95Iu/CA7AKPNnjyIWnli2nLLVPr0gHhIpVl61HS9QPEkDOGjCOwwQ6pGDxq+sjhoHx0gsP8dL1Q7x49RAffvGzeO/hXfzyl38cX/7Cx/Cp6R7+l7e+DB9/8D787INX8MnhFTw8jXiTGDc3BxxpxIkYPGVYM1COJ6AUTH4iVZJA2n16sC8J8lkQkmeuTAcq6/ZlhPMN1eMs5DbIHKjdeyYdUZo5nXsJC8F0BJ5supUBd9yNcfOWJcP/WZdttFhgFDng5LLNvD9k3r/4wkO8eH2Dl64e4ote+gxeOjzAL3v5x/EV7/lJvHF6Af/z9Zfhpx+8Dz/74GX87PAKHpxGEDFubkachhEnIPGeSIEUAOVzeYlc5r3ehzynRt9YTPJR+J94ZoTGMhNm/kKcv5WeKIA6y2xmQFGVbOcfI/W9oHDAb3iJyvpEpowHT94SNQeeRnNeLjy1OxHjZhq1nTKWDOjM0yjWKHHpyRi8BUqu5cRl/Cdzo8VCJRYpoHw7r7uFQY8uDaY2tEWdB2S2XQeemlUYDohVwMyWadrrgCcDwMBIn7YQoJMBqr5RAZLSYphsWZKHvwE95p4UQGbAmB071WUvSr6/Z42M0vM0Z4XoWR/Yt2cBkSvfunfiX7VImHMFV6Jw5Y9YLVASLDyOEw7jCffGI14Yb/C+q3fw6uFdfOHVp/HFhxfx0vQuPnB4E+9M13j7eA/3xiOA9CI5jROmiTDlrQzEipAsHZQ30eRkmTIbLPKQ5X4y7xBZlhhmrrciLbKej/Wegqo4JqlaiWZVPpeLZHftM+LKLAInf05t2YqvkhfxO8gT63aVpgHkrFYo4XvN+wn3DkfcOxzxytV9vHp4Fx+++jR+weEFvEjv4rXDW4n3p2vl/f1hwjQSpomAYcjzE1WyR1kOyDFmjvdVOXNspzaui1UJEW9n+X0G3SkLlLrv9Oa5c0k2N7e7cSZxDYgqi5T5Lh4KeLIB45HlaQyA0mE4NcDpajg1IOpAJwVRx2lUK5S6AnlIFimQWXoHTBgwUbI2SeyAWKI493ucBgVR4zDpFgc+HqrczNqVJ9qUMg9kE80GVKlWN7PbWuqBrVngY6TeAJqmjk2vQEzJI1e/G/cE14bZbbcBSVEacwJKpg8pCyobDfKQ3a2D3BwUpSb5eUgSKO7T2NxTC7jY3BMPusrrvKtLBVRZa5QWs+kwbduOn3FiILZACS0o0lZ5UqkTKc0gcFwBkrVm+m0KKKXZzTIhaRIwPiahpUMKGB+zy+4wTnj5+iFevfcuXr26jy++9wZeO7yF9w33AVzjCoQPX30aI0048YC3T9d453iNh6eyv8N0GsADcJpkqQulfhkqMOp402eZdWJXK4HZL6pmggFGXOclS5OZm9g+AKYNOMXq2rF8WkW+rDmPLI6rZMCDpoV4J2uVskC5bF3AKQYty4NYHsdxwvX1EYdhwkvXD/HK1QO8/947hvfvAhjxAhFev/55XNEJExPePl7j/ulKrVAAwNOAaSLwRGmfKAhP5Eaw2y8qH3jeyzxl3H2WRaXN0kTFf9u+21Cz7tulb6Q7BaA2kbetGrCECiwBPddds0VBx/J0oBpUDQYQSb4AJyDFQsnx9ZBQ+r3hqIL3AAecYILBmTIwMseg9FbHjOM05mPCRFzionKat0QlZyDUTRfFQxVLVGqs+fZdpRjndiYXrZvSdbfiR0XRJIiuONTgSMvG4Cn6jcom1x2bY1PuZI6l3IkxnJJViA9UQMcAde0pkJKJUyaVPCESkN7eE/I3aWUyrVnm4qHcPeuCKnP/KjYuTDI9fPzMEbn7EuQLRZYIrzC1nBwP7tikRS67Kl+WpAuYEmWa3TgKnsw2BcNhwuFwwuGQAdQw4aXDQ7x6dR8fvH4TH7n+FD5/fBOvDUcA17iiAV94+CxeHB7g/nSFN25ewvVwxLvHqzQWJhwPSYlOI0FmJFV2ERrXAGDZ564vT6o45dzKv9u1WsYTKdJKvgPZP5dinvvzADTZY8/nAEDpr1lxZzdHhfI+A2pZbad7fCGBJ+H94YRDDhh//7138IHrt/CR65/DBw+fw2vDQwDvwRUN+PD4Wbwy3Md9vsLP37yEt4/38PbVtd7r02lI+4GJG6/He1BeGZWv1264SihuOuO2rbCPnauBug+nEzygalZa3oLfTw+AUsHqX23zEhBMdCqrxvrkV8p5y5NdrVe76OzfZALLS1zUiASuRkwYacJIwAkDBmbcYMSQZ4vJaDU5Fndd2v5g1L6sO28ghv1+niX5CLGAqBNTZVXyFiZdkedA0Wqy5c/VqAvAaHEI/s3C/vpjKc9tmSa9SisTcQWeJE5qEqDFwMQFZIGRl06m7z2h3GO1MpH9rlcCruAy91SU5YVMfm09KptsyrU2yj8CRnNgiU2HnTJhP88IzbrqojJWadrykeKsytfteOuUd+FYt13lwpMgclGidh4lscRDXy4Pw5St6mV18QmEN6YDHvA7eMgD7vOVjmsAa5gCARiGtASemdLmixOpC0+vzyh/kjc+eaTkkaBcxT6Xck5GDA0Wsd4hOw2lTMDu/6T5Vo65bseSn4e68u151qQF4MnzNABPVTra/KYcjByodYq1X1B23xnej2IMQAk5mXjAG9M17t88wATCfU6QIemzpOMOEqoyTLk9LPOeoN9FVF5TnvGcbOu7vTRDZfrxfA7Yqe+jep8NQ6r9wDyt0D13D0CtmKBqaxNgZVKsT/a7dvbcb1lg0wnJlw/EYClZmtLEIsHjh+GkE4gcH+iEq2yhkt8XhhtcUdmd6cQJRI2YEqACYwKlmKj8RjVMowaSlx03zb5R2VI1EdtVnOn+TIPuESUPjnXliXXKx0LpbSTUZm1pV2cs88ZwCZoBORV4QTuZRWDHv6EUC1IBO7YsmTRbVo8nSWdznEBS+kimAVEGOBEz6Mh5x3AAhyEdD1RcL0DRGrKhnYArmeFtOZuW38AJhl9sJheum5c3eM2ncv1sylVvcjbNKC65V88qWGqIUK1y61EDlsxxozAlzytDoHXh5WMt7yxP6saRcuK60Q0yUxoOyfJEA3TV1dV4wr0x/V4PJ7WY3/ABb0/38MP3X8ePP/ggXhnv4xe/8DN43/AOThhwGE645mOqz0ccpwEPx7Tdy3QaMB2yBSp/ZFh3cicTq3SiZInIApvCB6gCTGKN4BHi5S7ybQKO1ULl5wKIjFOVxshzAkz5iKdxckseLNm0ngwEgKoCU0NdttrvywaMG3eeuG5Zg8e5WB7zirthyNbHccK18H484t54xIgJNzzibb7GD7/zOv7Wg9fw8vgAX/qejyvvr4cj7g1jxfvD4ZTj4OZ5D/NWqPMLgPJNKFS8t5ZGzYv+0Dm3vyh6QeXhTHryAMoJV1xm3RX6gHGb1tuRvA4kr9NtwHi811NOg8RItdYpiYe6yqDqBEqgKnNtIgJ4yr9DAmhZmvSYjHWMWS1Ttm913bHs6ZQ0m7gvrRUqXSOQJitz46neSVjuhazG62rKR6RFl9huQZUSt/V8OQ+qpJ7+GqBVtSduO61frEvlL4MnAVfMJY0AnBg85od2YlAyE2pgeXprQwFBBqjInEN5LGLBUgtUCHCCrRA6ZXdaQe5eLW2kGYGlxjIRKU5TxwMtX74CVVJOYqFU6WbBld8MxIchWx/k18R5Asn6dIMRn7x5FT/+9ufh1av7+KLrN/De4T6AYomQMIZxmLJVnEDDBOIxvcARi0lc++aByn5mDGd5kIT6PjXWCNTPiLVIAYHI2wRIe3lO3GKN6JSLNtJclAEHprwlqufiy4M21kao5Uk/Al1ZHeu/IVughGeH/Cs65YQBN3zAzx1fxt946wN49brl/dVwmuf9YHiv822e58z1E1C2J2C1vdcWyVzVOkfcdNYcW9aRSajUnmfiBnryAGqO/EREJbZJb3xO12KEKuYppXGpohaneMuCHnhqAsYpmS+vaKosT2J1qixQGUDdG25SoDgNNYAiABNwItYtxiceMIKBIe8PNcjeTxMOUg85TdrK1yDxUKzHxZVHSPfLuvFEHP0qvFkr1C1pJSZeV4+DPAE6bPO5LmuOi9WplKvSTcC4WqdOqCxPEu+klqcTl7TTlFcrZEB1kNfFvB9U/pI9CHm1Xp5E0gYr2QJkPtXDGXAJYM5pegsMACMuvO8BLQ/Ywnt8e7Y/9dTbSLMFVm36InCSPAuMfDlJMwHj1urgN9VEteoq/enKKyquG3Hf2RfKCYT7U3LXferhK/j4W6/irXv38MZLL+OV4T5uzIcBJWyBkBQyAxiGQb+Dl14KEiji0cRUIqXruXHnVZrOvOAQF2XLgH4WRtOolNP7buXbyDKx7coyCzXNyb7Pm+H5FuDk5aK7eablv/Bc8sR1J+DZrLwjQna7ZfBjLnriwvtPPHgvfvqtV/H2vXv47Msv4n3jO9t4L/uC6YsiNWAJU+JjiWXK8ypMTJzOxeZaZXNNNvkwfEaZw+1cp+mWJyZvLd0NABUJJ7mrXChPVJ6Yej8oNIHj1nUnzQ1mEpH2BJUfsuvNB4wLqLrKrj0Lmq6Gk4KmEYx72YU3YcK9Ie0BpWAJpHFREgE+ZTA1gHADOEtUkkSZ7Ni8Odl4KPlm3imDKM7nkmeBk/iujb1JoT6ZMi2gQit0UdoKmgNHYZqZJCtrEQfi4/L13G4zMNXtJndcaUdjmZbcdtnypGmnKQEoWX0yEHCcEogiYDiiBPqK7J7IxK/IxzDLSjwFS2xutzn2VikLmrSuVyy2vG0DLi0o+1yQBTCdfEsRYPLp3qIQWqJs8LC69UrAOI+ZTxlU6TgtcKJaeUq8yjimT7aMQ4l9kW1UTjzgPl9jmgZ84v4r+NRnXsa7L17hjfe/hA8cPocbHnFCuSHjMOEwTBgHBnOybk3DBMIAmqa0MmvktDv5yEaWsiAyJXkki6GSkClYyopS9wQS2eaSBxgla+aB7s7UJk3St8p18+LhQVQkA/64B5wkzYIl+bhvA6asO5dL3JsEjg/G6jgm6+FowLSEkpyQYt1O04BPvvte/PxnXsaDlw544/Na3ov1SXgPTDgODB4nMAbQkDe6zFYoHtiApbzLICHNeQAwQr+jWCEf4bHhkz6PgQxYPdHwF4EuQ11uDd0NACW0QWgjd51Nt9sWzJG1KGkagjRzXoLE09ubb0fNoGCMKMHkY4bZY54BRsqfauHB5NXuvIlHjMQaWF6C+8q4JmcV8qvyztrjCahnGAuKKi090+5aIBUKcmnXW5I0ba6+TXf5XnSoatdYmrQdrvt28VMAituOs9suW6S0fY38TxqievvK9SGuPQE2JuajclPkvimPrXlzNmU9WKqesVsAoAsZIp9e6lx7dU+C41Bxoj5nn4Y2bVbRElSo1fqgSpqLfOjchWquA0qcpVgaHk4HnI4jbk4jbnjEDR/SSyDkBa2uX8WfaprIYhYeP6dk9NS48/I1a1A5lepwTdk0oC1TGqyfKc28rVwHvLPgKbRIBaC5asP/2b6qv4DPVXk2Yyl60vMOgOP9iOlEyvsJg/K+unTTTvWlj8w71v6puScRD3ToJAKRedzTK2b6VPJtedkw6W3iMt0tANUjfeBRaTs5TzxpmSfHhNb6pCvsqrzWdXegk1qlJIh8pGR5Smmt204CxotVKv2+MNykGKQBSTiztWkAYxqoskB5dx4G6BYHxxy8KUHkYpUaQMbV51x5UBmsreSodycHFpYRE+LtDCyv5kDTEvBhw8oNbwiiJ6x1qbRngIz5s3UE/FR5YlkCygo7Lm367QzU6nRKv3ScUvvHCXQ65W9DEYgnTIcBdJRBDcCQgmqnA3SG4IGSO09eywHdeK6yQE0lX1/m7fUDBWhxSZOJS9qR6l0lonwn2OftebFEMVBtMxBSpEBz+pxCrfSRVaZyrK65fN+DoGENGpfyzgJFlQUqb55IZfuWsjlvUpA3POLBdIUbGvG5By9geusK7xLw5vEFvDPdw/3pKu1pZwZv99wbsiUquXLyPlBjmTwkWJwVFUGfPa5W59m3gHIL2ZbXxJIGU0YZiDpfy8CVOZc8wEEAcm05w+sKJNu4Nvn1FibUeXZRQbFG5od9tPyfMv+nahFVeuFO+xPO8f7tzPuJSWNqpX7aR3FQ+WKeUpwnMXjKptIpySlN5lM/buJpLUkpz1qgUlvm2OslLwdAzV/P6zN4/3QAKKALkKoiZPQIcQukTJrd88luU+DjnoQEpUuguLU8yVYFySJltzBgBU8jTbWVCYQJg5rLh2yVSns9EcATjhhzP8llNxLjaMYyUHHl2S0MbPxTnUY4cb72rATt9/Oqey2CTEb4emYHEdoOePL69lLUWIqifB0EqgfKgil/3Fqgym8FpKQdDRaHgqfSrrFIDWVWSHFJyGCIs46QCUImi2yhYkDinWDz85galtjJZCmtAwZkoqqA1hqQ9KyDKa8AHfUsUEtuHFunB56sVUEVJ0pesUyVcqlNOU+/CSyhUp6eJhQL1ABKmyXeEKabAQ9Oh2yJqAdvLfDpU0VcQisoybBaIWSPM3BZcZfHqkvZm3vO5UXCVFGR45LOripcmr3i1eK6RrYjAB3x26WF7l4nC8Jj+HY8z4M/Mr/6h2R99CSfGLvhEQMPeNjhvQDt6vKNnk1/VFsehzxohu5MrhEowkRjhVR+ivyASswbir73MiDNRXKg/PEJZ+ipuwegOhNQr1x6FvvuumiC8KvqNA3OBSdbFmSQU+0wriAp+35hgJKAJnD+nYqFChNuqATgnUCYwDhR2YX8NCWhPAwn/S7eIYMrm2YtT2UlHpf4JyrHApRkRZ69Pz33ngqgCO8j9Nl0BZc7ZXy6e+uorFjRm4ZLq1x3BvxY65SuuDO7k1f7PNltD04TME05eHJKYGgi0Cm/fZ3E9cbAlPdlHpA+aQCkSWSC2U/FjC1fA8OmpZlD+SUTDBce2vtj02TMmrYBaNk8r5ieOSL0Y6Dc/WkUojmOLA6aN7hjLe8+z2GDhivlyblMTjOrsPy+P3bO9HPkiSmvwkpK9MHNAcNDwunhgAdTUqI306hAa3JzSv2X+uapfP/RgwD52HAKLs6y7JXoAIiG1HbySw0T1LXunwGvGL3sSzsIylY0M/01UyO59BkwFblhK5BsLE+2rlxHFQ+nsmFkIluiyibTtXGhWjjAws9BXXgPbg4YHgw43Su8P8lXM2ZulQXQBMpWSLnBVI2P5bt5Mp/lGKmK/3mvvDRf5nsxFH6pPMh8ZmWM618ZQpWHgI8L9MQA1OxAhflAK7TkytlT/9ASV4wUX79169m/yvpEbmmniXu6MhvNKXjKQeMCngQ4XdMRAyZc0RFXdMSIARPd4CGScCZIxTgNhJvpoCv2ZGLCkD79MuQd50a08VADF0AYBZSrzueyIk/AVUHx+U1QNGIPWClvLqM1V8lrBIKi9AAoWfedghsDsCxoqi1QEhCegZF8nkVX4xXwRFNZcadB4yaNTgwcT6BBFASBD0htinlb5jtdlclA/mYYRDmQAUlcXHkWTFlwRXmYkubjpSgPeS1YCsuvqPcs0ZYg8p4SDV17cwDKgKA1n/MAyW8BUcUCISuw6j9LokCP06jK8uHxgPE+Ybo34P7pgPvTVQWipJ6/fHHlTSeUoGbpbkql9HtoyBYJ5DEjgyhRprIXkBFCSSNGecmgAqoqJWmf+ZzGNh/B8UrqASg5Xi0DwbG6bSuAhBo82QUEYunJq+4KgBb9B9V1kTdnAuGGB9xMKVD85jhifABMDxPvH0xXeDAdcHLAuVgfsw6VxQSUnbSZdwzK1njoqjyIdUnmKc43SYY3WFZmGRKXnpm7Qe48VajuP7G7/7fQX3PTwd2lC03UPvYpyvfn6nKj5LqLy5nNOPM+KSPEvZfyxAUobaS0Sf/UJYgSd1XaLcuNKwuaXE9HIiJTfc8dWgqcKV235NFct00euzwO0lw5PTcga6l/LWf2g2rT2FnKXENT+SVGAkqmjHUPWneft7BVbbvJYm5CqD5No2MM6txiUnmuyCi7Jg0rFSfqMtWxIn2jNKv+2YzBKFCYtFzOr04GYheOpVNGadNESXZPpN/yFOV5Cl60ekHldaIZv56Xv8bSQq4e2rJNW5l6Fp9qLKYsE1pQ5CgsF4xhM3iq0jv8711DKIttOIv9tWQBkXxubJoIdEp/Ke6pwAYrB13q8j6+jvCZ6Nyb8N6ZMpGbvMuzM3TWnXHh8azGRBhAToAzS5o8Y2WKdh3vBY6Lu85uKlZcd1O1ZQGAYm2iCVfDUd12V3TCNR1xrUHkR1wh7Rd1k115J0pm8isc1ZUH5Ekr93GDEVfIe0ER8vhSpPmBKH8zr3brqSuPyrYFdkWe7E4uWxzIlgbym17w8nYGbH3Y6CvWBtafQRuUuBcXBU6+vgdPBmApAMpvt7plgYlhKkHkplwGPjTJVgUlHxPXrruTnKdX4hQ0OyRuT0gWp9xHusf5cxP2ky+UXXwnSt8zQ9mAUBYaJJYJoEoM4+i6/ZuXScuGzZqVWb9xU45QzFvPCRGaV85Q5HvKIOfVQMCUq8CAUw5DXVeXqWse164b3UgRyQ0sitQEDtvYz7K6N80pRx4wZDfOxITjzYjDA8LpYVqVdZOtU8ccB2NjYQZiXZk3ST+UrEsklgegbOtBMPEwRfhS2ADUKkWDe8R1UUdriagWUZT3jMIbPy8g1vPhUndLgXL2eatloLI+cpWmliegiolrAsep8Lq47pB1aKsrZSEVUMDTzTRiAOPBlODB8Tji3gPg9JBw/5QtjzziOI0NeBad7L1BkI01WfQK8qIaLhsHs0wppPOZxoUyqn2iCr9jGQAM351uqOTB08b57M4AqEvR3PYGduVdRFVwNsx2BvlW28Bx+VWLEdotCwaxHqGUAyP/pqDwaxzxEAfd2mAAab70LRtoVjuVE1JAOcyYuezLIaZTu7lmeF/QCtLZ2x6EHWwDVpQfhjjdTXIKgto0b5K39ddYt2wb9W7jrFsWJMAEfYjL3k8ZzEjeSTc1gQSVs9QNtjZIxUh3Kq9WkHBWLJWWRmGkSRZAZK+nAlVemey0SLOuml4ZU656Iw4UaffN2r7EwJdhLVv/sebVi2ZMlzNWCAkmTlaIIW0ce0oxmqfOUvbmsq0SzS9o8kLMZASWAA0oR3oeNPZFXHRcxq73E+V5sOLs3xO0ijyG5h74ctX4Z67tHPCs6V4GLK9Ry0VoifNuPbmfTh50pbrIgFy3s0oJKe9RYqH4RPqCeZqKTMxRCZ8x+iT3z5qRGep5KvKR2xHechGfisdWBkCoY+FMOWA+vcpcSXcLQDUCx01aFDBuV9+VMtbK1Ha1FPvUgCmqA8fVvQZZlVfAUgFWxXU3ZoAFmnCFI4BDsjwx4ZqOeeXdIcUn5XIqxCQE4b0mAAAgAElEQVS7jU8YQVUMlN2yQMbZE+5oSwN92zP3VcETmZgEw6NmQ02HwjjXuwR1LUuegrTGnRa1a0CVAhg29adeuQySjOtO3HGaPmXgxCkuCkTgIWuDiUpgrcQGMPStPL2py5sYioVJA20FDFnwZQCSTDaSFrBD6wTlbN5OhryCW1FWyweKorI+ABUwqnYdz/XUrRMAprLPTt0PWRClv/Oa4sSEA0EtUDwBwxEYTsCRBxynQZe8i9WqunTpw94oA6RUiYqJ0wApuTeNEiUVawVXQB9EmeZKGtVzircY+dvCvkFTNqJHBZ49MK6AVhdA27x0AWv2R5TtCaYcKM4TgY4AHcumz5IXrcSz7tt6ixw3Lvm8i02HjNkipbIAwZIHUUlfIW3/wnW51bzdON89eQDVG/CMIKbjYhrWJCccfqVB69aLVt6VY/1EyyA7kde7jduYJR84XlbfHXN+CiIfkL4vBDrilK1Q4Ly7OY4AgFPeqfzEA65kvycmgIYcMJ732qApBYVPhMMw4Zh3LgeQ3Xfp+sU9Ku66AQATaTB5wg3lxumu5CrceWoirsBV0dD2puPxWDRCwOTBjRmqyYMpU6eZ2CZ12bFpg9V1B6COYxKrVHbdNdYnuZlT3ukeUBces+z3hDI5Mmk/SVlQMV9L4KzcBwOcUloBX5KmdXO+vK1F93A2ULyX95zQZgvUDGiqlWhfcTJQ3DbGtaOuu0hhms921JaIeh6MSIPIOb2MHXnEdBwwPASGm7Sh4gkpyFgUqdTzJDiJ7Hyha+jz3CHPEEhdeWpu0vmkfDuPgdqdo7uO5weBiwL1Acb6UmDnBmXcDDBeK/OmXAWQzG9PBnSxADrgOeK37jzPdT9mDyi1Pi4AaDagKa3CS+CIjwNGw3sPni0V9615wR8Y05TPjeWJZUKSbQnElZfhMJg0L+1mnvuSUAty/OVWDvJl5+uTCzXsiuazDfrryQaRd80DQbmFN6aqOHGRpQ31LKkFKt/N0bRjJx6xSnmS4O90nK1PWkcCySf9GKcNJtc2TLs2aF0D0N0Ym8By1Ns1zM0B596ni9Btuhalvqbttf3I5Dq5c9+WAUYCsMqqP9bYJpJAcePGq/urz9WiZc6rgHL55bj+Vlpk/UL+kxSdx07+Dd8QV4CoLeeBVQOemnT3a/qxVoVUh5ty9bj7TLLVvEJU6wIXK2dUboms23BdBQMsHOCwZfS3Kssz97r+DXl2Drm6s+CpGb/Tb1Fd3zYhBnuBUUHqrvkyh6cpA1yxxE+cLFA+9qkbItJYoAQAltis5jr9y4Cti1KW7XF4j7gcA+H95Og+zjzjnp68BQo4X2iBClH3kLUPHrdWpp77rqx8Y908U6xPfs8nGzgueQNNuKZTCiJHCTwfmdM+UJxWOQw2LiqT7g3Fgwax+72hbCyUtTbJt4w0/olRxTRJenVvxFVEAGA/NAxUVqfHSR4zs0uP8ntgyeSphUnfUmyanJc8a53q7vkk4EjddeZcAsgnTgG9pwk8DsBpStYneQNLXCuKcEq8pSl/bLgXC8VlQ01riSrWppJG9lj4LG9guXzXZWHf1HrHzzjpZDsLVOryVbpXolbRuz1+assEVJn4vYAa8KQB5SZ4eLDxKAbMUL1HnsSpSIzLKbvmbqYROBKGG05WiGlIVilx3zlLhF5ebn9SJSpzNOXYv2xpGOSCGCn2KVuhBhNETllm83MBeQ6tJcpusAhjyc0y2gSW5y4rnnTk2auVVZaqht8uzSp4y3M5hkuXj0fbjVUlcDywTlnro195R4AurALsQqPikpXVljgR6MgYjsZly8aN13kgxIWrOln4qrLN0FiogdLCmSzPsp1LZQ3Pc62YAvR7iDBzl9ELGmSe61pmkGv3XBV3NwDUFjKCN1fExj9VFiMDpqpVKGh3INfNNOHBFSvgGXLskwaPaxB52sJgcGmgqXwLD+V4yDsontB+K2/iUXcxByP3VWKhZKwJOLW7k9tgcnlzkNV4p+BW+g03zTyTwFilaS9EMyzdZOEIwFJlQeK2TLEmlb6s9Ymqv2xl0s+4cNmKQAPKDZiy1ie7G7nkI9XhvCKl7D6e/fk5vokloJzMJCKgiKRfC6ZcoPnSPfP3j8xvQEb0ni+asdl33XsBcNJzB5Ya5SnljXJV5Wnqlzf2ojQ1zEGacXPeHIkbR900E+leaGzA1apl7BBFLcgtCy2l0ID6WtHKnbl/RRmnRBtY7nF9qmoUrmmSTT9r5pdV050pE1uaOuB5DXgiDvlfgWcvC9XYuAFRPdKvYSBvUcGE4QgTRD4fSE7aB9VslOvIxyw338bCCcAaCog2b/f5MD8/2aWr6SjHMOd1mnn2ZPwrZSCiuw2gnCBUkwH6eRH1XFi9lXe1y67su2RdbbLyLv3JarzinpPf0ZTTvnjQAHNZkTe5S0hWpqG4EfPqvgmj+8xM+uhwCX6vdyf3mm4ghobcyFsiB590sSSC3rvNFmXdkkLL01xZXn4AonzzYlSX0XNTSbYpAKqVdzb2SYGVljf17Sq8SZbuyj3NS3tBeeUdAC6baMrYqiXeuqkgytwTXbjMr3k4VbkKgAHRA0Kly015zyotXm+kOKWeBU6SbxVnThPl2bj1IqDlFagfC1mFto6S2+6kx2JhoFMKIrf7P1klyh2lWvU9Z4VQYQfsQhS22RZMab8xiCrn+b5bIGUK2jvTZe+qQn3gpHkePOf8JfBUgSO4Y9ufgqT/n733+dWtWc6Dnuq19znf/T5f33vtBMeKLyISEcwQyEJBSAyIMgEEGSCExMBCkTJDkRjw409gBBkhWYmQBwxAngQxQEKBTCMZBYGEIzBWHF/n2gmJr339XX/n7L1WMeiu6urq6l5rvfvd+7znnF06+7xr9a/Vq7tX19NV1dX53rv/mZEFwyKF2jgVNy35z28YmIHnVn0X10F35Un9pWNce9v+bpCSuTY4q4u2YbUYNuGXTWS3DaAKUTRYNM5uzayAwPt+Ihw0HqcqdRIj8urQktWAXPxAVQlUdZopR7a80eNcHisIY+ANVrwnqP+nVI5MkHfMu+4K0i9SqPu0ZpWeSsjExqr1To7ynnakJP1oq/fxCq7ahrXG4zNpU8ZSZgkXfUhnQRXHz9LiPFDqF1kQMa+VNvnrznjc5AXQ7rwzRuRVtceunLrjjozhOIkB+boB65obbUlFpSez21b8OyGfo0cE3lhXXgLORBIlE0URZmrbs1zC1B2BFIpNumh2sZOTJx539WdDEdNy1DLRGDRpWACceimDySfM1Pr8ARq/T/Kh2F13MNczc4eegWZpE61FCrEC69buvhpJI5IAPKPGyX7QoPUJpRAls3gmB4oqzxxpZOcmNSyXdnTfcl0gcB2/R1Q5B0HTFDTrQ0zYgTFQjciDzQVySDRgfmVyQ1Hd1U1WBOGNFdTMJJCizhOArH3/mPveSh/3SFS4euYq5SpvKXcU246T95RTGLhsXuLSDqK+BfIYkAOquexkhuFd0o5c0wOmK2xfM5o+OkMfpyfyK5N1VdDFma/IG3qrj6eJAbg3JI8kWTZdVDd/qLE1Jk/uOd6APPQ+Hj6npjuy1XVa2F6Wy8ZqJQ+knkACgLzUqTfirvGaR+sTXD/RsFuf64fFyXIboDjI6gQEu2k+W6LgzxCTY5oReBqUGzavA13sn2lBFeA6cu9ljtPGSQE7bWgkTWeNyQF0wK1ZIE+Ki0CozbPbhkAHato+C8o98hfk9c2izxmlcQDa1rFJ34Cxyz7KWY81AFqkj2UhaR8XeZ+fPpPqn68MDd4XAsCjePetde1t0jXh0TgbfM9H6HYkUF3DxoPDeiCPjiZo2oV6EBH5fpLw/OuMx43fJ+u+oPp8qj6hrNdxkTyJ7VO2iarPUBVemZkWZmzYskSKGNm1QU630YZU7KKsX6hUdDIJrPk82Nq4+JCiYmxO5rBhZMkGmxUCgE6N16j2rjgxT4uaMHyfzkuTRuEeTHi+ExmPZxDDNc6p7xrbp8AGSqRR4oEX6wYsKRuTZxe9eSW1SjsXuxAuLyErLHA5XLjMtMYOShbuzYqNMW4+mZNYHNyhkUrJKv2UtEkepqs6+iRRV9cewTvuq3FqWDPRK5PlFjC58J6x2D8rdZI8VvrUAxhP1v+cqnVWQloZtFK2g4EFUfN1eJ6vAYBVCtEYhkvdrV8gru+pY3pj9fEjeWhrHSjqMCTUb0CGooSRlF9BgbeJAY4P30ji2IR7oOT6bXcMGB9hKPcdsHBjQK4rr+TpwlikTvk6IdGqkkXaqvRx23rJYySBzD4HKQZ5KhkjBT95M0DpGDIdRciSyHyIa04P46ZCDxN2mwaAKom0IK3p/7ZK2gcn6HYAlKXRSwTh4Q4D6sXTkTQm2vZfvY1vXV6VKqH3Or4YSVNOU+8VZBUuJaApoRiPI2GhDJ4WJCyZU4beyaU+C294LAcSZwBXuLumqXZRG3GW+hLD+oTaowaglv9U5BpNLobjHnameRAkhfULv80YOXSLG52ouYu3BxDDrLx0t50twxiVN840G+PxrUz+Jo3YQMmf6E6NBEwnCnPNUucCqvQ4BDE29zODgiXMQdWIXHHDsM+FIgbZpXG/Nq0BUOzSXgaeLFBCY/NinTwPX8e8zwZq3K2I+k4fs2aQsgFVjeNUfkJ7RuqyG69LJUiH3CDTdqtONYHCQMV41ExYMk81QAp9e9jn+9qMzBfaurryHFiyv2fGQHWsGgCuBjBx+HsELPs474Vcw8QGarWg6bjyquXL0J3D6oneAxptwxpYvdSjgihJVcAzasq2GNRpu3HoaV7/9LxY6LNT4VmbJ6D1oeSBlE0npEey+HKt3yfj3gCo6rullFvDneE5qjG69SNln91K01r1ntR9b/KS9wXa1YlQC0p3i3pe8q9y6UgveRvv5MFv4/uJB18YGzAlTt285AlQP1A5bHP37XVTnoCsoP5NuKtTc80xwMx1Hbz/teja5d0QiSqmY5TRn0nfhQPoGGdwnX8deNJnchtvyWIPwmBRGbxfoJqzahxsNc3VyAE//z7NOwfxM4Di77s0QV91EqXRHwb5BmU37wAzBiKg7N/DgiagT1PyhvP1QckjEPS7PLpsovElXKbCtTe1jg0IRJTG/JKRXMK3Pdcw91emRpPWXQ++4xHdngSqEQXUxvbbcUdhkcsCMteWrHuCNkzKio9tqW4L5se2qO8nyQcAJc8b3rAVA3B7vMsKUpcGS0mzIasOs+fyVo0nxuT2fDx5d1XxUT1geEV1Z+CPWqDS/t0E6dINw2xBz8FELcN318TtNQXXvqxmHhTw5MBHLYezkbdc22NbzJEtKn0yYayAqfiESknTcT7tOT9ocryLHMKaZ+q6wtb6IvAJRYB1eSDSKJY01P4SUH3qmCYjLcs0o2mfTxgvtUS4zI1BuWYf3jBdNkzUxDXSBvOHIMwwIe95XB9NYlQ87rWtzCXV3092YZCPcmGwCbe79CJqfUGR2sFw+cgaNQ6qkbi+j6hxiEEbQb1Wl3cmhu5W1TMm5TugOp4tL2mMzH2flPBwamOTbvjCJnnA+KdjQAzGgdYvWHPunQVYBnB4XmnHg60eccgLPclOTHFhkR43pJXxaCSP8caB6j5HpWClruoDDFx5j4AhkBkXBPVSv5XfhLy5hpDHQW4dqPqW0cxdMjGpWs+2u8xZbMJsG01bxr3vibQfjhpQxV1YpMKLVlcAGueZGkYVGNl0QgKiLFkVnnVdkOx9YFwuefNzeylTV99BGlufhSzoiyVnQtf0ON6IQ69JR6t48lUaG6cmHGhcFvRDzMQdeGjj/mBzUqNyPXJz0JVV4twQCEFhlPcpxMF12CZPfM5HTkOJlLk+Ap6aeAn3+aI4CRJQMYp7CjHp93OF/RHHyAJIoLWn2WmbUJXWlb3Td1GeYT1h6umkH7M6lPpG76MAGlJXj/qiMoUHmqCTfe83COgiciB9jOyfjhCZ96EjYz1cOLh85Nq/5J9KCN3z2P3N6PYkUCdpT8frjcYtjYBJc4CwyWdVc43jTJVQ1bPxUiOJKqq7gn4V4JTqSLq1eHiy5+OtXMEagHIWXo63zjUB9Oo8YzfVtQ2qTZSci9e2KemvhGVD88GgKu92mHzaGWiZhE/LN3/D/A4kKJBSKROMjVNJZ8+982o3p5pr1HcJ2dB72yA2T1kKVdrbGJuzlLuYZXORPsk239wujO6AYfd+nTsD4UkFnM18oMwEjZ+qofiMdhmzC98FTjaMfHz5tUbDHRNg82skC0XS1C40jy+gOkNiRj5QdkXo7ylirF7CLWGdHYyKKWRgyriSsR+8d3Fw19jC2KwuTuNLWb62alisFS0/k+YKv4tgfLCP9wCpuYcZD6bPPaN30qdWBRZUhU7srEZV34kfqPTIRX1b7d80PqC47ytvacXatbH1HDx1a9GPga5nqbg4cO/MzT2X/2tIU7tmEB2njwpAzQZAJIUapfO770bOM60EaWk8kjvbpMheCRWE1V14UKBhHXCCgMQbFqLsJlONyIsnciMotN7J9dkKsFL9VSnUhlScZHABXyOZl4hfGRYwuQOEuzA8WQJxCNy4sG4xWoDOVDIjc4wAKpvel6fXXKVApgxrtxQaj4saT5+9AVuq6joNN+lVDi3lkwInbueLulsvfM/ST+a15D1HTaPzmCS4tE/bWevTo2DFaqljlu66lyq05fr4nIddWeYjKOkjuxJrx0jN3Dbv3EaFB/FEjryV3Ughmnh5/wHars+XBVkdKjrfWNRiExgmq5tT9DExUCITZ5rE1FPqNW2K+WewA6Ai8Aw4AD0bAw2gMmMgAFbWFUSrvm37PuKLeTrLYMb2n/SvLBarC4u6C8/SyB7Kq/XqQtw4VdX2KfOaazOrzs2pehBVc5t3Exxm0+lUHtSXJvwoerfjSV+YLpiEJctIfXeExI1BvefQaFxdG1gDcCN1krIAGPunklckWhZEoar22vqItMupGAOJ2udI12wC7/upK/uo7sKAILYAibcSzBU4WYlVRGprJQDRpbPgL6rzK12XBnNLg8EtyDJMcSi9ikCZZyCajvvwoBzNfiUwW3ibPv6IE8VhWQHA83H5xg1mCybMPWCkN116rvFA167DfvNh0V+ULirTPs+DoO7dXD6Y9/XPC2gmONijmW+vcD48QJYXD4UbdgFwdLx3oLKWFdqeBUC1XU1XYmr/ZnQTEqhugHTiBbiGFWRdbgcvKce3tF7G597HbV7rtDLBG4jLjrkKbPT8O3d8i6jvllJ2VtdxBWDFOBxsdvMxNKw54w7cGIPnuuaz8YANCyUA2ahc/UCVdM2hw1T9QWWfUKSSqebcqtK+L2H3EHb7LGxWJ3bfh/kViVIjuZrsvpsdHBz6fiqgh1USVVRzGwqIWoptVKruDIBaXmL1edIM7mIsK+/CqCtzq6210iZdcEn97etpmDE0p7rYa0UEbT/sTSyfIjWMERgv8hrmJ2F1HhtN8JrOMOlQdefSeYkDUL5hx7DEgBzIjC3cxl7mqXy0tYQXNc7DVnwBxYx2eDaaGTCNZBvyC4CK8obQSiCsOsdKIOSsNADitV+lDzJfCX+lGi9tSHZsw3wjto3by47C6ScAyS1wDsZBc0B0y+9YPMzb/D5d6etOfQv0Y0LD5hO69e9Epu+jXZpADbckm5XkehPJExseY6Re6oewGe9mApKNNKZBGkmU9qfxCeXqZKXsTZxtjxO87sNLoE5OxB0QvfKSW9wXdGfe7Rh8eymVlT7VNFRBlKu3ujawDjqHyrb+eSM6I6XqPQRP8t4iA33qULD57dl38OEVODU2U0ckSlKGIfVjIw47FcxZFeO4vMZ7+nMC3RcA0TdPexIIwzQj8BSWB5OuKWOQL1qtN/G1o/ZMGmYkO+2a6pWxdsn29Y6m84uJi9q7S59/vJSvlTpUUNlJIwbP4clf9/wAPLVpav9GkqYu76g8906hWwB53jXILB7zmvBc3++NPQW5FrjuvbutnpdEuQWMtS2zZQylTOT+JnQTEiilkSTqQH+1iDt2mtkbWVsD8UGeLkwkTNVfk0qeTBhgQFFR4WUbKELiLEGynshF4vTAS/O87GCzOtX0NlAqQROXBWXZ9WjKSOBO5G6lU6sLX5uVQuHdsop00qkXo9k3aGc07oeRSo4Mkcszyk8RWOqez/G9qO04uy/glEoZRVykhuJ9Gep+wJHuhCpeyTWXzS6Aq9iREObNp3lK977ipAFNJtR+EnYAwKYxvyPJU5POlkc2Lfd5bZYrfqbU2EDVcJVUDBomEbAKfytzR2NDaepahQsy15RImXKoDT9sByPRLmRoUHwJeeA16LunSR8dUPDPbwDIdb7ijcsc4uzfctzchYUnK30UdwYiKaqJoGOgtYUqg6DhRTVbbwmXQ+sVafERXdpatwWg9mhnUHiwQ+j9P1mVXQ1rpU3eN5QYkFv7Jkvqhdyp7rxhek0PbJzVeFmdl1V0Ky9qS5XVehz6UxQ13oIMrkZtEakkuQAt6w+qGpbPP4aOEXswdYhTP420Of1vlM4vFQs46gCSi5f8Fjw15W4uzhuQA9WAXOKFNgaWclBmi1BVgkVAUf9lRFN9OdVJhBjgLR9xIMGNOg4tGCIxRjfhHiwZTUur+vPc6AX6+VZpuPjuFn9BnmAF3AIjVMbpyqhp2rjOdYGob1TyhE4KdZa5NuehbfWFznij1lcwCzNrSNzOKzWuonphmAMQ1YzTgTfqWrwLeTqYOgygnzIGNL4CqcYBabkne23TYf/dstG4mH/k/qWNQKsxc4BzuDlR3/XmIC141vqLMTmbNPKetu8tqg5AVH7H6C0daKZdOHGIPrwKT+iCUfsU8bQn7wdqRtaDuPU+Pi47CxkWVLuCxqjcSKr6vNUruTckt/VpXC88O4qZ3F9ZpfpB6IgX8BmpGm9rwyyocmnpaNkDGkrHjpDP+gl04YuQoPFrgadBGV69AccUD1X1RFrrJLHxBTRgoFch2vGW3a56gniMeciRcFPmEePhYVo7HkydovK6TQVn59VAVRvRZepbVxmRfPNlGwj8SRf2t00nFzYw6HsHHPs8iPvd9XOX3v4doMMAiogWIvo7RPQ/lvs/Q0R/m4h+g4j+OyJ6c7Ss+YOO1MWCpzYuaee0jSsONGu6akzu3RdYA3KVPhXVnQUwem5ed+6dNyLP9k+1LjW/qhDFo3igCvRUfU31tlrNe5T76MiX2NmeIHi5H6d9VjJSIPvrpU4+XOcu/11526ByL2lJJEq+Dgx41VrnvkCuvfsCo8ZjNmECqqybg8iOypZfbKM8E7Pv0r6vvNuOWwcgnJdP0UdiTX61+Stx/QsmXU6VqXIK4oXhepWdlTz4CTya3K3EqeTxB61H3+3oPNAIEDWMkgm0bqA1OKngJFkj5qieYgBPo3bShNA24y5dLqOzgTF94MMbQEzZP5vfkdX8Je7yhM8ZjIMoTzgGmjRcf21cacs6Hsbz+xkSI/IsgeKLvnfPV7q62DrrWDZjOhz/cO1Q/5rxELT94T5OGLlRVDojgforAH7d3P8XAP5LZv5nAfw+gL90oqyrk/csPot7qoTGuy+wv/6ZqQmjsluu+kf0ef1Ze3kHXyuFCusz+Dj22sV/Dqeleh3K+TA0ksB0i5c9MCGgw4VTEL5LM9cEPs0JCRJZAKjloB5FE9ZlcD19Tvv7kdOzzl+9JML8Uk2Tw7hPB8M4Lc0kLy/UMeJIU1XHLm6PIgZqwzUuen+b0TJLG9cV3OfpwRI0PDQoh8k/+hs9EwOc0QA3HuQbvCPQvf/Q0FqCiJ+0+FUAfeH8N1ukR/ULR1IAFKffQdO3PbjyaWrZMejco0MAioh+AcC/CeCvlXsC8K8D+NWS5FcA/MXTTz9BR6QhndRpAiwA4xEc4u8pyG+kTxF4AVr1nRiVS/lhev3lMQALnHP6uoeHC7swTxQAyMjovs83jb4e+Wpc+v2f+R4CYDU1GA9cFvhdeGzVeFuj+6jhHjzZ8oyXc2K0zznyPoPwBhRFoOrC9r5lkHXN+Wu0Ws0PQj9Rm3w5jMN07JmApNVy22tyz2ykD827m23sLvwUMUDrpuPDGo7PHCj66+MLM/Tv2fz2AGa4G8uCqKgsTPrx6B92xgOhB9AOAMXSR5fWgycybTpo2w6onOx7YoDWjJyvcZB0Xx80dY/s+mqkrRTatmoekn9CEDX6XrXcCVB2dNSI/L8C8J8A+Ha5/1kAP2Jm2ez1AwB/+mBZxygY5E+lkTTGG1svmKjPIDvwqoovl+HUewKMCLoDbwHl92EvmcoSrYWpOWAYjGIoXnw5saj5CKuRLSbi4rW87uBbKB/gWf1AjY91mVFn9JerH+6kaTPaa8bpjpwsMmz8JYxbv4vSzLXMdpVV/T8ZYNPVk9trC6yMpEmPcAEyeJIRsJVteEUN6DZhxrQhHzqMKhnouqLML8y1z0Ky8babDrQrRc+9TbrO/DWbsNHHjXZi+blt5BBwLoXglsk09Wh9QgG4mIEqOGJ0RuSXkvUrR+R89pAZi5qhDDSSCDNIR7uxuiknp9VNEoO6PXkdEPTZkXEwHQMdw+8nvwYku74fkV80y3zOXH0CctmFh23TuXJv52VEskhf3djxYyH3kenXMjnVTQXmZaMJy42HHGPa6ZqAAgckUET0bwH4h8z8v13yACL6y0T0a0T0a+vXX19SxKTs8aqm25HnJDVH6KivpXH++HNcDopzRhKvM+TBYXRdw578uJ6uXeaRJgnA1imgNUvrz7/TPMcewFE6r9JTKZWxgyo0fI8IEF6Douc9fVi+GF11/vqjyfx1FDzBpzuIVA/Q2U/tqI+4qsKbuPI4SXs+5/akKjMKVaFSViC5CoHqWTpSzkzytPf8iXTpDF18ekWxE/W591S4e9oQ+Z2yxL0+GS1sZkIYH7a3OBrQEQnUvwrg3yaifwPAFwB+GsBfBfBdIrorq7hfAPA7UWMslOgAACAASURBVGZm/mUAvwwAb7///QOcoKfeuHneKRKf3C/QA4q6e01cFQQuDKxzS2ptklJR2VmfUNnvU3k27A687CUcJSy5+ixgPOy0xQLGBsZGW/H9VH1HVTXkWNqkLgs4XhVImHgpB1rvsdcQ4UZ05rvWtDrHcr33864tdwCkQgeUpRmPqcz8Sk7qsxmVHOcDf4HGUzkNyvB+oEhwlG9+c7DwKK/mt9ezbgyeM80T1et26Hrz1z/9/fD4LCBom1Dt0P5GR5Jo3mhCJyCSKjUqkACIXCJ92ryohgF6FG/UO3nc80cDZ3TCgfXs0UofBpKHoK7NvSUGQP239eTxewZAR4x9NgZc/sa43oYDrq/dvSl+tFi2J1dovg2gLff9JZSorgmrhIwGfW/OyrM8h6qfp3Y4+f534+2ZpVG7Eihm/s+Z+ReY+Z8B8O8D+F+Y+T8A8L8C+HdLsl8C8DeeXBuhE++1Z/R8ZMKIpTEvu8y25+dZUCZn83lgt0dnDOW9r6zDNFwt7cQ/B52VlHAPnGbSHVXldXFVWtTurBuIgrYg3O/C2yM1Ijf5DlDzvgZsfsr0XPNXaAMlNANPnmZ55X4Apkblys6lq+6elfH/DGMmPP/uiPTAAwwT1uzEisoz0qi+/wbPDSvfpz0DnsbSssF9JEFz4dfq+wYQS98fWEBffPpFJygxaaI2tffNmBislG3hMGPEx/u/CT3FD9R/CuA/JqLfQLYp+OtPKCukmVgv9iFxDjTspsGxHXu9GwPWeyCr7FLoxqAeHXMJLQOpmT7H+oY6+UHNpXzn6jmlD8HEZ8/c5moKcaBJRtXW+XBytk/ZhcHWO9Qc+X5SOypzHajz2nq1AIkKQJLfPbqKaubjAmQXzV9DH0EyaUdSJcfwh8wdPn3AKCbhe5L5I3PA8Dw7Rh333DvRPLIbL1qokXnXmVrPGxoP2yas/ODX5AvBcMRMB8y1NyB3YyH4Haru/HtG48EKWSzQCOgIoBr1nzpRXa+nvrX16urX/doMQbv4/ho+DPDfoZB8j4fU6Y5OeSJn5r8F4G+V698E8C+ffuIHoubQ4KChlllcAUZiQN4cGGwOEvbl5XAbRkW1tmIhwoMZkAsYK2VDcjlEWMI3MVZnkVAREgje4jjXLQ8ssY5NRnfj1ZdXd4b3VBrVh93vSWrBxBiAtPcCXE48yNtEDQCSVd3p9cbP69Z2tCBzr9jcMyBqlCb+xobNUbrK/HWEUUf3nmmOmHnEFCx4sGCJDBOS5FfoG/UCDXMeHiNvgjDHeViHm2eomgYMTALMILNG5jlAKlnSacPa/OZdIFINilXNWo7c09PG9570MZI87Y0Bk8YCyZfyz5fBs/T9QdcV7j6VhUPTrwOD8sYTeTEKrycslCNeuv5me1OohE1Ueg0xToOo2/FEfmWy7TSS8Ih6rA/nJxuQz2iZ9qKpx+Qw4ZeiF3eieZaC6rULlQP130kyk/xYh5nN/fBZQfwFvqBq3U5nGdOJsm59WLw4XQM87T1iJLE6kucadIkvNK3HsYxDILiX/8h7hpLDk88Zls0IwdPe859InYuKRmp3xY90u7zvLUW+ByPaWxB0dmDTwg5WPAKuO/RhAdSZyo7E164Yq646KrYe7crzTi1HtBhDdOvbyR7bIkbksgOvujZgI626bITGhx6PQGPr+yoFH9yeA7Q+8sIvay/byUceVVfltNzaEQF1khiVYQ8VtqDKA59i/yTqO2YGy8HCNo1X60lZXmXXnLknc3UVFXVt8YR2faUdmqlyRvfYAU++bKCVRFDgDwlj5imG49c86ooYwCre9Nu4vY0le7t7dRdWJwZuf1tjeVsxc23j99p/oNJp1LH2by9uVq6px670yd/b9y95ItshvTXj5SoAWiRQJyXyR3hvHatyH6WxN4jHiZXUht8mz/MNy5vX/6OWQD1lcERSqTHokF14rcpODg+WNJas/dMZOgqiZKffDODpUTMHgGQFVQcrek16DoYefC83QzND8kupMywPyjXxu21zq213izRRuQAHwFPEOI88096eGOwXf+NPkECNKFys7WY6AEaDAqdevuV6Vtae+nZWrn1+lKYry6cNVkvXkp4F1Pj+Y3R9f+Yg6dMbvAT4N2F9+hB0m/yHx4ekmS2OBvRRA6hLKTS4PsExRv6djj+/75XGdYK1rSLjLsG4SojL5e7cuyM+rz4EZprRUWGXXp/sjkPdtx1LR86HE3uVXldu0B/RIcNXoInQ9qLwz56OTrAz8NSlHXVCkCeSKAXShyN0epcxQ8/Ce1Eags7gPpRKtb+h64gI/BxgnlMJhrseHiui6Xj8Tlf8II+MD+thvtq/cTnX8xy3OAPsQ3cbo/HdSR7lGn18U8B1x+9tAagLOLkVU89WVtWI3AAV6nfAiSfyU4BKpE1ofUDJeXeivksQX1ASXtV4YblXtsM66kBUKFIBDHfRAM+LxHhwLY+edZeTwIdlD43LWf02Nao7r8IbOdXU/FtW4wkNPJvT5sqNuszuBGSMwdoZegVTT6NAZTRVGwHtStmrIEyaPcPh6TdpHj3KD+wDKmIUNQ6Ak16oo3qM6mIZZLe7zIRpYR5gzABtJAnak0AdlUx0KqPB8yKaAD4N9mPAAYXGJ5gv3mgi8u+8Oh2Vvvfs4ymbkHx9p+rmqN9n4XBhXd9w/Xsi3RaAOkjXPpftqRKli54Z9PalNlCXAK09gLjbxLcmtjpCV5bw7FIkbfI09BdlQOsISL0wvYKpgAJmesiz9FWevQ+c2vjLOlCP8wCObco4SVe119l9WP6Z9tHZehxNf1SltKcqvPDxT6KDXujPnFV7uqzT7RyBMX//tPF88wDqKYcgPjVfUvcF1Y2B+nwqarXqA2pzedvfPRrZUg3rVgzcVdrlnz8o5xKfUEofIwcdVZlRzvWqQVnX/zxMon12UP6Ryelg3aKu/xi77iZpIoXofMkckc7OwkcMhAKwMVB1XOpIGPCOFFGMyC9fh7RHdwxUM9ivc2xw7tQ4XsIQtPMuiDr6F+XDRAoZ1XskTfNSFpt1Et55oI+THiIyff9U28hoY9fMtqmrd9CO8eYC+XVSXn8taS6USH0YAHUFyLz3kV0CEkYHCF+abpx/3gDJGqerV3JWsHYYZO2M9os9kEd0SxKplwQLzS4+s6tuIFkKz8Lbs5s6QOQmt8Mg0M8bE8D5SmOaGgiHTJPjyf7kdzRLflaiE6lkGlXd9vI2UJ036l112JFC62UHoi6dx1zep5xvN33GLPq55mDGYQnUiC5VPR8tK0ecDR+k9X8Tuj0J1EiPeWV6zqNadPfbbrr5i0UqvVm9rbPQJvwg93vp42tumrxd0x5mHR4QdhJsP3k33n6S126+Hg2Pg4iuZzRguKf83eB6TNSDKbWBujINd2gdLuBE4kG/DI/zOFOHa6Y7kLZzYfHcVBxp3hSNAPVMVfpUda2j2wNQQk9Q10mbnFFXJaqquLOONJNxbRAfqUJYiLBQNiS3tJBR9z0DZ7OuDF6ErvVFH62uk54Ye9NT0pRh81gHcv7cu5EfKO9Uk8WHSh1TPPFUTntOOY9KmrwWY0cE78t6BVqe6pEP03O07P0eTdKEYIiCyz2V14Fq7BIDvG1lk0Mu8VlOMugGLGIJXpfWpR/ZwRwFUbacEyq8Tm03U93BxY/e16TvzoXz5fngK3zE5Pr+Ofo9NIK3ajynyvQ7Ucn3dyjdDfrF3l/wWrcLoJ6RbkHSErkyeKWPgF54Ffbs9liv9LJ0dO55gTnqIub6MY3Hk1PsJWehXYWuyAqe5eSIj6jLX5o+CQB1WMr0DCNhJKmyLgyem67xXg0gbww6o8TP+EVNJSTP88gXnzetKkTtn9w4cq4QOiBldubt1j+0uzpU00F5T8j7KVK0ep0aJw3id1bBzSp9YlPyHEw0GxKvVzEkvgadWn+eULFeCqIu2kAQkZPADJ1FooY/53Fb4gcK61r8QF2nXBUM7dhGxQbmgzKHtmYnwnckjJ4+CQB1hOzxJRpWVG4jALK4HXiLOTtPHFtq2ifOKnU33bFyLnne7HiXj47OVpnd7yDNrbgMCGmi9vtQ9DEOnavRDAiF6QeM/ALj8a7o516nMZ5kSBwzyv00Vu0yNh4O0u9WaHCNgV3bhC6WXH1MSoh1ezZp+O7xLdPMUdi+KnSa/wR9NgDqY6Kju/yssfi1QNDY7f5Vir+IPmsm/Uq3RxfaSxwv//iAf7HDvhkZvD8DgO/9/czE0P7+w04OQ9upGT3BvvdD0FMf+1wL9FvYQf4KoC6gsx69u/wHmj2Zo1zm592NVIg3akPxASiyOX0Wsobiw6Nc+vDQtcGT6nHldK9UaZc5jsIvlVLwXPryArSBVIVH5UDrW6Dpou4I0NpRsw03C2AipdpT5e6o4zTPLc2t0vcr6wYCoWsalF88xk177RqT2zhfxgV0GwDqwsrfOgNfPnQFXmlOtz18Xuljo0vmsReaw64hBbg60Df0bBLuK5U73X15ybOfUYI5c1I6C5vRc/b9HunO+pGN2eGC7PV1QNRtAKgT9LluXnuq885PmS7hDSq4e+q8cM2J5WPa4fRKnxeJIbFzpHn2cNlno+dWqz4XHTU2/9AmFNv2LH7APnb66ADUx0BHDbzPNv5C+aDja4CpW5fefXQ0mFw+5Mqtodddd7dBt24sPnpuYaL5AOvnr8ST5qfPwaj7ClKliIYquSturrlp3nMSiL8CqFd6pVd6pVd6pVd6pZP0CqBe6ZVe6ZVe6ZVe6ZVO0iuAeqVXeqVXeqVXeqVXOkmvAOoZaD2oRD2rUl6ZsCJhvUK33Yzx56dCKe4TupVdD0+pxo28widBTzT/+FAmdUwAUgITvcjOwSfNT5fmvWHTnI6Cd7zGnD7crUl0NbRw07znpKf9jw5A3YpN7kvTNUDTp0qXfI8szfnUb/maAOlWwNYrvZInArAs9YwqCb4Vg+CTjO9miAfXs3QvTAKeR4vEz5luo0UuHBw3jWQBrB+6Aq80pxsZPjcjpXqlp9El89gLzWHXcHj4nOP02RbG13JWzdT8PfnZzwiIPF+M+ORZ3vkh5yhmys1l63zRt2avI8+p54u8DQD1kdHGT2u27YDyTp6xcsI6ed4obn2BifnWAayQVPPZq0sEUOmPNHjYKPyq9bhyuleqtDfJjuIvVivlw1w/5LeWwLn6ywJOdDPjZgq6fNwewwyP4RsDpiGQ6p57oB4+nCfpPgRJ3y+9+vaax7RcPMZNe+mY0Ekf7a+N82VcQK8A6gbpqLrOArlrudQfDeIPqTq9pbnklV7p2dVFJwb8iwErQgb/z7AA6N5h9k5HAckL0SEQ1cVfVucPBaKf+thrHvdi6Wrt8YRv+bMBUNKJtjM3EDYmbIMl1coJKwgbZ8PtLA0q5aCVDB01HB/Wr+Q/Ws4lzxsN5Oca4M9KZ6scnYkUpOErGkteneh5GNj5etTLj3HoXI1GQGpPCuVXxUXK9KSqPPcChwAQFSPy89ljNdJ+GttmQ4a5J13YzdNGnVLTYQCiztbh1mkpGwiegaKxe3g8h98f7cfN8p+gW2UVp+goABgBpafQWIVWfl/gK7nGezXziWnPcCA/J9ecLT6f6bEvDgKsMaZMSt5A005Wwrh8fMmyW/9o4vucgc+1KQJSl6j6diRb8l3yQMVT459BSiRG5Dcybk4BxhnTDMDTJdSBrqPG4Z4cGBz1tcQDzyuZSuUwaywLkOhq+1x07bBjn9Xbc2HYnsMxcSacg78JfRIA6izdgsRl+1y3E37s9MJfTLjq+/DD95UupcMSkhu1YfyYNjycnGJ3wdONG7oDzwSmPqIuf2m6XQD1BD2xjMeN6bh0Soy2kbAxTQ23x3nj523MWJmx8obNfS2rOWLoOYCdqhxfCjReazK4xBCajPSWJmVMNAUdJapxwjxElWbvXZ42fWoNzFF2tQzUcezzT2gqVqf2vaZtEpR1A+uMGyOa78byK9Yj38JU4jRPr5c7HXWVT5IASqkYkecSr2lArNQNWIztnkaG17YfDkqfhn3pJRE7EopmXPh84TsM6u/JSptOaAWuAajY9f1z9HsjXbUPBnQHno1jN052jceZEI4Pe/9J7MI7Y1PwBHpOQFHtpPbSzV8ssnOa1VsAo98leFTFdwuSuZshohbA7H0pIyBz1nfKU1f4B7K/dvP1aAikousZDdQ/qsI5WM61BNueSTLhWfwADTetHC7gROIz4OkMPcVe58K00s8vpsdI6fbQwki9OQKtUdhHaQN1hV7fQ9aXgIGju9+e6tRyzy5qK8brQDFWB2Flwlaee9SNwh5w2phuYifD1eklAUIDspKRPp3wTK52UJdX3EuXDht8OinVGandK1U6BaJkNRyuks89d5b8LJiKJAvJPiGlvJX9BUmBgrTNNdRsI/B0oRQiyju0h2ryHGtLngGCKN21iRDbYZ6gI76ojtZ/vJngbPggrf+b0K1hyo5mBmWXlHGGNt2BV3fiCYhZOV/rPbzUp/3dIwVMR8FR8Q9Vd++lLj7Od1yt2dHHKLqYAAJOcKADdSfes9ZpAqImxAfrFnX9x9h1N0lH1Tdw8ZcYuI5AGQfMpmNG1PzOaDQfNICKACwpq/IunT5MnWbOHvfqHBpWe0DqmV8AQqYgJ1LVjf6ifAjUeeFzyJU3UEsGNAIczH0bPwVbsen7py6kOOA/saG4Ud81ke7XpQ8XJXLv1bAwaQ6ApYhuHkBFdG2k/RJOJ7tnBkP6UlcIZ+y1hPakU7tN/CElTpd210sbwB5ReQwkVVYadSuuFV5BWEADINXEP9uzz63gL11IkuzEwvMsLqqU6epFD2kXPJ2hsyq8vfSzfgryvkizHZRAzcbYkfE3AtLh7rs9ydJMvSfxT5zUbmBaNnTBSLCrmm2Sv9oH1QbLajHq0mVJ0/GGXVUKRFlaJfcs8YwN2YDceiFfkSVUI+B0CTCa0VkP6tEqdip2fc4veU9yP4s330mYroio43JJDcZZ7KLsH9DbS/nrRAAlkFXRJQqfyd44PeqyEq4+ea7hG+qk9PuzpJmKx0kkhtIHP4H7vF6Nx+1W9ktVITxIK7QnlVYbKEI2JL7wY29ebfYuTGjUdy5MC4ukNqOHmr4J42YSpaOSp6Cv93f3zSVlAPox4EBCaISteXNc9YU4r05HCVl96+aipxiT+/pOwdVEPb7Lf6I+uwJwErotAPVCFO6UOwOYntj4kQuDBtih7gJcOWEr6sJVHHoO6ioG5PZdjoCmDylMiujot6TXJ7vjUPelY+nYgheiauM0PMol6A8Ju/LqfgoaLwh/pUIzRoo2rANRXdrJKnqw4vY7kJokBzvvtBqfAF5e3gZqrPoK7iPJwwg8ebATlbUrKRqkC5h699yob4f1uF6bHxkfAo6T2XHHxQv92cOjz0g9w4X6aHz7b2Ckuusect3x+1EDqKeIrCPANPbUndRFwWpcFqzW2NsBFZVKnZRLn/FEvmHubsG6MNibMC9enVyDnmNOvt4i4/oUgagn776j1n6LTLimqfG7bXOrbXeLtMNED9vB2PugnFH5wDlGdfE3TnT1byqUQu1m2mnPQYEhmI0kWnvPHT1jVi4CSdRUmunTRsDhRP1OkgVKTOj6PtFR697x2NwzBq9S03wzs5WK8h8eH5LmiKTR0YcFUGc+5Mly2hbjwcKRldZISrN3kK9NJ+WIGg9oDclFjSeAakNV3wnQ8eBpO9g9EUCaHdtij7Wx6WaGp6dErEfpCUx8+N0crAp7wAFUn0+jMhJ6VR7Qg59i15R9PSUQUVbfWXsnSvnPS6pM2fqc8lwkqXOtf9gWr+Do+Wg2yR5R48wm9U7NUK+jnVjdVnbz/da/c+BqREwohsTUjZ89qcQeYJN6zozmczqTJpQ2URu/1/7RtS3H/+3Fzco19aBIYqJlB/f2/Uuezg+SzcZW/YmnE6Gob/u+n9ER3mvHab7fy4B4nFhpXfhtBivqCCR9VADqGakBVUOVVwrVcWcdaZ6llzje5Vr0IU+BP0STBUi+pjB8r4y2POpBkuYt4UedX8524F0ghTrcPUfSnXj8rQ+LF6eJBOoQiDrEbAbPeil6ggTq6DzSSB2aiL2PdBw1VaNGwOkSioDU7FlXolk7XXXuTteRPm4O7I1oOA5seKT2DBNHTCK4v6B/7s5n+TipSl0SIucCKxNS8ULujePWsud9pYQExoJslwTasHLCPa2d9GhlwkKMFcCiYdWI3Kr2NjE+N4cWV/cIVA8yLs+Vv+4divG7BYX+8OQo/GaIGCEXJ+TB/YS5TbOSFDZJgwyaiEqdjn5YkfH42me2vqB2baaembzErRkW5H59/OdIowbw48QOMzN+iQksaf24Zjc2m1sqz8i/zAQC5+xkiuNraINrHRJteh4aF2eKZDyRJ+LTc8muZMyDgBEwcRKaJs0eaJ2A10tso5ncRTRvmP6svWfiNH8Unq+Zc14dA8/hDd4RiwQqybS23+e+Vpvr79nh0p2dk+QtoKkHjW3aUDoZVSxourNnId60BGomzpvtNjhCh1R76HfpxensUS5Jy7Z2UFsDmFDCn2aQLn6g5PiZrl6qWjzv+2m+HfVcPaf0IRjy7Jlpvl1XXAro7jygNSQvZeijihqvU9clGoMmr7rzKr2wXiIpq/dqB3agja+yPf0zAFfEAwbbqXoQM23eUeM06V2Desbiwve2kB+ZA0Y7qzITrWPM28Ac2ZEVOe61R3DMfUOhfe9R24SVH/yafNKv5Bns3l+hLr8fC/65cMx6BOiacRKn39vJdkSNO+q/hAKel6c50hzVq6tfAJ5qhqBddgBRE8fBNer3eMlB0rcJoE4w6JndzlFP2zH4eFluYI3Rq/fxpGpGPaPvIJc6s6vwYo/ko34aMYbnpKj6s1dygAMYzMFqK4V99Vsis6Nu5N9pYkA+UxWGdTL5DI0muuZ9DwKrV4rJMsyO90SMbu9bifLK/UjKMig3M6RzC8pdEinEM4yZ6Pyzabt5RujbewZSA4DT99/guWHl+7R05H2shGz2jv6+Gx99+LX6vnWkWuaOg0D5KEU7SvWVLDCcSAzh+9lLLZu09XJ6nmUAkiM6BKCI6LtE9KtE9HeJ6NeJ6F8hop8hov+ZiP6f8vu9I2XVip5vZHb3o7R+tTVTY23GADyS5iiIMdKlRp1mwI64GKg75KgYihsj8vIW4gNK1Hc57FibKLhyu/By3fqz8CxZsDTyCruZ+PyL5v4UHZyIzhStaXWxQvXeL9JtuYPvygMpzXd0eeEAi6rlROpUwFWjrhOXB0dAEE2M2w+q/maL947CNjqX/pboqvPXQBLRASorkRrmob5MoM9jni3gCHDf50A61XmkPvih2S3sAKoUYhlj/EiKcYkk29t6NfYu0TVM+j0JEnKetq+u/xePhUF9wroH7xi1hw0H4KV2I2/kI8P+sA8TwCmBlyDDAbLPkjqO+37Ac5jq2G/+fP/PAVEjbTranxM6yiL+KoD/iZn/eQD/AoBfB/CfAfibzPxnAfzNcv+idOa4ApvmqEPJ5zIkP+ra4Ixn8tH5fCO7p1jqdvhxH46ONEkAhp4KIJR0RxxaTnJQvB2ehWdVgUY1GHn/Hda9AKyrD9noeTcOmAJ6/vnLfTtTKUSTbrRSdgP2wLd59vM9KilIxCqBvZYaZ6aua+4vWLSNpTrBCmoGYs5QBIii5wfPfMq5eWcXtRdrVor61ufeU93Ontce7TMpZK9PRv3mAOaho3tO0u50S0TfAfCvAfjrAMDM75n5RwD+HQC/UpL9CoC/eP7xE3Ivfw06KpXKkqSBawOIoXc17s5ltIbd1f7JuiyotlDWgkAkYVaCVf1NlTP3VI3XG5BHg3Rl767gMs7aTWyD8D6jvb7go/XzXCQhurBozecBh9tlxCr5oaHn8A5Eqf0SIbSFAqp6rwk78SLGFiWUVsu72d8R2Xhqw/foClqCZ6erzl/PJIXoVsP+ec29GfhOwlDTUceULj1TVBkkZYCfz4982qTc1ctoGIZHdliJQySZGbWlSzuVOgGdJPHs32wc6LsgStNLlDr1bfferbRJs+4BkkKeb4hBOhnpox7jYzyRi3TyjDf6kQ2eHwtSf30ZNum6b8hfj9s2lPYe/ZvQEa76ZwD8IwD/DRH9HSL6a0T0FYCfY+YfljS/C+DnDpR1MR1RI/m4PePpfFhwBRneoHvj6qxS1HgRrQ1wMs41R+n1d6y+84AsqvvKyYFCAVjzNvL1OmJg+mLnVA2A0iXlHOYT1D9nuNL2R7kk6sPg1XimH5MJt2XKr0qhoL9MaJ9zKdk5xr9zBKJO0A2DqavOX0PGCfSTLrf5clgAloSBwuVrJv32mt0zWcP7b7vzF4VzICq/AMByoCzQMNCRFCJasB5+rn9PGw70A86DkCAt+X5x/RP240kmOysnBFFR/Ztwl9YCinK/J627VI1rq8BLXrBdY9dfXx/0YHD0XiNw2T0k/wyBkw/TMoO/CR0BUHcA/iUA/zUz/4sAvoYTdzOH64b8AkR/mYh+jYh+bf366wOPu4xm6ikfd8bAevSsTaVQAwAkwKwJ42oDZVrLGpB7550rtzZXEYibAcW9dunmp9MT3fzjfSkaG06760k1RdrUzc2EKo06Q2NjkT7NCWBkpU+1HBTpwKgug+vpc9rfj5SuO38NJuxwB5f8ck2TwwKGgIHqqRvAg7hnpKrCy48kF7dH3obVh2tc9P424wB49AX3eULpEAaApylrwFQDABcC5qb+TiIZ5hu8I9C9/945cB6onCWVMF04/+05ZO6AVFiImYSG4Nl9TzPw5NLUsi9rpyMA6gcAfsDMf7vc/yryhPR7RPTzAFB+/2GUmZl/mZl/kZl/cfnqq/2nHQC41jjOr1A2HVwOLKDtLD1cWI29K4iRuOqTqUqhIqlQ78bAqOJAxV0Bm/SZrJpNVIYb2nPvIhKQJXW071jfL7XvFEidrxmESQAAIABJREFUPPXG+uO0z0qOcevjKY639xFI6ozEm511GXh0AEzK6cKrOwHrkbyxXxKvvUA1HldPvioH79V3TpJVPZFTncD8kAgM4Gs77HhWx8Xzhnn+01ekz0zXnb+YgK38BUyZNiOZ2oJ4y0Cj/KEUIvqrg152KTGXKB77WRotLiMg1KhoiPUsvKdKISzjjOopar3eeBzu3aFt1qvuchmRam2scmsBEm2tsXn3t0XA6shz7Bjo368bA00aCuoq7QYzHubg5Sgl4jw/LjLHne/7CEB3ntTd+zRjOhz/qO2ANqwZD8E3eKiPt/o3bZ/9l+ffBfDbRPTPlaA/D+D/AvA/APilEvZLAP7GXlnzB12Q5ay0ZIcOG5cbZ5eSZ2Zw3u7Eq2G1PGp+27yt9GnoQNP6fHpuK1/fVx7Nf+wU7WyjQXhEVn1nwyJ7p3Ld+ZI6SU8y7vVZP4EuFHrW+WsmjSg0UhvNpBC+jE4yYxnmXhVPpBWyO/D0MFkH3o9Ink7RBPTVCszyY8xDjoSb8kPXFAPqJY8U9mtUXielesK8esa05Qh1/VsWatmq4HIQla/b3zadXNhA6q8ZfZvstacrK2z/2TgK6Kgn8v8IwH9LRG8A/CaA/xD5c/rviegvAfgtAP/e8cdeSDxHwBtTgwhZwpzkCRCp0VbCEhZaS3gWSViP5Kt4HQchgTrUuXJCKl7JbbqFswRqcXVe2RwGbKREQHtI8cjJ5qZ55+4KrJTNXzdtwcdEvV3LzwbwM5EOASrPm8y3BBcvfMgIbZgIJF8t1SJFgkOJs7QBlZFQAnijjI84S4iwZQNb2krJKQFYq1RKDN8KUApdGHSSJ5h7m04YmpMwUQuk2nmnpm1+XZt11yNw9XGBrKvNX6Pph7sGqQmpC6nhHMTKXic241KTyAdQBiqz3BbJEGdP58TZ0zVRZl5E3Pye+VjVmaIzIk+0QSyLE/jQwq11npjfp59XalwvZWjBSWiAXyRPNh2AAMxSGw4Xf4L63qfmTtKcGQONx/ommrQhrWdyuZf5TdqYyPzuvEeCBc8bgAWcuEigTDrTaIk4tB/O9WnDI0eqYjweeiL3fc/m2raJHQua3j7I9fUV+hw4CKCY+X8H8ItB1J+/7LGjBzmAJB/6kZUWZNDklUzu+kpb4ahdGHLGfJRLPwg2y20h6jDGSglglONdtny8C2rYPdZGsrQV6VM+zgUabqVKkRSrquootJGKVJFHvJt7EOXDu1WCHdQfgmZzfgCSCD4sH54gxLZbOxDiAFYBUTk8WkpSnaXknrkAK/FCnipoolTzDM7QmznDFC/o7N67ufZga48+cPc+J11t/pqsTo8y0HoHFxYMcDaJ9Pszq4eGiXAw8K9H2RdQWSSYZ+gic5BPTSpQGePwGI+IOTYMcQKeUOPJ5TsEnEbXF1Lb+xRc9Wn9GGiOe9ExwPHikduwax3zUo/xkb63wKkC6CPk3RaEqkYzBtj3bceLanwIniJp0wBAXdpUH94T+cmKd8DxyjO+ghBnWyQ2UON83rWA2DSRScN1B56rd3V7YJx2TrrnqI+qmUG9p73VQht56PEvS08dCjZ/org8t0vOO7w8ZBTu1HWqvpNjZKRrrQ3TpDypQ+gQ9Jr0CYKr0+SlHYPw4db1qDyYdJ4pRPlGq2gIECFz34KWM5+tnoNnq1fG2lVUeNP5xcRNgGuTBj0oaiVRmWEPDceD59Dkr3v+AIRFOzDnhut9GeG1BRphunYxfDER1E40r93OFbjHozP+p6bu43cKqjeRPHU2aKaMbhetzT/6zh3dxGHCesCmkJVEOZG1hDG4EU9GJGq4jasfCJW8kFdlJWymDirVKdIkAVGJNiRRg1HeibcgqwAzCCr2SiXdiqxCXMFZIIGqvqv+n6jaVKm9UzUkb2ygYA3eTRnu16vqrJpO7yGrAWqcaA7Pq3pmaiU/ddHVDAWbLli0K8k3VWa7Lh8ZFQcISJwNBgWsNGq9XAlJSxYkJS4F27Dc0URF7K2G5HnMqFF55ALBO+pszs+r78NST+GxBk/rws78YnAPwxQ7KZT/hYv/zKhjnBxednlyfAVD6luHa1u26WZSCElYb0SNw6VsWd3nsd6q7kSCsDE6iXvjmsDUIdEGJGC7z96oU2JNb188EYeSqGgLffNbGGBrPC5/VH9Rw1VVzigq9pZRdsAJmEohRv06I4pu2PwYntWNg0AaRTa0zD+0ETjZ/ncDRySSDO1/VeMCTZ+3Ktz5i6qvJzEiv0vFC73pe/v6biwAIzcWUu3e5m1XdWf7vPweUuGa37HU8bJJ7cNLoEZ0AdOWLE/xqC0gpN5TrForzi3tDjy1XVKAU6VQjdF4Kb/u1Ktl9PWpIGsLVHefO12zCbz9UFf2UUNtA6ZUbVfAU5PmqMSqSKJUfdfEoQE6r0PimWkwtzTgyq92RyvdKL2P79JRHx6Uo9mvtPiRxYg8/hJDYi3LMFF7769H6p1uezoMeOrSz8HTsN982J5kwoU1ZdrnWQAcjIHIRif0Vj9o/pG054imxm8caPJfOLdEC/OuLlaKxmiuh+PdgicbPwBPodRRwXtbH78jb0Y3IYE6SiJxiuMiQ8kMNKwRd3YkWW2i1M6JM7C5K+VnKRIjYTUSKpHuMEB1rbUW2yeLf1YkLJKXqh2U+H+y4EnP1GMjdeLYI3rnJwoibUoKthoDcnuPVhLlyfqFCgd7GBb3xxmykqeG2sV4ExZLpnLg8DuX763MmmKoSRJm66NlF9sptcSU51ERaRfbqCJ14lSkneKmYC3jRM7F8x7NG4DV/lXQhCaP3A8nNOumweRR6VNAe1Knw/SpAzjLKIN3bcZSvyhvpQxg3RAxlULwwBbG/Io0VesIOyfWkoF+s40ny0jVqLixgWrjbTuM7G5C54m1qrptPd9Q284mX+/bhzoVDfk4tPHSGk0F/LU+L3ydUfI2b9uNyiNM7+v/tjwycbW+VDcV2Djta9SxxCK5lIfX9GwnN1Oa9UIuJP1b2J/2vdg+Ze0OmvSRBDLmKyjjVq6hfabvFY0BBZrxGDlq/6ZpPZ3kZx8VgIpoJo6UCUR24m1A87FvRSVnd9wJWEIJt0bkK6cyoWxZGkQStgFkjMiRsICxlh15OYzUjYFV3wHGmBx1950c3yLxYkAueatqr75QdFDyaGcMw6oAgZmYvQ0bdcQgfEQeHAXAqCl+ED4tX36pw7dxPShPXAqYEgDmHJa4TlKJwBubXXicxcsJVczcgKGU04hESn1CGf9READY+n/q6kpowlnUhCOAVEBYHwYFaDPQM111XsMO5iOjSIo0a6OOiUoZ5IBUKY9TywgBZHWwnJfIBrAIMJqpcQRklTocNS5OxQGOqnEI4DuoGser7+SZlka+5hp7LMsIdVCiZZjy2/214KllntQzU6At01x3TXJgaGse+5p9MzSgWsGCfHZcVXRuKupAVBvZg+jSoFq+nfNyuzP8VDCi6mW+qG/v8vxGBCxW1Ut+u1Z9Xh8m9UBtJMtrbJz9te/vwZMdByYN0I8HDbPlRdcn6HZVeJYCKUg0a1nGP1LjiUPNzrjaq8jMV+GBSg6r59epGs/YMUm+iKyqbs/3lDrmnJx/1517N+GI1zS6D312XIOOVvHkq1R3AD7cgYzxEMOhGajZppRiz+ORJCosCxXMuTrvvv/p9pnkpyDswud8ajQ0RDXXHfNuVsfUpocJ9/l8nOWv5VnDXW5PIeIC9o99AhdT1461bSjiAz5PiRsyyqbsnb4L0h+Jmxkud/lKfSMJCjkgOdxU0JQpPNAEnez70AcYoduF59MLHTUt4dH77I11B56afOzav+SPVXiA71MK/mZ0exIos2KqKyoMjeF8mFXZiaiaRQrlHlV9PlXfF1adl1DUeMxFwpTBycN2hyWxSqlWZCnUSrm8lYodFCc8YAFoVTuotUiQ3ruDgx/4rno7bwzIRTqVu7Ie62JVdOIt3QKz1v+TBY3eqFybHgOAdTTMFvQcZJm4DBP5uFEmdplvySzUKPgQbDpZsWXBo0poZFGdyyHQAvCaByQVaRMTQCnVrzOlvNKDFIai5iPouXhe+mR29rH+CuCr4aLOU/Bk/vzhwnWdQS5d0JZB2+6uWWYg81MlRusB1xKhl0g4aQTJf1w/kUYaxciSzpJXJJxqRAxko+KiUuuZswxqbtQ4fp5kMXEYSKIaFR5tSJQNiLcF2Ioncgnf28rOZq4Rv0T2YFi7nb3dto4ePJj2DyVPgSSiAa4WmNjwpg2DNN1LuVtycWTKkP4uvxZ8Nv0MgLfcJwSAyzxEJhzap1wnN5U+slnQlp6XicD2Pe+rcIFWAonE2O6o9j2qgflsl7dIG9lesw+X/rfjAsbTfylvm0ie7DgAmnwz27e2Iy6jj0MCdUXqnEmiBRVNGHpJ1ch9gPdKLgblgLV3Ind+XvVoXtMlA5J6+6fu8GAHDaI6z6gObDvwK5B6sUOER+Rf5SkMm6AgpCnL/GqTE5yEqC/HSob0Hiaf9fFEyd23f9555mlv6B7cOBBkafj+16JPGFQNjUsHq9pOGmEncDOp0+A6/1KTtz6P2nhfH7k0TMtSJKWPdllZR5qwNlDXWilZ5gl079NJXvz7emAUttUgTdBXLcCi8R8G+TwQ9M+VfK5+KnEKy6Gw3KE0xpKA0wPU9bs8WqSPk/RHKXRRoO2K/j3Cd25VtEPw5P7K1GjSuuvBdzyi25NAAbAofi/cGkjKqiqyixJQ4R1pCopOxCrFWYjReCcvecXTuHoQ51QcabLWbQXhHjBONXO6DVvjfXyz0iZUP1NiPG6dZ1r7J6lP46eKSd0X1LDUSJoab+QHAVYjBrb3o0HVTCoHuSgNyvOAIEgTLaLV6DtKG+UtxuE2XryTZ+lStncSw2wynI8JxogcxTt5ngg45XOWoC4LtnZHnr6bA14NoJJ5pV7XdDncnuPHHvSVtmvm/LPgJkr/CQOkXXKMMxJVsL2QrvVxKF3FNSzflv8ZCuZt+BEpBOl8iJDpNXU1H5EHRIkYCzEegcYbNQEaLobEidgYOe+rcaotjA2U9zG/ttEixrmh9okFoZq+pIueBfRgydAuNmCyPzmPeYjPXqWN0LEhe1Nq/tzXtLGmlXqoZxU2mwqsiMuOAx0PY5s3D6iTGQeNGi9l6SMv1r1BbPs0eo5fqOc26PutA4QKLu14OGD7ZsuDA032Fwf6eUK3A6A8OIq4I+oYkQFjjTTJL0w4q82IW7UegOrLCbm8CqbyES+pgClR44E3NTBPKOmKMflWjMjf85J9QoGx0AboLroePLVSqaTSp03BkzmUWFV0Tn0HfxByDJDs7jvrYt8bkEerVAlv+ulKNMLJSiNw5dIo+LHpZfIhNHOMpqP6fBlqdcddrZiAKIjxrhqKcwZCDGNEXn6tdGlJZZyaeyLwktQ+irNlJqoRudRRyikgKZEBQ1TrqeCIjoElXwba9Ox+D5F/3lNmpRumXvJE3WUDrMq4U4ZpBr20uTJRlvFaQDlnwCSgRZgiuAB7GZMOYHB5qFXjcFlgMnP4jVtSFQ3aXXjbQuAFWNIWHvkxIll86fzCskMMet9IWCwQasJJD3ft1HbSfmjLIFeehpkOC6WJJ8j2qQVVVaXLNqoDUmp6YJi93aEn6jwdSGVTQQeim/di+Zfbm0V9Fr+cV9vqNbiCZ+n70t9tnrrDHEDHWxqSMWD6n63KTn6B6u9LDwWuYwAMcx3sxkRNFwKmqClO9v1np8KLyEprunDDFbxR+GaAjydR9alTTAVPNCxrWDdTByt9slIne5gwgEbi5CkaI73uOqxOTxfwyVOMOSK6QhmFVGqjTI2aX02DGt9JeiL13RlL28FXyBTEnbTgrWAMQ0DVvp88Z5zms6VuhdxGt2qcOkinE3YJD5vXraRDKYphNm1H7r3McUq0oQjczVb2yjzPUuiod6+NgFCyYPP4NjwNnobtu/MX5I2axdfHP9uDv1AiZsIOS/kdHekxtX8rFWN3dJQ/33X3mVz/fGW648J8RaN496356jTgyYZH42zwPR+h25FATcj6uOjj6hJMEG2W/SAbh4PUcNK6M9jIeCcnKukFdCxYlgzfdYcbJSTOar4HLFh4U0nUBsYDgDdZj5PjacN7Bu7pEdDdeVkS9R4LtmI4LsbjKxIeeMF7CbPSKU542PIKrzMeZ9I6RgcFt3mqgHnkD6rdvTFGKtFW1D5RHDwkgoiC4uJkxc4mPbfxWQqZE1FJYyVPDBTAY/w/cc0LoDUmT1SqlJeK4uKAZelIxfEBESgl8LaBlgSsG3hJWRS/MMr+b1SVXlJpVJVWlUnK+ITiYmzeSZaEoRmJlQdL4Xl6Nl3U/jv987kDKdpcG/gx3o1PqtfFEFiDTD+IlAmAStNVEkVcbfNkhQ5upRAqAYUuCPI3WtQ4gEqfvAdoS16qkIixgMELY7sDtjtgSWJELobkHPoAiqTbllmq76fmt9RrK9IHzu8m4GMkcbDgYwhULGgaALYhLgj6OYqzzaqfn1GxE9wYKHytGROM0o/IZgEkIKYMKZGAU02XJd+5MnLQufDNvGkATb/PVKwyBhZibFT7nkvfixuDIwdIWz4j/GRjAm+Gv3jpI1M1Gpf+jsbAZoCTSCZtfzR9737h+vrCie22AZQ0pohA2ewmQWngIC4i6+vJh+ffhFR2yyXk06Wrb6ishgOh7LgrtlEF5CRkALbqLLjqsS9iN2VVdo0KT9V0EfCpO/9yqdWxZiuVctIncx9NlF7aZI91GZJO3KP4SdxJMt26y9QraJpMfpJuECbP0+cqLjT2VKLGY1Q1HnHjE0omrozgqar6gAYoceffiSrYSXW3HeToFpPOgidtnxmwccCrSWfvB/n3hsTnSKNxZtZyLoNgp8LAUecwiW8mdgE/blzKGNfnMKAOFqNnlzSslTtGSTlUvk7CAJc87iyDbV7TSKaaajgRZ8F1AXiq9bbSldCmZQ88NemoLwcuDVzcHk36GUA4FnJQHQPcxfU3NQ/XBKNxxjVSwVMZI0fI2z6Jz0Nxoil93x7zM24wuxFp7CEdPXgKxjH5dM07Z7LjAIiB8gg0XWpxcNsAKiIHqkZJNs4Spg3c2UAl/a2uD0BmJ54ugoqkhxgwO+DEHmlRGyjOXsZJDMezW4NFfEKVsAY8mZ161nUB0DrOrGGt6wIrdZI65fdrz8GTd/a+r2a+srpdeS7uWTjnaFLAoLsnzMrmA9VVnZVEoQvLDxH8xAnZ2bx8z5JHjMmLvRMT1KVBYwNVymyNySuIaiRMZvddtW2qoEqkUlXgJ+VbAEQNWDp1sLADVXr/Cp56EmwRvL+XkrO9MN3RMVFG3couZQmIApQbE1AZYzIJLOctBaobAzaATSVArbuXiIR5ihQCCyuAImLc04ZHcMN0Z+SlT/LbM9DBH1owtAeeQvVOA9BcmL82FL1eOP5N/zcLMVuWJiW1letwURkP3iaKmCuIllC2tlD2PdwEafp+T9hgPdAvpbG2u9z3YgM1cmMgj2+MxSVcgNSe9JFhbJ9sWH2XEChLOtsOXbwD076SJ+k2AJSbeE5lLYNF5xJGNzgEEIi0E8grnI0o8zwFRtknFFClTmJMDgIeeME9VqyU1W0ircq+UBYkzjv0Ft6wYMN7AAkb3lAu7wGLuil4wNIdHPzAS1HrLY306WFbWtUd6q8CKQ+o9J1bMOSlUuKPQ9pu5M7gxYkccJL5oHxvjcRI4u2c4a8LCaiq6rgWIBGAyJhc/TGB6wRG8QHDvFABX1TUdSwDMxuPF2NyXkjLRSr3ApTEu3gyYe4v9P3UxLdhHOS1YMlLp3x/7F5/4kQjxitBbsz5sSvtWzc2SB9wNhRGYZylfD06sajlcnKuEinxG0SGiVoVXuKaLlk1TqmvW1Q1R7RQVdXcpxVYGNs9ge+Ae8dEPYiq84n3AWWuNwFPMlChv9Xnk1HbRPelbcJry2Th8gR9eJahhgs6k9eOBb+RpQ2jMj+gmhEQwBuqSYEkLeo8howTAjbT/0keUvJtpH7FshqXG2CjKlYjObQ+nlT6uDD4jrL61saV+JE7i25z0kz6aA3DNbyCYhoZkfv+9aBpJH1015dKoD6sEfmIOfuXOSn1aEHBZTO89wnlnVTqNVr3AULWj5M9YDjnMf6iUF0XdGU0bgla43H7a0GTr7sNm42RDwaUgKcxYQsC9so++pwCMBo1GQKA0eySA1qpEam7AraSJ6D+all9xTojdmfc3kiYThqW98/aSbAT/1lJo9j9GeoAlpu0h0zaSUlmjF7LcWU127zDeo87yWbz0qRktr3JkUGSzqr6jtIen7I+n8i224wBdu3ReyKfqe/CPjtLLm/HkGdjwPO3qK6+bA6eEZTFZlxc4tMvERcwDqCo8BZsnfRyJIXs/Aka0NRIH2GuO4Bl8qKmJXsdttEAPDmQFfbV4Bv39OElUAKvj4TbsAIICNAW8Of9VO/k+cNsvJJzVddZY/LNXD9uC5BWPG6Lujh4AHCPtUiJCCmZc4F4w4ZsbA7kyj3wHTZs2bUBWMGUGopzPvdOpE4PvOBhu2ukTw+8VBWeSJ/Y/hIet9TcVzcF7W48774g9EjO7mMzK0gbBjNImz56CbKrfVOlTorEaG2dJC8B3tgcZiUvYWxcFVA57063nKdyTl6xearn4xXP5BupGwOkVKRJ2XiciyG5ui5YirF4cVYozxYpVSM9WqCgLZIysU8fxI9AkaYdtfnnBJYCspNtI3GK0pj4TvJQwurGBaPSKeFcvI2XvSntBglVJeYNMrkQ1O+y4hDj3dxIgjA2JBZwdFekTHdYke42bPfAds+4X1ZlotZGKrR/AuozPVNUI3EX7tOVe4qkTRZM8EC1E4Cmab9FLxFR0Hw2aTMOYOYnRj8GCGpXyYS6icVIolQSWSRWuXNlDivjQMacGJUXn1BZcj53Y6Ee5pF/72nDRgy627C+qX1/lzakjVW9a73R1wW7ud7I8BozFrYyIRU1HZnxQBom7x65sAiuS6MO+913UnQv7XGAl314AGXJgyYmQAwkJaiEUROGunNF0gC6Gy/S94qNFFB8QpWwrfhtavxC2YOFOT7eBWVX3N7xLvbYlgyuEt7zXWNYrj6fgmNbjuy4G5EFV7338T5MQKrvo2grqqVLt9dGpBNMMzP1z4wBVZlcgg/BgimW/ASQzHBc8qfKrCwQsSBNJEQCnnjLMkFOCbRtUMNxawc1ObZF6q6LcQU/VSpW60J6b+vnJ+1R2/pnRHGvZMivciMmSkHaPqgZssowoW4yWyZqdlWBDRM1hQqD7NRJbNQ3uhNvbgcjEob7srGGUt6Bty3AHW09E3UfX+hTzi7E7AKsA0uVMe4Co0GaSKoUAac91d2MiUZRnn3ZhFSubbM0YwCl/xnav6rSbR6c7aGkbOsfrKmYtK+uIusuzJnQWtW3BRhRYj1IOiFLoCzQ8uRtbfOvrRPaPm/CXZzvW5M2GgMAGhUfEPS7B1To447SbQGoK9BoYrBONUfixmpMXkBU4a52Z16Or78rF0/kZadd6538Dm94zXEChpCanXcZPMVex63kKLJ9AnrjcXkP7zxzNC7CMXRNznmyrNy03OVTKRLalZ2AHx9GbmaSsC49aprmOVQnQ3VrAFTwsxUQb3bkqXTA7shjqlIoYziuYElBlQFSUp+Z7VNQd8/MHRYOAVaU75XG5MfNJUzUgyhbjjJROOPiMnysKkSNijcnldAChREZKQRqGTmq73y7A0ttY9KWjciLM0VhonvU2D0pWkcrjSph1faFWhA12KIuacgYGjeMFcG9tKkHG+j7do+ZRgA67NsjY4DRuLKo4NfMe6X/ieHOx5PwMmoUNEl+I3kqnT9ymmxtoe5pxUoMWjh7Ilcj8v2NAyLlbAEzoQfP6P5G4Fn7fwCeQpCNQZhp46fQzQAoYiOK9mQGQlXXQTldnRTYTDKk6jrZjSc+ocSY3PqEEhcqj5z9mjxuCXcpuy542JY8WWwA0gpgQeKMxB+4+GcCIW2MjTYkrl+8904uxuLZ71MGT9ZwPBuS5zJFTSgG6ysTHlUKlfBYxBGP29IALva/QCN5suq73JZOtAo0g73TVYd9dAUuHM0soyHhQFAjqbKAYhSmYMowq6J5yzvnJKwwKglTtYppKxmHOiloQeACv5E4A6KUsr8nVeGhqu4WAVJFpVfiahhU/cayay9VYMQzaZQHTXBhZMtp00TSKYi64HMiRjV2LRSu5CNwanh8A/YFL5u2z9dU+qceM8SExrA8b14QlU8BSKKGNn6hso+yzFh5S2DaGuZpF2rWKPyeNtzTChBwd79ifcvY3m74YnnA2/SId9sd7ihL2a038sbu0s4jyIyfN6rqOwVJ5H7RGo2Xd1YwVdR+++oc0xUj5orgGi5dQIJTmvSTvp+OAULjY6y6HjAq3VK+SCRVqkQFJFHpf0F2RQWjG18KL7S+E+3iWkDRfVpxl4qqjhl3dyu2t4z1LeOL5QH3tOKecpptsy8MBeXtXwkrfdr2P/X+vjbTv8V4XPt/Bzg9WWV7ElR9nJ7Ir4AcgXZ7f+QQLFKHWR9L6pPJpbNOLjc1EpcjWZwhuOkC67ZAJjU90oVbr+OdwbgFTQPOFm45vaa0qSn4idkn1eriPHM/EKb3BnjsPb9Kh6hqHrowavP6slP9ZUJV6dlnUJu3DYvfv3nHadtRX8YeCHilMUWLiwmj9ivg8L5hAtTHNc+3QKSAD5PH6mhbJ7n5d+TKRGihDQttSCm7MRBDYmDsDyqX6xhr+EGZ+ut9/fOSh1aiQE2evt3QtNUZ8ERc/2YUpgvqQDx4vn2vEfAL+p+a+ODZXVhvrmF/LVnJUpYycu77BCDJ7kzjJwwH3FhEz4v6q1AoJXJtM1XbmjQj6WPYZxfwrA8mgSKeMElByAKUbTp778QQjQQF/eHC4hPKGpPnupTVF4zKrNhCPW4JKTGsd/KHbUHdPrIEAAAgAElEQVRKrPElaU7nOI9IqhauRuTf8L1xW1AkT9udSppE8rQiqXTpsXgiV5cGRuI0vOZWKgXUrat25WGlT524PeqbZtIe9OFB8t0bUl2MzcP9irAAGjkYGGYlbwEJSV6Zy2VFl0phZTzSiup/h4qtgnkD+VhZJE7MxZCcQVgyeFF3Bam4NIAajmdJVHlk587AgDOCA3Gm/uaeXZgHil6y1LRpQGH6A/k+JZpqrTxoL0PDShv01/B/qwpSNU4z1slIGlAlUeqF2uQ3Y0Gdv4q/Mvm+NycZcN+6GpGnLGlIYLy5e8Q3bxn8ZsMXyyO+SA94t93hPq3YVtJ8lhjl8VuVPsH+CeDbSA2HVeIgYUAjeWgkE9IfbK5N23WghYN4tGFd+FEafEfdONgZAyJtaq6l/wvjZ6DaxJVJL2cnHRu8yUNR3SRsVdsy2kAEiPpuw31acY8Vb+8f8eO30L5/mx7wNt1XH2GFLL9ZmbBt5c/wDC792hiOi7RR+tIbjKP0rfb5WPKoeaL+jPodbdqzdDMqPKUGIKEfmC4dA6VzOBSni8pucR0tzjU3JiwlzB/vgmILJWq9h23JPlFYXASUAxWLqHTkGwqU4xZsQ59PCp6MzycBT92BwQ1I6nfe6Xuz6KFrWL/jbsz5DBZ9PkmVPIKCgQ00oKhJ48NLPRsQJOMnAFY+TA3OUcsQlXEuj6pBeVHjcarTV57YShmUrykZVd5WPPrKrrqirlObKjlU2BzbIobmun08AElWimYBjgdR9t19GPuwE6CqKWeS7JMgYeBA3CZmUahjz2Jwm5XNuK3JqhqH6nW25RVD8FKsMSyvnmLlQXXHlaryALWbqaqVdk60tFBe+N3TikQb3t4/YnvDoDcb3qbHrMZJa+M3SJtByzdArahpRo4zqVHpFWAlbW7Ak7V3GqluDgGnEWCaDeIJP+pAsvSvGQezMWBlBnluqcOHxLcXjA8wGQfSdjAAWw4bFsPyAlard/JWGmn73vqAEvB8f7die7sBpu8XOSdv1lzCb9wY8NJDUd0peJY+hblXEO3Ak/cJ5fvVg6advj4Lnm8PQI3IcM+xoTiMsaXsNqh5JA3JJEJiVFk9ktsdeaCqcZH71f5qeD0nD0jFHYLsyMuuDxZs2Rs5kx7JYj2O6867suvOHxjs/VC1TjXbr9raNLRh0k49sOra2rRpFN6md7+OLlrRHaAGOI3i7cQmwMgyLwVL9Rq+XAMsuNge1N13ZbLaAAJn+yYg20sRUM/JA7wH8lbtZ+2ZSEGRB0ht/KBLPGiahU3aFqb8w/j5aLqPlXbGsn19j9kjJspNAijj8OsEBeiFKaoEQrFT2ZlVwJaka7hzWWjmb78yuEi1X+2gCoBaVvA9Y7nf8HZ5VOZqqZV6twxUF2HmPjM9C5zQMUgf14GgAXhq1X0mDi7ed9Skf0X6c5Q6cBwUr/2L2k223s0uPDYgevPpqU7Wvt2A6oSTK59kxCpc2Twgff9mWcFvGMn1vTjTtBTbPwl4oiJ9LO8mUsagjzvwbMeGd2cQXdv8thM8wGoq37fFHn0cAKqMsMiQXI3nCreMgJP6fgIgBwzbHXkaB2NQXiaVRyxZPUecJVFM6hsKKJ5ZmRVpJeRJbKWUkXrKz1uQjdBXJLzb7rGC8G67zwblnA8Lzio76xMqGQPxDKwe5Xdb1IhcdgNuTFi3GsaIXRds3QCvQMp+g2FXNB94wC33BmHEHVy8MIzpjOMfK2DGpxMgglyoACWtKpkixXeUzNNJKlT6Vz7ujatq0PiJkvbIk2EF7Am1PL5LVdJ0V4CTGIwXX1AZqJXfBfUwYT3upb6vpNV40xbank0b1LAmLdm0fftqXkjnBOGfOBEwl0ChbbuhQbFpezM0K2hFHf+SRj6HvNkG0B11ZszL7r0q/ZDtEVR2jkLBtxj/rky4Mwuq7L5lUwnEl+kdEjF++u03SD/1gG99+Q7fvvsGX6Z3+El6g7u04sE4/G3mGaPCUQa6klHZFAa6WtUdlPHpdVERkjEibxgv4BhtH67XaOObcLThnhoV3DCRKUr6Nuj7aAw0Z1+K6xTJr/kKGE3chm+l0MQQf3bZDAGKlNT+ccsH229bAqet2gFz1p4sBTy9Tdlg/KfffoMffvWAb335Ht+++wZfpXf4o/SFujsAjM3ulrBute95S0Z1W+rJlPvUgiiRLvoxUE6oVlUf0EmqtG9gwqXxor6HC3PhZ+i2ANSRASpJee7HRETUM38XQFHnlWsdDDA+otwAEd9Q4vtk5QrC7Ll0GxV/TkVsIa4NrMuC1UqfjOTJuiwARArVqu5s/b0EKdwFcwnZfJcMtqPpQqBUAYllErqiIvMBDEBVu7wz1XJ5lWEBrSpP05QMkkbcGlTOpY40hUHJWXkAV5sVA2IU1OjkaQCOpLGAyNS9BTuub11aD6ZGac/SpUPqk6HBeLNTEptwGYdWiqHD0oIoCS+RCpLq51Bt7RjN0G5VO2UcC4hSYEGQVZC1i/RSqKrKYbyhR7xJj1juVtwva9mF9ajSBzGFaJpHF2U2TC4EPbj2dNKHEAiNgNGEofr0XRpXl5nEfBSnr286V+eUcq/vZsJ0PLhr+zx9pCubXb01je1ny1MbKZX0z0ACWUDUPa14k1Ysd5v2fRq4sOj9CtY69sf21L8h4LHjJQrvKtD3czgO0Ib5Ms7QbQCoCDjZWcOP2iA9CxAqYsrqVLNOJpFLg/yo6p38cUtlK2+WUomReAY/jEcklTJV1wbAUiqkYu0ihWrCUt5B926rRuTvtjuVPInR+EPZxWddFnR2T/a+iWttn7zqzsZ51wUyyFXUXto6mgybvjgSdoCirt6Teyv4IXOPYPi4eCuFknvxPtBKoEwiFSWRSyjc0VyzSb+IeJLAS3FdcJdUyrTdEVSyJMe/GJcFCpYaf1Fo4vx1I1mCCYOJc+HatnDpfFiQ9rMgxtiI3I3TZty1PKuXSJCLkzBxmSG2UJWPQK3vZNiJt3IUQ+I1D349Iy9RcWmQH7KVeW5dExZirBubeSSP14U2fEHv8UV6wJ/64sf44Xf/CN95+w3+xP2P8VV6nyXsxq/DupV5bKtGxLwl8ErgteiiigSKilSCNoBWVOkD13futrJbCZRNO2DGe8wUiMPC+xn5ecv1uZVcdf0s6an2cTMu0OZvJFFUImVukvM3C7qSUxKYOLc7shRqKz7q1jUhpQ1JpISFl4izzC/oAV+kB/zct/4Qv/fdn8J33n6Dn7n7uut7kTxJ3z9uqZE+NRIoNn0v35OMg6CfrfQRZmxoU3t13gg0BcApBMMfJYAaUYOeAaCIJmWAKsCuI1h8QAH11Gn9RQUDuiNPwNNIlYdq//S4LbhLa8mfR+1Dvsm7ERI6dd7Cm/5mFR5VtZ3uwqNObQdkyVPdhVePb3kM1HWR3ye7slAQZK6b8GAVEgOm63DNECxdmq+Mh1Cy1MT3x7vIteCfPHyMbygJTwRsxsi8DELdmacFmUIXncuQnUxBj2fRHXfFjYE1FJcdd3ptpFMtWKqG4x5UtYBJXtbEowdD06793MDSgMgZjagE0DHQRjqKlpE2SQ24t3GNJMsAeylTwFLut7q5QY/+MCq7DLy4HTcbYUv5uxc13uOWui3qX6QHfJXe4U+++TH+9E/9Ab5z/w2+u/wEX6V32UdUIVnUMTKQ2oSJMtWdVyJhatQ25h6eiZJe219IOmmnLQgbAKcOMDVgajAhjeYp6uO5RbkNiPag2s47MOPAA6kOSKMdEzqXLWXOLvZOOk5kfilSc95kzoeq8dYtYUum76n2/Z96+4f4R1/9FL7z5ht855K+X+sEZfseUle7y1L72R8k3fbrWfCseYL+vIQPCX14AGUG1HCSPshtI7WeB1E+zO7QEyClYk1CYw8lIAuQXXqysMvX1lO5qPMeyjl6C9fBaQFUpLbz3sUtGPJuEkYex6Oddy2gCkBTSduA9TLpTbnrlUBVVOys2y0IUhLgxON0jXTKjj07iaG1h8qTVV3RUwFkujNPmRtlfzlrGRwyIciRLbr7DnXHnbgq8EDKNKsFSEwtKPKSojafA09or5+p6z5d6oBSP0A5mMgsrw34bjP8OhAlzNYyEEDVddlwPMflDTTIjEkcaSYUb+WoLg/KNy2MbpVfs6sXABYw7rHi59/8CO++usNPLe/w7fQNUkEtchi6XdTl+QhFAoE6eI0UwUqWBNvVOMnjw2q7RKBoTxUUx7v+G8w3fj4ZpbWzpx8HTTaZQ1x8NwbMczSuAQfVsBwCnrk82+7CDNoy9z20z3SRXnhK3oX5iH/q/g/xZ799jy/Te3x7+eOm7x+KLW6WPgV9v5m+1z+qYMmAnToe+nPvmn6MwHMAokbAqeMpHzWA8uSBVASsCgdk7iUFKraGVU3VQtQGlFtV3sqEJW2qwlNndFTSMhVVHtXDgpEBzJ3sRtiARwBrImyUkGjLkqwCvO6L9Oqb7V6lTiJhsv6d5PrRTGaPxTv5ow5SUiNyawTYgCluvY4zKqCyajm/rVXC+74Rros6wV2L/KwRgaLybA+sFCBJ3SyYQAuW9JgMt6pnoKrcSKpQHmRnvsLJGPIhk9pEZSCVH8aJkFbWFSBtuZxtIQOc8oO8wTiAZkeeXHdACzasvktz78CYBWFRejZhHZALARo6+mRBmUzylqJ3tYNT2yxfjAyKdQzLODWfFzE6l8fNsR/ygVibF4KOVaxFUpnMPPiYzzhbadE6vVvzvPN+y6YFD7zgnh7xVXqHP/et38Rf+PL/xgMIP9re4Bu+x4INj9uC99sdHtYF7x7v8LAmrOVv27LqjlcqUghkg/HGkLx8YitqvIABK3kq7RAZkWtzH2KmBo24rjoCnoDa7uE4bxYp3IVlKTia78t+V50KT+Y6QvEqXtvKLtpy3bkdVzKRloOF1USDkI3QE/BY0r5fFzCA9+sd3q13WO/yJqiv6D3+3Lf+X/yFr/4uVib8wfYW75Fd8rzf7vBuW/Cw5r/3jwseH5dqQD7pe+ln8e/kVbZTqWNkRO5Vu0Dbx4N+Pi11dHR7AGpE+kKOe7okDfZiqEsDlT6VNNV1ARpVnhhEyjEvQAZNgJHgUJVWVWlTUqdiYmQufqKyMCLv1hOkr4cEgxojcXstZL2fW121DbPSJwANeIILj67lPn+HFlWcoAOT0S6Vb76REp0oq0kvQGwCzkbgS8eSKaOGldmIXLxxcQBUYASwkVgZ8CRMkVDVdqVOCp482PFthTbegp3QceagjN0wjeuZwudE8vpzKYRJo80l8w/pmLFFeKZsJ33/LeivYRRlmFWpVMFSIoGgcs0i9igITXGXWXg9btmcwEqhfiY94ueXL/HH/B7f8JqdASPVBZ/MXaq+QXHYCZU42L+qqkEjmYokDkr2fQPmOFTVBeBpBJzOzDVRWhvUDRHKdbBq39HUFE1dml76H+7Xvr9k1HGAesyPACkO+t65xkm04WfSe/zC3bfwE36Pdw+PeF+OIrNHiq26MEft++DIHu170++N5MmltX0bqeh8Pw4ljrDhruMu5VX4mACUp1AMIVIpQGylKogCdEhTNSgHclzRskDO47P2UI9wUilk9waJGXdpVcPybS0HFSfo9WpA2TvKzW0dZDbOMp2rAmsw/rgZaRPqllGpK8uv5ms/DAZgJU2d6wLPXZsJiJqPs+sHE06+nGuTm1kioCWAQm0EYMAQALGFYl+cAR86cYkKrNg/MVBdGmxcpVYiMiAuBpvQimW7pzwQradxBU7GOFx+j4ehgj4b7nb8+ZVuKG0y1HXjTrc+YQ76uMhPzpY8x6Qgzkg0Rb2q45TgzkMzjyV0djHWpUJeCJSZT8a/TGCrpKE6hldkz9Qp4RF5HvjjdI83dyu+fnyDu/ffAgD81vs/iR/ffQtfpt/Bzy/AA2/4B4/fw+8+fgc/fP9d/JP3X+Inj2/wk4d7vHu4w/vHBevjkueVlYDHBIjkgVGkEGi8SVvpg0qWrCFxIHloJA6BYXnDLAcMdSh9umQwW+Ar934cSD9xOwZGmwq8NMqm0eM2ARVAJRRJI9hIKKnmQZG/ExXVbsKaK4Fvljvcb4Sv797gjr4EAPzW+z+BH29f4Ku37/ELyH3/O+v38LsP38XvvPsefv/9l/hmve/6ftsIXPp92PfSl2vte1pN31uAZAEX0NhMNX3pAFQEnJs+QpvuEropAKUHCluOZu8LdQ7kPDQHlOmLrVMJVIkUTLj1DYUtgYgLzyTcpc3sM0lgzu7rczjpbjzd9muAVKINS3Ff8ECLlmLtmR6Kwbj16SRg6ZGXVsJkwJWk9eBpNUDLG457g3G/rZhNu9l0teFN+rODbpSeZnGCjGoRKs62eSwKQr3WII5AVQCi7EQn4epMnKAqErV5Imnc+jEz6SSZDyAuVTJc0ariADg1nLGLMumbM+xcvAdPh8GSi/O/TXk2HH26z4EI6FV4hTgYk56Z6vQ0AFPk+85k7xgrzP1an6EMUyQNxZcZJ4DWwkLN98CPSee3h8c83/zR8kZdrvy9u5/FH9x/C9+//8cANjyA8TsP38Pff/+z+OE338GP3n0L79Y7/PH7e7x/vMsqnLVIH4SJbsiMVBlmAUqitrOG5NaI3AAsAK3qJlLrKRONQVMnkTDXISA+Ose5vm/Ggu3zpu/l14yBRDVtBKTQ93+di8wcJs8yAEv8RGUbTsrqwEcCkEHUw0MGPl8vb7JmBb7v3+MbZvz2+5/FD97/DH747jv4g9L337y/x/vHBQ8PC9bHlKVOj5RVtAKiSn+TGQe7fQ8Y6dRgHDgApf0PxH17ZRD1QQGUfshnSBggm4GEei8gwBuM13T1XtRw+bqo6qj1Um4lUbnSrWG5PfIFJk0VVWxYQVhQwFUZ7VbiJHWRX6+y82o7eQ/v70nIbhSa+WeJJFKn6AnIPaQZmPKPNnxiN6+ZvFpQRa041zI6yWIYn+7i64BW2R1aH1MB2uLqZRhmD3yoASwSblV7EeCxbaJlm2f5Z0d5r0KfOpAyE7Yn++qegeqkbYpxUWYEmbL024QbW2jWlfpbgIUwUXtsih5BJBKuDWUHDGfVXrFbARIe1wXv1jssacMfPmZJ1D94+B7+3vLb+MfbW/zew3fw+w9f4uv1Dd6td3i/LtksYU3YVrt1XZ5tPEhbKRPX+NCmyTHJTiLh+8SAp1DaFACooRQqig+oA84w/TyLKzfSj37+8v0tmXz/W7CkY6Kobdm0A28yd+W2Zki/A2j6PuHd4x3uaMOPH78AAPzOw/fwG8vfxz/ZvsT/9/ht/OjhS3z9mPv+ne37LelYat0WoPaz6fe9vtffEj5V4QXgaRc47fT9EbopCVRIOorKSJFrRV9lVUXe/5PMIPJDrkBAVHkiddrAei2/dfASULZ5iuRJKGURBe4KRBaJlMTpdSnN2y/Va+/vqQInbyAeqe2s3VPj0kClUhZAVS7cXucmsrvvGhXfhQNtRqZHMjVdxWi4vedCaIeD72XGIMyBFMgET+iPSZCkLODEPrxOWlrdMu70mIqIPGiSMOdNPDIY12sTZtOPpFIzCVMnTRqCsz7uc6KpHyhz2QBU1+5Dz9RFGqEG534QZx5Xw0QKuZQkjXFx8QGUuGxOQJYKqC8zlAVAAm8MXgkPDNCSF5DvHxd8ffcGD9uCt8sjfvTwJf6Pt9/HT7Y3+MFPvoufPL7BH777Al+/e4PHLeHdN/fZ/ukhgR9SZoqPCRCVzSOq6kaMhq00wjFRSSdtPpJGhUxzALAiCVQolfJxE+r6WgKjOJqPASJuvuNOhVf6Vk1SLBtEjZd5O79THlMJKN7gayGc/e+AV8Jj6fuvmfCwLvjJ+3u8177/Fv7Pt9/Hu+0OP/jJd/H1w1v80cP/397XxFrXJWU969yXr+lGYzdoCHa3gpFoOiaKIQSDMQYYIBJhQBSjhhAIExMQNYpOiAMHJkR0YDAENAyMiC0JxIHRIANHHWkYoKCRgDbdaaSNNn9+8n7vPeVgrapVVavWzz7n3HvPPXdXcnP3Xv9rVe1Vz6mqvfZb+I3/9y7cC+8Tju8cgHcyiEpvUg0Wf6OtjwCfAzbkveK3tS7Z/xo0C896/I5AlM4/ga4OQIkbbyspoMXWI8kidx5UAVQaIPljDvQqS0AdpfLDrVqSbFzUQcCURlgScK6Ak2+b37IbgSedr+tqC5Q+soDUvQVPMP95+S5GDwCyIuAk6QyeaJ7W1lNWKK2sfL2k8VwF4DIsHZNQUvWRB0wVqKR6rxSsBTcKEaaoDbsUTdxTVLZT15CvOyjz0sBUb2uKxNLnRSIc6T4TcA4nlkV5kAJCfIyGlsG6sWWlKUdtyP8C3I+sUJHfmiLCfSK8OeSfe7/x+i381uEVjpTw62/ehTfHA3719bvxzv0d3i5xL0c++4dddxwDaNwz5QFSb1xZEGT/axCk01rLRKs8I2tTqFgdM05VrP4RCPlbmLhFBkL+q05EHgDIcRW877n4OAbf6ZhAx3KWIr9UcEQ56JRwfyC8KTFsv/n6Lbxzl6//75u38Pr4Cr/++l14fX+Ht19/Rnb5yht3qVidNJ9Tw+cQJEW8d29UNuCZ1yCwOE6Bk+PrKXCD6ToAFEtHLy261trRSl5NErhP8K4qHRslskb5aAO+ZjB2VyxPfMQBpRwHlS1LB7E44HAUsMRv7ukjDw7pKO653G8MinhcOi5qi+WJ598CptSAJ33uk3k5QZfz1ie9QanyUQD5UDgDoGLYqn5h+TQNaHR7khYAH7kGnEjFQeUyZa141MMucVGAtVpp5RUslYzVgRBvRWosRy4uyrSjgJhuc5TWWJP0mHQdqXfGTnMLROgepOnlEIG8NkhKrXcYMFzO75GPUQcbPxsakpIRGUtzcj6n5cFkb84BuCsfmc0nAeMNyo++Q/5e2t3hiLff+Qz82qvPxD0l/NY7r/I3O995hTfvZAV7/7rEO7051FfV36RqaWLLgwog96+qi0UCCmAB1kIhSrTu/cMDNDvKs69MBzIe6SnXRv5Bxo0h5Ln8V3tewbC1j1QGWfaDbkA50MZF3cMEkWc+k4Drwxtl9T6ifAD9CDpkA8HrY8KhuADfPhDefucVfu31u/KLBq/LETzv3OHNO6/yiwjv3NWA8Tcd3hNMALnw+R6WtyOANQBOPg4OiHl8aRB1HQAK6AunzhebZb7M6DsVgKTceEEaEFuhAIjF675sFvlavn4g7jw5toBycPk9JQWkgOMxH4N/VNzQrjwoQMTE1xXMtWBKA6x7VX7ktouCxs2115QKJIVlHCgI2/DUy/duuY0UAqoovwuYBiAqWTDED6+1MGmwlFSfReGpadZBcaIdJ6eFb82hXmuQZPIPti7XicCZWfIZG09nz02TduEJz5tC+joFaeq/A1PmEx9SXgEpldwoTgb2XtBlHKxBkd15KYcVsNWIyjHmdJ9w/+qA44Fw/+YO6UB4OxEOd+XDs/eH8r+8bXVEDhhnhVkA1IGVKQMjAg73bVoIprwyBUq9+oOF59g7A2gMoDTqaZe7SzNFqyvLs+dAFf93110wHQEpNR4Jw2W6g8QfsQzk8w4L/+9QQFVx895DEBfdJ9CrfEr9fTkr7O3DWzgc8qZ4PB4y2H5zqFanN+WE8XtUd90bdZ7XPfPbgikArXt2K+9JzRMY8ryXltNPQ1DXA6A0Gc0WaMheNVIB46RAFOAAlVKbydaLgs65LrvvEpRbD5B0IAvlgRmY2o9sAhZAaeDEeRpU9c94sgBJW57smkCVCdJ4rXzlLQDnRPS+1LRmP4MWxPeUYH/FTTc7GFnLbyhRK3JqeXSzUl1Erp4BJb8sbROd2BgHnnS5FF+HliJOD8BTqMBdP02+SXtAJj9TipaEnIDwxizO3mRBTnNtGpMqRfbU3kVW/kQ2qT4DItp8fUy2UaAGFwPZisAHuJZjDoBDjqM6lL2McuAxkXpVXcW1QFx2dYxVKaaq9I51KKIAWZEGyrD3fwiYZuApUqwufZkUDwErB+KS5beckuW124bCdOG/3ozcf/nUS3lhgJp8RtkQ8C0/HO9TtngmCE/zcQep8D+PncrJ4vmIinyt3bSazwKCyKZpvhgApO49MIrm3OPxKnAKQdNG3j8NgOoBJJ1uyicrmSJ9LFJVMGSzSE4QHXiw4lqlnzcJdtVxQDkA3BWrk46dYpfdPQq4MhYnyPV9wJieJcpYoFS+B073R1uHyjWn6UPSRm/dmR9jVBdO3HcizAHQ8hQI6jJF6ATIABbqFV8KysLe+w1JipcNRobHn8DgsuXU8GphUvmJ10Q1zPIm1yncjJvlCICSv9dWJ8nT6YA6rDPIT506EUBCv0wD+jr1b520i6k394RgvbiySsvlkrpGXVsvuPpPXslL/HlFiQv2z4ZYJvT1IbsDj6WdwzHLUErIwCgBuCvK9ADQG1b+6iEp+46JcRI3XTnPB6gBwpxGqOAKwIHXkmOiOJ+fOe2u6yjXCDRZZWofwKFyRZu3iZK99M8ZW7glTf1w6srAQeUfShvshmVVqPheP+UDpBzWZPLl81LFC5NfQkkSopC/04n8Fh+7+lLhvwbvxeIEShIcHp3vxLwHMLY4Kt43LwgMgJVx3wIN/3NeuwlfiufXaYHqkVegvXyUfUauWyuUVCHXYJOX/cf5jd98r0PE9ffxciUOGK9UT3Ulc9/04/4TWmBVy8Kmu/Y8eLId1vb1br/pKIMVMHUiNRYgTx48aQDYqdtYpwDThiRTAVFFwRiRc3IXgTTdrIwPdUyhctXpDgwZAGMAkZMhD2x6rOwAoxXW98ozMF1t5zmT3px7c9XJHuPbtDhQmNv2Yg5C/ZwHiuuNwVJRhhpQyGGbyhrBPx70oYtALoN7VsokH7uW4PNUXs5RP7B0cLg538m46FQgMRRQ0iDIvYVlFescPEVWqBlwGlmcTja2OpmI9gO7X1C5bmVA+M6gNtXrzNO8LnQouq0EkbcAZR4AACAASURBVHPjCSgfk1bzMXtP6YXlhtMIwB3VgHAGzur0dAFQwudUgVHwSR5Rhho8RWDJxTElfvlB1Z3yXi34Cng26SfQEoBKKX0HgG8pXf8MgG8C8HkAfgjA5wD4KIC/RESvTx+KI890D5qGYIklqNVeUaiwj4kCFEAq/+9LHxwXdfDlFJDS50sdFHfu3Y4bWqDUvXmjTgEnbWWaWZ5g8soaOMBlOpYyLt2XewwagCMNiDxo0srHrHhJaIBPmM6bmpIYVlauSbj8AIs3yjYCUg0IcmkGPIWgKuhD5fu2ff8RYLsFuuj+pX6NNBuvVjJwcql4aGWPiuxVC6vUU3zTSrSmszCWRo9WHq1y1HOAktNicT0gW7QS5DNDKZF8mzFbN5wSJWSLkwY8WjmyYj3a/AYk9YKHy6/E3qvswoMmjZp8wy/Ft5rWbmyritWAJmFAcsyAbEqGv1zJyYDwnYsxL4NNrTnNHKoNlZYPU4XhPa9zeQk8H3nB387jbyeqPUHmp61Nip+jbxkeuG8tBydaHCPQnMdHLb+BYZqmrWBqCqBSSu8H8G0APkREb6eUfhjANwD4agDfQ0Q/lFL6xwC+GcD3LvfcCMIkPcpn0KPNi5AD63NRlmNihQgHooAjn/2kGj8CEsOk4/OO5QmoHwcl+WSLsWyV//eqXz8NTT6YnNNmwInvpZxy6zVuS1VOrFBl2tp1VwepN8wgX01meObRjDRQcqCpIiHeeeJ8Y2FSeWYDSq5JHr4CRnpvAeVNLV8TnNiYBzkCnDxsTaHVYgaaeC46ILkBVbadCDyFFqQJqKKiqLuWpSsHWZfev7rnQAEts/XaBLyzyo7UtSur+c2ASH3CR9x6KljZnBPEsn2oSrjEi2e3HbvwDnkc5qR8Pm8smpZSetWikKpSdMoxVJg6ryhzWeeR8jT/qY7HPYcxgKqz6VklTN6MomfHH9ALWL76/x0ZSPoZLjz1AMy79WSf0qqR1ztB3HqJrVYp5UDyBNC9Oovq4MbL5PniPsvTA8VTd50HzIBYKKSs6z+0MjX8VqwwAMoy+BRL1GFeBEAGWu9OKb0C8B4AnwTw5QA+XPJ/EMDXbe8+pu731BQQsOn9XVysLkG6d1l5dxdbavS5TD0XWpufjIWJ3J8u07yJR627zoMnO2YFhpp5tmszlBNeg8GaPjY1QwnAxWqdpkxQzrSbbF63H6/s1Bj1n2mrUz5s29WT9oJ2w3lFY+71M2L99YjFFrrM/sUKwf3p/Nlm7QFBCq9JFIP/xR27q2q9Bty7P1FYsGn1zx92qa6V8hMLgwogjz7JEc3T/4/GuQSeAt54PlnFSoYPpl+V1vBV89bx2NczZVV+Tid3Pxq/68TzNRhTz93ZO4tJeMR5io9WJtSfOQyzlRfD/wFPfV6K1ibgI/w92nIj3ooMEM2f44DXnqYWKCL6RErpuwF8DMDbAP4tssn700T0phT7OID3z9o6iyI/jaxOBQ/hN/JKeQ6EkySB6hwbVdIpt1PNorlxHWCeEhW3HokG0lYpJg4uj6gfC2Xv/eGYnBYfkmkDxTUY0m/daYuJPnXcDgitAEXlPEV1eiT8srrZszuXrWttLE+lsmmD81T32gNRZcBeS9P8q60kyBolVGHrbIR6uD1qwJRPF0CV4IFNY6Hia382FNfpgSpfzo1rM3C9QnB12f2L4M+BAlheUpsIJUtAFQi5V4Ui0K4sS2IIPdQ2tTWK83wdVpL8nFjLA4oFqg6HEpDU6ffNjwi7HI0yNErMxbc0Vgq5jxW/aQe+fVtHL68FGRRbpWDTcnrwwM72riDJyIKXg0AGah7cdXkjOOU2ZfvjTU39F96mEo7CMsMxVLyORW6kXXbbljXmex5M86zrNeTro7tWaSMLVC5HXb6HMoFtvDd5avxNustbpRUX3vsAfC2ALwDwaQD/EsBXrXaQUvpWAN8KAHfve1+/oNZeOm3rpiw7BaqSRRGKkmePLcid+vOidF6dTE73bj0mPoTz4AYtbjxpt52U3pcj4AQofW0sUBiDJ1WHeH0kUQED1V7jrhOA5QbdSzuX/AbhhtICq0m/uj1uB7UdBlpNnloGm1/4WXJ116ZcNK5AniMw1XXXlbSRlayb5/sajKlu8NQv8wzokvvXu9793q6ccSyTEFUeJiXLGvBDH5lRPumToMqV66yFihI9qjxWiBwszMGZhPwWFZKJmZJ9UI9TnV5tDuH0gu8fEPXfKzLv1gtBE3G+VYaRAtbKefbZllB5BkqWKXpDS/JG7lq9HE4ZGFnQciD3cxnQy5+LujeRhc+qTfOZniIzh+rW5b1BMNhBGo99URrQmfnVucm95lWHj9O361Qd2XYMeCb0+T0ATp7/Kq3O6TTFtRJE/pUAfpGIPgUAKaUfAfBlAN6bUnpVfsV9AMAnospE9H0Avg8A3vXBD8ajDLSifNLFKb4u0ELbhgAlbkbjgsASFQMcPwAAqQaMR3Inlqlonh2KDrvsAaeR5ckHjEue6QuNAEn6tZFXPHCAx8mDBkZSVoGhJk81MxKzQApgz/YhU8+Mf0Ya2HXiJHpWpzCN0x2Ymrn65P5U0HWddLH967e/9wOUSqzIiMSioxSpgG4PprgOyCpRUu2AZZeqQuwpUT0QDbycHJhxFAuWPF/u2+i1PRmsTY4UqP8fxTRttD50LQ+SRiZNrt2Yw9fa9Xw37oM9maj8q/3JoZo9GZCNCtCXBkhDAWkFqA2QTroiIGgomZRmg9NG/gg8exCi13oInIAYMG/le9Bvj/dmvFLWMfdMnbcCoD4G4EtTSu9BNoF/BYCfBPATAL4e+U2WbwTwo+cNZUAicFqLghOVEOhzoXIh/tCwgKiSp8+1SKggKrvvrLrkNHbzGQtWKZNK/0B22W06EgBo4qVq3y1o4vs4Ta2FBmAGWNX2svA6LWoeiuQG1M7rpABy86TWofhv9eayqJtNkMd7i7lXjTqvXxcoNRsLuXzVgN4EAVTg01mHfEBnRyY88OGxjUBSD1hxXlRO9TG8l3bdZIJyz4Auun+JC2+0DnqR+PJAbVr0rcNU97P8IxKWn1D9a3MFl1HPSXXJ6RP2VcA4UL6PVlp2rrxmnhGACoGMvbZpVRmGlipuz7iFKO5D0ihI42utL2AsGppGJ5Mvk5cJvfEwySnLXMfJgLP4puRkgMsw6w/KBejdrnpT0y8aOHcdywbXDfcdThrwvuFfKXPOiwGN+9akddyzEVjydVWapy3WqGkQORF9BDnY8qeQXwE+IP8i+5sA/mpK6eeRXwX+geVehx2eWKdXT4OFYRux+6sHYKSaAimc5YPDexSVWwVPzfAX5jiViy3a8dRN5lzST7AHG4vD75YdpHU3Fd9Wp+0QPEV19Rij/hCU6bQ5Zeeg/2EfOr9T71rowfYvCv4K6SBwURRHNMpbgr6VcjDXCICFVzIDJeTrNQBGAxkeI9lrE3ysA45dmd5RAz3whKCsWVe3jv11oHa9FB/MegfgSfoI+BjyeMB3n9a0HYyhkQEvD6rtaE11+UR2fZp0gsSbmfZckHnyYzkGZbR89ILGj7a/poyeF/R/isuYNAuezJi5DcWT5vkLZMA8t4u0dA4UEX0XgO9yyb8A4Es29bZKhP6mzGaApO6dVYrPCedv4gEZYNScnEdSL5U0mBKRNSq3hRr/mSDgRZ9QzhYqf/ZTOCVviTHuPJvWA1Ndy5Ok1QQT90Q2VspuCLoc0GhTAswbk77uhEKLElPpWluW6uK6eADddwpuFZt18aTa1WLVszT5dGoac+NdJG8NatIjMNUBdv4XZNR213UX1eF6E6B1zXSx/YsVRi/brYtx4ydXiO+1RaI5vsDmJaAN7maLFVsypF1VjmxajfdEOSwRxuqUnAz0DKdVWXWu9Qd/AwW66rJpg8hb5VmvVZ8RWFH3zRya+S0q02CB7PopPgJiCVyWAXk2FY9lv6nHDvQskjzP+pJU0YlH5nWRgdKvloMuGQACxdMOz4FqaUTEU8d3V475rvvrAabIytS1MG7DSw097UnkI6CErJxJgyVfF7AaLwRVNU8O2ZSuC9BIOUJBTixHBlIVHI20ouaABj4VVI0otia1+ZEFrBfvJKMa1IHKl+seWPJTWN1XThVOteQCemZtacAVgSrdnr+O8iMgpijmugJZq+QaDsFUByzNwFNEQ7BkrgdnP0Xk6t4q6bfwGsAkwlKFpy1DIm/k3SklrzlUE4AEGx9toLHIqgdSHGAOtKDPKNlAQespDPdndeNBTANsMAVOQF3fuMwEOGml2wNNPcCkNsnN4suARIMmgiyiNKf2lQRalgH+03FyNU3JQDmd3AOt6r7lvlEvUh6L3Rd8wd68ea4ONOnrLhjqACf4PMz5ztcbALOMo5nTNuY/+adczC/5Ho3wS69cAV+CorVi5SQye10FUWVQ1HRcHm4BVr0BYFKuHYe9b4FYFzgBBjzVh1WDK9cu+fwtmvKBaAV46A0DFgxNy0egDAHoUsPw1ifTjmqg3Tgn83DUBzH9/MiF2LU89dJ6Y1nRIGkbTrwJIpjXZROQP03QFNNlBmCqp0TlR14LpLpKFPy/KNGDyugpUa2gAQOm6pEsk/WQqpdVohYEoSpR8vVjBToFTiPAFBxVsUJeHsQTEoEpqaM+59OTAa4oh5qqYHN10GkNKK8WenN6OcsC80DLRmkk73O8WJMJN2tqr2c8z3kU5mk+tWktfzeDZqd0T/3N9+QAypBTTF0GGt8Jk9Kmqm4G9LV89Aq6WKIAIJFYonSt3BYHkcO8sac/IwPovNWJ2/r1vs2z7rYJcCqTMsCplPHgSwt8Y43S5eDSo+uR9SqiRfBkAVB+2jUY0t1pBdGkqSEmvqZW3GRISQF9JVuRtessLKqXbQaaVF7XMuXTonIj0BWNaXV+V4DJH4Iaa070kOu5H4J0VqYsR9oKpAXau3YisOOsRtWdY/NZzk0ZadsMq5Rr59X9wRIoUv4fKz/+X5Rn6M6BrG3XZcOgKVKcHcBU3UkDAHWiMtX95IZV+sGlKRmQ8wp7MuDTkxo0g7OSXvlMhl862NxYF1Udvm4MDep+uFYRn/X1iOcmjYI0y99lsOz5DjQA+RyD+fUAqKk5YbUdKGWbCiBCPQeqCGt0xEHTlLJGATBtmbgnZpgDUpzfHWpH2/ZcbpHFaUjhZhdNdNzMY1qoRrh5M0XAbADWQisTdfLgRDZCcatjdGOI8iJ3XVP+guTHcQ1GyqemcAkC+dKPPPFmrc7j0TGa3uXrLRLmjCFSyk7SqLbjy/n20Ih19xEBtTyPtrKeG0/yGuDDaRQrX9fHCDzZctvBUzh2394iNW/havCSVJ/FQpVDU9ThmKZeIAMCohzPCliW4JSonKrQ432P58BELTdrre5P4bmzNNZytW4XPM34DlwcOF8PgGJyCknOg+I8z2CdxhotSNPuOlGAyhpVu+VfBjlFx0VJdYKsvj/BHLCgactxBiMLFAyQ4ocwyuML1V4DvFQdJ/hT65ER1NTWP4eaJxryUHtrT2OFivKdvAjbHAhy3Zl7TXrTSq6+mf9gExqKQwSYfHseOE3qzFx9bRqFbffG+dIoOom8ZsLIgZz5A8iDKcaFQ4JYiQAYi4T8/FYVNlqjqqUCVfi4TPnXWCAAIw+rbPZAZKxMaQCq6jptsjqp/kLl6QGTGu/wIM1FEJX57MqaZ1FtMuVbc1kGXNlUgbBYJXmvjmTADra2o79hp9oTy6Maj+e9uY/mE65TzWt5T7EcbAkOj3jOfVCnHWAKlDefPB/Q9QEoTUXZmWDyHmAC1IZDbiEUiKrITNryweW5Ri0XARUtY9Ss+nYNEz6rAWjSY+wBJ1M+Ak9NP649CtJMxx06AURNDY9OKTVpyYEold+zGnERPWYPuEZASufrIY1oBUfPQJMp0wNOKm/ocgs3yWh37NQfje1WiQjpPlgjVoQiSwWkaIBEClA1itS+OWywuASd58I60FhAl8S51P7MgZsGVOl91AEu9b+rSB1FyuksJXoMyq0CpwXQFB6i6TfFxRPIpb5uTMlCIwc9GVBWqVT4QjzGVNpXQErHSPFblKIXU5k7nxpd0lg8GkANGEBl/q/M3fF/+nFfB3j6Lj/F86htU161M+O7SqtzOEFxFboKAKW9ZGeRBldNngJRHmgxiDL3rpxr3sQ7KRdfzjtnDnYCjVUqKLcZPPn8sIMxdT/4fAGK2BgBrRB86c3EgyjdQdSvZqOqb9L8AB0wM0MZrGV3+TpgyNRZBU8ufcUNOLQ+9bD0rQMnTY2lITUKN6lDM0ktjg4MzvcQ945RouBriBxKYLALNNZWLiPmQZpc83NRFHN0OjYQPDfNWqg5h0CqDqJRlB0F2ChRvj62aV1lfKSpAjX3K3Ftq3RU/C5yQOoTGKEMBO49IwOodeUU8oNNk7bAPGaAHgApnia3GwE8YMx7N7gQOJX7+Hpy+KniuU4z7TwRYNZ0FQAqpFCLRmkWCNVdhysUUmCovmRgyzUB5qTqoYJ6vVtoF5+xUA3NKi2FxxmYmwAwuULLwInL9AAVubI+7ykpAkiKf8biFIGo8j/cIzwYUgDNA4ZmkwnWZTPG9Eue4ryRiX0Kkrrp7lnxZSJgFY7jqQXkAYkQuPAI3p1i4og5y3ynTP1v/P9wJ0rXOKkw2FwHGWuLklipVB8RHxMDMX3PXawJcHjic6PI0AVNOt2cHRV8B82DJrl2b3PJuCLFqYKVa56a0DkASj+nPA69jI3bThWgjnvPu3eVThIZ0GVN2zbPVE3tvmBkYWW6gS4KeV/m18qBBTmr7tkGLHcAU8PzUr87h410vQBqRB5IeRA1qjPyGbFyZWtU1Bf3B0g7kTLe+ikXP4ywP2wHT93GTxEaEcoAcD0EzYBQNETP3gGIMukdiuKrOB0IgJQqszS/Tp+9cpvAU68/X37Q9s275bZS/LDXa20RSiqPLRPFBcdWCWOR4G3sSDWORQeJq7450Di0RihZzdUKuEBqhk/SHsI+Nq0JRspTl+9bH2TcketG97ECnuCuR8DJz3XrnqaBK2DlADUN5YPPPRmQZooMZLVGCmRxd6qOlgEiK0tqeNHLC25bM1NZooj3Jd2vbchnD56kLRoDZsBaGmHbMvczwOzyttB1ASivzfTiwH1ceAaWSi1JMIqzIHolUL5yaHoPgJv+dZE3ozPRROPC8/k6z3du66+57FILhHrWp3C8cZnNy+CBTbkcgaUWHOUb+RXH4xqBKNW8mbVeZ5XRYOneuPjS78uz3WkB1PhyIXCagCpveepZqCI6U8KfNY2CjonPOOGySV0U6wLu830CqY8Al3u5Rvkieamv3sIidb5TNzaGSp9+n9QWrJFVCp37Hp2oRKs1IlCinD5SokdvxaL22inPBjBFCljTyplQzBNuWsuB7DmnyYDESOm4t7KXRTKQx+P4zCIje19HDmQh5lOuk1XVDO8Xv1PHPHf8O4Xn0u4qUG501vad7boAFFMHHJk38po6Diw1eX61ah0BUipNlxfXnob0Tana16Llu6Eu/2agqfTbtBMBpxVQ1el7Lf3Eyc9oBIJ6IKpTjpuTeXggpeVvAoBms926HFsAVuji88BplOefpW65tm9PL8JSRWiCyC24LnmHKlCiTBcUqbzNlZQSBUAqRkoHCK8oUdMOqmxHhzw2SnSLPokUaQ80lfJT4CT3tb1TgFMPNNk4qEDZrlKRibq30FgGcqF1GXBASsc2eRkID2V1PLZ7YwV6dQG2bloRUFH3PdDE1yfEta0AJw2+hkD5xINTgWsFUDPyinFrPuI8CRwHlJTVsuH5TuqB0O2cTV5xj6xCI/A0aDPMm7j+HjJ4fPOm3W1nDKK6fXqQNQBSTA2gOmH8y0sagafZL8dLgZ+XAJCmRM3DnYKFsWc/FeXqBKm6UcqmcwTSwbp1eoHGkUsnK+fIhWfb4Sp6mxOFo+ayVYyjGKKpMuXr6BV1Hr9SgtpdV/OprXuMxhCUA9rgYzeHZdLB11AyACDJaeEKqJIOFA9kAJaf4trFugw07l2RLVuNhwRYeVieuuG9SzsDPAkN4pymPI/GcIsHaVYfPEsL7KZd7sUK1QNJvr4szkgT6o1DCb7RWDArTabTnL81cDyibuxUBzDlOkFeINRh/qBdX2Ya+0T84HfyO9SNWyqXfWtTPNyuJSooizZrvUwwv4vhSz9e324AjEZWJ5Pv3XZB+a7rb9D+iyBtgTqgVTbm7CedXkEVWySSWkO2RqSEGnCu15hdMcey8+jDFTnQPMFao7iuCjI2b9wBln8moGS+FGbaG5UogNNcNxEAY+vDwPLglWfs0nG83PJ21sHWTWLxSerIChJ3n7FK5V/nrQwAhfeobc1kAGhfNuB2dLA5tycDrv+27mEx7wNe+/wJv2u6rbMZKIfnQQ34voGuBkB1KVB+0zIaRKGT16uvzA8qHrCtG7QdgZ9TTiI342rSFNgbgZ+ojVksVFRvRbZOlT9BzZelrjsPaEE3Ic5318ZVE8rVBQYeLEUXOI3KrbQTtTkBTzs58gpWAyoTB6NOnD6StUikXMdYI0rAubZGlMyq4IpbT1tLLeBXFofON9ZyuZLn5H7zb0GNvSYK1SvTsH7PfcNtefC00rdRyjweVSEATCtxMaSPspBzoMjIgPBXrEhAPd6glhEL0DHVYPPGqhjIALkT6cseJ8HqsHKQ+6M6/ovxnpr04WdX4HD7BDwJDQBzZGmaAuYTjzJ4OgDFSmwLQBKhcFaosE4AdgAlfT5D5UOVUUAqZ/sOx9JGJqJ5U9VQ6zXPczcmalJmBXwpalx3WwBW09hCvVJGWKxlpQd6onYViOLbCCTZWJYBdTDfJbBGlw0DcNQFTh4MAbJgM0vVsP/VOjdIiYB0jLRsWYj7/C8rrCJgDKrE8pOMEhVrhFaiXPeY8llCLLMpAx+JY1KWCI6LMVsdx9IwWAqAFPcfuatXftu0ri/Xv0o71woxctfNlOgMNKWeYl0gqZvSXAYUkGKLlHbvioyAanzUkgwUZy3XN/qyyEEPSJV8Xrs6/sV5M2ne93ht0jDkt67XtTrNeI5SpgOW2jls4/11W6AigNQDUVohStnOzzMuN8o3BSHlGov9ihaRsW3YmdDh5Sy26VzgFJRrXHcRPUYUcQCiAAeK3FDFElXGOAoi5/tlMGWrnU8rAAoD0OTuTwFPvcDxp2b91RC78Mw36pQCRatQRZkWRSruHWLgQ9W1t0WJcvccZM6KUAeZ83g0kLpH5as+2dwpzy2WiN5Jz6Ei5fueIgWMy24U89J1142A01G3OQBOq1YJbXUCClgmA6yrDJRxpQR278mktQx0LJJTGSh1qgxVag7MVHIgS6BB1SKZD2wbvWH5sgScSrnNwGkRNC3xfQNdJ4CK3GzD8ljXdFGdkWvOl2NihaQFZjaGxwJOvvxqe6u0Vd62lI+sSGfQVJTcLy/ffxifBbRjjID+jGYsGAGnSXkf79TUXwFPO/Vp5r5DuS/KVNw8yhoBwHixjbvGu2S4LpCVBmpwOBKyAjn4fosYploHqAAJQA00VvucVp4zS8RmK4Qv468DK4TMOVCm4XjMG1tKYa4qUX+yfKcvWRtdvhsX52SA+3TrKzLQsUhq4F7LFhbrIHMlQ4CVA7ZKedcdYMGQ+ZC1oxSBywl48jzZ5K6TdoEGPOk81b6uu5Xnq3QdAEqYGigJfrANkOHywYeGPQACXKM9zebA0VQBthuL8OPUYPKRhgxB0KB+D1wtxUrVy6H1KUjbPPUoTknych8GHweyMLQqmXylGBT/oiBzTeGUVoHZiRSyaZIWWZzivEHdqNxsDC+FiGIXHmAW2Ky1tjiUTGONYPeZ3jsaaxSaAGPSDjv+HhqfHdV73V0pT7FAsSUCsPKw0RLxZFYIk98HTo0C1W36eUZz7oAinxa78AjGKnVf+LFqkdTWKC0DqcpAY40Cmm8sGjkA3Eer1VQZ3N9jiULro5EBTut8sy4ATrMXA4ZWxgg0zdy2XG4jXQeAishbhbaAKH+91J+uKz/Fah5ce3qtG9B3IS2zCFqa/i4Nnmb9X5o8EO6BqA31AStSGq17dodWKX3Ptw5zn0tLMVCdtB54msVIDfvl/OUxPYZwPDFFm6w/QJOLRlYnUhEvx2Tf3hKLRg40N7ExzhqVDtr64AKNg1OsRdzdXqqDjLW8hxaG6dqoqXilqoET0AdPgTLlORsF3LjbXN7IXRcpWZ8/owg8DWXAlk8o/AcEYOXx6P0osEaZPSeQAW47ofnGopEDwMqCGvTmAyV98RGvgf63Cj14knlCwLIfn31pwPH1FLC8ce5PC6ACkBNaoaZ1NoCo/msrwb3TkNHazpT5udRrewSa/P2qZSsCT10w1rYfvQGzhWbuthATdwGSGoOSBxs3pSoCfSDV7dz2fREatTMCTUAfOPm6PfCUgvzVsb0UCg/dK2kHu0DW4pDmShSACTI25wexzYmVQaofq5Uc9ykQoJ4ZpNt2ozdBxNLfdurFQWWLAV+PlemWeKfG8tQDSCtuPGOhGChYM+HgF3VHBjyfAbUtMZBm1yvsiwYNkAbZuCiVU6+57SoHxippR11vTmG90Rs6veW13HswFPC7lqWY39zHAnCau/BOU+LXa4ECrEYMwVBNS6IEFdCJlKhum2krmGoG8YC0YjXqpZ0DnIZjWuwjGpN0NMjz+VHZCCQ3AMmNYQakJLud06NhhxHLFqw+JwGnTr9d8DRq55aJCBi+hUf2XinTBIRAyipYqu6eSImSsyjo4w4wP8W8OX2cYv55QLW2NvH1RawQGjyZ/AXgNLNElbGYe3/dnbOeqJIBcdEq/kdASgATrGwQIR0yeg6BdNnbspXJygCAxhrF7eRyFUjlcamx4zRtNgRNQN89668X+C3tRMAJWOP5CCA/KwvUqeSV48rDPirnTR++bA+EcV2mS7kwzo2FOqWNWbktU3tATLnKbkMhIC7tEPHMCAAAFo1JREFUeasT37j161rHIlB/yvgGtAKcwnKngKcNizuKubpZipQmp7ng8exKgymfiELXTdSPd9notrV7DoBxxelg9ERog4v1kFjUt+x5vkwnrSsSwa9965axCs63k7wSjNoKYl7sODvgaSuIAuDP/DL8B8qBlwUAc9McEO5lx/UtQFp9GqYaDSYywEHiSfFZu3eT6it483KkQkLeRusVgKeQIvAkfenrTj/c/xRUBfyN2lvk/fUAKC8YwtyOFapzHVqigFiJmv4fQROu0qjrXt5my5HNMpanEXAyefoX1rz7Lrl4pK4bLhCDmatOxuaVg7tvywcAZYW/PaDVoSULTqfBFSvSKcCp6W0rwLpVqxQB6f6olF1dKeJjBACrRL1FwliHlMWhvNZeLVGlKaT6qjufGVQsRJE7Z2aFSIAJLpY+1HS679y0025o2YWj2jkleDhy4QytEJESjdw9ANJmF14u08iAeUuPxhZJlgF+ycC4+ooM3HFvddMTGXDHXfgAc+kTClAD5s3NCFybuQ7WIrI4SbrmLdDyuvRvearLnGFp1DzvWSDheL6BrgdAjWgVRKHeNx8eninRqE8mH0wu6b7OoL1z6BzQFNVfBU+jdh7Ld7MKohCXAxwoC/J9/a5R0QOZzhpcZGlWQZOUH98vga2VdncKFUn39W9vkdCvoQPVGnWX201AG3jsg8v1MQSEaoWIvqXWsUKIWy+p+TgrxOpvykZUT3Dj8HinwcMe3Lg6w5gYHkdHkabIlRfdd6geUNkBG/oIAwDGIumPJ9BpzqIlLt3I4FD6sFbIVg6AKgsAxCol6Z4imfdJ4cnfvp06x7DtEb85P+JtN+Yt4LXnd2d+K3S1AGoaTM40AEbGGsV5UOX9fbePDjRfWfNp2wttjMaypd0RcPL5E9Bl21kb0irNgsmlHNzydqxR3Cag2o1+TQe/vMe/yh4KMathrAKmTlrs/uvXoV45d/+iYp+EqMZARS6XzknPhpwSFcCkfw1zGreLaiUiKOXorRDehQdAf9KlceUAMZAq89sk3t7NIvNtgROPke+nhyVy+VXL08wKofJCJdpT7tGcAxdsKlbHLv+BBkj5N/UEXLObl6xLd+W8KC8HAKoVXcsCEAKpZYqAExDyWu57lifoMvGblb3jCUJLYwCWQ6Ac8XkBVF0XgHIacejKgyo7uddAYera0+ndcW7RHhMmPOSRB0H60tEE03v7C3hpHOfQCBi55CE4dqC8ce2pcr30JwEOoz5PAU3BfcO2LeBJC8GtAytRFm7F5CTw+j+J+w7ZKuEPXlRnLRHf8Nt4QZque+rbWYB7JByQAgIwtUBTa4QWkQF42urGid6yC60QPeDUUcah5cNM2G00mv9cRLlvyb2dp4F0Oma3sD/WwoAoSasxURogMafzVSwHbI2Se7SPK53gyuq9fR0CJ2DoopVy5/Kbr8tfyG/9HzjpTbzBWaNPRKM5bHl1f9bWrMylgACl8d9F+uikPTB4uijN3iab0BQARHW2WHc4PQ3yL0mzvjp5p4CnafmdMvGG7n/pAuNgZKkf1PO/qhXFaf3hdQNsvQKL2nCAZ4sVYsmVI/cd8DSiSLFFdXxa5ALy+fp/1J/nl0/X1g4N1HrWrJ7CJmpcmP00zJX9QA4AJwsmfdyspkZOBuBJaMLrrtvOU/TcjNY6as/zTteLntWAnt4CRRhu2I0rL3pjDqqN3n1J8yCisUipskMQ9dhKZibYnfzlwzBXwKdra2p9ajbPoE1foIdqFvjrs6au2k53XcuU7uixQNRoGFsA4KIYbI6lelFEwH05nvnA75YzOkltwDhbJFJq3XpUhC+l1hK1aIXwr7dLnrNAWBceqTqxNSrPb6Mr5xQ3DjAPGNftTdw4rSuvBTPJu3W0Eu0Cqo7W1zIQWRdVunHrKbkIXbobLFFdGWArYmSJKo2KLOhPumDj1tbs8S1w6vIa5V7LxOxAVOHtCZZGz29O1/819fiu6OkB1AKFIIozJA1uN+DK47TGvefLSkF3PwUDk3xPWzarSfnuWU4rwKmbNgFPD0DxEQNoQLEfb4NvIjANxLKBZqrtXFd5e2EAPgUvlwROvbSmzCMIwjWRbMBucz04Y/4RFUQpkm/P6dgZDi73xxzowHIXVLz8evsRjRvHzsfV43xvBTi48XZoCJ7g7n3AuKqXvKLTpOJnWJnWugo88X3538Q7dcrlPo62bES6zIz/HMd0RHXn6XVwZ0ZNA8tR+OXdeZ6XVOVA4qIUoJa2tTxG050YFHqHqPp4Jx6b3DvwVNuwMhIFjJuygdVqE1iOwNLE+gRcC4CKwE+gxKYKJKi3CqRyHx0wpet46o3pUnploZ3h4Ze9+icCp9zfhn5GNLPyrdZbsUb5m0UwBfTlbm5Rm+QPaO14g+1554CnYezTSyACiJWAz+MN+HAQZdlTooADVk3AOFsFyAEttGdH+TfzdB1fv8whtD64HysNrycuo5PiYMoYI4Xa9OnBUgTKvEVC1Q2V6UiRqvrUUaRmiTT/Ja3892/eHamCaAE4VMtpa1bzJmaURhZIF/C8BKLKRDQACj8g3WF/42b2fO6Ryu+e86Qti5q3nbSu+3QEngJ+59u1ve06AFREHRAFqId7dtTATGEOQNHKidxd99+Fael0cGA8li1AClgHTr02Tl2XACl3LVG+n4DfXZwULWkHWPfKPbg7a7X9E/DzMLbKt/HQ83xOVJS6vPGkrAkppeziSykrUiqyrNx0AOQsKfOWFivbu2KpAIzbpop7BV/hm3lFYW5x43gXTk4/YW1cnRXwVOs65Th7447To9OmnZJMgWuncfccj3JNuh0zPxXBDycDPf57N10JGDeWSGOJKl3AARmWiSYtqaMpFCCO3HkORAFogJSs/xaKADPPp4wz56n7RibcgakRv0ub1pXnQNI5/C7j2ELXF0Su6VxwQoM2ZmBjoe9Eqfk7l05qczbeC4CnzW2fQ5siGbelD5cqDdqLyum/c2lrm5Ny03luSQ/LPsIvh6sjykqU/wATgGo3YucC0kq9aTYGEiGFwdNxnSmLvBJz6ZuoB5469zXdtrGsvJsxB+AJaA9IjHgxAk+e3zpN6ru6kWWjp5i9FUWRP1S0n+bqNO2ovoB+IPclH+l5+JAq6+Q/4q22PkY0erYifku24k/EcxpP5HosUIS+VWBmiWpuYKXKr21kvfC01b0k6P0C2vQCG9jmMoNxb7I8rY5FGu+UX7VEcRtR335KA5Ewxbew0P16O5tOaGe63KM2R9arLtDq9HjrlioCcH9UVqcSUJ5SOQn6kK0Sh5StEcdj69LRlii2QgB9K4QLHm7ODPKHbOrNTX/yBYA5H0jcfDAuHJMufQ7Ww1EvFkZoEkgsczF51AYNl7ZsbEwHiHqLRWCJIGPNCNw6UUxYxH/Fu+bMsID/AEB3sRUKzto0StPxUDkPhm8jdx7Q4TvQ8r736EeWpzLGBsBp4K7PCRvxVvfjeanaNtanc/gNLFmjrgdAAZtAFNABUlIncO/p9kxDnT4j2rCZPAht6WcJVJ0AnLaO41TqBL51gRQwBsc9oDWoElVdy7g8bVryFQtWr58h4Hqh4ImJjqIsheRS/HCg4nIRJXpXvsNxJHHTAahBxazYHNmzfhz4AWDcOM1YgzZ9HAxg9temfc6f0MiKNTyuoLGudECQpyiQmP+PlKku21OmISBzHWoZ0Pw/FvfeoSypjnOistB6XmGsGwWu3DrPKC08rZ6AilYCAdFg3QMpmXdbzdMIPK3UmbrufFrH+ti47jTAUhbBaikcWAknliem6wJQwBhEIc4bAimfESmAFUDVK9ujrQrlEoDkTMDEtGr6P3kMTYeDeoO3B5aAVG9MW0DzOKvb3FY6SwRWXY+zMZwCnl4MUQ3Y1fEwksa/7vM9UYmLAawFoQOWTLpRigiCxyHfRqtp7adeQjoFRG2hEXjy1idXvm2LumBpFDje/bZZBJ4k7+iAVuumE9IycDyolwWOFlwTVUukkg07nhVQhYDfQdqAjBWK+/FWsQ28j+KThLoutUGDUZ0OWJJrDZ5G5eTSgaXmfsDzgJ4EQE3fqOuBKM6Thtp2m+KNCXLQ8ZZPtIxoBAhGdEn9tOhKXNaJ54CqlX5mIEr66Vukun2tAuIzQO9FocW5aGyx/tqbfis/Qdf6e/ZEZQO+V4pa/3pLh6KMlJWK87U7r+fKi97e8y4bPupABx/rN66grFZFWZoTqp1yHIGoZvrqUzGjNdJty3xNn2o+viznO/eNB0ut8lYK0VujvCtnZHk6EnR8W/dtrHsFjg+K34r/VKyOYomM+C9v5fVBVQLitzK5bO9TL/oNS5Gd4LkPQNRmCsDTsutOl/FzK213XbWm/TG/pa62PPF9FMe4QNdngWIagagNZabWKdPexFK1ShfVpqt9btNiFwNOl6RTgaej1W/pSZ9ScWNH1wQcNoxlWVRevMUpoOh1dZNPcqYTAGuF2tQPWTcOM3ikRFdIrGSIXyEa7KnzV9MX+n4IOuETHIa85SlqMzgniIoMJAG8xSTkLJErlI6UY6GmY3WgitME3MKeDTWSi8bKuTTUlhbddsNxqLY2AbgNZa21kcZys3CIJnDNAAqoD+QWl1r34Z90tcVS9QzoEq8hX7z8Cs1A1JKZcc6+qdvvVDplTR5I1E4S4Uu8AXnLxJtwOZGcyivrWYnWGChx5/h4KOPK0Q1P3DgLCm4WSNxQ5MpbqRdRZHniPoChVaL7Knup33UVOSsV3zdnPgWvtYv1Sb9N6S1PnTOC6jhyPjH/9QQPyGtYznwS/t/dKSujastZFD348rFwm2hkhfIyxmNfpQ7O6IZKjgBPBMQWYt3MvbEqVuuTiXvqWRq1pWqRrhtAMek5rVilIjpFoc66eiQF8iCGgHPafGjDhDzcq+W9SXfOmFXebV77R5CJi8ndqYL1EoET8i9Yur+3FqXDATgeWyXKyo83c21dCCxGjRsnIo55oQ2BxCqveRNL938qiHrMfYSBRy9vJc1bFgJXoFGm7pX3hvelTTocch6pGChSgFr3t2otZCuk3GN6OrmpO5CnLogK+onHFqSNeBBkNcHjs/Y64CaMd+u5eIO0Eb9n9GQAaulk8YhWrFKjemYQJ/Svqz80kLgUXWKcTzHXrUBK6m0HVD165oZIS5cQ2FtajxNJTiPXAIWtC0ziynv88Rk6xZp0ibpAH+yEZZ01oRnLmjId9zEYkIqDCd11ROY/ACR3TAWVOKTc1sGCHz3mnhs2ctNqq9QlaBXAnePS20KrfPTWppWyvc+zRO5Z1eaWOKgntUCdDKKANaV6qrXqpdEDrsNFQGaPj6daqB6CzkVa14TGn1rpXy1R/ZhwOfNJlupwqMDKWyHSwbrx2I3jFKaJg+F8r0Aja8HKm1g9xeleZe++xh7JRGhVWJDj1TKrAEwDE58WHGAauu90nlLATVmmcuaTgCh95tPB8YrdeP6FAF57jl9ajYMarUHPsngKGI5cegsWwN5H5oeu2k5bpl5A5mPBpW3fVnNsQbmODj6l+2NbdkBP7sI7C0TNaPacvhRF8US6+cExweKm/ih0TQBoC72UZ+ASRAAdCUm5Rk4OEgdaF83J49rgFjq5D5xuET7FWnRpikBWU6QDtPhe855UfJu3Po7IH64ajXN01AUfaQE8PM91nyPqrekJ1qWzAsi3WKnC5hz/r/UYA08X9Lhsoyt4rm+FrgY/7IBgp4ckOoKOByQdMM6klaN245AzE3kXzYIiPPtsJmlnvL8O+7mSZ9wGqZ85KHHbObfP0VkrihWKykGZ6eACvV0MWn6hgN/Im4zhXADcxEat6dBhHNSJdDE90A3cnwPhuD33skDPXVvKUWR1DOgqAJSnq1HGO+20006aiAAwiEolyb0fteH19bD9x7AsPEA/J50f5Gk1GLyTngKX3XnjUS6dwnukQ7ZGBUansyySl6AGyL2AX5QX4Le2Pgl4Wmj3uj8mvNNOO+20007XSudawHZ61pS2nrx5VmcpfQrAbwL4X4/W6cPS78Q+l2ujW5kHcBtz+b1E9LueehCXoH3/umra53J9dCvz6O5hjwqgACCl9JNE9MWP2ukD0T6X66NbmQdwW3O5FbolnuxzuU66lbncyjxGtLvwdtppp5122mmnnTbSDqB22mmnnXbaaaedNtJTAKjve4I+H4r2uVwf3co8gNuay63QLfFkn8t10q3M5Vbm0aVHj4Haaaeddtppp512eu60u/B22mmnnXbaaaedNtKjAqiU0lellP5rSunnU0rf+Zh9n0MppQ+mlH4ipfSzKaX/nFL69pL+2Smlf5dS+m/l//ueeqyrlFK6Syn9dErpX5f7L0gpfaTw5l+klN566jGuUErpvSmlD6eU/ktK6edSSn/sOfIlpfQdRbb+U0rpn6eUPvO58uRW6bnuX8Dt7WH7/nV99BL3sEcDUCmlOwD/CMCfAvAhAH8+pfShx+r/THoD4K8R0YcAfCmAv1zG/p0AfpyIvhDAj5f750LfDuDn1P3fA/A9RPT7AfwfAN/8JKPaTv8QwL8hoj8I4A8jz+lZ8SWl9H4A3wbgi4noDyF/9+Mb8Hx5cnP0zPcv4Pb2sH3/uiJ6qXvYY1qgvgTAzxPRLxDRawA/BOBrH7H/k4mIPklEP1Wufx1ZyN+PPP4fLMV+EMDXPc0It1FK6QMA/jSA7y/3CcCXA/hwKfIs5pJS+h0A/gSAHwAAInpNRJ/G8+TLKwDvTim9AvAeAJ/EM+TJDdOz3b+A29rD9v3raunF7WGPCaDeD+CX1P3HS9qzopTS5wP4IgAfAfC5RPTJkvXLAD73iYa1lf4BgL+B+p3tzwHwaSJ6U+6fC2++AMCnAPzTYs7//pTSZ+GZ8YWIPgHguwF8DHnT+VUAH8Xz5Mmt0k3sX8BN7GH7/nVl9FL3sD2IfAOllH4bgH8F4K8Q0a/pPMqvM179K40ppa8B8CtE9NGnHssF6BWAPwrge4noi5A/s2HM3c+BLyXG4WuRN9TfDeCzAHzVkw5qp5uk576H7fvXddJL3cMeE0B9AsAH1f0HStqzoJTSZyBvPP+MiH6kJP/PlNLnlfzPA/ArTzW+DfRlAP5MSum/I7shvhzZD//eYnoFng9vPg7g40T0kXL/YeQN6bnx5SsB/CIRfYqI3gHwI8h8eo48uVV61vsXcDN72L5/XSe9yD3sMQHUfwTwhSUq/y3kALMfe8T+T6biY/8BAD9HRH9fZf0YgG8s198I4Ecfe2xbiYj+FhF9gIg+H5kH/56I/gKAnwDw9aXYc5nLLwP4pZTSHyhJXwHgZ/H8+PIxAF+aUnpPkTWex7PjyQ3Ts92/gNvZw/b962rpRe5hj3qQZkrpq5H913cA/gkR/d1H6/wMSin9cQD/AcDPoPrd/zZyDMEPA/g9AP4HgD9LRP/7SQZ5AqWU/iSAv05EX5NS+n3Iv+g+G8BPA/iLRPRbTzm+FUop/RHkYNK3APwCgG9C/mHwrPiSUvo7AP4c8ttSPw3gW5DjBZ4dT26Vnuv+BdzmHrbvX9dFL3EP208i32mnnXbaaaeddtpIexD5TjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRvr/3qcIby5y71IAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGiCAYAAAA1J1M9AAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACX0ElEQVR4nO2de5gdVZnuv9p7d7oDJI0ESEATiHhBBUcFxQAeFTMno3hGB0YHRSd4Hw1oyBwdmBFUFAOO4yAO4MELeIFhhnHwLj4QlBmO3IRBxQsyCMKoCXiYkJCQTveudf4I2f2tb+319lrVe3d3pd/f8/Cwq9eqVbWrvqralXrftwrnnBNCCCGEEEIIqTGN6V4BQgghhBBCCJksvLEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9vLEhZAZTFIV88IMfzJ7v+9//vhRFId///vd7vk6EEEJCqp6v+8lJJ50kBx544JQs69JLL5WiKOS+++7LnveDH/ygFEWR1Hcmbmcyc+CNDdll2HlS3fnf0NCQPO1pT5OTTz5ZNmzYkDXWhRdeKJdeeml/VtTw7W9/mydpQgiZgdjriv3vpptumpL12Lp1q3zwgx+c1n+sOumkk6Lb4eqrr5629SJE05ruFSCk15x11lmydOlS2bZtm9xwww1y0UUXybe//W258847Zbfddksa48ILL5S9995bTjrppP6urOy4sbngggu63tw89thj0mrxMCWEkOlk53XF8pSnPGVKlr9161b50Ic+JCIiL3nJS5Ln+8xnPiNlWfZsPQYHB+Wzn/1s8Pc/+IM/kD/8wz+UE044QQYHB3u2PEJy4S8mssvx8pe/XA4//HAREXnrW98qCxYskE984hPyta99TV73utdN89rlMTQ0NN2rQAghsx59XakDW7Zskd13310GBgZ6Om6r1ZI3vOEN0fZms9nT5RGSC6VoZJfnmGOOERGRe++9V8bGxuTDH/6wHHTQQTI4OCgHHnig/PVf/7WMjIx0+h944IHy05/+VK6//vrOY3b9L2QbN26U1atXy+LFi2VwcFCe8pSnyLnnnuv9q9h9990nRVHIxz/+cbn44os7y3v+858vt956a6ffSSedJBdccIGIiPdYfydWS/zrX/9a3vWud8nTn/50mTt3rixYsEBe85rXVNI0E0II6S+/+c1v5M1vfrMsXLhQBgcH5VnPepZ8/vOfD/pt27ZNPvjBD8rTnvY0GRoakv3220+OO+44ueeee+S+++6TffbZR0REPvShD3WuEzuvDSeddJLssccecs8998grXvEKmTdvnpx44omdNuuxKctSPvnJT8qhhx4qQ0NDss8++8gf/dEfyQ9/+MNJfdeYx+Y73/mOvOhFL5Ldd99d5s2bJ8cee6z89Kc/nXC8kZEROfXUU2WfffaRefPmyR//8R/Lf/3Xf01qHcmuD5/YkF2ee+65R0REFixYIG9961vlC1/4gvzpn/6p/OVf/qXcfPPNsnbtWvn5z38uV111lYiInHfeeXLKKafIHnvsIX/zN38jIiILFy4UkR1ygBe/+MXym9/8Rt7xjnfIkiVL5Ac/+IGcfvrp8rvf/U7OO+88b9mXX365bN68Wd7xjndIURTysY99TI477jj51a9+JQMDA/KOd7xDfvvb38o111wjX/rSlyb8Lrfeeqv84Ac/kBNOOEGe9KQnyX333ScXXXSRvOQlL5Gf/exnyVI7Qggh6TzyyCPy+9//3vtbURSyYMGC6DwbNmyQF77whVIUhZx88smyzz77yHe+8x15y1veIps2bZLVq1eLiEi73ZZXvvKVsm7dOjnhhBPkPe95j2zevFmuueYaufPOO2X58uVy0UUXyTvf+U75kz/5EznuuONEROTZz352Z1ljY2OyYsUKOfroo+XjH/84vBa85S1vkUsvvVRe/vKXy1vf+lYZGxuTf//3f5ebbrop6amU3Q4DAwMyPDzcte+XvvQlWblypaxYsULOPfdc2bp1q1x00UVy9NFHy3/8x3/AYIO3vvWt8uUvf1le//rXy5FHHinXXXedHHvssROuH5nlOEJ2ES655BInIu7aa691Dz30kHvggQfcFVdc4RYsWODmzp3rvv/97zsRcW9961u9+f73//7fTkTcdddd1/nbs571LPfiF784WMaHP/xht/vuu7tf/vKX3t9PO+0012w23f333++cc+7ee+91IuIWLFjgHn744U6/r33ta05E3De+8Y3O31atWuVih6KIuA984AOd6a1btwZ9brzxRici7otf/GLnb9/73veciLjvfe97XcclhBAyMTuvK93+Gxwc9Pra8/Vb3vIWt99++7nf//73Xr8TTjjBDQ8Pd87nn//8552IuE984hPB8suydM4599BDDwXj72TlypVORNxpp53Wte2AAw7oTF933XVORNy73/3u6LJi7FyO/W/ntXLntrr33nudc85t3rzZ7bnnnu5tb3ubN8769evd8PCw9/cPfOAD3nXwjjvucCLi3vWud3nzvv71r49uB0Kcc45PbMgux/Lly73pAw44QC677DL5wQ9+ICIia9as8dr/8i//Uj7+8Y/Lt771LXnpS18Kx77yyivlRS96kTzhCU/w/tVq+fLlcs4558i//du/dSQAIiJ/9md/Jk94whM60y960YtERORXv/pVpe82d+7czufR0VHZtGmTPOUpT5E999xTbr/9dnnjG99YaVxCCCFxLrjgAnna057m/Q35SZxz8pWvfEVe+9rXinPOu16sWLFCrrjiCrn99tvlqKOOkq985Suy9957yymnnBKMkxqBLCLyzne+c8I+X/nKV6QoCvnABz5QaVlDQ0PyjW98w/ubvsZprrnmGtm4caO87nWv875/s9mUI444Qr73ve9Fl/Ptb39bRETe/e53e39fvXq1XH755ROuJ5m98MaG7HLsvAC1Wi1ZuHChPP3pT5dGoyFXXXWVNBqNIMVm0aJFsueee8qvf/3rCce+++675cc//nFH72x58MEHveklS5Z40zsvAP/93/+d85U6PPbYY7J27Vq55JJL5De/+Y045zptjzzySKUxCSGEYF7wghdkhQc89NBDsnHjRrn44ovl4osv7tpn5/Xinnvukac//emTSsBstVrypCc9acJ+99xzj+y///6y1157VVpOs9kM/vEwxt133y0i4z5Xy/z586Pz/vrXv5ZGoyEHHXSQ9/enP/3piWtKZiu8sSG7HBNdgHL+BcxSlqX84R/+obzvfe/r2p76L3r6hiSHU045RS655BJZvXq1LFu2TIaHh6UoCjnhhBN6GulJCCGkOjvPx294wxtk5cqVXftoj8xkGRwclEZjZuVB7dwGX/rSl2TRokVBO19lQPoBq4rMGg444AApy1LuvvtuecYzntH5+4YNG2Tjxo1ywAEHdP4Wu/k56KCD5NFHH03+F6sUcm60/uVf/kVWrlwpf/d3f9f527Zt22Tjxo09Wx9CCCGTY2eSV7vdnvB6cdBBB8nNN98so6Oj0XjmyfyDnF3Wd7/7XXn44YcrP7XJWZaIyL777pt9zdx5vd75NGsnd911V0/Xkex6zKzbe0L6yCte8QoRkSC57BOf+ISIiJe2svvuu3e9WXjta18rN954o3z3u98N2jZu3ChjY2PZ67X77rt35p+IZrMZPO351Kc+Je12O3u5hBBC+kOz2ZTjjz9evvKVr8idd94ZtD/00EOdz8cff7z8/ve/l3/4h38I+u083+9MOZvsP2Idf/zx4pzrvOyz27J6xYoVK2T+/Pny0Y9+VEZHR4N2vQ0sL3/5y0VE5Pzzz/f+bq/fhFj4xIbMGv7gD/5AVq5cKRdffLFs3LhRXvziF8stt9wiX/jCF+TVr361Fxxw2GGHyUUXXSQf+chH5ClPeYrsu+++cswxx8h73/te+frXvy6vfOUr5aSTTpLDDjtMtmzZIj/5yU/kX/7lX+S+++6TvffeO2u9DjvsMBHZYZJcsWKFNJtNOeGEE7r2feUrXylf+tKXZHh4WJ75zGfKjTfeKNdeey2MHCWEEDI5vvOd78gvfvGL4O9HHnmkPPnJT+46zznnnCPf+9735IgjjpC3ve1t8sxnPlMefvhhuf322+Xaa6+Vhx9+WERE/vzP/1y++MUvypo1a+SWW26RF73oRbJlyxa59tpr5V3vepe86lWvkrlz58ozn/lM+ad/+id52tOeJnvttZcccsghcsghh2R9j5e+9KXyxje+Uc4//3y5++675Y/+6I+kLEv593//d3npS18qJ598cv7GiTB//ny56KKL5I1vfKM873nPkxNOOEH22Wcfuf/+++Vb3/qWHHXUUV1v5kREnvOc58jrXvc6ufDCC+WRRx6RI488UtatWyf/+Z//2bP1I7smvLEhs4rPfvaz8uQnP1kuvfRSueqqq2TRokVy+umnBwkxZ555pvz617+Wj33sY7J582Z58YtfLMccc4zstttucv3118tHP/pRufLKK+WLX/yizJ8/X572tKfJhz70oWiWP+K4446TU045Ra644gr58pe/LM656I3NJz/5SWk2m3LZZZfJtm3b5KijjpJrr71WVqxYUWl7EEIImZgzzzyz698vueSS6I3NwoUL5ZZbbpGzzjpL/vVf/1UuvPBCWbBggTzrWc+Sc889t9Ov2WzKt7/9bTn77LPl8ssvl6985SuyYMECOfroo+XQQw/t9PvsZz8rp5xyipx66qmyfft2+cAHPpB9Y7NznZ/97GfL5z73OXnve98rw8PDcvjhh8uRRx6ZPdZEvP71r5f9999fzjnnHPnbv/1bGRkZkSc+8Ynyohe9SN70pjfBeT//+c/LPvvsI5dddpl89atflWOOOUa+9a1vyeLFi3u+nmTXoXC9fvZICCGEEEIIIVMMPTaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9fbuxueCCC+TAAw+UoaEhOeKII+SWW27p16IIIYSQCeF1iRBCdm36Evf8T//0T/Lnf/7n8ulPf1qOOOIIOe+88+TKK6+Uu+66S/bdd184b1mW8tvf/lbmzZsnRVH0etUIIYQAnHOyefNm2X///aXR2HUe6k/muiTCaxMhhEwXWdcl1wde8IIXuFWrVnWm2+2223///d3atWsnnPeBBx5wIsL/+B//43/8bxr/e+CBB/pxeZg2JnNdco7XJv7H//gf/5vu/1KuSy3pMdu3b5fbbrtNTj/99M7fGo2GLF++XG688cag/8jIiIyMjHSm3eMPkBaf+X5pDA31evUIIYQAym3b5IGzPiLz5s2b7lXpGbnXJZH4teloeYW0ZODxQZqd9mLAv5wWrXibNFuqn2lT80nT/Mtkc7zNqc9BX/Mvmq41Pu3sv3aqYZx5EuXs8nWz7dtQ0+AfVO0yqlIgsUmpF+j3K0o1bYYo2qU/redtm76l6ts2y2irznZM3Vb6bTLW7v5ZRJwepz3mt42p6dFR09bu3k/Eq18RkaKpa9a06ToNalbXs6lLXW+mzatFUM9hzRagzZ/06q0BatbWM6j1nmDr0sXbdJ3auvfqWURETRdt21Ymtdna82vdHAjt+HxevdmaHR1T/drRNil3tI3JqNwg3066LvX8xub3v/+9tNttWbhwoff3hQsXyi9+8Yug/9q1a+VDH/pQ8PfG0BBvbAghZJrYleRWudclkfi1qSUD0ioev7Ep1A/BwtzYqGnbJg3V1oi32RsU/UM068Ym+UfiLL+xKcp4X9PZ72vavLsge7MUb5OGamuYH4JO9S3N/i3UdPADXf2AtNu+MDcvifUsoGbDetZ1aW5smv24sUF1uQve2NgbFFWXRVDgaW3izI2NxNtE16WtWb1vQM3qGt0xrffL4/0eX92U61LPb2xyOf3002XNmjWd6U2bNsnixYuj/d1MvtbO5HXbFQDXsemmmMHrNpO3G4nAc8m0E702NZqdH4Tev3DbC66+qBfglz6i4g+qXt084GXk9E3sbLuBc5ceE97kTAfg++of0+Y+KnkMiP2hr2oveDoYzBv/oW9vCqaVIu0m2jIVx0VV9PHUq98T9vsmf/t+bCd7DlR1Gpw79ZPpzocy+HeAGD2/sdl7772l2WzKhg0bvL9v2LBBFi1aFPQfHByUwcHBXq8GIYQQIiL51yURXpsIIaSO9DzyZs6cOXLYYYfJunXrOn8ry1LWrVsny5Yt6/XiCCGEEAivS4QQMjvoixRtzZo1snLlSjn88MPlBS94gZx33nmyZcsWedOb3lRpvL7Iz3ox5jQ/1ZxJsrwpkWJlyBQqU3HMfjxG7s/363/RzGhZXkWm5Fgr4tr/9DF6sia7JL26LhUDrY7fwJNQNK1fIa7tF+CJQFgPjFlg8jiV6YtEJbGtV+cV/R2shM1uX93csL6HxJVD2yzwvIC+wCtSaD+KCSTw2syJDMongaTNrif0PVSt2Ypysyk5DjQ566Z3jV1PXYvBd4hfG+y1yd8XgYksPp9dVz2KJ5/MqWddT9ajptbFnjv1xOPLLpwTGZEk+nJj82d/9mfy0EMPyZlnninr16+X5zznOXL11VcHxk1CCCFkKuB1iRBCdn36Fh5w8skny8knn9yv4QkhhJAseF0ihJBdm13ntdKEEEIIIYSQWcu0xz33lKrSyorz9Ux3vwuYEia1LSrOXHmRaHNDoWnVBWaQuoyq22wm+3+qLn8qrAVVawYQ7MLUfYpWpg/rSXyKVnP8nR6JkaWBJwG8c8brm+PP0Nh/skR+BegFii8CLRPG6vbhOu1MY6H1/NYT4HkZgoGqYbcpOpaTfTT+oDrS2pn3wXgvZWzGX4JZ2BeC2lXT89pa0NP2nTOoZlPbMuKks2KbEz0+wS6r6vGB66I+J0YXW8IIZ1C0sC7j/pvKvrDgvVv6/Tfx82NwGHap2cKVyR4bPrEhhBBCCCGE1B7e2BBCCCGEEEJqT/2laKlPJLPekpw6ZsZz6ymWyU07OY/0K8bc+k9V4xsq2E1V5Wb9iB7NGSfnO/ZkeRl9AX0v4T7I4rKGzKmv/G47FpFY67uCrHWmo+Oe/ThTINHIke40QRR0I3F5Zj4H2yL9uuCVXo4cKGMZyUMCSZmWplmpjhfNL/Ft8fhCxj+C7QbbgghpHXMbl5sFsh5vDHOct9RPORsFXerr6wT6J13PzXjcM5RdBvOp79ujmo2OIeE+9MexbfFx0D/796KGCxsfriSTztRsgX58oIhyWyfefGZab4xgTNW5NGPq/W2WV6gahlemhJotJqpdPVxyT0IIIYQQQgiZofDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3199ggUDwkkkginXofPD3V42KnV09fQK0/mDEnkjb5K8Y72ihQb3HIH9GvzduDSGe466u22WWkd62+raa6hHvlf0ms7159Pbg45L9B/rW6+vemm2ZLpNHFY2MokFcGeRK0Lh34FQJvQRN4EvQwQVvcg4CjXf0m7GUAy6gIPK/rYre7CHkZ7JB629jjR3sk7HHntZkV0P4B5KECFC3z063dVoszY1b12Fjfg+fvAnVp2hyKNm+k1ayz88FatzUbWU87jerZ0oMazoko13Wa5Quz+0JlTBfmCzsVBR54qLRPCvnC7PlK9wv+oMZsm7rUw+ys2QmiymOzE0IIIYQQQkgt4Y0NIYQQQgghpPbUT4oGJWTxpizpWcVlpD6ezJKQTXdMNHrJeer3mEACkyxpq6zrSZepeV8JyeIqS+YmIFV+VlFuBsuiR1HQfVFIZsWHT36cCSPfUS3oJnROqirJRGozysv6TtFqSdGRooENjqQ7QKbmwNvn9XyBPMd7izqQkkCZGFgXESMPQvG8dhmSBpJRWfTiTDfvvG43k8QlP3C9bWK3GtiZ18jra1qgDgVyncTTSoja9oWSpYmIkfVM8G/Z6C3yXnx5XD4J5XVQdgnms6vtSaNAHdq+qJ6D+UAbIvE3SxhDHj9+CrVLJ5JPelIxI/EqwHmgUNvRmQ0OL6lNF++HIruR9M1bwI51KShFI4QQQgghhMwmeGNDCCGEEEIIqT28sSGEEEIIIYTUnvp5bDJI9tXk+Gagj6eiuWEm6+J7sW4T+FEciqT1hulZTqga1Ohc1TKqRkGjxN0JO6P5En01lX00k/HNJEdYJ/abDFWXATT7qG9Yz2BdgOTYGyOn9qAAOudLkSRaTRX3jDw2aX6FINIZeBI8X431FsA2tLw0D0IwDvQk+E3eMnJO49Z3oRfnpRgb34H6HMRCazuI9TlYz6VusxJ/HasbeJPGF1IY/432L+TYAb2+wK9Q3dhn5g1ik4EXC0U6gzbPH5PThvwv1vvlHYd+V4f8N5qqnrHUc7OIuYabulTbIvSTmUWqYyE41r24ZztOD2rW7IuiDepS+9vKhGcs9NgQQgghhBBCZhO8sSGEEEIIIYTUnvpL0dDjb68fiHTOkIkly80mo5qqKmmbTnLkVjmyPC/KNv4MNpCppeZm9kpS1iOSl5GRUO71zZGb9Uu25o0zjQUN6mkycc8Vy80fw5ZzYtR40DRTzxd1ZqA1LkVDwJhZEI+LIp11JCtsQ1KhDKkO6JslNwPyqMo1mhq/byOjU18vMEGTH4lrYnWj/XyZT1asrt6GZTzGVxroopYhRUPR3yBSuWqkc9CGIspT61mkNxHlwXxSCai6L8EFyKtnM6aJIfcOC1P7vjStJjXbmb85cZ+dwyX3JIQQQgghhJAZCm9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/jw0CRTon+jwCX0dVH00/oqCnO77VxfWpfr8J8gljY040rjekjfvsgXB7ug0KwPOS7Kmx81WNkJ4w7jktlhWPkdhvMnhC4mpa+x3tKlLTtiX6b3K+rpYjwyjoHFJ9aMTDNZvimgl6b+BXQFHQntcAxAj3KtLZX54/G+qLfDRhW+TzJPCOA+RJQP6bYND05SNPQuVYXR0TjYx2bbvvXfd+lkl4bDxsfXl+Mlt7+nO1uOfANwP8a6FXR+J9U3009jisWMPgTRP44lCCggY/UYP4ZR0FPZNq1tKlTl2bHhtCCCGEEELILII3NoQQQgghhJDas2tL0VIJYv6qStgStULBmH2QqU0F8JG3+jxRBi16PovkBuD7a2laUVHeZp/x6rdSZ0nBpgIQ6VyAtmS5mdmGuO8E0xGmQlmJI+HVx4nkXkiGiWRq3bsF48D5wNP+oK/uF+jiplnKWldaTZFuUjQk3QmkLDoeF8hsMuJxvTFRTDOSsNl/6syKe46siwWdt63CCb1sHJ6DVGNpDxgwn42GTrxYhKcH9UXMmIU+P9jo3rZqs8enaoOSn4nkZqmgiG4kN8uQT6Jad0A+6UWbo1hqMTWVU88V5ZN6fQqwL4ImvQKoDO0x2gbLB+d4JDez8cuVa9Yl1qylW5vNtQbwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189gEfhjdlhHNrOWMVSOds5aXmtVrxwEayWn22EApLzIzoPhnaIKw8wGfgzeX0YtOe4yz1uDatshnMV+xaqQz9N8AH82Ecc9g+bF1yWnrEfCYQTUEzh+hVhnsX61VzrAhTHfJknGicc/onwlt4SEfDYiyhbHNejrDr+BJ+8F8O9YttU3ibRkXrmAcPaTnKzGNJTpA9TFoznnAN2S9DN641gtk+8YorKko7pXxfA7BNRScPJFPCRHsw6L7Z7H+LjuO8oXZ3286NhrVsxkT1nPgPYuMKQJ/s3nfybYlPhIIfI16cXa/eNdb8FunjDeJ+J6X8LyjPqOaDZahrmnBcQD8XXocG++c6QtzDXpsCCGEEEIIIbMI3tgQQgghhBBCak89pGhVZRjwMWMPIp2DR7U9GFPM08OqUdC2a2K0q8vQvKRKjiZ8U7r3rDhDpoakCGDjeFHQWTmO6V17Mh8ap1eRzlVlcRl94XyxMfpFqtzMPsFH0cxxJVF43vEiw22cOFhPtE3B4TPtkfC7IG4gIkWzgAhcT24WyJ+AFC3xjeuVI2+B5GfH8vXyTF8k3UmUdwfHEkyEjZ+79PcIInfb8fUMpoGMy1NCB5I2tcw2OHlaeY6OhrbR00jy441hZkNveDdAmWDFevbkZoGkC8gnUa3raHEg5Qz6Zsgng76R+SxeXaD6DVSIWmpo6qn0OsYXKOJ/f1NDlWtW15uVT4Ka1V2hfDJBLumEUjRCCCGEEELILII3NoQQQgghhJDawxsbQgghhBBCSO2ph8cmlRw9eaLmN9DAIv8LGlP1DWSsYBzojUES0Ira+kD3X9ET4Ukyga9jxzC6A1rxDANB4pBZUdCexrlP5oXEVPCqfpiiNKP2wLczYV9AovWrZ6DFFaBmsqKZ0TK8fkbjrOa0x50/3wQrEFsZ+m16Q6sQaYb/JghPCUHEMvJ5AI8N8At4XhkU9xx4esCY1kcDxnHAg5HqsbHA0wO8xqjrrTnnad1/YX0sbbNyXjy7HSfuZfCic5Fvx56Pgf/Gv6bGvTnWAtEzi6de1Yx69mrK1gXwhfl+rv77wnBEuW1LK2Jcv+C3hz3/l7qfaQPxy3ZbeMdCTs3qdTP+G9fQx1q1mkX2mc7XyfhRyyc2hBBCCCGEkNrDGxtCCCGEEEJI7am/FC1RquWQbAyNiWRjwSP9RLlZkM6HpGhgHNsUbalOEX866pMRxRzIbICMyetrl+E99rSSDR0lGH80naNu8yKsM2JJITlSv8S+UPqXEwUNHn/3KtK57/HPaNeDqNegLHoV9xxPPvWlaUADGsyn9yFQGk6UEkrSKFsNKVsJ/yYIpBO+NCsuz0GynjBWt6KErQnaQP1mRedWlKJBwLlLS26CWF0t2wrkZbav+mwlP2qcQKamd6GZT0vYAikckqk5cAFS17vgzFH1PAp/I4E6AbHNsJ6D+br3E5G+yCdhPYNrRWVspDOSheuaBdLKHe3qM5KpoZq166blZ0imFsjNdJOV3ukx4kW6s6W0XxTAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUzmMDdeGV2ypGOps4xgK2IY9NfH3ClEFkigBjVsQBaaXeGTCCFvlvzMyB/0Zrpe1SUNymZ1QC5oLAk6C2/TSYEJLLFPqUbMRj4nwlaJvIGwM9PhInrZx7hrfrkW56Ak018q4gr4HeF0FbbAF2MjTnxNtIz3HNhrgucc/onwmtnt3X76dr+5PjcXN8NI3unyfV16438p0l1mzVc471sehrSmHPebav2jfBboJeBrUqQeSuusYA/w3yWYSeBH0tlP6g933Veu6DjwbV6ETLQPUMj6cenGdDX1jcl5xVs9rDleUZU4u3y4C+MOT/ifvC/GvoxBd/R48NIYQQQgghZDbBGxtCCCGEEEJI7amdFC0HB+RfHratAeZDkc5em308qCdMm10dLUVDkrZgvmgTnA/htNwM5Eg6+5hRP4EskeZG/EeU9s213lui7aNMkHOb2gY1Rma2ItIvk+RdkRUFrR4V9yHSOXxsDtYHyuRAm6UPcc/J54Hg2E7v65WQ2U5+PcfbAjmhd6yBdUHbjDK1nlAOpMY9x5vgW9xBPG2/5WZhW7W+gazHkzGZttS6zJHR6vOalcd4bXGZWk7fvMjd8Y9QpmblqN65Gpx0TNxxisynG4GkzBvU9lUTOfWM5GbJbWZd4HER74slbH4bvFYgYKRz/BpevWbNOKoWK0ebBzWrfyPaSOf4bzv9HR08We6cnVI0QgghhBBCyCyCNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb/HpqrWEflvwJipkc6BflG3Bf4bME6wfDBODzw21isjQNuP/Deex8YIPV3glVHYyEc1UGAt0NpOsw1FLwNZbCxVfTRV56vYN9DgpvpYciKdkf+majQ0iCLNiolOJePYhm12XTzPXLwtrFnVZv9ZCexfT4Mc6JhVU5beWx8jU5C1vYvgWoW4Vrih8asIQFxsjo+mB74D7I2J+xMmXEail6Evcc+B70B9tpHKyH8T9I1H2TZ03+CEHN/e0Mugty/wYIR2V+DN6ZG5zq/ZGVzPQc3G+5a6b4ZnzPMfVfTYWO8T8sYIqNkGrFnTpmOb2yDaPKNmPd8o+B0Y+EahvzZsLDPeYcInNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY4NIfmeFFbOqj9a7kfiumrCtVG1mSOCxQW3BMvSYPdLMly6u6/U9Nv6XKr1sczOmXYjuYN95o7+V2Rb++0KQ5jeuf0Y+Dhd4mIAnIcvcAEDvnAF6VZSPnzpmoMdNfE/EhH0rvuOmHx4bb9cjjw16b4EBaegD3XZ0wnhl4qekYD6Htm/cmpOnDScdymYhZRePTYBXa7YQVRuoNTsffFcM8HWUqe+4sf4E4LEpm+nvCxHoV1ATwNsG36WFfAfmOzSUtyDw1Nhjua18B/bCpa/FGe+/0dsfehnQO7ACUyvw33j9UKMk/2aqXM+29sB8yb4wW4cZPhrvuADj9Oq9TN4+tZ6TdqSf+H4Y+P4z8WsR+m+C99GA5eu2DG8o+n3hvPkmvjiF/u84fGJDCCGEEEIIqT28sSGEEEIIIYTUnvpJ0YBszEqHUuVmYTxh/NlacqRzw3/upiVlSF5m221bE8Y9q2VkRD+jR3z6Kbrtp6dL+1hVPaou7WN68xhbt5dWx+RJ0+zjbxUFDaN744/Nw2enaTK16QCUJZaUld372TYU6QzHzFhGKL9yoC0+n98x3pRVF7rUrNLDHutgdbwUZduox7GP5sH4VhJEpo9yoJByIE+KZkFxsQ7IXGBsMpDOaNkYjGk2dQblZkC2Fo4TX7fkmHVwXrGSG6dlPUGbkuqMxSN3RYy8PIi51ZIfFN0bl/zY1xTovvAcnyHbDSR0iQT7yRvU9O1BPVeNIZ8o7hnKzVJrFkgyc+LLk+VeptYaY0W0zdol9LHQNtumAaSVMCa6jM/nR42DWrfXMFTPXSgztNN8YkMIIYQQQgipPVk3NmvXrpXnP//5Mm/ePNl3333l1a9+tdx1111en23btsmqVatkwYIFsscee8jxxx8vGzZs6OlKE0IIITvhtYkQQohI5o3N9ddfL6tWrZKbbrpJrrnmGhkdHZX/+T//p2zZsqXT59RTT5VvfOMbcuWVV8r1118vv/3tb+W4447r+YoTQgghIrw2EUII2UGWx+bqq6/2pi+99FLZd9995bbbbpP/8T/+hzzyyCPyuc99Ti6//HI55phjRETkkksukWc84xly0003yQtf+MJqa9mLWFLoozFN0H+j+8Ujna2PBnlsGsaPg3w0TeS/0cvvQ9xz20QxO6/NxG3qtsBTk34/7Xlu7Hye7hbEX8J9D2KT+xWHGy89HNsMSI1NDqxmiZHOWR4bpN3N8N/0wuMU7F4Qye4lTtoozIyIZR0vG6RYgvpCcc846ju+fWeYTaxvTOW1qWzlxz1b/IjjnAjc+Pjah1ACTwD2xphzte3b0n0l2teZXxalnq9l44/VBIp7tucV5TtwY7Zt/HMQeavarHejYcdBntq219FvA3HPMPIXeR6BlwGd46v682C6LvKVoIhy6AvLiCEHbdAXZuuyapuuYRBfjnyr2jcj4tdT4OdS6xLUaNt8X28cswLAM4Z8NMh/o78wvr7Hr0ZBPXfB+rgRk/LYPPLIIyIistdee4mIyG233Sajo6OyfPnyTp+DDz5YlixZIjfeeGPXMUZGRmTTpk3ef4QQQkhVeG0ihJDZSeUbm7IsZfXq1XLUUUfJIYccIiIi69evlzlz5siee+7p9V24cKGsX7++6zhr166V4eHhzn+LFy+uukqEEEJmObw2EULI7KVy3POqVavkzjvvlBtuuGFSK3D66afLmjVrOtObNm2qfgHJkQ7BKGj9+NnKzeJSMCw3021x6Zltb5pxtNwsmE9NNxvxjEcrU0OP+LT8zC6vrR9BFnGZWpg5aNct7f7aRkG70tMVmSHjMcICoikh/ZKmxQikCCCKOjU6sWKkc/gmZNsXRUXGl5/cZvBkW0Auatv8qFUznyf3snIZIxuIr1p6nQAVZNb+BaU+JdLKGUa/r02uWXQkW8nqCCjdibcheY6dL/kN6yg6F0jI7HQgARrQn83xo+Yr59g2FduP4o9HjWxsVI1p5DkN1deNmjZ92TDz2e1WgJhdfR21Kmn/LfLpMjVPKhucD9V3QvHOfdKfptYsjnsGcjMU99wj+aStZz2Ort8d02r/2uNA1bCVVqJIf11PDVuXWj45CraT+X62hvU4BTh/BK8d8WrWLAPGPat+zh6/ul/8ZJkU95whRat0Y3PyySfLN7/5Tfm3f/s3edKTntT5+6JFi2T79u2yceNG71/GNmzYIIsWLeo61uDgoAwODlZZDUIIIaQDr02EEDK7yZKiOefk5JNPlquuukquu+46Wbp0qdd+2GGHycDAgKxbt67zt7vuukvuv/9+WbZsWW/WmBBCCFHw2kQIIUQk84nNqlWr5PLLL5evfe1rMm/evI42eXh4WObOnSvDw8Pylre8RdasWSN77bWXzJ8/X0455RRZtmxZ9UQ0QgghBMBrEyGEEJHMG5uLLrpIRERe8pKXeH+/5JJL5KSTThIRkb//+7+XRqMhxx9/vIyMjMiKFSvkwgsv7MnKdgVGEoJcXS+22TR5Ppr44gL/jWpEkc4t67EBPhrbt+X5b/w2z2NTxNsQVseo9dhjRgSr/TdjZvwxEOlsNce+RDQ+nzPr5mmcgx0Vj3T29cBWyBydAP0mIEMbinZTaqQz8qoE2lkUp6rnA56aCZcBtbvxMZN9Q4Zkj0KGj8UZ7XCpCiBIqAUWLq/NbAutnYY+mhwPVWpbzZnKa5NrhZp7kdx43HiRJMc9I0+CbVM+hMCDkBh5K4J9NF7boGkbVMU+aK5/Q+MniEbTP9GU7fEVaG/zV6YcGf+SjRHj8YTeDeVzsPvMemX0brKXJjWzjdUtwHHun/NAbLOdD/hGi3hTdPyuJEeU2zZQz4lxz9PuCzPeLz1t69mpGm4M+b9gmq3xtvaY/6XKkfEVcCO2nse/Y9Osp/aFifHf2J8+AmrWm7a+Uf27F3lq0e8LEF8eALw5XbujsQxZNzb24t6NoaEhueCCC+SCCy7IGZoQQgipBK9NhBBCRCb5HhtCCCGEEEIImQlUjnueNjIe9/tt4NktkiOZtkLJv5DcDEU6W+lZyzx+130HTJuWog004m0tox3Ssi0U92ylaGPq2W3TyMtGi/E2G32tCdvsq5DH19umbzr1rNpub/30P3iLvKcLjEucgqIpYv1EnI4B71V2bk5sJyrZihI2KCFLfXu2TCA3A20NtRNxTLRZPox7VrGoZt8nyxsmeADQUBuylLg0ACWNV4+itm2oaPUChPSAsllI0Zp4Y1aOx9XTOXIzVc/oTe0w8ta2WVmPjsCd47e1lVzHGblZsdv4mX3u7iNe24I9tnY+77/HI17bbx8d7nz+f4/u5rU9tmU8sa5smBXVmpsMmbKYCF7vMmLjtT05u5X1qM9WpgbOuVCKBuL+syL+EZWlaIltoJ5LE9ssXpuZL0M+qdvbVm6G5JND4zugmOv/nhrafXvn817ztnhtT1Q1rOtXRORhVcPbtvgHUNlUK9ow0kpwTWvYwgRSNN3VqiB1DSMZZFCz+rqV8coG//fMxOfT0q4wgE9sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqZ/HJgeg+4z2E6urtXpGHQUdb2uatlZT+V+Ap0bE99XMMT4av813pGiPjZ1vUPVFHpsRI7Iec+PjbG/74lXPtxP4ZlQ/EP28AxWBaESavp7UF2xq/01pPRhe/KQVfiq9aq+sMiDiN2+gyKCon5mG3hygjw3GTIxwttPQR9O2bXo+sw8T25CfwLbpbeqaptbUZKD3BgQeMhB96m1vENMZyOITPVQJ4WBkkpQtkSLhypka/xz4qWDccwHa1GfkSbCRt7ptwLSBSOc2iMDVnhoRkd32GPfVPHHY99G8cO97O58/tM9Pvbb3P3ho5/PNrQO9tt8V8zuft4pP6f20ARs4dMH5U+A3BPLf6Gjahn3dQKp30e5f5JVEHryqpPptTN/K9ZxxHocRzsgXZutb1bD21Ij4vpqhPXxf2H57bup8PmLBfV7bh/e9o/P5jAef47XpGl5fzPPaHtPrFfw01xsueImAmVZemYpR0OHrHYD/RtdwRl3mXrfKjLhnPrEhhBBCCCGE1B7e2BBCCCGEEEJqT+2laA7m3IImL6oxPQrae/xsY/e0NMvGPatpJD0T8WVktm2oOdq1n4jIYFNFajb93Mq5je3Rtsfa489nHzMZnrqtIeD72m2olAjb/ZYgUtqpbWNfPt/Q0iEbqYliudW0nQ/GfaYqkCajN6sqG0icD0aIolIHj5hhFLOZbth4U1WmjTFTQ1puZuZrjLpoW3O7ervzHBONqaJ4SxvL6z3+9tu0JMfWuo109qSHweP+eH2hZOZUOSFKdEYEJRtXEBBAqhStcnQukJt5sp4c6Q6Qouk43EB6ZmU9Ki7XzTEngUElkx7yrzHDu40LbQ6c9/+8tpfP+7Ga8lfulfPv6HzeMDLfa9s6On5tGh3159ve1q8w8FfT36hY1qNlZPa06h3aVtajzmtBrK4eyDR6MjWrzwHnB4fOHT0iNdLZxuhjKZr6nCGfRPHltoa1vLI0cc9OT5t6bqkanr/bNq/twD0e7nz+o+Efe22l2lHHDt/htT20fVx+tm3MyP7Hxr/kdlMXXg2jk4KIVwBWBlmC61YD7Cd9nXbBtV/J1FBdmgPRRSe6QykaIYQQQgghZFbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21N5jkwzUwce7BhaMVB+N8d/otpaZD0U6Dxk/jO4b+GjU9Nym72zZozkeVziv6etFNxdDnc/WH6G9BtZ3gMiJy/UCna3/Rgk6A6m055fw79F1/HOBfA6B6STyecdA0ndS/TA5sYqepjveBqNHJ4h7hpHOylfTsG3aR2P9N6PjCw28OSNa9OuPWbaBWFgRRkwm6unF/x5WQ+9pykFEbOit0BNmTOSvSvTm0EfTG1yzS4y4dPHyaTJqBFlAoCeh0f2ziO+jCfw3Og53Qr+Cmh4w1z/lUZgzx4973mMg7vHcVI5ff/70nhd7bW/d7987n3dv+ZG7uw2MjzM46I/ZVn6F9pjx4OnvGxwvcc9Nw+4M9RXR+SL4DYFi9NW09QD6bWY+9YecqPgA6AsDMfap9ZzhsfF8YaCey1bcU2PbXVDP6hozx3id1fTuc/zfU7qGN6v6FRH5s3te1Pn89v3/zWvTNazrV8SvYV2/O6bHN4AzPqGghkGcuf4tZK1Qnv+mTG8TVJe6zS5Q90uoURdcaOPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFA49A87Q76iOUmxkJjJq2q6LlZ00rU1Nj2ghn23dOY0x99vv6cjMrRRt/XKqlZyK+/Gy4ad/T3HuspMxrs9G5qm8oRVPRp+Y5J4ouTI3sdpPKbZ5GMqRK6DDwZExQphZvs9OB3EzHPY+afaFlaqP+oJ6EbcQftLFd6UCCXagf49vn5o1oiy8f8Qe1Es1StVvpnX9usfnlup7NbOit49GJLtOkr5TNQgobI94NIM9Bklc/OtfMh+RmyW9qN7WsJT+BrMdMq3kL07fZir+mwF7jNOvHhjuf73jgSV7bg/uMx+Paa8MAeC1CQ02XA0aKpqWqZrVslK3z5KlWpg2kWXp1bFsZ6Sf+PrTnWK8tiNWNR+5WBdas7Zsqn0Q1a9tA3LMnL7PyyUBqqcYx9SxqnGbL3+C6plqB/mqc9aN7etM/un+8hh/cd57Xpmt4AFgQ9LEk4tewV78iIkZ6p68r9pjRdgL7O8y7/pm69NrQbwFwTassk368scx4DMMnNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTCYwPsGskgH03gwdA+msCfEffReG1mPi8KurCeGhMzqLSWg00/NlNPDzZ8j81uymOzm/HY7NYYn9694beNKgFr2+gutQ7T6jW9Njiff/88Zr5/qXwHTSOkdGq7tU3cn47bLkurF1WaY/FxXj/TBuOepefkxDYjIWp1H01c6Ip8M0E0dFt/tm0u2qa9K0Gk8/bxQRuj/goUynPTCA9u9dn8241eRobvoTTL0N8/iBPXumKrGwdtnuY4oy58/40taBpweo0X95x4TkB+haAN+Q6A/wZ5ErQ3xnoStK/Gxj1bz40oH0JhPAnN5vj0QNP45VQBjxkTxMPtPcaX/9BQtG3MfKmGdy3217Ol1q1t1tMpf5Sz1xtzHdGnOXu4ligKWo+JTk8gCtruX+Rl8JaHDnnblnNNS/SMBb4wVLOJHpsg0hnEl4c1q6aNv0zXcMPUbEtN29+BI+pAebi9u7+83w+qtj28Jv1bqGHG1MdM06zLmFpPN2B9yOZVF6qGG9aXrHZG8PoO9J4T4BlDvjDvXFbx90ynu/WyAvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT21kKIlkyMdQi/RLVzXzyL+40PbpuVmLSNTa8E2/xmbjhbU0c922sY979bY3vXzjumRrp9FRLZ7UjTzWFM9Z2w3/Tbdt22eTevpshmXqYn4UZVts230OFZu0NZSKdNWlvH95GsBQBtiErK05FlzYn1TJWwojhHGPbtom223bVpiFsjUdNuYkXaq6cJK0UbVcWHqq1DSxlClVnTtZ/sG8wFZCJKT2DhZLXMVI3vxFAUVH9unxGaSyVG2RIqUK2dipHNWG4h09tqsdEfLegKZmpowUh0x51Ud8WzPuU0g3dGMGL3bo+1x+dmcR/wv/MjYbp3Po3bF9bLNdUOvW3Bt0N/RfN9AxuTJQ83O0NsUvOEdxcH3Q9YzJXHPFesZxpfbmGYtnwS1HsrU4hHldn831LSVf6EaHlMroOtXRGTgkXibrf3Y8uy66Bq2ce12WkvvgppNjXsOfvdq+aZZbz2doYROllc/TkkpGiGEEEIIIWQ2wRsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY5PoowkinYGeEGntUcRkE/lvlBCxNUHc86Dy0QyYvrptyMQ96/jnocJv2115bsK451bXzyIio42mavOFrnraRkHrSE8b79wyouOxxvj9ddMIOHX8cxv4nUqwD9G+h1HifYh3nhCwQsmRzsBHg7wbyGODvDkifhy0jW3WPpMg0nlUxW1aj81oosem5ddlofT2hfGFNZQxy/n2NSmUkaYwmm6rk/e9Oqa+1D4MYptBnCvUyYMoaH/Z0dlIj/DinjXgfJFznkERuH4UdNxHA/03wFcSeEyA56YArzuwUbaaMfOlNisfwsCj/sbYWs7pfB4xHht7zfFWU58D7Hqqc0KwLcr4ucs2oYhn81IBvwm9UiDRrwDPD6Ypx3OTWqeoX1bcs67ZnHrWNQuizUXEr9nAu6J9YWY2sOG03+vRsUGvbeDR8c9b23O8Nlv7seXZZesoautZdnYavMLBNzxFVyVA/74q2vF6zoooT/UMR8ZG8IkNIYQQQgghpPbwxoYQQgghhBBSe+ovRdNUlRUFUiUdFZn+uF1P47hnE+8MpgeN3EzLz4I2JT+zMrUhJUWzMjWvzQ14bVpupmVptm3MvMFZf4eWeYYYTo9vm9Eyvk1tpGdbx/qaZ+N+ZLd9dIpkAqANUXW+1CEtGW2ehM3GNifGRKN4Zztt2xrteJs3n42CbqvjYsxowXTbqK8pK9Sj+caYiS9XNWNjYLWEwT5uD+KeEyV8tg1FOnuxzZN8bJ/URirhGmo/Jh7qvXtTu9qhUNbjt5Wp0h170gHxuEHcsz7n+qN4sjEb26wjcFtb/fkea49fj8aAFM1ei/Xy7Xpq6Wgo9bPfPy4rdfoPSJtlt6n3FncgU7PHLpL1SLytZ6cAJEVLjXS259zU+PIg4lhNBNIzs3x9Xrf7F/zW85ZnpfZq5UZK/zdTa4uoNiPtB5HlXs3a35aenM7Us9027fixbl8/EF0DGPVt5ZuqybzCQMD1Dkoru+AY90wIIYQQQgiZTfDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189jk2BeQcM/zYJgmoBXWEc/W86Gnm0HEsfbY+G020nkA9m13/Szi+2oCH4323xRjoM2fT/tqthn/jV6+Xc9BlaVrtdE2/rmhxJd2u+lt2jY61waShIJ9X4B+ztOZBsGZ0TERlb0yGX2TvTJAt418NDAKWkwcctCmxjFxz4WKXxYb96ynSzOo9twMmPm0xtiMKS0V6Wz9Pm2gY4Y+GuPH8eI2TZu3L0ztqb5Zsc1o35Oe41o7/puwX2p0buCxiXtAvGnQFkbeqs8ZbUGUuedJiLdZtB/GRt5uVz6E5mP+GGP6lQIZ598Gur57kdXW82GjdOPnQC9mNzDFgYuTHiPw94I4Xr3ZkFeiX+eAih4b6AsD0eZ62yNfGIp3ttPWK+l5V/wmr55t7WlPsfXRtFQNW/+NPg5QXLk9lrT/p2G+RBn4wvT1xwysPWOoUAI/S0X/DfrtkRk9zbhnQgghhBBCyKyCNzaEEEIIIYSQ2lM/KVpF7KM9JEfST4ODGEkgU0NvjvXij61MDcQ9W7mZnrayMa9NRTjbvkNWwubFRPvzafkZkqmNmmfF+lGt/X4N++gWREPr+Gf0qDjcT937BQQyxPHPUEEW1FMfIp5TpWemL2qDUdCoLYhpNn1B3DNs0/Kvto10Vm+FBnHPts01VVvLr6eGkqa1zRubC1XCUGpn+ubEZLvEfYHinrNkagjK1irhGl1iVLv1S3zFQFbcs5cJa9p6Id2xseZAbgbPqwArwdERuK1t/pgj7fFrhX2lgI3gTV1Pfa2AMh4RT/IV7HPdtWnXRTXaN7XrcYKLmtpP9vxQpsnbsuLfs6T9ahi03jnySShhU5+RfDL4IRaXU6LfejkgaWVrZHwZo6YNySkboGYLIPcK5ZT6eAbSSrMuwTXHbx3/aCOdvZWJzxZeJ120qVsNBzUA4BMbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7di2PDdQlmq6pcc9An2t9HXraxh/rtgHjOWmacVCkM24bj1geEDQfiJAO5hvr2s9ON4woUn//ARPVa7//dqWxDrxJal1HwfYONalp+zdLZFx1PksvvA3AnxG2ue79bN9A0x0ZX0KvjOcBabt4Xzufqg07nxfx3PZryGn/jWnz50PL8/9dB3qB0LaxfhwQ24y2aVX/TdU2Ug3XcL6OfeffE+Od7XQwXyPe5vsVjLa+qfvZNn2A2uWpug/8CWKmU8+rPg7E3GqPgvYniPgeBRSPiwjWq4h/X+ud9DwK9uvp7Q3NK/YclOZRCPx5yH8DfTVVr3FgmIy4Z1TryEfjeZpghDTw38hEHpv47zmNrb1SrfioeZ1FU9WwfdVFatxzAxxbNmbd+sT0qwocuE4HNeTVM6pRO6Pqa2PIU/1eCdemFF/jTvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT28sSGEEEIIIYTUnl3LY9MHcjSZTSWKDTwnsC3HR6Pbxry2OaptjplvjhI/Dpjl67ZgPrA8tJ5NNWbDvrcHTNtto7d30/iWCvVeA+yxARprq/n1Xt7Sm3fTQJDnpSKV32ODfDPBe2vi07ZNvHfVmH2oPTDGi+W9n8a0yZiqxXLAa/KWYedTvprCiIz9d+qYbWHfU6G3DfDRwP0L2nr2rhrSe5oV3mODPAl2RuRXUHr68L0faiS7fsCbA9tyzquJWG9BW003zXtsSs9jk/5OEOyxVJ/BO09EzDa1nhe1OoX5TqnvBIHvEsl6Jwhoq3r2CK6NoK/2yqC2YPt277djWte6rdm4xwb6xEA956BrL3iPzbayaz+RdJ9YjmfY/g71fsNY3xKoE1h63h/sAQX8ew6c6HI9NhmPYfjEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thQNPL4T8EgdPZ5EEcN+FHQ87rnViMvLRPw45IGGlX+NT1vZmB/NbOdTUjSzLfy29OVpuVmwnm68tAZKf76RjG3TAFHQ/vb2miYTxjxzQKqQDAlb6nxAsdclCto+x1bHhZV4IbkbiHT2npu326atjLehMUG8tI7JnEzcs79N7TggClr1DeI2kUyNOrUpxSVK0bx57B+ATM0BuRmS9cA2XTRAumNlPPac68m4gvOxRNGSHCsp05G4ze3+weTF41Y8q0NZj+2LpGj2C7pIPzEx6znRuToK2p5X9Gx2VVLPARP1S4wsz5JPFon13IzXc/BP8AVoA7UPZYlZcc/x2ObGiHpFBYh7zsH7ukaS3zZfSkvvgrhnFF+O6lmtgY02L1TN2q+nr6NBjabK8nbORykaIYQQQgghZDbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21M5j45ARoKKxItDgqs/Iu4E9H7ZtXBfZBPOJ+JHHTaNn1H4c6+MZEBQTrSOdi2hbMJ+A5YG4Z/0dwljs+LbJ2aaeTB3oY0ONtZ6w9VQPd05OpDOaD/tv4r6ZwHOjo5IDH40W75p90Y63aX+MM14ZbzqIkAZxz3rStrl4ZmngufEinY3GOdULhfTuYD+h2RgT3X9ckSgP13J24PGEsboo0hm12eVBv0KaF3VHe9yfkkoQgaumG8ZjM+bFPfcqOjfeZjeAngx8S95k3H9jj0LkuSlU3+Dr9SI6N2enJfptRGzNOtBm5kuuZ+sVifvC0O+5HD81AnlsmqNltE37yxyoX/Q7KIh7ttu71NvGDKx9nKiGbAw5iij3zDngBzP8fSFRdjYFHiwAn9gQQgghhBBCag9vbAghhBBCCCG1p3ZStMogOZIBRTrH+tlpJL9qSHy+HX3j0rCmJymLt1kJm54eMPezOrbZzqeXkbM8XzIXl9rt6Ds+zvYJZHpV2iqry8DbwqcCKDdD5MgUwNP+nHhpr29p29S+MBHL3uNoEM0sJjLci3h2VlIGpG9qTGeiOLXcLJDeBfHWRbyvt01B0WTsC6BswTikBSBVcI3Et2Cnys3AeSYr0tmTm4ED1F4LgeQnjMdNl/ymouU6je1t0DMdFD1doG0BoreDw0dHM9u3v6t9YaU7eiAYBR3sQiQjisfIVwUq/YKLhZoPRDPDegZjhpHOaesiYuSTqXUxAUiKVmwHOd0A9HvG/w7px2hhDgQv/jmQqUU+71g51WSXryPKzXHgjRmXbAffvMumSDrnPg6f2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2lMPj01V0WiiJyLVb2OnA68MiDj223wNZlPiMcq2b0P1bYD5BoJoZv0dbNyz/myWV6QtL/hOwCfUapho6HK8DOE2Bd6kIAo6Va8a7TUB/fLbVPTRoEMEtwGhq5aiB74ZsD45kc7AD+N7bECb9eYo/4317TgQYe3pj7O+L+hbcT+laI7JNNFwoYelC8k+GhSxDPwK4ZhxT48ex8bj6r7BkEDPjzwBCBTTbD02yMuQCvpOE3mI/FcDGL+C57+Jx9xaX4nnu7NRvWrGwGcHzyvAf1MVZP+BvjDbFq9nFPcsKO4Z1HpY38ifkraxUDRzab5wY/vYeBuINkfkvb4ix0+nJpytZz1hFup5c+K+HevpQb8LYJ122d45hz+f2BBCCCGEEEJqz6RubM455xwpikJWr17d+du2bdtk1apVsmDBAtljjz3k+OOPlw0bNkx2PQkhhJAkeG0ihJDZSWUp2q233ir/5//8H3n2s5/t/f3UU0+Vb33rW3LllVfK8PCwnHzyyXLcccfJ//2//3fSKzshGY+qqsZWJkdBZ8imwmkdo+xrYnTkchNI2mz8csPrV4A2fz5vTLi8uIQNzWf7om1RdZ/lxDjqvlOh/slRc6T2DeKH0RipErZgPiuv0BIv0Neum5aKQZkakpSlxz17j9SD7xAZQwRKyqxMD8U29yTSuaoyF3+lXYZ+X5vS457BGJ7EyewJL8rWLhvIzcDb36F0R0vRMl6LkAOSkem2YjQuResV6PuGnfVnu03jkjL4FnfVtyjN91NtzrShLTElqe5ABplaz0HcM9y+3ccQmaBmJb1vVZA0Tddwr+o3T5qmPpu+Dp0j9GRwfotHOntR0DmvPkC/L7p93wT5b6drck/Fo48+KieeeKJ85jOfkSc84Qmdvz/yyCPyuc99Tj7xiU/IMcccI4cddphccskl8oMf/EBuuummKosihBBCkuC1iRBCZjeVbmxWrVolxx57rCxfvtz7+2233Sajo6Pe3w8++GBZsmSJ3HjjjV3HGhkZkU2bNnn/EUIIIbnw2kQIIbObbCnaFVdcIbfffrvceuutQdv69etlzpw5sueee3p/X7hwoaxfv77reGvXrpUPfehDuatBCCGEdOC1iRBCSNaNzQMPPCDvec975JprrpGhoaGerMDpp58ua9as6Uxv2rRJFi9e3JOxNUjpOKloPUWqV8R6TEIPCvLjxH003nxBmxrDPKjz2+JjBr4d8H3RulSlaqRz2NaT1ZlZpHoyUj01pq/17eTEPXvTgR8l7nnx9LpB3HO8DUU6Q/8N8AnBcapmf2f4nSqPOUuY0mtTIZ1dniyhR/4BGJ2b4UkA/hvoM0DxsGC6ql/B+g48j42Kys0dR6PXzV432l6/+Hw7ppV/AMZrW69MZIGmzZkD1vPc2Cho7xxr/DfodJSzm6r6whLrOa8NGBJRtLkdBv0WwLMmYSOcrU+s1yAP0Y7p+DFaeCeCuGcsq9Yl7Vpoa92LmU85kWboy7KkaLfddps8+OCD8rznPU9arZa0Wi25/vrr5fzzz5dWqyULFy6U7du3y8aNG735NmzYIIsWLeo65uDgoMyfP9/7jxBCCEmF1yZCCCEimU9sXvayl8lPfvIT729vetOb5OCDD5a/+qu/ksWLF8vAwICsW7dOjj/+eBERueuuu+T++++XZcuW9W6tCSGEkMfhtYkQQohI5o3NvHnz5JBDDvH+tvvuu8uCBQs6f3/LW94ia9askb322kvmz58vp5xyiixbtkxe+MIX9m6tNX2QFaU+YkexzQ0rL0Nxz+BZsZWt+fOhiGUjDVOPD5vmUaLfBuRmVkLnydTi6xKsd7Bu8e2W+nZr1C9PsgYe1aJiy6nDVGlAjmysyvh2nJxXVhv5lyfVguuNZGpxuVkYI1lG2wogU6sqi8uJX0Yx2UWqhC1Dplakbfpdmqm8NrnChRKxbkD9c7wfjnRWbcEb3iP97LSVrujPk5D1pJ6rIaO+FE2/1R1KzzIWAa/vYLsF20ZLyuy6of2k5WZg3wdR0H5Pf6qITYTLqAySf/WinsGYwbYHbVVl6I1ebSdVw72Ke85ZtyL5PBCPGg/jl0G0uVen6PeUadKLS3gXQdAHUPk9NjH+/u//XhqNhhx//PEyMjIiK1askAsvvLDXiyGEEEKS4bWJEEJ2fSZ9Y/P973/fmx4aGpILLrhALrjggskOTQghhFSC1yZCCJl9VHqPDSGEEEIIIYTMJHouRZtJ9CLyF/loqhJ6TJBXBvhaUJuNZlYCRxv3rKdQhLRdntcvow15jEKPD/AmQb13tGn2UbFkU30zcD4R38uCfDzARyNlaZq0Ft3Unp4PRjobnXp0IsRPIrXLKLr2s+Mi+TOZwai45+DvaB6FS/UroHFA5G5VT0LO6w36QTGaHvfck+WhOFzxNze0S4DoXOgrqerbhJHOPdpnOcvXEeUoChqNAyOkQV1OcCLt9+sdrI8G1XCq5wb/tvHbShjJHq9n7HfyGz2flPV+wa/kGWnS5+vW1q+4Z0IIIYQQQgiZifDGhhBCCCGEEFJ7dmkpWipVH7cjaVQgqcp4PGzlYF6blqlljamlaAVoA1I024bkZ6pvznevSs/iPnu1kIpUjXFO/Uo50ihveRPJpuKlEEq1dJuOY0ZR0EimlhNTHRtfJO87eDHSU6t7TEjG7NqXSrceUUGKBuU5WRInMB+Q50DpTkV6Ff2sI51lzH9ru32rexV6JaezkiatrEFtUKYG0nFtpDiOf+4DvZJWevNVrGew/MlslarWAliX20crrk2cqjWMpKXhiPFXXRSqLVDTpUor0RWoR7HYO+ETG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe2aNxyZHo9jvqOCmEfMjD0oDCf+DcbWvpf/odbPr2YD+m3hfuC36EL0dsAvERE97bHCJtLTAR9MrgDdHe3qwNwVEQQfLS1+1qtArM4OIeWwMyb6DYHwUBd0Hf6AXD2uacpJde4AL/AnNni8jJ97a8yTYWF/Pr5CxZZD/BngNdD0VOdG5VemVZyy1nlHt5WzejDjzfuCMT6zX5NRsuFET45dRnDjyjCHTmAWN2Y2c3/DJPQkhhBBCCCFkhsIbG0IIIYQQQkjt2bWkaH14zNirJ7xImpXT15N/FVbShWRc49+kWTRAm51PydsyvoMGxUJPRC/kZruAuiwkY7P05el7EA2dIT+LUZo60ZI22+ZAWypWpua0tMSuW/qwnowtiMkGUa9eIq+Vwu2SVVxLXOFCKU43ct+sPckxUqU7011J8O3rY/at7b2XolUm2OfxeFxf1mOzkSP9JmrzutlzV4/yjwFQWtmLekazBXKrauNMCaPbOx9LN2caVwRvp6AJSCS9QzZLBlnxtQiT/M3CJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbsWh6bDKrG/vmek3j8MIottiAPSrPielqvTL+pup79YipiHWtJ4PmId9VlmbM5YV8UBd0rUr05qWN0YcaW10xdr9lAVU8N8mfkjINmQ1r7GeRXcNu3m78Mjrchb06/SI3H7dmY1ZZnPTf+kNVWNMlHlkJqPQfHQdryp/tabz1jblT7xKbeY5N6rFfdaoFlrPJAehDQhv4WgU9sCCGEEEIIIbWHNzaEEEIIIYSQ2jNrpWhk8lSNce5FhHPPmEnrMt1Mx6ao/BybkGmikDRZRC+UU1ArGpfuTLc8pyouiHuuCSB6O1CCTfGu0ZIyK0vLkpslxoln1WwfmO7an+oarqyItJHOKDIcysZSI53NjGh5jHsmhBBCCCGEzHZ4Y0MIIYQQQgipPbyxIYQQQgghhNQeemxqRlVfy1TTlHqsJyGTpp52BkICpt2fEMQ9Ty1THn3dK28B8kDoppp6rwJm8Pfw457Tme5jD0aNTzWJ9RyDT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT2Me64ZbVePe9E275nJbGGakzEJ6RUuiHmd2gjaYs6cKV2exU114m6vlpc4TmH2b23jn/X3mGHfoRio9rM6PPammOlevmaSu5S/PgkhhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7aHHhlSmqt+nnFFazhm0LtPNdGyKgtuf1Awn3TXgyJ5Stczt+Un7CWybbjLrV0yxV6YqRaumP0nM5vW2/zRveuurSW0L/Dfoe+hhcmq2D/6YafeJTXENV/120NNjB0UL0eOg+XKWN0n4xIYQQgghhBBSe3hjQwghhBBCCKk9NX3uO3mqRutpGZWVVHltGdoDJOlqV1zP9hQ//q66nv1i2qMTZypWvYKeDjfS+gXzWbWBnmhMwX7Ry2iYYytV+jbBes7Y8pqp6zUbsOfcIrUNSGd6JG/T0ih7CEx5xDEAxT0X0xHr2w/5DBwzcXlWatiHE1LPoqFRzSKpkotO+N3MfFMtu2yY7VJWjHvuFeh47sWx3rPzBZS3ZfY38IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9u5bHpg86017JCcuMaGTUt1T3oraf5/kxm6JUwsi2K0GbnU97iqrdB1eNhbbLr8oMkpD3jkl4XvqyfORdSfa1mDpJ9crYtlQKqyEH65mxCG+cYBl6+XZ9EteFTCuFK5I8Da4XXpkM347no0E6ezDkVGA9CR4zOe45xxuDInC9fhlt3v6dgujcIJl5/A8OLaRqPaPZgu07PtCMO1UOjPvEYK1PAdBvA/qG27ua9ys5CrrH8IkNIYQQQgghpPbwxoYQQgghhBBSe2bwc9/ekhP/W/b56WHb3E+iaOgy496zrcYpQb9e4cni7HdCEdagL9wWIF67Z+wCujUYtzwVoKhkqxvoh44AScES46azpGBTsIFnbLz0bMRJ9/NEjnQHynWQ3kzXdsbJKvHN4c5oV6yUpd+nx2LOgPlL769kzvu+RbSt23RqG14B/Tl9jGT52RRcwwpTwFCaBvWTWqoUr72sUg8kmvH93Q+KVlNNjfV8/MnUbGVJGRojNbI7Z8yqfR6HT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO2ZNR4bRFXdJfJ8tG1bhhC/Dfrq6GTULxxzXOBYGrGj3xZfF7s8FOPs+336r2vNkRX3RBvdJ0BiN9Tlw/ki/Wxn1GYHDfqCfyLRfpUg9VZ5XgrkvwnaGvG2VOx8id9hR9/pM73klC+9OX0g5rEBZHkSPEtCPOY2J1oV+hUqRtKi82iO/7FRqKtOa47fJu3s9bL0ylcRROe6tDboOwgWMv6xKKvNNx0+UV3f0E9WtZ6Dgo7PlrO3q/p0G2gjez6x3nhsqtYw9N9keHEcqq/USOcpvBjxiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7dmkpmgOPMtEbWTX9iBi2Y1hJl44/tm2eNAy1mQeypfe5jLYFcjOwPK9fRluwTb1lxLd3zr7od2R3raiqvPOkYOkb1Mq2tGoMysaQ3KzRME1FtA3K1NQ0jHSeYJv5T/Tj+do50j/KxmpCTIqGNDFWneMdW2aYhou2YYmT6/ZxxzBANpUTf9xv3ID9SbK9v8tDkhsxu61yBC7oC6U7GW1oXapSUbIYyC7d5OsZSaOC1Qr69vfHQMOswFhQw/G+MfBvm/S4Z1TP+DxgF1q1ZhPjpVPaMpLf+cSGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNSe+nts+iCfTNUVI89Haf0vyCuC4p3BvWcpyJtjfTyl+mzintU08vvY5fmenvh8wXoH6xbfbqmeJtQP7U+4r7NyddO7JnteMlatiE5gvHECzwn4Uibu2It0hutt/Dd62kYogyhop3w0QUx0A4zpLU/ibcA3E4C8MkFb4s4B3hwLvTlTS+GKThQv3Pb68MnwqOmYX89vs6N1/KM1EsJYXf3ZpTYF9CriOYrxJ+goaORP6FncPzC+BV4G6DvQ+yndZ1AkexnMeTTXrxADriowjaEhU+sZGEKqesYsqL575stVNZzqqZmInHVzoE6gv8urPXD+QDHkOV4zRZFw7kjpsxM+sSGEEEIIIYTUHt7YEEIIIYQQQmpP/aVoicAntRlSJfwoXsm2ApmakolZSReIbcbjGEmXni9oU2OY3Dy/LT5mECENvi9al6pMFHOY3taT1ZlZpEqlciRNINLY2UfsSNJWUf6lJWYOyNSs3KyAkrK0tvAJPhinKhlys8pjkt6j4p6h0gRIw3y5ohlEp5Ub2Ycv5TE7W5/WzZhInlKANhwlW63YrDxHT7s56T9JoDQNSL/9fvH5gvac2GYUTava7P5Fkp8iUdYzKXk+kguBc3xqPWetd3IsNv7C8LcAnDONhn2VyECzB6PGCTZFVnx7937BOFn7Im0/BVKy1HreCeOeCSGEEEIIIbOJ7Bub3/zmN/KGN7xBFixYIHPnzpVDDz1UfvjDH3banXNy5plnyn777Sdz586V5cuXy913393TlSaEEEI0vDYRQgjJurH57//+bznqqKNkYGBAvvOd78jPfvYz+bu/+zt5whOe0OnzsY99TM4//3z59Kc/LTfffLPsvvvusmLFCtm2bVvPV54QQgjhtYkQQohIpsfm3HPPlcWLF8sll1zS+dvSpUs7n51zct5558n73/9+edWrXiUiIl/84hdl4cKF8tWvflVOOOGEHq12hKxIvGr+jDJRY2x9JSXQ/Ob4cba7cf1m6M2J+29Kr58DbdYroyOk0fJQ9HR8PtsXbYvqnpp0LXhV3XhVYGwz6Iv72ValYa8aIxzMZzXWcX8K9LU0G/E2b76GaYq3weU14m0w+hqlZga+ociYE7WB5SW3AXblWOipvDYV5Y7/JgIdP579JvDKqPOzLW0UnYsiWb0Fxv03UHc/CZAfxvPYGH9Cr+JyNej7hp3153Q/DPIdwEhn1RZ8deBJSPbf5BC/jITXLe98GK/nwgzq1XCwfVWbOd68rrZmreclZ38nUiB/l6rhXtVvng9cfQ46q8+oZm1bGeln2rJ8NNBv1eX7oth0Q9YTm69//ety+OGHy2te8xrZd9995bnPfa585jOf6bTfe++9sn79elm+fHnnb8PDw3LEEUfIjTfe2HXMkZER2bRpk/cfIYQQkgqvTYQQQkQyb2x+9atfyUUXXSRPfepT5bvf/a68853vlHe/+93yhS98QURE1q9fLyIiCxcu9OZbuHBhp82ydu1aGR4e7vy3ePHiKt+DEELILIXXJkIIISKZUrSyLOXwww+Xj370oyIi8tznPlfuvPNO+fSnPy0rV66stAKnn366rFmzpjO9adOm8ALiP3dMHzyxK34bLZCUBXIvIDfz2rA0a1TJzWzfUvUtwXyjzrbp7+CibXY+TyaWsZ5afqb7iYiMlf508jbNkPelPrqt/KC4X5HRqU9bwVPkQEEA23RjPMLZyq2gpM1KvJpKXpETv9xQCw3inlVb06xcc7y+nG3zJHNAppb1fUFf1CbpbYxxxkzptakskmQRnlwFHa9AumllNTA615M/mcZSd/MXWCg5UBglG5e5oBhlBJLnlHPiUrSqsh70nSaOe473FSQp07s+J9K5jPSTCeRmaj17pd5DuzeQYsFzV7yetTQtqHU9KJDFBdLKQIap92H67wR/CCSl9HVypYost1HQdjrGpF5B4p0HTN8S1XPksx3HtBWgDUk5YZ12acup66wnNvvtt58885nP9P72jGc8Q+6//34REVm0aJGIiGzYsMHrs2HDhk6bZXBwUObPn+/9RwghhKTCaxMhhBCRzBubo446Su666y7vb7/85S/lgAMOEJEdZs1FixbJunXrOu2bNm2Sm2++WZYtW9aD1SWEEEJ8eG0ihBAikilFO/XUU+XII4+Uj370o/La175WbrnlFrn44ovl4osvFpEdMpPVq1fLRz7yEXnqU58qS5culTPOOEP2339/efWrX92P9SeEEDLL4bWJEEKISOaNzfOf/3y56qqr5PTTT5ezzjpLli5dKuedd56ceOKJnT7ve9/7ZMuWLfL2t79dNm7cKEcffbRcffXVMjQ01POVzyIjxjI50hn5b0xbG/lIgr5xf4pu2w7awtjm8elRI2DUbXY+vYyc5fn+m7hvZkdfFPecvv1jbZUjS3PiCfsAitSEZPhBUPwwjnsGfQN/itoXTX/Gwmszkc6ex8avPe2jyYl7dt6YZj2Vxwb6b0TMdgOa7hzfDNgXcD5EH+JyZyJTeW1KjXtGdZDsv7HxuOokhNomyJf259MRw/aYmMCDktqG0N4Z67GpSgnK3iEPAvLRIK+M9Q9488XHtHWEPDbQR9OHuGd4vQFR+YWNW06tZzsmiHv2hrHn5iDOPO23QE79Iu+Xm5P93nsRwb9nHPhNio5RB70yZnll/LjwIp0zoqCxLyzSL0LSOfdxsm5sRERe+cpXyitf+cr4wotCzjrrLDnrrLNyhyaEEEIqwWsTIYSQareWhBBCCCGEEDKDyH5iM93YN5t6j+Eqao6CR3vqs32k7belS9F0HHIbzCfiS7WwxMvEL0uza78d01rC1o6OGcwnYHlgPhR9HX7/NClaEOmsP1d8My98m/QMBsrUwBP1PLkZkFTZx+9KYuba5nG0lgrkREEraVoRRDqntXmx0CL+P+XYNk/C5jfZt2l701UlfBlys1SVRI9erE0AhUtU+KE+oNYExC+jeFyvza5g6XU0y9MyF3vBs+dOvfxqoAjc0sh4Wkp/YiU/qfHP8M3sE5z/vc2BpDuB3Cw+X1F2/2z7Bm1x9WL6zpioH5AselJZm/as28zaadklrOcC1bOZUceX2+1kz9VqqVXjni1IitYeaETbdDQ0ipBGv4OCJPcSHKO2DUkrQT0jaWUBYs9TpZWInZupaKfvKz6xIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1p3YemyxcmnY4R3eJoqB9P0gj2jZWGh+LibIdVe2jhb+L9LSNXx51ra6fd0yPqs/WY6Pjpe188eW11X3xaGnmK4H/JmPbYN+SbvOa6mKVwQCfRRDFmeirQfPl+G+s58TTWIMo0GA+7XOxXhk9TtPEwOpcWtuGxlRtNnrai3u2Ou3g+3f/vGPd9HxgWwTbG+xEMF9W/DOZNEV7x38TAY873c/q0r0iAZ0DzyGIztWTRiPvgB+kNMdBA/hTUMSy9tE0jHmk1RjfmG3jsfG8DBXP6uj6HmzeHB+N9ryA+YJIZ1U7wXwoAhdE58JY3aqg64/tq3ebPTa8GjLeTG9x8XqGXkXgU9oxUNyfAv1WCuTvsm3l4PjGGGj4G6NRVPvJ7Vm9yuB9Cv4kiF/2vV/xhaBI58Dr4s1nx1THwWQjyjPinvnEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thStB6DH2GGMsYotNs9Ox2CblZSh2Gbd5u8+LRWzsrHtWjZmlq/bgvnA8tB6apmalZ6NgWm7bfT2bptHsPhtvPE29GhakAykH/RBVpQTBY1kYvrZsZVboelAmqWjoI00zDVV/KWJX3at8Zoqxoy+oaVq0c6nluGCNh0hWsTbjEwt+CcgJClrdO8XTGfIAskMIiJFC4676ITgOtD1Y2VjqrN9w7sXzx60gZXRGjIg4xGZ4LyaiJXuNNV0e8hI37y4Z39jIGkaetu8Jz9Ccbgi8G3sOAJXfW7bNjAflPVEPksXmY83X8Z+QgOhmtWz2XMlkkbpfQHq2Uo5oUwaSS2txLhqDat1bZkdNTbU6Npvx+KrRpTH6zl4DYbua2VjIO7Zk5jZVzb0O6I8YbMEYwP4xIYQQgghhBBSe3hjQwghhBBCCKk9vLEhhBBCCCGE1J5dy2MTaA1V/GWgs0Ua3LiOODV+eMz4QXRs5qiJNJ7TGPOm0z02IO5Z0HyNeFswX6trPzsd+IbU9w+WlxHp7PlvwPbO0aRW1dX2zPjQi2FQFGfQpn0l/saA/hvtmwnagB/HxigrvW5h5wPxyygKumjG2/y45/Tl4bjnnL7dP+/oG29DGnaoKa/YRqpRlEUYhypdbAdoe+vj0P7zIvIreLp0ZHQwbcrnYc8BWiMP/Qnie1ByzqsFiMfVHoWxQX+MAc9j05u4Z89jOYGnCMbj6thm60lAbV52rz+k5yOwlhPtZYCemoy2YJehfaiGCc5dnlnGX6Sq4QL5b4BxJ/SNFtE2mzvu12z8d4L9faEJ457HV9xGOrdVDbeCuOf4caAJXl+h13MCX5jnq4Ex5PYcEffKwIhy7b8Bkc4w7tnSpS0lYn8nfGJDCCGEEEIIqT28sSGEEEIIIYTUHt7YEEIIIYQQQmrPruWxAQTaSq3fDHSX459hRrhZBvSKKF/JWKOMtomIjCmB42gj7mvZ5ga8tiE3Ot5WzvHathWqzfmeHj2OnQ8tb6TU8/ltej77/eC2sd4ksL2RPtZ7VwESu4N3HCCKPr1oBHllYv1s38rvsUFt1kfSMDpm3R684wb4UbTPpenXSaHecaPfabOjrRltEzVt32NTtuL+G/QuHmMvS35XTfBOn6p+GKRvrwo9N5UoykS9N/TY6B1q2+J+BfxPkXqBwEyB6g74E0Sw/zQV6y3QHoUx8x6bweb4tarV9q+bBfAopPpkAw+Cfe+H6ht4ZbRfwb6rRvsVrFdG9w08NsBHg95xE+nXU+D5CdSzq1jPehlm2zvkUQMeFPRbLwddw8F7bJTHZiDj3UvYM6wnsMdG0HuSvHfVmDb07iVQz4LecQM9NomesZ3d7bEJ4BMbQgghhBBCSO3hjQ0hhBBCCCGk9tRPipbz6NB7ZGc1R2mxlXZxbfWYr21kU231PK1tJDA6ttjKrUZN3xbsG4971nKwAfMs0ZObKcla2OZLyvSYKO7ZrudIqWOi49tCxI+Kbps2vY3DuOfxz0imZnGJ/Xql+QmkYdGJCUhc1UDChmRqSH7lScis9Mz0VaVhH0druZlr2cfo4wMVLbOMtmobMwvU8jNz/HjytpaZL1EWF0rv4tNou2HpX7wwskoPSURIzynGRIqd5Qe2t3f1AcdkqBqrKOuJLsBId6ykoxFvCyLRUexsYlyule7o1x205/pjtNR1DMl4LCW6vnvx1vHoWhEj3TF9YaQzkOdUjs5FbZppkaLFl194+8LujNQF2kETpZUiMM5c1zD6DWFrr6XsBIPmdR1jqoYHG/5vrdS450A+CX4HQTll0Db+MajZMSUNAzHkgdzMazNjej+2zHxIptYFKL808IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk99fPYIKrqTkGkc2m8I1qrHHo+xqet56SpzAxjhYl3BnHPI4XveWmV423WR6OnB0rjsSnmqM/GY6Minm1ss/bcjNg24L/xI5xtWyM6jbap9TTpfRPGI8Y11tDAUNVX04f458reHKQ5tl4RZVSC3hzkIzHttq/e/VbX63lVjJ5fxz8XLSOwHVODDvinMafmK43HRnt8yiDuWa+LmDYzDbdNvK0Xcc8BVdtIJYoyoveuuB8CT5qumRy/AqCh9POlHRT4xaznpmzHj5828KZqP4GOdxbxPQpju/nzzW2OX6taZr4GuBbr5QdeIBCHiz0JfpMXgYt8NBn+G+ijgdG5EiXFv9AZJrWGUT/gDbLXH9HnWVvP3jnYXgzV6zrshcv4QXUNB54q8FvPW5zZiNonZn00Y7uLavP9N7b2vVVRn4PfQdoLZK+h1jPnxZBbX5hqG7Nt6jPy2IB6Ds5XqC3z93oxFv4tBp/YEEIIIYQQQmoPb2wIIYQQQgghtaf+UrTUx1mBVEk9yoRvrfeH9KVR5lG8eszacvYxvZKimef9241Uy4vGNI8udYzygJGpeVI089x8i5KbDZhnerrNxj1r+ZmVqel10Z9F/Ihn+33HjM5HS8yCCO3EN0hnvakXRRBKYlu/8J7P2sjWaJOfEGtlAmqTBtKHREkVlMuILzezK9BUcreyZaUAWrflb/CGms+ZY0Ta4/XmrNxsQEkUjVymbKo2Ox+Ke7ayNbU6VgqB9pO33ZD0L0emFutH+kLRDmVJ3Tuqjzn7E7xh3qsfK9100Ql/tax0Bcoj4zIXZ2XaWtYDCtHGPc9rbut8Ht3DX+/dGts7nweBFM3iyZTtenpvX49Ldex0A0l3kEwNveEdvandyoF6GJ0bQ39DFFGO6tkuH711Q/cNztXwAqy2r10gkkm3/Voo9TUG/NazaEnZHq0Rr210j/HPuzW3e2229mPLC6Roar3td0A1DOVmqC5NW8OLkAbzgXq2wHru1p9xz4QQQgghhJDZBG9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/j40mIwJRtwWzVfR1aH/ImNF9ah2ojn7e0dfEITfGxYTbjXelqcZ5zIgdm0qE2DCCxKbqO8cIKLeWg+rzHNM2Pv1Y2/fY6HWz6+m1tU1b23xf7ccBum3raYKRnmA/Ie9Vsq9mEjrmuIvGUDXyF82HPB9WG+3FFtsZnemr/Sl+m/bV2CROz89m9z302Ki2Ab9NT2u/jYgf9xxEOqsynTDuGUQ6w7aiiLYl70NDsq+G/pue0BgTaeysj8RtGkS3Az9VAepHkC4dxeOqA80OqU+dwXFuvWU6Ntr45draBwCK0kbg7qE8NtuH/S813Nra+byhMT86ZvgqgKLr5x2dgcfGehLUNIp0Rv6bHE9CanRublRutA3Ub9CEahZ4Nb02cP4PUsi15yTYGKqf2fZ2d4vnsbHeFfX7oh3/7WHRXhldvyIio8PxNlv7seXZdUFxz7aGRdesWZyuZ5s8DSPKQRR0L3xhlm717Rj3TAghhBBCCJlN8MaGEEIIIYQQUntqIUXzIgErjoHePh/EE+rHfjY60JNG+feFTaWzaZvHmA0dadyYIO65rSRl5hvr6aCtHW9rqmkbBe1J0dqDflt7XIo2YuOelcRsBMjNbNxz207rbQPkfYEsELS5xJoJ6yLyeaKBKpITqZksR8qQCXjHQel/Qd3XKsEadns3E+PTzaNqb5E2ClprawKZgoqQnuOvXKnkZ/bt6Fo+Y6U0uq+dL5SbAUmZlj4gWURGBLBuw28Hj0s2SG+oEveMpIVBdK73pnYzWzwdHb+mwA/yNaui5Cmmfkp7/VMr4Mb8vlo+M2qlNKpo7SsM9mo+Or78fbZF21pmo6NXL4yN6fU0G1FNh9Izv6te1aBNS36QrAe+xd1vQ7IeGOnco7hnb0hUs7Zv6qsBcq63ioZZIoqCLmz8PohI17VRmpodA9JKLSnbq7nFX4G9R1Tbo15To9hnfHlmTH3MBLI4XcOjfputYa12C9ra8bbkKOheySczZf/2+EPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT218Nh4QI0mivW187luHx+fjkdFav2mscp4Ot/CRDpr7fKoiTu2fpjtxfhusZrnfrC5PdT5/Kjx2DzWjsc962nrE9Jxz/b72kjnUe2xMW16m1r/DdKUI1MCinGsDTmRzpX9N5HPXfrq7W/9OP68RvOrPpdhEK36bAdVvazHRvto5hit/4COe7Y+obhvBnluUDR04NFLjN7GPpoJpklfabSdNMbC87ILTHHjIL8c8mFBvwI6zqwnTTcFWb3Kr1bY61183ZzR6LfHxlfInvPteV2zqPVI5/NzFv+X17Zva/P4os21cLSML69U0w54ElC8847p8c9BpLP2MiBPQh/8CkFbcAGM94UgH00Rb9TrBusZReObevY2TVDP8Shom1guo2pMez5W023jxRoFPmHNooGN3vQfLBmvYV2/O9ZN/Q40F0q9PH0sifg1HEQxj8ZrOIh01m02Chr5whI9Yzk16/VLqFHrz0XwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFqwqUKrloVyxTM7Ip9bko7ONR9SjRrEpRxGU2OZTe41kTj6jWe9Q889WSssfKOdG2INJZPUrV0jMR/7GqlakhmYKN7dRtdnuXXltcboYjnTNydfuvCsQSlarxsVoKAN/8bGccbwzmC2QD6hG32VAoalavuJUp6D/oOGkzm7SN3MyhSGc1baVoukyRvCzoC+QV9p+OfJma35a6f1EbjJAmPSEW91yAt6NbHDxe45JIT/ID5KFVZT3o+BQRKb36Ndc/dYxuH/CvB4+OxiXN8xvjEc//ctC1XttN28Y39JYx8yqCUXVtGvHHbG9X62YlZEq60zAyHivP8SKdR/02vS/wW9zj8wWRzl48rt3Buk3S23qE0wOj84yRe3k1C6Lxw0h/1WTPx+C6FUjTJH48aT9B2TRy+oHx6S3b47+L5jX8iPJ/OujqzudbRvx10zWs61fEr2GvfkW8Gi62m5oFNWzbkHzSq+EyvS010tm+TiLWL0bRRf4bg09sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb3HptBeiiCTNj4f0mgWoM2pGVEUdOC/8TTVZsXa1Tw2pVk3HUloowRHGuO7epPRKupxRoxXRo+53awninTWvpogwtmsN/TRAK8M2odepCn0V9k2SWMyOmbkl+jBfIEuX2uVkXcjiHvW236CY0vHPQeRzi7a5nmDAj+K0hUbfW45oP038fkCr0Ez3qa3WxDvbA9R4JVBHoleeGWq+mbQYUDSaYyFUf/dQNsXxazrWke1FezQVL+CadOHViMoSusbUrVtDlj9fbc3ff/AI625nc/3DSzw2r4z+OzO5xcO/dRr++am54zP9+he/phbx8ccHTE/ZUbGD9jGiHn1gvIoNIxvBnkSwujceJsA/43nozHntVS/Qhj3HG+rTPxUHdS2X89xrxk8V9pLTNn9s4iI/pkSHopxz42t79JbN3+kMVXDm1pDXtt9c8Zr8WpVvyIiR+17R+fztx55jtf2q83jtb9xy1yvbXSb+lIj/gVH13Aj8NiImdZx5qYNeb8q+sK8Gs6oy9yadWMT99kJn9gQQgghhBBCag9vbAghhBBCCCG1p/ZSNEjqoy4gcbJyL/3s0sZ0amla2za2wT1k0zz3A9I0L9LZrFtLPa8dM5KubcX4rrZvcNbjhPI29fZdM6aWuwVt+i26dswg7rmI9tXbNIx71o+xrRRNktp69di+ZxGbnlQJRK8iGZNtQrIXtC203Kri26tF/JoN38CuIqWttBNIa7C8Li4F82Oa43KzQDIBZGvBOLoNRG8Hy0DSsMTo4CxpI6lEJSkakBZaaYfXFkh30mRqSNZjU1e1csimDzdABLz9Um11wnDmp8VW9fm/3LDX9r2xp3U+3/XoQq/tt4+O9/1/j+7mtT22ZTw61231l9fYpqQ7JnJXS3eCqFwb6awuzfBN7Ui60wZyM7vBXbwtWdZjmcS52xsGRZT3oJ7tbw/dF9UsfJ2D+HYFHGdufl+oz9vEjxr/rarh68ee4rW9bss+4/0e9Wv9YVXD27b4EdLuMfUbbZuRT6oankg+qduDSGcQ9+zVM5CbhW1qwm57W9+azIhyStEIIYQQQgghswre2BBCCCGEEEJqD29sCCGEEEIIIbWnfh6bHC0pyidE3gIXF/A7HU0cCAjH2wIvQWO8r/USiPgCfteICxMd8MOMKh1kszBxgYkmEDumXt6YEXXrmGbrsdHTQdyz+f5jIO7Z+752u3lxxGD/gvkCwGYqoAmiIqneCTFeGeCxsbsaaqOBjwWuDNxQYJzAshaPdPY1uOnb3otGRv6XQO+tJlCbmDjoquOgfYFiuYFPKYCem57TaDtpjIXbPDheoxMiTh+IKNrb/tOjmob+G+tz0PUK/De2lMrAA6LHsZ2RH3L8p8bWUb9tZNu412D9f8/z59NezW3G6KYjcG2kc6InIWgDkc6BX8Hz2BgfDfQrxNuwxyYxVhcxUb+KXj5Yz/qcG//JJE0b6a92d8Ncw70o6Ak8NnqRTevjAbVf6N8lbX++baqG12/zf0Y/pGq4PWaOAxXjXASRzuPLaNpI5+3qM4gkF0n30QS1rmo4qD3dF/howm0ocbzr+8QF7Lqcc2PwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFs6TKZ8Cb04OnYPqxZ/BsTc1nH4+qvoFsSt1D2tQ6+1Z3/UTWSsN0HHLTPO7XcrMmkLOhuGeLlpGhdbFyM0/CZqKuw0hnLUWLxz2Hb8wG8aagzZchIh2IxMmK0EQayfjiA/EXkJQhqVIgZ/Ea1eesf+bIkKaBdfGjIuMygWDpMO45sQ3IxOAb30X8KGwgFwrakMxILw+pJyvGQlOW1huKMZGd5YCOV38mf1JfK7AULS6lDGSdStliZWqlOglORtajCeLZgcSqMTq+cuV2I895TMnNzFvr9TLCWFslY7VyHCQ301Id8GZ22x5K0dKkO1iKhuS38fmwZDreNhmwFA3Usxd/ny4N1j9hXNP/Uuh1DjazXG+3shVvC+pZ70NTe6WSirnHjAxfT9rjYAzUs6q1QG6mI8pBjdpxsBStD/JJZ4/f7v0sKTVbtifusxM+sSGEEEIIIYTUHt7YEEIIIYQQQmoPb2wIIYQQQgghtaf+HhtNupVhAp+F+gh0/kEEbOCriQHEpCIiynNi/TdaT9o2wkTtq7E+lqqUiT4aG+HstQFPzY7peKSz57EprfEB+GH0ODlR34g+aZejoFhfa7IBX9crk7j1a3JfT61PGFOttOgwkt1vgt6g5PUCYyItuPXUwL4V27IinePzwUOdvpqeU7SdFI97QXJ8NRrfr2C9muqz8Zyg+tUegdIkI/fDr+DMMjz9/pg5j6tfGtbz4h1rwLoX6P61X2HMtqnl5fhm7DiJPppgGcBHg3wHKDpX76iwDcxXkbz4ct0GfDRFvJ5hND+IKHfWpwQ8ZHYfer40VF/ml3Kpa9iuN7Bo6+PJHiOexwXUZVij8WkbQ94Ay0A+Gl3D2GMTHzM08MXn60a3iP1o3+SeItJut+WMM86QpUuXyty5c+Wggw6SD3/4w96Pb+ecnHnmmbLffvvJ3LlzZfny5XL33XfnLIYQQghJhtcmQgghIpk3Nueee65cdNFF8g//8A/y85//XM4991z52Mc+Jp/61Kc6fT72sY/J+eefL5/+9Kfl5ptvlt13311WrFgh27Zt6/nKE0IIIbw2EUIIEcmUov3gBz+QV73qVXLssceKiMiBBx4o//iP/yi33HKLiOz4F7HzzjtP3v/+98urXvUqERH54he/KAsXLpSvfvWrcsIJJ1Rby148Wg0e3cajoB16rAsf26vYYvsMH62a0ato+UFhH926eJuWg1kljSYcM965BN9XT9soaD1t5WV2HCRFc54sD8SUBsvQE+LTj0jnHOKl5z/Fz5ARpUZBB19Jz2dlU+mLj45pVyj4vlpqg96mjVYmVfJj+troUQEysZxIZxjNnCxPAvOhCPpZKj2bymtTY8wFkfldgfs6rldBb2pHsi3vuhFIbrSk18xXUdYTSNHUtAPyLyjzBFI0JNsK36Le/bOdtvIWGNsMpDtBdC6U9agJEI+L5WbxmGgLfPs7AEqBAylaYj0HNavqEsgug+u7rjUgmxIRKcHvBFizus1GKqPjEP32SqwLJEUL6zkuNwvipmGkM5BdwrjnuEQS1h6q5y70TYp25JFHyrp16+SXv/yliIj86Ec/khtuuEFe/vKXi4jIvffeK+vXr5fly5d35hkeHpYjjjhCbrzxxpxFEUIIIUnw2kQIIUQk84nNaaedJps2bZKDDz5Yms2mtNttOfvss+XEE08UEZH169eLiMjChQu9+RYuXNhps4yMjMjIyEhnetOmTVlfgBBCyOyG1yZCCCEimU9s/vmf/1kuu+wyufzyy+X222+XL3zhC/Lxj39cvvCFL1RegbVr18rw8HDnv8WLF1ceixBCyOyD1yZCCCEimU9s3vve98ppp53W0SMfeuih8utf/1rWrl0rK1eulEWLFomIyIYNG2S//fbrzLdhwwZ5znOe03XM008/XdasWdOZ3rRpE76ABCJNre+zPguQc+vi2n7kwfCGtHpkrbu0kcZK7Gi9Ig2rLVULCdp0dK4RNOpRkzTgCWivTJg+WXT9LGJimkHbjnb1GURKB7Jibz8BoSvQKsMo6BkG8mBoiTPSRlvNq9fX6mpzoqD1+lhdLYh0Tj7WqpIRmyxoG2bEPaNxHFoGGpNApvLa1Bh10kg5UQA/lz53233tRSoH0bloviLapg+mIFa37P55x5jm+qM0+tq3I2J8D/aNBlU9aalRssBLELapayjwzdh229ZAUdAg7hlGWCfH6qZ7bLL6aetIO95WuZ6D2ovPB/03ntcrXs8i4u9/40fRcc92nAKdj1Nj+20TivpG/pfE2HHbHsaQV/PR9KIus+brQmO0Tx6brVu3SqPhz9JsNqV83J21dOlSWbRokaxbt67TvmnTJrn55ptl2bJlXcccHByU+fPne/8RQgghqfDaRAghRCTzic3/+l//S84++2xZsmSJPOtZz5L/+I//kE984hPy5je/WUREiqKQ1atXy0c+8hF56lOfKkuXLpUzzjhD9t9/f3n1q1/dj/UnhBAyy+G1iRBCiEjmjc2nPvUpOeOMM+Rd73qXPPjgg7L//vvLO97xDjnzzDM7fd73vvfJli1b5O1vf7ts3LhRjj76aLn66qtlaGio5ys/IUCJhuVI6vGojQfU3ezzLv3I2UZaaomVeaYeKHe8OOD4I99Aiqa6Bk+RE6VpKPoZScHCKOj4mGE0c+I4pd2mcZlaL+RmVtoIx+wVQCrlR0GjnOiMMdXnsJ5Vv4mioFOPNSuF07OhfVgVFMVZUaYmYrYVkqnB2Ob0dUOqSzhmrN8uxlRemxrt7nHPMOYV7E8Yzx7Ic/TnuEzNHjsNfY7NidUF0lUbM4ukaDCmOrEuYfyxkXuh6FwoucmQ7vjRuSA2OpDQASkckMjj6Nx45G6vQDXb73qGMjUrl7Qx5EiiCWRqSG7sx1tLOkB+BSOVQVtluRmKKM+o2WSJpB0T1WkXaZpdX0ThXE+U7D1j06ZNMjw8LAd89CPSePyCA/Xs+iQdFF+8TVCbHtP+EPSWZ28s1M63OlN0Q4LGCX7cpt3YWGbdjY3uG8ynFxD/JVig+ewNL/jxHp5cinjf2PLMOHDMDC06elcMfKdCzjhg20T7dRmnEjP4xgZd5MNzme5nf7WCMYvu/cK28THLbdvk13/9fnnkkUcov1LsvDYd9bIPSqsV3gzBH+jWK5Nah8GPvdQ2s26eX8G2gTGbqK9E+/LGpvt6BmPW9MZmRtdzULPxvtpjE5wfeWPTfcxpurEZG9smP7j2g0nXJVpUCSGEEEIIIbWHNzaEEEIIIYSQ2pPlsZmRgEdd8BGhp+0Aj8/sbECq5EfnWrmIehxqxizawEcTyNS8KdBmllHx+TSKW471s32DCOdgZq2XBeOCmOhAbobqAlH1MX7V+ZAfBfRFEqdgSN1mH6nrx892Pt3XPka2fdH2Bv4bXZbQt1OVHNkL2r4ZEbWwDUjY8P6Ny2Mr2736pVnZxSnGnBRdijPYDd4fjH7fkwHa64g+58XP/1gKVtGvAGJ1w76mrS3RNi11zInH9RdgZkuU/+ZEMVftC+NxgVQIytQC+S9oA4dySpRuN4JIZ39Q01dN5NQzlJtFxpAJ6tn+TmjG+yL/DYzmB+djSEXpd/WaNW3teA1Vr1k1YeV13jEK2hCP92uMpdcxn9gQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNpTf48NoPD8IcAkgKKCbbRqGdcj47x0rcm0RgN/0rMkAP8NEimGfptqQnwoz0UxzZF+XccE0dD4XTXxiOPKbZH1mrBvBp7nJdFTEywfeDAc8F4F/i7vHRbxxQeraesblCX2ZsXn6wc9i3tO9eoE2uy0NqhhT1z2hH1JJRqjpTTswSIC/5kw8CvoOrDHnT6Wbd014wez1rr3w3+T1TfHd9aLuOeqUdDAG5PTt7KPxkbuQg+G9keAkyWKhc4g8JF5MfYV67lp6kn3tf6X1Gjx4PdF3CeWU88wproH51XkcYH+m4lq1qX1hTULXudglycoXhrEl0f7RWi00wubT2wIIYQQQgghtYc3NoQQQgghhJDaUzspWiBzQXqZ5Dag+UFtQdyzfiQHHl2iKFcR/7kukKnZdYPSoR4Ax0Rys0CahKKZ0ThWpgba0HyxfuLLF6cDpDZz8bIwbeZRvHqMbh8Ve8vLiYI208nFByJbg9l6UcRo1+dI0cC4ULaWEffsUscE60L6T9Eupej2Gnj7Rm51Hg+OSX282re4K7mOlRR7yg4rV0QyNT1fjqyntOcS/dlKqoFMLVVKmQOQovkRtLYNSWdA3xzpTqLcLJS+xcfUOz+U3iG9b7wJYveT+v5Bzep6tnIzfRwE9aSk5k3x25BMLVF2GSwjq55VW1AYMnnAMTrtNWvH1DHRVormHYdWpqb7IdnlxEVajFGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPbXz2ASg7Fyt/TOiSC8SEBkWAu0fMBPoaGKgkQ9001CjD5aPYqJ7pGPGcc9ovsS4ZbsM6JUB49i2EmyA1O8E4wnBGDnkRDrH+pm+YZOu9figwXxafwziVEUm8Mr4K4MX2meSLVRZxyjomxUpDc5Jif4bWNr04vSExlj3uGe4fQP9fvy65b82wPgovXja+Hk08BnolQORxhP6FXTEP/ArZHlMqwI8Np4fJSO6tlcRuMiTkOpzCE660MsA/Dc9wtuHqJ6tB8OLATfz6foCVmNYz8F2slHU6pgJfDz6WIv7aMJzbg+KGHpOzOK039XOlxU1HuknGT6atm2r6r9JK9Sd24Vxz4QQQgghhJBZBW9sCCGEEEIIIbWn/lI0DVKNTdQ3Np+VNOnnhfZxbOKgUN0m5hFsxZjXYBGJz6eDKGbYGbWB7wv6hnKzSL+gDY0fn86Kd54KLQ94wu6JIOPJlAHeMPZxuxooUHKiR+MZfeF8qTHRvSI1/rlfcc9AZpr8dvacMqT8rPeMOQlery5dNrX+Z0NzHdFxuUH9NEBx6XHsP0sCWY8+7otAwtZ7WU9ObYPFYVkVlKLpNiDdAVG5O6bjbfCN6yjuGcjNfJla+nz+epl1SYjS7QwLJFZF1Xpuao0iuP6AmGhUz2LmC15poNcb1bOVYerXJJjFo8JE7gi/ox2ymoQsq2/FmkVyM1iz3u8C8KMhRWVm1wnAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUw2OjpXU5mnGk9deeF9zRjAliDb0ITzsOiHK18ceJeuScxEHXB7E9joLOMABV9dGkLiPQsqZ6euLDZ9GriOPEr5uXEq00xmZOOA74TkhXXDU+vGdU9axV9dEEy3DxfqnrBg4Remr6TzHalqJshw32nwl1F3uy1tPGI+D7aEwb8t8gvwLyPOrrmF0X5AfN8Cv4vlHg44i2dOmb6EmAXgYUtyzmsg28MoGXITnuOcN/04635XhuEN72t/XseajifpjC7nu92sh/E/ho9BjGswXq2Xq/4DVdfyXrzUHnXPBIILWG7fJgNLJuC+aL14m9FletWT/u2V8B6P0CMdV+Pv3EF/+i3eWcG4FPbAghhBBCCCG1hzc2hBBCCCGEkNpTDymaBkXgVtT8FGa+ZGka0uNYvAxAOyaI70Nvip9u2UlVWRGSm6FxKsrbsiKdpwIt2ciRf+nvlBP1jcb0+oGIVis7AQsJnion6uT69cZsTdX49DyZ2uTlZjOtZMk4RbsthXSRRdhXA3gzAelOkHEMZGpIA4MkN3o2K9Xx5G4grlX8CNzgQAexut6YKCrXypiQjApdppHczJP1xONw7fLz3tQOpGhaUlaW8Ta7fT2J0eRkPUmAenYNf0ehKGi9T61EslCx6S6odS03A9dJdL0RMZI201XVc3gYxu0DqC79Yxv9JoxPh/HlQF4WRDPr9cyo2TJeX5VrVq83iJAO6NJGKRohhBBCCCFkVsEbG0IIIYQQQkjt4Y0NIYQQQgghpPbUz2PTDwLfTg+ioAMPQjyaEhomEqNjp4VUI8BEGtgqY9pxgkjPalHQyNNTpM43HfQiChpFOCP/jf2D1SMnbpteScMhqSU7UT/ko0HLS/XRoPlQXxQ9Pd3ni12FsbaIS9B7e/H/5lzieVX8f1/UXgN7HvP8CraAtF/A/JtlcgRthgweXv8CI0DaykBPjQWe/3Vb3DeE/Ak71ifuEYCxzSoSF8fq2ozhRE9COz5frnfBA9Ss161p/Rmq9qz/Rh8rqNZz/p1dL36C2Qq0afT+NdHq/rkTtNnlpXq7M3w03noGnjFUlwLaZlDNWrq10WNDCCGEEEIImU3wxoYQQgghhBBSe3ZtKZqfVxvvByU4IAoa5eqix/SWLNla4phTTa/kZVnjjn8MZBmJ84WSshm0TVHJAKVHqizN9kVKpQmTzYv4Y3S4SVEMer9BsbNZr0CfYDo2boYUzYG2ysygUq8TRbvty2uiHbU8B8Q2B2+7b6huVlKm4nGh3MyXfei+cLfn/FOnHagB2vrw2oJUuVm4fdVn8IZ1kYx4XPQ29kDCVia2AemOjdxFb3+PjdENIEWDUd864tjK1HQ9m7rU8rOgTReGlYk1E+tZBNd0gb4TGKMXNWsp49dQGOGMYsFBfdemZjv9KUUjhBBCCCGEzCJ4Y0MIIYQQQgipPbyxIYQQQgghhNSe+ntsPD+MaYJ+lGrRp9Zz44+Y6I0JBzUD5Zgkakiq/8WQHOE8UVviNpyOdFyUmOphJfvgOEiOOAbzBesCDifsqbHjzKCCnoyvRpEc41zRC4XGnEkWsV2W0TGRRnPHZxTVr3wBhYm51Xp67RewhIeZ9hbk+GjSvDnOzAmja+13RychtUhbo1VPAak+mjAKGvlmTN9+xOPCNjVtPQm6zXoSdF+7Lpocj43xtRRl0b2f4Br2xjC1p301QVtTzWeLpp3qNfNrOqhnL3Udvd4BmVqrAX00dnmoDcWQB56xGtZspw89NoQQQgghhJBZBG9sCCGEEEIIIbWn/lI0gJeajHVqZsZ4E1xeorbEBXm4cNBq9EqS0gul0ERPv1P1MxUlbDlR1FAW0Q8JG8hGDiQbaF1AaqXXrWJdTBz3rD72o56ztmnFZejF9UiWliU368GYYd8ZJPXbVRhrizTGdnyGUjT174YNsx90XK05YJ2Ny1X4l6b+R0FDaVoj3jcYR0fZCsDGYqdIVCRP1pP8Znaz/GAcFDddNR5Xtdk4XkmN1UVvaM+SojXibU1QX2Yb4stBxShovW72+LH71FsXU8+NeC1411Q7X+o1DkrrkWTQ9NU1hOrZzDslkc6q3oKa9eoS1LOVt3UboxyL9zHwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189ig2NkM3X8/oqC92YCQOPCU5MTj6iYk9JwCaX2yN8aSs26pfTN8NJrKnpp+bV9gDPOioCsODyXWGWVZOe45WKHEfr3yjE3xOJV9NBl9GfE8tbixMXE7Nf4FiGrWXhmrIddZttavoLwMrohrz4NDsAF8O57nJB7THKTa2tVOjM4NVq5IPHm1M06sif4FGOkcxOpaH40ax66b54eJjxPG8ybG42bE6mqfgwtidfXJGXgZRPx6bqT7WjwPWavptyH/hB4fREFLYcYs9H4xA5muXu2jejY+OK8tJ+654m8Wbxl2k3n1NME4OtI56IvqsgeRzmg+6/3S5x3rv/H6lY//jx4bQgghhBBCyCyCNzaEEEIIIYSQ2lM/KVoOQBqGVVyJGa05UrCqjy5zJG0ziapSrcrzVZSb9Wr5OaTGiedEQSfKIHOYKBnUX4FKTb2ThvWYSZVB6nfK+O7Jhzoq9hm6rWtHe0yk7CJFM1HFTst+mr4+Bh8TIDZZS7qsbEpJSQKZsvfWeCDNCuKrwasJSr+vlvKgmGh4fc0gOS53ErIeX8aVIWnTbYEMEY2ZFgXtxowsx4uwbsfbcqRoRiLpRXbbSHJdN1aqpMcIlofqUh0HRkPmxZkb6VkY2wzWILGeLb2o4aB+QT3BaHHUN5CNxeWxBapLT5KZEemsJZJAPhkeB11q1lGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPfX32KR6C3JibhMF9lk6yxwvRep8uwoVvUJZ3hlveVM8HyInaTwxCjpncZU79yaVtTp98BRVpmrqedX1rlz4pBe40TFxO70IOmLZ+lOaVvyvAF4ZT6duxyxBWxHXyGv9fJBc6+Lr4swyvEXkGEl15G4/zggoOldsm54vw6+A+qI2Gzed6ldAngQ7pvbcmFhdh8Y0FLpmrR9HtTnjJytslK/XqLwyZr1do1rN+oPY+UCcufV+oXrWnhvzCAD6u1LJ8n55K2rGiddX1eUHY+q6Qecre/7wPGOmRkAUdLeadfTYEEIIIYQQQmYTvLEhhBBCCCGE1J76S9E0VeNpKz5V7JkCpqImZSalPU+LOqYfy5xulU/VKOhEehW1imPIe7OIqsvvB1NyrPViw82gc8Kuihtriyt2yCK0/MyhSGcbBa3fDh5IyoBMzRsEtAWRt1raASRsMCpXcH1plZx9i7v3newywJjeIPGmnOjc1DGzQLKeYJlov8VlY748x77FXUVBB5IfFblrZVtm/3rttp51FLRdBqrZxBjhQP4E/tm9APKyAD1uMy5TK8w4njTNHjOanMcDE6Rtp5Alg6talzn1i6SOKC5d12VCzToH5I4GPrEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWnFh4bkHJbnV5oa6tqhXvErEt9ncHfty/7oh+1PgVFM5O8X7WF23DGsiPu+fEdpHwIQXK7joK2/oFCR6Sm//uiHieYrRcRtBOhl2H9N5XHVJ9z4u8rLy/R42L75vgVUvshv4LF898YDxOK3PXajG/HLkPXs92/el77ugHPq2LQ65pTs962N6OiQybIM+/zybSqbyarLuJdYTQ0GDfHq1Mgrwxatq4ZW7O6r417boeeMcY9E0IIIYQQQmYVvLEhhBBCCCGE1J5aSNE0M1p+NZPXjcxeKGsipHeUbZHHo2+9U759G3sZlwAl/5tiRXmZlZn0LObdW4Y/jSSoXjwvkgZlfN2evP29X4B1C2SJFcaA2MhdHQU9ZuQ8DRvpDCRHXmxytVXrGUimBtYtOC76LVPLoB+/bSsfI/04tuw5UNWpjSH34p93Rpsz7pkQQgghhBAym+CNDSGEEEIIIaT2zDgp2s5HUuW2bdO8JoQQMvvYee618oDZzs7tMSaj45IpJa+wso/Ca4vLMIrgbd1KclGYf3ssxnU2rm01N6qviUxzahwHUthcadOu7PL1Z9NXS/HAP5n2Sv4DZTZ6k9r94iU8mTHb/r7wlmGUMN5+a5tlaCmNHVPvX7TvS5MU5UkbfUmZlxjlRk1bu3u/HYP66wZq1psO1lvXs5UMqWIo/Zp1XqHE6zms2QK0+Xg13QA1a+sZ1HpPCM4X8TZdp8F5xkob1XTRtm1lUptNKfNq3e5f0OZKXZfxmnVGZubX8462MRl9vG3i69KMu7HZvHmziIg8cNZHpnlNCCFk9rJ582YZHh6e7tWYMey8Nt0g3x7/o/59N2JmsNOEzDSs9UtPjwohM46U61LhZtg/y5VlKb/97W/FOSdLliyRBx54QObPnz/dqzWj2LRpkyxevJjbxsDt0h1ulzjcNiHOOdm8ebPsv//+0mhQrbwTXpswPJbicNt0h9slDreNT851acY9sWk0GvKkJz1JNm3aJCIi8+fP506NwG3THW6X7nC7xOG28eGTmhBem9LgdonDbdMdbpc43DbjpF6X+M9xhBBCCCGEkNrDGxtCCCGEEEJI7ZmxNzaDg4PygQ98QAYHB6d7VWYc3Dbd4XbpDrdLHG4bkgtrpjvcLnG4bbrD7RKH26Y6My48gBBCCCGEEEJymbFPbAghhBBCCCEkFd7YEEIIIYQQQmoPb2wIIYQQQgghtYc3NoQQQgghhJDaM2NvbC644AI58MADZWhoSI444gi55ZZbpnuVppS1a9fK85//fJk3b57su+++8upXv1ruuusur8+2bdtk1apVsmDBAtljjz3k+OOPlw0bNkzTGk8P55xzjhRFIatXr+78bTZvl9/85jfyhje8QRYsWCBz586VQw89VH74wx922p1zcuaZZ8p+++0nc+fOleXLl8vdd989jWvcf9rttpxxxhmydOlSmTt3rhx00EHy4Q9/WHRuymzcLiSf2X5dEuG1KRVem8bhdak7vDb1CTcDueKKK9ycOXPc5z//effTn/7Uve1tb3N77rmn27Bhw3Sv2pSxYsUKd8kll7g777zT3XHHHe4Vr3iFW7JkiXv00Uc7ff7iL/7CLV682K1bt8798Ic/dC984QvdkUceOY1rPbXccsst7sADD3TPfvaz3Xve857O32frdnn44YfdAQcc4E466SR38803u1/96lfuu9/9rvvP//zPTp9zzjnHDQ8Pu69+9avuRz/6kfvjP/5jt3TpUvfYY49N45r3l7PPPtstWLDAffOb33T33nuvu/LKK90ee+zhPvnJT3b6zMbtQvLgdWkHvDZNDK9N4/C6FIfXpv4wI29sXvCCF7hVq1Z1ptvtttt///3d2rVrp3GtppcHH3zQiYi7/vrrnXPObdy40Q0MDLgrr7yy0+fnP/+5ExF34403TtdqThmbN292T33qU90111zjXvziF3cuHrN5u/zVX/2VO/roo6PtZVm6RYsWub/927/t/G3jxo1ucHDQ/eM//uNUrOK0cOyxx7o3v/nN3t+OO+44d+KJJzrnZu92IXnwutQdXpt8eG3y4XUpDq9N/WHGSdG2b98ut912myxfvrzzt0ajIcuXL5cbb7xxGtdsennkkUdERGSvvfYSEZHbbrtNRkdHve108MEHy5IlS2bFdlq1apUce+yx3vcXmd3b5etf/7ocfvjh8prXvEb23Xdfee5znyuf+cxnOu333nuvrF+/3ts2w8PDcsQRR+zS2+bII4+UdevWyS9/+UsREfnRj34kN9xwg7z85S8Xkdm7XUg6vC7F4bXJh9cmH16X4vDa1B9a070Clt///vfSbrdl4cKF3t8XLlwov/jFL6ZpraaXsixl9erVctRRR8khhxwiIiLr16+XOXPmyJ577un1Xbhwoaxfv34a1nLquOKKK+T222+XW2+9NWibzdvlV7/6lVx00UWyZs0a+eu//mu59dZb5d3vfrfMmTNHVq5c2fn+3Y6tXXnbnHbaabJp0yY5+OCDpdlsSrvdlrPPPltOPPFEEZFZu11IOrwudYfXJh9em0J4XYrDa1N/mHE3NiRk1apVcuedd8oNN9ww3asy7TzwwAPynve8R6655hoZGhqa7tWZUZRlKYcffrh89KMfFRGR5z73uXLnnXfKpz/9aVm5cuU0r9308c///M9y2WWXyeWXXy7Petaz5I477pDVq1fL/vvvP6u3CyGThdemcXht6g6vS3F4beoPM06Ktvfee0uz2QySQjZs2CCLFi2aprWaPk4++WT55je/Kd/73vfkSU96UufvixYtku3bt8vGjRu9/rv6drrtttvkwQcflOc973nSarWk1WrJ9ddfL+eff760Wi1ZuHDhrNwuIiL77befPPOZz/T+9oxnPEPuv/9+EZHO959tx9Z73/teOe200+SEE06QQw89VN74xjfKqaeeKmvXrhWR2btdSDq8LoXw2uTDa1N3eF2Kw2tTf5hxNzZz5syRww47TNatW9f5W1mWsm7dOlm2bNk0rtnU4pyTk08+Wa666iq57rrrZOnSpV77YYcdJgMDA952uuuuu+T+++/fpbfTy172MvnJT34id9xxR+e/ww8/XE488cTO59m4XUREjjrqqCB29Ze//KUccMABIiKydOlSWbRokbdtNm3aJDfffPMuvW22bt0qjYZ/qms2m1KWpYjM3u1C0uF1aRxem7rDa1N3eF2Kw2tTn5ju9IJuXHHFFW5wcNBdeuml7mc/+5l7+9vf7vbcc0+3fv366V61KeOd73ynGx4edt///vfd7373u85/W7du7fT5i7/4C7dkyRJ33XXXuR/+8Idu2bJlbtmyZdO41tODTp5xbvZul1tuucW1Wi139tlnu7vvvttddtllbrfddnNf/vKXO33OOecct+eee7qvfe1r7sc//rF71atetctHR65cudI98YlP7ERq/uu//qvbe++93fve975On9m4XUgevC7tgNemdHht4nUJwWtTf5iRNzbOOfepT33KLVmyxM2ZM8e94AUvcDfddNN0r9KUIiJd/7vkkks6fR577DH3rne9yz3hCU9wu+22m/uTP/kT97vf/W76VnqasBeP2bxdvvGNb7hDDjnEDQ4OuoMPPthdfPHFXntZlu6MM85wCxcudIODg+5lL3uZu+uuu6ZpbaeGTZs2ufe85z1uyZIlbmhoyD35yU92f/M3f+NGRkY6fWbjdiH5zPbrknO8NuXAa9MOeF3qDq9N/aFwTr3ilBBCCCGEEEJqyIzz2BBCCCGEEEJILryxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7eGNDSGEEEIIIaT28MaGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG15/8DDbwFDayzgUwAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 720x432 with 2 Axes>"
+       "<Figure size 1000x600 with 2 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -889,13 +1021,13 @@
     "print(f\"NAG driven Jacobi on a {N} x {N} grid with no acceleration\")\n",
     "print(f\"Solution found in {NAG_jacobi_info.iterations} iterations\")\n",
     "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 6))\n",
-    "NAG_jacobi_sol.shape = (N, N)\n",
+    "NAG_jacobi_sol = NAG_jacobi_sol.reshape(N, N)\n",
     "axes[0].imshow(NAG_jacobi_sol)\n",
     "axes[0].set_title('Potential')\n",
     "Ex, Ey = np.gradient(NAG_jacobi_sol)\n",
     "E = np.sqrt(Ex**2+Ey**2) # Magnitude of Electric field\n",
     "axes[1].imshow(E)\n",
-    "axes[1].set_title('Electric Field');"
+    "_ = axes[1].set_title('Electric Field')"
    ]
   },
   {
@@ -908,7 +1040,14 @@
   {
    "cell_type": "code",
    "execution_count": 22,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:41:13.939861Z",
+     "iopub.status.busy": "2024-08-14T18:41:13.939642Z",
+     "iopub.status.idle": "2024-08-14T18:41:17.115177Z",
+     "shell.execute_reply": "2024-08-14T18:41:17.114172Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -922,7 +1061,7 @@
    "source": [
     "N = 100\n",
     "x0 = init_problem(N)\n",
-    "x0.shape = N*N\n",
+    "x0 = x0.reshape(N*N)\n",
     "NAG_jacobi_info = NAG_solverinfo()\n",
     "NAG_jacobi_info.source = source(N)\n",
     "tol = 1e-9\n",
@@ -942,35 +1081,47 @@
   {
    "cell_type": "code",
    "execution_count": 23,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:41:17.121312Z",
+     "iopub.status.busy": "2024-08-14T18:41:17.121112Z",
+     "iopub.status.idle": "2024-08-14T18:41:17.126394Z",
+     "shell.execute_reply": "2024-08-14T18:41:17.125466Z"
+    }
+   },
    "outputs": [],
    "source": [
     "def find_best_m(m):\n",
     "    N = 100\n",
     "    x0 = init_problem(N)\n",
-    "    x0.shape = N*N\n",
+    "    x0 = x0.reshape(N*N)\n",
     "    NAG_jacobi_info = NAG_solverinfo()\n",
     "    NAG_jacobi_info.source = source(N)\n",
     "    tol = 1e-9\n",
-    "    NAG_jacobi_sol, fvec = roots.sys_func_aa(NAG_jacobi, x0, tol, eps, m, data=NAG_jacobi_info)\n",
+    "    _ = roots.sys_func_aa(NAG_jacobi, x0, tol, eps, m, data=NAG_jacobi_info)\n",
     "    return NAG_jacobi_info.iterations"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 24,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:41:17.132790Z",
+     "iopub.status.busy": "2024-08-14T18:41:17.132530Z",
+     "iopub.status.idle": "2024-08-14T18:48:45.664367Z",
+     "shell.execute_reply": "2024-08-14T18:48:45.663269Z"
+    }
+   },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAElCAYAAAAlet80AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZhcZZn38e9dVb2l053upDv7RkiQRSFAQJBFRGQTRUdBcAEUQR2Y0RlnRtAZZVze0XHUkRl3RUCRTVRQUUBEGEAICSRkA5JA9qU7Se/pve/3j/NU53SnO6kuUl0d+ve5rrpS9Zyl7nOqUnc/y3mOuTsiIiLZSOQ7ABEROXgpiYiISNaUREREJGtKIiIikjUlERERyZqSiIiIZE1JREYEM/uLmX0033GMJGZ2g5n9PN9xDMbM1pnZWXl8/0G/M2Y208yazSw53HGNNkoi8qqE/8h1ZlaU71iGy2vhmM3sDDPblMP95zUBuvsGdx/r7t35imG0UBKRrJnZbOA0wIF35imG1DC/32zyfMz7YxH935ZhoS+avBqXAU8BNwOXxxeY2c1m9h0z+72ZNZnZ02Z2aGz528zsBTNrMLP/Bazf9h8xs1XhL/4HzGxWbJmb2TVmthpYHX40v2VmNWbWaGbLzOz1Yd1xZnarmdWa2Xoz+9f0D6yZXWFmj5vZf4X3ecXMznsVxzzDzH4V3mtnOK70sqvC8TSZ2UozOy6UTzWze8I2r5jZ3w/2xmZ2kpk9aWb1ZrbUzM6ILfuLmX3FzJ4AdgNzzOzDsfd82cw+FtYtBf4ATA1NPs0hjoSZXWdma0P8d5nZ+Nh7fCicw51m9rn9nKf+sX/bzDaGz2exmZ0WW5Y0s8+G920Ky2eEZW8ys2fC9+QZM3tTv10famYLw37vTcdrZrPD92RY/8gYldxdDz2yegBrgL8Fjgc6gUmxZTcDO4ETgRRwG3BHWFYFNAHvBQqAfwC6gI+G5ReGfR8Rtv1X4MnYvh14CBgPlADnAIuBCqJkdAQwJax7K3AvUAbMBl4CrgzLrghxXwUkgU8AWwAb6jGH7ZcC3wJKgWLg1LDsImAzcEKIby4wi+iPuMXA54FCYA7wMnBO2O4G4Ofh+bRwPs8P270tvK4Oy/8CbACOCuesAHg7cGh4zzcTJZfjwvpnAJv6HdsniRLkdKAI+AFwe1h2JNAMnB6WfTN8ZmcNcp56Yw+vPwhMCLF9GtgGFIdl/wwsA14XYj0mrDseqAM+FLa7NLyeEDvmzcDrwzm/J3a+ZhN9T1L5/n/yWn/kPQA9Ds4HcGr4Ea0Kr18A/iG2/Gbgx7HX5wMvhOeXAU/FlhmwiT1J5A+EH/rwOhF+AGeF1w6cGVt+JlFyOAlIxMqTQAdwZKzsY8BfwvMrgDWxZWPCvicP9ZiBk4HagX60gAeATw5Q/kZgQ7+y64Gfhue9P8TAZ4CfDbDfy8PzvwBf3M9n9pt0HAycRFYBb429nhKON0WU6O6ILSsN5zajJDLA8jrgmPD8ReDCAdb5ELCwX9lfgStix/zV2LIjQ0xJlESG7aHmLMnW5cCD7r4jvP4F/Zp3iP7aTNsNjA3PpwIb0ws8+gXYGFt3FvDt0GxTD+wiSjTTYuvEt/8z8L/Ad4AaM/uhmZUT1XgKgPWx7db328+22H52h6djGdi+jnkGsN7duwbYbgawdoDyWURNSvWxY/0sMGmQdS/qt+6pRD/0afFziJmdZ2ZPmdmusP75ROdkMLOAX8f2vwroDvH0/8xaiGpCGTGzfwpNaw1h3+NisQx2fqbS97ODvT+/jf2WFbDvY5QDTO2FMmRmVgJcDCTNLP0jXARUmNkx7r50P7vYSvTDkd6fxV8T/TB8xd1v28c++kw/7e43Ajea2UTgLqImkhuI/pKeBawMq84kagIZkv0dc4h5ppmlBkgkG4malfrbCLzi7vMyCGEjUU3kqn2s03tOLBo5dg9Rre9ed+80s9+wp+9poOm7NwIfcfcn+i8ws61EzYTp12OImpz2K/R//AvwVmCFu/eYWV0slvT5Wd5v0y1En13cTOCPsdcz+i3rBHb0K5ccUk1EsvEuor9QjwTmh8cRwP8R/Wjtz++Bo8zsb0LH598Dk2PLvw9cb2ZHQW/n+EWD7czMTjCzN5pZAdACtAE9Hg3vvAv4ipmVWdQ5/49ANkNP93fMC4mS41fNrNTMis3slLDtj4F/MrPjLTI3xLIQaDKzz5hZSehgfr2ZnTDA+/8ceIeZnRPWK7ZomO70QeItJEpytUCXRQMGzo4t3w5MMLNxsbLvE52rWQBmVm1mF4ZlvwQuMLNTzawQ+CKZ/36UEfWf1AIpM/s8UB5b/mPgS2Y2L5yfo81sAnA/cJiZvd/MUmb2PqLz/7vYth80syNDUvsi8EvXsN5hpSQi2bicqN1+g7tvSz+ImpQ+sL8RMaE56CLgq0RNIvOAJ2LLfw18DbjDzBqJ/kLd16ipcuBHRO3s68M+vx6W/R1RYnkZeJyoCeqmoR0usJ9jJvqr+h1EneYbiPp43heO527gK+G9m4j6JsaHH7sLiBLSK0R/Qf+YqKmnD3ffSDTg4LNEP8YbiWpbA/4fdvcmouR8Vzgv7wfuiy1/AbgdeDk0X00Fvh3WedDMmog62d8Y1l8BXBOOYWvY5/6uM0nXdh4gqj28RPT5tNG3GeqbIc4HgUbgJ0CJu+8M5+fTRJ/pvwAXxJoTAX5G1P+2jWgww6Cj2yQ3LGqOFhE5cMzsm0SDHD6V71gkt1QTEZEDyswqiIZdL8p3LJJ7SiIicsCY2QVEI62eJmqiktc4NWeJiEjWVBMREZGsKYnIQc+iebq+nKf3NjP7qUVzby0cYPkHzOzBfMQWi+H7ZvZv+YxBXruUROSAs+g+EzUWTfSXLvuomf0lj2HlyqlE81hNd/cT+y9099vcvff6jDAp4NxcBWNhUsl+MXzc3b+Uq/eU0U1JRHIlSTSh30HFhn4To1nAujANSE5pRloZiZREJFe+TnSVdkX/BQNN022xu9SFv6afsGh693qLpjF/UyjfGGo5/efpqjKzhyyaSvxR6zt1/OFh2S4ze9HMLo4tu9nMvmdm95tZC/CWAeKdamb3he3XmNlVofxKoosDT7ZoOvV/H2Db3pqBmT0WipeG9d8Xyi8wsyXhWJ80s6Nj268LV7Q/D7SEK7fT07Wnp5V/d1j3CKKrztPx1MeO8cuxfV4VjmNXOK6psWVuZh83s9Uhnu+YmYVlc8O5bTCzHWZ2Z//jDev9wcyu7Ve21KIZCswGmbZ/gP38xcy+HM5Js5n91swmmNltYdtnLLq/i+RTvmeA1OO19wDWAWcBvwK+HMo+yp7Zc2fTb4ZVohlZ07P4XkE0TcaHiWo0Xya6Cvw7RFN5nE105ffYsP7N4XV6mvJvA4+HZaVEV0d/mGiuuGOJrgw/MrZtA3AK0R9VxQMcz2PAd4muiJ5PdMX4mbFYH9/HueizPBz33NjrY4EaoivDk0RXxq8DimLncgnRXFAloewioskJE0RXxbewZ+r7veIJx5j+HM4Mx39cOFf/AzzWL77fEU2rPzMc67lh2e3A59LniTDV/QDHfBnwROz1kUB9eL9Bp+0fYD9/IZp6/1Ciq/hXEl31flb4LG8lzHisR/4eqolILn0e+Dszq85i21fc/aceTQ1yJ9GP6Bfdvd3dHySa8jvet/B7d3/M3duJfuhOtujGRhcQNTf91N273P05ookJ43Nx3evuT7h7j7u3xYMI+zgF+Iy7t7n7EqLaRyZzhGXiauAH7v60u3e7+y1AO9G09mk3uvtGd2+FaBoVd98S4r0TWE1035ZMfAC4yd2fDefqeqJzNTu2zlfdvd7dNwCPECVO2DOZ5dRwLvr0vcT8Gpgfqw1+APhVeL9Oorm0Die6xGCVu2/dR7w/dfe17t5AdIuAte7+J48mubybKAlLHimJSM64+3Kiv2qvy2Lz7bHn6R/P/mXxKdvj05Q3E00fP5XoR++N1ncK9Q/Qd8LHPlOo9zMV2OXRXFRp/acjfzVmAZ/uF9+M8L4Dxmdml8Wav+qJbsqU6fTnfaZXD+dqJ4NMj0/fKfz/haj2sNDMVpjZRwZ6g3Cufg9cEoouJbopGT74tP2D6f+Z7+s7IHmgJCK59gWiOwfGf6TSndBjYmXxH/VsxKeWH0t0V7wtRD/Aj7p7Rewx1t0/Edt2X1fcbgHGm1lZrCyr6eQHkZ72Ph7fGHe/faD4wl/3PwKuJbrDXwXRBJX7muI9rs/06haNoJtABsfj0aSTV7n7VKKbe33XBh9pdjtwqZmdTNT09UhsPze6+/FEzVyHEU0kKQcpJRHJKXdfQ9Qc9fexslqiH60PWjSt+UcY+H4bQ3G+7Zmm/EtEd07cSFQTOsyi+4MXhMcJoRM6k/g3Ak8C/2HR9OtHA1eS3XTyEP0lPSf2+kfAxy2ayt4smkb+7f2SVlwpUaKoBTCzDxPVROL7nx7Ow0BuBz5sZvMtuufI/wOedvd1+wvczC6yPVPP14U4egZZ/X6iZPVF4E537wn7GHDa/v29t4xcSiIyHL5I9OMXdxXRX6A7ie4L/uSrfI9fENV6dhHd//yD0Nu0cjZR08oWoqaarxF18mbqUqLBAFuI2vu/4O5/yjLOG4BbQlPUxe6+iOhc/C/RD/Maos7xAbn7SuAbRLeJ3Q68gdg0+sCfgRXANjPbMcD2fwL+jahfaCtR8r6k/3qDOAF42syaiaaM/6S7vzxInO1EAyvOIvps0vY1bb8chDR3loiIZE01ERERyZqSiIiIZE1JREREsqYkIiIiWRt1E7pVVVX57Nmz8x2GiMhBZfHixTvcfa/ZJ0ZdEpk9ezaLFunWzyIiQ2Fm6wcqV3OWiIhkTUlERESypiQiIiJZUxIREZGsKYmIiEjWlERERCRrSiIiIpI1JZEM3fzEK9y3dEu+wxARGVGURDL0i4Ub+MOyfd0KWkRk9FESyVAykaCrR/deERGJUxLJUCphdCuJiIj0oSSSoWTCVBMREelHSSRDUU2kJ99hiIiMKEoiGUomjK5u1UREROKURDKUSqpPRESkPyWRDCUTCTqVRERE+lASyZD6RERE9qYkkqGU+kRERPaiJJIh9YmIiOxNSSRDyURCSUREpB8lkQyldLGhiMhelEQylNS0JyIie1ESyVBUE9HoLBGROCWRDKkmIiKyNyWRDKlPRERkb0oiGUomErpORESkn5wlETObYWaPmNlKM1thZp8M5TeY2WYzWxIe58e2ud7M1pjZi2Z2Tqz83FC2xsyui5UfYmZPh/I7zawwV8dTkFSfiIhIf7msiXQBn3b3I4GTgGvM7Miw7FvuPj887gcIyy4BjgLOBb5rZkkzSwLfAc4DjgQuje3na2Ffc4E64MpcHYz6RERE9pazJOLuW9392fC8CVgFTNvHJhcCd7h7u7u/AqwBTgyPNe7+srt3AHcAF5qZAWcCvwzb3wK8KzdHoz4REZGBDEufiJnNBo4Fng5F15rZ82Z2k5lVhrJpwMbYZptC2WDlE4B6d+/qVz7Q+19tZovMbFFtbW1Wx5BMJHCHHiUSEZFeOU8iZjYWuAf4lLs3At8DDgXmA1uBb+Q6Bnf/obsvcPcF1dXVWe0jlTQA1UZERGJSudy5mRUQJZDb3P1XAO6+Pbb8R8DvwsvNwIzY5tNDGYOU7wQqzCwVaiPx9Q+4ZCJKIuoXERHZI5ejswz4CbDK3b8ZK58SW+3dwPLw/D7gEjMrMrNDgHnAQuAZYF4YiVVI1Pl+n7s78Ajw3rD95cC9uTqeVCJdE9EILRGRtFzWRE4BPgQsM7MloeyzRKOr5gMOrAM+BuDuK8zsLmAl0ciua9y9G8DMrgUeAJLATe6+IuzvM8AdZvZl4DmipJUTqomIiOwtZ0nE3R8HbIBF9+9jm68AXxmg/P6BtnP3l4lGb+VcuibSqQsORUR66Yr1DCUT0alSTUREZA8lkQztGZ2lPhERkTQlkQyl1CciIrIXJZEMJRO6TkREpD8lkQyl1CciIrIXJZEM9dZENDpLRKSXkkiG1CciIrI3JZEMJTU6S0RkL0oiGUqpY11EZC9KIhlSn4iIyN6URDJUkNToLBGR/pREMpTULL4iIntREsmQRmeJiOxNSSRDumJdRGRvSiIZ0hXrIiJ7UxLJkGoiIiJ7UxLJ0J4+EXWsi4ikKYlkKKk7G4qI7EVJJEPpm1KpT0REZA8lkQylO9bVJyIisoeSSIZ6+0S61SciIpKmJJKhPbP4qiYiIpKmJJIhXbEuIrI3JZEM6ToREZG9KYlkSFesi4jsTUkkQ6EiopqIiEiMkkiGzIxUwujS6CwRkV45SyJmNsPMHjGzlWa2wsw+GcrHm9lDZrY6/FsZys3MbjSzNWb2vJkdF9vX5WH91WZ2eaz8eDNbFra50cwsV8cDUb+ImrNERPbIZU2kC/i0ux8JnARcY2ZHAtcBD7v7PODh8BrgPGBeeFwNfA+ipAN8AXgjcCLwhXTiCetcFdvu3BweDwXJhJqzRERicpZE3H2ruz8bnjcBq4BpwIXALWG1W4B3hecXArd65CmgwsymAOcAD7n7LnevAx4Czg3Lyt39KXd34NbYvnJCNRERkb6GpU/EzGYDxwJPA5PcfWtYtA2YFJ5PAzbGNtsUyvZVvmmA8oHe/2ozW2Rmi2pra7M+jlTCdHtcEZGYnCcRMxsL3AN8yt0b48tCDSLnf9q7+w/dfYG7L6iurs56P6qJiIj0ldMkYmYFRAnkNnf/VSjeHpqiCP/WhPLNwIzY5tND2b7Kpw9QnjPR6CwlERGRtFyOzjLgJ8Aqd/9mbNF9QHqE1eXAvbHyy8IorZOAhtDs9QBwtplVhg71s4EHwrJGMzspvNdlsX3lRDKpmoiISFwqh/s+BfgQsMzMloSyzwJfBe4ysyuB9cDFYdn9wPnAGmA38GEAd99lZl8CngnrfdHdd4XnfwvcDJQAfwiPnEklNDpLRCQuZ0nE3R8HBrtu460DrO/ANYPs6ybgpgHKFwGvfxVhDklSHesiIn3oivUhUJ+IiEhfSiJDkFKfiIhIH0oiQ5BUn4iISB9KIkOQ0nUiIiJ9KIkMgTrWRUT6UhIZAtVERET6UhIZgqgmoiQiIpKmJDIEqomIiPSlJDIEyUSCTl0nIiLSS0lkCKKaiDrWRUTSlESGIJVUn4iISJySyBCoT0REpC8lkSFIJhKaO0tEJEZJZAhUExER6UtJZAiS6hMREelDSWQINDpLRKSvjJKImf2nmZWbWYGZPWxmtWb2wVwHN9LoinURkb4yrYmc7e6NwAXAOmAu8M+5Cmqk0k2pRET6yjSJpG+j+3bgbndvyFE8I1oykVDHuohITKb3WP+dmb0AtAKfMLNqoC13YY1MKU0FLyLSR0Y1EXe/DngTsMDdO4EW4MJcBjYSpZJGj0OPaiMiIkDmNRGAw4HZZhbf5tYDHM+IlkoYAN3uJLA8RyMikn8ZJREz+xlwKLAE6A7FzihLIslEVHHr7nEKknkORkRkBMi0JrIAONLdR3U7TromomG+IiKRTEdnLQcm5zKQg0Ey3ZylYb4iIkDmNZEqYKWZLQTa04Xu/s6cRDVCpZLpmohGaImIQOZJ5IZcBnGw6K2JqDlLRATIfIjvo8ALQFl4rAplgzKzm8ysxsyWx8puMLPNZrYkPM6PLbvezNaY2Ytmdk6s/NxQtsbMrouVH2JmT4fyO82sMPPDzk66T6RTSUREBMh87qyLgYXARcDFwNNm9t79bHYzcO4A5d9y9/nhcX/Y/5HAJcBRYZvvmlnSzJLAd4DzgCOBS8O6AF8L+5oL1AFXZnIsr0bv6Cz1iYiIAJk3Z30OOMHdawDCFet/An452Abu/piZzc5w/xcCd7h7O/CKma0BTgzL1rj7y+F97wAuNLNVwJnA+8M6txA1uX0vw/fLSoH6RERE+sh0dFYinUCCnUPYtr9rzez50NxVGcqmARtj62wKZYOVTwDq3b2rX/mAzOxqM1tkZotqa2uzDFt9IiIi/WWaCP5oZg+Y2RVmdgXwe+D+LN7ve0QXLc4HtgLfyGIfQ+buP3T3Be6+oLq6Ouv96DoREZG+MmrOcvd/NrP3AKeEoh+6+6+H+mbuvj393Mx+BPwuvNwMzIitOj2UMUj5TqDCzFKhNhJfP2fiV6yLiMgQ5s5y93uAe17Nm5nZFHffGl6+m+giRoD7gF+Y2TeBqcA8oo58A+aZ2SFESeIS4P3u7mb2CPBe4A7gcuDeVxNbJtLXiXR0q09ERAT2k0TM7HF3P9XMmojmyupdBLi7l+9j29uBM4AqM9sEfAE4w8zmh32tAz5GtKMVZnYXsBLoAq5x9+6wn2uBB4AkcJO7rwhv8RngDjP7MvAc8JOhHHg2ipJRTaSjS0lERAT2k0Tc/dTwb9lQd+zulw5QPOgPvbt/BfjKAOX3M0D/SxixdWL/8lwqSCmJiIjEZXqdyM8yKXutKww1kU41Z4mIAJmPzjoq/iLcU+T4Ax/OyFaomoiISB/7TCJhKpIm4GgzawyPJmA7w9CRPdL0JhHVREREgP0kEXf/j9Af8nV3Lw+PMnef4O7XD1OMI0a6OatdNRERESDz60SuD1eXzwOKY+WP5SqwkahIzVkiIn1kenvcjwKfJLqobwlwEvBXovmrRg31iYiI9JVpx/ongROA9e7+FuBYoD5nUY1QBUn1iYiIxGWaRNrcvQ3AzIrc/QXgdbkLa2RK10Q6VRMREQEyn/Zkk5lVAL8BHjKzOmB97sIamVIJw0w1ERGRtEw71t8dnt4Q5qwaB/wxZ1GNUGZGYTKhPhERkWC/SSTcXXCFux8OvbfKHbUKUwkN8RURCfbbJxImQnzRzGYOQzwjXlEqoeYsEZEg0z6RSmCFmS0EWtKF7v7OnEQ1gqk5S0Rkj0yTyL/lNIqDSEFKSUREJC3TjvVHzWwWMM/d/2RmY4ju7zHqFCYTmsVXRCTIdCr4q4BfAj8IRdOIhvuOOoWqiYiI9Mr0YsNriO6v3gjg7quBibkKaiQrVMe6iEivTJNIu7t3pF+E+4n4PtZ/zSpMaoiviEhapknkUTP7LFBiZm8D7gZ+m7uwRi41Z4mI7JFpErkOqAWWAR8D7nf3z+UsqhGsSElERKRXpkN8/87dvw38KF1gZp8MZaNKQVJ9IiIiaZnWRC4foOyKAxjHQUPNWSIie+yzJmJmlwLvBw4xs/tii8qAXbkMbKTSdSIiInvsrznrSWArUAV8I1beBDyfq6BGMtVERET22GcScff1RPcNOXl4whn5lERERPbYX3NWEwNfD2KAu3t5TqIawQpTCdrVnCUiAuy/JlI2XIEcLNKz+Lo7ZpbvcERE8irT0VlDZmY3mVmNmS2PlY03s4fMbHX4tzKUm5ndaGZrzOx5Mzsuts3lYf3VZnZ5rPx4M1sWtrnRhukXvTAZ7rPePSov2BcR6SNnSQS4GTi3X9l1wMPuPg94OLwGOA+YFx5XA9+DKOkAXwDeCJwIfCGdeMI6V8W26/9eOVGYik6ZrhUREclhEnH3x9h7GPCFwC3h+S3Au2Llt3rkKaDCzKYA5wAPufsud68DHgLODcvK3f0pd3fg1ti+ciqdRDrVuS4iktOayEAmufvW8HwbMCk8nwZsjK23KZTtq3zTAOUDMrOrzWyRmS2qra19VQegmoiIyB7DnUR6hRrEsHQsuPsP3X2Buy+orq5+VftK94lomK+IyPAnke2hKYrwb00o3wzMiK03PZTtq3z6AOU5l66JaDp4EZHhTyL3sWcersuBe2Pll4VRWicBDaHZ6wHgbDOrDB3qZwMPhGWNZnZSGJV1WWxfOaWaiIjIHpnO4jtkZnY7cAZQZWabiEZZfRW4y8yuJLoS/uKw+v3A+cAaYDfwYQB332VmXwKeCet90d3TnfV/SzQCrAT4Q3jknPpERET2yFkScfdLB1n01gHWdaJb8A60n5uAmwYoXwS8/tXEmI3eJKKaiIhI/jrWD1Z7LjZUEhERURIZov41kV89u4nvP7o2nyGJiOSNksgQ9R+d9ZslW7hj4YZ8hiQikjdKIkNU1K9jvbG1k/rWznyGJCKSN0oiQ1TQb4hvY1snDa2d9PRoQkYRGX2URIaof59IY2sX7tDU3pXPsERE8kJJZIj2XGzYDUQ1EYCG3WrSEpHRR0lkiOIXG7Z1dvfWSOpbO/IZlohIXiiJDFHvVPDdTmOsQ71eNRERGYWURIYo3ZzV3tXT25QF0KARWiIyCimJDJGZ9d5nvaF1T2e6hvmKyGikJJKFgqTR0b8mslt9IiIy+iiJZKEwlaCju7tPn4ias0RkNFISyUJhKhFqIlFzVmEyoY51ERmVlESy0JtEQu1jWmWJ+kREZFRSEslCYTIRDfFt66QolWBiWZEuNhSRUUlJJAuFqWQ0xLe1i/KSAirGFKhPRERGJSWRLEQd61FzVnlxinElBbpiXURGpZzdHve1rLQwSWNrJ+4eaiKF6lgXkVFJNZEsHDapjBe3NVG3u4NxJQWMKymgvSuaS0tEZDRREsnCUVPLae3s5qVtzZQXR30ioGtFRGT0URLJwlFTxwHRTL7lJVGfCGgSRhEZfZREsjBv0tjeiRjLiwuoKCkEoF5Tn4jIKKMkkoWCZILXTS4D6B3iC2rOEpHRR0kkS0dNLQeimkhlaVQT2dmimoiIjC5KIlnqTSIlKarGRkmkprE9nyGJiAy7vCQRM1tnZsvMbImZLQpl483sITNbHf6tDOVmZjea2Roze97Mjovt5/Kw/mozu3w4j+GEQ8aTMJg5fgxFqSSVYwqoaWobzhBERPIunzWRt7j7fHdfEF5fBzzs7vOAh8NrgPOAeeFxNfA9iJIO8AXgjcCJwBfSiWc4HD65nOf+7WyOnl4BwMSyYmqaVBMRkdFlJDVnXQjcEp7fArwrVn6rR54CKsxsCnAO8JC773L3OuAh4NzhDHhc6FAHmFhepCQiIqNOvpKIAw+a2WIzuzqUTXL3reH5NmBSeD4N2BjbdlMoG6w8L6rLiqhtVHOWiIwu+Zo761R332xmE4GHzOyF+EJ3dzPzA/VmIVFdDTBz5swDtds+JpVHzVk9PU4iYbR3ddPY2kV1WVFO3k9EZCTIS03E3TeHf7SgOTwAABXDSURBVGuAXxP1aWwPzVSEf2vC6puBGbHNp4eywcoHer8fuvsCd19QXV19IA+l18SyIrp6nLpwweEPHn2Zc/77MXp6DlguFBEZcYY9iZhZqZmVpZ8DZwPLgfuA9Airy4F7w/P7gMvCKK2TgIbQ7PUAcLaZVYYO9bNDWV5MLCsG6O0XeXF7E7taOthc35qvkEREci4fzVmTgF+bWfr9f+HufzSzZ4C7zOxKYD1wcVj/fuB8YA2wG/gwgLvvMrMvAc+E9b7o7ruG7zD6mlgeNVvVNLVzxBTYXBclj7W1zcwYPyZfYYmI5NSwJxF3fxk4ZoDyncBbByh34JpB9nUTcNOBjjEbE0PfR03oXN9Sn04iLZzxuryFJSKSUyNpiO9BLd6c1d7V3dustba2OZ9hiYjklJLIAVJSmKSsOEVNYxtb6/cM9V1boyQiIq9dSiIH0MSy6ILDdGf6jPElrK1tyXNUIiK5oyRyAKWnPkl3qp8+r5odze006GZVIvIapSRyAE0qL2JLfSub6lsxg1PnVgGwdoeatETktUlJ5ABaMHs8WxvaeOSFGiaWFXH4lGi6ePWLiMhrlZLIAXTu6yeTMFi2uYFpFSXMqCyhKJXghW1N+Q5NRCQnlEQOoKqxRZx86AQAplWOIZVMcPT0cTy7oa53nY6uHpZurM9XiCIiB5SSyAH29jdMBWBaRQkAx82qZMXmRto6uwH45eJNXPidJ1i+uSFvMYqIHChKIgfYua+fzLiSAo6ePg6A42dW0tHdw4otUdJYsjGqlfxy8aa9tm1u7xq+QEVEDgAlkQNsfGkhi//1LM5/wxQgqokALF4fJY/lmxsB+M2SzbR3dfdu98K2Ro759wdZvD5v03+JiAyZkkgOpJJ7TmvV2CJmTRjD4vV1tHd1s7qmiaOmllO/u5NHXqjpXW/Jhnq6e5zfP78tHyGLiGRFSWQYHD+zksXr63hpWzOd3c7H3nwoE8uKuG/plt510nNs/fmF7fkKU0RkyJREhsGp86rY0dzB/z6yGoBjpo/jzYdV8+Tanb03rUpPj7Ju525e7jdp42+XbqGhVVe9i8jIoyQyDC44eirTKkp4YMV2yopTzBw/hlPnVVG/u5OVW6M+kjU1zcyfUQHAn2PNXC/XNvN3tz/H/zy8Oi+xi4jsi5LIMChMJfjEGYcCcNTUcsys93qSx9fsoK2zm411u3nzYdUcNmksD6+K9ZWEa0p+/dxmOrt7hj94EZF9UBIZJhctmM6c6lJOmxfd431iWTGvm1TGE2t2sG5nC+5w6MSxnHPUZJ5+ZSe14X4kz2+KhgbvbOnoU0MRERkJlESGSVEqycP/+Gauecvc3rJT5lax8JVdrNwSNWkdWl3KBUdPpcfhj8u3AlFN5PhZlUwsK+LuRRv77LO5vau3TyWuu8fpHqBcRORAUxIZRuG+8r3OPHwi7V09/NcDL2IGc6rG8rrJZcybOJbfLt1KR1cPK7c2ctzMCt5z/HT+/EINm+p2A9H0KWd941Eu+sFf95pq/oqfLuRTdy7Z6/037Nzd2zwmInIgKInk0SlzJ/Ce46azpaGNaRUllBQmAXjHMVN5Zv0u/vJiDR1dPRw9vYIPnjQLM+Nnf10PwF9f3sm2xjYWr6/jkh891Tutyo7mdh5fs4P7l23tbRJL+/TdS7j8poXqWxGRA0ZJJI/MjC+96ygOn1zWOzIL4ML5U0kljE/eEdUm5s+oYFpFCeceNZnbF25gd0cXf1y+ldLCJP9z6bGs2trInc9ETV1/fqEG96hJ694lm3v3uW5HC8+sq6OhtZOnX+57VfzSjfX8z8OrcVcTmIgMjZJIno0pTHHvtafw3++b31s2a0IpP73iRFIJo2psEdMro8kcP3LqbBrburjx4TU8uGI7bzl8IhccPYUTZlfy/UfX0tHVw8OrtjNlXDHHzKjg7kWbehPDPc9uImFQlErwwIo9V8XvbG7nqlsX8Y2HXuKpfsmlpb2Lh1dtH7DfRUQElERGhKJUss9UKRBdoPiHT53Gzz96Ym9fynEzK/mb46bx/UfXsrOlg/NePwUz49oz57G1oY1vPvQS/7d6B2cePpGLjp/Oi9ubuO6eZTy4Yhv3LN7EafOqOeN11Ty4chvrdrRw61/X8YmfP0v97k7KilPc8uQ6tja08vOn1tPU1sk1v3iWK29ZxL1LN9Pd4yxat4uu7h421e3mhvtWsCXcS15ERi8bbU0YCxYs8EWLFuU7jKx19zjX/+p5Hn2plj9/+gxKi1K4Ox+5+RkeebEWgJ9ecQInHzqBL/9+JXcv2kR7V9QH8r0PHEdrZzf/eNdSEgY9Hl3D8u/vPIr1O3fzw8fWMrGsmG2NbZQWJmnp6GZ8aSElBUlOP6yK2xdu5NDqUna1dFC3u5MFsyr5z/cezTceeolT51Zx1hGTWLGlgWOmV1BZWsiGnbsZN6aAcSUFfY6hq7sHMyNhcNMT6+js7uGq0+aQTETJ0t355kMvsXh9Hd9633wmlRf3brt4fR2/eW4zf//WeVSXFfXZb3tXN0WpZC5Pv8ioZWaL3X3BXuVKIgenru6ePrUXd+fZDXU8v6mBy06e3fuDXNfSwca63YwtSnFIVSmNbV28/0dPcdzMSq4+fQ7TKkpIJIxNdbs5/T8foXJMIdeddzi3Pb2BN84Zz5vnVfP+Hz8NwLvmT+X5TQ0UphK845ipfP2BF0klDIc+Q4rLi1McM6OC/1u9g6JUdGOu1TXNTK8s4ejpFfx26RbKilIcNW0cD62M5go7evo4etwpSiU5fHIZtz29gYTB5PJijpw6jmQiGnDw2V8to7Gti+qyIt506AS6up1rz5zL/cu28t2/rOUDb5zJuUdNpra5nbcdOYnuHufWv67n1LlVHDOjAnffa5SciOyfkkjwWkkiufDk2h3MHD+G6ZVj+pR//t7lFBckuf68wwFwh0TC+Py9y1mxpZFvXTyfNbVNvLitmcMmjeXmJ9excksjHzhpFnUtHTy/qZ7DJpWxcmsjq7Y2cu7rJ7O5vo2lG+u59i1zOaSqlG/96SWmV5awvbGdV3a08Pajp/Dx0w/ln3+5FIDtjW3U7e6kuqyIr73nDfz3n1azq6WDprau3nnF5s+oYOmmetJf6TlVpSQSxppwj/vJ5cXsaunggqOncOYRE7l94QZmji/l1LlVPLehjmNnVnL+Gybz5NqddPc48yaNZeEru5hYVszJh07oHQFXXJBk8fo61u1o4fw3TGHX7g6a2jo5fHJ5NIx6Uz2nza2ibncHG+taOeXQCTS0dvLUy7s4dW4ViUR0S4DjZlXgDk+s2cHxsyopLy5g+ZYG5k4cS0lBkhVbGpkxfgzjSgp4aXsT1WOLqCwtpLapnTGFSUqLUtTv7iCZMMqK+9b2RA40JZFASSS/Orp6KEwlcHe2NbYxZVxJn+XdPc6SjXUcPb2CglhNq6mtk7sWbeL0eVXMm1TWW76rpYP/evBFZk8Yw1WnzeGl7c1sa2yju6eHz/5qOe1d3fzXRcewpqaZF7Y1UZRKcM+zm+jsdqZVlLCjuZ32rp7e5r3J5VFzXn/HzqzgpW1NJMw4/XXV3L9sK+70NvsBHDOjglVbGuno7sGM3mQ2a8IYdjZ30NzeRUlBEsdp6+xhemUJ7rC5vpWy4hRVY4t4ZUcLE0oLmVpRwrLNDZQXp5g3qYzF6+soLUxy3KxKHl+zg/LiAk6dV8VDK7ZTmEpw9lGTeGLNDopSST500iz++vJOWju6ueTEGTy7vo7tje289YiJbKxrZVtDKyfNmcCammZerm3hzCMmsqulg+WbG3jjnAm0tHexbHMDx8+spKunh+c21HPu6ydTNbaIexZvYnZVKZVjCnj6lV3MqSplWmUJi9bVMXlcMTPHj2HppnoqxxQyd+JYnt/UQElBknmTxrJqaxPJBBw+uZzVNc10dfdwxJRyNuzaTWtHN4dPKWNzXSv1rZ0cMaWcnc3t7Ghu5/DJ5TS0drKtoY3DJpfR1tnN5rpW5lSXkkok2NbYxqTyIgqSCWqb2nubYBtaOxlTmKSoIElzWxdFqQRFBQla2rspTBnFqSStnd0kE0ZxQZLdHV2YGSUFUbkBpUUpWju6caCsOEVb+KwnjSumua2L1s5uDqkqDX/MdDCnaiytnd3UNLVzaHUp3T3OprpWDqkqpSiVYGdLBxNKC0klE3u1Jox0r9kkYmbnAt8GksCP3f2r+1pfSWT02N3RRWe379Uns6ammVd2tHDG66ppbutibW0zR00dx8+eWsefVtXw3uOmM2lcMau3N3H8rEqeenkXdy/ayILZlTS2dvHHFdt47/HTefex07h3yWbmVI8lacbtCzcwf0YFF58wgyfX7mRCaSHjSwu5+cl1TCwr4uITZvCnldtJmHHszAp+9tR63OHDp8zmD8u2sbOlnXfOn8aDK7axtaGNS0+cyV/X7mR1TROXnDCTZZvrWby+jnfNn8ba2mb+b/UO3n3sNJrau3hwxTZOnVtFbXM7yzc3Ul1WRGEyweb6VgqTCSrGFFDT1E7CYGxRisa2LpIJo2psIdsbo+uJqsYWsaM5ej6pvKi3fEJpITtbOoDoh7S5vQt3mFgWrd/jMK6kgKa2Tno82n9rZzfdPU5RKkFXmEGhIGn0hOHnCYOEGV2hGTSZsN4m0VRiT3k6uQN9EvPBJn68BckoaTW1dTG2KEVxQZL63R2MKUwypjBFfWsHxQVJSgtTNLV1UphKMKYwOqcJi2rC7Z09dLuTShjJ9CM00/a40+PgeO/5MgPDePAfTqe4ILt+w9dkEjGzJPAS8DZgE/AMcKm7rxxsGyURebWa2jpHXPNRuq+np8d5qaaJOVVjMYOFr+zi8MllVI4pZOXWRqZWlDCupIBVWxuZMq6Y8aWFLN/cSMWYAqZXlvDKjhaKC5JMrShhw87dmBFmoN5GS0c3Fxw9heb2Lprbupg1YQwNrZ3UNrVzaPVYmtq72NbQxtyJY2np6GLDzt0cNqmMzu4eXtnRwtyJY+lxZ21NC4dUl5IKTY0zKsdQVJBg9fZmplYUM7Y4xertzVSXFVExpoDV25sZV1LApPJiVtc0UVyQZFpFFGuPO1PGlbCtoY2unh4mlkVNlm1d3YwrKaC1o5u2zm7GFqfo6OqhrbOHMYVJunqcts5uSgqSdLvT1tHde7Fva0c3xYVJ3J2W9qjcgKa2LooLkr216LLiAgpTCdbtaKGsOMW4kgLW1jYzpjBFdVkRq7c3kUommF5ZwpqaZtq7epgyrpgt9W20dXZTMaaAhtbO8LyQ3e1d7O6Iyts6e2jp6KK8uIDO7h5a2rsoKUzS0xMNIClMJXoTbzpJd/d474AVI0paGOCQ/pX/2nuOpjCVXe3ntZpETgZucPdzwuvrAdz9PwbbRklERGToBksiB0+D3MCmAfFZCTeFsj7M7GozW2Rmi2pra4ctOBGR17qDPYlkxN1/6O4L3H1BdXV1vsMREXnNONiTyGZgRuz19FAmIiLD4GBPIs8A88zsEDMrBC4B7stzTCIio0Yq3wG8Gu7eZWbXAg8QDfG9yd1X5DksEZFR46BOIgDufj9wf77jEBEZjQ725iwREckjJREREcnaQX2xYTbMrBZYP8TNqoAdOQjnQBipsY3UuGDkxjZS44KRG5viGrpsY5vl7ntdIzHqkkg2zGzRQFdqjgQjNbaRGheM3NhGalwwcmNTXEN3oGNTc5aIiGRNSURERLKmJJKZH+Y7gH0YqbGN1Lhg5MY2UuOCkRub4hq6Axqb+kRERCRrqomIiEjWlERERCRrSiL7YWbnmtmLZrbGzK7LYxwzzOwRM1tpZivM7JOh/AYz22xmS8Lj/DzFt87MloUYFoWy8Wb2kJmtDv9WDnNMr4udlyVm1mhmn8rXOTOzm8ysxsyWx8oGPEcWuTF87543s+OGOa6vm9kL4b1/bWYVoXy2mbXGzt33cxXXPmIb9PMzs+vDOXvRzM4Z5rjujMW0zsyWhPJhO2f7+J3I3ffM3fUY5EE0qeNaYA5QCCwFjsxTLFOA48LzMqLbAh8J3AD80wg4V+uAqn5l/wlcF55fB3wtz5/lNmBWvs4ZcDpwHLB8f+cIOB/4A9ENTk8Cnh7muM4GUuH512JxzY6vl6dzNuDnF/4/LAWKgEPC/93kcMXVb/k3gM8P9znbx+9Ezr5nqons24nAGnd/2d07gDuAC/MRiLtvdfdnw/MmYBUD3MVxhLkQuCU8vwV4Vx5jeSuw1t2HOlvBAePujwG7+hUPdo4uBG71yFNAhZlNGa643P1Bd+8KL58iulfPsBvknA3mQuAOd29391eANUT/h4c1LjMz4GLg9ly8977s43ciZ98zJZF9y+j2u8PNzGYDxwJPh6JrQ1X0puFuMopx4EEzW2xmV4eySe6+NTzfBkzKT2hAdK+Z+H/qkXDOYPBzNJK+ex8h+ms17RAze87MHjWz0/IU00Cf30g5Z6cB2919daxs2M9Zv9+JnH3PlEQOMmY2FrgH+JS7NwLfAw4F5gNbiarR+XCqux8HnAdcY2anxxd6VHfOy3hyi25Y9k7g7lA0Us5ZH/k8R4Mxs88BXcBtoWgrMNPdjwX+EfiFmZUPc1gj8vOLuZS+f7AM+zkb4Hei14H+nimJ7NuIuv2umRUQfTFuc/dfAbj7dnfvdvce4EfkqPq+P+6+OfxbA/w6xLE9XTUO/9bkIzaixPasu28PMY6IcxYMdo7y/t0zsyuAC4APhB8eQlPRzvB8MVG/w2HDGdc+Pr+RcM5SwN8Ad6bLhvucDfQ7QQ6/Z0oi+zZibr8b2ll/Aqxy92/GyuPtl+8GlvffdhhiKzWzsvRzok7Z5UTn6vKw2uXAvcMdW9DnL8ORcM5iBjtH9wGXhdEzJwENseaInDOzc4F/Ad7p7rtj5dVmlgzP5wDzgJeHK67wvoN9fvcBl5hZkZkdEmJbOJyxAWcBL7j7pnTBcJ6zwX4nyOX3bDhGDBzMD6LRCy8R/fXwuTzGcSpRFfR5YEl4nA/8DFgWyu8DpuQhtjlEo2KWAivS5wmYADwMrAb+BIzPQ2ylwE5gXKwsL+eMKJFtBTqJ2p6vHOwcEY2W+U743i0DFgxzXGuI2srT37Xvh3XfEz7jJcCzwDvycM4G/fyAz4Vz9iJw3nDGFcpvBj7eb91hO2f7+J3I2fdM056IiEjW1JwlIiJZUxIREZGsKYmIiEjWlERERCRrSiIiIpI1JREREcmakoiIiGRNSUQkT8J9Jl4ws5vN7CUzu83MzjKzJ8J9H/I5HYtIRpRERPJrLtEEgoeHx/uJrjr+J+CzeYxLJCNKIiL59Yq7L/NoMsEVwMMeTSOxjOhmRiIjmpKISH61x573xF73AKnhD0dkaJREREQka0oiIiKSNc3iKyIiWVNNREREsqYkIiIiWVMSERGRrCmJiIhI1pREREQka0oiIiKSNSURERHJ2v8HJV2R71xXQn0AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHcCAYAAADLKJ4jAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxoUlEQVR4nO3deXgT1f4G8HeSJum+7xTa0rKvWqBWdqgUrAriArghgqCCCigiLgh670Xhp6CIoNcroKKyCKIg+6pQQFZZpGwtRehCW9p0T5Oc3x9phoYWaGvbaeD9PE8em5mTyXcypXk9c+aMJIQQICIiIqIbUildABEREZE9YGgiIiIiqgKGJiIiIqIqYGgiIiIiqgKGJiIiIqIqYGgiIiIiqgKGJiIiIqIqYGgiIiIiqgKGJiIiIqIqYGgisnNPP/00wsLClC7jtnWrfv7JycmQJAmLFi1SupQqsdb7f//3fzdtO23aNEiSVA9V0a2GoYmoDn322WeQJAnR0dFKl3JL+PXXXyFJEoKDg2E2m5Uup0H47LPPFA0227dvhyRJWLFihWI1ENUXhiaiOrRkyRKEhYVh3759OHPmjNLl2D3r55mamoqtW7cqXU6DoHRoskdvvfUWioqKlC6D7BBDE1EdSUpKwu7du/HRRx/Bz88PS5YsUbqkmxJCNNgvk4KCAqxevRoTJ07EHXfcYRefZ3U15M//VuLg4ABHR0elyyA7xNBEVEeWLFkCLy8vxMfH4+GHH670S778OIwvvvgCERER0Ol06Ny5M/74448K7X/66Se0bdsWjo6OaNu2LVatWlXpe5vNZsyZMwdt2rSBo6MjAgICMGbMGFy5csWmXVhYGO677z5s2LABnTp1gpOTEz7//HMAwKZNm9CtWzd4enrC1dUVLVq0wBtvvGHz+oyMDIwcORIBAQFwdHREhw4dsHjx4n+0j9ezatUqFBUV4ZFHHsHQoUOxcuVKFBcXV2hXXFyMadOmoXnz5nB0dERQUBAGDx6Ms2fP2nw+H3/8Mdq1awdHR0f4+fmhf//+2L9/v822vv32W0RFRcHJyQne3t4YOnQoLly4cNNaa+PzX7hwIfr06QN/f3/odDq0bt0a8+fPr/D648ePY8eOHZAkCZIkoVevXvL6nJwcjB8/Ho0bN4ZOp0NkZCQ++OCDCqc2c3Jy8PTTT8PDwwOenp4YPnw4cnJybrqf13P+/Hm88MILaNGiBZycnODj44NHHnkEycnJFdrm5ORgwoQJCAsLg06nQ0hICJ566ilkZmbKbarye1be7NmzERoaCicnJ/Ts2RPHjh2zWc8xTVRTDkoXQHSrWrJkCQYPHgytVothw4Zh/vz5+OOPP9C5c+cKbb/77jvk5eVhzJgxkCQJM2fOxODBg3Hu3DloNBoAwMaNG/HQQw+hdevWmDFjBrKysjBixAiEhIRU2N6YMWOwaNEijBgxAi+99BKSkpLw6aef4tChQ9i1a5e8TQBITEzEsGHDMGbMGDz77LNo0aIFjh8/jvvuuw/t27fHu+++C51OhzNnzmDXrl3y64qKitCrVy+cOXMG48aNQ3h4OJYvX46nn34aOTk5ePnll6u9jzf7PHv37o3AwEAMHToUr7/+On755Rc88sgjchuTyYT77rsPW7ZswdChQ/Hyyy8jLy8PmzZtwrFjxxAREQEAGDlyJBYtWoQBAwZg1KhRMBqN+O2337Bnzx506tQJAPDvf/8bb7/9Nh599FGMGjUKly9fxty5c9GjRw8cOnQInp6e1631n37+ADB//ny0adMGDzzwABwcHPDLL7/ghRdegNlsxtixYwEAc+bMwYsvvghXV1e8+eabAICAgAAAQGFhIXr27ImLFy9izJgxaNKkCXbv3o0pU6YgNTUVc+bMAWDp3Ro4cCB+//13PPfcc2jVqhVWrVqF4cOH3/SYXM8ff/yB3bt3Y+jQoQgJCUFycjLmz5+PXr164cSJE3B2dgYA5Ofno3v37vjrr7/wzDPP4M4770RmZiZ+/vln/P333/D19a3279nXX3+NvLw8jB07FsXFxfj444/Rp08fHD16VP5siGpMEFGt279/vwAgNm3aJIQQwmw2i5CQEPHyyy/btEtKShIAhI+Pj8jOzpaXr169WgAQv/zyi7ysY8eOIigoSOTk5MjLNm7cKACI0NBQedlvv/0mAIglS5bYvNf69esrLA8NDRUAxPr1623azp49WwAQly9fvu4+zpkzRwAQ3377rbzMYDCImJgY4erqKvR6fbX38XrS09OFg4OD+O9//ysvu/vuu8XAgQNt2n311VcCgPjoo48qbMNsNgshhNi6dasAIF566aXrtklOThZqtVr8+9//tll/9OhR4eDgYLN8+PDhtf75CyFEYWFhhWVxcXGiadOmNsvatGkjevbsWaHte++9J1xcXMSpU6dslr/++utCrVaLlJQUIYQQP/30kwAgZs6cKbcxGo2ie/fuAoBYuHBhhW2Xt23bNgFALF++/Ia1JyQkCADi66+/lpdNnTpVABArV66s0N56LKr7e+bk5CT+/vtvue3evXsFADFhwgR52TvvvCP49Uc1wdNzRHVgyZIlCAgIQO/evQEAkiRhyJAh+OGHH2AymSq0HzJkCLy8vOTn3bt3BwCcO3cOAJCamorDhw9j+PDh8PDwkNvdc889aN26tc22li9fDg8PD9xzzz3IzMyUH1FRUXB1dcW2bdts2oeHhyMuLs5mmbUXZfXq1de9Su3XX39FYGAghg0bJi/TaDR46aWXkJ+fjx07dlRrH2/khx9+gEqlwkMPPSQvGzZsGNatW2dzyuvHH3+Er68vXnzxxQrbsJ6O+fHHHyFJEt55553rtlm5ciXMZjMeffRRm88wMDAQzZo1q/AZllcbnz8AODk5yT/n5uYiMzMTPXv2xLlz55Cbm3vd9y9fR/fu3eHl5WVTR2xsLEwmE3bu3AnAchwdHBzw/PPPy69Vq9WVfoZVVb720tJSZGVlITIyEp6enjh48KC87scff0SHDh3w4IMPVtiG9VhU9/ds0KBBaNSokfy8S5cuiI6Oxq+//lrj/SGy4uk5olpmMpnwww8/oHfv3khKSpKXR0dH48MPP8SWLVvQr18/m9c0adLE5rk1XFgDwfnz5wEAzZo1q/B+LVq0sPkiOn36NHJzc+Hv719pfRkZGTbPw8PDK7QZMmQIvvzyS4waNQqvv/46+vbti8GDB+Phhx+GSqWSa2rWrJn83KpVq1Y2NVd1H2/k22+/RZcuXZCVlYWsrCwAwB133AGDwYDly5dj9OjRAICzZ8+iRYsWcHC4/p+2s2fPIjg4GN7e3tdtc/r0aQghKv28AdzwdGJtfP4AsGvXLrzzzjtISEhAYWGhzbrc3Fyb8Hy9Ov7880/4+fndsI7z588jKCgIrq6uNuutpwlroqioCDNmzMDChQtx8eJFCCFsarc6e/asTRCuTHV/zyo7Zs2bN8eyZcuqvR9E12JoIqplW7duRWpqKn744Qf88MMPFdYvWbKkQmhSq9WVbqv8l01Vmc1m+Pv7X/fqsmu/RMv3CpRftnPnTmzbtg1r167F+vXrsXTpUvTp0wcbN268br03UtN9PH36tDxgvLIvxCVLlsihqbaYzWZIkoR169ZVWve1AePa1/7Tz//s2bPo27cvWrZsiY8++giNGzeGVqvFr7/+itmzZ1dpjiqz2Yx77rkHr732WqXrmzdvftNt1NSLL76IhQsXYvz48YiJiYGHhwckScLQoUM5vxbZNYYmolq2ZMkS+Pv7Y968eRXWrVy5EqtWrcKCBQsq/bK8ntDQUACWAHGtxMREm+cRERHYvHkzunbtWq33uJZKpULfvn3Rt29ffPTRR/jPf/6DN998E9u2bUNsbCxCQ0Px559/wmw22/QCnDx50qbmf2rJkiXQaDT45ptvKgSY33//HZ988glSUlLQpEkTREREYO/evSgtLb1ub1BERAQ2bNiA7Ozs6/Y2RUREQAiB8PDwaoeL2vj8f/nlF5SUlODnn3+26aGr7LTg9a4Ci4iIQH5+PmJjY2/4XqGhodiyZQvy8/NtwuC1v1fVsWLFCgwfPhwffvihvKy4uLjCFXkREREVrmyrrL7q/J5V9m/k1KlTt+Ss7VT/OKaJqBYVFRVh5cqVuO+++/Dwww9XeIwbNw55eXn4+eefq7XdoKAgdOzYEYsXL7Y5vbFp0yacOHHCpu2jjz4Kk8mE9957r8J2jEZjlS4lz87OrrCsY8eOAICSkhIAwL333ou0tDQsXbrUZvtz586Fq6srevbsWZVdu6klS5age/fuGDJkSIXPc9KkSQCA77//HgDw0EMPITMzE59++mmF7Vh7tB566CEIITB9+vTrthk8eDDUajWmT59eoSdMCCGfIqxMbXz+1nB47WmthQsXVmjr4uJS6TYfffRRJCQkYMOGDRXW5eTkwGg0ArAcR6PRaDOdgclkwty5c29a543qv/Zzmzt3boXxfA899BCOHDlS6dQZ1tdX9/fsp59+wsWLF+Xn+/btw969ezFgwIAa7w+RFXuaiGrRzz//jLy8PDzwwAOVrr/rrrvkiS6HDBlSrW3PmDED8fHx6NatG5555hlkZ2dj7ty5aNOmDfLz8+V2PXv2xJgxYzBjxgwcPnwY/fr1g0ajwenTp7F8+XJ8/PHHePjhh2/4Xu+++y527tyJ+Ph4hIaGIiMjA5999hlCQkLQrVs3AMDo0aPx+eef4+mnn8aBAwcQFhaGFStWYNeuXZgzZw7c3NyqtX+V2bt3r3ypeWUaNWqEO++8E0uWLMHkyZPx1FNP4euvv8bEiROxb98+dO/eHQUFBdi8eTNeeOEFDBw4EL1798aTTz6JTz75BKdPn0b//v1hNpvx22+/oXfv3hg3bhwiIiLwr3/9C1OmTEFycjIGDRoENzc3JCUlYdWqVRg9ejReffXVSmuqjc+/X79+0Gq1uP/++zFmzBjk5+fjv//9L/z9/ZGammrTNioqCvPnz8e//vUvREZGwt/fH3369MGkSZPw888/47777sPTTz+NqKgoFBQU4OjRo1ixYgWSk5Ph6+uL+++/H127dsXrr7+O5ORktG7dGitXrqzSYPPrue+++/DNN9/Aw8MDrVu3RkJCAjZv3gwfHx+bdpMmTcKKFSvwyCOP4JlnnkFUVBSys7Px888/Y8GCBejQoUO1f88iIyPRrVs3PP/88ygpKcGcOXPg4+Nz3dOURNWiyDV7RLeo+++/Xzg6OoqCgoLrtnn66aeFRqMRmZmZ8mXSs2bNqtAOgHjnnXdslv3444+iVatWQqfTidatW4uVK1dWuOTd6osvvhBRUVHCyclJuLm5iXbt2onXXntNXLp0SW4TGhoq4uPjK7x2y5YtYuDAgSI4OFhotVoRHBwshg0bVuHy9fT0dDFixAjh6+srtFqtaNeuXYVL1Ku7j+W9+OKLAoA4e/bsddtMmzZNABBHjhwRQlgud3/zzTdFeHi40Gg0IjAwUDz88MM22zAajWLWrFmiZcuWQqvVCj8/PzFgwABx4MABm23/+OOPolu3bsLFxUW4uLiIli1birFjx4rExES5TV18/kII8fPPP4v27dsLR0dHERYWJj744AN5SoWkpCS5XVpamoiPjxdubm4CgM30A3l5eWLKlCkiMjJSaLVa4evrK+6++27xf//3f8JgMMjtsrKyxJNPPinc3d2Fh4eHePLJJ8WhQ4eqNOWAdQqH8tMGXLlyRf69cHV1FXFxceLkyZMiNDRUDB8+3Ob1WVlZYty4caJRo0ZCq9WKkJAQMXz4cJGZmSm3qe7v2YcffigaN24sdDqd6N69u/y7YcUpB6imJCFqMNKUiIgIlt7VgQMHYvPmzejbt6/S5RDVKY5pIiKiGrNe2XjtfGFEtyKOaSIiomrbuHEjduzYgQ8//BD33HMPgoKClC6JqM7x9BwREVVb7969cfDgQcTFxeHTTz+97mSeRLcShiYiIiKiKuCYJiIiIqIqYGgiIiIiqgKGJiKqYPv27ZAkCStWrFC6lCpJT0/Hww8/DB8fH0iShDlz5ly3rSRJmDZtWr3V9k8lJydDkiQsWrRI6VKIbnsMTUQKWbRoESRJgqOjo81tH6x69eqFtm3bKlCZ/ZkwYQI2bNiAKVOm4JtvvkH//v2r/Nrdu3dj2rRpVbq9SV367rvvbhj2iEh5nHKASGElJSV4//33/9G9vm53W7duxcCBA697a5PyioqK4OBw9U/f7t27MX36dDz99NPw9PSswypv7LvvvsOxY8cwfvx4m+WhoaEoKiq67g2Iiaj+sKeJSGEdO3bEf//7X1y6dEnpUupdQUFBrWwnIyOjyoHH0dHRJjTVlcLCwlrZjrU30noTXyJSDkMTkcLeeOMNmEwmvP/++zdsd6OxLdeO05k2bRokScKpU6fwxBNPwMPDA35+fnj77bchhMCFCxcwcOBAuLu7IzAwEB9++GGl72kymfDGG28gMDAQLi4ueOCBB3DhwoUK7fbu3Yv+/fvDw8MDzs7O6NmzJ3bt2mXTxlrTiRMn8Nhjj8HLy0u++e/1nDt3Do888gi8vb3h7OyMu+66C2vXrpXXW09xCiEwb948SJIESZJuuM3yn9W0adMwadIkAEB4eLj8+uTkZLn9t99+i6ioKDg5OcHb2xtDhw6t8BlYT6UeOHAAPXr0gLOzM9544w0AwOrVqxEfH4/g4GDodDpERETgvffeg8lksnn92rVrcf78ebmGsLAwANc/7lu3bkX37t3h4uICT09PDBw4EH/99Veln/mZM2fknjQPDw+MGDGiQqjbtGkTunXrBk9PT7i6uqJFixbyPlxP27Zt0bt37wrLzWYzGjVqZHNj4h9++AFRUVFwc3ODu7s72rVrh48//viG27fu+//93/9h3rx5aNq0KZydndGvXz9cuHABQgi89957CAkJgZOTEwYOHIjs7OwbbpPon+DpOSKFhYeH46mnnsJ///tfvP766wgODq61bQ8ZMgStWrXC+++/j7Vr1+Jf//oXvL298fnnn6NPnz744IMPsGTJErz66qvo3LkzevToYfP6f//735AkCZMnT0ZGRgbmzJmD2NhYHD58GE5OTgAsX94DBgxAVFQU3nnnHahUKixcuBB9+vTBb7/9hi5duths85FHHkGzZs3wn//8BzeaJi49PR133303CgsL8dJLL8HHxweLFy/GAw88gBUrVuDBBx9Ejx498M033+DJJ5/EPffcg6eeeqpan8/gwYNx6tQpfP/995g9ezZ8fX0BAH5+fvL+v/3223j00UcxatQoXL58GXPnzkWPHj1w6NAhm96trKwsDBgwAEOHDsUTTzyBgIAAAJZg5+rqiokTJ8LV1RVbt27F1KlTodfrMWvWLADAm2++idzcXPz999+YPXs2AMDV1fW6dW/evBkDBgxA06ZNMW3aNBQVFWHu3Lno2rUrDh48KAcuq0cffRTh4eGYMWMGDh48iC+//BL+/v744IMPAADHjx/Hfffdh/bt2+Pdd9+FTqfDmTNnKgTfaw0ZMgTTpk1DWloaAgMD5eW///47Ll26hKFDhwKwBLJhw4ahb9++8nv+9ddf2LVrF15++eUbvgcALFmyBAaDAS+++CKys7Mxc+ZMPProo+jTpw+2b9+OyZMn48yZM5g7dy5effVVfPXVVzfdJlGNKHWnYKLb3cKFCwUA8ccff4izZ88KBwcH8dJLL8nre/bsKdq0aSM/t97FvbK7zgMQ77zzjvzcehf30aNHy8uMRqMICQkRkiSJ999/X15+5coV4eTkZHP3+W3btgkAolGjRkKv18vLly1bJgCIjz/+WAghhNlsFs2aNRNxcXHCbDbL7QoLC0V4eLi45557KtQ0bNiwKn0+48ePFwDEb7/9Ji/Ly8sT4eHhIiwsTJhMJpv9Hzt2bJW2e+1nNWvWLAFAJCUl2bRLTk4WarVa/Pvf/7ZZfvToUeHg4GCzvGfPngKAWLBgQYX3KywsrLBszJgxwtnZWRQXF8vL4uPjRWhoaIW2lR33jh07Cn9/f5GVlSUvO3LkiFCpVOKpp56Sl1k/82eeecZmmw8++KDw8fGRn8+ePVsAEJcvX67w/jeSmJgoAIi5c+faLH/hhReEq6urvO8vv/yycHd3F0ajsVrbt+67n5+fyMnJkZdPmTJFABAdOnQQpaWl8vJhw4YJrVZr87kS1SaeniNqAJo2bYonn3wSX3zxBVJTU2ttu6NGjZJ/VqvV6NSpE4QQGDlypLzc09MTLVq0wLlz5yq8/qmnnoKbm5v8/OGHH0ZQUBB+/fVXAMDhw4dx+vRpPPbYY8jKykJmZiYyMzNRUFCAvn37YufOnTCbzTbbfO6556pU+6+//oouXbrYnMJzdXXF6NGjkZycjBMnTlTtQ6ihlStXwmw249FHH5X3KzMzE4GBgWjWrBm2bdtm016n02HEiBEVtmPtkQOAvLw8ZGZmonv37igsLMTJkyerXVdqaioOHz6Mp59+Gt7e3vLy9u3b45577pGPTXnXfubdu3dHVlYW9Ho9AMg9ZqtXr65wvG6kefPm6NixI5YuXSovM5lMWLFiBe6//3553z09PVFQUIBNmzZVedvlPfLII/Dw8JCfR0dHAwCeeOIJm/Fp0dHRMBgMlV6NSlQbGJqIGoi33noLRqPxpmObqqNJkyY2zz08PODo6Cifhiq//MqVKxVe36xZM5vnkiQhMjJSHvNz+vRpAMDw4cPh5+dn8/jyyy9RUlKC3Nxcm22Eh4dXqfbz58+jRYsWFZa3atVKXl+XTp8+DSEEmjVrVmHf/vrrL2RkZNi0b9SoEbRabYXtHD9+HA8++CA8PDzg7u4OPz8/PPHEEwBQ4bOpCut+X++zsYbW8q79PfDy8gIA+ZgPGTIEXbt2xahRoxAQEIChQ4di2bJlVQpQQ4YMwa5du+Sgsn37dmRkZGDIkCFymxdeeAHNmzfHgAEDEBISgmeeeQbr16+v8j5X9nsMAI0bN650eWW/y0S1gWOaiBqIpk2b4oknnsAXX3yB119/vcL66w1wLj+g+FqVXXF1vauwRA1uQ2n9Up01axY6duxYaZtrx+aU73lpyMxmMyRJwrp16yr9zKqyXzk5OejZsyfc3d3x7rvvIiIiAo6Ojjh48CAmT55crV6df+Jmx9zJyQk7d+7Etm3bsHbtWqxfvx5Lly5Fnz59sHHjxhteuTdkyBBMmTIFy5cvx/jx47Fs2TJ4eHjYzJXl7++Pw4cPY8OGDVi3bh3WrVuHhQsX4qmnnsLixYtrXH9t/i4TVQVDE1ED8tZbb+Hbb7+VB8uWZ+0duHYSxrrscbH2JFkJIXDmzBm0b98eABAREQEAcHd3R2xsbK2+d2hoKBITEysst57SCg0NrZX3uV4YjYiIgBAC4eHhaN68eY22vX37dmRlZWHlypU2g+yTkpKqXMe1rPt9vc/G19cXLi4u1a5VpVKhb9++6Nu3Lz766CP85z//wZtvvolt27bd8NiGh4ejS5cuWLp0KcaNG4eVK1di0KBB0Ol0Nu20Wi3uv/9+3H///TCbzXjhhRfw+eef4+2330ZkZGS16yVSAk/PETUgEREReOKJJ/D5558jLS3NZp27uzt8fX2xc+dOm+WfffZZndXz9ddfIy8vT36+YsUKpKamYsCAAQCAqKgoRERE4P/+7/+Qn59f4fWXL1+u8Xvfe++92LdvHxISEuRlBQUF+OKLLxAWFobWrVvXeNvlWQPGtWF08ODBUKvVmD59eoWeCyEEsrKybrpta09I+dcbDIZKj5mLi0uVTtcFBQWhY8eOWLx4sU3Nx44dw8aNG3HvvffedBvXquwyfWvPYUlJyU1fP2TIEOzZswdfffUVMjMzbU7NAajwWalUKjl4V2X7RA0Fe5qIGpg333wT33zzDRITE9GmTRubdaNGjcL777+PUaNGoVOnTti5cydOnTpVZ7V4e3ujW7duGDFiBNLT0zFnzhxERkbi2WefBWD58vvyyy8xYMAAtGnTBiNGjECjRo1w8eJFbNu2De7u7vjll19q9N6vv/46vv/+ewwYMAAvvfQSvL29sXjxYiQlJeHHH3+ESlU7/88XFRUFwPK5Dx06FBqNBvfffz8iIiLwr3/9C1OmTEFycjIGDRoENzc3JCUlYdWqVRg9evRNZyC/++674eXlheHDh+Oll16CJEn45ptvKj19FBUVhaVLl2LixIno3LkzXF1dcf/991e63VmzZmHAgAGIiYnByJEj5SkHPDw8anRfvXfffRc7d+5EfHw8QkNDkZGRgc8++wwhISE3nUsLsExp8Oqrr+LVV1+Ft7d3hZ6pUaNGITs7G3369EFISAjOnz+PuXPnomPHjvIYNSJ7wNBE1MBERkbiiSeeqHSsx9SpU3H58mWsWLECy5Ytw4ABA7Bu3Tr4+/vXSS1vvPEG/vzzT8yYMQN5eXno27cvPvvsMzg7O8ttevXqhYSEBLz33nv49NNPkZ+fj8DAQERHR2PMmDE1fu+AgADs3r0bkydPxty5c1FcXIz27dvjl19+QXx8fG3sHgCgc+fOeO+997BgwQKsX78eZrMZSUlJcHFxweuvv47mzZtj9uzZmD59OgDL4ON+/frhgQceuOm2fXx8sGbNGrzyyit466234OXlhSeeeAJ9+/ZFXFycTdsXXngBhw8fxsKFCzF79myEhoZeNzTFxsZi/fr1eOeddzB16lRoNBr07NkTH3zwQZUH2pf3wAMPIDk5We4p8vX1Rc+ePTF9+nSbq9auJyQkBHfffTd27dqFUaNGVbjli3Ws3meffYacnBwEBgbKczzVVvglqg+S4Ig5IiIioptixCciIiKqAoYmIiIioipgaCIiIiKqAoYmIiIioipgaCIiIiKqAoYmIiIioirgPE21xGw249KlS3Bzc6vy7RCIiIhIWUII5OXlITg4+KbzhjE01ZJLly5VuOM2ERER2YcLFy4gJCTkhm0YmmqJm5sbAMuH7u7urnA1REREVBV6vR6NGzeWv8dvhKGpllhPybm7uzM0ERER2ZmqDK3hQHAiIiKiKmBoIiIiIqoChiYiIiKiKmBoIiIiIqoChiYiIiKiKmBoIiIiIqoChiYiIiKiKmBoIiIiIqoChiYiIiKiKmBoIiIiIqoChiYiIiKiKmBoIiIiIqoC3rC3gSs0GJFdYIDWQQV/N0elyyEiIrptsaepgdt4PB3dPtiGCUsPK10KERHRbY2hqYFTqyQAgNEkFK6EiIjo9sbQ1MA5lIUms2BoIiIiUhJDUwOnsvY0mRmaiIiIlMTQ1MDJPU0MTURERIpiaGrg2NNERETUMDA0NXDWniYTQxMREZGiGJoaODVDExERUYPA0NTAqSWGJiIiooaAoamBc1CXhSZOOUBERKQohqYGTiVxcksiIqKGgKGpgXNQWQ4RJ7ckIiJSFkNTA1eWmTjlABERkcIYmho4uaeJoYmIiEhRDE0NnJqTWxIRETUIDE0NHOdpIiIiahgYmho4zghORETUMDA0NXAqhiYiIqIGgaGpgZN7mjjlABERkaIYmho4VbnbqAgGJyIiIsUwNDVw1p4mAOAZOiIiIuUwNDVwavXV0GQ0mxWshIiI6PbG0NTAqaWroYmDwYmIiJTD0NTAqVUMTURERA0BQ1MDx9BERETUMDA0NXA8PUdERNQwMDQ1cCqVBGtnE0MTERGRchia7ICaE1wSEREpjqHJDlhDk9HE0ERERKQUhiY7oJZ4/zkiIiKlMTTZAZ6eIyIiUh5Dkx2QQxN7moiIiBSjaGiaMWMGOnfuDDc3N/j7+2PQoEFITEy0adOrVy9IkmTzeO6552zapKSkID4+Hs7OzvD398ekSZNgNBpt2mzfvh133nkndDodIiMjsWjRogr1zJs3D2FhYXB0dER0dDT27dtX6/tcE2qV5TAxNBERESlH0dC0Y8cOjB07Fnv27MGmTZtQWlqKfv36oaCgwKbds88+i9TUVPkxc+ZMeZ3JZEJ8fDwMBgN2796NxYsXY9GiRZg6darcJikpCfHx8ejduzcOHz6M8ePHY9SoUdiwYYPcZunSpZg4cSLeeecdHDx4EB06dEBcXBwyMjLq/oO4CQf2NBERESlOEqLhDJS5fPky/P39sWPHDvTo0QOApaepY8eOmDNnTqWvWbduHe677z5cunQJAQEBAIAFCxZg8uTJuHz5MrRaLSZPnoy1a9fi2LFj8uuGDh2KnJwcrF+/HgAQHR2Nzp0749NPPwUAmM1mNG7cGC+++CJef/31m9au1+vh4eGB3NxcuLu7/5OPoYKu72/FxZwirB7bFR0ae9bqtomIiG5n1fn+blBjmnJzcwEA3t7eNsuXLFkCX19ftG3bFlOmTEFhYaG8LiEhAe3atZMDEwDExcVBr9fj+PHjcpvY2FibbcbFxSEhIQEAYDAYcODAAZs2KpUKsbGxcptrlZSUQK/X2zzqijzlAHuaiIiIFOOgdAFWZrMZ48ePR9euXdG2bVt5+WOPPYbQ0FAEBwfjzz//xOTJk5GYmIiVK1cCANLS0mwCEwD5eVpa2g3b6PV6FBUV4cqVKzCZTJW2OXnyZKX1zpgxA9OnT/9nO11FHAhORESkvAYTmsaOHYtjx47h999/t1k+evRo+ed27dohKCgIffv2xdmzZxEREVHfZcqmTJmCiRMnys/1ej0aN25cJ+/F0ERERKS8BhGaxo0bhzVr1mDnzp0ICQm5Ydvo6GgAwJkzZxAREYHAwMAKV7mlp6cDAAIDA+X/WpeVb+Pu7g4nJyeo1Wqo1epK21i3cS2dTgedTlf1nfwHOLklERGR8hQd0ySEwLhx47Bq1Sps3boV4eHhN33N4cOHAQBBQUEAgJiYGBw9etTmKrdNmzbB3d0drVu3ltts2bLFZjubNm1CTEwMAECr1SIqKsqmjdlsxpYtW+Q2SuLklkRERMpTtKdp7Nix+O6777B69Wq4ubnJY5A8PDzg5OSEs2fP4rvvvsO9994LHx8f/Pnnn5gwYQJ69OiB9u3bAwD69euH1q1b48knn8TMmTORlpaGt956C2PHjpV7gp577jl8+umneO211/DMM89g69atWLZsGdauXSvXMnHiRAwfPhydOnVCly5dMGfOHBQUFGDEiBH1/8Fcw0Ft7WkyK1wJERHRbUwoCEClj4ULFwohhEhJSRE9evQQ3t7eQqfTicjISDFp0iSRm5trs53k5GQxYMAA4eTkJHx9fcUrr7wiSktLbdps27ZNdOzYUWi1WtG0aVP5PcqbO3euaNKkidBqtaJLly5iz549Vd6X3NxcAaBCbbVh4Ke/i9DJa8TG42m1vm0iIqLbWXW+vxvUPE32rC7naXp4/m7sP38FC564E/3bBtXqtomIiG5ndjtPE1VOxXmaiIiIFMfQZAd4GxUiIiLlMTTZAc7TREREpDyGJjvA0ERERKQ8hiY7wNNzREREymNosgMqiQPBiYiIlMbQZAesk1uaOTsEERGRYhia7IDc02RiaCIiIlIKQ5MdsI5pYk8TERGRchia7IBaZTlMHNNERESkHIYmO6AuO0q8eo6IiEg5DE12wNrTxNBERESkHIYmO2DtaeLpOSIiIuUwNNkBh7KeJjNDExERkWIYmuwAJ7ckIiJSHkOTHeDklkRERMpjaLID1hv2cnJLIiIi5TA02QG1xJ4mIiIipTE02QG5p8lsVrgSIiKi2xdDkx2whibO00RERKQchiY7wNBERESkPIYmO+Cg4pQDRERESmNosgPWniZObklERKQchiY7oGZPExERkeIYmuyA3NPEKQeIiIgUw9BkBzi5JRERkfIYmuyAdXJLXj1HRESkHIYmOyBPOcDTc0RERIphaLID1hv2sqeJiIhIOQxNdkDF03NERESKY2iyAw4qy2HilANERETKYWiyA+qyo8TJLYmIiJTD0GQH1OxpIiIiUhxDkx1w4A17iYiIFMfQZAdUDE1ERESKY2iyA+xpIiIiUh5Dkx2Qpxzg5JZERESKYWiyA5zckoiISHkMTXaAk1sSEREpj6HJDnBMExERkfIYmuyA9Ya9RrNZ4UqIiIhuXwxNdkAt9zQpXAgREdFtjKHJDlw9PcfUREREpBSGJjvAyS2JiIiUx9BkBzgQnIiISHkMTXaAk1sSEREpj6HJDnBySyIiIuUxNNmBq1MOMDQREREphaHJDqjLTs8JAZgZnIiIiBTB0GQHHFRXDxPHNRERESlD0dA0Y8YMdO7cGW5ubvD398egQYOQmJho06a4uBhjx46Fj48PXF1d8dBDDyE9Pd2mTUpKCuLj4+Hs7Ax/f39MmjQJRqPRps327dtx5513QqfTITIyEosWLapQz7x58xAWFgZHR0dER0dj3759tb7PNVEuM3FcExERkUIUDU07duzA2LFjsWfPHmzatAmlpaXo168fCgoK5DYTJkzAL7/8guXLl2PHjh24dOkSBg8eLK83mUyIj4+HwWDA7t27sXjxYixatAhTp06V2yQlJSE+Ph69e/fG4cOHMX78eIwaNQobNmyQ2yxduhQTJ07EO++8g4MHD6JDhw6Ii4tDRkZG/XwYN2DT08TQREREpAzRgGRkZAgAYseOHUIIIXJycoRGoxHLly+X2/z1118CgEhISBBCCPHrr78KlUol0tLS5Dbz588X7u7uoqSkRAghxGuvvSbatGlj815DhgwRcXFx8vMuXbqIsWPHys9NJpMIDg4WM2bMqFLtubm5AoDIzc2t5l7fXEmpSYROXiNCJ68RuUWGWt8+ERHR7ao6398NakxTbm4uAMDb2xsAcODAAZSWliI2NlZu07JlSzRp0gQJCQkAgISEBLRr1w4BAQFym7i4OOj1ehw/flxuU34b1jbWbRgMBhw4cMCmjUqlQmxsrNzmWiUlJdDr9TaPumK9eg4ATCb2NBERESmhwYQms9mM8ePHo2vXrmjbti0AIC0tDVqtFp6enjZtAwICkJaWJrcpH5is663rbtRGr9ejqKgImZmZMJlMlbaxbuNaM2bMgIeHh/xo3LhxzXa8CsplJk47QEREpJAGE5rGjh2LY8eO4YcfflC6lCqZMmUKcnNz5ceFCxfq7L0kSZJ7m8y8eo6IiEgRDkoXAADjxo3DmjVrsHPnToSEhMjLAwMDYTAYkJOTY9PblJ6ejsDAQLnNtVe5Wa+uK9/m2ivu0tPT4e7uDicnJ6jVaqjV6krbWLdxLZ1OB51OV7MdrgG1SoLJLNjTREREpBBFe5qEEBg3bhxWrVqFrVu3Ijw83GZ9VFQUNBoNtmzZIi9LTExESkoKYmJiAAAxMTE4evSozVVumzZtgru7O1q3bi23Kb8NaxvrNrRaLaKiomzamM1mbNmyRW6jNOsEl5zckoiISBmK9jSNHTsW3333HVavXg03Nzd5/JCHhwecnJzg4eGBkSNHYuLEifD29oa7uztefPFFxMTE4K677gIA9OvXD61bt8aTTz6JmTNnIi0tDW+99RbGjh0r9wQ999xz+PTTT/Haa6/hmWeewdatW7Fs2TKsXbtWrmXixIkYPnw4OnXqhC5dumDOnDkoKCjAiBEj6v+DqYQDb6VCRESkrLq/mO/6AFT6WLhwodymqKhIvPDCC8LLy0s4OzuLBx98UKSmptpsJzk5WQwYMEA4OTkJX19f8corr4jS0lKbNtu2bRMdO3YUWq1WNG3a1OY9rObOnSuaNGkitFqt6NKli9izZ0+V96UupxwQQogO0zeI0MlrxOn0vDrZPhER0e2oOt/fkhAcWVwb9Ho9PDw8kJubC3d391rfftR7m5BVYMCG8T3QItCt1rdPRER0O6rO93eDuXqObkwtn54zK1wJERHR7YmhyU7IUw4wMxERESmCoclOsKeJiIhIWQxNdoKTWxIRESmLoclOyD1NvPccERGRIhia7IR1niYT52kiIiJSBEOTnVCVzQhu4uk5IiIiRTA02QkHNWcEJyIiUhJDk53gveeIiIiUxdBkJ9S89xwREZGiGJrshIPKcqjY00RERKQMhiY7UZaZ2NNERESkEIYmO2HtaeKUA0RERMpgaLITKs7TREREpCiGJjvByS2JiIiUxdBkJzi5JRERkbIYmuyEA6ccICIiUhRDk51Qqzm5JRERkZIYmuyEdUZw9jQREREpg6HJTlwdCG5WuBIiIqLbE0OTnbg65YDChRAREd2mGJrsBHuaiIiIlMXQZCfY00RERKQshiY7wZ4mIiIiZTE02Qm1ipNbEhERKYmhyU5wygEiIiJlMTTZCevkliYTQxMREZESGJrshJr3niMiIlIUQ5OduDoQnKGJiIhICQxNdkKtshwqhiYiIiJlMDTZCXXZkWJoIiIiUgZDk51gTxMREZGyGJrsBHuaiIiIlMXQZCesPU2cp4mIiEgZDE12omyaJk45QEREpJAahaaioiIUFhbKz8+fP485c+Zg48aNtVYY2VKXnZ/j5JZERETKqFFoGjhwIL7++msAQE5ODqKjo/Hhhx9i4MCBmD9/fq0WSBYOvPccERGRomoUmg4ePIju3bsDAFasWIGAgACcP38eX3/9NT755JNaLZAs5BnBOaaJiIhIETUKTYWFhXBzcwMAbNy4EYMHD4ZKpcJdd92F8+fP12qBZKHmjOBERESKqlFoioyMxE8//YQLFy5gw4YN6NevHwAgIyMD7u7utVogWTA0ERERKatGoWnq1Kl49dVXERYWhujoaMTExACw9DrdcccdtVogWVhDk9FsVrgSIiKi25NDTV708MMPo1u3bkhNTUWHDh3k5X379sWDDz5Ya8XRVdaB4MxMREREyqhRaAKAwMBABAYG2izr0qXLPy6IKqdiTxMREZGiahSaCgoK8P7772PLli3IyMiA+Zov8nPnztVKcXTV1SkHFC6EiIjoNlWj0DRq1Cjs2LEDTz75JIKCgiCVXQ5PdUclDwRnTxMREZESahSa1q1bh7Vr16Jr1661XQ9dh9zTxMxERESkiBpdPefl5QVvb+/aroVu4OrklkxNRERESqhRaHrvvfcwdepUm/vPUd26OuUABzUREREpoUan5z788EOcPXsWAQEBCAsLg0ajsVl/8ODBWimOrnJQW6ccYGgiIiJSQo1C06BBg2q5DLoZlcSeJiIiIkUJBe3YsUPcd999IigoSAAQq1atslk/fPhwAcDmERcXZ9MmKytLPPbYY8LNzU14eHiIZ555RuTl5dm0OXLkiOjWrZvQ6XQiJCREfPDBBxVqWbZsmWjRooXQ6XSibdu2Yu3atdXal9zcXAFA5ObmVut1VfXnhRwROnmNiPnP5jrZPhER0e2oOt/fNRrTZHXgwAF8++23+Pbbb3Ho0KFqv76goAAdOnTAvHnzrtumf//+SE1NlR/ff/+9zfrHH38cx48fx6ZNm7BmzRrs3LkTo0ePltfr9Xr069cPoaGhOHDgAGbNmoVp06bhiy++kNvs3r0bw4YNw8iRI3Ho0CEMGjQIgwYNwrFjx6q9T3VFVXak2NNERESkkJqksvT0dNG7d28hSZLw8vISXl5eQpIk0adPH5GRkVGTTV63p2ngwIHXfc2JEycEAPHHH3/Iy9atWyckSRIXL14UQgjx2WefCS8vL1FSUiK3mTx5smjRooX8/NFHHxXx8fE2246OjhZjxoypcv113dN0MlUvQievEVHvbayT7RMREd2O6ryn6cUXX0ReXh6OHz+O7OxsZGdn49ixY9Dr9XjppZdqM9Nh+/bt8Pf3R4sWLfD8888jKytLXpeQkABPT0906tRJXhYbGwuVSoW9e/fKbXr06AGtViu3iYuLQ2JiIq5cuSK3iY2NtXnfuLg4JCQkXLeukpIS6PV6m0ddUrOniYiISFE1Ck3r16/HZ599hlatWsnLWrdujXnz5mHdunW1Vlz//v3x9ddfY8uWLfjggw+wY8cODBgwACaTCQCQlpYGf39/m9c4ODjA29sbaWlpcpuAgACbNtbnN2tjXV+ZGTNmwMPDQ340btz4n+3sTajLzs+ZeB8VIiIiRdTo6jmz2VxhmgEA0Gg0Fe5D908MHTpU/rldu3Zo3749IiIisH37dvTt27fW3qcmpkyZgokTJ8rP9Xp9nQanq/eeY2giIiJSQo16mvr06YOXX34Zly5dkpddvHgREyZMqNMw07RpU/j6+uLMmTMAgMDAQGRkZNi0MRqNyM7ORmBgoNwmPT3dpo31+c3aWNdXRqfTwd3d3eZRl1Sc3JKIiEhRNQpNn376KfR6PcLCwhAREYGIiAiEh4dDr9dj7ty5tV2j7O+//0ZWVhaCgoIAADExMcjJycGBAwfkNlu3boXZbEZ0dLTcZufOnSgtLZXbbNq0CS1atICXl5fcZsuWLTbvtWnTJsTExNTZvlSXtaeJk1sSEREpo0an5xo3boyDBw9i8+bNOHnyJACgVatWFQZT30x+fr7cawQASUlJOHz4MLy9veHt7Y3p06fjoYceQmBgIM6ePYvXXnsNkZGRiIuLk9+zf//+ePbZZ7FgwQKUlpZi3LhxGDp0KIKDgwEAjz32GKZPn46RI0di8uTJOHbsGD7++GPMnj1bft+XX34ZPXv2xIcffoj4+Hj88MMP2L9/v820BErj5JZEREQKq4er+a5r27ZtFSavBCCGDx8uCgsLRb9+/YSfn5/QaDQiNDRUPPvssyItLc1mG1lZWWLYsGHC1dVVuLu7ixEjRtxwcstGjRqJ999/v0Ity5YtE82bNxdarVa0adOmwU1umZ1fIkInrxGhk9cIo8lcJ+9BRER0u6nO97ckRNVGFn/yyScYPXo0HB0d8cknn9ywbW1PO2AP9Ho9PDw8kJubWyfjm/KKS9Fu2kYAQOK/+kPnoK719yAiIrrdVOf7u8qn52bPno3HH38cjo6ONqe2riVJ0m0ZmuqaRn11+FmpSUBXoxOrREREVFNV/upNSkqq9GeqHzahyWgGdAoWQ0REdBuq0dVz7777LgoLCyssLyoqwrvvvvuPi6KK1CoJ6rIr6EpNtTcXFhEREVVNjULT9OnTkZ+fX2F5YWEhpk+f/o+Lospp1JbQZGBoIiIiqnc1Ck1CCEhll8CXd+TIEXh7e//joqhy1lN0pbyVChERUb2r1nBiLy8vSJIESZLQvHlzm+BkMpmQn5+P5557rtaLJAutHJrY00RERFTfqhWa5syZAyEEnnnmGUyfPh0eHh7yOq1Wi7CwsAY1i/atxtrTZDAyNBEREdW3aoWm4cOHAwDCw8Nx9913V3rTXqo7GgcOBCciIlJKjWb76dmzp/xzcXExDAaDzfq6vnnt7YpjmoiIiJRTo4HghYWFGDduHPz9/eHi4gIvLy+bB9UNjmkiIiJSTo1C06RJk7B161bMnz8fOp0OX375JaZPn47g4GB8/fXXtV0jlZHHNDE0ERER1bsanZ775Zdf8PXXX6NXr14YMWIEunfvjsjISISGhmLJkiV4/PHHa7tOwtV5mko5EJyIiKje1ainKTs7G02bNgVgGb+UnZ0NAOjWrRt27txZe9WRDY5pIiIiUk6NQlPTpk3l+8+1bNkSy5YtA2DpgfL09Ky14siW1oFjmoiIiJRSo9A0YsQIHDlyBADw+uuvY968eXB0dMSECRMwadKkWi2QruKYJiIiIuXUaEzThAkT5J9jY2Nx8uRJHDhwAJGRkWjfvn2tFUe25DFNDE1ERET1rto9TaWlpejbty9Onz4tLwsNDcXgwYMZmOqYPKaJA8GJiIjqXbVDk0ajwZ9//lkXtdBNaDkQnIiISDE1GtP0xBNP4H//+19t10I3wTFNREREyqnRmCaj0YivvvoKmzdvRlRUFFxcXGzWf/TRR7VSHNniveeIiIiUU6PQdOzYMdx5550AgFOnTtmskyTpn1dFldLwNipERESKqVFo2rZtW23XQVXAMU1ERETKqdGYJqszZ85gw4YNKCoqAgAIwS/zuiSPaeLVc0RERPWuRqEpKysLffv2RfPmzXHvvfciNTUVADBy5Ei88sortVogXcXTc0RERMqpUWiaMGECNBoNUlJS4OzsLC8fMmQI1q9fX2vFkS0OBCciIlJOjcY0bdy4ERs2bEBISIjN8mbNmuH8+fO1UhhVxDFNREREyqlRT1NBQYFND5NVdnY2dDrdPy6KKsd5moiIiJRTo9DUvXt3fP311/JzSZJgNpsxc+ZM9O7du9aKI1u8jQoREZFyanR6bubMmejbty/2798Pg8GA1157DcePH0d2djZ27dpV2zVSGd6wl4iISDk16mlq27YtTp06hW7dumHgwIEoKCjA4MGDcejQIURERNR2jVRG68AxTUREREqpUU9TSkoKGjdujDfffLPSdU2aNPnHhVFFHNNERESknBr1NIWHh+Py5csVlmdlZSE8PPwfF0WV4zxNREREyqlRaBJCVHqPufz8fDg6Ov7joqhyHNNERESknGqdnps4cSIAy9Vyb7/9ts20AyaTCXv37kXHjh1rtUC6Sp6nycgxTURERPWtWqHp0KFDACw9TUePHoVWq5XXabVadOjQAa+++mrtVkgyjQNPzxERESmlWqFp27ZtAIARI0bgk08+gZubW50URZXjQHAiIiLlVCs0DR48WP55+PDh1223cuXKmldE18UxTURERMqpVmjy8PCoqzqoCnjvOSIiIuVUKzQtXLiwruqgKuBtVIiIiJRToykHSBnWgeAc00RERFT/GJrsCMc0ERERKYehyY5YxzSZBWAyc1wTERFRfWJosiPWMU0Ae5uIiIjqG0OTHSkfmjiuiYiIqH4xNNkR65gmgFfQERER1TeGJjsiSVK5weAc00RERFSfGJrsjIOK958jIiJSAkOTnbH2NHFMExERUf1iaLIzWgf2NBERESmBocnOXL2VCsc0ERER1SdFQ9POnTtx//33Izg4GJIk4aeffrJZL4TA1KlTERQUBCcnJ8TGxuL06dM2bbKzs/H444/D3d0dnp6eGDlyJPLz823a/Pnnn+jevTscHR3RuHFjzJw5s0Ity5cvR8uWLeHo6Ih27drh119/rfX9rQ3W0MTTc0RERPVL0dBUUFCADh06YN68eZWunzlzJj755BMsWLAAe/fuhYuLC+Li4lBcXCy3efzxx3H8+HFs2rQJa9aswc6dOzF69Gh5vV6vR79+/RAaGooDBw5g1qxZmDZtGr744gu5ze7duzFs2DCMHDkShw4dwqBBgzBo0CAcO3as7na+hngrFSIiIoWIBgKAWLVqlfzcbDaLwMBAMWvWLHlZTk6O0Ol04vvvvxdCCHHixAkBQPzxxx9ym3Xr1glJksTFixeFEEJ89tlnwsvLS5SUlMhtJk+eLFq0aCE/f/TRR0V8fLxNPdHR0WLMmDFVrj83N1cAELm5uVV+TU3Ezd4hQievETtPZdTp+xAREd0OqvP93WDHNCUlJSEtLQ2xsbHyMg8PD0RHRyMhIQEAkJCQAE9PT3Tq1EluExsbC5VKhb1798ptevToAa1WK7eJi4tDYmIirly5Ircp/z7WNtb3qUxJSQn0er3Noz5wIDgREZEyGmxoSktLAwAEBATYLA8ICJDXpaWlwd/f32a9g4MDvL29bdpUto3y73G9Ntb1lZkxYwY8PDzkR+PGjau7izUij2niQHAiIqJ61WBDU0M3ZcoU5Obmyo8LFy7Uy/tyTBMREZEyGmxoCgwMBACkp6fbLE9PT5fXBQYGIiMjw2a90WhEdna2TZvKtlH+Pa7Xxrq+MjqdDu7u7jaP+iBPOcDQREREVK8abGgKDw9HYGAgtmzZIi/T6/XYu3cvYmJiAAAxMTHIycnBgQMH5DZbt26F2WxGdHS03Gbnzp0oLS2V22zatAktWrSAl5eX3Kb8+1jbWN+nIdEyNBERESlC0dCUn5+Pw4cP4/DhwwAsg78PHz6MlJQUSJKE8ePH41//+hd+/vlnHD16FE899RSCg4MxaNAgAECrVq3Qv39/PPvss9i3bx927dqFcePGYejQoQgODgYAPPbYY9BqtRg5ciSOHz+OpUuX4uOPP8bEiRPlOl5++WWsX78eH374IU6ePIlp06Zh//79GDduXH1/JDd1dZ4mjmkiIiKqV/VwNd91bdu2TQCo8Bg+fLgQwjLtwNtvvy0CAgKETqcTffv2FYmJiTbbyMrKEsOGDROurq7C3d1djBgxQuTl5dm0OXLkiOjWrZvQ6XSiUaNG4v33369Qy7Jly0Tz5s2FVqsVbdq0EWvXrq3WvtTXlAPjvjsoQievEf/77Vydvg8REdHtoDrf35IQgl0WtUCv18PDwwO5ubl1Or5p4rLDWHnwIqYMaIkxPSPq7H2IiIhuB9X5/m6wY5qochzTREREpAyGJjvDMU1ERETKYGiyM5xygIiISBkMTXZG41A2uaWRoYmIiKg+MTTZGY5pIiIiUgZDk53hmCYiIiJlMDTZmcrGNJWazJiy8k/8fOSSUmURERHd8hia7ExlN+w9lJKD7/ddwOxNp5Qqi4iI6JbH0GRntA4Ve5pyiyz31cspNChSExER0e2AocnOyGOajFfHNOWXWEKTvtgITvBORERUNxia7ExlY5ryi40AAJNZoKjUpEhdREREtzqGJjtT2ZimvBKj/LO+yFjhNURERPTPMTTZmcrmabL2NAFAXnFpvddERER0O2BosjOVzdOUX76niaGJiIioTjA02RmN9eo5Y+U9Tfpinp4jIiKqCwxNdubmY5rY00RERFQXGJrszM3HNLGniYiIqC4wNNmZq1MOVD6miaGJiIiobjA02ZmrA8HL9TRxIDgREVGdY2iyM1qHSsY0ccoBIiKiOsfQZGfk03Plr54ruRqUOLklERFR3WBosjPXjmkqNZlRXFq+14k9TURERHWBocnOlB/TJIRAQYltzxLnaSIiIqobDE12xjrlAAAYzaLC1XLsaSIiIqobDE12RlM2EBywnJrLv7aniWOaiIiI6gRDk53RlOtpKjUKOTSpVZYwxZ4mIiKiusHQZGccVFd7mgwmszwbeKC7IwCgwGCCsdx0BERERFQ7GJrsjCRJNrdSsd53LtjTUW5z7Sk7IiIi+ucYmuxQ+Zv2WnuaPJ21cNKoAXBcExERUV1gaLJDGoerPU3WiS3ddA5wc3QAwFupEBER1QWGJjskz9VkFHJPk6ujA9ydNAB4014iIqK6wNBkhyob0+TKniYiIqI6xdBkhyob0+Tq6AB3R/Y0ERER1RWGJjtU/v5z1ivlbMY0FbGniYiIqLYxNNkhjbr8QPCrPU1u7GkiIiKqMwxNdshVZ+lRulJokAOSq04DdyeOaSIiIqorDE12KMLfBQBwOj3/ak+TrvyYJoYmIiKi2sbQZIea+bsBAE5n5MkDwd0cHeAuj2ni6TkiIqLaxtBkh5oHlIWma3qa5DFNJexpIiIiqm0OShdA1dc8wBUAkJxVALOwLLNMbsmeJiIiorrCniY75Oemg4eTRg5MwDU9TRzTREREVOsYmuyQJElo5u8qP9eoJegcVPJAcD2nHCAiIqp1DE12qlnZuCbA0sskSZI8uWVecSmEENd7KREREdUAQ5Odso5rAizjmQDIN+wtNQmUGM2K1EVERHSrYmiyU81teposYclFq4bKcls63kqFiIioljE02alm5Xqa3MpmCJckCR5lvU1XChmaiIiIahNDk53yc9XJAcl6eg4AfFx1AICs/BJF6iIiIrpVMTTZKUmS5HFN1nvRAYCPixYAkFlgUKQuIiKiWxVDkx2zXkFXvqfJlz1NREREdYKhyY49eEcjRPq7YkDbQHmZj6ulpymbPU1ERES1qkGHpmnTpkGSJJtHy5Yt5fXFxcUYO3YsfHx84Orqioceegjp6ek220hJSUF8fDycnZ3h7++PSZMmwWi0nfxx+/btuPPOO6HT6RAZGYlFixbVx+79Y53DvLF5Yk90b+YnL/NxsfQ0ZeYzNBEREdWmBh2aAKBNmzZITU2VH7///ru8bsKECfjll1+wfPly7NixA5cuXcLgwYPl9SaTCfHx8TAYDNi9ezcWL16MRYsWYerUqXKbpKQkxMfHo3fv3jh8+DDGjx+PUaNGYcOGDfW6n7XF2tPE03NERES1q8HfsNfBwQGBgYEVlufm5uJ///sfvvvuO/Tp0wcAsHDhQrRq1Qp79uzBXXfdhY0bN+LEiRPYvHkzAgIC0LFjR7z33nuYPHkypk2bBq1WiwULFiA8PBwffvghAKBVq1b4/fffMXv2bMTFxdXrvtYGX2to4uk5IiKiWtXge5pOnz6N4OBgNG3aFI8//jhSUlIAAAcOHEBpaSliY2Plti1btkSTJk2QkJAAAEhISEC7du0QEBAgt4mLi4Ner8fx48flNuW3YW1j3cb1lJSUQK/X2zwaAk45QEREVDcadGiKjo7GokWLsH79esyfPx9JSUno3r078vLykJaWBq1WC09PT5vXBAQEIC0tDQCQlpZmE5is663rbtRGr9ejqKjourXNmDEDHh4e8qNx48b/dHdrhXXKgSyOaSIiIqpVDfr03IABA+Sf27dvj+joaISGhmLZsmVwcnJSsDJgypQpmDhxovxcr9c3iOBk7WnKKzGiuNQER41a4YqIiIhuDQ26p+lanp6eaN68Oc6cOYPAwEAYDAbk5OTYtElPT5fHQAUGBla4ms76/GZt3N3dbxjMdDod3N3dbR4NgbujAzRqyw3orp12YPOJdBw4f0WJsoiIiOyeXYWm/Px8nD17FkFBQYiKioJGo8GWLVvk9YmJiUhJSUFMTAwAICYmBkePHkVGRobcZtOmTXB3d0fr1q3lNuW3YW1j3Ya9kSRJnnag/Cm6dH0xnv1mP0Yu/gNCCKXKIyIislsNOjS9+uqr2LFjB5KTk7F79248+OCDUKvVGDZsGDw8PDBy5EhMnDgR27Ztw4EDBzBixAjExMTgrrvuAgD069cPrVu3xpNPPokjR45gw4YNeOuttzB27FjodJZg8dxzz+HcuXN47bXXcPLkSXz22WdYtmwZJkyYoOSu/yPWaQcyC64OBk/JLoQQQE5hKS7ncZA4ERFRdTXoMU1///03hg0bhqysLPj5+aFbt27Ys2cP/PwskznOnj0bKpUKDz30EEpKShAXF4fPPvtMfr1arcaaNWvw/PPPIyYmBi4uLhg+fDjeffdduU14eDjWrl2LCRMm4OOPP0ZISAi+/PJLu5xuwOrqFXRXe5rScovln89nF8Lf3bHe6yIiIrJnDTo0/fDDDzdc7+joiHnz5mHevHnXbRMaGopff/31htvp1asXDh06VKMaG6KrV9Bd7VFK118NTSlZhegc5l3vdREREdmzBn16jmpGDk0FtmOarM5nF9Z7TURERPaOoekWZD09l1mupylNX258U1ZBvddERERk7xiabkFX7z9Xrqcplz1NRERE/wRD0y3o6v3nyo1pyrMd00RERETVw9B0C7LO05Rd1tMkhLC5ei6rwID8EqMitREREdkrhqZb0NV5mgwQQiC3qBQlRjMAwE1nuWDyPMc1ERERVQtD0y3I2tNkMJqRX2JEWtmVc57OGkT4uwIALnBcExERUbUwNN2CnLRquGgtN+rNyjcgvezKuUB3R4T6OAMAznNcExERUbUwNN2i5FnBC0rkK+f83R3RxLssNLGniYiIqFoYmm5R8rimfIN8ei7QXSeHJl5BR0REVD0MTbco37KepgvZhfJs4JbTcy4AgPPZHAhORERUHQxNt6hOoV4AgJ2nM+XQFOBxdUzTpZxilJrMitVHRERkbxiablF9WvoDAPacy0JSpqVXKdDdEf5uOjhqVDCZBS5eKVKyRCIiIrvC0HSLivR3RYiXEwxGM85etoSmAHdHSJKEsLJTdGcy8pUskYiIyK4wNN2iJEmSe5usAtwdAQCtg90BAMcu5dZ7XURERPaKoekW1rtcaNKoJfi4WK6oaxvsAQA4dlFf4TVZ+SXIKHefOiIiIrJgaLqFxTT1gaPGcoj93RyhUkkAgHYhltB0/JqeJqPJjAc+3YUBc36Dvri0foslIiJq4BiabmGOGjW6RvgCAPzddfLyVkHukCQgNbcYmfkl8vLkrEJczClCVoEBW//KqPd6iYiIGjKGplvcve2CAFiCkpWrzgHhvpbB4McuXu1tOp2eJ//869HUeqqQiIjIPjgoXQDVrcF3NkKgh6M8jsmqXSMPnLtcgOOX9OjVwjL2KbFcaNpx6jIKSoxw0VX8FTmUcgUXc4pwX/vgui2eiIioAWFP0y1OkiR0jfSFh7PGZrk1RB39u3xP09UpCEqMZmxLrPwU3QtLDmLcd4dsXktERHSrY2i6TbVpVHHaAWtPU+uyU3nrjqVVeJ2+uBSpZTcA/u3M5bouk4iIqMFgaLpNtSnrafr7ShGuFBhQYjQhuWzm8Jf6NgMAbDuZgeJSk83ryt/oN+FsVj1VS0REpDyGptuUh5NGvg/d8Ut6JGUWwGgWcNM5oF/rADTydEKhwYTfTmfavO58udD0R3I2DEbev46IiG4PDE23Meu4poMpV3CqbDxTswBXqFQSejS3TFWwL8m2N+l8doH8c3GpGYcv5NRPsURERApjaLqNWYPRsv0XcDLVMjt4i0A3AECnUG8AwIHzV2xeU/70HADsPmvbE2WVW1RqM4UBERGRvWNouo090KERPJw0+PtKEb7flwIAaOZfFprCvABYbrVSflyT9fRcp1DL+t3XGdf0yrLDiJuzEwfOZ9dZ/URERPWJoek25qRVY2jnxgCAK4WW26ZYe5qaeDvD11UHg8mMo+UmwDyfZTk9N7RLEwDA4ZQcFBlsB4ubzQK7z2bBLIAVBy7W+X4QERHVB4am29wTd4Wi7JZ0ACxjmgDL/E7W3qT9yZZTdCVGE1L1lukGejb3Q5CHIwwmc8VTeNmFKCwLUhuOp8Fo4mBxIiKyfwxNt7nG3s6IbRUAAPBy1sDP9eo96qyn6Kyn2C5kF0EIwEWrhq+rFneX3ddu52nb+ZpOpunln7MLDNibxFN0RERk/xiaCGN6NoVGLaFbMz9I0tVup6hQa2i6AiEEUsqunGvi4wJJktC7pR8AYOtJ25nDT6TaDgBfy/vYERHRLYChiRAV6o3fJ/fBrIfb2yxvE+wBnYMKVwpLcfZygTwIPNTbMr9T92Z+cFBJOJORL491AiBfidenpeWeduuP8RQdERHZP4YmAgAEuDvCUaO2WaZ1UKFDY08AllN0cmgqmxTTw0mDzmGWqQm2/HW1t+mvstNzI7qGwctZw1N0RER0S2BoohvqXDauadWhi3JvUpOy0AQAfVtZepOsp+jyiktxIbsIgGXyzLg2gQCAnw9fqrDtRbuSEP2fzdh2svIbAwOWU4NDPk+wGSdFRESkBIYmuqFHOzWGo0aFPeeysbPsliqh3i7yeuspuL1JWcgrLkVimmU8U6C7I7xctBh0RyMAlnFNhQajzbYX7k5Gur4Ez317AHvOVT7f0/ztZ7A3KRtzt565bo3p+mK8suwI/kplsCIiorrD0EQ3FOrjglf7tQAAmMyibNnVnqamfq4I93VBqUng99OZ+KssNLUMssz3FB3ujSbezsgvMWLd0TT5dcmZV8dIlRjNGLV4P46Vmw8KAIwmM/acs5zWq+zmwVZzt57Gjwf/xsz1J2tjl4mIiCrF0EQ3NaJrOO5s4gkAcFBJCPJwtFlv7W364Y8LOF4WfFoFuQOwzPf0cFQIAGD5gQvya3acskxTEBXqhbuaeiO/xIipq4/ZbPfI37nIL7H0ThUaTPJryjOZBdYfSwcA7DmXjRJj5cGKiIjon2JooptSqyTMfLgDvJw16BrpCwe17a/Ng3c0glolYcepy1i23xKMWpbNLA4AD0WFQJIsocZ67zprALqndQA+GXYHNGoJB1NybHqbdp+xva/d+mNpuNb+5Gxk5pcAAIpKTRUm2rS6nFeCiUsPY3vi9cdPERER3QhDE1VJpL8rdr/eFwuf7lxhXdtGHvh02B1wUEkoO4OH1mU9TQDQyNMJ3SItE2GuOHABxaUmJJTds65ncz/4uzliQNsgAMDi3cny63aV3Qx4UMdgAMDmv9Ir9CStuyZI7TxV+Q2E31x1FCsPXcTbq4/BbC2SiIioGhiaqMqctGqoyt9zpZwB7YIw7/E7oVFL8HXVIdzXxWa99RTdV7uS8U3CeRSVmuDvppN7pIbfHQoAWH3kEq4UGFBkMOHg+RwAwLg+kfB30yGv2IjdZ64OGDebhdz7FN/eErp+O13xFN6G42nYeMJyCu9CdhH2X6c3qsRowkebTlV6GpCIiIihiWpNXJtAbJ7YE6vHda1wCu/edkHy2KV///oXAEsvk3UG8jubeKFtI3cYjGYs3X8B+89nw2AyI9DdERF+rujf1jJ1wYIdZ3ExxzKlwaELOUjTF8NV54A37m0FADh+SY/LeSXy++YWluKd1ccBAG6ODgCAHw/8La8v3+v0/rqT+GTLaYz77iDyikuvu59nL+cjo+wefEREdPtgaKJaFerjgkaeThWWa9QqfP5kJzQvuyEwAPRs4Sf/LEkSnooJAwB8vPk0/r3WEqzujvSRB5OrVRL2JmWj96ztePJ/ezFpxREAlrmiGnk6yacEfzp0EZOWH0GXf29Gh3c3Ik1fjFAfZ8wddgcAy/QH+uJSPP/tAXR8dyOW7D2PbSczsHBXMgAgr9iIb/ekAAB2nrqM8T8cwpELOQCAr35PQt8Pd+DeT35DdoGh9j64f4inHImI6h5DE9UbDycNFo3ogkaeTvBy1qB7pJ/N+gc6BKNLmDeKSk04WTZ1QdeymwK3D/HE8udiENPUBwaTGb+dzsS5y5bJNgd1tMwF1b25pe2/f/0Lyw/8jYyyHid/Nx0+fKQDejTzQyNPJ+SXGPHgvF1YdywN+mIj3lx1DKO+3g/g6gD2//1+DgdTrmD0N/vx0+FLePCzXXjiy714d80JAEBmvkEOdjtOXcaoxX9g3dFUCGEJL0aTWf75n9h4PA3/WnMCOYXXD2j/XnsCd7y3CWv+rDiBqNXJND3e/ukYTqXnXbcNERHdmCRq4y87Qa/Xw8PDA7m5uXB3d7/5C25jhQYjSk0CHk6aCuuEENh5OhNf/Z6EIoMJXz7dCe6Otu32J2fj7OV8OGrUCHB3RHS4NyRJwu6zmXjsv3sBAO1DPPB6/5ZoFeQOT2eNfBrwo42J+KRsokwHlYTHo5vg+z8uwGA0o2WgG1Y8fzfiZu/ExZwiaB1UMBjNCHDXIV1/9ZTf0M6NsXT/BQgBPH13GL7Zc16ew6prpA+cNGr8fiYTHk4aTH+gLXq39MP/fk/C9/tSENPUByO7NYWrowP2nM2CADCgbSBcdA44lHIF3+9LwV1NfTCoYyOsOnQRr644AiGApr4u+OrpzvBy0eLPv3PQ1M8VjTyd8MO+FLy+8igAy1WOHw/tiPh2QcgpLIW7kwZqlYTM/BLEf/Ib0vUlcNU54NPH7kCvFv4wmsxQqyT5szmfVYCFu5JxX/sgdCq7PQ4R0a2uOt/fDE21hKFJeUIILN6dDFdHjTwNwrWSMwvQ+8PtAICPh96BBzoEIzEtDz8fuYhhXZogxMsZ3yQk4+2ycVAhXk74ZVw3HLpwBV/9noyHohrhwTtCMHX1MXydcF7ebucwLxz5OxcGY8UbE/u4aJF1g1N5bjoHtA52t7k/X+sgd5xM08MsACeNGkWlJjhp1DCYzDCZBRxUEgbd0Qg/H7kEg9GMZv6uOJ2RD7VKgpujA3IKSxHo7oi372uNJXvPY/fZLKhVEkxmAZUENPJywqWcYjT2csJHQzrC21mLoV/sQZq+GCoJeKFXJPq1CcCRv3Ph46JF/zaBUKkkJGcW4MNNp3BnE088Hh0KrQM7q4nIvjE0KYChyX5sS8yAVq1C17JpEK5VXGpC7Ec7kF1gwPLnYtAm2KNCm7ziUvSbvROpucUY07MpXu/fEinZhfh2z3m4O2rQq4U/1h1LxYIdZ2EWgK+rDi/0isD+89lYfywNkiShXSMP5BaVIinTcppRJVkmCt19NguFBsvUCkM7N8bEe5rj2a/348jfljmsAt0dkVZuIHpsK38seCIKr688ihXlBrmX56xVY8Vzd+N/vyfhx4O2bRxUEjycNMgqMMDTWYOcwoqD4Ae0DcSo7uEY880BZOZbAmCojzO6RvrifFYBtGoVJsW1ROtgd+iLS/HDvhSE+bggtlUAVCoJxaUmZOaXIMTLucK2iYiUxNCkAIamW0tuYSkMJjP83HTXbZORV4y/rxThziZe121z7GIuDpy/gsF3NoJb2WnG3MJSqNUSXHUOMJsFdpy6jBOpesS1CUSkvytSc4vw6dYz8HbRYkJsczl07D6biRaB7mjk6YTdZzMxZ/NpAMB/n+oEDycNzGaBvUnZ8HDSoJGnE778/RwW7DiLUpPAx0M7YmDHRhBC4NCFHBhNAgHuOszakIg1f6YCACL8XPDD6BjsTcrCu7+cQInRjDbB7vgjORulpqt/JiL9XZFTWCpPKmqlVavwWHQTrPkzVV7XIsANzQPdsPWvdBQYTBgeE4o34lshObMQ87efgVlYgqKbowN+OXIJ5zILMKRzYzzWpQkA4K/UPDhqVGjqZ7mAYPHuZMzdehq9W/hjwj3NoVZJ+OXIJQgBDOnSGO6OGmxPzMDcrWfQKsgNQztbtvPLn5dQUGLEiK7hiPBzxcGUK5i96RQi/FwxukdTeDprsOrQRZxMzcOIrmFo6ueKlKxCzNqYiAA3HV7s2wweThrsPpuJbScz8HBUY7QIdEORwYTFCclwUEl44q5QOGrUOHFJj58OX8SAtoG4o4mXfMo5t6gU8e2CoFZJyC8x4tejqegc5i1Pz1FoMEJfZETgNTPuE1HdYmhSAEMTNUQXsguRVWBAx8aela4XQmD5gb+xPzkbr/ZrAX93R3k5YLmqcX9yNp771tLD1DnMC18O7wwHlYTv96Ugu8CAcF8XbDiehs1/XZ1tvYm3M64UGJBXYqzwnk28nfH3lULc6IK/uyN8kFdsxNGyGeIHdgyGq84BS/amyG20ahWMZrO8HR8XLbqEe1eY8LQ8jVpC10hf7Dh1Gda/fFq1CjqNCnnFRvn5fe2DsO5YGorK7nfo66pFM383JJTdWFqtkjCoYyMknM3EpVxLr19jbyd0DvPGT4cuyjUNvrMRUrIK5bnBWge544GOwfjytyRk5pfAQWW5alSnUWHJnvPIKzHiiehQvNgnEr8eTcU3e86jVZA7JsW1gLeLFt/tTUFiWh5iWwfgntYBSM4swKa/0uHmqEH/NoFw1Kjwy5FUHL2Ygx7N/HBP6wBcyinG6sMXAVjmMwv2dMK2kxnYf/4K2od4oF/rQFzKLcLqw5cgARh+dxi8XbQ4dzkfqw5dRIiXE/q1DkSBwYj1x9KQmW9A7xZ+iAq1nJLefSYTAe6O6NPKHxqVCr+duYy/rxQhOtwbHUI8cT67ELvPZsJV54Bukb5w0Tng4PkrOHs5H+1DPNG2kQeyCkqw91w2VJKE6Kbe8HLW4mSaHqfS89DM3w2tgtxRYDDiQPIVlBjN6BTmBR8XLS5kF+FEqh4hXk5oFeQOo9mMYxf10BeVokNjT3i7aHGlwIDjl/TwcdWieYAb1CoJ2QUGZBcY0NjbCToHNYQQuJxfAkeNWh5DKYSA0SygUfMU9K2OoUkBDE10K0vXF2PPuSzEtQmEo0ZdYb0QAt/uOY8le1MwsGMjjOwWjiKDCd//kYLcolLc0zoAOYUGTFx2RD79N6BtIJr6uWDLXxnIKzbintYB8HXVYu7WMygpGxumVatQajaj/F+pMT2b4siFHPlmzp1CvZBdaJCvpgSAx6ObQF9sxIZjaZAky7QURQYTtiVenbh0UMdgpOYWy2PJwnycEezphN1nr06g2iXMG9mFBpzJyAdgCV3tQzxtbtfTyNMJJrOwOWXaIcRDPp0KADoHFbQOV4MZgOueCq2MRi3BUaO2eb2zVi2fxgUsp3e1DioUl14dV+flrMGVa97DUWPbRuegkj9vAHB3dECvFv749WgqjGXpzzoe7tqayvdAShKgkmzbXVujJFmmHyk/9s9Fq0aBwXam/2tf56K1jOsrX4K7owP05T4PV50DDCazzbb93XTyVbTWNo4alXyKWSVZTndnFxrkz8TLWQMXnQMy80tQXGqGq84BPq5alJSakVNkgEqS4Omkga7seBQajHDWOsDDyQEms0B+iRFCWK4W1mnUyC8pRX6xEU4aNdydNDCZBfKKjTCaBTycHOCqc0B+iRF5xUY4adXwdtFCApBT1tsd4uWEYA8nZBYY8Hd2IdycNGgd5A5XnRqn0vORri9GswA3tA5yR7q+GCdS9dA5qHBHY0/4uTvi+MVcJGUWoFmAK6JCvWAwmnH2cgGMJoEWga4I8XJGZn4JLueVwNtFi0aeThAAMvJKYDCa4e+mg7eLFrlFpcgqMMBZo4avmw5qScKVQgOKS03wctHC00mD4lIz8kpKoVGr4KpzgINKQqHBBIPJDEcHNZy0KhjNAiWlZqgkCY4aFRzUKpSWHTeVJEGlAtSSBJVKgkqSoJYkSBJQajKj1CTg6uhQ6bQ2/wRDkwIYmohu7mJOEb7dcx7dm/ni7ojKx5SdvZyPeVvPIMLfFUM7N8alnGL8a+0JnEzLw/uD22FAuyAIIXAyLQ8uWgc08XFGqcmMb/ecx2+nMzG6R1Pc1dQHgOWUlwQJTlpL0Nt6Mh2/HEnFw1Eh8pi2P//OQZHBhM5h3pAkYOOJdHyTcB5xbQPxeJcmMJoFvk5IxoXsQozs1hRNfJyx+0wmvvjtHKKaeOHZHk1hMgss2HEWR/7OxfM9IxAT4YMD569gzuZTaOLtjBf7NINGLeGjTaew8/RlPHVXGIbfHYY957Lw4cZE6DRqjOwWDjedA95efQxnLxegkacTRnQNw45Tl/HbacvtgSL8XNC9mR/W/HkJmfkGaNQSujfzQ1Z+iRzSIvxccFdTH6w/loasAgMkCegW6QsHlYSdpzNhMgsEeziia6Qv9iRl4UJ2EVSSZbLZNH0J/krVy8eia6QPrhSU4kSqHpJkCZHBnk7Y/Fc68oqNcHN0QPdmvkjJLsSxi5bXRfq7IszHBXvOZSG/xAiNWkJUqBdyi4zytv3cdGgR4IYjF3KQV2KEJFl64UxmIU834qpzQLMAV5xOz5dv3B3m4wxHjVpuo1FLaObvhgvZhXKvpo+LFp7OGpwtF6KbeDsjK7/EJpxdG9YkCeC3YcM3qGMw5gy9o1a3ydD0D8ybNw+zZs1CWloaOnTogLlz56JLly43fR1DE1HdEkLI0yPcygxGM45dykXbYA9oHVQQQiDhXBZKSs3o2dwPKpUkt4nwdYWHs+V00oXsQuQVG9EqyA2SJKHEaMKB5Cto7O2Mxt6WAfhZ+SXIyCtBiwA3qFQShBA4lZ4PLxcN/N0cYTIL/PBHCn4/nYkn7gqVg+Wlsik4fF0tY/xKjCYkZxYi3NdFvoIyXV9sCWRlvQAGoxmnM/IQ6uMCV51lNv4MfTHyS4wI93WBJEkwmsw4lZ6PQA9HeLto5Roz8w2I8HOBg1oFo8mM0xn58HLWyuO9rhQY8PeVIjQLcIWjRg2TWeB0Rh60apW87ewCA5Iy8xHh5wpPZ63cptQoEOHvAieNGpfzSnDhSiF8XHRo5OWEEqMZKVmFKCo1wddVCzdHDa4UWk7lOTqo4eGkgYBATmEpSoyWXihnrRoFZePRNGoJro4OEMIySW5RqQlujpbepOJSE3KLSqGWJLg5WqYDySkyoKDEBFedA9wcHVBUakJWvgGAgJezFmqVhAtXCnEppxh+rjqEeDkhu9ByurHIYELzADf4u+mQmJ6Hk2l58HfToU2wu3zz8qx8A9oEuyPc1wUn0/Jw+EIOnLVqRPi5QiVJSEzXIy23GH5uOvi46nClwICLOUVQSxL83HTQOqhwOa8EVwoN8HSyhNGiUhMu55XALCw16jRq5BQakFtUCkcHNVx06rIeNxNMZjOctQ7QqCUUl5pRVGqCg0qCzkEFActN1o0mAa2DCg4qCQKWf+cms+VhFoDJLCBgOU2qVasQ1zYQ/3mwXa3+m2NoqqGlS5fiqaeewoIFCxAdHY05c+Zg+fLlSExMhL+//w1fy9BERERkf6rz/c0RbuV89NFHePbZZzFixAi0bt0aCxYsgLOzM7766iulSyMiIiKFMTSVMRgMOHDgAGJjY+VlKpUKsbGxSEhIqNC+pKQEer3e5kFERES3LoamMpmZmTCZTAgICLBZHhAQgLS0ipcwz5gxAx4eHvKjcePG9VUqERERKYChqYamTJmC3Nxc+XHhwgWlSyIiIqI65KB0AQ2Fr68v1Go10tPTbZanp6cjMDCwQnudTged7vqzRRMREdGthT1NZbRaLaKiorBlyxZ5mdlsxpYtWxATE6NgZURERNQQsKepnIkTJ2L48OHo1KkTunTpgjlz5qCgoAAjRoxQujQiIiJSGENTOUOGDMHly5cxdepUpKWloWPHjli/fn2FweFERER0++HklrWEk1sSERHZH05uSURERFTLGJqIiIiIqoChiYiIiKgKGJqIiIiIqoChiYiIiKgKOOVALbFehMgb9xIREdkP6/d2VSYTYGiqJXl5eQDAG/cSERHZoby8PHh4eNywDedpqiVmsxmXLl2Cm5sbJEn6x9vT6/Vo3LgxLly4cMvO+8R9vDVwH28N3MdbA/ex+oQQyMvLQ3BwMFSqG49aYk9TLVGpVAgJCan17bq7u9+yv/hW3MdbA/fx1sB9vDVwH6vnZj1MVhwITkRERFQFDE1EREREVcDQ1EDpdDq888470Ol0SpdSZ7iPtwbu462B+3hr4D7WLQ4EJyIiIqoC9jQRERERVQFDExEREVEVMDQRERERVQFDUwM1b948hIWFwdHREdHR0di3b5/SJdXYjBkz0LlzZ7i5ucHf3x+DBg1CYmKiTZtevXpBkiSbx3PPPadQxdU3bdq0CvW3bNlSXl9cXIyxY8fCx8cHrq6ueOihh5Cenq5gxdUXFhZWYR8lScLYsWMB2Ocx3LlzJ+6//34EBwdDkiT89NNPNuuFEJg6dSqCgoLg5OSE2NhYnD592qZNdnY2Hn/8cbi7u8PT0xMjR45Efn5+Pe7F9d1o/0pLSzF58mS0a9cOLi4uCA4OxlNPPYVLly7ZbKOy4/7+++/X855c382O4dNPP12h/v79+9u0acjHELj5Plb271KSJMyaNUtu09CPY1W+J6rydzQlJQXx8fFwdnaGv78/Jk2aBKPRWGt1MjQ1QEuXLsXEiRPxzjvv4ODBg+jQoQPi4uKQkZGhdGk1smPHDowdOxZ79uzBpk2bUFpain79+qGgoMCm3bPPPovU1FT5MXPmTIUqrpk2bdrY1P/777/L6yZMmIBffvkFy5cvx44dO3Dp0iUMHjxYwWqr748//rDZv02bNgEAHnnkEbmNvR3DgoICdOjQAfPmzat0/cyZM/HJJ59gwYIF2Lt3L1xcXBAXF4fi4mK5zeOPP47jx49j06ZNWLNmDXbu3InRo0fX1y7c0I32r7CwEAcPHsTbb7+NgwcPYuXKlUhMTMQDDzxQoe27775rc1xffPHF+ii/Sm52DAGgf//+NvV///33Nusb8jEEbr6P5fctNTUVX331FSRJwkMPPWTTriEfx6p8T9zs76jJZEJ8fDwMBgN2796NxYsXY9GiRZg6dWrtFSqowenSpYsYO3as/NxkMong4GAxY8YMBauqPRkZGQKA2LFjh7ysZ8+e4uWXX1auqH/onXfeER06dKh0XU5OjtBoNGL58uXysr/++ksAEAkJCfVUYe17+eWXRUREhDCbzUII+z+GAMSqVavk52azWQQGBopZs2bJy3JycoROpxPff/+9EEKIEydOCADijz/+kNusW7dOSJIkLl68WG+1V8W1+1eZffv2CQDi/Pnz8rLQ0FAxe/bsui2ullS2j8OHDxcDBw687mvs6RgKUbXjOHDgQNGnTx+bZfZ0HIWo+D1Rlb+jv/76q1CpVCItLU1uM3/+fOHu7i5KSkpqpS72NDUwBoMBBw4cQGxsrLxMpVIhNjYWCQkJClZWe3JzcwEA3t7eNsuXLFkCX19ftG3bFlOmTEFhYaES5dXY6dOnERwcjKZNm+Lxxx9HSkoKAODAgQMoLS21OaYtW7ZEkyZN7PaYGgwGfPvtt3jmmWds7rVo78ewvKSkJKSlpdkcNw8PD0RHR8vHLSEhAZ6enujUqZPcJjY2FiqVCnv37q33mv+p3NxcSJIET09Pm+Xvv/8+fHx8cMcdd2DWrFm1erqjPmzfvh3+/v5o0aIFnn/+eWRlZcnrbrVjmJ6ejrVr12LkyJEV1tnTcbz2e6Iqf0cTEhLQrl07BAQEyG3i4uKg1+tx/PjxWqmL955rYDIzM2EymWwOOgAEBATg5MmTClVVe8xmM8aPH4+uXbuibdu28vLHHnsMoaGhCA4Oxp9//onJkycjMTERK1euVLDaqouOjsaiRYvQokULpKamYvr06ejevTuOHTuGtLQ0aLXaCl9EAQEBSEtLU6bgf+inn35CTk4Onn76aXmZvR/Da1mPTWX/Fq3r0tLS4O/vb7PewcEB3t7edndsi4uLMXnyZAwbNszmfl4vvfQS7rzzTnh7e2P37t2YMmUKUlNT8dFHHylYbdX1798fgwcPRnh4OM6ePYs33ngDAwYMQEJCAtRq9S11DAFg8eLFcHNzq3D6356OY2XfE1X5O5qWllbpv1frutrA0ET1auzYsTh27JjNeB8ANuMH2rVrh6CgIPTt2xdnz55FREREfZdZbQMGDJB/bt++PaKjoxEaGoply5bByclJwcrqxv/+9z8MGDAAwcHB8jJ7P4a3s9LSUjz66KMQQmD+/Pk26yZOnCj/3L59e2i1WowZMwYzZsywi1mnhw4dKv/crl07tG/fHhEREdi+fTv69u2rYGV146uvvsLjjz8OR0dHm+X2dByv9z3REPD0XAPj6+sLtVpd4YqA9PR0BAYGKlRV7Rg3bhzWrFmDbdu2ISQk5IZto6OjAQBnzpypj9JqnaenJ5o3b44zZ84gMDAQBoMBOTk5Nm3s9ZieP38emzdvxqhRo27Yzt6PofXY3OjfYmBgYIULNIxGI7Kzs+3m2FoD0/nz57Fp06ab3jU+OjoaRqMRycnJ9VNgLWvatCl8fX3l38tb4Rha/fbbb0hMTLzpv02g4R7H631PVOXvaGBgYKX/Xq3ragNDUwOj1WoRFRWFLVu2yMvMZjO2bNmCmJgYBSurOSEExo0bh1WrVmHr1q0IDw+/6WsOHz4MAAgKCqrj6upGfn4+zp49i6CgIERFRUGj0dgc08TERKSkpNjlMV24cCH8/f0RHx9/w3b2fgzDw8MRGBhoc9z0ej327t0rH7eYmBjk5OTgwIEDcputW7fCbDbLobEhswam06dPY/PmzfDx8bnpaw4fPgyVSlXhlJa9+Pvvv5GVlSX/Xtr7MSzvf//7H6KiotChQ4ebtm1ox/Fm3xNV+TsaExODo0eP2oRg6/8ItG7dutYKpQbmhx9+EDqdTixatEicOHFCjB49Wnh6etpcEWBPnn/+eeHh4SG2b98uUlNT5UdhYaEQQogzZ86Id999V+zfv18kJSWJ1atXi6ZNm4oePXooXHnVvfLKK2L79u0iKSlJ7Nq1S8TGxgpfX1+RkZEhhBDiueeeE02aNBFbt24V+/fvFzExMSImJkbhqqvPZDKJJk2aiMmTJ9sst9djmJeXJw4dOiQOHTokAIiPPvpIHDp0SL567P333xeenp5i9erV4s8//xQDBw4U4eHhoqioSN5G//79xR133CH27t0rfv/9d9GsWTMxbNgwpXbJxo32z2AwiAceeECEhISIw4cP2/zbtF5ptHv3bjF79mxx+PBhcfbsWfHtt98KPz8/8dRTTym8Z1fdaB/z8vLEq6++KhISEkRSUpLYvHmzuPPOO0WzZs1EcXGxvI2GfAyFuPnvqRBC5ObmCmdnZzF//vwKr7eH43iz7wkhbv531Gg0irZt24p+/fqJw4cPi/Xr1ws/Pz8xZcqUWquToamBmjt3rmjSpInQarWiS5cuYs+ePUqXVGMAKn0sXLhQCCFESkqK6NGjh/D29hY6nU5ERkaKSZMmidzcXGULr4YhQ4aIoKAgodVqRaNGjcSQIUPEmTNn5PVFRUXihRdeEF5eXsLZ2Vk8+OCDIjU1VcGKa2bDhg0CgEhMTLRZbq/HcNu2bZX+bg4fPlwIYZl24O233xYBAQFCp9OJvn37Vtj3rKwsMWzYMOHq6irc3d3FiBEjRF5engJ7U9GN9i8pKem6/za3bdsmhBDiwIEDIjo6Wnh4eAhHR0fRqlUr8Z///McmcCjtRvtYWFgo+vXrJ/z8/IRGoxGhoaHi2WefrfA/oA35GApx899TIYT4/PPPhZOTk8jJyanwens4jjf7nhCian9Hk5OTxYABA4STk5Pw9fUVr7zyiigtLa21OqWyYomIiIjoBjimiYiIiKgKGJqIiIiIqoChiYiIiKgKGJqIiIiIqoChiYiIiKgKGJqIiIiIqoChiYiIiKgKGJqIiIiIqoChiYiIiKgKGJqIiIiIqoChiYiIiKgKGJqIiK7Rq1cvvPjiixg/fjy8vLwQEBCA//73vygoKMCIESPg5uaGyMhIrFu3TulSiageMTQREVVi8eLF8PX1xb59+/Diiy/i+eefxyOPPIK7774bBw8eRL9+/fDkk0+isLBQ6VKJqJ5IQgihdBFERA1Jr169YDKZ8NtvvwEATCYTPDw8MHjwYHz99dcAgLS0NAQFBSEhIQF33XWXkuUSUT1hTxMRUSXat28v/6xWq+Hj44N27drJywICAgAAGRkZ9V4bESmDoYmIqBIajcbmuSRJNsskSQIAmM3meq2LiJTD0ERERERUBQxNRERERFXA0ERERERUBbx6joiIiKgK2NNEREREVAUMTURERERVwNBEREREVAUMTURERERVwNBEREREVAUMTURERERVwNBEREREVAUMTURERERVwNBEREREVAUMTURERERVwNBEREREVAUMTURERERV8P8x4yDH0f4uGgAAAABJRU5ErkJggg==",
       "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
+       "<Figure size 640x480 with 1 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -980,7 +1131,7 @@
     "plt.plot(mlist, iterations)\n",
     "plt.title('Anderson Accelerated Jacobi\\nNumber of iterations vs m')\n",
     "plt.xlabel('m')\n",
-    "plt.ylabel('Iterations');"
+    "_ = plt.ylabel('Iterations')"
    ]
   },
   {
@@ -993,7 +1144,14 @@
   {
    "cell_type": "code",
    "execution_count": 25,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:48:45.673975Z",
+     "iopub.status.busy": "2024-08-14T18:48:45.672703Z",
+     "iopub.status.idle": "2024-08-14T18:48:48.851295Z",
+     "shell.execute_reply": "2024-08-14T18:48:48.850318Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -1005,21 +1163,19 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEtCAYAAADHtl7HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9fdBuW3IX9Ou9n/c9d+7H3JmbmcTJ5GYCIpqgVahggl8VK4KiRiwtIoIpEDVlWakyJTHGFEVRpQhSJJoCLWssCUiiEA0gShACGjSJhYhKhRCJQBImk8xkkjsf9+uc8z7Pbv9Yq3v16tVrfzzvc855zzm7q9732Xt97929V/92d6+1iZmx00477bTTTjvttNN6Gp70AHbaaaeddtppp52eNtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROd46I6DcQ0Z9ZWfa3E9F3Puox7bTTTk+eiOg3EdEPPKa+Vs9DK9v7U0T0G1eWZSL6RZ28x3YPdpqnHUA950REP0FE7xLRW0T0SSL6A0T08oo6//iF+v+SPFkcJI2Zv4uZf9Ul2t9pp52eLnJzkvz9vgu238w5EZ07D+U59KEb/7/IzL+amf/g+SPf6a7RDqB2AoCvZuaXAfx9AH4ZgN/6hMez0047Pd/01cz8svn7+sfZ+RK4WkG/243/j1xkYDvdKdoB1E5KzPxxAH8KwN9NRP8sEf0IEX2GiL6fiL4UAIjoDwH4YgD/Q36z+qac/hVE9EO5/F8moq+UdnP9f5+IfpCI3iSiP0NEH8jZ/2v+/Uxu71d4EzURfTsRfYyIPkdEf4mI/pHHcDt22mmnO05E9HcR0fcR0RtE9NeI6GtM3nuI6FuJ6CeJ6LNE9ANE9B7055wfJKL/mIh+HsBvD+ahX2L6+iQRfcvGsX4/Ef1r5vw3E9GPEtGniehPE9FHOvU+j4j+RJ7//g8Af/uWfnd6dLQDqJ2UiOh1AP8UgDcB/DcAvgHABwF8LxJgumbmrwXwt1DeEH83EX0YwJ8E8B8AeA3ANwL4HiL6oGn+1wP4VwB8PoDrXAYA/tH8+77c3v8eDO0vAvilue3/GsB/S0QvXOq6d9ppp6ePiOglAN+HNCd8PoBfB+A/I6Ivy0V+D4C/H8A/iDR3fBOACf0558sB/E0AXwDgd7i+XgHwZwH8TwC+EMAvAvDnbjH2XwPgWwD880hz7P+GNOdG9J8CuA/gQwB+c/7b6Q7QDqB2AoA/TkSfAfADAP48gL8K4E8y8/cx8w3SRPQepIkoon8ZwPcy8/cy88TM3wfg/0QCY0Lfwcw/xszvAvhuJEC0ipj5O5n555n5yMzfCuAegL9z60XutNNOTw398WzNlr9/PSjzzwD4CWb+jjw3/N8AvgfAryWiAQlo/FvM/HFmPjHzDzHzg5k+f5qZf29u692gr08w87cy831mfpOZ/8JMW99oxv5zQf6/AeB3MvOPMvMRwH8I4Jd6KxQRjQD+BQC/jZnfZua/AmCPo7ojtAOonQDgn2Pm9zHzR5j530R6w/pJyWTmCcDHAHy4U/8jSJOWTngA/mGkNyahT5jjdwDMBqpbIqJvzKbuz+a2XwXwgaV6O+2001NLMifJ338RlPkIgC93885vAPC3Ic0PLwD4Gxv6/NhM3usb2/o9ZuzRXPURAN9uxv0GAEI7x34QwMGN7Sex052g2wbK7fRs0k8D+HvkhIgIaQL5eE5iV/5jAP4QM0dviUvk26ooxzt9E4CvAvAjzDwR0aeRJpuddtrp+aWPAfjzzPwrfUa2QN1Hihf6yy67N+fMzUUfQ3IRXoo+BuB3MPN3LZT7FIAj0vz7/+a0L77gOHa6Be0WqJ0i+m4A/zQRfRURXQH4LQAeAPihnP9JAL/QlP9OAF9NRP8EEY1E9AIRfSURfdGKvj6FFJfwCzv5ryBNIJ8CcCCi3wbgvdsvaaeddnrG6H8E8IuJ6GuJ6Cr//XIi+tJsNf/9AL6NiL4wz0u/gojuYXnO6fX1ISL6BiK6R0SvENGX32Ls/zmAf4+IfgkAENGrRPRrfSFmPgH4o0hB7S/m+K5Ve0nt9OhpB1A7NcTMfw0prun3Avg5AF+NFDT+MBf5nQB+azY/fyMzfwyABEV+Cunt6t/BCvli5neQAjZ/MLf3Fa7In0YK3PwxJNP1fcyb2nfaaaenn2SVr/z9MV+Amd8E8KuQLEM/jRQm8B8hxUgCaaHKDyMtQnkj5w0r5pyGcl+/Emku/ASA/w/AP3buxTHzH8vj+cNE9DkAfwXAr+4U/3qkkIdPAPgDAL7j3H53uiwR86wHZaeddtppp5122mknR7sFaqeddtppp5122mkj7QBqp5122mmnnXbaaSPdCkAR0T+Zd3/960T0zZca1E477bTT46B9Dttpp53OpbNjoPIGXz+GFFj3U0iBev8SM//Vyw1vp5122unR0D6H7bTTTreh21ig/gEAf52Z/2ZenfWHkVZi7bTTTjs9DbTPYTvttNPZdJuNND+Mejn5TyF9S6hL40sv8eG1127R5U477fQ00fGNN3B6++27uunppjnsmu7xC3ipJJD+Q9prtk0v271SfdzNi/IluU7g5q76dtrsVURnsmutN2OuWNAG+SRfht0Bu8xuPneOUx/cbVMGlnlvjk3CPL9nz339uj9LrQx06rrsx0KzfI4LNbwGOvxmd24OwvM53gPFE8fNuN/Ep3+OmT+IgB75TuRE9HUAvg4Axve/Hx/+t7/hUXe500473RH6+Lf9J096CLciO3+9gBfx5fRVSZHRABoIGMdUbhxT+jAkMDWkMhizkX8cU3ouAz02aQB4KMdaN5dlouQzsOeAS8sDH0y+pOVzdufeD8FnAijyim6SBtmUMeds6k3phCYudXJ9mqYqjZjTsdST9qYp1WeTdppM2XTMWm9K+QBwOuX0ScsyM3A6pa5Pp5SeeQ9kng+U+T20/M+ygcGU6/Ff+OfObX7Mb5cGrJYDwAGwCwDnCgBFfAaAiUs5yyvP2yjN8pe55rfPt/zOfEzyMAETV/xmzT+BRTbyGP4s/3fdT+fcBkB9HGl7eaEvQvnUhxIzfxTARwHg3uuvr3pFiVH1TnedwreHnXa6u7Q4h9n56730GlfgKRN5xTPcYgI7V4mtpAY8XbRtakHUViJqLQ5RmqQ7cwEPBJqw3hq2OJ4hKVMakLR5Bk8dHjeysKqPC/LCtnUbOXyaqCcfm5ogtULRQOAp8xuYtaTdBkD9RQB/BxH9AqRJ59cB+PXnNPREANNzIlsAFr42d8Fu3D197IBqB3Db6Xl6DlraPocJeKIgfHQYqnKqwHzZyt2zjgHnWoW20mw/kvWEn7MKqA0EnG4xoIGS1ULaGYZkrZBfIPN8Ak81cK4AigcuNLTpj4oaC+K6ahexPgVtXmTe74Ei4dNW0CRAeCBgGoBhqvltywHK7yU6G0Ax85GIvh7pUxsjgN/PzD+yuZ1HKV/Pt3IotHQfHtGEeLGHqdvBI2x7C11KiJ+ECS+M7Xjso3gitHkOo9bycJbFQehSFoLHoaQpOF4rrhewENyajHurNxZrhdDzAcW9GABidd+tpaWydpxhfRT33uMiO+QpyJ+zEK7huym3yYrpLZD2/Iz7Q0Rg057y+9SpgFvGQDHz9wL43rPr30YGLiE/z4miWJzo1tyHM+c/4fGtsMFt596nxSf8qMe5lglzxZ6SW7mWts1hJq4FTnkSFTBFzhIlZV1501AaS2TR8MqycReuG/msQs4UWp/m+N160NYpwCXFqnE9HCvsXnu2XTkeKLURAqMB4FO2apg87X9I8VcjgYNn08c+pToBrwYjGzZvqHnLt3X9hkHmLv5pC0WyJWmeLxUIclNNlhOVjYHANg7Kk5OPOZlKLluu+X2qQVXqnrMVylgVqYA24R9BAsrLc46bzjjxGILIe3S2rnjc9WbocenlWxsmonFubdO28bheJs/t54KMuYtxXWdf3iV8rIxnDkRtpVgZOm0zxArtsdOTfEk1YSTLZUktPfFYHOg6x6o1DCloOGw/u3UmDsuJdariveN5BaAjMDRnXeqB5Etbm9a29bi+UXKGlWoVAOeYj+lZRS1rUk5ioOSFZsW4nhiA2kRb5OcMWbvrBopzxreoG3ttrpmTtprwt9KWds+4OY8EFD0KkNsrutaQtOi6jSbyFY1LkTv+3FyaiCitvCoJ6deuvAJq5TmnSA2F1oeetYnMiryorF15ZfLmAsgb69Na3t5mLggsWPPlqW+VWgo+t0pVYl4GMjelxFTRBLAo1XEsijXqEyj8B0LrY1hnDXmZiFZL9oDOgjVrNv5pDXiKLFFzPAitlWa6CRYEhC66ANTwQCAfB+fLenec4f1qfgd0twHUmitYKY+b9exdND3MkbvApevtm099u3ONrCy3hZbaWcnIzex70ux+BACsdw9mb6HNXLqJzyOQMkoznRrQVCnPct4sX9fy5k/rSNlyU2cVpSEmOBfSQoXBtF9d43JfDRldJ+0ldw2Sks0KTZWmUayMGdfOAPDkXDgDkiLUcddxLzygrMSzFgfj6iNkC4MPLgaAYUr1x7FYISLLlZUBD569+867b+f4b9uRK7yNFcoB5y54Osfq1LEy9uJfZ128ti0FvGhBGriMm2vel3a43PNpqvmNbG2ijfwO6O4CqAuApycCmm6rTM4dgh/7wsWvjk161NYmSxfqYxMbn2Rs1hxtlSMfczDXtCq6pTY7s+DzTEtBwM51d6sg89TA/Hkvbam93mV0mrIKvKsAlyxK57jd1tCS+687HCqxMZhq145vM+A7ebDjV95tiGlaHf+UQVZkYQRqEL0Ium4LnmxdD3ywYfqwchEB5rV1F4uaIPHIlWdp5cKAJwKgFifuufyZvOV21zJlXbGL1r/E23ylRGeulSk6nK+6ZG1aAFqLD9Ns3vxNWWTrGrbfcl6/hBGGuycbB7DSuhi/Ic4kdE1abdvPJJGzNgDmLdZaEYbAErFi80Qp7+tqX04xesWpx1RZHVa77nwbHYryVOE5SxQFVoTGCmXLSr4MxuZrA9xaMuzy9lQosErIsYl5kXs9WRAlG5kCxLmSV7ReBgL+U8XTDv8RgCdnkYr4HZVtZADoW59mwNNaa1djFeyBKKscOPNSrJ9icZxz/wmoAmqeidvOW6X8eGws1EAAxszPzO/E6HxNRlBXgPK7Z4Hq8e5RAqctk/+jUhRr213rUpsra+9HcPMWrVNzb5pLb6ERnQmezgZka/J9X9uKn0VLfcwO2WdGja2wUhHP3PLn3iJlwY3ROoHbJp06K8GcIvTpXhmsiVPxsU89ilx3K8HTKpoDUd6V58q3bVEb95QVpgdVleKW1VlReybAmIDitrGWKCC7gYqbp22rA56b8Q+NbNTXgiIfPRmZWxG3ki4JnmxZMtajCERVtMTrpU1U7blx4zX8JtORswizrtYz7YnFsSC7VRbEuwWgNoKnWeA0N9GvkZGtc8ilNexKK8JsnTWAasafMwukzgFKW6nD4PMtWfPdbWbho7r+nn7dMoy1shC91M65+LrBDTMDfJbIr7CqQIjbH0iUp6VK2bpPd9j8TF6htfFK1J8HI2V4DnhaIXiNMp0DUX6M1spk3Spz7pkVsTG6K3lVxwAtC6I0zzRc7X/U4aP2jUo2yPI0+p0FSyU9WiywegEBBW1X/ZTDLnBaoUPqjU1z4tq4N7gpJQPmyo3n0zqgquK338JCnsMmHkoGC2C07Y5PmQVqA3gKJ4xzANPShL9RIfAF3s6JjfCv7lgqb8zvufw6AenN5fVA1BZw1SsX7bvSLbsxHQu39xw2XgJMyaDWtjUjKk0TPevTjFWqC6SeVxBFKN+nAxBZoSrFaS0P3nVDgetO26VaUdo2gU4aNa47IPNOx4Oc1oKnswLJAzmqgFQkzwOAKY8Nxn1jP+Jqg8l17FzcOEDftWPBF1ACyqv+7XkBUWm/J4YqT0KyROS89vo7/Jf+/Z5fEf+1LQHc1PLW5nfSlhYQ9L5/uJnvncmmAdB2jBGIQg2Y1dXnY6GACixVVkdv8cIGflMaUMVvub45nju6OwAqottOxnP1z83LdAmwtLZdWvJRLineOaAT1Zv146xs+za0Jfp/I3i6CHB6VJanNW64qHw0t3ea1MQe6lp7659Ldx6hcdH0volXfdbFKMawWYqPI+q47iJaG2t66VV40iZ5xRctQbdiRLVlYr4/QujaCTbObOqJUlVlXWKiKhePdekAKN/Ec9QDTw7gdsfT4XkFoGfTXJ2mHdMXsHkBwVnUWZ0Xl22Bb8NboHXlWuq6DGf4DdT8BlqeL9DdBVABM5sJIZrAe0IQpc8IzGqAdEmhi4iXx7JotYoUY2R5iCxSQcD5KkvUucBqreVpZVqXPbdw9WnbjxA/8Nr7twCOu2xfskhZnT7n0nveKIpvSgk5P7A6ybG8JY9DnWbL5XRvfWpWXVEQNEy2vinrrQ2Rwu1ZLFYS2TnGu+6yjPbioXSczjLB8gkVaThboVJ/2ZUTuXaq/Z0CqwSQ7wkBJ3HXGRePtJMtEGzdOvaaI+A7ON4CNXjO+eysUVU5z+/c3qz7tuO6W2V5ani/nvmVpREJAGu6esjyWGD5yVo+3MIicuXl8VeWSOeFAxK/AQKdpqoekIEac9nvyfIbCHg+T3cDQDXAqC2y6oFeC5I6bc0Cla3KY2v5OevRQnk/7sZiFQKktWkxkFrtzpujcwGIr7cWOJ0Jms4GSnP1FuRj1Qo538cCEJLTpukewPZ1vWHyebNCkbMyWPLumg546sbBmLTuqqswmLy/pD20bOSkfgxUW0X6UQpiQ6qXKzOPVCAKVmFCQdScK6+xTIgVwlkcwoBycxyCKFtOr7MAKaHuoxpZHJf4D9SuW60fyMMG92012LXgqeL70oSEcD7rxb51XXraXuFfuAJTeeMWC6RSLb/tdUoaUSsL1kIplkIg3Hl+zfYIdwNALdBZlqeVwKkLmpYA0FaAtERL7S25dzqAqgJTW4BU01+tPR+H7lxleVoDnnrj7LF+6boucd1rrUv21NVpY5OCegGvI5Z36y7K5fMGosyk69Ptr1eeotQWlOfaoOEw5sUqTqM0Z7+H1gNPcyuQorzJKEArSxZEaT9tUHnXldfZXLPaSHPImVUams0zE4jygEzGj1rZWh73NlX0btqq3Rg8d+OeDEUbp3Zdd3bPp4iX54CnHuujdGNtBFBZHCWdhD9T4kUVD5UBc3cBgS6Ks7FuaBcQ2Lo5rQuaBURZip7pFZtpPnkAtTBBL4KnJeDkzkPAtEVgnhTNjaVnQUAHTEUK1mvVEFgtgCgPvNz58l5QMxd5CeAU1dkIrlbn35Y6b3w2v2ul6oFtx9sQZ3lZ8nW8Feq5Iqo+JpySzM3w2xn0gJNXnB48WYUbpmHeZWMUsFeY7bm5lkaRL9wOuQVc12WjyIroZQXbuG5QB5WbGrZOvZ+QsXgF49W0wFXIeaUVeUVtV2AJ8AKg7p7ZG9CRgQg4ecujk4uLyYD0tRY4ReBrgSiYKxRImUlI+Tjwsjsvct36BQNAcu+BAOvi8246WH6j8LriN7X8FlriOxqcewdojnm3BE+b+ruEkiBe93frfjpp54DHxfNHhBzcU7u1m0XwFNXZCp7Y/D1qWuqrk3eu1W5T/vNKoqQiJRiBp7ANqvNU6bXlZwOCA6osT37ctr2ojerTMdtAclPWtVWXLWPQ4yUtFFm81uyLFFh3mvzoN7IS+Xo9GfDpntcR2Mp5Z1sf566tSks/TB54lSJb+V5/FsbmdRpa4DVHPAuvZSEt4psv13t+I/526MlboCw1D5vN4265zVanc4BWNI7FsmsLbmizJ+FRcviGMGORcqb3qu2OJWrRCnUJ4s4xVgAnX34NmJgZ/+P2VnWDyT3PTHq4I0WPRx0RCC1RUtZboawQRNbQZ4kWdgm3x+E2BXOWp4U0238YNN6xOKyxOtVz7XYGshNEMqua2AzVWym8dWLJMlFFw/itDbppqcXIMgHkDRjFOmEtUoCxSKxQ4k4GeMYiaS1PLO6jcy1PNk/6OccCKePaSJHFEYitjgAaSxS52WeW3yDQCU1aa4lCtcWB6j2xPlp+5/Rm24KnOQZqNRKeAUMXA07nxkmtpaV2PHjR9IWKETAy53J/KiDVKTsHjC4dBnP2Asg5oHUmcDrb5XhbUt50ugyAU5VuwE5VT8r0ytumt4Co54IojpUAKuXZuGtsfuSysfk2zbQRrrizLhvbvwFXXYW5Ajhtc+XYAZo4F+lH3TJSRipDQVWoWLeszJO2ozSgjZ2RoUj8dxTyErl2fJ47D4GT/HYCy31weBc8Vf0hlgELnjpyoHW0f4rTZ0jnJgeWNc/wNnXNNa+BFjQv8ZvZtGcpCDY/h9/VBS7fiDsLoCrqWZ96x7gAeNoSK7U2fy31lKPPWwumFsAQE8cgKmpH23hMGrQDiqhXJjhfBE9L5bXc8vVuBZLdJqvgf44O+6BIzlHSWqsR1snrs25R2kIOqFhqgoP9b7SdQc9lA3RXW7U7k5t+bMA40CjNesl73W/VXkS9OQiBqMr1iWIUIDXZAGJnoahAVGk3skR1V+b5NKDdjNEHEBurk/CQfL5tt7onjhc9198SeO4FjJu2VgWMm7ZWgWgZU9SOpwBINnyPgBTgdBYKr4MtLFI/Vh7QBIcLvxUwRcHmen351y8SQAFSwAow1aG7A6B6ArERPHGvfHRe5S0Arq31b0UbNRYH/UdPgwVSbkKsrFFRuQh8zbnyNo2/DKZqYyt4smVuC5rW7kflaeM9aAIxwyYjXnLL8qYMKr411qiQpy3LGzlYEs9nGHSFQCk6dy63BjgBFUhq0nKdXrBw111D0TF0LM3qLJu/ds6bA1NVsTI3iIuEGI01KtmaLEjKAjShcfF0A43ztj6Y3JDFGlUpbEYVQAwUBc6c3Ht6QSse6IjvDvj69C1u282LBpaA00q3bQioxPoTqRuzl5LONXlHdxJLVL7tJJakfAxQ2gCchd9FHjTgezL9jqlsxVvm1voo4My6cT0Y9DzXi1rm/d0BUFuoB6TW1mnybmGtehRBMXOWpUa79dJmLETkynbHYcqtrbO17Ebqgqc5mgFPcdD1BvB0ieuMeBn03cQduYHNWpnM8dpyS1S187xsZ7DCEtGzOACB4pzpZ06B+ePG8mSVZqQwgTpty5wXlQvmia5I2P2dzJjJum+MRUL3ibJlvWXCtwUUBRi5clSxGqXqY2Kk3BpaAs9yLd7q5K2Mro1wu4pMoevWH28ET2udCqGB3FqShALL4+ycKfxG0Fbut5cXWh/9Xl/RVgk2P9oBfYbuNoCasya5tK7lqXcPNq/o63B97URzNvWkzXUcWJVizeuqO+U5Gxdl6wZWqO4wQ5DSr9LkL9XvAaK1wGnNCsBHCaBWkr/L6a2vnslWW5micgFWX7JCPVexUET9GKieZWoOOM247EKXzYLlaa3VqQFNfipZCxosEeA3U9S+GMUaJRkjpTITG7GKLFHQOBkS8yjzdsuEsVBpuihQu6Qd6C9rb645uE/RIoMF4BRbo0p7ofXRtXdr66OOtX+5Parf/4yM5XsnCwqs5bHeoiLJQhMXRdmSxcXyKO0kWcgTGfdi3iTA3KRLHaDlueRvoCcLoIKxLk7GYZ0N4GnTar4FkLWUfluKrAEWuGga1eUaZbcApMK3xyAuqlNWtGj1xtkDTjO0ZMAIb/Ma8HQucFo6n6t7Bm1acUetCFir1CxAckCqKWPzbbcbrFPPLEWrlDoWqFBp+vxIcQ6ufkdxNivtqGNpWABOazdSDDcmtPmmIjlBLiJVgAlTUq5dxSrHZoVeibGyQAvhii0AbUyMBVj2Uq31pMLIKwX+DBnYBJ61DlrwnIdZH+c6c3LgL+8Cz7adwzxotkCqTDl9fktdcemV/NxFD0hZCyZQAanqMi3Pm1WX6+juWqAioBMwe7PlaU3ZJxUP1XPXATVwadKctlwAOu144/IViIrKPioKwA/18lfWB/rg6VzgdGmP1WyAODArDz13WiUaUTtN3SAfwS0IwT1d/qbcNeq9oXZcKV2Lg+Q5UFW14RWnabNncUj5Z4Inc8gdQ1svPW1UKIVKu+230qQrqkCU3+5ArVFSIW+4Ga3YkmvWHcur++/Akn7CowCsMs6ZSd0r1hm3GxDIwBJ41nqmS2N59HlVfnMs/c5YH4FQr55jfazAsnkJK+rIgCGG8kq7zvKyaTGB/fSLChW1AeY6Lq4CzYGA50syENDdAFCe8UHeavAUtrECZM2BpiWAJcnbZS9sNwbBC41bS9Ns+Y41yitQD6IiLRqkbdahLMLcH2oIniJgtASc1oImLwobLFGr8rXhmawAoCw1W+Mrg6zQAUmmjxBbhyBpftzPNBGVPXs8uVVT/njehYNli0OuG1kcFNT0FGYEmiKwFPB1SaGqIpNNm+1zlxWZyEz9YeE0OJW7PG801iiRU0YTXC4unrJVUwZV3hoVufXUfZeHbR+uqb7mHrgK700kB3Ogac5d5/NH047lZS6/CJwiOUCdVl3fzKaX1hKp7VTzCWuavryJLOT+lN9ynPlN6qLN09dU2kjTmQSgUy6L4sY1LrrGZSuJIc8R8niJ7gaA8rT1LfacCb0Hnhqw1CknSWv7ngsM77RZMThyw3mFKMdSfjaOKdKYKylq71LlH6FVZ1V/54Knc8YdAdIov8ZCfbZFgMi59VaBqOcZJK2lSLlsdeOg5uWS1am024KgKAbLK81wZ/MAPG2xQlSWJmlH5FRcfgqaCO230mq5btw85hloPv8SBhkHq/QCq1MFooD62G3EuHg/oh3QzW+3fjcdjodxucXFAlaGeuDJNT0HmnrlFExVfHW8VhkI+L3K+mjqKE+NTMC0LbyMLI16AQYUG+vUVrqbAEookhsVAGeeCMsGwCgCRFXaTBsIZPmcwB2VoKWqwYQXmnw00x1zWwad/N54GbUVqjfuxxFNzPXvnOUpctetiZGaLRedR3XOpLVN2LvMPsO/4SnP6DwQlX+fNOvvDEXLnSP3m9CCxUHLh0qP4kBxAKHFodG4yK4AACAASURBVKMwmxVZAyoh6irTFTwtU4g0DiNLnCxT8kxGFinRk2JNEheduHkoD4SBJk4GsvRdxpGVJeqAYw1GFhpKO4jcORoXs3z99c0oN2zZjSt5G3cVp1peelan1XIAV86PfYYuYn0Eh9tbeOtjZY2C5WlkjTL5AqaGIhvW2hS68TbQkwNQc8BnoWwDnsI6MwBrI3CiqG6vnm9mTrMSwLOzVFu3+qDmEkiSJtYAqYXZsomH8kp2C60p71nUA09L7a4ET2vB1aa+N1LIPn9/3XkIpkwZi5/0XoiiCYBSSD5vTZ1nkJjQd+EBK9x4Ui4GTlrGu+xWAKdSF6ZcHzjNbq64gacVGM91K1BlFKiAKbFYWJdNpFi9NUpXa3EQYJ7lUVzfrIq3dvMASPOYWpucYgUq3tEKhRqCJdfOxYBTLj8LnBp9Wc/73uq45MqTcft5rwLNuW4FqgLgXH1k2PKboLKz2q0XASlGDZ7zfVHdZVx4YAukyz3cQnfbAgVsA1h6PgOwIu3XAUiz1qag7Vmw1CFfhz1I0QwzBlGERia6/h2K67YDcXlrANJtQFQ01nNoDuDMgScOyvv2emVm+r4VeaCEgK1c53fb8WIwh5EdINpdeStpyY0XuerOUJylvY7ilPaN8qyU7WDrrwNOWx/N3lRVrA7FpVN9SsPKc/WeZwLGbYB4vrbZgGPXpvZduYuCCxzcAz2Z+7VEi248KSfnhg++zDky4F2+AThaA5zm+N5VHbaMAFtrcTKuXL/7vLQ769bjmufp2qFu3Jqf9Wo9AG4fKqM0nyUXXhGEDvhRBrv8JfA0167PA/rWpmpeXABhHbJu9n4ZkaQ6vdqNmrjKr6xScxrWAi2fL3kzIGo2oBylfhHWTrmgWjMWO0IHehrXnU8HWvA0WzY+nnXldegcV144Mbl2fFA52wOnj4PqCoxSnpnEpP+VIEpZ6so/NzRWE0FYxCvLlLagMIFukHjP6lS5aaxSXAOaQgBlxxteWp+qZ8XNYe6FRq1IquDqdG3CuXnAMDuHU2nHWiYAdesBJo1zmrVIAcYqVV9/ZalYQ40b15zMWBy1bGB19HW2ygCwEjzbyz7nWQ5fUKk+N3qtskg5fmsdMu1l8Fy59fK4a54nUFTxHKiBkpAJgm9Wmm+gOwOgNlEPPK3N7+Qtgae1wGnupWUurw4atxmlb7VQVYJUgI+CtMjkMAdoVBkG9Ux+uLXBpegM8BG3Mw+eun0ugauAVgOmGaBh21j06Ar7LZvmwMwKoLMqhul5A0oh0byiFOoBJ2AbeLKKLtiaQNsNFGe3HU235dyY7HhXUj115fbEgpQL2BeratNMZ6GwAens2hPrRMl3m2/aIHOpo+ColANQrFJAcfcgAFNr70EAmlK6kwFfPpIB3F4GGpftWuC08dptXK6dkvSc0VggG37bsSDzXN2s1OwdpW2ptYkrnsO2QWUMQM13oOb9VrqbAMrzTxk/c6FLbrsIVOU6IXCy8tm1RM2M4wxKz3jbaD05sUmnthRTAdzeGlUpQZM3N+Qe6Oqmr9HGZ5AHN9xLnwdP6wPP42H0rGVbys7dniiLAzZXb18WIDnx7eVpTFSF3kw5Mqy8FAh72okQfzMrU3dDyhnQpPXmFN0Wq9OCwvRj6FujupfZUhfYm/gWa5VSeUpzD6GOj6qsE4RkXQCgbj1rjfLtaBxM7k/jo4x1Ip9rjBaglikZotKScg02Vg0B00rgrPUXgFPosnXAKbRgNjLhxuXHvUQGbNa853r+kE7k/ltPy1T4Z5vVbQ+Ym53rfUxVsUI6IGXGJuNqYrfMM70m5s3S3QJQUYC2B08REGrace35Oh44LVmbNG1+vBfRH9Sss0PtorPpEZhaCaRMf+3InTbsgSWb58pEQYez5IGOT5+pE4KnOYC0BlQZmgNW58RG9byoUjcyHGq2Y7PNZ5vggZRrqExu+Z6B14MlLF7iM0s9a4JSzw0WgSbTTqQ0w/iWPCfOxjg5hdltR/q6BIDyx35OsO4ZUa7Sj1esHkhJoDejgLIMpGzQcdVO9aKRE3U/oQXFaq9jBjBX1OiGQA4uLAO2zlbw3AVU0bXMUW9uFF4AaMCzybfgOXTl6j5OhefaxmQmy1zHXrvytsf3amLN/W20vt0tALWWekBmC6iaKbMInlYAp60B5TZ4vFWIRVAqd65VlMSpDVV+gSbudrCScttNLNSj0qgbgU5VxrWxKhZqrr0l4HTO9bdIuWq7cdGhw9acvxj87cBRE/IWgbcZMXouaUZRCs0Bp5RvwE8Ul+L2dIoUp9bvKM7SfhlDCJbIj9eNcQU1lgMzzOpcT+yGBE5cuVxX6NbLY2/cekC1d1TlMsplrVUqVWC99iqo3LmUNtEccAL6Vkeg5kX324po5Ia9bFkeV8dGDnx/9vI3XHuFQSRNeKhlDK+qgoa3PZ4XfFS3w3C7zxs+G6tUcemW67d8L+M9j+F3F0CFqCRKc+CJOmmmbGN58sDJgyYbZO67r8DW+SiCGq2ZdZ0+4SIUkmceIB12ERyY0s2HPAX8KFUSXc92PubqUYGltRQBoK1uO54HY1HemqDzsI0Z6gGhqg3DykoUvCJ0Ih9hs8jCVFmiyFsGTBmXFo1XB3SL5+BOEwHsXTbRxNsBS1GaV5g9wKNKU/g+BGlWYQ5tG/3jeoybrBFsFBfbNBTQwyjTiTx73kKh0418QNY0yChuniroON8rTgk05BnQBZrHaK4WUzZBxbea33pgSfNd2pky0AsOl/KNtaknA2ZMvbF2ic0ttTuPw82helx4ztkKKfKjx0Nuy/Bc2uegnUofWb77vv28ai9j5vuOS3QnANTF3nDn2rkweJoDTueA2bJiwD7V1ASPq7w4q5S1SPWsUU2AeQSGVgKkRxlMHrUa6eRZ91kEnhauKwJJa4HTOZiheZDtvQ9AyioLUQOMUOTCDj0CUWjb6aVVYhKVfVZpATABfSXUBSprN0HsKM7IotCzMjTAaVaZtpfqyYueTas/FFvyVP58bBP81GTqZ+uEtzJIv37bA7+7tbdKyXnqk2seTisuvEcReJbrRUcGlnYQd/yaddcpj6lNQ3vcHdMaIoNxm5ik0mR83LdCysIA+/Fqu1hAy2cAbS1S9ZYFPXmpL5D89hUb6E4AqC4pQ83sX6EYA3oiYOTSiFy+ZJv254BTBJqi+fS8/aAAv6lmtLohZcjDURC3j4sjLICoqvO6TC3VRrsugauV4KuqslR+DiQBBUTOgZ8I6/YA0EzdrkWqN86g7NzkFCmjXhk2CT2X36xLL0yj9sKWwNECwHumiGg2iNzfp9l9dlYozc1xTq6NWHlSk1+Pw51H12flWbKiFxX9JXPMSdGyuSZOZVIaV+0k62eek2x8VE6zn/HQNuzcz9BgcxLQVMlsFFRc8tZQ6O6kIP8MGdD6a2UAKFbSUEY646nG278WPzEpkMkn1pqU0riWBzkWlxrnMlTy02HAcwvSRI+xaSePVS3mnu864Fw0invaqL/uHoBqmMl1XlRej1twFAIdBUulvAdOa0GTzd8KpjxgKtam0p514bG/PJunl5YfSgChS09AlJU4Eao1gKlqKn+0kztlt5IHKxGYsWmR626pjutnETj59F793nU4asq7ycl5bPW+NpanoCtNM7yYLefSVAnBBZR7WgJVzygx0LrwPLnsKKZllbVJjnsrqihoZ4XCXGORmAVR/nIN3hGBYvvM2D9pVJSmf0bNM12V6QApALGbJyvVEEwB6urpKVZta4MrobsCE+4+9tx0UseCppw2t6qugKqNMrBw3FBvfueiNppzD6gszw1g6vFcb47qpZzW3TcMDZjSdoXsqspIwJ9aAHWpuIlKGB3gqSxNffCkTWmZFiTNAae1FqjeLuQ2UNy68CoXHIx89Ga6EAB1tPHckB+jaeGivawFNwvgqVe/697rjaUHRrRBo5Dsw0+GBQ6sEh4NayqW86Pr56mnaA4OFGaVvqQ4vXI0fbXWgd7nO6Q8BWltuahu77oai6oD65qHIqrUpNn9m1w5177Pa3altvOX6ai4ctLEqefG1aPXYwdvgdVWWgOcgFoGmvvvZMC2QwF/FmSgl7YkB811BPyvXvAYDZ/t8SzPNbF27UmBxX3D7H3XoRW+67jleZyCQPLg2pfo7gAooBGUfjnzxEbgx94YqsuHsU49q5MDYOQBmS3bHM+M31GxOBWwJG2w1WIuzW5UR7ke67WQ1oosUVVguXXbmVr1qQNRftKqBNCUtXndG7CQ78o01icDeCIQtGR5WrQ69QBWMPZZ7NzJ82BJ26GSXKUFrKjK+TYRs8GnVfXsmM2Y2HY4Rz3A+JRTA2rCfYDMSbgqq/5dvfkhoVLAPAR52g6FeVomatf2q+MP7kFwort7++cp/+kcN5nphAPrhLxAMEBqrWrzK8uE9NWzTOiFmvr2uvyDcYuNFUPADCAEzfm3can1ZKDiNwVp9pecvEQyhID3dszxJbI76Llvl3ie0lgXFijAFd4CycuhMmB4aPjOoOqzQDXvqRpT99rOZPkTB1Cr3motUFpbjjh021XFg3nCgqc1wOk2LjwAallyqUHJ/MCwbbMGQWRADpOk2TnDxEXB5vNKRjxCWgmiAo/quvINAHNtRGnolIvac/2uJqrr9zmPygJVWaRMueZN0ACpECD5vvKEtHhzGZVsPRdE6CvIqtwMaDLHaz65cZa7LgJMTR9BvhlPqFD9ZVqQH7hhKnkUpTkUIG7EGeqeE/cafJk46NjGxdhv7EXBw1IPuT1NIxikBd0WYStF1sEmvbm/F5SB5uPDnfoOdLXHpe/5C5ZfA2LN/Gh5DiDHPZVyMtdI+L+VFy1j+G7ntiZo3QWcp+E73tv5kqied1Wwts1oTxZALTCoCh6P6hqwVE9QTrtZIKTHpVwFngKrU+y264MqfzxHzSdaqhEBrYqqgZS69mAmHqYsZJJGlZWr2hrB27F1UrR5bhh+duuQvlFspQ7YWarjrVHd9vxxD1AF53Mgq0lfQw67LnPeKoEaVHmlFb40ZOXVlIerwyYWauV1VKjtUi75O0ZzMVCtAm2PQ2tDPp8N8N5ocaisGEP9GynbEJBF12Gv1z4L5lgt5AyQtRyJ0jTnTd5QvlUnskm6EWKen3hGoXK8q3l6J5DCTuaBSqFuVqbBm/MiaLLnjws8e3lw9ar27LgjquY/0vMez6WKWpqUp6a+Bd7S/5pgcySwpBtyosN7adPyuZlk1054iZ64BSqkuWuYBUvpPFxJl+vZPLJ5qOtGwMmCpq7rzg13WFAkk7rrMpCyxwKOsnWpAU0mXYEVuFiijDXKLgL173L1PlHlYZgFVVKbzHYGViC9yy+gJXdXD6SAKQQ/Yd0OGCtmYTeWqO4SuPLji84jkttWIaJcncrt19uukwEKW3yZ0myDaXTccmj674Iqey1Rw88TGeDRy7cUrsIb3PlccK+Lk4ksBrPWBjmOFKYBVatdOv5yK6VZjquXmawcRbGyzZP9d7L7hQG1HhFDrVHFtYMiqFK3CUancmw1N1C5+Mo1lDLNta59e4iKmbQ5wOTzIxmIwZK0Zeo6oMyEkM9ap0ozY9rAe+GtpnHm32TSxapowI/OVcb1pp9g4VLHAqaKtwKyozw7QM97m6ZF10zWMd09AHXOxGyYHuWtsgZtAE9VNWfFApZBkyUpq0AKRgYULFnQVNL9OLrB5HJ9oNUvVYtkB/qYiOyDgrr/1ZaqubIzaYuWqbk2UB7ScMlsAEwqFx2151WZqH/q5HfK+v7LuBcmUqDsQfa80MK1zgInm+ZjnHJeJeJeYVblVoCnnrJ1QKwao1PkzXUbkF9MRenPi1IF4lG7a+y1azemAbtPk5QRpVleFsw+QNKWHrt9n4yLD6ZMasc8uP65WEuufLiJagSeIl5k8GTbjoC0LR/LSN12Y3EM2vO8989/NDcpALb3wgsAuTLuRbAyXFNQpqpHBqE5lrHjPRzvGzluGb0WVC0CKCJ6HcB/BeALcpcfZeZvJ6LXAPwRAF8C4CcAfA0zf3pVr1tJGcB1WmCNmgsa9247BT9DAUkRcArTcpcWLJ3jwitDLxciQGgS8AQgtjzVaVbM6pUMeXowlqg6sNzPPvamGgnObYRWKFtmDQVaWYS/LTvXTi0W1duvtMtBXgCEllx6fctUMPl2KHwwK4VZJl1vXXLPfak6k19ZnUyB2XMgjoUKyt11uvT8NbsPFNBaqKyibNLccRrwsptG0tZYHKgAp7IcHkWJWguUrRNdZihgULecdc/5NAUt1iJlX0pFCZNTpqosgSqQvHpWyVgj2OVTKWcH7NNmLBSryN2vCDCn4Rj+RUDlUlZHw980nlJHx+b5Hcid9msvx89/UzmXY+F3ccsKT50VUvjeyExdx/K0yIbjuxmTWsLcWHWnc9Tpnvxmmz1aY4E6AvgtzPx/EdErAP4SEX0fgN8E4M8x8+8iom8G8M0A/t1VvXoKwEbz8WAt20tr24i2KiCbNwN+InedtTYNLs0e98Ik4ninRFPASY2909ctXybNPAKoVNvmPBsXpSAKZT5qJkLC5SxUlyIPZOTYgSR9Aw4md8kP87g9jsCSz09p7UTcsChi2UyRdsUkFEwVzrpmbb5Vcgb/qHR40GTq2D6q7jlQqIzwWu4gXWz+qpRPRF6J9kBTeL7wyY21irMCUFQpRY2D8eDLK1agsZQ071T+N8sOZSXKgLrmfDlVrMjxToNJz7ExunJLqhOAqd6jTOS1Fvl8H31gc/UsFGWgluGArwoMFiiUiQ5oSufonD8m8ByWC66lA6Aa/lt++MnJyEBiS1Y+UWycWIemMldVsUydxQmcE8oxlzlRxmP5X6+sSj9nKr5FAMXMPwPgZ/Lxm0T0owA+DODXAPjKXOwPAvh+nAuggD4w2tyOA14GPCEEPeiAJWhZ76YbKoBV2hpMHZiyvTFORjJHQrE8Oa1rgRTn9us9o2oQVd7u6uBxcN7moNi/ofFQWg7oxkKlrsx1IE67LQjzD6htfgYENfV77Tkwtd0qVQMnbwHrjdXmV9aeoHoEpBw28t2ViUzad5OEjGkVGLKIy2uqp4guPn917sGqjRQDhannK4ATUCtMa0mQvAZsOcVZKUwHnBrLhIzZjKeR9eBPyimOcQpVwdGQ5jyaTNC4rNJzoErHlxWwvh6SKSf3jBOQSkP0Xwb1z1sLpjRvdBU9BbLQk4NLycBaq5PfvdyD50YeyJUDQjBlgbLeFxfDpuUFuJh4KAU9AqSm4gOhzHPLe+TjVIaKUHHpQrsLeF8N3VWojOvCt426a1MMFBF9CYC/F8BfAPAFeXICgE8gmcgfHUWa0wia37LArriT8gRJrwGTtzI157kJAU7e0lTOI1DV58iIGkQpKMq/InRTdtWNGTipa0+BlA0mR+PSayxRZAPHDYiS2c/cRy1UpUVa2JVZC6q4FKmaCMGH1UptOx5MyfmcNcmCpzngZEFT2F40rpmHsbvFhplo1Xytkynpg68+fdNN2VyuZV3FApNpJ57qrQ0B2PJlPKi64yDr9vMXNavwZl1dPt8va59RmABW7eXU5BlXjSpLq0Sz0uwp1vTLsy6dSu7VZUNqRVCAdHLluPSjZTnfF4YGD4siFpdOcdmUvquA8MZtZ49bN4+em2tJhxTPO6VAfR+iIp3nOgRMuUz/mKq0cBVlY0mkFijDyIHls+GvgsUB+jmdxgpp74HOt1S764RvQ+Gf5k9tGoiWFxgAzu2X5QVo3Hue95JU+F0xvE8rgdRqAEVELwP4HgDfwMyfI7vXCTNTJ+iHiL4OwNcBwPj+96/qi3tSrMIVgKnuuKHgyaf7Idt4Jz1HDYwi8LQGOEXPHKMOIhfLkqYB+by2Sg0IVu9x/J27MOAcM/JBJtRzDiStbnAFLdTtucWiSXCpTlOmB8SkzgIgasawQjQbM7cWrsGJBzfaPpV2JYtNvjbfYZ8HRg0gmgNCdxwk9egS89f1i+/rPxJBehc8kcuPFKdtwypRX6f6JTNHmr6iNJS8WrFy7O5pLwUG2+f5AtAYS6tEc18ipypiVOdV95FCsS9tm2egKs/lWJuT8igDN0b4QsFzUVGH941MUCe/A6B1/B0ZqMq6cvB1QrlABZQ9wK7SB27AWXPdApYUlFIBRigASfkX8FTkQFlStE6dbvnEdRuWyZbfDc5l2455ttwk7OVpDa0CUER0hTT5fBcz/9Gc/Eki+hAz/wwRfQjAz0Z1mfmjAD4KAPdef70MccNEFOYr0502Jaj1ybqe/VYFFiwNw5SvEwqSpBvrrhtNsLkFTXps6iA49mStTzpRGEBlLU5DLiFAyuZZzg+DBVGk1wWg2JlMHRtUbl15ek9V0t3M5OisQPKwoc65apA4fxYMsTnekJ7a5bgMfLl2/HPvAdGbqkxqogR0prCagwDv1rPF59KLjGEZNBmgppNb9Gw+BYDqUvPXy6+9zt0YKKfwZi0RTjlUCtMoyGjjy1BBzgQId61OkjYmpYl8XCtcrpWoChDKc5AtT+KmoYmTm44BOlGxNlDOH1BZo3RakfbEGkUIrVFqeVjY3Tq2SATMsQ+Nf/tcOZe1AKojC+4593ndPaCcPHg3W+Ou9e7Z/NtYq0bD5xGtWy/LhR2nzmkTmYDxPEdOiecAQCcUi5TUFeskQxcOVNZFsSpO5rM7Mge5shHv00Ad7+GOqzTHJ3t9K2nNKjwC8F8C+FFm/jaT9ScA/EYAvyv//vfbul7qGPXEPDNJe6tRAVnubjjwFMVCRe64BJJQ5VXHuY0hyIfLAwpwGo31aCDWdAVPSHNNA6SI9WsDao1q4HNp2+5crjEB7PZprZSo2fKgp5kfB7Xsq489eHF5HgxJm+tAFTfpkbWpC6wcqcXITkRGIdkJQ8tRC4BSkWqNZYN/bB8NC2fAkt5PaeMpAEdLdPH5y1sRwjLlMLI2LClNLeOAEyAK09QNgJGWs8rTK1gFUFzONTaGS31RogTonm8iy1YhngCaUhC0rqorpp9CJ2hcC1B+FSDlNAXuPshcFOjg5JtcPZn/8r31LwzV86gPGOlYKj5toO6LUZSmxx3g5NJq0JzrevDsAdQo5UpeAVCFz1X+yKadwn8AZZXlhOKCPWWZkPJy06P5g1AWGeSmmzg5qctcbbhpQXSX9zZA3MaqehkwvLD6YyvP11ig/iEAXwvgh4no/8lp34I08Xw3Ef2rAH4SwNds6/oMCiajMB8RqCqAqKpSgara1WfBE4Cu1SkCToP7teT3fkIGTwKUhCau3Xn68sbJrXfiPBaUAPNyjbWkVC9XWZKS8LFKzexeUg2QMpPjpQBVBxD1yjXHM3VXgyqsAE8ctBmNfwZIyX3zrgQPlnyeBVFAmTC0/FxF14hOPjCTywzZMuTGLmB7TTuPmS46f1UusLkyQl6JBkrTthuBqMgiYTfDDPMdeEoTFdTKMImSHE2dkYvS1Xwj1AQw2FgKUKxJIPDAaoFQmrJg2GfC7MWj+tauvMrFKF9nFWRubn87y9lnQJ4LA6RcXccipbOnM9fQFvCseV4GgqDu7gpLHyPl80UeRkCtTsYSqWmW9yqD5sEWHp6gL+g0wW1UypmnNe8ZaZw6Z+R0BUSGwQxKAJ5j3muincvYlsl6zcmABdAw9c6hNavwfgCNaCh91Vm9VhMMx+nolZEHOh3r3k5GMJv9y6QcTJ4AJqrBkw0UF+A0qouP1eLkQdNgQNWAFqzFFiiUlXd5YBMTJIh8yFYnBVL5DVCsUWN+YE5TeXZO9Y1DO72YmQvyACAfZxCVhb5ZkbcGNNlubgOsKoDT7ucxB6I8UIrAk4qR2cMkpXNbB21bQNAugGhrAy2LVrmmB98IrJ107YQK6CoV+wZKE2v96NZrd2zS7BDNeOzLo31b08nJXpef0e4oXXL+sm/0vfyKKsUZK8vZ4zBomEqeyIYPGhZFKWnWPSPWpeyum0YUi9OBU5mRE4AaGHRIyIYGTvvlMYGnNG/wicDHIcnWSMkCdUK2RgFEEljOoEGUIxXgBShQAqFy7dSIKc0/PshcG/B/KL/s5o40jdXPqCpu1HU3UQ88mby57Qwiy1MXOFfygMJvSWtcsSZtMMDJWBmnQ/pNMpDkAIcp8UN4D4BPqWE+UbI8TemXp8z3Y7owynMIZd5rmnHh2ff8JbdexHtrtbRB5spP5W+wHxSMHFSMa5Pm6O7tRA70AdZStQBoRfs0WfDUKxPVidx11hoFJPAUAadeLJTMA0Oj8YrVCXDxUmJ1AioXnX4Drxo/FBgB7U7kSTkGwGiLKeG2YGmu6QWg1JSNAFaPGnDEbZ9VvvmFO0YBX3NjpzYJKb6IGrCib2WSZgBLA8hyngVB4es62nYadx1H9Sm4Mc8vrXfh9ZWmb8e763yZXpB49BseG9dcsUqZNLE4DAlA0cCg/DsQYxin9PJ2GsBgTBjAzHmiktW9acCi6FQxksFChPIyIDJmrwtF5lN7aOVR7gmKIm5E2DwjlbKmepdqUdoB+zbTLHCq0trjteCp96IVyUb1ImZdswKuJGjcWpvGBKCU9wODhuRLmyjznAicTUnp1lJKHynHRBEwlXGQvJEH8q5JVkbkcoL7WfFeDlDLC9t2DX/rtNJ49a28DXR3ANTSwAnliZCbYdKq/ZuCtOiTLH5/p3GYmoDxgbhYoPK5tzqJxUnKRdaolD5h4kE7nPKBWJkAgLgEjB+RXtuISa1RQAbmKC69AaTB5ZElqliYDNiyihEomjQLuwaa29mHTTm444h6+dYUrGn9ZqJmo+MmzYOeCAhZ8NTJA1C99dTluMpvrFbdiyhKQu+5Tnakk6DqDYbGgpBMftJvtsDqNhim72pesKArAlGWrDbaSckHkUefgWiUxExaT2navsJv1xkZ6AYKR+4ZSTskmZkOAEZO4ClbH+hqwnCYMAwT7t07YiDGvasjrscTGMC7D69wmgbcHEfcPDyAmXB6TOk9WQAAIABJREFUyMkSQXl+m5LxgCYkS0WWuQkMquJUoIrWghx16cHl6Y7hXP0AqCwSPYtU+fVaWNrY8AHtgGY3T/Vp/tidR8Bp1tLo0wxYmjK/i/WJwYf0ixHgQ3Jj0NUEOkwYBsb1vZv0ezjihasjTtOAdx9eYWLCzc2I43EEnwjTzVgsUkdo4LgGlRP0JZ5M8LneM6BOy3Ur3htkldI4nJ95juezx+cx/W4AqGjsEfK0x5UWbcuRKzNnbaqtSdA0b3U6ZIBlAdJIU2VlEkA10FS1XSxQU2VNmrKWPGbfgICpiQkHTAVkIQedT4PGS51y2mkaNLj8pIo+nftv6AGkb4WaJm+MZCagPHtFadVrnrnh6ZtUNTO3Gi4icGQtSz3rT5MWgKhzwFMLmMxYJm7HU42Bm2sqClMEEpX8puBYroCU/tl9ntyeT2yvmVBdf5VmfitrlVyDHWNTfyMznzUiwO8DJTTvvqvTPGjSNA+geooTNViqVtmRBU2og4JHycvKkwC+yv7/MQEnDIzD1QlX10eM44SX7j3E1TDh5esHePnqAY7TgM8e3oOb04i3H16BiDFNA4ADphOl/h4OaZM7IIMqxnDMwprBXDKfFyClgcU2wNzcpl6gMcGsFHTPn74omDyV+2AOS+mWcVhHjvddwNQ73wKcArCkPI8AtYlrE1ClYOqQgfPAwFWyNo3XJxyuThjHCS/ee4jr8YSXrh7ilev7OE4jPnv1Ah6eRrw7XuH+wytME+GGoO5cxlDu25RvtvBebjLlC7e8l5itOd7nOS/anRxGBpT/bg6srO2GF1ucLZ7uBoAy1N0DaokMsGrmshXWp7ZMGUfkrhPLkgVTBwVNUwFTtp1cx8Y7CR1wqqxTQLYuGcBSBZVzWbk3EFfuvGpVnwFRgAdUqCwUF1ONF23MUNSmB1a9tG49btJ6b67k6tRgyvQZ5bPDH1SW6opSJtNfYnuOR3PgR0GOkQ0Zl3cFVpNG9Iu2nVDRRPcvGMOzTt37cYYS9RaoSnECxepklGMFsqTdobTj46Z0iwIDsmw6shsHA4PGCTQmAHUYJ9y7OuLl64e4Nx7xBS+8iQ+98Fm8e7rCx4b3462bewCAaRpwnBinYzJ5TVNWyuLW47wmbkjWB6tf7UtHZW0141dZ9PdZrhf1irtQJE37Us43h0DW14r12eA5/3ZlYAk8mfQmza2u07ZyfBPLcZYBOkwJQB1OOBxOuD4c8VLm/ee/50186IXP4d3TFX6K3od3jtcAgNM0pL9j0j9gBp84AacB0L0Eh8Jny9etvNeVl9IeCv+r97yWDbnsfPo5dOcAVEMGGFXHJs1/fiUd14Hjc0Hjg7reXHA4CkDyLjtx1x2GSS1OgyuTjlO5kYqrbwLhxISJBwVRR04OuYkJx2kEKKVJUPkAwkRUzplwnAa1RA1yP6ahcudNTBiGqdqxXO6JuOkI9tjtC2VF1Er6BamZqCoA4zVTUN8Cpvy3xpok7c2WNR/H9O46uwMvmLvuPWmnWlFDVOJBxG1gnf/651ES1ALFhPJ1cZKJhStAVikVc80CqggLQMvcYy2HOu95Iu/CA7AKPNnjyIWnli2nLLVPr0gHhIpVl61HS9QPEkDOGjCOwwQ6pGDxq+sjhoHx0gsP8dL1Q7x49RAffvGzeO/hXfzyl38cX/7Cx/Cp6R7+l7e+DB9/8D787INX8MnhFTw8jXiTGDc3BxxpxIkYPGVYM1COJ6AUTH4iVZJA2n16sC8J8lkQkmeuTAcq6/ZlhPMN1eMs5DbIHKjdeyYdUZo5nXsJC8F0BJ5supUBd9yNcfOWJcP/WZdttFhgFDng5LLNvD9k3r/4wkO8eH2Dl64e4ote+gxeOjzAL3v5x/EV7/lJvHF6Af/z9Zfhpx+8Dz/74GX87PAKHpxGEDFubkachhEnIPGeSIEUAOVzeYlc5r3ehzynRt9YTPJR+J94ZoTGMhNm/kKcv5WeKIA6y2xmQFGVbOcfI/W9oHDAb3iJyvpEpowHT94SNQeeRnNeLjy1OxHjZhq1nTKWDOjM0yjWKHHpyRi8BUqu5cRl/Cdzo8VCJRYpoHw7r7uFQY8uDaY2tEWdB2S2XQeemlUYDohVwMyWadrrgCcDwMBIn7YQoJMBqr5RAZLSYphsWZKHvwE95p4UQGbAmB071WUvSr6/Z42M0vM0Z4XoWR/Yt2cBkSvfunfiX7VImHMFV6Jw5Y9YLVASLDyOEw7jCffGI14Yb/C+q3fw6uFdfOHVp/HFhxfx0vQuPnB4E+9M13j7eA/3xiOA9CI5jROmiTDlrQzEipAsHZQ30eRkmTIbLPKQ5X4y7xBZlhhmrrciLbKej/Wegqo4JqlaiWZVPpeLZHftM+LKLAInf05t2YqvkhfxO8gT63aVpgHkrFYo4XvN+wn3DkfcOxzxytV9vHp4Fx+++jR+weEFvEjv4rXDW4n3p2vl/f1hwjQSpomAYcjzE1WyR1kOyDFmjvdVOXNspzaui1UJEW9n+X0G3SkLlLrv9Oa5c0k2N7e7cSZxDYgqi5T5Lh4KeLIB45HlaQyA0mE4NcDpajg1IOpAJwVRx2lUK5S6AnlIFimQWXoHTBgwUbI2SeyAWKI493ucBgVR4zDpFgc+HqrczNqVJ9qUMg9kE80GVKlWN7PbWuqBrVngY6TeAJqmjk2vQEzJI1e/G/cE14bZbbcBSVEacwJKpg8pCyobDfKQ3a2D3BwUpSb5eUgSKO7T2NxTC7jY3BMPusrrvKtLBVRZa5QWs+kwbduOn3FiILZACS0o0lZ5UqkTKc0gcFwBkrVm+m0KKKXZzTIhaRIwPiahpUMKGB+zy+4wTnj5+iFevfcuXr26jy++9wZeO7yF9w33AVzjCoQPX30aI0048YC3T9d453iNh6eyv8N0GsADcJpkqQulfhkqMOp402eZdWJXK4HZL6pmggFGXOclS5OZm9g+AKYNOMXq2rF8WkW+rDmPLI6rZMCDpoV4J2uVskC5bF3AKQYty4NYHsdxwvX1EYdhwkvXD/HK1QO8/947hvfvAhjxAhFev/55XNEJExPePl7j/ulKrVAAwNOAaSLwRGmfKAhP5Eaw2y8qH3jeyzxl3H2WRaXN0kTFf9u+21Cz7tulb6Q7BaA2kbetGrCECiwBPddds0VBx/J0oBpUDQYQSb4AJyDFQsnx9ZBQ+r3hqIL3AAecYILBmTIwMseg9FbHjOM05mPCRFzionKat0QlZyDUTRfFQxVLVGqs+fZdpRjndiYXrZvSdbfiR0XRJIiuONTgSMvG4Cn6jcom1x2bY1PuZI6l3IkxnJJViA9UQMcAde0pkJKJUyaVPCESkN7eE/I3aWUyrVnm4qHcPeuCKnP/KjYuTDI9fPzMEbn7EuQLRZYIrzC1nBwP7tikRS67Kl+WpAuYEmWa3TgKnsw2BcNhwuFwwuGQAdQw4aXDQ7x6dR8fvH4TH7n+FD5/fBOvDUcA17iiAV94+CxeHB7g/nSFN25ewvVwxLvHqzQWJhwPSYlOI0FmJFV2ERrXAGDZ564vT6o45dzKv9u1WsYTKdJKvgPZP5dinvvzADTZY8/nAEDpr1lxZzdHhfI+A2pZbad7fCGBJ+H94YRDDhh//7138IHrt/CR65/DBw+fw2vDQwDvwRUN+PD4Wbwy3Md9vsLP37yEt4/38PbVtd7r02lI+4GJG6/He1BeGZWv1264SihuOuO2rbCPnauBug+nEzygalZa3oLfTw+AUsHqX23zEhBMdCqrxvrkV8p5y5NdrVe76OzfZALLS1zUiASuRkwYacJIwAkDBmbcYMSQZ4vJaDU5Fndd2v5g1L6sO28ghv1+niX5CLGAqBNTZVXyFiZdkedA0Wqy5c/VqAvAaHEI/s3C/vpjKc9tmSa9SisTcQWeJE5qEqDFwMQFZIGRl06m7z2h3GO1MpH9rlcCruAy91SU5YVMfm09KptsyrU2yj8CRnNgiU2HnTJhP88IzbrqojJWadrykeKsytfteOuUd+FYt13lwpMgclGidh4lscRDXy4Pw5St6mV18QmEN6YDHvA7eMgD7vOVjmsAa5gCARiGtASemdLmixOpC0+vzyh/kjc+eaTkkaBcxT6Xck5GDA0Wsd4hOw2lTMDu/6T5Vo65bseSn4e68u151qQF4MnzNABPVTra/KYcjByodYq1X1B23xnej2IMQAk5mXjAG9M17t88wATCfU6QIemzpOMOEqoyTLk9LPOeoN9FVF5TnvGcbOu7vTRDZfrxfA7Yqe+jep8NQ6r9wDyt0D13D0CtmKBqaxNgZVKsT/a7dvbcb1lg0wnJlw/EYClZmtLEIsHjh+GkE4gcH+iEq2yhkt8XhhtcUdmd6cQJRI2YEqACYwKlmKj8RjVMowaSlx03zb5R2VI1EdtVnOn+TIPuESUPjnXliXXKx0LpbSTUZm1pV2cs88ZwCZoBORV4QTuZRWDHv6EUC1IBO7YsmTRbVo8nSWdznEBS+kimAVEGOBEz6Mh5x3AAhyEdD1RcL0DRGrKhnYArmeFtOZuW38AJhl9sJheum5c3eM2ncv1sylVvcjbNKC65V88qWGqIUK1y61EDlsxxozAlzytDoHXh5WMt7yxP6saRcuK60Q0yUxoOyfJEA3TV1dV4wr0x/V4PJ7WY3/ABb0/38MP3X8ePP/ggXhnv4xe/8DN43/AOThhwGE645mOqz0ccpwEPx7Tdy3QaMB2yBSp/ZFh3cicTq3SiZInIApvCB6gCTGKN4BHi5S7ybQKO1ULl5wKIjFOVxshzAkz5iKdxckseLNm0ngwEgKoCU0NdttrvywaMG3eeuG5Zg8e5WB7zirthyNbHccK18H484t54xIgJNzzibb7GD7/zOv7Wg9fw8vgAX/qejyvvr4cj7g1jxfvD4ZTj4OZ5D/NWqPMLgPJNKFS8t5ZGzYv+0Dm3vyh6QeXhTHryAMoJV1xm3RX6gHGb1tuRvA4kr9NtwHi811NOg8RItdYpiYe6yqDqBEqgKnNtIgJ4yr9DAmhZmvSYjHWMWS1Ttm913bHs6ZQ0m7gvrRUqXSOQJitz46neSVjuhazG62rKR6RFl9huQZUSt/V8OQ+qpJ7+GqBVtSduO61frEvlL4MnAVfMJY0AnBg85od2YlAyE2pgeXprQwFBBqjInEN5LGLBUgtUCHCCrRA6ZXdaQe5eLW2kGYGlxjIRKU5TxwMtX74CVVJOYqFU6WbBld8MxIchWx/k18R5Asn6dIMRn7x5FT/+9ufh1av7+KLrN/De4T6AYomQMIZxmLJVnEDDBOIxvcARi0lc++aByn5mDGd5kIT6PjXWCNTPiLVIAYHI2wRIe3lO3GKN6JSLNtJclAEHprwlqufiy4M21kao5Uk/Al1ZHeu/IVughGeH/Cs65YQBN3zAzx1fxt946wN49brl/dVwmuf9YHiv822e58z1E1C2J2C1vdcWyVzVOkfcdNYcW9aRSajUnmfiBnryAGqO/EREJbZJb3xO12KEKuYppXGpohaneMuCHnhqAsYpmS+vaKosT2J1qixQGUDdG25SoDgNNYAiABNwItYtxiceMIKBIe8PNcjeTxMOUg85TdrK1yDxUKzHxZVHSPfLuvFEHP0qvFkr1C1pJSZeV4+DPAE6bPO5LmuOi9WplKvSTcC4WqdOqCxPEu+klqcTl7TTlFcrZEB1kNfFvB9U/pI9CHm1Xp5E0gYr2QJkPtXDGXAJYM5pegsMACMuvO8BLQ/Ywnt8e7Y/9dTbSLMFVm36InCSPAuMfDlJMwHj1urgN9VEteoq/enKKyquG3Hf2RfKCYT7U3LXferhK/j4W6/irXv38MZLL+OV4T5uzIcBJWyBkBQyAxiGQb+Dl14KEiji0cRUIqXruXHnVZrOvOAQF2XLgH4WRtOolNP7buXbyDKx7coyCzXNyb7Pm+H5FuDk5aK7eablv/Bc8sR1J+DZrLwjQna7ZfBjLnriwvtPPHgvfvqtV/H2vXv47Msv4n3jO9t4L/uC6YsiNWAJU+JjiWXK8ypMTJzOxeZaZXNNNvkwfEaZw+1cp+mWJyZvLd0NABUJJ7mrXChPVJ6Yej8oNIHj1nUnzQ1mEpH2BJUfsuvNB4wLqLrKrj0Lmq6Gk4KmEYx72YU3YcK9Ie0BpWAJpHFREgE+ZTA1gHADOEtUkkSZ7Ni8Odl4KPlm3imDKM7nkmeBk/iujb1JoT6ZMi2gQit0UdoKmgNHYZqZJCtrEQfi4/L13G4zMNXtJndcaUdjmZbcdtnypGmnKQEoWX0yEHCcEogiYDiiBPqK7J7IxK/IxzDLSjwFS2xutzn2VikLmrSuVyy2vG0DLi0o+1yQBTCdfEsRYPLp3qIQWqJs8LC69UrAOI+ZTxlU6TgtcKJaeUq8yjimT7aMQ4l9kW1UTjzgPl9jmgZ84v4r+NRnXsa7L17hjfe/hA8cPocbHnFCuSHjMOEwTBgHBnOybk3DBMIAmqa0MmvktDv5yEaWsiAyJXkki6GSkClYyopS9wQS2eaSBxgla+aB7s7UJk3St8p18+LhQVQkA/64B5wkzYIl+bhvA6asO5dL3JsEjg/G6jgm6+FowLSEkpyQYt1O04BPvvte/PxnXsaDlw544/Na3ov1SXgPTDgODB4nMAbQkDe6zFYoHtiApbzLICHNeQAwQr+jWCEf4bHhkz6PgQxYPdHwF4EuQ11uDd0NACW0QWgjd51Nt9sWzJG1KGkagjRzXoLE09ubb0fNoGCMKMHkY4bZY54BRsqfauHB5NXuvIlHjMQaWF6C+8q4JmcV8qvyztrjCahnGAuKKi090+5aIBUKcmnXW5I0ba6+TXf5XnSoatdYmrQdrvt28VMAituOs9suW6S0fY38TxqievvK9SGuPQE2JuajclPkvimPrXlzNmU9WKqesVsAoAsZIp9e6lx7dU+C41Bxoj5nn4Y2bVbRElSo1fqgSpqLfOjchWquA0qcpVgaHk4HnI4jbk4jbnjEDR/SSyDkBa2uX8WfaprIYhYeP6dk9NS48/I1a1A5lepwTdk0oC1TGqyfKc28rVwHvLPgKbRIBaC5asP/2b6qv4DPVXk2Yyl60vMOgOP9iOlEyvsJg/K+unTTTvWlj8w71v6puScRD3ToJAKRedzTK2b6VPJtedkw6W3iMt0tANUjfeBRaTs5TzxpmSfHhNb6pCvsqrzWdXegk1qlJIh8pGR5Smmt204CxotVKv2+MNykGKQBSTiztWkAYxqoskB5dx4G6BYHxxy8KUHkYpUaQMbV51x5UBmsreSodycHFpYRE+LtDCyv5kDTEvBhw8oNbwiiJ6x1qbRngIz5s3UE/FR5YlkCygo7Lm367QzU6nRKv3ScUvvHCXQ65W9DEYgnTIcBdJRBDcCQgmqnA3SG4IGSO09eywHdeK6yQE0lX1/m7fUDBWhxSZOJS9qR6l0lonwn2OftebFEMVBtMxBSpEBz+pxCrfSRVaZyrK65fN+DoGENGpfyzgJFlQUqb55IZfuWsjlvUpA3POLBdIUbGvG5By9geusK7xLw5vEFvDPdw/3pKu1pZwZv99wbsiUquXLyPlBjmTwkWJwVFUGfPa5W59m3gHIL2ZbXxJIGU0YZiDpfy8CVOZc8wEEAcm05w+sKJNu4Nvn1FibUeXZRQbFG5od9tPyfMv+nahFVeuFO+xPO8f7tzPuJSWNqpX7aR3FQ+WKeUpwnMXjKptIpySlN5lM/buJpLUkpz1qgUlvm2OslLwdAzV/P6zN4/3QAKKALkKoiZPQIcQukTJrd88luU+DjnoQEpUuguLU8yVYFySJltzBgBU8jTbWVCYQJg5rLh2yVSns9EcATjhhzP8llNxLjaMYyUHHl2S0MbPxTnUY4cb72rATt9/Oqey2CTEb4emYHEdoOePL69lLUWIqifB0EqgfKgil/3Fqgym8FpKQdDRaHgqfSrrFIDWVWSHFJyGCIs46QCUImi2yhYkDinWDz85galtjJZCmtAwZkoqqA1hqQ9KyDKa8AHfUsUEtuHFunB56sVUEVJ0pesUyVcqlNOU+/CSyhUp6eJhQL1ABKmyXeEKabAQ9Oh2yJqAdvLfDpU0VcQisoybBaIWSPM3BZcZfHqkvZm3vO5UXCVFGR45LOripcmr3i1eK6RrYjAB3x26WF7l4nC8Jj+HY8z4M/Mr/6h2R99CSfGLvhEQMPeNjhvQDt6vKNnk1/VFsehzxohu5MrhEowkRjhVR+ivyASswbir73MiDNRXKg/PEJZ+ipuwegOhNQr1x6FvvuumiC8KvqNA3OBSdbFmSQU+0wriAp+35hgJKAJnD+nYqFChNuqATgnUCYwDhR2YX8NCWhPAwn/S7eIYMrm2YtT2UlHpf4JyrHApRkRZ69Pz33ngqgCO8j9Nl0BZc7ZXy6e+uorFjRm4ZLq1x3BvxY65SuuDO7k1f7PNltD04TME05eHJKYGgi0Cm/fZ3E9cbAlPdlHpA+aQCkSWSC2U/FjC1fA8OmpZlD+SUTDBce2vtj02TMmrYBaNk8r5ieOSL0Y6Dc/WkUojmOLA6aN7hjLe8+z2GDhivlyblMTjOrsPy+P3bO9HPkiSmvwkpK9MHNAcNDwunhgAdTUqI306hAa3JzSv2X+uapfP/RgwD52HAKLs6y7JXoAIiG1HbySw0T1LXunwGvGL3sSzsIylY0M/01UyO59BkwFblhK5BsLE+2rlxHFQ+nsmFkIluiyibTtXGhWjjAws9BXXgPbg4YHgw43Su8P8lXM2ZulQXQBMpWSLnBVI2P5bt5Mp/lGKmK/3mvvDRf5nsxFH6pPMh8ZmWM618ZQpWHgI8L9MQA1OxAhflAK7TkytlT/9ASV4wUX79169m/yvpEbmmniXu6MhvNKXjKQeMCngQ4XdMRAyZc0RFXdMSIARPd4CGScCZIxTgNhJvpoCv2ZGLCkD79MuQd50a08VADF0AYBZSrzueyIk/AVUHx+U1QNGIPWClvLqM1V8lrBIKi9AAoWfedghsDsCxoqi1QEhCegZF8nkVX4xXwRFNZcadB4yaNTgwcT6BBFASBD0htinlb5jtdlclA/mYYRDmQAUlcXHkWTFlwRXmYkubjpSgPeS1YCsuvqPcs0ZYg8p4SDV17cwDKgKA1n/MAyW8BUcUCISuw6j9LokCP06jK8uHxgPE+Ybo34P7pgPvTVQWipJ6/fHHlTSeUoGbpbkql9HtoyBYJ5DEjgyhRprIXkBFCSSNGecmgAqoqJWmf+ZzGNh/B8UrqASg5Xi0DwbG6bSuAhBo82QUEYunJq+4KgBb9B9V1kTdnAuGGB9xMKVD85jhifABMDxPvH0xXeDAdcHLAuVgfsw6VxQSUnbSZdwzK1njoqjyIdUnmKc43SYY3WFZmGRKXnpm7Qe48VajuP7G7/7fQX3PTwd2lC03UPvYpyvfn6nKj5LqLy5nNOPM+KSPEvZfyxAUobaS0Sf/UJYgSd1XaLcuNKwuaXE9HIiJTfc8dWgqcKV235NFct00euzwO0lw5PTcga6l/LWf2g2rT2FnKXENT+SVGAkqmjHUPWneft7BVbbvJYm5CqD5No2MM6txiUnmuyCi7Jg0rFSfqMtWxIn2jNKv+2YzBKFCYtFzOr04GYheOpVNGadNESXZPpN/yFOV5Cl60ekHldaIZv56Xv8bSQq4e2rJNW5l6Fp9qLKYsE1pQ5CgsF4xhM3iq0jv8711DKIttOIv9tWQBkXxubJoIdEp/Ke6pwAYrB13q8j6+jvCZ6Nyb8N6ZMpGbvMuzM3TWnXHh8azGRBhAToAzS5o8Y2WKdh3vBY6Lu85uKlZcd1O1ZQGAYm2iCVfDUd12V3TCNR1xrUHkR1wh7Rd1k115J0pm8isc1ZUH5Ekr93GDEVfIe0ER8vhSpPmBKH8zr3brqSuPyrYFdkWe7E4uWxzIlgbym17w8nYGbH3Y6CvWBtafQRuUuBcXBU6+vgdPBmApAMpvt7plgYlhKkHkplwGPjTJVgUlHxPXrruTnKdX4hQ0OyRuT0gWp9xHusf5cxP2ky+UXXwnSt8zQ9mAUBYaJJYJoEoM4+i6/ZuXScuGzZqVWb9xU45QzFvPCRGaV85Q5HvKIOfVQMCUq8CAUw5DXVeXqWse164b3UgRyQ0sitQEDtvYz7K6N80pRx4wZDfOxITjzYjDA8LpYVqVdZOtU8ccB2NjYQZiXZk3ST+UrEsklgegbOtBMPEwRfhS2ADUKkWDe8R1UUdriagWUZT3jMIbPy8g1vPhUndLgXL2eatloLI+cpWmliegiolrAsep8Lq47pB1aKsrZSEVUMDTzTRiAOPBlODB8Tji3gPg9JBw/5QtjzziOI0NeBad7L1BkI01WfQK8qIaLhsHs0wppPOZxoUyqn2iCr9jGQAM351uqOTB08b57M4AqEvR3PYGduVdRFVwNsx2BvlW28Bx+VWLEdotCwaxHqGUAyP/pqDwaxzxEAfd2mAAab70LRtoVjuVE1JAOcyYuezLIaZTu7lmeF/QCtLZ2x6EHWwDVpQfhjjdTXIKgto0b5K39ddYt2wb9W7jrFsWJMAEfYjL3k8ZzEjeSTc1gQSVs9QNtjZIxUh3Kq9WkHBWLJWWRmGkSRZAZK+nAlVemey0SLOuml4ZU656Iw4UaffN2r7EwJdhLVv/sebVi2ZMlzNWCAkmTlaIIW0ce0oxmqfOUvbmsq0SzS9o8kLMZASWAA0oR3oeNPZFXHRcxq73E+V5sOLs3xO0ijyG5h74ctX4Z67tHPCs6V4GLK9Ry0VoifNuPbmfTh50pbrIgFy3s0oJKe9RYqH4RPqCeZqKTMxRCZ8x+iT3z5qRGep5KvKR2xHechGfisdWBkCoY+FMOWA+vcpcSXcLQDUCx01aFDBuV9+VMtbK1Ha1FPvUgCmqA8fVvQZZlVfAUgFWxXU3ZoAFmnCFI4BDsjwx4ZqOeeXdIcUn5XIqxCQE4b0mAAAgAElEQVS7jU8YQVUMlN2yQMbZE+5oSwN92zP3VcETmZgEw6NmQ02HwjjXuwR1LUuegrTGnRa1a0CVAhg29adeuQySjOtO3HGaPmXgxCkuCkTgIWuDiUpgrcQGMPStPL2py5sYioVJA20FDFnwZQCSTDaSFrBD6wTlbN5OhryCW1FWyweKorI+ABUwqnYdz/XUrRMAprLPTt0PWRClv/Oa4sSEA0EtUDwBwxEYTsCRBxynQZe8i9WqunTpw94oA6RUiYqJ0wApuTeNEiUVawVXQB9EmeZKGtVzircY+dvCvkFTNqJHBZ49MK6AVhdA27x0AWv2R5TtCaYcKM4TgY4AHcumz5IXrcSz7tt6ixw3Lvm8i02HjNkipbIAwZIHUUlfIW3/wnW51bzdON89eQDVG/CMIKbjYhrWJCccfqVB69aLVt6VY/1EyyA7kde7jduYJR84XlbfHXN+CiIfkL4vBDrilK1Q4Ly7OY4AgFPeqfzEA65kvycmgIYcMJ732qApBYVPhMMw4Zh3LgeQ3Xfp+sU9Ku66AQATaTB5wg3lxumu5CrceWoirsBV0dD2puPxWDRCwOTBjRmqyYMpU6eZ2CZ12bFpg9V1B6COYxKrVHbdNdYnuZlT3ukeUBces+z3hDI5Mmk/SVlQMV9L4KzcBwOcUloBX5KmdXO+vK1F93A2ULyX95zQZgvUDGiqlWhfcTJQ3DbGtaOuu0hhms921JaIeh6MSIPIOb2MHXnEdBwwPASGm7Sh4gkpyFgUqdTzJDiJ7Hyha+jz3CHPEEhdeWpu0vmkfDuPgdqdo7uO5weBiwL1Acb6UmDnBmXcDDBeK/OmXAWQzG9PBnSxADrgOeK37jzPdT9mDyi1Pi4AaDagKa3CS+CIjwNGw3sPni0V9615wR8Y05TPjeWJZUKSbQnElZfhMJg0L+1mnvuSUAty/OVWDvJl5+uTCzXsiuazDfrryQaRd80DQbmFN6aqOHGRpQ31LKkFKt/N0bRjJx6xSnmS4O90nK1PWkcCySf9GKcNJtc2TLs2aF0D0N0Ym8By1Ns1zM0B596ni9Btuhalvqbttf3I5Dq5c9+WAUYCsMqqP9bYJpJAcePGq/urz9WiZc6rgHL55bj+Vlpk/UL+kxSdx07+Dd8QV4CoLeeBVQOemnT3a/qxVoVUh5ty9bj7TLLVvEJU6wIXK2dUboms23BdBQMsHOCwZfS3Kssz97r+DXl2Drm6s+CpGb/Tb1Fd3zYhBnuBUUHqrvkyh6cpA1yxxE+cLFA+9qkbItJYoAQAltis5jr9y4Cti1KW7XF4j7gcA+H95Og+zjzjnp68BQo4X2iBClH3kLUPHrdWpp77rqx8Y908U6xPfs8nGzgueQNNuKZTCiJHCTwfmdM+UJxWOQw2LiqT7g3Fgwax+72hbCyUtTbJt4w0/olRxTRJenVvxFVEAGA/NAxUVqfHSR4zs0uP8ntgyeSphUnfUmyanJc8a53q7vkk4EjddeZcAsgnTgG9pwk8DsBpStYneQNLXCuKcEq8pSl/bLgXC8VlQ01riSrWppJG9lj4LG9guXzXZWHf1HrHzzjpZDsLVOryVbpXolbRuz1+assEVJn4vYAa8KQB5SZ4eLDxKAbMUL1HnsSpSIzLKbvmbqYROBKGG05WiGlIVilx3zlLhF5ebn9SJSpzNOXYv2xpGOSCGCn2KVuhBhNETllm83MBeQ6tJcpusAhjyc0y2gSW5y4rnnTk2auVVZaqht8uzSp4y3M5hkuXj0fbjVUlcDywTlnro195R4AurALsQqPikpXVljgR6MgYjsZly8aN13kgxIWrOln4qrLN0FiogdLCmSzPsp1LZQ3Pc62YAvR7iDBzl9ELGmSe61pmkGv3XBV3NwDUFjKCN1fExj9VFiMDpqpVKGh3INfNNOHBFSvgGXLskwaPaxB52sJgcGmgqXwLD+V4yDsontB+K2/iUXcxByP3VWKhZKwJOLW7k9tgcnlzkNV4p+BW+g03zTyTwFilaS9EMyzdZOEIwFJlQeK2TLEmlb6s9Ymqv2xl0s+4cNmKQAPKDZiy1ie7G7nkI9XhvCKl7D6e/fk5vokloJzMJCKgiKRfC6ZcoPnSPfP3j8xvQEb0ni+asdl33XsBcNJzB5Ya5SnljXJV5Wnqlzf2ojQ1zEGacXPeHIkbR900E+leaGzA1apl7BBFLcgtCy2l0ID6WtHKnbl/RRmnRBtY7nF9qmoUrmmSTT9r5pdV050pE1uaOuB5DXgiDvlfgWcvC9XYuAFRPdKvYSBvUcGE4QgTRD4fSE7aB9VslOvIxyw338bCCcAaCog2b/f5MD8/2aWr6SjHMOd1mnn2ZPwrZSCiuw2gnCBUkwH6eRH1XFi9lXe1y67su2RdbbLyLv3JarzinpPf0ZTTvnjQAHNZkTe5S0hWpqG4EfPqvgmj+8xM+uhwCX6vdyf3mm4ghobcyFsiB590sSSC3rvNFmXdkkLL01xZXn4AonzzYlSX0XNTSbYpAKqVdzb2SYGVljf17Sq8SZbuyj3NS3tBeeUdAC6baMrYqiXeuqkgytwTXbjMr3k4VbkKgAHRA0Kly015zyotXm+kOKWeBU6SbxVnThPl2bj1IqDlFagfC1mFto6S2+6kx2JhoFMKIrf7P1klyh2lWvU9Z4VQYQfsQhS22RZMab8xiCrn+b5bIGUK2jvTZe+qQn3gpHkePOf8JfBUgSO4Y9ufgqT/n733+dWtWc6Dnuq19znf/T5f33vtBMeKLyISEcwQyEJBSAyIMgEEGSCExMBCkTJDkRjw409gBBkhWYmQBwxAngQxQEKBTCMZBYGEIzBWHF/n2gmJr339XX/n7L1WMeiu6urq6l5rvfvd+7znnF06+7xr9a/Vq7tX19NV1dX53rv/mZEFwyKF2jgVNy35z28YmIHnVn0X10F35Un9pWNce9v+bpCSuTY4q4u2YbUYNuGXTWS3DaAKUTRYNM5uzayAwPt+Ihw0HqcqdRIj8urQktWAXPxAVQlUdZopR7a80eNcHisIY+ANVrwnqP+nVI5MkHfMu+4K0i9SqPu0ZpWeSsjExqr1To7ynnakJP1oq/fxCq7ahrXG4zNpU8ZSZgkXfUhnQRXHz9LiPFDqF1kQMa+VNvnrznjc5AXQ7rwzRuRVtceunLrjjozhOIkB+boB65obbUlFpSez21b8OyGfo0cE3lhXXgLORBIlE0URZmrbs1zC1B2BFIpNumh2sZOTJx539WdDEdNy1DLRGDRpWACceimDySfM1Pr8ARq/T/Kh2F13MNczc4eegWZpE61FCrEC69buvhpJI5IAPKPGyX7QoPUJpRAls3gmB4oqzxxpZOcmNSyXdnTfcl0gcB2/R1Q5B0HTFDTrQ0zYgTFQjciDzQVySDRgfmVyQ1Hd1U1WBOGNFdTMJJCizhOArH3/mPveSh/3SFS4euYq5SpvKXcU246T95RTGLhsXuLSDqK+BfIYkAOquexkhuFd0o5c0wOmK2xfM5o+OkMfpyfyK5N1VdDFma/IG3qrj6eJAbg3JI8kWTZdVDd/qLE1Jk/uOd6APPQ+Hj6npjuy1XVa2F6Wy8ZqJQ+knkACgLzUqTfirvGaR+sTXD/RsFuf64fFyXIboDjI6gQEu2k+W6LgzxCTY5oReBqUGzavA13sn2lBFeA6cu9ljtPGSQE7bWgkTWeNyQF0wK1ZIE+Ki0CozbPbhkAHato+C8o98hfk9c2izxmlcQDa1rFJ34Cxyz7KWY81AFqkj2UhaR8XeZ+fPpPqn68MDd4XAsCjePetde1t0jXh0TgbfM9H6HYkUF3DxoPDeiCPjiZo2oV6EBH5fpLw/OuMx43fJ+u+oPp8qj6hrNdxkTyJ7VO2iarPUBVemZkWZmzYskSKGNm1QU630YZU7KKsX6hUdDIJrPk82Nq4+JCiYmxO5rBhZMkGmxUCgE6N16j2rjgxT4uaMHyfzkuTRuEeTHi+ExmPZxDDNc6p7xrbp8AGSqRR4oEX6wYsKRuTZxe9eSW1SjsXuxAuLyErLHA5XLjMtMYOShbuzYqNMW4+mZNYHNyhkUrJKv2UtEkepqs6+iRRV9cewTvuq3FqWDPRK5PlFjC58J6x2D8rdZI8VvrUAxhP1v+cqnVWQloZtFK2g4EFUfN1eJ6vAYBVCtEYhkvdrV8gru+pY3pj9fEjeWhrHSjqMCTUb0CGooSRlF9BgbeJAY4P30ji2IR7oOT6bXcMGB9hKPcdsHBjQK4rr+TpwlikTvk6IdGqkkXaqvRx23rJYySBzD4HKQZ5KhkjBT95M0DpGDIdRciSyHyIa04P46ZCDxN2mwaAKom0IK3p/7ZK2gcn6HYAlKXRSwTh4Q4D6sXTkTQm2vZfvY1vXV6VKqH3Or4YSVNOU+8VZBUuJaApoRiPI2GhDJ4WJCyZU4beyaU+C294LAcSZwBXuLumqXZRG3GW+hLD+oTaowaglv9U5BpNLobjHnameRAkhfULv80YOXSLG52ouYu3BxDDrLx0t50twxiVN840G+PxrUz+Jo3YQMmf6E6NBEwnCnPNUucCqvQ4BDE29zODgiXMQdWIXHHDsM+FIgbZpXG/Nq0BUOzSXgaeLFBCY/NinTwPX8e8zwZq3K2I+k4fs2aQsgFVjeNUfkJ7RuqyG69LJUiH3CDTdqtONYHCQMV41ExYMk81QAp9e9jn+9qMzBfaurryHFiyv2fGQHWsGgCuBjBx+HsELPs474Vcw8QGarWg6bjyquXL0J3D6oneAxptwxpYvdSjgihJVcAzasq2GNRpu3HoaV7/9LxY6LNT4VmbJ6D1oeSBlE0npEey+HKt3yfj3gCo6rullFvDneE5qjG69SNln91K01r1ntR9b/KS9wXa1YlQC0p3i3pe8q9y6UgveRvv5MFv4/uJB18YGzAlTt285AlQP1A5bHP37XVTnoCsoP5NuKtTc80xwMx1Hbz/teja5d0QiSqmY5TRn0nfhQPoGGdwnX8deNJnchtvyWIPwmBRGbxfoJqzahxsNc3VyAE//z7NOwfxM4Di77s0QV91EqXRHwb5BmU37wAzBiKg7N/DgiagT1PyhvP1QckjEPS7PLpsovElXKbCtTe1jg0IRJTG/JKRXMK3Pdcw91emRpPWXQ++4xHdngSqEQXUxvbbcUdhkcsCMteWrHuCNkzKio9tqW4L5se2qO8nyQcAJc8b3rAVA3B7vMsKUpcGS0mzIasOs+fyVo0nxuT2fDx5d1XxUT1geEV1Z+CPWqDS/t0E6dINw2xBz8FELcN318TtNQXXvqxmHhTw5MBHLYezkbdc22NbzJEtKn0yYayAqfiESknTcT7tOT9ocryLHMKaZ+q6wtb6IvAJRYB1eSDSKJY01P4SUH3qmCYjLcs0o2mfTxgvtUS4zI1BuWYf3jBdNkzUxDXSBvOHIMwwIe95XB9NYlQ87rWtzCXV3092YZCPcmGwCbe79CJqfUGR2sFw+cgaNQ6qkbi+j6hxiEEbQb1Wl3cmhu5W1TMm5TugOp4tL2mMzH2flPBwamOTbvjCJnnA+KdjQAzGgdYvWHPunQVYBnB4XmnHg60eccgLPclOTHFhkR43pJXxaCSP8caB6j5HpWClruoDDFx5j4AhkBkXBPVSv5XfhLy5hpDHQW4dqPqW0cxdMjGpWs+2u8xZbMJsG01bxr3vibQfjhpQxV1YpMKLVlcAGueZGkYVGNl0QgKiLFkVnnVdkOx9YFwuefNzeylTV99BGlufhSzoiyVnQtf0ON6IQ69JR6t48lUaG6cmHGhcFvRDzMQdeGjj/mBzUqNyPXJz0JVV4twQCEFhlPcpxMF12CZPfM5HTkOJlLk+Ap6aeAn3+aI4CRJQMYp7CjHp93OF/RHHyAJIoLWn2WmbUJXWlb3Td1GeYT1h6umkH7M6lPpG76MAGlJXj/qiMoUHmqCTfe83COgiciB9jOyfjhCZ96EjYz1cOLh85Nq/5J9KCN3z2P3N6PYkUCdpT8frjcYtjYBJc4CwyWdVc43jTJVQ1bPxUiOJKqq7gn4V4JTqSLq1eHiy5+OtXMEagHIWXo63zjUB9Oo8YzfVtQ2qTZSci9e2KemvhGVD88GgKu92mHzaGWiZhE/LN3/D/A4kKJBSKROMjVNJZ8+982o3p5pr1HcJ2dB72yA2T1kKVdrbGJuzlLuYZXORPsk239wujO6AYfd+nTsD4UkFnM18oMwEjZ+qofiMdhmzC98FTjaMfHz5tUbDHRNg82skC0XS1C40jy+gOkNiRj5QdkXo7ylirF7CLWGdHYyKKWRgyriSsR+8d3Fw19jC2KwuTuNLWb62alisFS0/k+YKv4tgfLCP9wCpuYcZD6bPPaN30qdWBRZUhU7srEZV34kfqPTIRX1b7d80PqC47ytvacXatbH1HDx1a9GPga5nqbg4cO/MzT2X/2tIU7tmEB2njwpAzQZAJIUapfO770bOM60EaWk8kjvbpMheCRWE1V14UKBhHXCCgMQbFqLsJlONyIsnciMotN7J9dkKsFL9VSnUhlScZHABXyOZl4hfGRYwuQOEuzA8WQJxCNy4sG4xWoDOVDIjc4wAKpvel6fXXKVApgxrtxQaj4saT5+9AVuq6joNN+lVDi3lkwInbueLulsvfM/ST+a15D1HTaPzmCS4tE/bWevTo2DFaqljlu66lyq05fr4nIddWeYjKOkjuxJrx0jN3Dbv3EaFB/FEjryV3Ughmnh5/wHars+XBVkdKjrfWNRiExgmq5tT9DExUCITZ5rE1FPqNW2K+WewA6Ai8Aw4AD0bAw2gMmMgAFbWFUSrvm37PuKLeTrLYMb2n/SvLBarC4u6C8/SyB7Kq/XqQtw4VdX2KfOaazOrzs2pehBVc5t3Exxm0+lUHtSXJvwoerfjSV+YLpiEJctIfXeExI1BvefQaFxdG1gDcCN1krIAGPunklckWhZEoar22vqItMupGAOJ2udI12wC7/upK/uo7sKAILYAibcSzBU4WYlVRGprJQDRpbPgL6rzK12XBnNLg8EtyDJMcSi9ikCZZyCajvvwoBzNfiUwW3ibPv6IE8VhWQHA83H5xg1mCybMPWCkN116rvFA167DfvNh0V+ULirTPs+DoO7dXD6Y9/XPC2gmONijmW+vcD48QJYXD4UbdgFwdLx3oLKWFdqeBUC1XU1XYmr/ZnQTEqhugHTiBbiGFWRdbgcvKce3tF7G597HbV7rtDLBG4jLjrkKbPT8O3d8i6jvllJ2VtdxBWDFOBxsdvMxNKw54w7cGIPnuuaz8YANCyUA2ahc/UCVdM2hw1T9QWWfUKSSqebcqtK+L2H3EHb7LGxWJ3bfh/kViVIjuZrsvpsdHBz6fiqgh1USVVRzGwqIWoptVKruDIBaXmL1edIM7mIsK+/CqCtzq6210iZdcEn97etpmDE0p7rYa0UEbT/sTSyfIjWMERgv8hrmJ2F1HhtN8JrOMOlQdefSeYkDUL5hx7DEgBzIjC3cxl7mqXy0tYQXNc7DVnwBxYx2eDaaGTCNZBvyC4CK8obQSiCsOsdKIOSsNADitV+lDzJfCX+lGi9tSHZsw3wjto3by47C6ScAyS1wDsZBc0B0y+9YPMzb/D5d6etOfQv0Y0LD5hO69e9Epu+jXZpADbckm5XkehPJExseY6Re6oewGe9mApKNNKZBGkmU9qfxCeXqZKXsTZxtjxO87sNLoE5OxB0QvfKSW9wXdGfe7Rh8eymVlT7VNFRBlKu3ujawDjqHyrb+eSM6I6XqPQRP8t4iA33qULD57dl38OEVODU2U0ckSlKGIfVjIw47FcxZFeO4vMZ7+nMC3RcA0TdPexIIwzQj8BSWB5OuKWOQL1qtN/G1o/ZMGmYkO+2a6pWxdsn29Y6m84uJi9q7S59/vJSvlTpUUNlJIwbP4clf9/wAPLVpav9GkqYu76g8906hWwB53jXILB7zmvBc3++NPQW5FrjuvbutnpdEuQWMtS2zZQylTOT+JnQTEiilkSTqQH+1iDt2mtkbWVsD8UGeLkwkTNVfk0qeTBhgQFFR4WUbKELiLEGynshF4vTAS/O87GCzOtX0NlAqQROXBWXZ9WjKSOBO5G6lU6sLX5uVQuHdsop00qkXo9k3aGc07oeRSo4Mkcszyk8RWOqez/G9qO04uy/glEoZRVykhuJ9Gep+wJHuhCpeyTWXzS6Aq9iREObNp3lK977ipAFNJtR+EnYAwKYxvyPJU5POlkc2Lfd5bZYrfqbU2EDVcJVUDBomEbAKfytzR2NDaepahQsy15RImXKoDT9sByPRLmRoUHwJeeA16LunSR8dUPDPbwDIdb7ijcsc4uzfctzchYUnK30UdwYiKaqJoGOgtYUqg6DhRTVbbwmXQ+sVafERXdpatwWg9mhnUHiwQ+j9P1mVXQ1rpU3eN5QYkFv7Jkvqhdyp7rxhek0PbJzVeFmdl1V0Ky9qS5XVehz6UxQ13oIMrkZtEakkuQAt6w+qGpbPP4aOEXswdYhTP420Of1vlM4vFQs46gCSi5f8Fjw15W4uzhuQA9WAXOKFNgaWclBmi1BVgkVAUf9lRFN9OdVJhBjgLR9xIMGNOg4tGCIxRjfhHiwZTUur+vPc6AX6+VZpuPjuFn9BnmAF3AIjVMbpyqhp2rjOdYGob1TyhE4KdZa5NuehbfWFznij1lcwCzNrSNzOKzWuonphmAMQ1YzTgTfqWrwLeTqYOgygnzIGNL4CqcYBabkne23TYf/dstG4mH/k/qWNQKsxc4BzuDlR3/XmIC141vqLMTmbNPKetu8tqg5AVH7H6C0daKZdOHGIPrwKT+iCUfsU8bQn7wdqRtaDuPU+Pi47CxkWVLuCxqjcSKr6vNUruTckt/VpXC88O4qZ3F9ZpfpB6IgX8BmpGm9rwyyocmnpaNkDGkrHjpDP+gl04YuQoPFrgadBGV69AccUD1X1RFrrJLHxBTRgoFch2vGW3a56gniMeciRcFPmEePhYVo7HkydovK6TQVn59VAVRvRZepbVxmRfPNlGwj8SRf2t00nFzYw6HsHHPs8iPvd9XOX3v4doMMAiogWIvo7RPQ/lvs/Q0R/m4h+g4j+OyJ6c7Ss+YOO1MWCpzYuaee0jSsONGu6akzu3RdYA3KVPhXVnQUwem5ed+6dNyLP9k+1LjW/qhDFo3igCvRUfU31tlrNe5T76MiX2NmeIHi5H6d9VjJSIPvrpU4+XOcu/11526ByL2lJJEq+Dgx41VrnvkCuvfsCo8ZjNmECqqybg8iOypZfbKM8E7Pv0r6vvNuOWwcgnJdP0UdiTX61+Stx/QsmXU6VqXIK4oXhepWdlTz4CTya3K3EqeTxB61H3+3oPNAIEDWMkgm0bqA1OKngJFkj5qieYgBPo3bShNA24y5dLqOzgTF94MMbQEzZP5vfkdX8Je7yhM8ZjIMoTzgGmjRcf21cacs6Hsbz+xkSI/IsgeKLvnfPV7q62DrrWDZjOhz/cO1Q/5rxELT94T5OGLlRVDojgforAH7d3P8XAP5LZv5nAfw+gL90oqyrk/csPot7qoTGuy+wv/6ZqQmjsluu+kf0ef1Ze3kHXyuFCusz+Dj22sV/Dqeleh3K+TA0ksB0i5c9MCGgw4VTEL5LM9cEPs0JCRJZAKjloB5FE9ZlcD19Tvv7kdOzzl+9JML8Uk2Tw7hPB8M4Lc0kLy/UMeJIU1XHLm6PIgZqwzUuen+b0TJLG9cV3OfpwRI0PDQoh8k/+hs9EwOc0QA3HuQbvCPQvf/Q0FqCiJ+0+FUAfeH8N1ukR/ULR1IAFKffQdO3PbjyaWrZMejco0MAioh+AcC/CeCvlXsC8K8D+NWS5FcA/MXTTz9BR6QhndRpAiwA4xEc4u8pyG+kTxF4AVr1nRiVS/lhev3lMQALnHP6uoeHC7swTxQAyMjovs83jb4e+Wpc+v2f+R4CYDU1GA9cFvhdeGzVeFuj+6jhHjzZ8oyXc2K0zznyPoPwBhRFoOrC9r5lkHXN+Wu0Ws0PQj9Rm3w5jMN07JmApNVy22tyz2ykD827m23sLvwUMUDrpuPDGo7PHCj66+MLM/Tv2fz2AGa4G8uCqKgsTPrx6B92xgOhB9AOAMXSR5fWgycybTpo2w6onOx7YoDWjJyvcZB0Xx80dY/s+mqkrRTatmoekn9CEDX6XrXcCVB2dNSI/L8C8J8A+Ha5/1kAP2Jm2ez1AwB/+mBZxygY5E+lkTTGG1svmKjPIDvwqoovl+HUewKMCLoDbwHl92EvmcoSrYWpOWAYjGIoXnw5saj5CKuRLSbi4rW87uBbKB/gWf1AjY91mVFn9JerH+6kaTPaa8bpjpwsMmz8JYxbv4vSzLXMdpVV/T8ZYNPVk9trC6yMpEmPcAEyeJIRsJVteEUN6DZhxrQhHzqMKhnouqLML8y1z0Ky8babDrQrRc+9TbrO/DWbsNHHjXZi+blt5BBwLoXglsk09Wh9QgG4mIEqOGJ0RuSXkvUrR+R89pAZi5qhDDSSCDNIR7uxuiknp9VNEoO6PXkdEPTZkXEwHQMdw+8nvwYku74fkV80y3zOXH0CctmFh23TuXJv52VEskhf3djxYyH3kenXMjnVTQXmZaMJy42HHGPa6ZqAAgckUET0bwH4h8z8v13yACL6y0T0a0T0a+vXX19SxKTs8aqm25HnJDVH6KivpXH++HNcDopzRhKvM+TBYXRdw578uJ6uXeaRJgnA1imgNUvrz7/TPMcewFE6r9JTKZWxgyo0fI8IEF6Douc9fVi+GF11/vqjyfx1FDzBpzuIVA/Q2U/tqI+4qsKbuPI4SXs+5/akKjMKVaFSViC5CoHqWTpSzkzytPf8iXTpDF18ekWxE/W591S4e9oQ+Z2yxL0+GS1sZkIYH7a3OBrQEQnUvwrg3yaifwPAFwB+GsBfBfBdIrorq7hfAPA7UWMslOgAACAASURBVGZm/mUAvwwAb7///QOcoKfeuHneKRKf3C/QA4q6e01cFQQuDKxzS2ptklJR2VmfUNnvU3k27A687CUcJSy5+ixgPOy0xQLGBsZGW/H9VH1HVTXkWNqkLgs4XhVImHgpB1rvsdcQ4UZ05rvWtDrHcr33864tdwCkQgeUpRmPqcz8Sk7qsxmVHOcDf4HGUzkNyvB+oEhwlG9+c7DwKK/mt9ezbgyeM80T1et26Hrz1z/9/fD4LCBom1Dt0P5GR5Jo3mhCJyCSKjUqkACIXCJ92ryohgF6FG/UO3nc80cDZ3TCgfXs0UofBpKHoK7NvSUGQP239eTxewZAR4x9NgZc/sa43oYDrq/dvSl+tFi2J1dovg2gLff9JZSorgmrhIwGfW/OyrM8h6qfp3Y4+f534+2ZpVG7Eihm/s+Z+ReY+Z8B8O8D+F+Y+T8A8L8C+HdLsl8C8DeeXBuhE++1Z/R8ZMKIpTEvu8y25+dZUCZn83lgt0dnDOW9r6zDNFwt7cQ/B52VlHAPnGbSHVXldXFVWtTurBuIgrYg3O/C2yM1Ijf5DlDzvgZsfsr0XPNXaAMlNANPnmZ55X4Apkblys6lq+6elfH/DGMmPP/uiPTAAwwT1uzEisoz0qi+/wbPDSvfpz0DnsbSssF9JEFz4dfq+wYQS98fWEBffPpFJygxaaI2tffNmBislG3hMGPEx/u/CT3FD9R/CuA/JqLfQLYp+OtPKCukmVgv9iFxDjTspsGxHXu9GwPWeyCr7FLoxqAeHXMJLQOpmT7H+oY6+UHNpXzn6jmlD8HEZ8/c5moKcaBJRtXW+XBytk/ZhcHWO9Qc+X5SOypzHajz2nq1AIkKQJLfPbqKaubjAmQXzV9DH0EyaUdSJcfwh8wdPn3AKCbhe5L5I3PA8Dw7Rh333DvRPLIbL1qokXnXmVrPGxoP2yas/ODX5AvBcMRMB8y1NyB3YyH4Haru/HtG48EKWSzQCOgIoBr1nzpRXa+nvrX16urX/doMQbv4/ho+DPDfoZB8j4fU6Y5OeSJn5r8F4G+V698E8C+ffuIHoubQ4KChlllcAUZiQN4cGGwOEvbl5XAbRkW1tmIhwoMZkAsYK2VDcjlEWMI3MVZnkVAREgje4jjXLQ8ssY5NRnfj1ZdXd4b3VBrVh93vSWrBxBiAtPcCXE48yNtEDQCSVd3p9cbP69Z2tCBzr9jcMyBqlCb+xobNUbrK/HWEUUf3nmmOmHnEFCx4sGCJDBOS5FfoG/UCDXMeHiNvgjDHeViHm2eomgYMTALMILNG5jlAKlnSacPa/OZdIFINilXNWo7c09PG9570MZI87Y0Bk8YCyZfyz5fBs/T9QdcV7j6VhUPTrwOD8sYTeTEKrycslCNeuv5me1OohE1Ueg0xToOo2/FEfmWy7TSS8Ih6rA/nJxuQz2iZ9qKpx+Qw4ZeiF3eieZaC6rULlQP130kyk/xYh5nN/fBZQfwFvqBq3U5nGdOJsm59WLw4XQM87T1iJLE6kucadIkvNK3HsYxDILiX/8h7hpLDk88Zls0IwdPe859InYuKRmp3xY90u7zvLUW+ByPaWxB0dmDTwg5WPAKuO/RhAdSZyo7E164Yq646KrYe7crzTi1HtBhDdOvbyR7bIkbksgOvujZgI626bITGhx6PQGPr+yoFH9yeA7Q+8sIvay/byUceVVfltNzaEQF1khiVYQ8VtqDKA59i/yTqO2YGy8HCNo1X60lZXmXXnLknc3UVFXVt8YR2faUdmqlyRvfYAU++bKCVRFDgDwlj5imG49c86ooYwCre9Nu4vY0le7t7dRdWJwZuf1tjeVsxc23j99p/oNJp1LH2by9uVq6px670yd/b9y95ItshvTXj5SoAWiRQJyXyR3hvHatyH6WxN4jHiZXUht8mz/MNy5vX/6OWQD1lcERSqTHokF14rcpODg+WNJas/dMZOgqiZKffDODpUTMHgGQFVQcrek16DoYefC83QzND8kupMywPyjXxu21zq213izRRuQAHwFPEOI88096eGOwXf+NPkECNKFys7WY6AEaDAqdevuV6Vtae+nZWrn1+lKYry6cNVkvXkp4F1Pj+Y3R9f+Yg6dMbvAT4N2F9+hB0m/yHx4ekmS2OBvRRA6hLKTS4PsExRv6djj+/75XGdYK1rSLjLsG4SojL5e7cuyM+rz4EZprRUWGXXp/sjkPdtx1LR86HE3uVXldu0B/RIcNXoInQ9qLwz56OTrAz8NSlHXVCkCeSKAXShyN0epcxQ8/Ce1Eags7gPpRKtb+h64gI/BxgnlMJhrseHiui6Xj8Tlf8II+MD+thvtq/cTnX8xy3OAPsQ3cbo/HdSR7lGn18U8B1x+9tAagLOLkVU89WVtWI3AAV6nfAiSfyU4BKpE1ofUDJeXeivksQX1ASXtV4YblXtsM66kBUKFIBDHfRAM+LxHhwLY+edZeTwIdlD43LWf02Nao7r8IbOdXU/FtW4wkNPJvT5sqNuszuBGSMwdoZegVTT6NAZTRVGwHtStmrIEyaPcPh6TdpHj3KD+wDKmIUNQ6Ak16oo3qM6mIZZLe7zIRpYR5gzABtJAnak0AdlUx0KqPB8yKaAD4N9mPAAYXGJ5gv3mgi8u+8Oh2Vvvfs4ymbkHx9p+rmqN9n4XBhXd9w/Xsi3RaAOkjXPpftqRKli54Z9PalNlCXAK09gLjbxLcmtjpCV5bw7FIkbfI09BdlQOsISL0wvYKpgAJmesiz9FWevQ+c2vjLOlCP8wCObco4SVe119l9WP6Z9tHZehxNf1SltKcqvPDxT6KDXujPnFV7uqzT7RyBMX//tPF88wDqKYcgPjVfUvcF1Y2B+nwqarXqA2pzedvfPRrZUg3rVgzcVdrlnz8o5xKfUEofIwcdVZlRzvWqQVnX/zxMon12UP6Ryelg3aKu/xi77iZpIoXofMkckc7OwkcMhAKwMVB1XOpIGPCOFFGMyC9fh7RHdwxUM9ivc2xw7tQ4XsIQtPMuiDr6F+XDRAoZ1XskTfNSFpt1Et55oI+THiIyff9U28hoY9fMtqmrd9CO8eYC+XVSXn8taS6USH0YAHUFyLz3kV0CEkYHCF+abpx/3gDJGqerV3JWsHYYZO2M9os9kEd0SxKplwQLzS4+s6tuIFkKz8Lbs5s6QOQmt8Mg0M8bE8D5SmOaGgiHTJPjyf7kdzRLflaiE6lkGlXd9vI2UJ036l112JFC62UHoi6dx1zep5xvN33GLPq55mDGYQnUiC5VPR8tK0ecDR+k9X8Tuj0J1EiPeWV6zqNadPfbbrr5i0UqvVm9rbPQJvwg93vp42tumrxd0x5mHR4QdhJsP3k33n6S126+Hg2Pg4iuZzRguKf83eB6TNSDKbWBujINd2gdLuBE4kG/DI/zOFOHa6Y7kLZzYfHcVBxp3hSNAPVMVfpUda2j2wNQQk9Q10mbnFFXJaqquLOONJNxbRAfqUJYiLBQNiS3tJBR9z0DZ7OuDF6ErvVFH62uk54Ye9NT0pRh81gHcv7cu5EfKO9Uk8WHSh1TPPFUTntOOY9KmrwWY0cE78t6BVqe6pEP03O07P0eTdKEYIiCyz2V14Fq7BIDvG1lk0Mu8VlOMugGLGIJXpfWpR/ZwRwFUbacEyq8Tm03U93BxY/e16TvzoXz5fngK3zE5Pr+Ofo9NIK3ajynyvQ7Ucn3dyjdDfrF3l/wWrcLoJ6RbkHSErkyeKWPgF54Ffbs9liv9LJ0dO55gTnqIub6MY3Hk1PsJWehXYWuyAqe5eSIj6jLX5o+CQB1WMr0DCNhJKmyLgyem67xXg0gbww6o8TP+EVNJSTP88gXnzetKkTtn9w4cq4QOiBldubt1j+0uzpU00F5T8j7KVK0ep0aJw3id1bBzSp9YlPyHEw0GxKvVzEkvgadWn+eULFeCqIu2kAQkZPADJ1FooY/53Fb4gcK61r8QF2nXBUM7dhGxQbmgzKHtmYnwnckjJ4+CQB1hOzxJRpWVG4jALK4HXiLOTtPHFtq2ifOKnU33bFyLnne7HiXj47OVpnd7yDNrbgMCGmi9vtQ9DEOnavRDAiF6QeM/ALj8a7o516nMZ5kSBwzyv00Vu0yNh4O0u9WaHCNgV3bhC6WXH1MSoh1ezZp+O7xLdPMUdi+KnSa/wR9NgDqY6Kju/yssfi1QNDY7f5Vir+IPmsm/Uq3RxfaSxwv//iAf7HDvhkZvD8DgO/9/czE0P7+w04OQ9upGT3BvvdD0FMf+1wL9FvYQf4KoC6gsx69u/wHmj2Zo1zm592NVIg3akPxASiyOX0Wsobiw6Nc+vDQtcGT6nHldK9UaZc5jsIvlVLwXPryArSBVIVH5UDrW6Dpou4I0NpRsw03C2AipdpT5e6o4zTPLc2t0vcr6wYCoWsalF88xk177RqT2zhfxgV0GwDqwsrfOgNfPnQFXmlOtz18Xuljo0vmsReaw64hBbg60Df0bBLuK5U73X15ybOfUYI5c1I6C5vRc/b9HunO+pGN2eGC7PV1QNRtAKgT9LluXnuq885PmS7hDSq4e+q8cM2J5WPa4fRKnxeJIbFzpHn2cNlno+dWqz4XHTU2/9AmFNv2LH7APnb66ADUx0BHDbzPNv5C+aDja4CpW5fefXQ0mFw+5Mqtodddd7dBt24sPnpuYaL5AOvnr8ST5qfPwaj7ClKliIYquSturrlp3nMSiL8CqFd6pVd6pVd6pVd6pZP0CqBe6ZVe6ZVe6ZVe6ZVO0iuAeqVXeqVXeqVXeqVXOkmvAOoZaD2oRD2rUl6ZsCJhvUK33Yzx56dCKe4TupVdD0+pxo28widBTzT/+FAmdUwAUgITvcjOwSfNT5fmvWHTnI6Cd7zGnD7crUl0NbRw07znpKf9jw5A3YpN7kvTNUDTp0qXfI8szfnUb/maAOlWwNYrvZInArAs9YwqCb4Vg+CTjO9miAfXs3QvTAKeR4vEz5luo0UuHBw3jWQBrB+6Aq80pxsZPjcjpXqlp9El89gLzWHXcHj4nOP02RbG13JWzdT8PfnZzwiIPF+M+ORZ3vkh5yhmys1l63zRt2avI8+p54u8DQD1kdHGT2u27YDyTp6xcsI6ed4obn2BifnWAayQVPPZq0sEUOmPNHjYKPyq9bhyuleqtDfJjuIvVivlw1w/5LeWwLn6ywJOdDPjZgq6fNwewwyP4RsDpiGQ6p57oB4+nCfpPgRJ3y+9+vaax7RcPMZNe+mY0Ekf7a+N82VcQK8A6gbpqLrOArlrudQfDeIPqTq9pbnklV7p2dVFJwb8iwErQgb/z7AA6N5h9k5HAckL0SEQ1cVfVucPBaKf+thrHvdi6Wrt8YRv+bMBUNKJtjM3EDYmbIMl1coJKwgbZ8PtLA0q5aCVDB01HB/Wr+Q/Ws4lzxsN5Oca4M9KZ6scnYkUpOErGkteneh5GNj5etTLj3HoXI1GQGpPCuVXxUXK9KSqPPcChwAQFSPy89ljNdJ+GttmQ4a5J13YzdNGnVLTYQCiztbh1mkpGwiegaKxe3g8h98f7cfN8p+gW2UVp+goABgBpafQWIVWfl/gK7nGezXziWnPcCA/J9ecLT6f6bEvDgKsMaZMSt5A005Wwrh8fMmyW/9o4vucgc+1KQJSl6j6diRb8l3yQMVT459BSiRG5Dcybk4BxhnTDMDTJdSBrqPG4Z4cGBz1tcQDzyuZSuUwaywLkOhq+1x07bBjn9Xbc2HYnsMxcSacg78JfRIA6izdgsRl+1y3E37s9MJfTLjq+/DD95UupcMSkhu1YfyYNjycnGJ3wdONG7oDzwSmPqIuf2m6XQD1BD2xjMeN6bh0Soy2kbAxTQ23x3nj523MWJmx8obNfS2rOWLoOYCdqhxfCjReazK4xBCajPSWJmVMNAUdJapxwjxElWbvXZ42fWoNzFF2tQzUcezzT2gqVqf2vaZtEpR1A+uMGyOa78byK9Yj38JU4jRPr5c7HXWVT5IASqkYkecSr2lArNQNWIztnkaG17YfDkqfhn3pJRE7EopmXPh84TsM6u/JSptOaAWuAajY9f1z9HsjXbUPBnQHno1jN052jceZEI4Pe/9J7MI7Y1PwBHpOQFHtpPbSzV8ssnOa1VsAo98leFTFdwuSuZshohbA7H0pIyBz1nfKU1f4B7K/dvP1aAikousZDdQ/qsI5WM61BNueSTLhWfwADTetHC7gROIz4OkMPcVe58K00s8vpsdI6fbQwki9OQKtUdhHaQN1hV7fQ9aXgIGju9+e6tRyzy5qK8brQDFWB2Flwlaee9SNwh5w2phuYifD1eklAUIDspKRPp3wTK52UJdX3EuXDht8OinVGandK1U6BaJkNRyuks89d5b8LJiKJAvJPiGlvJX9BUmBgrTNNdRsI/B0oRQiyju0h2ryHGtLngGCKN21iRDbYZ6gI76ojtZ/vJngbPggrf+b0K1hyo5mBmWXlHGGNt2BV3fiCYhZOV/rPbzUp/3dIwVMR8FR8Q9Vd++lLj7Od1yt2dHHKLqYAAJOcKADdSfes9ZpAqImxAfrFnX9x9h1N0lH1Tdw8ZcYuI5AGQfMpmNG1PzOaDQfNICKACwpq/IunT5MnWbOHvfqHBpWe0DqmV8AQqYgJ1LVjf6ifAjUeeFzyJU3UEsGNAIczH0bPwVbsen7py6kOOA/saG4Ud81ke7XpQ8XJXLv1bAwaQ6ApYhuHkBFdG2k/RJOJ7tnBkP6UlcIZ+y1hPakU7tN/CElTpd210sbwB5ReQwkVVYadSuuFV5BWEADINXEP9uzz63gL11IkuzEwvMsLqqU6epFD2kXPJ2hsyq8vfSzfgryvkizHZRAzcbYkfE3AtLh7rs9ydJMvSfxT5zUbmBaNnTBSLCrmm2Sv9oH1QbLajHq0mVJ0/GGXVUKRFlaJfcs8YwN2YDceiFfkSVUI+B0CTCa0VkP6tEqdip2fc4veU9yP4s330mYroio43JJDcZZ7KLsH9DbS/nrRAAlkFXRJQqfyd44PeqyEq4+ea7hG+qk9PuzpJmKx0kkhtIHP4H7vF6Nx+1W9ktVITxIK7QnlVYbKEI2JL7wY29ebfYuTGjUdy5MC4ukNqOHmr4J42YSpaOSp6Cv93f3zSVlAPox4EBCaISteXNc9YU4r05HCVl96+aipxiT+/pOwdVEPb7Lf6I+uwJwErotAPVCFO6UOwOYntj4kQuDBtih7gJcOWEr6sJVHHoO6ioG5PZdjoCmDylMiujot6TXJ7vjUPelY+nYgheiauM0PMol6A8Ju/LqfgoaLwh/pUIzRoo2rANRXdrJKnqw4vY7kJokBzvvtBqfAF5e3gZqrPoK7iPJwwg8ebATlbUrKRqkC5h699yob4f1uF6bHxkfAo6T2XHHxQv92cOjz0g9w4X6aHz7b2Ckuusect3x+1EDqKeIrCPANPbUndRFwWpcFqzW2NsBFZVKnZRLn/FEvmHubsG6MNibMC9enVyDnmNOvt4i4/oUgagn776j1n6LTLimqfG7bXOrbXeLtMNED9vB2PugnFH5wDlGdfE3TnT1byqUQu1m2mnPQYEhmI0kWnvPHT1jVi4CSdRUmunTRsDhRP1OkgVKTOj6PtFR697x2NwzBq9S03wzs5WK8h8eH5LmiKTR0YcFUGc+5Mly2hbjwcKRldZISrN3kK9NJ+WIGg9oDclFjSeAakNV3wnQ8eBpO9g9EUCaHdtij7Wx6WaGp6dErEfpCUx8+N0crAp7wAFUn0+jMhJ6VR7Qg59i15R9PSUQUVbfWXsnSvnPS6pM2fqc8lwkqXOtf9gWr+Do+Wg2yR5R48wm9U7NUK+jnVjdVnbz/da/c+BqREwohsTUjZ89qcQeYJN6zozmczqTJpQ2URu/1/7RtS3H/+3Fzco19aBIYqJlB/f2/Uuezg+SzcZW/YmnE6Gob/u+n9ER3mvHab7fy4B4nFhpXfhtBivqCCR9VADqGakBVUOVVwrVcWcdaZ6llzje5Vr0IU+BP0STBUi+pjB8r4y2POpBkuYt4UedX8524F0ghTrcPUfSnXj8rQ+LF6eJBOoQiDrEbAbPeil6ggTq6DzSSB2aiL2PdBw1VaNGwOkSioDU7FlXolk7XXXuTteRPm4O7I1oOA5seKT2DBNHTCK4v6B/7s5n+TipSl0SIucCKxNS8ULujePWsud9pYQExoJslwTasHLCPa2d9GhlwkKMFcCiYdWI3Kr2NjE+N4cWV/cIVA8yLs+Vv+4divG7BYX+8OQo/GaIGCEXJ+TB/YS5TbOSFDZJgwyaiEqdjn5YkfH42me2vqB2baaembzErRkW5H59/OdIowbw48QOMzN+iQksaf24Zjc2m1sqz8i/zAQC5+xkiuNraINrHRJteh4aF2eKZDyRJ+LTc8muZMyDgBEwcRKaJs0eaJ2A10tso5ncRTRvmP6svWfiNH8Unq+Zc14dA8/hDd4RiwQqybS23+e+Vpvr79nh0p2dk+QtoKkHjW3aUDoZVSxourNnId60BGomzpvtNjhCh1R76HfpxensUS5Jy7Z2UFsDmFDCn2aQLn6g5PiZrl6qWjzv+2m+HfVcPaf0IRjy7Jlpvl1XXAro7jygNSQvZeijihqvU9clGoMmr7rzKr2wXiIpq/dqB3agja+yPf0zAFfEAwbbqXoQM23eUeM06V2Desbiwve2kB+ZA0Y7qzITrWPM28Ac2ZEVOe61R3DMfUOhfe9R24SVH/yafNKv5Bns3l+hLr8fC/65cMx6BOiacRKn39vJdkSNO+q/hAKel6c50hzVq6tfAJ5qhqBddgBRE8fBNer3eMlB0rcJoE4w6JndzlFP2zH4eFluYI3Rq/fxpGpGPaPvIJc6s6vwYo/ko34aMYbnpKj6s1dygAMYzMFqK4V99Vsis6Nu5N9pYkA+UxWGdTL5DI0muuZ9DwKrV4rJMsyO90SMbu9bifLK/UjKMig3M6RzC8pdEinEM4yZ6Pyzabt5RujbewZSA4DT99/guWHl+7R05H2shGz2jv6+Gx99+LX6vnWkWuaOg0D5KEU7SvWVLDCcSAzh+9lLLZu09XJ6nmUAkiM6BKCI6LtE9KtE9HeJ6NeJ6F8hop8hov+ZiP6f8vu9I2XVip5vZHb3o7R+tTVTY23GADyS5iiIMdKlRp1mwI64GKg75KgYihsj8vIW4gNK1Hc57FibKLhyu/By3fqz8CxZsDTyCruZ+PyL5v4UHZyIzhStaXWxQvXeL9JtuYPvygMpzXd0eeEAi6rlROpUwFWjrhOXB0dAEE2M2w+q/maL947CNjqX/pboqvPXQBLRASorkRrmob5MoM9jni3gCHDf50A61XmkPvih2S3sAKoUYhlj/EiKcYkk29t6NfYu0TVM+j0JEnKetq+u/xePhUF9wroH7xi1hw0H4KV2I2/kI8P+sA8TwCmBlyDDAbLPkjqO+37Ac5jq2G/+fP/PAVEjbTranxM6yiL+KoD/iZn/eQD/AoBfB/CfAfibzPxnAfzNcv+idOa4ApvmqEPJ5zIkP+ra4Ixn8tH5fCO7p1jqdvhxH46ONEkAhp4KIJR0RxxaTnJQvB2ehWdVgUY1GHn/Hda9AKyrD9noeTcOmAJ6/vnLfTtTKUSTbrRSdgP2wLd59vM9KilIxCqBvZYaZ6aua+4vWLSNpTrBCmoGYs5QBIii5wfPfMq5eWcXtRdrVor61ufeU93Ontce7TMpZK9PRv3mAOaho3tO0u50S0TfAfCvAfjrAMDM75n5RwD+HQC/UpL9CoC/eP7xE3Ivfw06KpXKkqSBawOIoXc17s5ltIbd1f7JuiyotlDWgkAkYVaCVf1NlTP3VI3XG5BHg3Rl767gMs7aTWyD8D6jvb7go/XzXCQhurBozecBh9tlxCr5oaHn8A5Eqf0SIbSFAqp6rwk78SLGFiWUVsu72d8R2Xhqw/foClqCZ6erzl/PJIXoVsP+ec29GfhOwlDTUceULj1TVBkkZYCfz4982qTc1ctoGIZHdliJQySZGbWlSzuVOgGdJPHs32wc6LsgStNLlDr1bfferbRJs+4BkkKeb4hBOhnpox7jYzyRi3TyjDf6kQ2eHwtSf30ZNum6b8hfj9s2lPYe/ZvQEa76ZwD8IwD/DRH9HSL6a0T0FYCfY+YfljS/C+DnDpR1MR1RI/m4PePpfFhwBRneoHvj6qxS1HgRrQ1wMs41R+n1d6y+84AsqvvKyYFCAVjzNvL1OmJg+mLnVA2A0iXlHOYT1D9nuNL2R7kk6sPg1XimH5MJt2XKr0qhoL9MaJ9zKdk5xr9zBKJO0A2DqavOX0PGCfSTLrf5clgAloSBwuVrJv32mt0zWcP7b7vzF4VzICq/AMByoCzQMNCRFCJasB5+rn9PGw70A86DkCAt+X5x/RP240kmOysnBFFR/Ztwl9YCinK/J627VI1rq8BLXrBdY9dfXx/0YHD0XiNw2T0k/wyBkw/TMoO/CR0BUHcA/iUA/zUz/4sAvoYTdzOH64b8AkR/mYh+jYh+bf366wOPu4xm6ikfd8bAevSsTaVQAwAkwKwJ42oDZVrLGpB7550rtzZXEYibAcW9dunmp9MT3fzjfSkaG06760k1RdrUzc2EKo06Q2NjkT7NCWBkpU+1HBTpwKgug+vpc9rfj5SuO38NJuxwB5f8ck2TwwKGgIHqqRvAg7hnpKrCy48kF7dH3obVh2tc9P424wB49AX3eULpEAaApylrwFQDABcC5qb+TiIZ5hu8I9C9/945cB6onCWVMF04/+05ZO6AVFiImYSG4Nl9TzPw5NLUsi9rpyMA6gcAfsDMf7vc/yryhPR7RPTzAFB+/2GUmZl/mZl/kZl/cfnqq/2nHQC41jjOr1A2HVwOLKDtLD1cWI29K4iRuOqTqUqhIqlQ78bAqOJAxV0Bm/SZrJpNVIYb2nPvIhKQJXW071jfL7XvFEidrxmESQAAIABJREFUPPXG+uO0z0qOcevjKY639xFI6ozEm511GXh0AEzK6cKrOwHrkbyxXxKvvUA1HldPvioH79V3TpJVPZFTncD8kAgM4Gs77HhWx8Xzhnn+01ekz0zXnb+YgK38BUyZNiOZ2oJ4y0Cj/KEUIvqrg152KTGXKB77WRotLiMg1KhoiPUsvKdKISzjjOopar3eeBzu3aFt1qvuchmRam2scmsBEm2tsXn3t0XA6shz7Bjo368bA00aCuoq7QYzHubg5Sgl4jw/LjLHne/7CEB3ntTd+zRjOhz/qO2ANqwZD8E3eKiPt/o3bZ/9l+ffBfDbRPTPlaA/D+D/AvA/APilEvZLAP7GXlnzB12Q5ay0ZIcOG5cbZ5eSZ2Zw3u7Eq2G1PGp+27yt9GnoQNP6fHpuK1/fVx7Nf+wU7WyjQXhEVn1nwyJ7p3Ld+ZI6SU8y7vVZP4EuFHrW+WsmjSg0UhvNpBC+jE4yYxnmXhVPpBWyO/D0MFkH3o9Ink7RBPTVCszyY8xDjoSb8kPXFAPqJY8U9mtUXielesK8esa05Qh1/VsWatmq4HIQla/b3zadXNhA6q8ZfZvstacrK2z/2TgK6Kgn8v8IwH9LRG8A/CaA/xD5c/rviegvAfgtAP/e8cdeSDxHwBtTgwhZwpzkCRCp0VbCEhZaS3gWSViP5Kt4HQchgTrUuXJCKl7JbbqFswRqcXVe2RwGbKREQHtI8cjJ5qZ55+4KrJTNXzdtwcdEvV3LzwbwM5EOASrPm8y3BBcvfMgIbZgIJF8t1SJFgkOJs7QBlZFQAnijjI84S4iwZQNb2krJKQFYq1RKDN8KUApdGHSSJ5h7m04YmpMwUQuk2nmnpm1+XZt11yNw9XGBrKvNX6Pph7sGqQmpC6nhHMTKXic241KTyAdQBiqz3BbJEGdP58TZ0zVRZl5E3Pye+VjVmaIzIk+0QSyLE/jQwq11npjfp59XalwvZWjBSWiAXyRPNh2AAMxSGw4Xf4L63qfmTtKcGQONx/ommrQhrWdyuZf5TdqYyPzuvEeCBc8bgAWcuEigTDrTaIk4tB/O9WnDI0eqYjweeiL3fc/m2raJHQua3j7I9fUV+hw4CKCY+X8H8ItB1J+/7LGjBzmAJB/6kZUWZNDklUzu+kpb4ahdGHLGfJRLPwg2y20h6jDGSglglONdtny8C2rYPdZGsrQV6VM+zgUabqVKkRSrquootJGKVJFHvJt7EOXDu1WCHdQfgmZzfgCSCD4sH54gxLZbOxDiAFYBUTk8WkpSnaXknrkAK/FCnipoolTzDM7QmznDFC/o7N67ufZga48+cPc+J11t/pqsTo8y0HoHFxYMcDaJ9Pszq4eGiXAw8K9H2RdQWSSYZ+gic5BPTSpQGePwGI+IOTYMcQKeUOPJ5TsEnEbXF1Lb+xRc9Wn9GGiOe9ExwPHikduwax3zUo/xkb63wKkC6CPk3RaEqkYzBtj3bceLanwIniJp0wBAXdpUH94T+cmKd8DxyjO+ghBnWyQ2UON83rWA2DSRScN1B56rd3V7YJx2TrrnqI+qmUG9p73VQht56PEvS08dCjZ/org8t0vOO7w8ZBTu1HWqvpNjZKRrrQ3TpDypQ+gQ9Jr0CYKr0+SlHYPw4db1qDyYdJ4pRPlGq2gIECFz34KWM5+tnoNnq1fG2lVUeNP5xcRNgGuTBj0oaiVRmWEPDceD59Dkr3v+AIRFOzDnhut9GeG1BRphunYxfDER1E40r93OFbjHozP+p6bu43cKqjeRPHU2aKaMbhetzT/6zh3dxGHCesCmkJVEOZG1hDG4EU9GJGq4jasfCJW8kFdlJWymDirVKdIkAVGJNiRRg1HeibcgqwAzCCr2SiXdiqxCXMFZIIGqvqv+n6jaVKm9UzUkb2ygYA3eTRnu16vqrJpO7yGrAWqcaA7Pq3pmaiU/ddHVDAWbLli0K8k3VWa7Lh8ZFQcISJwNBgWsNGq9XAlJSxYkJS4F27Dc0URF7K2G5HnMqFF55ALBO+pszs+r78NST+GxBk/rws78YnAPwxQ7KZT/hYv/zKhjnBxednlyfAVD6luHa1u26WZSCElYb0SNw6VsWd3nsd6q7kSCsDE6iXvjmsDUIdEGJGC7z96oU2JNb188EYeSqGgLffNbGGBrPC5/VH9Rw1VVzigq9pZRdsAJmEohRv06I4pu2PwYntWNg0AaRTa0zD+0ETjZ/ncDRySSDO1/VeMCTZ+3Ktz5i6qvJzEiv0vFC73pe/v6biwAIzcWUu3e5m1XdWf7vPweUuGa37HU8bJJ7cNLoEZ0AdOWLE/xqC0gpN5TrForzi3tDjy1XVKAU6VQjdF4Kb/u1Ktl9PWpIGsLVHefO12zCbz9UFf2UUNtA6ZUbVfAU5PmqMSqSKJUfdfEoQE6r0PimWkwtzTgyq92RyvdKL2P79JRHx6Uo9mvtPiRxYg8/hJDYi3LMFF7769H6p1uezoMeOrSz8HTsN982J5kwoU1ZdrnWQAcjIHIRif0Vj9o/pG054imxm8caPJfOLdEC/OuLlaKxmiuh+PdgicbPwBPodRRwXtbH78jb0Y3IYE6SiJxiuMiQ8kMNKwRd3YkWW2i1M6JM7C5K+VnKRIjYTUSKpHuMEB1rbUW2yeLf1YkLJKXqh2U+H+y4EnP1GMjdeLYI3rnJwoibUoKthoDcnuPVhLlyfqFCgd7GBb3xxmykqeG2sV4ExZLpnLg8DuX763MmmKoSRJm66NlF9sptcSU51ERaRfbqCJ14lSkneKmYC3jRM7F8x7NG4DV/lXQhCaP3A8nNOumweRR6VNAe1Knw/SpAzjLKIN3bcZSvyhvpQxg3RAxlULwwBbG/Io0VesIOyfWkoF+s40ny0jVqLixgWrjbTuM7G5C54m1qrptPd9Q284mX+/bhzoVDfk4tPHSGk0F/LU+L3ydUfI2b9uNyiNM7+v/tjwycbW+VDcV2Djta9SxxCK5lIfX9GwnN1Oa9UIuJP1b2J/2vdg+Ze0OmvSRBDLmKyjjVq6hfabvFY0BBZrxGDlq/6ZpPZ3kZx8VgIpoJo6UCUR24m1A87FvRSVnd9wJWEIJt0bkK6cyoWxZGkQStgFkjMiRsICxlh15OYzUjYFV3wHGmBx1950c3yLxYkAueatqr75QdFDyaGcMw6oAgZmYvQ0bdcQgfEQeHAXAqCl+ED4tX36pw7dxPShPXAqYEgDmHJa4TlKJwBubXXicxcsJVczcgKGU04hESn1CGf9READY+n/q6kpowlnUhCOAVEBYHwYFaDPQM111XsMO5iOjSIo0a6OOiUoZ5IBUKY9TywgBZHWwnJfIBrAIMJqpcQRklTocNS5OxQGOqnEI4DuoGser7+SZlka+5hp7LMsIdVCiZZjy2/214KllntQzU6At01x3TXJgaGse+5p9MzSgWsGCfHZcVXRuKupAVBvZg+jSoFq+nfNyuzP8VDCi6mW+qG/v8vxGBCxW1Ut+u1Z9Xh8m9UBtJMtrbJz9te/vwZMdByYN0I8HDbPlRdcn6HZVeJYCKUg0a1nGP1LjiUPNzrjaq8jMV+GBSg6r59epGs/YMUm+iKyqbs/3lDrmnJx/1517N+GI1zS6D312XIOOVvHkq1R3AD7cgYzxEMOhGajZppRiz+ORJCosCxXMuTrvvv/p9pnkpyDswud8ajQ0RDXXHfNuVsfUpocJ9/l8nOWv5VnDXW5PIeIC9o99AhdT1461bSjiAz5PiRsyyqbsnb4L0h+Jmxkud/lKfSMJCjkgOdxU0JQpPNAEnez70AcYoduF59MLHTUt4dH77I11B56afOzav+SPVXiA71MK/mZ0exIos2KqKyoMjeF8mFXZiaiaRQrlHlV9PlXfF1adl1DUeMxFwpTBycN2hyWxSqlWZCnUSrm8lYodFCc8YAFoVTuotUiQ3ruDgx/4rno7bwzIRTqVu7Ie62JVdOIt3QKz1v+TBY3eqFybHgOAdTTMFvQcZJm4DBP5uFEmdplvySzUKPgQbDpZsWXBo0poZFGdyyHQAvCaByQVaRMTQCnVrzOlvNKDFIai5iPouXhe+mR29rH+CuCr4aLOU/Bk/vzhwnWdQS5d0JZB2+6uWWYg81MlRusB1xKhl0g4aQTJf1w/kUYaxciSzpJXJJxqRAxko+KiUuuZswxqbtQ4fp5kMXEYSKIaFR5tSJQNiLcF2Ioncgnf28rOZq4Rv0T2YFi7nb3dto4ePJj2DyVPgSSiAa4WmNjwpg2DNN1LuVtycWTKkP4uvxZ8Nv0MgLfcJwSAyzxEJhzap1wnN5U+slnQlp6XicD2Pe+rcIFWAonE2O6o9j2qgflsl7dIG9lesw+X/rfjAsbTfylvm0ie7DgAmnwz27e2Iy6jj0MCdUXqnEmiBRVNGHpJ1ch9gPdKLgblgLV3Ind+XvVoXtMlA5J6+6fu8GAHDaI6z6gObDvwK5B6sUOER+Rf5SkMm6AgpCnL/GqTE5yEqC/HSob0Hiaf9fFEyd23f9555mlv6B7cOBBkafj+16JPGFQNjUsHq9pOGmEncDOp0+A6/1KTtz6P2nhfH7k0TMtSJKWPdllZR5qwNlDXWilZ5gl079NJXvz7emAUttUgTdBXLcCi8R8G+TwQ9M+VfK5+KnEKy6Gw3KE0xpKA0wPU9bs8WqSPk/RHKXRRoO2K/j3Cd25VtEPw5P7K1GjSuuvBdzyi25NAAbAofi/cGkjKqiqyixJQ4R1pCopOxCrFWYjReCcvecXTuHoQ51QcabLWbQXhHjBONXO6DVvjfXyz0iZUP1NiPG6dZ1r7J6lP46eKSd0X1LDUSJoab+QHAVYjBrb3o0HVTCoHuSgNyvOAIEgTLaLV6DtKG+UtxuE2XryTZ+lStncSw2wynI8JxogcxTt5ngg45XOWoC4LtnZHnr6bA14NoJJ5pV7XdDncnuPHHvSVtmvm/LPgJkr/CQOkXXKMMxJVsL2QrvVxKF3FNSzflv8ZCuZt+BEpBOl8iJDpNXU1H5EHRIkYCzEegcYbNQEaLobEidgYOe+rcaotjA2U9zG/ttEixrmh9okFoZq+pIueBfRgydAuNmCyPzmPeYjPXqWN0LEhe1Nq/tzXtLGmlXqoZxU2mwqsiMuOAx0PY5s3D6iTGQeNGi9l6SMv1r1BbPs0eo5fqOc26PutA4QKLu14OGD7ZsuDA032Fwf6eUK3A6A8OIq4I+oYkQFjjTTJL0w4q82IW7UegOrLCbm8CqbyES+pgClR44E3NTBPKOmKMflWjMjf85J9QoGx0AboLroePLVSqaTSp03BkzmUWFV0Tn0HfxByDJDs7jvrYt8bkEerVAlv+ulKNMLJSiNw5dIo+LHpZfIhNHOMpqP6fBlqdcddrZiAKIjxrhqKcwZCDGNEXn6tdGlJZZyaeyLwktQ+irNlJqoRudRRyikgKZEBQ1TrqeCIjoElXwba9Ox+D5F/3lNmpRumXvJE3WUDrMq4U4ZpBr20uTJRlvFaQDlnwCSgRZgiuAB7GZMOYHB5qFXjcFlgMnP4jVtSFQ3aXXjbQuAFWNIWHvkxIll86fzCskMMet9IWCwQasJJD3ft1HbSfmjLIFeehpkOC6WJJ8j2qQVVVaXLNqoDUmp6YJi93aEn6jwdSGVTQQeim/di+Zfbm0V9Fr+cV9vqNbiCZ+n70t9tnrrDHEDHWxqSMWD6n63KTn6B6u9LDwWuYwAMcx3sxkRNFwKmqClO9v1np8KLyEprunDDFbxR+GaAjydR9alTTAVPNCxrWDdTByt9slIne5gwgEbi5CkaI73uOqxOTxfwyVOMOSK6QhmFVGqjTI2aX02DGt9JeiL13RlL28FXyBTEnbTgrWAMQ0DVvp88Z5zms6VuhdxGt2qcOkinE3YJD5vXraRDKYphNm1H7r3McUq0oQjczVb2yjzPUuiod6+NgFCyYPP4NjwNnobtu/MX5I2axdfHP9uDv1AiZsIOS/kdHekxtX8rFWN3dJQ/33X3mVz/fGW648J8RaN496356jTgyYZH42zwPR+h25FATcj6uOjj6hJMEG2W/SAbh4PUcNK6M9jIeCcnKukFdCxYlgzfdYcbJSTOar4HLFh4U0nUBsYDgDdZj5PjacN7Bu7pEdDdeVkS9R4LtmI4LsbjKxIeeMF7CbPSKU542PIKrzMeZ9I6RgcFt3mqgHnkD6rdvTFGKtFW1D5RHDwkgoiC4uJkxc4mPbfxWQqZE1FJYyVPDBTAY/w/cc0LoDUmT1SqlJeK4uKAZelIxfEBESgl8LaBlgSsG3hJWRS/MMr+b1SVXlJpVJVWlUnK+ITiYmzeSZaEoRmJlQdL4Xl6Nl3U/jv987kDKdpcG/gx3o1PqtfFEFiDTD+IlAmAStNVEkVcbfNkhQ5upRAqAYUuCPI3WtQ4gEqfvAdoS16qkIixgMELY7sDtjtgSWJELobkHPoAiqTbllmq76fmt9RrK9IHzu8m4GMkcbDgYwhULGgaALYhLgj6OYqzzaqfn1GxE9wYKHytGROM0o/IZgEkIKYMKZGAU02XJd+5MnLQufDNvGkATb/PVKwyBhZibFT7nkvfixuDIwdIWz4j/GRjAm+Gv3jpI1M1Gpf+jsbAZoCTSCZtfzR9737h+vrCie22AZQ0pohA2ewmQWngIC4i6+vJh+ffhFR2yyXk06Wrb6ishgOh7LgrtlEF5CRkALbqLLjqsS9iN2VVdo0KT9V0EfCpO/9yqdWxZiuVctIncx9NlF7aZI91GZJO3KP4SdxJMt26y9QraJpMfpJuECbP0+cqLjT2VKLGY1Q1HnHjE0omrozgqar6gAYoceffiSrYSXW3HeToFpPOgidtnxmwccCrSWfvB/n3hsTnSKNxZtZyLoNgp8LAUecwiW8mdgE/blzKGNfnMKAOFqNnlzSslTtGSTlUvk7CAJc87iyDbV7TSKaaajgRZ8F1AXiq9bbSldCmZQ88NemoLwcuDVzcHk36GUA4FnJQHQPcxfU3NQ/XBKNxxjVSwVMZI0fI2z6Jz0Nxoil93x7zM24wuxFp7CEdPXgKxjH5dM07Z7LjAIiB8gg0XWpxcNsAKiIHqkZJNs4Spg3c2UAl/a2uD0BmJ54ugoqkhxgwO+DEHmlRGyjOXsZJDMezW4NFfEKVsAY8mZ161nUB0DrOrGGt6wIrdZI65fdrz8GTd/a+r2a+srpdeS7uWTjnaFLAoLsnzMrmA9VVnZVEoQvLDxH8xAnZ2bx8z5JHjMmLvRMT1KVBYwNVymyNySuIaiRMZvddtW2qoEqkUlXgJ+VbAEQNWDp1sLADVXr/Cp56EmwRvL+XkrO9MN3RMVFG3couZQmIApQbE1AZYzIJLOctBaobAzaATSVArbuXiIR5ihQCCyuAImLc04ZHcMN0Z+SlT/LbM9DBH1owtAeeQvVOA9BcmL82FL1eOP5N/zcLMVuWJiW1letwURkP3iaKmCuIllC2tlD2PdwEafp+T9hgPdAvpbG2u9z3YgM1cmMgj2+MxSVcgNSe9JFhbJ9sWH2XEChLOtsOXbwD076SJ+k2AJSbeE5lLYNF5xJGNzgEEIi0E8grnI0o8zwFRtknFFClTmJMDgIeeME9VqyU1W0ircq+UBYkzjv0Ft6wYMN7AAkb3lAu7wGLuil4wNIdHPzAS1HrLY306WFbWtUd6q8CKQ+o9J1bMOSlUuKPQ9pu5M7gxYkccJL5oHxvjcRI4u2c4a8LCaiq6rgWIBGAyJhc/TGB6wRG8QHDvFABX1TUdSwDMxuPF2NyXkjLRSr3ApTEu3gyYe4v9P3UxLdhHOS1YMlLp3x/7F5/4kQjxitBbsz5sSvtWzc2SB9wNhRGYZylfD06sajlcnKuEinxG0SGiVoVXuKaLlk1TqmvW1Q1R7RQVdXcpxVYGNs9ge+Ae8dEPYiq84n3AWWuNwFPMlChv9Xnk1HbRPelbcJry2Th8gR9eJahhgs6k9eOBb+RpQ2jMj+gmhEQwBuqSYEkLeo8howTAjbT/0keUvJtpH7FshqXG2CjKlYjObQ+nlT6uDD4jrL61saV+JE7i25z0kz6aA3DNbyCYhoZkfv+9aBpJH1015dKoD6sEfmIOfuXOSn1aEHBZTO89wnlnVTqNVr3AULWj5M9YDjnMf6iUF0XdGU0bgla43H7a0GTr7sNm42RDwaUgKcxYQsC9so++pwCMBo1GQKA0eySA1qpEam7AraSJ6D+all9xTojdmfc3kiYThqW98/aSbAT/1lJo9j9GeoAlpu0h0zaSUlmjF7LcWU127zDeo87yWbz0qRktr3JkUGSzqr6jtIen7I+n8i224wBdu3ReyKfqe/CPjtLLm/HkGdjwPO3qK6+bA6eEZTFZlxc4tMvERcwDqCo8BZsnfRyJIXs/Aka0NRIH2GuO4Bl8qKmJXsdttEAPDmQFfbV4Bv39OElUAKvj4TbsAIICNAW8Of9VO/k+cNsvJJzVddZY/LNXD9uC5BWPG6Lujh4AHCPtUiJCCmZc4F4w4ZsbA7kyj3wHTZs2bUBWMGUGopzPvdOpE4PvOBhu2ukTw+8VBWeSJ/Y/hIet9TcVzcF7W48774g9EjO7mMzK0gbBjNImz56CbKrfVOlTorEaG2dJC8B3tgcZiUvYWxcFVA57063nKdyTl6xearn4xXP5BupGwOkVKRJ2XiciyG5ui5YirF4cVYozxYpVSM9WqCgLZIysU8fxI9AkaYdtfnnBJYCspNtI3GK0pj4TvJQwurGBaPSKeFcvI2XvSntBglVJeYNMrkQ1O+y4hDj3dxIgjA2JBZwdFekTHdYke42bPfAds+4X1ZlotZGKrR/AuozPVNUI3EX7tOVe4qkTRZM8EC1E4Cmab9FLxFR0Hw2aTMOYOYnRj8GCGpXyYS6icVIolQSWSRWuXNlDivjQMacGJUXn1BZcj53Y6Ee5pF/72nDRgy627C+qX1/lzakjVW9a73R1wW7ud7I8BozFrYyIRU1HZnxQBom7x65sAiuS6MO+913UnQv7XGAl314AGXJgyYmQAwkJaiEUROGunNF0gC6Gy/S94qNFFB8QpWwrfhtavxC2YOFOT7eBWVX3N7xLvbYlgyuEt7zXWNYrj6fgmNbjuy4G5EFV7338T5MQKrvo2grqqVLt9dGpBNMMzP1z4wBVZlcgg/BgimW/ASQzHBc8qfKrCwQsSBNJEQCnnjLMkFOCbRtUMNxawc1ObZF6q6LcQU/VSpW60J6b+vnJ+1R2/pnRHGvZMivciMmSkHaPqgZssowoW4yWyZqdlWBDRM1hQqD7NRJbNQ3uhNvbgcjEob7srGGUt6Bty3AHW09E3UfX+hTzi7E7AKsA0uVMe4Co0GaSKoUAac91d2MiUZRnn3ZhFSubbM0YwCl/xnav6rSbR6c7aGkbOsfrKmYtK+uIusuzJnQWtW3BRhRYj1IOiFLoCzQ8uRtbfOvrRPaPm/CXZzvW5M2GgMAGhUfEPS7B1To447SbQGoK9BoYrBONUfixmpMXkBU4a52Z16Or78rF0/kZadd6538Dm94zXEChpCanXcZPMVex63kKLJ9AnrjcXkP7zxzNC7CMXRNznmyrNy03OVTKRLalZ2AHx9GbmaSsC49aprmOVQnQ3VrAFTwsxUQb3bkqXTA7shjqlIoYziuYElBlQFSUp+Z7VNQd8/MHRYOAVaU75XG5MfNJUzUgyhbjjJROOPiMnysKkSNijcnldAChREZKQRqGTmq73y7A0ttY9KWjciLM0VhonvU2D0pWkcrjSph1faFWhA12KIuacgYGjeMFcG9tKkHG+j7do+ZRgA67NsjY4DRuLKo4NfMe6X/ieHOx5PwMmoUNEl+I3kqnT9ymmxtoe5pxUoMWjh7Ilcj8v2NAyLlbAEzoQfP6P5G4Fn7fwCeQpCNQZhp46fQzQAoYiOK9mQGQlXXQTldnRTYTDKk6jrZjSc+ocSY3PqEEhcqj5z9mjxuCXcpuy542JY8WWwA0gpgQeKMxB+4+GcCIW2MjTYkrl+8904uxuLZ71MGT9ZwPBuS5zJFTSgG6ysTHlUKlfBYxBGP29IALva/QCN5suq73JZOtAo0g73TVYd9dAUuHM0soyHhQFAjqbKAYhSmYMowq6J5yzvnJKwwKglTtYppKxmHOiloQeACv5E4A6KUsr8nVeGhqu4WAVJFpVfiahhU/cayay9VYMQzaZQHTXBhZMtp00TSKYi64HMiRjV2LRSu5CNwanh8A/YFL5u2z9dU+qceM8SExrA8b14QlU8BSKKGNn6hso+yzFh5S2DaGuZpF2rWKPyeNtzTChBwd79ifcvY3m74YnnA2/SId9sd7ihL2a038sbu0s4jyIyfN6rqOwVJ5H7RGo2Xd1YwVdR+++oc0xUj5orgGi5dQIJTmvSTvp+OAULjY6y6HjAq3VK+SCRVqkQFJFHpf0F2RQWjG18KL7S+E+3iWkDRfVpxl4qqjhl3dyu2t4z1LeOL5QH3tOKecpptsy8MBeXtXwkrfdr2P/X+vjbTv8V4XPt/Bzg9WWV7ElR9nJ7Ir4AcgXZ7f+QQLFKHWR9L6pPJpbNOLjc1EpcjWZwhuOkC67ZAJjU90oVbr+OdwbgFTQPOFm45vaa0qSn4idkn1eriPHM/EKb3BnjsPb9Kh6hqHrowavP6slP9ZUJV6dlnUJu3DYvfv3nHadtRX8YeCHilMUWLiwmj9ivg8L5hAtTHNc+3QKSAD5PH6mhbJ7n5d+TKRGihDQttSCm7MRBDYmDsDyqX6xhr+EGZ+ut9/fOSh1aiQE2evt3QtNUZ8ERc/2YUpgvqQDx4vn2vEfAL+p+a+ODZXVhvrmF/LVnJUpYycu77BCDJ7kzjJwwH3FhEz4v6q1AoJXJtM1XbmjQj6WPYZxfwrA8mgSKeMElByAKUbTp778QQjQQF/eHC4hPKGpPnupTVF4zKrNhCPW4JKTGsd/KHbUHdPrIEAAAgAElEQVRKrPElaU7nOI9IqhauRuTf8L1xW1AkT9udSppE8rQiqXTpsXgiV5cGRuI0vOZWKgXUrat25WGlT524PeqbZtIe9OFB8t0bUl2MzcP9irAAGjkYGGYlbwEJSV6Zy2VFl0phZTzSiup/h4qtgnkD+VhZJE7MxZCcQVgyeFF3Bam4NIAajmdJVHlk587AgDOCA3Gm/uaeXZgHil6y1LRpQGH6A/k+JZpqrTxoL0PDShv01/B/qwpSNU4z1slIGlAlUeqF2uQ3Y0Gdv4q/Mvm+NycZcN+6GpGnLGlIYLy5e8Q3bxn8ZsMXyyO+SA94t93hPq3YVtJ8lhjl8VuVPsH+CeDbSA2HVeIgYUAjeWgkE9IfbK5N23WghYN4tGFd+FEafEfdONgZAyJtaq6l/wvjZ6DaxJVJL2cnHRu8yUNR3SRsVdsy2kAEiPpuw31acY8Vb+8f8eO30L5/mx7wNt1XH2GFLL9ZmbBt5c/wDC792hiOi7RR+tIbjKP0rfb5WPKoeaL+jPodbdqzdDMqPKUGIKEfmC4dA6VzOBSni8pucR0tzjU3JiwlzB/vgmILJWq9h23JPlFYXASUAxWLqHTkGwqU4xZsQ59PCp6MzycBT92BwQ1I6nfe6Xuz6KFrWL/jbsz5DBZ9PkmVPIKCgQ00oKhJ48NLPRsQJOMnAFY+TA3OUcsQlXEuj6pBeVHjcarTV57YShmUrykZVd5WPPrKrrqirlObKjlU2BzbIobmun08AElWimYBjgdR9t19GPuwE6CqKWeS7JMgYeBA3CZmUahjz2Jwm5XNuK3JqhqH6nW25RVD8FKsMSyvnmLlQXXHlaryALWbqaqVdk60tFBe+N3TikQb3t4/YnvDoDcb3qbHrMZJa+M3SJtByzdArahpRo4zqVHpFWAlbW7Ak7V3GqluDgGnEWCaDeIJP+pAsvSvGQezMWBlBnluqcOHxLcXjA8wGQfSdjAAWw4bFsPyAlard/JWGmn73vqAEvB8f7die7sBpu8XOSdv1lzCb9wY8NJDUd0peJY+hblXEO3Ak/cJ5fvVg6advj4Lnm8PQI3IcM+xoTiMsaXsNqh5JA3JJEJiVFk9ktsdeaCqcZH71f5qeD0nD0jFHYLsyMuuDxZs2Rs5kx7JYj2O6867suvOHxjs/VC1TjXbr9raNLRh0k49sOra2rRpFN6md7+OLlrRHaAGOI3i7cQmwMgyLwVL9Rq+XAMsuNge1N13ZbLaAAJn+yYg20sRUM/JA7wH8lbtZ+2ZSEGRB0ht/KBLPGiahU3aFqb8w/j5aLqPlXbGsn19j9kjJspNAijj8OsEBeiFKaoEQrFT2ZlVwJaka7hzWWjmb78yuEi1X+2gCoBaVvA9Y7nf8HZ5VOZqqZV6twxUF2HmPjM9C5zQMUgf14GgAXhq1X0mDi7ed9Skf0X6c5Q6cBwUr/2L2k223s0uPDYgevPpqU7Wvt2A6oSTK59kxCpc2Twgff9mWcFvGMn1vTjTtBTbPwl4oiJ9LO8mUsagjzvwbMeGd2cQXdv8thM8wGoq37fFHn0cAKqMsMiQXI3nCreMgJP6fgIgBwzbHXkaB2NQXiaVRyxZPUecJVFM6hsKKJ5ZmRVpJeRJbKWUkXrKz1uQjdBXJLzb7rGC8G67zwblnA8Lzio76xMqGQPxDKwe5Xdb1IhcdgNuTFi3GsaIXRds3QCvQMp+g2FXNB94wC33BmHEHVy8MIzpjOMfK2DGpxMgglyoACWtKpkixXeUzNNJKlT6Vz7ujatq0PiJkvbIk2EF7Am1PL5LVdJ0V4CTGIwXX1AZqJXfBfUwYT3upb6vpNV40xbank0b1LAmLdm0fftqXkjnBOGfOBEwl0ChbbuhQbFpezM0K2hFHf+SRj6HvNkG0B11ZszL7r0q/ZDtEVR2jkLBtxj/rky4Mwuq7L5lUwnEl+kdEjF++u03SD/1gG99+Q7fvvsGX6Z3+El6g7u04sE4/G3mGaPCUQa6klHZFAa6WtUdlPHpdVERkjEibxgv4BhtH67XaOObcLThnhoV3DCRKUr6Nuj7aAw0Z1+K6xTJr/kKGE3chm+l0MQQf3bZDAGKlNT+ccsH229bAqet2gFz1p4sBTy9Tdlg/KfffoMffvWAb335Ht+++wZfpXf4o/SFujsAjM3ulrBute95S0Z1W+rJlPvUgiiRLvoxUE6oVlUf0EmqtG9gwqXxor6HC3PhZ+i2ANSRASpJee7HRETUM38XQFHnlWsdDDA+otwAEd9Q4vtk5QrC7Ll0GxV/TkVsIa4NrMuC1UqfjOTJuiwARArVqu5s/b0EKdwFcwnZfJcMtqPpQqBUAYllErqiIvMBDEBVu7wz1XJ5lWEBrSpP05QMkkbcGlTOpY40hUHJWXkAV5sVA2IU1OjkaQCOpLGAyNS9BTuub11aD6ZGac/SpUPqk6HBeLNTEptwGYdWiqHD0oIoCS+RCpLq51Bt7RjN0G5VO2UcC4hSYEGQVZC1i/RSqKrKYbyhR7xJj1juVtwva9mF9ajSBzGFaJpHF2U2TC4EPbj2dNKHEAiNgNGEofr0XRpXl5nEfBSnr286V+eUcq/vZsJ0PLhr+zx9pCubXb01je1ny1MbKZX0z0ACWUDUPa14k1Ysd5v2fRq4sOj9CtY69sf21L8h4LHjJQrvKtD3czgO0Ib5Ms7QbQCoCDjZWcOP2iA9CxAqYsrqVLNOJpFLg/yo6p38cUtlK2+WUomReAY/jEcklTJV1wbAUiqkYu0ihWrCUt5B926rRuTvtjuVPInR+EPZxWddFnR2T/a+iWttn7zqzsZ51wUyyFXUXto6mgybvjgSdoCirt6Teyv4IXOPYPi4eCuFknvxPtBKoEwiFSWRSyjc0VyzSb+IeJLAS3FdcJdUyrTdEVSyJMe/GJcFCpYaf1Fo4vx1I1mCCYOJc+HatnDpfFiQ9rMgxtiI3I3TZty1PKuXSJCLkzBxmSG2UJWPQK3vZNiJt3IUQ+I1D349Iy9RcWmQH7KVeW5dExZirBubeSSP14U2fEHv8UV6wJ/64sf44Xf/CN95+w3+xP2P8VV6nyXsxq/DupV5bKtGxLwl8ErgteiiigSKilSCNoBWVOkD13futrJbCZRNO2DGe8wUiMPC+xn5ecv1uZVcdf0s6an2cTMu0OZvJFFUImVukvM3C7qSUxKYOLc7shRqKz7q1jUhpQ1JpISFl4izzC/oAV+kB/zct/4Qv/fdn8J33n6Dn7n7uut7kTxJ3z9uqZE+NRIoNn0v35OMg6CfrfQRZmxoU3t13gg0BcApBMMfJYAaUYOeAaCIJmWAKsCuI1h8QAH11Gn9RQUDuiNPwNNIlYdq//S4LbhLa8mfR+1Dvsm7ERI6dd7Cm/5mFR5VtZ3uwqNObQdkyVPdhVePb3kM1HWR3ye7slAQZK6b8GAVEgOm63DNECxdmq+Mh1Cy1MT3x7vIteCfPHyMbygJTwRsxsi8DELdmacFmUIXncuQnUxBj2fRHXfFjYE1FJcdd3ptpFMtWKqG4x5UtYBJXtbEowdD06793MDSgMgZjagE0DHQRjqKlpE2SQ24t3GNJMsAeylTwFLut7q5QY/+MCq7DLy4HTcbYUv5uxc13uOWui3qX6QHfJXe4U+++TH+9E/9Ab5z/w2+u/wEX6V32UdUIVnUMTKQ2oSJMtWdVyJhatQ25h6eiZJe219IOmmnLQgbAKcOMDVgajAhjeYp6uO5RbkNiPag2s47MOPAA6kOSKMdEzqXLWXOLvZOOk5kfilSc95kzoeq8dYtYUum76n2/Z96+4f4R1/9FL7z5ht855K+X+sEZfseUle7y1L72R8k3fbrWfCseYL+vIQPCX14AGUG1HCSPshtI7WeB1E+zO7QEyClYk1CYw8lIAuQXXqysMvX1lO5qPMeyjl6C9fBaQFUpLbz3sUtGPJuEkYex6Oddy2gCkBTSduA9TLpTbnrlUBVVOys2y0IUhLgxON0jXTKjj07iaG1h8qTVV3RUwFkujNPmRtlfzlrGRwyIciRLbr7DnXHnbgq8EDKNKsFSEwtKPKSojafA09or5+p6z5d6oBSP0A5mMgsrw34bjP8OhAlzNYyEEDVddlwPMflDTTIjEkcaSYUb+WoLg/KNy2MbpVfs6sXABYw7rHi59/8CO++usNPLe/w7fQNUkEtchi6XdTl+QhFAoE6eI0UwUqWBNvVOMnjw2q7RKBoTxUUx7v+G8w3fj4ZpbWzpx8HTTaZQ1x8NwbMczSuAQfVsBwCnrk82+7CDNoy9z20z3SRXnhK3oX5iH/q/g/xZ799jy/Te3x7+eOm7x+KLW6WPgV9v5m+1z+qYMmAnToe+nPvmn6MwHMAokbAqeMpHzWA8uSBVASsCgdk7iUFKraGVU3VQtQGlFtV3sqEJW2qwlNndFTSMhVVHtXDgpEBzJ3sRtiARwBrImyUkGjLkqwCvO6L9Oqb7V6lTiJhsv6d5PrRTGaPxTv5ow5SUiNyawTYgCluvY4zKqCyajm/rVXC+74Rros6wV2L/KwRgaLybA+sFCBJ3SyYQAuW9JgMt6pnoKrcSKpQHmRnvsLJGPIhk9pEZSCVH8aJkFbWFSBtuZxtIQOc8oO8wTiAZkeeXHdACzasvktz78CYBWFRejZhHZALARo6+mRBmUzylqJ3tYNT2yxfjAyKdQzLODWfFzE6l8fNsR/ygVibF4KOVaxFUpnMPPiYzzhbadE6vVvzvPN+y6YFD7zgnh7xVXqHP/et38Rf+PL/xgMIP9re4Bu+x4INj9uC99sdHtYF7x7v8LAmrOVv27LqjlcqUghkg/HGkLx8YitqvIABK3kq7RAZkWtzH2KmBo24rjoCnoDa7uE4bxYp3IVlKTia78t+V50KT+Y6QvEqXtvKLtpy3bkdVzKRloOF1USDkI3QE/BY0r5fFzCA9+sd3q13WO/yJqiv6D3+3Lf+X/yFr/4uVib8wfYW75Fd8rzf7vBuW/Cw5r/3jwseH5dqQD7pe+ln8e/kVbZTqWNkRO5Vu0Dbx4N+Pi11dHR7AGpE+kKOe7okDfZiqEsDlT6VNNV1ARpVnhhEyjEvQAZNgJHgUJVWVWlTUqdiYmQufqKyMCLv1hOkr4cEgxojcXstZL2fW121DbPSJwANeIILj67lPn+HFlWcoAOT0S6Vb76REp0oq0kvQGwCzkbgS8eSKaOGldmIXLxxcQBUYASwkVgZ8CRMkVDVdqVOCp482PFthTbegp3QceagjN0wjeuZwudE8vpzKYRJo80l8w/pmLFFeKZsJ33/LeivYRRlmFWpVMFSIoGgcs0i9igITXGXWXg9btmcwEqhfiY94ueXL/HH/B7f8JqdASPVBZ/MXaq+QXHYCZU42L+qqkEjmYokDkr2fQPmOFTVBeBpBJzOzDVRWhvUDRHKdbBq39HUFE1dml76H+7Xvr9k1HGAesyPACkO+t65xkm04WfSe/zC3bfwE36Pdw+PeF+OIrNHiq26MEft++DIHu170++N5MmltX0bqeh8Pw4ljrDhruMu5VX4mACUp1AMIVIpQGylKogCdEhTNSgHclzRskDO47P2UI9wUilk9waJGXdpVcPybS0HFSfo9WpA2TvKzW0dZDbOMp2rAmsw/rgZaRPqllGpK8uv5ms/DAZgJU2d6wLPXZsJiJqPs+sHE06+nGuTm1kioCWAQm0EYMAQALGFYl+cAR86cYkKrNg/MVBdGmxcpVYiMiAuBpvQimW7pzwQradxBU7GOFx+j4ehgj4b7nb8+ZVuKG0y1HXjTrc+YQ76uMhPzpY8x6Qgzkg0Rb2q45TgzkMzjyV0djHWpUJeCJSZT8a/TGCrpKE6hldkz9Qp4RF5HvjjdI83dyu+fnyDu/ffAgD81vs/iR/ffQtfpt/Bzy/AA2/4B4/fw+8+fgc/fP9d/JP3X+Inj2/wk4d7vHu4w/vHBevjkueVlYDHBIjkgVGkEGi8SVvpg0qWrCFxIHloJA6BYXnDLAcMdSh9umQwW+Ar934cSD9xOwZGmwq8NMqm0eM2ARVAJRRJI9hIKKnmQZG/ExXVbsKaK4Fvljvcb4Sv797gjr4EAPzW+z+BH29f4Ku37/ELyH3/O+v38LsP38XvvPsefv/9l/hmve/6ftsIXPp92PfSl2vte1pN31uAZAEX0NhMNX3pAFQEnJs+QpvuEropAKUHCluOZu8LdQ7kPDQHlOmLrVMJVIkUTLj1DYUtgYgLzyTcpc3sM0lgzu7rczjpbjzd9muAVKINS3Ff8ECLlmLtmR6Kwbj16SRg6ZGXVsJkwJWk9eBpNUDLG457g3G/rZhNu9l0teFN+rODbpSeZnGCjGoRKs62eSwKQr3WII5AVQCi7EQn4epMnKAqErV5Imnc+jEz6SSZDyAuVTJc0ariADg1nLGLMumbM+xcvAdPh8GSi/O/TXk2HH26z4EI6FV4hTgYk56Z6vQ0AFPk+85k7xgrzP1an6EMUyQNxZcZJ4DWwkLN98CPSee3h8c83/zR8kZdrvy9u5/FH9x/C9+//8cANjyA8TsP38Pff/+z+OE338GP3n0L79Y7/PH7e7x/vMsqnLVIH4SJbsiMVBlmAUqitrOG5NaI3AAsAK3qJlLrKRONQVMnkTDXISA+Ose5vm/Ggu3zpu/l14yBRDVtBKTQ93+di8wcJs8yAEv8RGUbTsrqwEcCkEHUw0MGPl8vb7JmBb7v3+MbZvz2+5/FD97/DH747jv4g9L337y/x/vHBQ8PC9bHlKVOj5RVtAKiSn+TGQe7fQ8Y6dRgHDgApf0PxH17ZRD1QQGUfshnSBggm4GEei8gwBuM13T1XtRw+bqo6qj1Um4lUbnSrWG5PfIFJk0VVWxYQVhQwFUZ7VbiJHWRX6+y82o7eQ/v70nIbhSa+WeJJFKn6AnIPaQZmPKPNnxiN6+ZvFpQRa041zI6yWIYn+7i64BW2R1aH1MB2uLqZRhmD3yoASwSblV7EeCxbaJlm2f5Z0d5r0KfOpAyE7Yn++qegeqkbYpxUWYEmbL024QbW2jWlfpbgIUwUXtsih5BJBKuDWUHDGfVXrFbARIe1wXv1jssacMfPmZJ1D94+B7+3vLb+MfbW/zew3fw+w9f4uv1Dd6td3i/LtksYU3YVrt1XZ5tPEhbKRPX+NCmyTHJTiLh+8SAp1DaFACooRQqig+oA84w/TyLKzfSj37+8v0tmXz/W7CkY6Kobdm0A28yd+W2Zki/A2j6PuHd4x3uaMOPH78AAPzOw/fwG8vfxz/ZvsT/9/ht/OjhS3z9mPv+ne37LelYat0WoPaz6fe9vtffEj5V4QXgaRc47fT9EbopCVRIOorKSJFrRV9lVUXe/5PMIPJDrkBAVHkiddrAei2/dfASULZ5iuRJKGURBe4KRBaJlMTpdSnN2y/Va+/vqQInbyAeqe2s3VPj0kClUhZAVS7cXucmsrvvGhXfhQNtRqZHMjVdxWi4vedCaIeD72XGIMyBFMgET+iPSZCkLODEPrxOWlrdMu70mIqIPGiSMOdNPDIY12sTZtOPpFIzCVMnTRqCsz7uc6KpHyhz2QBU1+5Dz9RFGqEG534QZx5Xw0QKuZQkjXFx8QGUuGxOQJYKqC8zlAVAAm8MXgkPDNCSF5DvHxd8ffcGD9uCt8sjfvTwJf6Pt9/HT7Y3+MFPvoufPL7BH777Al+/e4PHLeHdN/fZ/ukhgR9SZoqPCRCVzSOq6kaMhq00wjFRSSdtPpJGhUxzALAiCVQolfJxE+r6WgKjOJqPASJuvuNOhVf6Vk1SLBtEjZd5O79THlMJKN7gayGc/e+AV8Jj6fuvmfCwLvjJ+3u8177/Fv7Pt9/Hu+0OP/jJd/H1w1v80cP/397XxFrXJWU969yXr+lGYzdoCHa3gpFoOiaKIQSDMQYYIBJhQBSjhhAIExMQNYpOiAMHJkR0YDAENAyMiC0JxIHRIANHHWkYoKCRgDbdaaSNNn9+8n7vPeVgrapVVavWzz7n3HvPPXdXcnP3Xv9rVe1Vz6mqvfZb+I3/9y7cC+8Tju8cgHcyiEpvUg0Wf6OtjwCfAzbkveK3tS7Z/xo0C896/I5AlM4/ga4OQIkbbyspoMXWI8kidx5UAVQaIPljDvQqS0AdpfLDrVqSbFzUQcCURlgScK6Ak2+b37IbgSedr+tqC5Q+soDUvQVPMP95+S5GDwCyIuAk6QyeaJ7W1lNWKK2sfL2k8VwF4DIsHZNQUvWRB0wVqKR6rxSsBTcKEaaoDbsUTdxTVLZT15CvOyjz0sBUb2uKxNLnRSIc6T4TcA4nlkV5kAJCfIyGlsG6sWWlKUdtyP8C3I+sUJHfmiLCfSK8OeSfe7/x+i381uEVjpTw62/ehTfHA3719bvxzv0d3i5xL0c++4dddxwDaNwz5QFSb1xZEGT/axCk01rLRKs8I2tTqFgdM05VrP4RCPlbmLhFBkL+q05EHgDIcRW877n4OAbf6ZhAx3KWIr9UcEQ56JRwfyC8KTFsv/n6Lbxzl6//75u38Pr4Cr/++l14fX+Ht19/Rnb5yht3qVidNJ9Tw+cQJEW8d29UNuCZ1yCwOE6Bk+PrKXCD6ToAFEtHLy261trRSl5NErhP8K4qHRslskb5aAO+ZjB2VyxPfMQBpRwHlS1LB7E44HAUsMRv7ukjDw7pKO653G8MinhcOi5qi+WJ598CptSAJ33uk3k5QZfz1ie9QanyUQD5UDgDoGLYqn5h+TQNaHR7khYAH7kGnEjFQeUyZa141MMucVGAtVpp5RUslYzVgRBvRWosRy4uyrSjgJhuc5TWWJP0mHQdqXfGTnMLROgepOnlEIG8NkhKrXcYMFzO75GPUQcbPxsakpIRGUtzcj6n5cFkb84BuCsfmc0nAeMNyo++Q/5e2t3hiLff+Qz82qvPxD0l/NY7r/I3O995hTfvZAV7/7rEO7051FfV36RqaWLLgwog96+qi0UCCmAB1kIhSrTu/cMDNDvKs69MBzIe6SnXRv5Bxo0h5Ln8V3tewbC1j1QGWfaDbkA50MZF3cMEkWc+k4Drwxtl9T6ifAD9CDpkA8HrY8KhuADfPhDefucVfu31u/KLBq/LETzv3OHNO6/yiwjv3NWA8Tcd3hNMALnw+R6WtyOANQBOPg4OiHl8aRB1HQAK6AunzhebZb7M6DsVgKTceEEaEFuhAIjF675sFvlavn4g7jw5toBycPk9JQWkgOMxH4N/VNzQrjwoQMTE1xXMtWBKA6x7VX7ktouCxs2115QKJIVlHCgI2/DUy/duuY0UAqoovwuYBiAqWTDED6+1MGmwlFSfReGpadZBcaIdJ6eFb82hXmuQZPIPti7XicCZWfIZG09nz02TduEJz5tC+joFaeq/A1PmEx9SXgEpldwoTgb2XtBlHKxBkd15KYcVsNWIyjHmdJ9w/+qA44Fw/+YO6UB4OxEOd+XDs/eH8r+8bXVEDhhnhVkA1IGVKQMjAg73bVoIprwyBUq9+oOF59g7A2gMoDTqaZe7SzNFqyvLs+dAFf93110wHQEpNR4Jw2W6g8QfsQzk8w4L/+9QQFVx895DEBfdJ9CrfEr9fTkr7O3DWzgc8qZ4PB4y2H5zqFanN+WE8XtUd90bdZ7XPfPbgikArXt2K+9JzRMY8ryXltNPQ1DXA6A0Gc0WaMheNVIB46RAFOAAlVKbydaLgs65LrvvEpRbD5B0IAvlgRmY2o9sAhZAaeDEeRpU9c94sgBJW57smkCVCdJ4rXzlLQDnRPS+1LRmP4MWxPeUYH/FTTc7GFnLbyhRK3JqeXSzUl1Erp4BJb8sbROd2BgHnnS5FF+HliJOD8BTqMBdP02+SXtAJj9TipaEnIDwxizO3mRBTnNtGpMqRfbU3kVW/kQ2qT4DItp8fUy2UaAGFwPZisAHuJZjDoBDjqM6lL2McuAxkXpVXcW1QFx2dYxVKaaq9I51KKIAWZEGyrD3fwiYZuApUqwufZkUDwErB+KS5beckuW124bCdOG/3ozcf/nUS3lhgJp8RtkQ8C0/HO9TtngmCE/zcQep8D+PncrJ4vmIinyt3bSazwKCyKZpvhgApO49MIrm3OPxKnAKQdNG3j8NgOoBJJ1uyicrmSJ9LFJVMGSzSE4QHXiw4lqlnzcJdtVxQDkA3BWrk46dYpfdPQq4MhYnyPV9wJieJcpYoFS+B073R1uHyjWn6UPSRm/dmR9jVBdO3HcizAHQ8hQI6jJF6ATIABbqFV8KysLe+w1JipcNRobHn8DgsuXU8GphUvmJ10Q1zPIm1yncjJvlCICSv9dWJ8nT6YA6rDPIT506EUBCv0wD+jr1b520i6k394RgvbiySsvlkrpGXVsvuPpPXslL/HlFiQv2z4ZYJvT1IbsDj6WdwzHLUErIwCgBuCvK9ADQG1b+6iEp+46JcRI3XTnPB6gBwpxGqOAKwIHXkmOiOJ+fOe2u6yjXCDRZZWofwKFyRZu3iZK99M8ZW7glTf1w6srAQeUfShvshmVVqPheP+UDpBzWZPLl81LFC5NfQkkSopC/04n8Fh+7+lLhvwbvxeIEShIcHp3vxLwHMLY4Kt43LwgMgJVx3wIN/3NeuwlfiufXaYHqkVegvXyUfUauWyuUVCHXYJOX/cf5jd98r0PE9ffxciUOGK9UT3Ulc9/04/4TWmBVy8Kmu/Y8eLId1vb1br/pKIMVMHUiNRYgTx48aQDYqdtYpwDThiRTAVFFwRiRc3IXgTTdrIwPdUyhctXpDgwZAGMAkZMhD2x6rOwAoxXW98ozMF1t5zmT3px7c9XJHuPbtDhQmNv2Yg5C/ZwHiuuNwVJRhhpQyGGbyhrBPx70oYtALoN7VsokH7uW4PNUXs5RP7B0cLg538m46FQgMRRQ0iDIvYVlFescPEVWqBlwGlmcTja2OpmI9gO7X1C5bmVA+M6gNtXrzNO8LnQouq0EkbcAZR4AACAASURBVHPjCSgfk1bzMXtP6YXlhtMIwB3VgHAGzur0dAFQwudUgVHwSR5Rhho8RWDJxTElfvlB1Z3yXi34Cng26SfQEoBKKX0HgG8pXf8MgG8C8HkAfgjA5wD4KIC/RESvTx+KI890D5qGYIklqNVeUaiwj4kCFEAq/+9LHxwXdfDlFJDS50sdFHfu3Y4bWqDUvXmjTgEnbWWaWZ5g8soaOMBlOpYyLt2XewwagCMNiDxo0srHrHhJaIBPmM6bmpIYVlauSbj8AIs3yjYCUg0IcmkGPIWgKuhD5fu2ff8RYLsFuuj+pX6NNBuvVjJwcql4aGWPiuxVC6vUU3zTSrSmszCWRo9WHq1y1HOAktNicT0gW7QS5DNDKZF8mzFbN5wSJWSLkwY8WjmyYj3a/AYk9YKHy6/E3qvswoMmjZp8wy/Ft5rWbmyritWAJmFAcsyAbEqGv1zJyYDwnYsxL4NNrTnNHKoNlZYPU4XhPa9zeQk8H3nB387jbyeqPUHmp61Nip+jbxkeuG8tBydaHCPQnMdHLb+BYZqmrWBqCqBSSu8H8G0APkREb6eUfhjANwD4agDfQ0Q/lFL6xwC+GcD3LvfcCMIkPcpn0KPNi5AD63NRlmNihQgHooAjn/2kGj8CEsOk4/OO5QmoHwcl+WSLsWyV//eqXz8NTT6YnNNmwInvpZxy6zVuS1VOrFBl2tp1VwepN8wgX01meObRjDRQcqCpIiHeeeJ8Y2FSeWYDSq5JHr4CRnpvAeVNLV8TnNiYBzkCnDxsTaHVYgaaeC46ILkBVbadCDyFFqQJqKKiqLuWpSsHWZfev7rnQAEts/XaBLyzyo7UtSur+c2ASH3CR9x6KljZnBPEsn2oSrjEi2e3HbvwDnkc5qR8Pm8smpZSetWikKpSdMoxVJg6ryhzWeeR8jT/qY7HPYcxgKqz6VklTN6MomfHH9ALWL76/x0ZSPoZLjz1AMy79WSf0qqR1ztB3HqJrVYp5UDyBNC9Oovq4MbL5PniPsvTA8VTd50HzIBYKKSs6z+0MjX8VqwwAMoy+BRL1GFeBEAGWu9OKb0C8B4AnwTw5QA+XPJ/EMDXbe8+pu731BQQsOn9XVysLkG6d1l5dxdbavS5TD0XWpufjIWJ3J8u07yJR627zoMnO2YFhpp5tmszlBNeg8GaPjY1QwnAxWqdpkxQzrSbbF63H6/s1Bj1n2mrUz5s29WT9oJ2w3lFY+71M2L99YjFFrrM/sUKwf3p/Nlm7QFBCq9JFIP/xR27q2q9Bty7P1FYsGn1zx92qa6V8hMLgwogjz7JEc3T/4/GuQSeAt54PlnFSoYPpl+V1vBV89bx2NczZVV+Tid3Pxq/68TzNRhTz93ZO4tJeMR5io9WJtSfOQyzlRfD/wFPfV6K1ibgI/w92nIj3ooMEM2f44DXnqYWKCL6RErpuwF8DMDbAP4tssn700T0phT7OID3z9o6iyI/jaxOBQ/hN/JKeQ6EkySB6hwbVdIpt1PNorlxHWCeEhW3HokG0lYpJg4uj6gfC2Xv/eGYnBYfkmkDxTUY0m/daYuJPnXcDgitAEXlPEV1eiT8srrZszuXrWttLE+lsmmD81T32gNRZcBeS9P8q60kyBolVGHrbIR6uD1qwJRPF0CV4IFNY6Hia382FNfpgSpfzo1rM3C9QnB12f2L4M+BAlheUpsIJUtAFQi5V4Ui0K4sS2IIPdQ2tTWK83wdVpL8nFjLA4oFqg6HEpDU6ffNjwi7HI0yNErMxbc0Vgq5jxW/aQe+fVtHL68FGRRbpWDTcnrwwM72riDJyIKXg0AGah7cdXkjOOU2ZfvjTU39F96mEo7CMsMxVLyORW6kXXbbljXmex5M86zrNeTro7tWaSMLVC5HXb6HMoFtvDd5avxNustbpRUX3vsAfC2ALwDwaQD/EsBXrXaQUvpWAN8KAHfve1+/oNZeOm3rpiw7BaqSRRGKkmePLcid+vOidF6dTE73bj0mPoTz4AYtbjxpt52U3pcj4AQofW0sUBiDJ1WHeH0kUQED1V7jrhOA5QbdSzuX/AbhhtICq0m/uj1uB7UdBlpNnloGm1/4WXJ116ZcNK5AniMw1XXXlbSRlayb5/sajKlu8NQv8wzokvvXu9793q6ccSyTEFUeJiXLGvBDH5lRPumToMqV66yFihI9qjxWiBwszMGZhPwWFZKJmZJ9UI9TnV5tDuH0gu8fEPXfKzLv1gtBE3G+VYaRAtbKefbZllB5BkqWKXpDS/JG7lq9HE4ZGFnQciD3cxnQy5+LujeRhc+qTfOZniIzh+rW5b1BMNhBGo99URrQmfnVucm95lWHj9O361Qd2XYMeCb0+T0ATp7/Kq3O6TTFtRJE/pUAfpGIPgUAKaUfAfBlAN6bUnpVfsV9AMAnospE9H0Avg8A3vXBD8ajDLSifNLFKb4u0ELbhgAlbkbjgsASFQMcPwAAqQaMR3Inlqlonh2KDrvsAaeR5ckHjEue6QuNAEn6tZFXPHCAx8mDBkZSVoGhJk81MxKzQApgz/YhU8+Mf0Ya2HXiJHpWpzCN0x2Ymrn65P5U0HWddLH967e/9wOUSqzIiMSioxSpgG4PprgOyCpRUu2AZZeqQuwpUT0QDbycHJhxFAuWPF/u2+i1PRmsTY4UqP8fxTRttD50LQ+SRiZNrt2Yw9fa9Xw37oM9maj8q/3JoZo9GZCNCtCXBkhDAWkFqA2QTroiIGgomZRmg9NG/gg8exCi13oInIAYMG/le9Bvj/dmvFLWMfdMnbcCoD4G4EtTSu9BNoF/BYCfBPATAL4e+U2WbwTwo+cNZUAicFqLghOVEOhzoXIh/tCwgKiSp8+1SKggKrvvrLrkNHbzGQtWKZNK/0B22W06EgBo4qVq3y1o4vs4Ta2FBmAGWNX2svA6LWoeiuQG1M7rpABy86TWofhv9eayqJtNkMd7i7lXjTqvXxcoNRsLuXzVgN4EAVTg01mHfEBnRyY88OGxjUBSD1hxXlRO9TG8l3bdZIJyz4Auun+JC2+0DnqR+PJAbVr0rcNU97P8IxKWn1D9a3MFl1HPSXXJ6RP2VcA4UL6PVlp2rrxmnhGACoGMvbZpVRmGlipuz7iFKO5D0ihI42utL2AsGppGJ5Mvk5cJvfEwySnLXMfJgLP4puRkgMsw6w/KBejdrnpT0y8aOHcdywbXDfcdThrwvuFfKXPOiwGN+9akddyzEVjydVWapy3WqGkQORF9BDnY8qeQXwE+IP8i+5sA/mpK6eeRXwX+geVehx2eWKdXT4OFYRux+6sHYKSaAimc5YPDexSVWwVPzfAX5jiViy3a8dRN5lzST7AHG4vD75YdpHU3Fd9Wp+0QPEV19Rij/hCU6bQ5Zeeg/2EfOr9T71rowfYvCv4K6SBwURRHNMpbgr6VcjDXCICFVzIDJeTrNQBGAxkeI9lrE3ysA45dmd5RAz3whKCsWVe3jv11oHa9FB/MegfgSfoI+BjyeMB3n9a0HYyhkQEvD6rtaE11+UR2fZp0gsSbmfZckHnyYzkGZbR89ILGj7a/poyeF/R/isuYNAuezJi5DcWT5vkLZMA8t4u0dA4UEX0XgO9yyb8A4Es29bZKhP6mzGaApO6dVYrPCedv4gEZYNScnEdSL5U0mBKRNSq3hRr/mSDgRZ9QzhYqf/ZTOCVviTHuPJvWA1Ndy5Ok1QQT90Q2VspuCLoc0GhTAswbk77uhEKLElPpWluW6uK6eADddwpuFZt18aTa1WLVszT5dGoac+NdJG8NatIjMNUBdv4XZNR213UX1eF6E6B1zXSx/YsVRi/brYtx4ydXiO+1RaI5vsDmJaAN7maLFVsypF1VjmxajfdEOSwRxuqUnAz0DKdVWXWu9Qd/AwW66rJpg8hb5VmvVZ8RWFH3zRya+S0q02CB7PopPgJiCVyWAXk2FY9lv6nHDvQskjzP+pJU0YlH5nWRgdKvloMuGQACxdMOz4FqaUTEU8d3V475rvvrAabIytS1MG7DSw097UnkI6CErJxJgyVfF7AaLwRVNU8O2ZSuC9BIOUJBTixHBlIVHI20ouaABj4VVI0otia1+ZEFrBfvJKMa1IHKl+seWPJTWN1XThVOteQCemZtacAVgSrdnr+O8iMgpijmugJZq+QaDsFUByzNwFNEQ7BkrgdnP0Xk6t4q6bfwGsAkwlKFpy1DIm/k3SklrzlUE4AEGx9toLHIqgdSHGAOtKDPKNlAQespDPdndeNBTANsMAVOQF3fuMwEOGml2wNNPcCkNsnN4suARIMmgiyiNKf2lQRalgH+03FyNU3JQDmd3AOt6r7lvlEvUh6L3Rd8wd68ea4ONOnrLhjqACf4PMz5ztcbALOMo5nTNuY/+adczC/5Ho3wS69cAV+CorVi5SQye10FUWVQ1HRcHm4BVr0BYFKuHYe9b4FYFzgBBjzVh1WDK9cu+fwtmvKBaAV46A0DFgxNy0egDAHoUsPw1ifTjmqg3Tgn83DUBzH9/MiF2LU89dJ6Y1nRIGkbTrwJIpjXZROQP03QFNNlBmCqp0TlR14LpLpKFPy/KNGDyugpUa2gAQOm6pEsk/WQqpdVohYEoSpR8vVjBToFTiPAFBxVsUJeHsQTEoEpqaM+59OTAa4oh5qqYHN10GkNKK8WenN6OcsC80DLRmkk73O8WJMJN2tqr2c8z3kU5mk+tWktfzeDZqd0T/3N9+QAypBTTF0GGt8Jk9Kmqm4G9LV89Aq6WKIAIJFYonSt3BYHkcO8sac/IwPovNWJ2/r1vs2z7rYJcCqTMsCplPHgSwt8Y43S5eDSo+uR9SqiRfBkAVB+2jUY0t1pBdGkqSEmvqZW3GRISQF9JVuRtessLKqXbQaaVF7XMuXTonIj0BWNaXV+V4DJH4Iaa070kOu5H4J0VqYsR9oKpAXau3YisOOsRtWdY/NZzk0ZadsMq5Rr59X9wRIoUv4fKz/+X5Rn6M6BrG3XZcOgKVKcHcBU3UkDAHWiMtX95IZV+sGlKRmQ8wp7MuDTkxo0g7OSXvlMhl862NxYF1Udvm4MDep+uFYRn/X1iOcmjYI0y99lsOz5DjQA+RyD+fUAqKk5YbUdKGWbCiBCPQeqCGt0xEHTlLJGATBtmbgnZpgDUpzfHWpH2/ZcbpHFaUjhZhdNdNzMY1qoRrh5M0XAbADWQisTdfLgRDZCcatjdGOI8iJ3XVP+guTHcQ1GyqemcAkC+dKPPPFmrc7j0TGa3uXrLRLmjCFSyk7SqLbjy/n20Ih19xEBtTyPtrKeG0/yGuDDaRQrX9fHCDzZctvBUzh2394iNW/havCSVJ/FQpVDU9ThmKZeIAMCohzPCliW4JSonKrQ432P58BELTdrre5P4bmzNNZytW4XPM34DlwcOF8PgGJyCknOg+I8z2CdxhotSNPuOlGAyhpVu+VfBjlFx0VJdYKsvj/BHLCgactxBiMLFAyQ4ocwyuML1V4DvFQdJ/hT65ER1NTWP4eaJxryUHtrT2OFivKdvAjbHAhy3Zl7TXrTSq6+mf9gExqKQwSYfHseOE3qzFx9bRqFbffG+dIoOom8ZsLIgZz5A8iDKcaFQ4JYiQAYi4T8/FYVNlqjqqUCVfi4TPnXWCAAIw+rbPZAZKxMaQCq6jptsjqp/kLl6QGTGu/wIM1FEJX57MqaZ1FtMuVbc1kGXNlUgbBYJXmvjmTADra2o79hp9oTy6Maj+e9uY/mE65TzWt5T7EcbAkOj3jOfVCnHWAKlDefPB/Q9QEoTUXZmWDyHmAC1IZDbiEUiKrITNryweW5Ri0XARUtY9Ss+nYNEz6rAWjSY+wBJ1M+Ak9NP649CtJMxx06AURNDY9OKTVpyYEold+zGnERPWYPuEZASufrIY1oBUfPQJMp0wNOKm/ocgs3yWh37NQfje1WiQjpPlgjVoQiSwWkaIBEClA1itS+OWywuASd58I60FhAl8S51P7MgZsGVOl91AEu9b+rSB1FyuksJXoMyq0CpwXQFB6i6TfFxRPIpb5uTMlCIwc9GVBWqVT4QjzGVNpXQErHSPFblKIXU5k7nxpd0lg8GkANGEBl/q/M3fF/+nFfB3j6Lj/F86htU161M+O7SqtzOEFxFboKAKW9ZGeRBldNngJRHmgxiDL3rpxr3sQ7KRdfzjtnDnYCjVUqKLcZPPn8sIMxdT/4fAGK2BgBrRB86c3EgyjdQdSvZqOqb9L8AB0wM0MZrGV3+TpgyNRZBU8ufcUNOLQ+9bD0rQMnTY2lITUKN6lDM0ktjg4MzvcQ945RouBriBxKYLALNNZWLiPmQZpc83NRFHN0OjYQPDfNWqg5h0CqDqJRlB0F2ChRvj62aV1lfKSpAjX3K3Ftq3RU/C5yQOoTGKEMBO49IwOodeUU8oNNk7bAPGaAHgApnia3GwE8YMx7N7gQOJX7+Hpy+KniuU4z7TwRYNZ0FQAqpFCLRmkWCNVdhysUUmCovmRgyzUB5qTqoYJ6vVtoF5+xUA3NKi2FxxmYmwAwuULLwInL9AAVubI+7ykpAkiKf8biFIGo8j/cIzwYUgDNA4ZmkwnWZTPG9Eue4ryRiX0Kkrrp7lnxZSJgFY7jqQXkAYkQuPAI3p1i4og5y3ynTP1v/P9wJ0rXOKkw2FwHGWuLklipVB8RHxMDMX3PXawJcHjic6PI0AVNOt2cHRV8B82DJrl2b3PJuCLFqYKVa56a0DkASj+nPA69jI3bThWgjnvPu3eVThIZ0GVN2zbPVE3tvmBkYWW6gS4KeV/m18qBBTmr7tkGLHcAU8PzUr87h410vQBqRB5IeRA1qjPyGbFyZWtU1Bf3B0g7kTLe+ikXP4ywP2wHT93GTxEaEcoAcD0EzYBQNETP3gGIMukdiuKrOB0IgJQqszS/Tp+9cpvAU68/X37Q9s275bZS/LDXa20RSiqPLRPFBcdWCWOR4G3sSDWORQeJq7450Di0RihZzdUKuEBqhk/SHsI+Nq0JRspTl+9bH2TcketG97ECnuCuR8DJz3XrnqaBK2DlADUN5YPPPRmQZooMZLVGCmRxd6qOlgEiK0tqeNHLC25bM1NZooj3Jd2vbchnD56kLRoDZsBaGmHbMvczwOzyttB1ASivzfTiwH1ceAaWSi1JMIqzIHolUL5yaHoPgJv+dZE3ozPRROPC8/k6z3du66+57FILhHrWp3C8cZnNy+CBTbkcgaUWHOUb+RXH4xqBKNW8mbVeZ5XRYOneuPjS78uz3WkB1PhyIXCagCpveepZqCI6U8KfNY2CjonPOOGySV0U6wLu830CqY8Al3u5Rvkieamv3sIidb5TNzaGSp9+n9QWrJFVCp37Hp2oRKs1IlCinD5SokdvxaL22inPBjBFCljTyplQzBNuWsuB7DmnyYDESOm4t7KXRTKQx+P4zCIje19HDmQh5lOuk1XVDO8Xv1PHPHf8O4Xn0u4qUG501vad7boAFFMHHJk38po6Diw1eX61ah0BUipNlxfXnob0Tana16Llu6Eu/2agqfTbtBMBpxVQ1el7Lf3Eyc9oBIJ6IKpTjpuTeXggpeVvAoBms926HFsAVuji88BplOefpW65tm9PL8JSRWiCyC24LnmHKlCiTBcUqbzNlZQSBUAqRkoHCK8oUdMOqmxHhzw2SnSLPokUaQ80lfJT4CT3tb1TgFMPNNk4qEDZrlKRibq30FgGcqF1GXBASsc2eRkID2V1PLZ7YwV6dQG2bloRUFH3PdDE1yfEta0AJw2+hkD5xINTgWsFUDPyinFrPuI8CRwHlJTVsuH5TuqB0O2cTV5xj6xCI/A0aDPMm7j+HjJ4fPOm3W1nDKK6fXqQNQBSTA2gOmH8y0sagafZL8dLgZ+XAJCmRM3DnYKFsWc/FeXqBKm6UcqmcwTSwbp1eoHGkUsnK+fIhWfb4Sp6mxOFo+ayVYyjGKKpMuXr6BV1Hr9SgtpdV/OprXuMxhCUA9rgYzeHZdLB11AyACDJaeEKqJIOFA9kAJaf4trFugw07l2RLVuNhwRYeVieuuG9SzsDPAkN4pymPI/GcIsHaVYfPEsL7KZd7sUK1QNJvr4szkgT6o1DCb7RWDArTabTnL81cDyibuxUBzDlOkFeINRh/qBdX2Ya+0T84HfyO9SNWyqXfWtTPNyuJSooizZrvUwwv4vhSz9e324AjEZWJ5Pv3XZB+a7rb9D+iyBtgTqgVTbm7CedXkEVWySSWkO2RqSEGnCu15hdMcey8+jDFTnQPMFao7iuCjI2b9wBln8moGS+FGbaG5UogNNcNxEAY+vDwPLglWfs0nG83PJ21sHWTWLxSerIChJ3n7FK5V/nrQwAhfeobc1kAGhfNuB2dLA5tycDrv+27mEx7wNe+/wJv2u6rbMZKIfnQQ34voGuBkB1KVB+0zIaRKGT16uvzA8qHrCtG7QdgZ9TTiI342rSFNgbgZ+ojVksVFRvRbZOlT9BzZelrjsPaEE3Ic5318ZVE8rVBQYeLEUXOI3KrbQTtTkBTzs58gpWAyoTB6NOnD6StUikXMdYI0rAubZGlMyq4IpbT1tLLeBXFofON9ZyuZLn5H7zb0GNvSYK1SvTsH7PfcNtefC00rdRyjweVSEATCtxMaSPspBzoMjIgPBXrEhAPd6glhEL0DHVYPPGqhjIALkT6cseJ8HqsHKQ+6M6/ovxnpr04WdX4HD7BDwJDQBzZGmaAuYTjzJ4OgDFSmwLQBKhcFaosE4AdgAlfT5D5UOVUUAqZ/sOx9JGJqJ5U9VQ6zXPczcmalJmBXwpalx3WwBW09hCvVJGWKxlpQd6onYViOLbCCTZWJYBdTDfJbBGlw0DcNQFTh4MAbJgM0vVsP/VOjdIiYB0jLRsWYj7/C8rrCJgDKrE8pOMEhVrhFaiXPeY8llCLLMpAx+JY1KWCI6LMVsdx9IwWAqAFPcfuatXftu0ri/Xv0o71woxctfNlOgMNKWeYl0gqZvSXAYUkGKLlHbvioyAanzUkgwUZy3XN/qyyEEPSJV8Xrs6/sV5M2ne93ht0jDkt67XtTrNeI5SpgOW2jls4/11W6AigNQDUVohStnOzzMuN8o3BSHlGov9ihaRsW3YmdDh5Sy26VzgFJRrXHcRPUYUcQCiAAeK3FDFElXGOAoi5/tlMGWrnU8rAAoD0OTuTwFPvcDxp2b91RC78Mw36pQCRatQRZkWRSruHWLgQ9W1t0WJcvccZM6KUAeZ83g0kLpH5as+2dwpzy2WiN5Jz6Ei5fueIgWMy24U89J1142A01G3OQBOq1YJbXUCClgmA6yrDJRxpQR278mktQx0LJJTGSh1qgxVag7MVHIgS6BB1SKZD2wbvWH5sgScSrnNwGkRNC3xfQNdJ4CK3GzD8ljXdFGdkWvOl2NihaQFZjaGxwJOvvxqe6u0Vd62lI+sSGfQVJTcLy/ffxifBbRjjID+jGYsGAGnSXkf79TUXwFPO/Vp5r5DuS/KVNw8yhoBwHixjbvGu2S4LpCVBmpwOBKyAjn4fosYploHqAAJQA00VvucVp4zS8RmK4Qv468DK4TMOVCm4XjMG1tKYa4qUX+yfKcvWRtdvhsX52SA+3TrKzLQsUhq4F7LFhbrIHMlQ4CVA7ZKedcdYMGQ+ZC1oxSBywl48jzZ5K6TdoEGPOk81b6uu5Xnq3QdAEqYGigJfrANkOHywYeGPQACXKM9zebA0VQBthuL8OPUYPKRhgxB0KB+D1wtxUrVy6H1KUjbPPUoTknych8GHweyMLQqmXylGBT/oiBzTeGUVoHZiRSyaZIWWZzivEHdqNxsDC+FiGIXHmAW2Ky1tjiUTGONYPeZ3jsaaxSaAGPSDjv+HhqfHdV73V0pT7FAsSUCsPKw0RLxZFYIk98HTo0C1W36eUZz7oAinxa78AjGKnVf+LFqkdTWKC0DqcpAY40Cmm8sGjkA3Eer1VQZ3N9jiULro5EBTut8sy4ATrMXA4ZWxgg0zdy2XG4jXQeAishbhbaAKH+91J+uKz/Fah5ce3qtG9B3IS2zCFqa/i4Nnmb9X5o8EO6BqA31AStSGq17dodWKX3Ptw5zn0tLMVCdtB54msVIDfvl/OUxPYZwPDFFm6w/QJOLRlYnUhEvx2Tf3hKLRg40N7ExzhqVDtr64AKNg1OsRdzdXqqDjLW8hxaG6dqoqXilqoET0AdPgTLlORsF3LjbXN7IXRcpWZ8/owg8DWXAlk8o/AcEYOXx6P0osEaZPSeQAW47ofnGopEDwMqCGvTmAyV98RGvgf63Cj14knlCwLIfn31pwPH1FLC8ce5PC6ACkBNaoaZ1NoCo/msrwb3TkNHazpT5udRrewSa/P2qZSsCT10w1rYfvQGzhWbuthATdwGSGoOSBxs3pSoCfSDV7dz2fREatTMCTUAfOPm6PfCUgvzVsb0UCg/dK2kHu0DW4pDmShSACTI25wexzYmVQaofq5Uc9ykQoJ4ZpNt2ozdBxNLfdurFQWWLAV+PlemWeKfG8tQDSCtuPGOhGChYM+HgF3VHBjyfAbUtMZBm1yvsiwYNkAbZuCiVU6+57SoHxippR11vTmG90Rs6veW13HswFPC7lqWY39zHAnCau/BOU+LXa4ECrEYMwVBNS6IEFdCJlKhum2krmGoG8YC0YjXqpZ0DnIZjWuwjGpN0NMjz+VHZCCQ3AMmNYQakJLud06NhhxHLFqw+JwGnTr9d8DRq55aJCBi+hUf2XinTBIRAyipYqu6eSImSsyjo4w4wP8W8OX2cYv55QLW2NvH1RawQGjyZ/AXgNLNElbGYe3/dnbOeqJIBcdEq/kdASgATrGwQIR0yeg6BdNnbspXJygCAxhrF7eRyFUjlcamx4zRtNgRNQN89668X+C3tRMAJWOP5CCA/KwvUqeSV48rDPirnTR++bA+EcV2mS7kwzo2FOqWNWbktU3tATLnKbkMhIC7tEPHMCAAAFo1JREFUeasT37j161rHIlB/yvgGtAKcwnKngKcNizuKubpZipQmp7ng8exKgymfiELXTdSPd9notrV7DoBxxelg9ERog4v1kFjUt+x5vkwnrSsSwa9965axCs63k7wSjNoKYl7sODvgaSuIAuDP/DL8B8qBlwUAc9McEO5lx/UtQFp9GqYaDSYywEHiSfFZu3eT6it483KkQkLeRusVgKeQIvAkfenrTj/c/xRUBfyN2lvk/fUAKC8YwtyOFapzHVqigFiJmv4fQROu0qjrXt5my5HNMpanEXAyefoX1rz7Lrl4pK4bLhCDmatOxuaVg7tvywcAZYW/PaDVoSULTqfBFSvSKcCp6W0rwLpVqxQB6f6olF1dKeJjBACrRL1FwliHlMWhvNZeLVGlKaT6qjufGVQsRJE7Z2aFSIAJLpY+1HS679y0025o2YWj2jkleDhy4QytEJESjdw9ANJmF14u08iAeUuPxhZJlgF+ycC4+ooM3HFvddMTGXDHXfgAc+kTClAD5s3NCFybuQ7WIrI4SbrmLdDyuvRvearLnGFp1DzvWSDheL6BrgdAjWgVRKHeNx8eninRqE8mH0wu6b7OoL1z6BzQFNVfBU+jdh7Ld7MKohCXAxwoC/J9/a5R0QOZzhpcZGlWQZOUH98vga2VdncKFUn39W9vkdCvoQPVGnWX201AG3jsg8v1MQSEaoWIvqXWsUKIWy+p+TgrxOpvykZUT3Dj8HinwcMe3Lg6w5gYHkdHkabIlRfdd6geUNkBG/oIAwDGIumPJ9BpzqIlLt3I4FD6sFbIVg6AKgsAxCol6Z4imfdJ4cnfvp06x7DtEb85P+JtN+Yt4LXnd2d+K3S1AGoaTM40AEbGGsV5UOX9fbePDjRfWfNp2wttjMaypd0RcPL5E9Bl21kb0irNgsmlHNzydqxR3Cag2o1+TQe/vMe/yh4KMathrAKmTlrs/uvXoV45d/+iYp+EqMZARS6XzknPhpwSFcCkfw1zGreLaiUiKOXorRDehQdAf9KlceUAMZAq89sk3t7NIvNtgROPke+nhyVy+VXL08wKofJCJdpT7tGcAxdsKlbHLv+BBkj5N/UEXLObl6xLd+W8KC8HAKoVXcsCEAKpZYqAExDyWu57lifoMvGblb3jCUJLYwCWQ6Ac8XkBVF0XgHIacejKgyo7uddAYera0+ndcW7RHhMmPOSRB0H60tEE03v7C3hpHOfQCBi55CE4dqC8ce2pcr30JwEOoz5PAU3BfcO2LeBJC8GtAytRFm7F5CTw+j+J+w7ZKuEPXlRnLRHf8Nt4QZque+rbWYB7JByQAgIwtUBTa4QWkQF42urGid6yC60QPeDUUcah5cNM2G00mv9cRLlvyb2dp4F0Oma3sD/WwoAoSasxURogMafzVSwHbI2Se7SPK53gyuq9fR0CJ2DoopVy5/Kbr8tfyG/9HzjpTbzBWaNPRKM5bHl1f9bWrMylgACl8d9F+uikPTB4uijN3iab0BQARHW2WHc4PQ3yL0mzvjp5p4CnafmdMvGG7n/pAuNgZKkf1PO/qhXFaf3hdQNsvQKL2nCAZ4sVYsmVI/cd8DSiSLFFdXxa5ALy+fp/1J/nl0/X1g4N1HrWrJ7CJmpcmP00zJX9QA4AJwsmfdyspkZOBuBJaMLrrtvOU/TcjNY6as/zTteLntWAnt4CRRhu2I0rL3pjDqqN3n1J8yCisUipskMQ9dhKZibYnfzlwzBXwKdra2p9ajbPoE1foIdqFvjrs6au2k53XcuU7uixQNRoGFsA4KIYbI6lelFEwH05nvnA75YzOkltwDhbJFJq3XpUhC+l1hK1aIXwr7dLnrNAWBceqTqxNSrPb6Mr5xQ3DjAPGNftTdw4rSuvBTPJu3W0Eu0Cqo7W1zIQWRdVunHrKbkIXbobLFFdGWArYmSJKo2KLOhPumDj1tbs8S1w6vIa5V7LxOxAVOHtCZZGz29O1/819fiu6OkB1AKFIIozJA1uN+DK47TGvefLSkF3PwUDk3xPWzarSfnuWU4rwKmbNgFPD0DxEQNoQLEfb4NvIjANxLKBZqrtXFd5e2EAPgUvlwROvbSmzCMIwjWRbMBucz04Y/4RFUQpkm/P6dgZDi73xxzowHIXVLz8evsRjRvHzsfV43xvBTi48XZoCJ7g7n3AuKqXvKLTpOJnWJnWugo88X3538Q7dcrlPo62bES6zIz/HMd0RHXn6XVwZ0ZNA8tR+OXdeZ6XVOVA4qIUoJa2tTxG050YFHqHqPp4Jx6b3DvwVNuwMhIFjJuygdVqE1iOwNLE+gRcC4CKwE+gxKYKJKi3CqRyHx0wpet46o3pUnploZ3h4Ze9+icCp9zfhn5GNLPyrdZbsUb5m0UwBfTlbm5Rm+QPaO14g+1554CnYezTSyACiJWAz+MN+HAQZdlTooADVk3AOFsFyAEttGdH+TfzdB1fv8whtD64HysNrycuo5PiYMoYI4Xa9OnBUgTKvEVC1Q2V6UiRqvrUUaRmiTT/Ja3892/eHamCaAE4VMtpa1bzJmaURhZIF/C8BKLKRDQACj8g3WF/42b2fO6Ryu+e86Qti5q3nbSu+3QEngJ+59u1ve06AFREHRAFqId7dtTATGEOQNHKidxd99+Fael0cGA8li1AClgHTr02Tl2XACl3LVG+n4DfXZwULWkHWPfKPbg7a7X9E/DzMLbKt/HQ83xOVJS6vPGkrAkppeziSykrUiqyrNx0AOQsKfOWFivbu2KpAIzbpop7BV/hm3lFYW5x43gXTk4/YW1cnRXwVOs65Th7447To9OmnZJMgWuncfccj3JNuh0zPxXBDycDPf57N10JGDeWSGOJKl3AARmWiSYtqaMpFCCO3HkORAFogJSs/xaKADPPp4wz56n7RibcgakRv0ub1pXnQNI5/C7j2ELXF0Su6VxwQoM2ZmBjoe9Eqfk7l05qczbeC4CnzW2fQ5siGbelD5cqDdqLyum/c2lrm5Ny03luSQ/LPsIvh6sjykqU/wATgGo3YucC0kq9aTYGEiGFwdNxnSmLvBJz6ZuoB5469zXdtrGsvJsxB+AJaA9IjHgxAk+e3zpN6ru6kWWjp5i9FUWRP1S0n+bqNO2ovoB+IPclH+l5+JAq6+Q/4q22PkY0erYifku24k/EcxpP5HosUIS+VWBmiWpuYKXKr21kvfC01b0k6P0C2vQCG9jmMoNxb7I8rY5FGu+UX7VEcRtR335KA5Ewxbew0P16O5tOaGe63KM2R9arLtDq9HjrlioCcH9UVqcSUJ5SOQn6kK0Sh5StEcdj69LRlii2QgB9K4QLHm7ODPKHbOrNTX/yBYA5H0jcfDAuHJMufQ7Ww1EvFkZoEkgsczF51AYNl7ZsbEwHiHqLRWCJIGPNCNw6UUxYxH/Fu+bMsID/AEB3sRUKzto0StPxUDkPhm8jdx7Q4TvQ8r736EeWpzLGBsBp4K7PCRvxVvfjeanaNtanc/gNLFmjrgdAAZtAFNABUlIncO/p9kxDnT4j2rCZPAht6WcJVJ0AnLaO41TqBL51gRQwBsc9oDWoElVdy7g8bVryFQtWr58h4Hqh4ImJjqIsheRS/HCg4nIRJXpXvsNxJHHTAahBxazYHNmzfhz4AWDcOM1YgzZ9HAxg9temfc6f0MiKNTyuoLGudECQpyiQmP+PlKku21OmISBzHWoZ0Pw/FvfeoSypjnOistB6XmGsGwWu3DrPKC08rZ6AilYCAdFg3QMpmXdbzdMIPK3UmbrufFrH+ti47jTAUhbBaikcWAknliem6wJQwBhEIc4bAimfESmAFUDVK9ujrQrlEoDkTMDEtGr6P3kMTYeDeoO3B5aAVG9MW0DzOKvb3FY6SwRWXY+zMZwCnl4MUQ3Y1fEwksa/7vM9UYmLAawFoQOWTLpRigiCxyHfRqtp7adeQjoFRG2hEXjy1idXvm2LumBpFDje/bZZBJ4k7+iAVuumE9IycDyolwWOFlwTVUukkg07nhVQhYDfQdqAjBWK+/FWsQ28j+KThLoutUGDUZ0OWJJrDZ5G5eTSgaXmfsDzgJ4EQE3fqOuBKM6Thtp2m+KNCXLQ8ZZPtIxoBAhGdEn9tOhKXNaJ54CqlX5mIEr66Vukun2tAuIzQO9FocW5aGyx/tqbfis/Qdf6e/ZEZQO+V4pa/3pLh6KMlJWK87U7r+fKi97e8y4bPupABx/rN66grFZFWZoTqp1yHIGoZvrqUzGjNdJty3xNn2o+viznO/eNB0ut8lYK0VujvCtnZHk6EnR8W/dtrHsFjg+K34r/VKyOYomM+C9v5fVBVQLitzK5bO9TL/oNS5Gd4LkPQNRmCsDTsutOl/FzK213XbWm/TG/pa62PPF9FMe4QNdngWIagagNZabWKdPexFK1ShfVpqt9btNiFwNOl6RTgaej1W/pSZ9ScWNH1wQcNoxlWVRevMUpoOh1dZNPcqYTAGuF2tQPWTcOM3ikRFdIrGSIXyEa7KnzV9MX+n4IOuETHIa85SlqMzgniIoMJAG8xSTkLJErlI6UY6GmY3WgitME3MKeDTWSi8bKuTTUlhbddsNxqLY2AbgNZa21kcZys3CIJnDNAAqoD+QWl1r34Z90tcVS9QzoEq8hX7z8Cs1A1JKZcc6+qdvvVDplTR5I1E4S4Uu8AXnLxJtwOZGcyivrWYnWGChx5/h4KOPK0Q1P3DgLCm4WSNxQ5MpbqRdRZHniPoChVaL7Knup33UVOSsV3zdnPgWvtYv1Sb9N6S1PnTOC6jhyPjH/9QQPyGtYznwS/t/dKSujastZFD348rFwm2hkhfIyxmNfpQ7O6IZKjgBPBMQWYt3MvbEqVuuTiXvqWRq1pWqRrhtAMek5rVilIjpFoc66eiQF8iCGgHPafGjDhDzcq+W9SXfOmFXebV77R5CJi8ndqYL1EoET8i9Yur+3FqXDATgeWyXKyo83c21dCCxGjRsnIo55oQ2BxCqveRNL938qiHrMfYSBRy9vJc1bFgJXoFGm7pX3hvelTTocch6pGChSgFr3t2otZCuk3GN6OrmpO5CnLogK+onHFqSNeBBkNcHjs/Y64CaMd+u5eIO0Eb9n9GQAaulk8YhWrFKjemYQJ/Svqz80kLgUXWKcTzHXrUBK6m0HVD165oZIS5cQ2FtajxNJTiPXAIWtC0ziynv88Rk6xZp0ibpAH+yEZZ01oRnLmjId9zEYkIqDCd11ROY/ACR3TAWVOKTc1sGCHz3mnhs2ctNqq9QlaBXAnePS20KrfPTWppWyvc+zRO5Z1eaWOKgntUCdDKKANaV6qrXqpdEDrsNFQGaPj6daqB6CzkVa14TGn1rpXy1R/ZhwOfNJlupwqMDKWyHSwbrx2I3jFKaJg+F8r0Aja8HKm1g9xeleZe++xh7JRGhVWJDj1TKrAEwDE58WHGAauu90nlLATVmmcuaTgCh95tPB8YrdeP6FAF57jl9ajYMarUHPsngKGI5cegsWwN5H5oeu2k5bpl5A5mPBpW3fVnNsQbmODj6l+2NbdkBP7sI7C0TNaPacvhRF8US6+cExweKm/ih0TQBoC72UZ+ASRAAdCUm5Rk4OEgdaF83J49rgFjq5D5xuET7FWnRpikBWU6QDtPhe855UfJu3Po7IH64ajXN01AUfaQE8PM91nyPqrekJ1qWzAsi3WKnC5hz/r/UYA08X9Lhsoyt4rm+FrgY/7IBgp4ckOoKOByQdMM6klaN245AzE3kXzYIiPPtsJmlnvL8O+7mSZ9wGqZ85KHHbObfP0VkrihWKykGZ6eACvV0MWn6hgN/Im4zhXADcxEat6dBhHNSJdDE90A3cnwPhuD33skDPXVvKUWR1DOgqAJSnq1HGO+20006aiAAwiEolyb0fteH19bD9x7AsPEA/J50f5Gk1GLyTngKX3XnjUS6dwnukQ7ZGBUansyySl6AGyL2AX5QX4Le2Pgl4Wmj3uj8mvNNOO+20007XSudawHZ61pS2nrx5VmcpfQrAbwL4X4/W6cPS78Q+l2ujW5kHcBtz+b1E9LueehCXoH3/umra53J9dCvz6O5hjwqgACCl9JNE9MWP2ukD0T6X66NbmQdwW3O5FbolnuxzuU66lbncyjxGtLvwdtppp5122mmnnTbSDqB22mmnnXbaaaedNtJTAKjve4I+H4r2uVwf3co8gNuay63QLfFkn8t10q3M5Vbm0aVHj4Haaaeddtppp512eu60u/B22mmnnXbaaaedNtKjAqiU0lellP5rSunnU0rf+Zh9n0MppQ+mlH4ipfSzKaX/nFL69pL+2Smlf5dS+m/l//ueeqyrlFK6Syn9dErpX5f7L0gpfaTw5l+klN566jGuUErpvSmlD6eU/ktK6edSSn/sOfIlpfQdRbb+U0rpn6eUPvO58uRW6bnuX8Dt7WH7/nV99BL3sEcDUCmlOwD/CMCfAvAhAH8+pfShx+r/THoD4K8R0YcAfCmAv1zG/p0AfpyIvhDAj5f750LfDuDn1P3fA/A9RPT7AfwfAN/8JKPaTv8QwL8hoj8I4A8jz+lZ8SWl9H4A3wbgi4noDyF/9+Mb8Hx5cnP0zPcv4Pb2sH3/uiJ6qXvYY1qgvgTAzxPRLxDRawA/BOBrH7H/k4mIPklEP1Wufx1ZyN+PPP4fLMV+EMDXPc0It1FK6QMA/jSA7y/3CcCXA/hwKfIs5pJS+h0A/gSAHwAAInpNRJ/G8+TLKwDvTim9AvAeAJ/EM+TJDdOz3b+A29rD9v3raunF7WGPCaDeD+CX1P3HS9qzopTS5wP4IgAfAfC5RPTJkvXLAD73iYa1lf4BgL+B+p3tzwHwaSJ6U+6fC2++AMCnAPzTYs7//pTSZ+GZ8YWIPgHguwF8DHnT+VUAH8Xz5Mmt0k3sX8BN7GH7/nVl9FL3sD2IfAOllH4bgH8F4K8Q0a/pPMqvM179K40ppa8B8CtE9NGnHssF6BWAPwrge4noi5A/s2HM3c+BLyXG4WuRN9TfDeCzAHzVkw5qp5uk576H7fvXddJL3cMeE0B9AsAH1f0HStqzoJTSZyBvPP+MiH6kJP/PlNLnlfzPA/ArTzW+DfRlAP5MSum/I7shvhzZD//eYnoFng9vPg7g40T0kXL/YeQN6bnx5SsB/CIRfYqI3gHwI8h8eo48uVV61vsXcDN72L5/XSe9yD3sMQHUfwTwhSUq/y3kALMfe8T+T6biY/8BAD9HRH9fZf0YgG8s198I4Ecfe2xbiYj+FhF9gIg+H5kH/56I/gKAnwDw9aXYc5nLLwP4pZTSHyhJXwHgZ/H8+PIxAF+aUnpPkTWex7PjyQ3Ts92/gNvZw/b962rpRe5hj3qQZkrpq5H913cA/gkR/d1H6/wMSin9cQD/AcDPoPrd/zZyDMEPA/g9AP4HgD9LRP/7SQZ5AqWU/iSAv05EX5NS+n3Iv+g+G8BPA/iLRPRbTzm+FUop/RHkYNK3APwCgG9C/mHwrPiSUvo7AP4c8ttSPw3gW5DjBZ4dT26Vnuv+BdzmHrbvX9dFL3EP208i32mnnXbaaaeddtpIexD5TjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRtoB1E477bTTTjvttNNG2gHUTjvttNNOO+2000baAdROO+2000477bTTRvr/3qcIby5y71IAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGiCAYAAAA1J1M9AAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACX0ElEQVR4nO2de5gdVZnuv9p7d7oDJI0ESEATiHhBBUcFxQAeFTMno3hGB0YHRSd4Hw1oyBwdmBFUFAOO4yAO4MELeIFhhnHwLj4QlBmO3IRBxQsyCMKoCXiYkJCQTveudf4I2f2tb+319lrVe3d3pd/f8/Cwq9eqVbWrvqralXrftwrnnBNCCCGEEEIIqTGN6V4BQgghhBBCCJksvLEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9vLEhZAZTFIV88IMfzJ7v+9//vhRFId///vd7vk6EEEJCqp6v+8lJJ50kBx544JQs69JLL5WiKOS+++7LnveDH/ygFEWR1Hcmbmcyc+CNDdll2HlS3fnf0NCQPO1pT5OTTz5ZNmzYkDXWhRdeKJdeeml/VtTw7W9/mydpQgiZgdjriv3vpptumpL12Lp1q3zwgx+c1n+sOumkk6Lb4eqrr5629SJE05ruFSCk15x11lmydOlS2bZtm9xwww1y0UUXybe//W258847Zbfddksa48ILL5S9995bTjrppP6urOy4sbngggu63tw89thj0mrxMCWEkOlk53XF8pSnPGVKlr9161b50Ic+JCIiL3nJS5Ln+8xnPiNlWfZsPQYHB+Wzn/1s8Pc/+IM/kD/8wz+UE044QQYHB3u2PEJy4S8mssvx8pe/XA4//HAREXnrW98qCxYskE984hPyta99TV73utdN89rlMTQ0NN2rQAghsx59XakDW7Zskd13310GBgZ6Om6r1ZI3vOEN0fZms9nT5RGSC6VoZJfnmGOOERGRe++9V8bGxuTDH/6wHHTQQTI4OCgHHnig/PVf/7WMjIx0+h944IHy05/+VK6//vrOY3b9L2QbN26U1atXy+LFi2VwcFCe8pSnyLnnnuv9q9h9990nRVHIxz/+cbn44os7y3v+858vt956a6ffSSedJBdccIGIiPdYfydWS/zrX/9a3vWud8nTn/50mTt3rixYsEBe85rXVNI0E0II6S+/+c1v5M1vfrMsXLhQBgcH5VnPepZ8/vOfD/pt27ZNPvjBD8rTnvY0GRoakv3220+OO+44ueeee+S+++6TffbZR0REPvShD3WuEzuvDSeddJLssccecs8998grXvEKmTdvnpx44omdNuuxKctSPvnJT8qhhx4qQ0NDss8++8gf/dEfyQ9/+MNJfdeYx+Y73/mOvOhFL5Ldd99d5s2bJ8cee6z89Kc/nXC8kZEROfXUU2WfffaRefPmyR//8R/Lf/3Xf01qHcmuD5/YkF2ee+65R0REFixYIG9961vlC1/4gvzpn/6p/OVf/qXcfPPNsnbtWvn5z38uV111lYiInHfeeXLKKafIHnvsIX/zN38jIiILFy4UkR1ygBe/+MXym9/8Rt7xjnfIkiVL5Ac/+IGcfvrp8rvf/U7OO+88b9mXX365bN68Wd7xjndIURTysY99TI477jj51a9+JQMDA/KOd7xDfvvb38o111wjX/rSlyb8Lrfeeqv84Ac/kBNOOEGe9KQnyX333ScXXXSRvOQlL5Gf/exnyVI7Qggh6TzyyCPy+9//3vtbURSyYMGC6DwbNmyQF77whVIUhZx88smyzz77yHe+8x15y1veIps2bZLVq1eLiEi73ZZXvvKVsm7dOjnhhBPkPe95j2zevFmuueYaufPOO2X58uVy0UUXyTvf+U75kz/5EznuuONEROTZz352Z1ljY2OyYsUKOfroo+XjH/84vBa85S1vkUsvvVRe/vKXy1vf+lYZGxuTf//3f5ebbrop6amU3Q4DAwMyPDzcte+XvvQlWblypaxYsULOPfdc2bp1q1x00UVy9NFHy3/8x3/AYIO3vvWt8uUvf1le//rXy5FHHinXXXedHHvssROuH5nlOEJ2ES655BInIu7aa691Dz30kHvggQfcFVdc4RYsWODmzp3rvv/97zsRcW9961u9+f73//7fTkTcdddd1/nbs571LPfiF784WMaHP/xht/vuu7tf/vKX3t9PO+0012w23f333++cc+7ee+91IuIWLFjgHn744U6/r33ta05E3De+8Y3O31atWuVih6KIuA984AOd6a1btwZ9brzxRici7otf/GLnb9/73veciLjvfe97XcclhBAyMTuvK93+Gxwc9Pra8/Vb3vIWt99++7nf//73Xr8TTjjBDQ8Pd87nn//8552IuE984hPB8suydM4599BDDwXj72TlypVORNxpp53Wte2AAw7oTF933XVORNy73/3u6LJi7FyO/W/ntXLntrr33nudc85t3rzZ7bnnnu5tb3ubN8769evd8PCw9/cPfOAD3nXwjjvucCLi3vWud3nzvv71r49uB0Kcc45PbMgux/Lly73pAw44QC677DL5wQ9+ICIia9as8dr/8i//Uj7+8Y/Lt771LXnpS18Kx77yyivlRS96kTzhCU/w/tVq+fLlcs4558i//du/dSQAIiJ/9md/Jk94whM60y960YtERORXv/pVpe82d+7czufR0VHZtGmTPOUpT5E999xTbr/9dnnjG99YaVxCCCFxLrjgAnna057m/Q35SZxz8pWvfEVe+9rXinPOu16sWLFCrrjiCrn99tvlqKOOkq985Suy9957yymnnBKMkxqBLCLyzne+c8I+X/nKV6QoCvnABz5QaVlDQ0PyjW98w/ubvsZprrnmGtm4caO87nWv875/s9mUI444Qr73ve9Fl/Ptb39bRETe/e53e39fvXq1XH755ROuJ5m98MaG7HLsvAC1Wi1ZuHChPP3pT5dGoyFXXXWVNBqNIMVm0aJFsueee8qvf/3rCce+++675cc//nFH72x58MEHveklS5Z40zsvAP/93/+d85U6PPbYY7J27Vq55JJL5De/+Y045zptjzzySKUxCSGEYF7wghdkhQc89NBDsnHjRrn44ovl4osv7tpn5/Xinnvukac//emTSsBstVrypCc9acJ+99xzj+y///6y1157VVpOs9kM/vEwxt133y0i4z5Xy/z586Pz/vrXv5ZGoyEHHXSQ9/enP/3piWtKZiu8sSG7HBNdgHL+BcxSlqX84R/+obzvfe/r2p76L3r6hiSHU045RS655BJZvXq1LFu2TIaHh6UoCjnhhBN6GulJCCGkOjvPx294wxtk5cqVXftoj8xkGRwclEZjZuVB7dwGX/rSl2TRokVBO19lQPoBq4rMGg444AApy1LuvvtuecYzntH5+4YNG2Tjxo1ywAEHdP4Wu/k56KCD5NFHH03+F6sUcm60/uVf/kVWrlwpf/d3f9f527Zt22Tjxo09Wx9CCCGTY2eSV7vdnvB6cdBBB8nNN98so6Oj0XjmyfyDnF3Wd7/7XXn44YcrP7XJWZaIyL777pt9zdx5vd75NGsnd911V0/Xkex6zKzbe0L6yCte8QoRkSC57BOf+ISIiJe2svvuu3e9WXjta18rN954o3z3u98N2jZu3ChjY2PZ67X77rt35p+IZrMZPO351Kc+Je12O3u5hBBC+kOz2ZTjjz9evvKVr8idd94ZtD/00EOdz8cff7z8/ve/l3/4h38I+u083+9MOZvsP2Idf/zx4pzrvOyz27J6xYoVK2T+/Pny0Y9+VEZHR4N2vQ0sL3/5y0VE5Pzzz/f+bq/fhFj4xIbMGv7gD/5AVq5cKRdffLFs3LhRXvziF8stt9wiX/jCF+TVr361Fxxw2GGHyUUXXSQf+chH5ClPeYrsu+++cswxx8h73/te+frXvy6vfOUr5aSTTpLDDjtMtmzZIj/5yU/kX/7lX+S+++6TvffeO2u9DjvsMBHZYZJcsWKFNJtNOeGEE7r2feUrXylf+tKXZHh4WJ75zGfKjTfeKNdeey2MHCWEEDI5vvOd78gvfvGL4O9HHnmkPPnJT+46zznnnCPf+9735IgjjpC3ve1t8sxnPlMefvhhuf322+Xaa6+Vhx9+WERE/vzP/1y++MUvypo1a+SWW26RF73oRbJlyxa59tpr5V3vepe86lWvkrlz58ozn/lM+ad/+id52tOeJnvttZcccsghcsghh2R9j5e+9KXyxje+Uc4//3y5++675Y/+6I+kLEv593//d3npS18qJ598cv7GiTB//ny56KKL5I1vfKM873nPkxNOOEH22Wcfuf/+++Vb3/qWHHXUUV1v5kREnvOc58jrXvc6ufDCC+WRRx6RI488UtatWyf/+Z//2bP1I7smvLEhs4rPfvaz8uQnP1kuvfRSueqqq2TRokVy+umnBwkxZ555pvz617+Wj33sY7J582Z58YtfLMccc4zstttucv3118tHP/pRufLKK+WLX/yizJ8/X572tKfJhz70oWiWP+K4446TU045Ra644gr58pe/LM656I3NJz/5SWk2m3LZZZfJtm3b5KijjpJrr71WVqxYUWl7EEIImZgzzzyz698vueSS6I3NwoUL5ZZbbpGzzjpL/vVf/1UuvPBCWbBggTzrWc+Sc889t9Ov2WzKt7/9bTn77LPl8ssvl6985SuyYMECOfroo+XQQw/t9PvsZz8rp5xyipx66qmyfft2+cAHPpB9Y7NznZ/97GfL5z73OXnve98rw8PDcvjhh8uRRx6ZPdZEvP71r5f9999fzjnnHPnbv/1bGRkZkSc+8Ynyohe9SN70pjfBeT//+c/LPvvsI5dddpl89atflWOOOUa+9a1vyeLFi3u+nmTXoXC9fvZICCGEEEIIIVMMPTaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9fbuxueCCC+TAAw+UoaEhOeKII+SWW27p16IIIYSQCeF1iRBCdm36Evf8T//0T/Lnf/7n8ulPf1qOOOIIOe+88+TKK6+Uu+66S/bdd184b1mW8tvf/lbmzZsnRVH0etUIIYQAnHOyefNm2X///aXR2HUe6k/muiTCaxMhhEwXWdcl1wde8IIXuFWrVnWm2+2223///d3atWsnnPeBBx5wIsL/+B//43/8bxr/e+CBB/pxeZg2JnNdco7XJv7H//gf/5vu/1KuSy3pMdu3b5fbbrtNTj/99M7fGo2GLF++XG688cag/8jIiIyMjHSm3eMPkBaf+X5pDA31evUIIYQAym3b5IGzPiLz5s2b7lXpGbnXJZH4teloeYW0ZODxQZqd9mLAv5wWrXibNFuqn2lT80nT/Mtkc7zNqc9BX/Mvmq41Pu3sv3aqYZx5EuXs8nWz7dtQ0+AfVO0yqlIgsUmpF+j3K0o1bYYo2qU/redtm76l6ts2y2irznZM3Vb6bTLW7v5ZRJwepz3mt42p6dFR09bu3k/Eq18RkaKpa9a06ToNalbXs6lLXW+mzatFUM9hzRagzZ/06q0BatbWM6j1nmDr0sXbdJ3auvfqWURETRdt21Ymtdna82vdHAjt+HxevdmaHR1T/drRNil3tI3JqNwg3066LvX8xub3v/+9tNttWbhwoff3hQsXyi9+8Yug/9q1a+VDH/pQ8PfG0BBvbAghZJrYleRWudclkfi1qSUD0ioev7Ep1A/BwtzYqGnbJg3V1oi32RsU/UM068Ym+UfiLL+xKcp4X9PZ72vavLsge7MUb5OGamuYH4JO9S3N/i3UdPADXf2AtNu+MDcvifUsoGbDetZ1aW5smv24sUF1uQve2NgbFFWXRVDgaW3izI2NxNtE16WtWb1vQM3qGt0xrffL4/0eX92U61LPb2xyOf3002XNmjWd6U2bNsnixYuj/d1MvtbO5HXbFQDXsemmmMHrNpO3G4nAc8m0E702NZqdH4Tev3DbC66+qBfglz6i4g+qXt084GXk9E3sbLuBc5ceE97kTAfg++of0+Y+KnkMiP2hr2oveDoYzBv/oW9vCqaVIu0m2jIVx0VV9PHUq98T9vsmf/t+bCd7DlR1Gpw79ZPpzocy+HeAGD2/sdl7772l2WzKhg0bvL9v2LBBFi1aFPQfHByUwcHBXq8GIYQQIiL51yURXpsIIaSO9DzyZs6cOXLYYYfJunXrOn8ry1LWrVsny5Yt6/XiCCGEEAivS4QQMjvoixRtzZo1snLlSjn88MPlBS94gZx33nmyZcsWedOb3lRpvL7Iz3ox5jQ/1ZxJsrwpkWJlyBQqU3HMfjxG7s/363/RzGhZXkWm5Fgr4tr/9DF6sia7JL26LhUDrY7fwJNQNK1fIa7tF+CJQFgPjFlg8jiV6YtEJbGtV+cV/R2shM1uX93csL6HxJVD2yzwvIC+wCtSaD+KCSTw2syJDMongaTNrif0PVSt2Ypysyk5DjQ566Z3jV1PXYvBd4hfG+y1yd8XgYksPp9dVz2KJ5/MqWddT9ajptbFnjv1xOPLLpwTGZEk+nJj82d/9mfy0EMPyZlnninr16+X5zznOXL11VcHxk1CCCFkKuB1iRBCdn36Fh5w8skny8knn9yv4QkhhJAseF0ihJBdm13ntdKEEEIIIYSQWcu0xz33lKrSyorz9Ux3vwuYEia1LSrOXHmRaHNDoWnVBWaQuoyq22wm+3+qLn8qrAVVawYQ7MLUfYpWpg/rSXyKVnP8nR6JkaWBJwG8c8brm+PP0Nh/skR+BegFii8CLRPG6vbhOu1MY6H1/NYT4HkZgoGqYbcpOpaTfTT+oDrS2pn3wXgvZWzGX4JZ2BeC2lXT89pa0NP2nTOoZlPbMuKks2KbEz0+wS6r6vGB66I+J0YXW8IIZ1C0sC7j/pvKvrDgvVv6/Tfx82NwGHap2cKVyR4bPrEhhBBCCCGE1B7e2BBCCCGEEEJqT/2laKlPJLPekpw6ZsZz6ymWyU07OY/0K8bc+k9V4xsq2E1V5Wb9iB7NGSfnO/ZkeRl9AX0v4T7I4rKGzKmv/G47FpFY67uCrHWmo+Oe/ThTINHIke40QRR0I3F5Zj4H2yL9uuCVXo4cKGMZyUMCSZmWplmpjhfNL/Ft8fhCxj+C7QbbgghpHXMbl5sFsh5vDHOct9RPORsFXerr6wT6J13PzXjcM5RdBvOp79ujmo2OIeE+9MexbfFx0D/796KGCxsfriSTztRsgX58oIhyWyfefGZab4xgTNW5NGPq/W2WV6gahlemhJotJqpdPVxyT0IIIYQQQgiZofDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3199ggUDwkkkginXofPD3V42KnV09fQK0/mDEnkjb5K8Y72ihQb3HIH9GvzduDSGe466u22WWkd62+raa6hHvlf0ms7159Pbg45L9B/rW6+vemm2ZLpNHFY2MokFcGeRK0Lh34FQJvQRN4EvQwQVvcg4CjXf0m7GUAy6gIPK/rYre7CHkZ7JB629jjR3sk7HHntZkV0P4B5KECFC3z063dVoszY1b12Fjfg+fvAnVp2hyKNm+k1ayz88FatzUbWU87jerZ0oMazoko13Wa5Quz+0JlTBfmCzsVBR54qLRPCvnC7PlK9wv+oMZsm7rUw+ys2QmiymOzE0IIIYQQQkgt4Y0NIYQQQgghpPbUT4oGJWTxpizpWcVlpD6ezJKQTXdMNHrJeer3mEACkyxpq6zrSZepeV8JyeIqS+YmIFV+VlFuBsuiR1HQfVFIZsWHT36cCSPfUS3oJnROqirJRGozysv6TtFqSdGRooENjqQ7QKbmwNvn9XyBPMd7izqQkkCZGFgXESMPQvG8dhmSBpJRWfTiTDfvvG43k8QlP3C9bWK3GtiZ18jra1qgDgVyncTTSoja9oWSpYmIkfVM8G/Z6C3yXnx5XD4J5XVQdgnms6vtSaNAHdq+qJ6D+UAbIvE3SxhDHj9+CrVLJ5JPelIxI/EqwHmgUNvRmQ0OL6lNF++HIruR9M1bwI51KShFI4QQQgghhMwmeGNDCCGEEEIIqT28sSGEEEIIIYTUnvp5bDJI9tXk+Gagj6eiuWEm6+J7sW4T+FEciqT1hulZTqga1Ohc1TKqRkGjxN0JO6P5En01lX00k/HNJEdYJ/abDFWXATT7qG9Yz2BdgOTYGyOn9qAAOudLkSRaTRX3jDw2aX6FINIZeBI8X431FsA2tLw0D0IwDvQk+E3eMnJO49Z3oRfnpRgb34H6HMRCazuI9TlYz6VusxJ/HasbeJPGF1IY/432L+TYAb2+wK9Q3dhn5g1ik4EXC0U6gzbPH5PThvwv1vvlHYd+V4f8N5qqnrHUc7OIuYabulTbIvSTmUWqYyE41r24ZztOD2rW7IuiDepS+9vKhGcs9NgQQgghhBBCZhO8sSGEEEIIIYTUnvpL0dDjb68fiHTOkIkly80mo5qqKmmbTnLkVjmyPC/KNv4MNpCppeZm9kpS1iOSl5GRUO71zZGb9Uu25o0zjQUN6mkycc8Vy80fw5ZzYtR40DRTzxd1ZqA1LkVDwJhZEI+LIp11JCtsQ1KhDKkO6JslNwPyqMo1mhq/byOjU18vMEGTH4lrYnWj/XyZT1asrt6GZTzGVxroopYhRUPR3yBSuWqkc9CGIspT61mkNxHlwXxSCai6L8EFyKtnM6aJIfcOC1P7vjStJjXbmb85cZ+dwyX3JIQQQgghhJAZCm9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/jw0CRTon+jwCX0dVH00/oqCnO77VxfWpfr8J8gljY040rjekjfvsgXB7ug0KwPOS7Kmx81WNkJ4w7jktlhWPkdhvMnhC4mpa+x3tKlLTtiX6b3K+rpYjwyjoHFJ9aMTDNZvimgl6b+BXQFHQntcAxAj3KtLZX54/G+qLfDRhW+TzJPCOA+RJQP6bYND05SNPQuVYXR0TjYx2bbvvXfd+lkl4bDxsfXl+Mlt7+nO1uOfANwP8a6FXR+J9U3009jisWMPgTRP44lCCggY/UYP4ZR0FPZNq1tKlTl2bHhtCCCGEEELILII3NoQQQgghhJDas2tL0VIJYv6qStgStULBmH2QqU0F8JG3+jxRBi16PovkBuD7a2laUVHeZp/x6rdSZ0nBpgIQ6VyAtmS5mdmGuO8E0xGmQlmJI+HVx4nkXkiGiWRq3bsF48D5wNP+oK/uF+jiplnKWldaTZFuUjQk3QmkLDoeF8hsMuJxvTFRTDOSsNl/6syKe46siwWdt63CCb1sHJ6DVGNpDxgwn42GTrxYhKcH9UXMmIU+P9jo3rZqs8enaoOSn4nkZqmgiG4kN8uQT6Jad0A+6UWbo1hqMTWVU88V5ZN6fQqwL4ImvQKoDO0x2gbLB+d4JDez8cuVa9Yl1qylW5vNtQbwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189gEfhjdlhHNrOWMVSOds5aXmtVrxwEayWn22EApLzIzoPhnaIKw8wGfgzeX0YtOe4yz1uDatshnMV+xaqQz9N8AH82Ecc9g+bF1yWnrEfCYQTUEzh+hVhnsX61VzrAhTHfJknGicc/onwlt4SEfDYiyhbHNejrDr+BJ+8F8O9YttU3ibRkXrmAcPaTnKzGNJTpA9TFoznnAN2S9DN641gtk+8YorKko7pXxfA7BNRScPJFPCRHsw6L7Z7H+LjuO8oXZ3286NhrVsxkT1nPgPYuMKQJ/s3nfybYlPhIIfI16cXa/eNdb8FunjDeJ+J6X8LyjPqOaDZahrmnBcQD8XXocG++c6QtzDXpsCCGEEEIIIbMI3tgQQgghhBBCak89pGhVZRjwMWMPIp2DR7U9GFPM08OqUdC2a2K0q8vQvKRKjiZ8U7r3rDhDpoakCGDjeFHQWTmO6V17Mh8ap1eRzlVlcRl94XyxMfpFqtzMPsFH0cxxJVF43vEiw22cOFhPtE3B4TPtkfC7IG4gIkWzgAhcT24WyJ+AFC3xjeuVI2+B5GfH8vXyTF8k3UmUdwfHEkyEjZ+79PcIInfb8fUMpoGMy1NCB5I2tcw2OHlaeY6OhrbR00jy441hZkNveDdAmWDFevbkZoGkC8gnUa3raHEg5Qz6Zsgng76R+SxeXaD6DVSIWmpo6qn0OsYXKOJ/f1NDlWtW15uVT4Ka1V2hfDJBLumEUjRCCCGEEELILII3NoQQQgghhJDawxsbQgghhBBCSO2ph8cmlRw9eaLmN9DAIv8LGlP1DWSsYBzojUES0Ira+kD3X9ET4Ukyga9jxzC6A1rxDANB4pBZUdCexrlP5oXEVPCqfpiiNKP2wLczYV9AovWrZ6DFFaBmsqKZ0TK8fkbjrOa0x50/3wQrEFsZ+m16Q6sQaYb/JghPCUHEMvJ5AI8N8At4XhkU9xx4esCY1kcDxnHAg5HqsbHA0wO8xqjrrTnnad1/YX0sbbNyXjy7HSfuZfCic5Fvx56Pgf/Gv6bGvTnWAtEzi6de1Yx69mrK1gXwhfl+rv77wnBEuW1LK2Jcv+C3hz3/l7qfaQPxy3ZbeMdCTs3qdTP+G9fQx1q1mkX2mc7XyfhRyyc2hBBCCCGEkNrDGxtCCCGEEEJI7am/FC1RquWQbAyNiWRjwSP9RLlZkM6HpGhgHNsUbalOEX866pMRxRzIbICMyetrl+E99rSSDR0lGH80naNu8yKsM2JJITlSv8S+UPqXEwUNHn/3KtK57/HPaNeDqNegLHoV9xxPPvWlaUADGsyn9yFQGk6UEkrSKFsNKVsJ/yYIpBO+NCsuz0GynjBWt6KErQnaQP1mRedWlKJBwLlLS26CWF0t2wrkZbav+mwlP2qcQKamd6GZT0vYAikckqk5cAFS17vgzFH1PAp/I4E6AbHNsJ6D+br3E5G+yCdhPYNrRWVspDOSheuaBdLKHe3qM5KpoZq166blZ0imFsjNdJOV3ukx4kW6s6W0XxTAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUzmMDdeGV2ypGOps4xgK2IY9NfH3ClEFkigBjVsQBaaXeGTCCFvlvzMyB/0Zrpe1SUNymZ1QC5oLAk6C2/TSYEJLLFPqUbMRj4nwlaJvIGwM9PhInrZx7hrfrkW56Ak018q4gr4HeF0FbbAF2MjTnxNtIz3HNhrgucc/onwmtnt3X76dr+5PjcXN8NI3unyfV16438p0l1mzVc471sehrSmHPebav2jfBboJeBrUqQeSuusYA/w3yWYSeBH0tlP6g933Veu6DjwbV6ETLQPUMj6cenGdDX1jcl5xVs9rDleUZU4u3y4C+MOT/ifvC/GvoxBd/R48NIYQQQgghZDbBGxtCCCGEEEJI7amdFC0HB+RfHratAeZDkc5em308qCdMm10dLUVDkrZgvmgTnA/htNwM5Eg6+5hRP4EskeZG/EeU9s213lui7aNMkHOb2gY1Rma2ItIvk+RdkRUFrR4V9yHSOXxsDtYHyuRAm6UPcc/J54Hg2E7v65WQ2U5+PcfbAjmhd6yBdUHbjDK1nlAOpMY9x5vgW9xBPG2/5WZhW7W+gazHkzGZttS6zJHR6vOalcd4bXGZWk7fvMjd8Y9QpmblqN65Gpx0TNxxisynG4GkzBvU9lUTOfWM5GbJbWZd4HER74slbH4bvFYgYKRz/BpevWbNOKoWK0ebBzWrfyPaSOf4bzv9HR08We6cnVI0QgghhBBCyCyCNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb/HpqrWEflvwJipkc6BflG3Bf4bME6wfDBODzw21isjQNuP/Deex8YIPV3glVHYyEc1UGAt0NpOsw1FLwNZbCxVfTRV56vYN9DgpvpYciKdkf+majQ0iCLNiolOJePYhm12XTzPXLwtrFnVZv9ZCexfT4Mc6JhVU5beWx8jU5C1vYvgWoW4Vrih8asIQFxsjo+mB74D7I2J+xMmXEail6Evcc+B70B9tpHKyH8T9I1H2TZ03+CEHN/e0Mugty/wYIR2V+DN6ZG5zq/ZGVzPQc3G+5a6b4ZnzPMfVfTYWO8T8sYIqNkGrFnTpmOb2yDaPKNmPd8o+B0Y+EahvzZsLDPeYcInNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY4NIfmeFFbOqj9a7kfiumrCtVG1mSOCxQW3BMvSYPdLMly6u6/U9Nv6XKr1sczOmXYjuYN95o7+V2Rb++0KQ5jeuf0Y+Dhd4mIAnIcvcAEDvnAF6VZSPnzpmoMdNfE/EhH0rvuOmHx4bb9cjjw16b4EBaegD3XZ0wnhl4qekYD6Htm/cmpOnDScdymYhZRePTYBXa7YQVRuoNTsffFcM8HWUqe+4sf4E4LEpm+nvCxHoV1ATwNsG36WFfAfmOzSUtyDw1Nhjua18B/bCpa/FGe+/0dsfehnQO7ACUyvw33j9UKMk/2aqXM+29sB8yb4wW4cZPhrvuADj9Oq9TN4+tZ6TdqSf+H4Y+P4z8WsR+m+C99GA5eu2DG8o+n3hvPkmvjiF/u84fGJDCCGEEEIIqT28sSGEEEIIIYTUnvpJ0YBszEqHUuVmYTxh/NlacqRzw3/upiVlSF5m221bE8Y9q2VkRD+jR3z6Kbrtp6dL+1hVPaou7WN68xhbt5dWx+RJ0+zjbxUFDaN744/Nw2enaTK16QCUJZaUld372TYU6QzHzFhGKL9yoC0+n98x3pRVF7rUrNLDHutgdbwUZduox7GP5sH4VhJEpo9yoJByIE+KZkFxsQ7IXGBsMpDOaNkYjGk2dQblZkC2Fo4TX7fkmHVwXrGSG6dlPUGbkuqMxSN3RYy8PIi51ZIfFN0bl/zY1xTovvAcnyHbDSR0iQT7yRvU9O1BPVeNIZ8o7hnKzVJrFkgyc+LLk+VeptYaY0W0zdol9LHQNtumAaSVMCa6jM/nR42DWrfXMFTPXSgztNN8YkMIIYQQQgipPVk3NmvXrpXnP//5Mm/ePNl3333l1a9+tdx1111en23btsmqVatkwYIFsscee8jxxx8vGzZs6OlKE0IIITvhtYkQQohI5o3N9ddfL6tWrZKbbrpJrrnmGhkdHZX/+T//p2zZsqXT59RTT5VvfOMbcuWVV8r1118vv/3tb+W4447r+YoTQgghIrw2EUII2UGWx+bqq6/2pi+99FLZd9995bbbbpP/8T/+hzzyyCPyuc99Ti6//HI55phjRETkkksukWc84xly0003yQtf+MJqa9mLWFLoozFN0H+j+8Ujna2PBnlsGsaPg3w0TeS/0cvvQ9xz20QxO6/NxG3qtsBTk34/7Xlu7Hye7hbEX8J9D2KT+xWHGy89HNsMSI1NDqxmiZHOWR4bpN3N8N/0wuMU7F4Qye4lTtoozIyIZR0vG6RYgvpCcc846ju+fWeYTaxvTOW1qWzlxz1b/IjjnAjc+Pjah1ACTwD2xphzte3b0n0l2teZXxalnq9l44/VBIp7tucV5TtwY7Zt/HMQeavarHejYcdBntq219FvA3HPMPIXeR6BlwGd46v682C6LvKVoIhy6AvLiCEHbdAXZuuyapuuYRBfjnyr2jcj4tdT4OdS6xLUaNt8X28cswLAM4Z8NMh/o78wvr7Hr0ZBPXfB+rgRk/LYPPLIIyIistdee4mIyG233Sajo6OyfPnyTp+DDz5YlixZIjfeeGPXMUZGRmTTpk3ef4QQQkhVeG0ihJDZSeUbm7IsZfXq1XLUUUfJIYccIiIi69evlzlz5siee+7p9V24cKGsX7++6zhr166V4eHhzn+LFy+uukqEEEJmObw2EULI7KVy3POqVavkzjvvlBtuuGFSK3D66afLmjVrOtObNm2qfgHJkQ7BKGj9+NnKzeJSMCw3021x6Zltb5pxtNwsmE9NNxvxjEcrU0OP+LT8zC6vrR9BFnGZWpg5aNct7f7aRkG70tMVmSHjMcICoikh/ZKmxQikCCCKOjU6sWKkc/gmZNsXRUXGl5/cZvBkW0Auatv8qFUznyf3snIZIxuIr1p6nQAVZNb+BaU+JdLKGUa/r02uWXQkW8nqCCjdibcheY6dL/kN6yg6F0jI7HQgARrQn83xo+Yr59g2FduP4o9HjWxsVI1p5DkN1deNmjZ92TDz2e1WgJhdfR21Kmn/LfLpMjVPKhucD9V3QvHOfdKfptYsjnsGcjMU99wj+aStZz2Ort8d02r/2uNA1bCVVqJIf11PDVuXWj45CraT+X62hvU4BTh/BK8d8WrWLAPGPat+zh6/ul/8ZJkU95whRat0Y3PyySfLN7/5Tfm3f/s3edKTntT5+6JFi2T79u2yceNG71/GNmzYIIsWLeo61uDgoAwODlZZDUIIIaQDr02EEDK7yZKiOefk5JNPlquuukquu+46Wbp0qdd+2GGHycDAgKxbt67zt7vuukvuv/9+WbZsWW/WmBBCCFHw2kQIIUQk84nNqlWr5PLLL5evfe1rMm/evI42eXh4WObOnSvDw8Pylre8RdasWSN77bWXzJ8/X0455RRZtmxZ9UQ0QgghBMBrEyGEEJHMG5uLLrpIRERe8pKXeH+/5JJL5KSTThIRkb//+7+XRqMhxx9/vIyMjMiKFSvkwgsv7MnKdgVGEoJcXS+22TR5Ppr44gL/jWpEkc4t67EBPhrbt+X5b/w2z2NTxNsQVseo9dhjRgSr/TdjZvwxEOlsNce+RDQ+nzPr5mmcgx0Vj3T29cBWyBydAP0mIEMbinZTaqQz8qoE2lkUp6rnA56aCZcBtbvxMZN9Q4Zkj0KGj8UZ7XCpCiBIqAUWLq/NbAutnYY+mhwPVWpbzZnKa5NrhZp7kdx43HiRJMc9I0+CbVM+hMCDkBh5K4J9NF7boGkbVMU+aK5/Q+MniEbTP9GU7fEVaG/zV6YcGf+SjRHj8YTeDeVzsPvMemX0brKXJjWzjdUtwHHun/NAbLOdD/hGi3hTdPyuJEeU2zZQz4lxz9PuCzPeLz1t69mpGm4M+b9gmq3xtvaY/6XKkfEVcCO2nse/Y9Osp/aFifHf2J8+AmrWm7a+Uf27F3lq0e8LEF8eALw5XbujsQxZNzb24t6NoaEhueCCC+SCCy7IGZoQQgipBK9NhBBCRCb5HhtCCCGEEEIImQlUjnueNjIe9/tt4NktkiOZtkLJv5DcDEU6W+lZyzx+130HTJuWog004m0tox3Ssi0U92ylaGPq2W3TyMtGi/E2G32tCdvsq5DH19umbzr1rNpub/30P3iLvKcLjEucgqIpYv1EnI4B71V2bk5sJyrZihI2KCFLfXu2TCA3A20NtRNxTLRZPox7VrGoZt8nyxsmeADQUBuylLg0ACWNV4+itm2oaPUChPSAsllI0Zp4Y1aOx9XTOXIzVc/oTe0w8ta2WVmPjsCd47e1lVzHGblZsdv4mX3u7iNe24I9tnY+77/HI17bbx8d7nz+f4/u5rU9tmU8sa5smBXVmpsMmbKYCF7vMmLjtT05u5X1qM9WpgbOuVCKBuL+syL+EZWlaIltoJ5LE9ssXpuZL0M+qdvbVm6G5JND4zugmOv/nhrafXvn817ztnhtT1Q1rOtXRORhVcPbtvgHUNlUK9ow0kpwTWvYwgRSNN3VqiB1DSMZZFCz+rqV8coG//fMxOfT0q4wgE9sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqZ/HJgeg+4z2E6urtXpGHQUdb2uatlZT+V+Ap0bE99XMMT4av813pGiPjZ1vUPVFHpsRI7Iec+PjbG/74lXPtxP4ZlQ/EP28AxWBaESavp7UF2xq/01pPRhe/KQVfiq9aq+sMiDiN2+gyKCon5mG3hygjw3GTIxwttPQR9O2bXo+sw8T25CfwLbpbeqaptbUZKD3BgQeMhB96m1vENMZyOITPVQJ4WBkkpQtkSLhypka/xz4qWDccwHa1GfkSbCRt7ptwLSBSOc2iMDVnhoRkd32GPfVPHHY99G8cO97O58/tM9Pvbb3P3ho5/PNrQO9tt8V8zuft4pP6f20ARs4dMH5U+A3BPLf6Gjahn3dQKp30e5f5JVEHryqpPptTN/K9ZxxHocRzsgXZutb1bD21Ij4vpqhPXxf2H57bup8PmLBfV7bh/e9o/P5jAef47XpGl5fzPPaHtPrFfw01xsueImAmVZemYpR0OHrHYD/RtdwRl3mXrfKjLhnPrEhhBBCCCGE1B7e2BBCCCGEEEJqT+2laA7m3IImL6oxPQrae/xsY/e0NMvGPatpJD0T8WVktm2oOdq1n4jIYFNFajb93Mq5je3Rtsfa489nHzMZnrqtIeD72m2olAjb/ZYgUtqpbWNfPt/Q0iEbqYliudW0nQ/GfaYqkCajN6sqG0icD0aIolIHj5hhFLOZbth4U1WmjTFTQ1puZuZrjLpoW3O7ervzHBONqaJ4SxvL6z3+9tu0JMfWuo109qSHweP+eH2hZOZUOSFKdEYEJRtXEBBAqhStcnQukJt5sp4c6Q6Qouk43EB6ZmU9Ki7XzTEngUElkx7yrzHDu40LbQ6c9/+8tpfP+7Ga8lfulfPv6HzeMDLfa9s6On5tGh3159ve1q8w8FfT36hY1qNlZPa06h3aVtajzmtBrK4eyDR6MjWrzwHnB4fOHT0iNdLZxuhjKZr6nCGfRPHltoa1vLI0cc9OT5t6bqkanr/bNq/twD0e7nz+o+Efe22l2lHHDt/htT20fVx+tm3MyP7Hxr/kdlMXXg2jk4KIVwBWBlmC61YD7Cd9nXbBtV/J1FBdmgPRRSe6QykaIYQQQgghZFbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21N5jkwzUwce7BhaMVB+N8d/otpaZD0U6Dxk/jO4b+GjU9Nym72zZozkeVziv6etFNxdDnc/WH6G9BtZ3gMiJy/UCna3/Rgk6A6m055fw79F1/HOBfA6B6STyecdA0ndS/TA5sYqepjveBqNHJ4h7hpHOylfTsG3aR2P9N6PjCw28OSNa9OuPWbaBWFgRRkwm6unF/x5WQ+9pykFEbOit0BNmTOSvSvTm0EfTG1yzS4y4dPHyaTJqBFlAoCeh0f2ziO+jCfw3Og53Qr+Cmh4w1z/lUZgzx4973mMg7vHcVI5ff/70nhd7bW/d7987n3dv+ZG7uw2MjzM46I/ZVn6F9pjx4OnvGxwvcc9Nw+4M9RXR+SL4DYFi9NW09QD6bWY+9YecqPgA6AsDMfap9ZzhsfF8YaCey1bcU2PbXVDP6hozx3id1fTuc/zfU7qGN6v6FRH5s3te1Pn89v3/zWvTNazrV8SvYV2/O6bHN4AzPqGghkGcuf4tZK1Qnv+mTG8TVJe6zS5Q90uoURdcaOPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFA49A87Q76iOUmxkJjJq2q6LlZ00rU1Nj2ghn23dOY0x99vv6cjMrRRt/XKqlZyK+/Gy4ad/T3HuspMxrs9G5qm8oRVPRp+Y5J4ouTI3sdpPKbZ5GMqRK6DDwZExQphZvs9OB3EzHPY+afaFlaqP+oJ6EbcQftLFd6UCCXagf49vn5o1oiy8f8Qe1Es1StVvpnX9usfnlup7NbOit49GJLtOkr5TNQgobI94NIM9Bklc/OtfMh+RmyW9qN7WsJT+BrMdMq3kL07fZir+mwF7jNOvHhjuf73jgSV7bg/uMx+Paa8MAeC1CQ02XA0aKpqWqZrVslK3z5KlWpg2kWXp1bFsZ6Sf+PrTnWK8tiNWNR+5WBdas7Zsqn0Q1a9tA3LMnL7PyyUBqqcYx9SxqnGbL3+C6plqB/mqc9aN7etM/un+8hh/cd57Xpmt4AFgQ9LEk4tewV78iIkZ6p68r9pjRdgL7O8y7/pm69NrQbwFwTassk368scx4DMMnNoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9tTCYwPsGskgH03gwdA+msCfEffReG1mPi8KurCeGhMzqLSWg00/NlNPDzZ8j81uymOzm/HY7NYYn9694beNKgFr2+gutQ7T6jW9Njiff/88Zr5/qXwHTSOkdGq7tU3cn47bLkurF1WaY/FxXj/TBuOepefkxDYjIWp1H01c6Ip8M0E0dFt/tm0u2qa9K0Gk8/bxQRuj/goUynPTCA9u9dn8241eRobvoTTL0N8/iBPXumKrGwdtnuY4oy58/40taBpweo0X95x4TkB+haAN+Q6A/wZ5ErQ3xnoStK/Gxj1bz40oH0JhPAnN5vj0QNP45VQBjxkTxMPtPcaX/9BQtG3MfKmGdy3217Ol1q1t1tMpf5Sz1xtzHdGnOXu4ligKWo+JTk8gCtruX+Rl8JaHDnnblnNNS/SMBb4wVLOJHpsg0hnEl4c1q6aNv0zXcMPUbEtN29+BI+pAebi9u7+83w+qtj28Jv1bqGHG1MdM06zLmFpPN2B9yOZVF6qGG9aXrHZG8PoO9J4T4BlDvjDvXFbx90ynu/WyAvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT21kKIlkyMdQi/RLVzXzyL+40PbpuVmLSNTa8E2/xmbjhbU0c922sY979bY3vXzjumRrp9FRLZ7UjTzWFM9Z2w3/Tbdt22eTevpshmXqYn4UZVts230OFZu0NZSKdNWlvH95GsBQBtiErK05FlzYn1TJWwojhHGPbtom223bVpiFsjUdNuYkXaq6cJK0UbVcWHqq1DSxlClVnTtZ/sG8wFZCJKT2DhZLXMVI3vxFAUVH9unxGaSyVG2RIqUK2dipHNWG4h09tqsdEfLegKZmpowUh0x51Ud8WzPuU0g3dGMGL3bo+1x+dmcR/wv/MjYbp3Po3bF9bLNdUOvW3Bt0N/RfN9AxuTJQ83O0NsUvOEdxcH3Q9YzJXHPFesZxpfbmGYtnwS1HsrU4hHldn831LSVf6EaHlMroOtXRGTgkXibrf3Y8uy66Bq2ce12WkvvgppNjXsOfvdq+aZZbz2doYROllc/TkkpGiGEEEIIIWQ2wRsbQgghhBBCSO3hjQ0hhBBCCCGk9tTfY5PoowkinYGeEGntUcRkE/lvlBCxNUHc86Dy0QyYvrptyMQ96/jnocJv2115bsK451bXzyIio42mavOFrnraRkHrSE8b79wyouOxxvj9ddMIOHX8cxv4nUqwD9G+h1HifYh3nhCwQsmRzsBHg7wbyGODvDkifhy0jW3WPpMg0nlUxW1aj81oosem5ddlofT2hfGFNZQxy/n2NSmUkaYwmm6rk/e9Oqa+1D4MYptBnCvUyYMoaH/Z0dlIj/DinjXgfJFznkERuH4UdNxHA/03wFcSeEyA56YArzuwUbaaMfOlNisfwsCj/sbYWs7pfB4xHht7zfFWU58D7Hqqc0KwLcr4ucs2oYhn81IBvwm9UiDRrwDPD6Ypx3OTWqeoX1bcs67ZnHrWNQuizUXEr9nAu6J9YWY2sOG03+vRsUGvbeDR8c9b23O8Nlv7seXZZesoautZdnYavMLBNzxFVyVA/74q2vF6zoooT/UMR8ZG8IkNIYQQQgghpPbwxoYQQgghhBBSe+ovRdNUlRUFUiUdFZn+uF1P47hnE+8MpgeN3EzLz4I2JT+zMrUhJUWzMjWvzQ14bVpupmVptm3MvMFZf4eWeYYYTo9vm9Eyvk1tpGdbx/qaZ+N+ZLd9dIpkAqANUXW+1CEtGW2ehM3GNifGRKN4Zztt2xrteJs3n42CbqvjYsxowXTbqK8pK9Sj+caYiS9XNWNjYLWEwT5uD+KeEyV8tg1FOnuxzZN8bJ/URirhGmo/Jh7qvXtTu9qhUNbjt5Wp0h170gHxuEHcsz7n+qN4sjEb26wjcFtb/fkea49fj8aAFM1ei/Xy7Xpq6Wgo9bPfPy4rdfoPSJtlt6n3FncgU7PHLpL1SLytZ6cAJEVLjXS259zU+PIg4lhNBNIzs3x9Xrf7F/zW85ZnpfZq5UZK/zdTa4uoNiPtB5HlXs3a35aenM7Us9027fixbl8/EF0DGPVt5ZuqybzCQMD1Dkoru+AY90wIIYQQQgiZTfDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189jk2BeQcM/zYJgmoBXWEc/W86Gnm0HEsfbY+G020nkA9m13/Szi+2oCH4323xRjoM2fT/tqthn/jV6+Xc9BlaVrtdE2/rmhxJd2u+lt2jY61waShIJ9X4B+ztOZBsGZ0TERlb0yGX2TvTJAt418NDAKWkwcctCmxjFxz4WKXxYb96ynSzOo9twMmPm0xtiMKS0V6Wz9Pm2gY4Y+GuPH8eI2TZu3L0ztqb5Zsc1o35Oe41o7/puwX2p0buCxiXtAvGnQFkbeqs8ZbUGUuedJiLdZtB/GRt5uVz6E5mP+GGP6lQIZ598Gur57kdXW82GjdOPnQC9mNzDFgYuTHiPw94I4Xr3ZkFeiX+eAih4b6AsD0eZ62yNfGIp3ttPWK+l5V/wmr55t7WlPsfXRtFQNW/+NPg5QXLk9lrT/p2G+RBn4wvT1xwysPWOoUAI/S0X/DfrtkRk9zbhnQgghhBBCyKyCNzaEEEIIIYSQ2lM/KVpF7KM9JEfST4ODGEkgU0NvjvXij61MDcQ9W7mZnrayMa9NRTjbvkNWwubFRPvzafkZkqmNmmfF+lGt/X4N++gWREPr+Gf0qDjcT937BQQyxPHPUEEW1FMfIp5TpWemL2qDUdCoLYhpNn1B3DNs0/Kvto10Vm+FBnHPts01VVvLr6eGkqa1zRubC1XCUGpn+ubEZLvEfYHinrNkagjK1irhGl1iVLv1S3zFQFbcs5cJa9p6Id2xseZAbgbPqwArwdERuK1t/pgj7fFrhX2lgI3gTV1Pfa2AMh4RT/IV7HPdtWnXRTXaN7XrcYKLmtpP9vxQpsnbsuLfs6T9ahi03jnySShhU5+RfDL4IRaXU6LfejkgaWVrZHwZo6YNySkboGYLIPcK5ZT6eAbSSrMuwTXHbx3/aCOdvZWJzxZeJ120qVsNBzUA4BMbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7di2PDdQlmq6pcc9An2t9HXraxh/rtgHjOWmacVCkM24bj1geEDQfiJAO5hvr2s9ON4woUn//ARPVa7//dqWxDrxJal1HwfYONalp+zdLZFx1PksvvA3AnxG2ue79bN9A0x0ZX0KvjOcBabt4Xzufqg07nxfx3PZryGn/jWnz50PL8/9dB3qB0LaxfhwQ24y2aVX/TdU2Ug3XcL6OfeffE+Od7XQwXyPe5vsVjLa+qfvZNn2A2uWpug/8CWKmU8+rPg7E3GqPgvYniPgeBRSPiwjWq4h/X+ud9DwK9uvp7Q3NK/YclOZRCPx5yH8DfTVVr3FgmIy4Z1TryEfjeZpghDTw38hEHpv47zmNrb1SrfioeZ1FU9WwfdVFatxzAxxbNmbd+sT0qwocuE4HNeTVM6pRO6Pqa2PIU/1eCdemFF/jTvjEhhBCCCGEEFJ7eGNDCCGEEEIIqT28sSGEEEIIIYTUnl3LY9MHcjSZTSWKDTwnsC3HR6Pbxry2OaptjplvjhI/Dpjl67ZgPrA8tJ5NNWbDvrcHTNtto7d30/iWCvVeA+yxARprq/n1Xt7Sm3fTQJDnpSKV32ODfDPBe2vi07ZNvHfVmH2oPTDGi+W9n8a0yZiqxXLAa/KWYedTvprCiIz9d+qYbWHfU6G3DfDRwP0L2nr2rhrSe5oV3mODPAl2RuRXUHr68L0faiS7fsCbA9tyzquJWG9BW003zXtsSs9jk/5OEOyxVJ/BO09EzDa1nhe1OoX5TqnvBIHvEsl6Jwhoq3r2CK6NoK/2yqC2YPt277djWte6rdm4xwb6xEA956BrL3iPzbayaz+RdJ9YjmfY/g71fsNY3xKoE1h63h/sAQX8ew6c6HI9NhmPYfjEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thQNPL4T8EgdPZ5EEcN+FHQ87rnViMvLRPw45IGGlX+NT1vZmB/NbOdTUjSzLfy29OVpuVmwnm68tAZKf76RjG3TAFHQ/vb2miYTxjxzQKqQDAlb6nxAsdclCto+x1bHhZV4IbkbiHT2npu326atjLehMUG8tI7JnEzcs79N7TggClr1DeI2kUyNOrUpxSVK0bx57B+ATM0BuRmS9cA2XTRAumNlPPac68m4gvOxRNGSHCsp05G4ze3+weTF41Y8q0NZj+2LpGj2C7pIPzEx6znRuToK2p5X9Gx2VVLPARP1S4wsz5JPFon13IzXc/BP8AVoA7UPZYlZcc/x2ObGiHpFBYh7zsH7ukaS3zZfSkvvgrhnFF+O6lmtgY02L1TN2q+nr6NBjabK8nbORykaIYQQQgghZDbBGxtCCCGEEEJI7eGNDSGEEEIIIaT21M5j45ARoKKxItDgqs/Iu4E9H7ZtXBfZBPOJ+JHHTaNn1H4c6+MZEBQTrSOdi2hbMJ+A5YG4Z/0dwljs+LbJ2aaeTB3oY0ONtZ6w9VQPd05OpDOaD/tv4r6ZwHOjo5IDH40W75p90Y63aX+MM14ZbzqIkAZxz3rStrl4ZmngufEinY3GOdULhfTuYD+h2RgT3X9ckSgP13J24PGEsboo0hm12eVBv0KaF3VHe9yfkkoQgaumG8ZjM+bFPfcqOjfeZjeAngx8S95k3H9jj0LkuSlU3+Dr9SI6N2enJfptRGzNOtBm5kuuZ+sVifvC0O+5HD81AnlsmqNltE37yxyoX/Q7KIh7ttu71NvGDKx9nKiGbAw5iij3zDngBzP8fSFRdjYFHiwAn9gQQgghhBBCag9vbAghhBBCCCG1p3ZStMogOZIBRTrH+tlpJL9qSHy+HX3j0rCmJymLt1kJm54eMPezOrbZzqeXkbM8XzIXl9rt6Ds+zvYJZHpV2iqry8DbwqcCKDdD5MgUwNP+nHhpr29p29S+MBHL3uNoEM0sJjLci3h2VlIGpG9qTGeiOLXcLJDeBfHWRbyvt01B0WTsC6BswTikBSBVcI3Et2Cnys3AeSYr0tmTm4ED1F4LgeQnjMdNl/ymouU6je1t0DMdFD1doG0BoreDw0dHM9u3v6t9YaU7eiAYBR3sQiQjisfIVwUq/YKLhZoPRDPDegZjhpHOaesiYuSTqXUxAUiKVmwHOd0A9HvG/w7px2hhDgQv/jmQqUU+71g51WSXryPKzXHgjRmXbAffvMumSDrnPg6f2BBCCCGEEEJqD29sCCGEEEIIIbWHNzaEEEIIIYSQ2lMPj01V0WiiJyLVb2OnA68MiDj223wNZlPiMcq2b0P1bYD5BoJoZv0dbNyz/myWV6QtL/hOwCfUapho6HK8DOE2Bd6kIAo6Va8a7TUB/fLbVPTRoEMEtwGhq5aiB74ZsD45kc7AD+N7bECb9eYo/4317TgQYe3pj7O+L+hbcT+laI7JNNFwoYelC8k+GhSxDPwK4ZhxT48ex8bj6r7BkEDPjzwBCBTTbD02yMuQCvpOE3mI/FcDGL+C57+Jx9xaX4nnu7NRvWrGwGcHzyvAf1MVZP+BvjDbFq9nFPcsKO4Z1HpY38ifkraxUDRzab5wY/vYeBuINkfkvb4ix0+nJpytZz1hFup5c+K+HevpQb8LYJ122d45hz+f2BBCCCGEEEJqz6RubM455xwpikJWr17d+du2bdtk1apVsmDBAtljjz3k+OOPlw0bNkx2PQkhhJAkeG0ihJDZSWUp2q233ir/5//8H3n2s5/t/f3UU0+Vb33rW3LllVfK8PCwnHzyyXLcccfJ//2//3fSKzshGY+qqsZWJkdBZ8imwmkdo+xrYnTkchNI2mz8csPrV4A2fz5vTLi8uIQNzWf7om1RdZ/lxDjqvlOh/slRc6T2DeKH0RipErZgPiuv0BIv0Neum5aKQZkakpSlxz17j9SD7xAZQwRKyqxMD8U29yTSuaoyF3+lXYZ+X5vS457BGJ7EyewJL8rWLhvIzcDb36F0R0vRMl6LkAOSkem2YjQuResV6PuGnfVnu03jkjL4FnfVtyjN91NtzrShLTElqe5ABplaz0HcM9y+3ccQmaBmJb1vVZA0Tddwr+o3T5qmPpu+Dp0j9GRwfotHOntR0DmvPkC/L7p93wT5b6drck/Fo48+KieeeKJ85jOfkSc84Qmdvz/yyCPyuc99Tj7xiU/IMcccI4cddphccskl8oMf/EBuuummKosihBBCkuC1iRBCZjeVbmxWrVolxx57rCxfvtz7+2233Sajo6Pe3w8++GBZsmSJ3HjjjV3HGhkZkU2bNnn/EUIIIbnw2kQIIbObbCnaFVdcIbfffrvceuutQdv69etlzpw5sueee3p/X7hwoaxfv77reGvXrpUPfehDuatBCCGEdOC1iRBCSNaNzQMPPCDvec975JprrpGhoaGerMDpp58ua9as6Uxv2rRJFi9e3JOxNUjpOKloPUWqV8R6TEIPCvLjxH003nxBmxrDPKjz2+JjBr4d8H3RulSlaqRz2NaT1ZlZpHoyUj01pq/17eTEPXvTgR8l7nnx9LpB3HO8DUU6Q/8N8AnBcapmf2f4nSqPOUuY0mtTIZ1dniyhR/4BGJ2b4UkA/hvoM0DxsGC6ql/B+g48j42Kys0dR6PXzV432l6/+Hw7ppV/AMZrW69MZIGmzZkD1vPc2Cho7xxr/DfodJSzm6r6whLrOa8NGBJRtLkdBv0WwLMmYSOcrU+s1yAP0Y7p+DFaeCeCuGcsq9Yl7Vpoa92LmU85kWboy7KkaLfddps8+OCD8rznPU9arZa0Wi25/vrr5fzzz5dWqyULFy6U7du3y8aNG735NmzYIIsWLeo65uDgoMyfP9/7jxBCCEmF1yZCCCEimU9sXvayl8lPfvIT729vetOb5OCDD5a/+qu/ksWLF8vAwICsW7dOjj/+eBERueuuu+T++++XZcuW9W6tCSGEkMfhtYkQQohI5o3NvHnz5JBDDvH+tvvuu8uCBQs6f3/LW94ia9askb322kvmz58vp5xyiixbtkxe+MIX9m6tNX2QFaU+YkexzQ0rL0Nxz+BZsZWt+fOhiGUjDVOPD5vmUaLfBuRmVkLnydTi6xKsd7Bu8e2W+nZr1C9PsgYe1aJiy6nDVGlAjmysyvh2nJxXVhv5lyfVguuNZGpxuVkYI1lG2wogU6sqi8uJX0Yx2UWqhC1Dplakbfpdmqm8NrnChRKxbkD9c7wfjnRWbcEb3iP97LSVrujPk5D1pJ6rIaO+FE2/1R1KzzIWAa/vYLsF20ZLyuy6of2k5WZg3wdR0H5Pf6qITYTLqAySf/WinsGYwbYHbVVl6I1ebSdVw72Ke85ZtyL5PBCPGg/jl0G0uVen6PeUadKLS3gXQdAHUPk9NjH+/u//XhqNhhx//PEyMjIiK1askAsvvLDXiyGEEEKS4bWJEEJ2fSZ9Y/P973/fmx4aGpILLrhALrjggskOTQghhFSC1yZCCJl9VHqPDSGEEEIIIYTMJHouRZtJ9CLyF/loqhJ6TJBXBvhaUJuNZlYCRxv3rKdQhLRdntcvow15jEKPD/AmQb13tGn2UbFkU30zcD4R38uCfDzARyNlaZq0Ft3Unp4PRjobnXp0IsRPIrXLKLr2s+Mi+TOZwai45+DvaB6FS/UroHFA5G5VT0LO6w36QTGaHvfck+WhOFzxNze0S4DoXOgrqerbhJHOPdpnOcvXEeUoChqNAyOkQV1OcCLt9+sdrI8G1XCq5wb/tvHbShjJHq9n7HfyGz2flPV+wa/kGWnS5+vW1q+4Z0IIIYQQQgiZifDGhhBCCCGEEFJ7dmkpWipVH7cjaVQgqcp4PGzlYF6blqlljamlaAVoA1I024bkZ6pvznevSs/iPnu1kIpUjXFO/Uo50ihveRPJpuKlEEq1dJuOY0ZR0EimlhNTHRtfJO87eDHSU6t7TEjG7NqXSrceUUGKBuU5WRInMB+Q50DpTkV6Ff2sI51lzH9ru32rexV6JaezkiatrEFtUKYG0nFtpDiOf+4DvZJWevNVrGew/MlslarWAliX20crrk2cqjWMpKXhiPFXXRSqLVDTpUor0RWoR7HYO+ETG0IIIYQQQkjt4Y0NIYQQQgghpPbwxoYQQgghhBBSe2aNxyZHo9jvqOCmEfMjD0oDCf+DcbWvpf/odbPr2YD+m3hfuC36EL0dsAvERE97bHCJtLTAR9MrgDdHe3qwNwVEQQfLS1+1qtArM4OIeWwMyb6DYHwUBd0Hf6AXD2uacpJde4AL/AnNni8jJ97a8yTYWF/Pr5CxZZD/BngNdD0VOdG5VemVZyy1nlHt5WzejDjzfuCMT6zX5NRsuFET45dRnDjyjCHTmAWN2Y2c3/DJPQkhhBBCCCFkhsIbG0IIIYQQQkjt2bWkaH14zNirJ7xImpXT15N/FVbShWRc49+kWTRAm51PydsyvoMGxUJPRC/kZruAuiwkY7P05el7EA2dIT+LUZo60ZI22+ZAWypWpua0tMSuW/qwnowtiMkGUa9eIq+Vwu2SVVxLXOFCKU43ct+sPckxUqU7011J8O3rY/at7b2XolUm2OfxeFxf1mOzkSP9JmrzutlzV4/yjwFQWtmLekazBXKrauNMCaPbOx9LN2caVwRvp6AJSCS9QzZLBlnxtQiT/M3CJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbsWh6bDKrG/vmek3j8MIottiAPSrPielqvTL+pup79YipiHWtJ4PmId9VlmbM5YV8UBd0rUr05qWN0YcaW10xdr9lAVU8N8mfkjINmQ1r7GeRXcNu3m78Mjrchb06/SI3H7dmY1ZZnPTf+kNVWNMlHlkJqPQfHQdryp/tabz1jblT7xKbeY5N6rFfdaoFlrPJAehDQhv4WgU9sCCGEEEIIIbWHNzaEEEIIIYSQ2jNrpWhk8lSNce5FhHPPmEnrMt1Mx6ao/BybkGmikDRZRC+UU1ArGpfuTLc8pyouiHuuCSB6O1CCTfGu0ZIyK0vLkpslxoln1WwfmO7an+oarqyItJHOKDIcysZSI53NjGh5jHsmhBBCCCGEzHZ4Y0MIIYQQQgipPbyxIYQQQgghhNQeemxqRlVfy1TTlHqsJyGTpp52BkICpt2fEMQ9Ty1THn3dK28B8kDoppp6rwJm8Pfw457Tme5jD0aNTzWJ9RyDT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO3hjQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT2Me64ZbVePe9E275nJbGGakzEJ6RUuiHmd2gjaYs6cKV2exU114m6vlpc4TmH2b23jn/X3mGHfoRio9rM6PPammOlevmaSu5S/PgkhhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7aHHhlSmqt+nnFFazhm0LtPNdGyKgtuf1Awn3TXgyJ5Stczt+Un7CWybbjLrV0yxV6YqRaumP0nM5vW2/zRveuurSW0L/Dfoe+hhcmq2D/6YafeJTXENV/120NNjB0UL0eOg+XKWN0n4xIYQQgghhBBSe3hjQwghhBBCCKk9NX3uO3mqRutpGZWVVHltGdoDJOlqV1zP9hQ//q66nv1i2qMTZypWvYKeDjfS+gXzWbWBnmhMwX7Ry2iYYytV+jbBes7Y8pqp6zUbsOfcIrUNSGd6JG/T0ih7CEx5xDEAxT0X0xHr2w/5DBwzcXlWatiHE1LPoqFRzSKpkotO+N3MfFMtu2yY7VJWjHvuFeh47sWx3rPzBZS3ZfY38IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk9u5bHpg86017JCcuMaGTUt1T3oraf5/kxm6JUwsi2K0GbnU97iqrdB1eNhbbLr8oMkpD3jkl4XvqyfORdSfa1mDpJ9crYtlQKqyEH65mxCG+cYBl6+XZ9EteFTCuFK5I8Da4XXpkM347no0E6ezDkVGA9CR4zOe45xxuDInC9fhlt3v6dgujcIJl5/A8OLaRqPaPZgu07PtCMO1UOjPvEYK1PAdBvA/qG27ua9ys5CrrH8IkNIYQQQgghpPbwxoYQQgghhBBSe2bwc9/ekhP/W/b56WHb3E+iaOgy496zrcYpQb9e4cni7HdCEdagL9wWIF67Z+wCujUYtzwVoKhkqxvoh44AScES46azpGBTsIFnbLz0bMRJ9/NEjnQHynWQ3kzXdsbJKvHN4c5oV6yUpd+nx2LOgPlL769kzvu+RbSt23RqG14B/Tl9jGT52RRcwwpTwFCaBvWTWqoUr72sUg8kmvH93Q+KVlNNjfV8/MnUbGVJGRojNbI7Z8yqfR6HT2wIIYQQQgghtYc3NoQQQgghhJDawxsbQgghhBBCSO2ZNR4bRFXdJfJ8tG1bhhC/Dfrq6GTULxxzXOBYGrGj3xZfF7s8FOPs+336r2vNkRX3RBvdJ0BiN9Tlw/ki/Wxn1GYHDfqCfyLRfpUg9VZ5XgrkvwnaGvG2VOx8id9hR9/pM73klC+9OX0g5rEBZHkSPEtCPOY2J1oV+hUqRtKi82iO/7FRqKtOa47fJu3s9bL0ylcRROe6tDboOwgWMv6xKKvNNx0+UV3f0E9WtZ6Dgo7PlrO3q/p0G2gjez6x3nhsqtYw9N9keHEcqq/USOcpvBjxiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7dmkpmgOPMtEbWTX9iBi2Y1hJl44/tm2eNAy1mQeypfe5jLYFcjOwPK9fRluwTb1lxLd3zr7od2R3raiqvPOkYOkb1Mq2tGoMysaQ3KzRME1FtA3K1NQ0jHSeYJv5T/Tj+do50j/KxmpCTIqGNDFWneMdW2aYhou2YYmT6/ZxxzBANpUTf9xv3ID9SbK9v8tDkhsxu61yBC7oC6U7GW1oXapSUbIYyC7d5OsZSaOC1Qr69vfHQMOswFhQw/G+MfBvm/S4Z1TP+DxgF1q1ZhPjpVPaMpLf+cSGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNSe+nts+iCfTNUVI89Haf0vyCuC4p3BvWcpyJtjfTyl+mzintU08vvY5fmenvh8wXoH6xbfbqmeJtQP7U+4r7NyddO7JnteMlatiE5gvHECzwn4Uibu2It0hutt/Dd62kYogyhop3w0QUx0A4zpLU/ibcA3E4C8MkFb4s4B3hwLvTlTS+GKThQv3Pb68MnwqOmYX89vs6N1/KM1EsJYXf3ZpTYF9CriOYrxJ+goaORP6FncPzC+BV4G6DvQ+yndZ1AkexnMeTTXrxADriowjaEhU+sZGEKqesYsqL575stVNZzqqZmInHVzoE6gv8urPXD+QDHkOV4zRZFw7kjpsxM+sSGEEEIIIYTUHt7YEEIIIYQQQmpP/aVoicAntRlSJfwoXsm2ApmakolZSReIbcbjGEmXni9oU2OY3Dy/LT5mECENvi9al6pMFHOY3taT1ZlZpEqlciRNINLY2UfsSNJWUf6lJWYOyNSs3KyAkrK0tvAJPhinKhlys8pjkt6j4p6h0gRIw3y5ohlEp5Ub2Ycv5TE7W5/WzZhInlKANhwlW63YrDxHT7s56T9JoDQNSL/9fvH5gvac2GYUTava7P5Fkp8iUdYzKXk+kguBc3xqPWetd3IsNv7C8LcAnDONhn2VyECzB6PGCTZFVnx7937BOFn7Im0/BVKy1HreCeOeCSGEEEIIIbOJ7Bub3/zmN/KGN7xBFixYIHPnzpVDDz1UfvjDH3banXNy5plnyn777Sdz586V5cuXy913393TlSaEEEI0vDYRQgjJurH57//+bznqqKNkYGBAvvOd78jPfvYz+bu/+zt5whOe0OnzsY99TM4//3z59Kc/LTfffLPsvvvusmLFCtm2bVvPV54QQgjhtYkQQohIpsfm3HPPlcWLF8sll1zS+dvSpUs7n51zct5558n73/9+edWrXiUiIl/84hdl4cKF8tWvflVOOOGEHq12hKxIvGr+jDJRY2x9JSXQ/Ob4cba7cf1m6M2J+29Kr58DbdYroyOk0fJQ9HR8PtsXbYvqnpp0LXhV3XhVYGwz6Iv72ValYa8aIxzMZzXWcX8K9LU0G/E2b76GaYq3weU14m0w+hqlZga+ociYE7WB5SW3AXblWOipvDYV5Y7/JgIdP579JvDKqPOzLW0UnYsiWb0Fxv03UHc/CZAfxvPYGH9Cr+JyNej7hp3153Q/DPIdwEhn1RZ8deBJSPbf5BC/jITXLe98GK/nwgzq1XCwfVWbOd68rrZmreclZ38nUiB/l6rhXtVvng9cfQ46q8+oZm1bGeln2rJ8NNBv1eX7oth0Q9YTm69//ety+OGHy2te8xrZd9995bnPfa585jOf6bTfe++9sn79elm+fHnnb8PDw3LEEUfIjTfe2HXMkZER2bRpk/cfIYQQkgqvTYQQQkQyb2x+9atfyUUXXSRPfepT5bvf/a68853vlHe/+93yhS98QURE1q9fLyIiCxcu9OZbuHBhp82ydu1aGR4e7vy3ePHiKt+DEELILIXXJkIIISKZUrSyLOXwww+Xj370oyIi8tznPlfuvPNO+fSnPy0rV66stAKnn366rFmzpjO9adOm8ALiP3dMHzyxK34bLZCUBXIvIDfz2rA0a1TJzWzfUvUtwXyjzrbp7+CibXY+TyaWsZ5afqb7iYiMlf508jbNkPelPrqt/KC4X5HRqU9bwVPkQEEA23RjPMLZyq2gpM1KvJpKXpETv9xQCw3inlVb06xcc7y+nG3zJHNAppb1fUFf1CbpbYxxxkzptakskmQRnlwFHa9AumllNTA615M/mcZSd/MXWCg5UBglG5e5oBhlBJLnlHPiUrSqsh70nSaOe473FSQp07s+J9K5jPSTCeRmaj17pd5DuzeQYsFzV7yetTQtqHU9KJDFBdLKQIap92H67wR/CCSl9HVypYost1HQdjrGpF5B4p0HTN8S1XPksx3HtBWgDUk5YZ12acup66wnNvvtt58885nP9P72jGc8Q+6//34REVm0aJGIiGzYsMHrs2HDhk6bZXBwUObPn+/9RwghhKTCaxMhhBCRzBubo446Su666y7vb7/85S/lgAMOEJEdZs1FixbJunXrOu2bNm2Sm2++WZYtW9aD1SWEEEJ8eG0ihBAikilFO/XUU+XII4+Uj370o/La175WbrnlFrn44ovl4osvFpEdMpPVq1fLRz7yEXnqU58qS5culTPOOEP2339/efWrX92P9SeEEDLL4bWJEEKISOaNzfOf/3y56qqr5PTTT5ezzjpLli5dKuedd56ceOKJnT7ve9/7ZMuWLfL2t79dNm7cKEcffbRcffXVMjQ01POVzyIjxjI50hn5b0xbG/lIgr5xf4pu2w7awtjm8elRI2DUbXY+vYyc5fn+m7hvZkdfFPecvv1jbZUjS3PiCfsAitSEZPhBUPwwjnsGfQN/itoXTX/Gwmszkc6ex8avPe2jyYl7dt6YZj2Vxwb6b0TMdgOa7hzfDNgXcD5EH+JyZyJTeW1KjXtGdZDsv7HxuOokhNomyJf259MRw/aYmMCDktqG0N4Z67GpSgnK3iEPAvLRIK+M9Q9488XHtHWEPDbQR9OHuGd4vQFR+YWNW06tZzsmiHv2hrHn5iDOPO23QE79Iu+Xm5P93nsRwb9nHPhNio5RB70yZnll/LjwIp0zoqCxLyzSL0LSOfdxsm5sRERe+cpXyitf+cr4wotCzjrrLDnrrLNyhyaEEEIqwWsTIYSQareWhBBCCCGEEDKDyH5iM93YN5t6j+Eqao6CR3vqs32k7belS9F0HHIbzCfiS7WwxMvEL0uza78d01rC1o6OGcwnYHlgPhR9HX7/NClaEOmsP1d8My98m/QMBsrUwBP1PLkZkFTZx+9KYuba5nG0lgrkREEraVoRRDqntXmx0CL+P+XYNk/C5jfZt2l701UlfBlys1SVRI9erE0AhUtU+KE+oNYExC+jeFyvza5g6XU0y9MyF3vBs+dOvfxqoAjc0sh4Wkp/YiU/qfHP8M3sE5z/vc2BpDuB3Cw+X1F2/2z7Bm1x9WL6zpioH5AselJZm/as28zaadklrOcC1bOZUceX2+1kz9VqqVXjni1IitYeaETbdDQ0ipBGv4OCJPcSHKO2DUkrQT0jaWUBYs9TpZWInZupaKfvKz6xIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1p3YemyxcmnY4R3eJoqB9P0gj2jZWGh+LibIdVe2jhb+L9LSNXx51ra6fd0yPqs/WY6Pjpe188eW11X3xaGnmK4H/JmPbYN+SbvOa6mKVwQCfRRDFmeirQfPl+G+s58TTWIMo0GA+7XOxXhk9TtPEwOpcWtuGxlRtNnrai3u2Ou3g+3f/vGPd9HxgWwTbG+xEMF9W/DOZNEV7x38TAY873c/q0r0iAZ0DzyGIztWTRiPvgB+kNMdBA/hTUMSy9tE0jHmk1RjfmG3jsfG8DBXP6uj6HmzeHB+N9ryA+YJIZ1U7wXwoAhdE58JY3aqg64/tq3ebPTa8GjLeTG9x8XqGXkXgU9oxUNyfAv1WCuTvsm3l4PjGGGj4G6NRVPvJ7Vm9yuB9Cv4kiF/2vV/xhaBI58Dr4s1nx1THwWQjyjPinvnEhhBCCCGEEFJ7eGNDCCGEEEIIqT27thStB6DH2GGMsYotNs9Ox2CblZSh2Gbd5u8+LRWzsrHtWjZmlq/bgvnA8tB6apmalZ6NgWm7bfT2bptHsPhtvPE29GhakAykH/RBVpQTBY1kYvrZsZVboelAmqWjoI00zDVV/KWJX3at8Zoqxoy+oaVq0c6nluGCNh0hWsTbjEwt+CcgJClrdO8XTGfIAskMIiJFC4676ITgOtD1Y2VjqrN9w7sXzx60gZXRGjIg4xGZ4LyaiJXuNNV0e8hI37y4Z39jIGkaetu8Jz9Ccbgi8G3sOAJXfW7bNjAflPVEPksXmY83X8Z+QgOhmtWz2XMlkkbpfQHq2Uo5oUwaSS2txLhqDat1bZkdNTbU6Npvx+KrRpTH6zl4DYbua2VjIO7Zk5jZVzb0O6I8YbMEYwP4xIYQQgghhBBSe3hjQwghhBBCCKk9vLEhhBBCCCGE1J5dy2MTaA1V/GWgs0Ua3LiOODV+eMz4QXRs5qiJNJ7TGPOm0z02IO5Z0HyNeFswX6trPzsd+IbU9w+WlxHp7PlvwPbO0aRW1dX2zPjQi2FQFGfQpn0l/saA/hvtmwnagB/HxigrvW5h5wPxyygKumjG2/y45/Tl4bjnnL7dP+/oG29DGnaoKa/YRqpRlEUYhypdbAdoe+vj0P7zIvIreLp0ZHQwbcrnYc8BWiMP/Qnie1ByzqsFiMfVHoWxQX+MAc9j05u4Z89jOYGnCMbj6thm60lAbV52rz+k5yOwlhPtZYCemoy2YJehfaiGCc5dnlnGX6Sq4QL5b4BxJ/SNFtE2mzvu12z8d4L9faEJ457HV9xGOrdVDbeCuOf4caAJXl+h13MCX5jnq4Ex5PYcEffKwIhy7b8Bkc4w7tnSpS0lYn8nfGJDCCGEEEIIqT28sSGEEEIIIYTUHt7YEEIIIYQQQmrPruWxAQTaSq3fDHSX459hRrhZBvSKKF/JWKOMtomIjCmB42gj7mvZ5ga8tiE3Ot5WzvHathWqzfmeHj2OnQ8tb6TU8/ltej77/eC2sd4ksL2RPtZ7VwESu4N3HCCKPr1oBHllYv1s38rvsUFt1kfSMDpm3R684wb4UbTPpenXSaHecaPfabOjrRltEzVt32NTtuL+G/QuHmMvS35XTfBOn6p+GKRvrwo9N5UoykS9N/TY6B1q2+J+BfxPkXqBwEyB6g74E0Sw/zQV6y3QHoUx8x6bweb4tarV9q+bBfAopPpkAw+Cfe+H6ht4ZbRfwb6rRvsVrFdG9w08NsBHg95xE+nXU+D5CdSzq1jPehlm2zvkUQMeFPRbLwddw8F7bJTHZiDj3UvYM6wnsMdG0HuSvHfVmDb07iVQz4LecQM9NomesZ3d7bEJ4BMbQgghhBBCSO3hjQ0hhBBCCCGk9tRPipbz6NB7ZGc1R2mxlXZxbfWYr21kU231PK1tJDA6ttjKrUZN3xbsG4971nKwAfMs0ZObKcla2OZLyvSYKO7ZrudIqWOi49tCxI+Kbps2vY3DuOfxz0imZnGJ/Xql+QmkYdGJCUhc1UDChmRqSH7lScis9Mz0VaVhH0druZlr2cfo4wMVLbOMtmobMwvU8jNz/HjytpaZL1EWF0rv4tNou2HpX7wwskoPSURIzynGRIqd5Qe2t3f1AcdkqBqrKOuJLsBId6ykoxFvCyLRUexsYlyule7o1x205/pjtNR1DMl4LCW6vnvx1vHoWhEj3TF9YaQzkOdUjs5FbZppkaLFl194+8LujNQF2kETpZUiMM5c1zD6DWFrr6XsBIPmdR1jqoYHG/5vrdS450A+CX4HQTll0Db+MajZMSUNAzHkgdzMazNjej+2zHxIptYFKL808IkNIYQQQgghpPbwxoYQQgghhBBSe3hjQwghhBBCCKk99fPYIKrqTkGkc2m8I1qrHHo+xqet56SpzAxjhYl3BnHPI4XveWmV423WR6OnB0rjsSnmqM/GY6Minm1ss/bcjNg24L/xI5xtWyM6jbap9TTpfRPGI8Y11tDAUNVX04f458reHKQ5tl4RZVSC3hzkIzHttq/e/VbX63lVjJ5fxz8XLSOwHVODDvinMafmK43HRnt8yiDuWa+LmDYzDbdNvK0Xcc8BVdtIJYoyoveuuB8CT5qumRy/AqCh9POlHRT4xaznpmzHj5828KZqP4GOdxbxPQpju/nzzW2OX6taZr4GuBbr5QdeIBCHiz0JfpMXgYt8NBn+G+ijgdG5EiXFv9AZJrWGUT/gDbLXH9HnWVvP3jnYXgzV6zrshcv4QXUNB54q8FvPW5zZiNonZn00Y7uLavP9N7b2vVVRn4PfQdoLZK+h1jPnxZBbX5hqG7Nt6jPy2IB6Ds5XqC3z93oxFv4tBp/YEEIIIYQQQmoPb2wIIYQQQgghtaf+UrTUx1mBVEk9yoRvrfeH9KVR5lG8eszacvYxvZKimef9241Uy4vGNI8udYzygJGpeVI089x8i5KbDZhnerrNxj1r+ZmVqel10Z9F/Ihn+33HjM5HS8yCCO3EN0hnvakXRRBKYlu/8J7P2sjWaJOfEGtlAmqTBtKHREkVlMuILzezK9BUcreyZaUAWrflb/CGms+ZY0Ta4/XmrNxsQEkUjVymbKo2Ox+Ke7ayNbU6VgqB9pO33ZD0L0emFutH+kLRDmVJ3Tuqjzn7E7xh3qsfK9100Ql/tax0Bcoj4zIXZ2XaWtYDCtHGPc9rbut8Ht3DX+/dGts7nweBFM3iyZTtenpvX49Ldex0A0l3kEwNveEdvandyoF6GJ0bQ39DFFGO6tkuH711Q/cNztXwAqy2r10gkkm3/Voo9TUG/NazaEnZHq0Rr210j/HPuzW3e2229mPLC6Roar3td0A1DOVmqC5NW8OLkAbzgXq2wHru1p9xz4QQQgghhJDZBG9sCCGEEEIIIbWHNzaEEEIIIYSQ2lN/j40mIwJRtwWzVfR1aH/ImNF9ah2ojn7e0dfEITfGxYTbjXelqcZ5zIgdm0qE2DCCxKbqO8cIKLeWg+rzHNM2Pv1Y2/fY6HWz6+m1tU1b23xf7ccBum3raYKRnmA/Ie9Vsq9mEjrmuIvGUDXyF82HPB9WG+3FFtsZnemr/Sl+m/bV2CROz89m9z302Ki2Ab9NT2u/jYgf9xxEOqsynTDuGUQ6w7aiiLYl70NDsq+G/pue0BgTaeysj8RtGkS3Az9VAepHkC4dxeOqA80OqU+dwXFuvWU6Ntr45draBwCK0kbg7qE8NtuH/S813Nra+byhMT86ZvgqgKLr5x2dgcfGehLUNIp0Rv6bHE9CanRublRutA3Ub9CEahZ4Nb02cP4PUsi15yTYGKqf2fZ2d4vnsbHeFfX7oh3/7WHRXhldvyIio8PxNlv7seXZdUFxz7aGRdesWZyuZ5s8DSPKQRR0L3xhlm717Rj3TAghhBBCCJlN8MaGEEIIIYQQUntqIUXzIgErjoHePh/EE+rHfjY60JNG+feFTaWzaZvHmA0dadyYIO65rSRl5hvr6aCtHW9rqmkbBe1J0dqDflt7XIo2YuOelcRsBMjNbNxz207rbQPkfYEsELS5xJoJ6yLyeaKBKpITqZksR8qQCXjHQel/Qd3XKsEadns3E+PTzaNqb5E2ClprawKZgoqQnuOvXKnkZ/bt6Fo+Y6U0uq+dL5SbAUmZlj4gWURGBLBuw28Hj0s2SG+oEveMpIVBdK73pnYzWzwdHb+mwA/yNaui5Cmmfkp7/VMr4Mb8vlo+M2qlNKpo7SsM9mo+Or78fbZF21pmo6NXL4yN6fU0G1FNh9Izv6te1aBNS36QrAe+xd1vQ7IeGOnco7hnb0hUs7Zv6qsBcq63ioZZIoqCLmz8PohI17VRmpodA9JKLSnbq7nFX4G9R1Tbo15To9hnfHlmTH3MBLI4XcOjfputYa12C9ra8bbkKOheySczZf/2+EPwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT218Nh4QI0mivW187luHx+fjkdFav2mscp4Ot/CRDpr7fKoiTu2fpjtxfhusZrnfrC5PdT5/Kjx2DzWjsc962nrE9Jxz/b72kjnUe2xMW16m1r/DdKUI1MCinGsDTmRzpX9N5HPXfrq7W/9OP68RvOrPpdhEK36bAdVvazHRvto5hit/4COe7Y+obhvBnluUDR04NFLjN7GPpoJpklfabSdNMbC87ILTHHjIL8c8mFBvwI6zqwnTTcFWb3Kr1bY61183ZzR6LfHxlfInvPteV2zqPVI5/NzFv+X17Zva/P4os21cLSML69U0w54ElC8847p8c9BpLP2MiBPQh/8CkFbcAGM94UgH00Rb9TrBusZReObevY2TVDP8Shom1guo2pMez5W023jxRoFPmHNooGN3vQfLBmvYV2/O9ZN/Q40F0q9PH0sifg1HEQxj8ZrOIh01m02Chr5whI9Yzk16/VLqFHrz0XwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFqwqUKrloVyxTM7Ip9bko7ONR9SjRrEpRxGU2OZTe41kTj6jWe9Q889WSssfKOdG2INJZPUrV0jMR/7GqlakhmYKN7dRtdnuXXltcboYjnTNydfuvCsQSlarxsVoKAN/8bGccbwzmC2QD6hG32VAoalavuJUp6D/oOGkzm7SN3MyhSGc1baVoukyRvCzoC+QV9p+OfJma35a6f1EbjJAmPSEW91yAt6NbHDxe45JIT/ID5KFVZT3o+BQRKb36Ndc/dYxuH/CvB4+OxiXN8xvjEc//ctC1XttN28Y39JYx8yqCUXVtGvHHbG9X62YlZEq60zAyHivP8SKdR/02vS/wW9zj8wWRzl48rt3Buk3S23qE0wOj84yRe3k1C6Lxw0h/1WTPx+C6FUjTJH48aT9B2TRy+oHx6S3b47+L5jX8iPJ/OujqzudbRvx10zWs61fEr2GvfkW8Gi62m5oFNWzbkHzSq+EyvS010tm+TiLWL0bRRf4bg09sCCGEEEIIIbWHNzaEEEIIIYSQ2sMbG0IIIYQQQkjtqb3HptBeiiCTNj4f0mgWoM2pGVEUdOC/8TTVZsXa1Tw2pVk3HUloowRHGuO7epPRKupxRoxXRo+53awninTWvpogwtmsN/TRAK8M2odepCn0V9k2SWMyOmbkl+jBfIEuX2uVkXcjiHvW236CY0vHPQeRzi7a5nmDAj+K0hUbfW45oP038fkCr0Ez3qa3WxDvbA9R4JVBHoleeGWq+mbQYUDSaYyFUf/dQNsXxazrWke1FezQVL+CadOHViMoSusbUrVtDlj9fbc3ff/AI625nc/3DSzw2r4z+OzO5xcO/dRr++am54zP9+he/phbx8ccHTE/ZUbGD9jGiHn1gvIoNIxvBnkSwujceJsA/43nozHntVS/Qhj3HG+rTPxUHdS2X89xrxk8V9pLTNn9s4iI/pkSHopxz42t79JbN3+kMVXDm1pDXtt9c8Zr8WpVvyIiR+17R+fztx55jtf2q83jtb9xy1yvbXSb+lIj/gVH13Aj8NiImdZx5qYNeb8q+sK8Gs6oy9yadWMT99kJn9gQQgghhBBCag9vbAghhBBCCCG1p/ZSNEjqoy4gcbJyL/3s0sZ0amla2za2wT1k0zz3A9I0L9LZrFtLPa8dM5KubcX4rrZvcNbjhPI29fZdM6aWuwVt+i26dswg7rmI9tXbNIx71o+xrRRNktp69di+ZxGbnlQJRK8iGZNtQrIXtC203Kri26tF/JoN38CuIqWttBNIa7C8Li4F82Oa43KzQDIBZGvBOLoNRG8Hy0DSsMTo4CxpI6lEJSkakBZaaYfXFkh30mRqSNZjU1e1csimDzdABLz9Um11wnDmp8VW9fm/3LDX9r2xp3U+3/XoQq/tt4+O9/1/j+7mtT22ZTw61231l9fYpqQ7JnJXS3eCqFwb6awuzfBN7Ui60wZyM7vBXbwtWdZjmcS52xsGRZT3oJ7tbw/dF9UsfJ2D+HYFHGdufl+oz9vEjxr/rarh68ee4rW9bss+4/0e9Wv9YVXD27b4EdLuMfUbbZuRT6oankg+qduDSGcQ9+zVM5CbhW1qwm57W9+azIhyStEIIYQQQgghswre2BBCCCGEEEJqD29sCCGEEEIIIbWnfh6bHC0pyidE3gIXF/A7HU0cCAjH2wIvQWO8r/USiPgCfteICxMd8MOMKh1kszBxgYkmEDumXt6YEXXrmGbrsdHTQdyz+f5jIO7Z+752u3lxxGD/gvkCwGYqoAmiIqneCTFeGeCxsbsaaqOBjwWuDNxQYJzAshaPdPY1uOnb3otGRv6XQO+tJlCbmDjoquOgfYFiuYFPKYCem57TaDtpjIXbPDheoxMiTh+IKNrb/tOjmob+G+tz0PUK/De2lMrAA6LHsZ2RH3L8p8bWUb9tZNu412D9f8/z59NezW3G6KYjcG2kc6InIWgDkc6BX8Hz2BgfDfQrxNuwxyYxVhcxUb+KXj5Yz/qcG//JJE0b6a92d8Ncw70o6Ak8NnqRTevjAbVf6N8lbX++baqG12/zf0Y/pGq4PWaOAxXjXASRzuPLaNpI5+3qM4gkF0n30QS1rmo4qD3dF/howm0ocbzr+8QF7Lqcc2PwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ76idFs6TKZ8Cb04OnYPqxZ/BsTc1nH4+qvoFsSt1D2tQ6+1Z3/UTWSsN0HHLTPO7XcrMmkLOhuGeLlpGhdbFyM0/CZqKuw0hnLUWLxz2Hb8wG8aagzZchIh2IxMmK0EQayfjiA/EXkJQhqVIgZ/Ea1eesf+bIkKaBdfGjIuMygWDpMO45sQ3IxOAb30X8KGwgFwrakMxILw+pJyvGQlOW1huKMZGd5YCOV38mf1JfK7AULS6lDGSdStliZWqlOglORtajCeLZgcSqMTq+cuV2I895TMnNzFvr9TLCWFslY7VyHCQ301Id8GZ22x5K0dKkO1iKhuS38fmwZDreNhmwFA3Usxd/ny4N1j9hXNP/Uuh1DjazXG+3shVvC+pZ70NTe6WSirnHjAxfT9rjYAzUs6q1QG6mI8pBjdpxsBStD/JJZ4/f7v0sKTVbtifusxM+sSGEEEIIIYTUHt7YEEIIIYQQQmoPb2wIIYQQQgghtaf+HhtNupVhAp+F+gh0/kEEbOCriQHEpCIiynNi/TdaT9o2wkTtq7E+lqqUiT4aG+HstQFPzY7peKSz57EprfEB+GH0ODlR34g+aZejoFhfa7IBX9crk7j1a3JfT61PGFOttOgwkt1vgt6g5PUCYyItuPXUwL4V27IinePzwUOdvpqeU7SdFI97QXJ8NRrfr2C9muqz8Zyg+tUegdIkI/fDr+DMMjz9/pg5j6tfGtbz4h1rwLoX6P61X2HMtqnl5fhm7DiJPppgGcBHg3wHKDpX76iwDcxXkbz4ct0GfDRFvJ5hND+IKHfWpwQ8ZHYfer40VF/ml3Kpa9iuN7Bo6+PJHiOexwXUZVij8WkbQ94Ay0A+Gl3D2GMTHzM08MXn60a3iP1o3+SeItJut+WMM86QpUuXyty5c+Wggw6SD3/4w96Pb+ecnHnmmbLffvvJ3LlzZfny5XL33XfnLIYQQghJhtcmQgghIpk3Nueee65cdNFF8g//8A/y85//XM4991z52Mc+Jp/61Kc6fT72sY/J+eefL5/+9Kfl5ptvlt13311WrFgh27Zt6/nKE0IIIbw2EUIIEcmUov3gBz+QV73qVXLssceKiMiBBx4o//iP/yi33HKLiOz4F7HzzjtP3v/+98urXvUqERH54he/KAsXLpSvfvWrcsIJJ1Rby148Wg0e3cajoB16rAsf26vYYvsMH62a0ato+UFhH926eJuWg1kljSYcM965BN9XT9soaD1t5WV2HCRFc54sD8SUBsvQE+LTj0jnHOKl5z/Fz5ARpUZBB19Jz2dlU+mLj45pVyj4vlpqg96mjVYmVfJj+troUQEysZxIZxjNnCxPAvOhCPpZKj2bymtTY8wFkfldgfs6rldBb2pHsi3vuhFIbrSk18xXUdYTSNHUtAPyLyjzBFI0JNsK36Le/bOdtvIWGNsMpDtBdC6U9agJEI+L5WbxmGgLfPs7AEqBAylaYj0HNavqEsgug+u7rjUgmxIRKcHvBFizus1GKqPjEP32SqwLJEUL6zkuNwvipmGkM5BdwrjnuEQS1h6q5y70TYp25JFHyrp16+SXv/yliIj86Ec/khtuuEFe/vKXi4jIvffeK+vXr5fly5d35hkeHpYjjjhCbrzxxpxFEUIIIUnw2kQIIUQk84nNaaedJps2bZKDDz5Yms2mtNttOfvss+XEE08UEZH169eLiMjChQu9+RYuXNhps4yMjMjIyEhnetOmTVlfgBBCyOyG1yZCCCEimU9s/vmf/1kuu+wyufzyy+X222+XL3zhC/Lxj39cvvCFL1RegbVr18rw8HDnv8WLF1ceixBCyOyD1yZCCCEimU9s3vve98ppp53W0SMfeuih8utf/1rWrl0rK1eulEWLFomIyIYNG2S//fbrzLdhwwZ5znOe03XM008/XdasWdOZ3rRpE76ABCJNre+zPguQc+vi2n7kwfCGtHpkrbu0kcZK7Gi9Ig2rLVULCdp0dK4RNOpRkzTgCWivTJg+WXT9LGJimkHbjnb1GURKB7Jibz8BoSvQKsMo6BkG8mBoiTPSRlvNq9fX6mpzoqD1+lhdLYh0Tj7WqpIRmyxoG2bEPaNxHFoGGpNApvLa1Bh10kg5UQA/lz53233tRSoH0bloviLapg+mIFa37P55x5jm+qM0+tq3I2J8D/aNBlU9aalRssBLELapayjwzdh229ZAUdAg7hlGWCfH6qZ7bLL6aetIO95WuZ6D2ovPB/03ntcrXs8i4u9/40fRcc92nAKdj1Nj+20TivpG/pfE2HHbHsaQV/PR9KIus+brQmO0Tx6brVu3SqPhz9JsNqV83J21dOlSWbRokaxbt67TvmnTJrn55ptl2bJlXcccHByU+fPne/8RQgghqfDaRAghRCTzic3/+l//S84++2xZsmSJPOtZz5L/+I//kE984hPy5je/WUREiqKQ1atXy0c+8hF56lOfKkuXLpUzzjhD9t9/f3n1q1/dj/UnhBAyy+G1iRBCiEjmjc2nPvUpOeOMM+Rd73qXPPjgg7L//vvLO97xDjnzzDM7fd73vvfJli1b5O1vf7ts3LhRjj76aLn66qtlaGio5ys/IUCJhuVI6vGojQfU3ezzLv3I2UZaaomVeaYeKHe8OOD4I99Aiqa6Bk+RE6VpKPoZScHCKOj4mGE0c+I4pd2mcZlaL+RmVtoIx+wVQCrlR0GjnOiMMdXnsJ5Vv4mioFOPNSuF07OhfVgVFMVZUaYmYrYVkqnB2Ob0dUOqSzhmrN8uxlRemxrt7nHPMOYV7E8Yzx7Ic/TnuEzNHjsNfY7NidUF0lUbM4ukaDCmOrEuYfyxkXuh6FwoucmQ7vjRuSA2OpDQASkckMjj6Nx45G6vQDXb73qGMjUrl7Qx5EiiCWRqSG7sx1tLOkB+BSOVQVtluRmKKM+o2WSJpB0T1WkXaZpdX0ThXE+U7D1j06ZNMjw8LAd89CPSePyCA/Xs+iQdFF+8TVCbHtP+EPSWZ28s1M63OlN0Q4LGCX7cpt3YWGbdjY3uG8ynFxD/JVig+ewNL/jxHp5cinjf2PLMOHDMDC06elcMfKdCzjhg20T7dRmnEjP4xgZd5MNzme5nf7WCMYvu/cK28THLbdvk13/9fnnkkUcov1LsvDYd9bIPSqsV3gzBH+jWK5Nah8GPvdQ2s26eX8G2gTGbqK9E+/LGpvt6BmPW9MZmRtdzULPxvtpjE5wfeWPTfcxpurEZG9smP7j2g0nXJVpUCSGEEEIIIbWHNzaEEEIIIYSQ2pPlsZmRgEdd8BGhp+0Aj8/sbECq5EfnWrmIehxqxizawEcTyNS8KdBmllHx+TSKW471s32DCOdgZq2XBeOCmOhAbobqAlH1MX7V+ZAfBfRFEqdgSN1mH6nrx892Pt3XPka2fdH2Bv4bXZbQt1OVHNkL2r4ZEbWwDUjY8P6Ny2Mr2736pVnZxSnGnBRdijPYDd4fjH7fkwHa64g+58XP/1gKVtGvAGJ1w76mrS3RNi11zInH9RdgZkuU/+ZEMVftC+NxgVQIytQC+S9oA4dySpRuN4JIZ39Q01dN5NQzlJtFxpAJ6tn+TmjG+yL/DYzmB+djSEXpd/WaNW3teA1Vr1k1YeV13jEK2hCP92uMpdcxn9gQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNpTf48NoPD8IcAkgKKCbbRqGdcj47x0rcm0RgN/0rMkAP8NEimGfptqQnwoz0UxzZF+XccE0dD4XTXxiOPKbZH1mrBvBp7nJdFTEywfeDAc8F4F/i7vHRbxxQeraesblCX2ZsXn6wc9i3tO9eoE2uy0NqhhT1z2hH1JJRqjpTTswSIC/5kw8CvoOrDHnT6Wbd014wez1rr3w3+T1TfHd9aLuOeqUdDAG5PTt7KPxkbuQg+G9keAkyWKhc4g8JF5MfYV67lp6kn3tf6X1Gjx4PdF3CeWU88wproH51XkcYH+m4lq1qX1hTULXudglycoXhrEl0f7RWi00wubT2wIIYQQQgghtYc3NoQQQgghhJDaUzspWiBzQXqZ5Dag+UFtQdyzfiQHHl2iKFcR/7kukKnZdYPSoR4Ax0Rys0CahKKZ0ThWpgba0HyxfuLLF6cDpDZz8bIwbeZRvHqMbh8Ve8vLiYI208nFByJbg9l6UcRo1+dI0cC4ULaWEffsUscE60L6T9Eupej2Gnj7Rm51Hg+OSX282re4K7mOlRR7yg4rV0QyNT1fjqyntOcS/dlKqoFMLVVKmQOQovkRtLYNSWdA3xzpTqLcLJS+xcfUOz+U3iG9b7wJYveT+v5Bzep6tnIzfRwE9aSk5k3x25BMLVF2GSwjq55VW1AYMnnAMTrtNWvH1DHRVormHYdWpqb7IdnlxEVajFGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPbXz2ASg7Fyt/TOiSC8SEBkWAu0fMBPoaGKgkQ9001CjD5aPYqJ7pGPGcc9ovsS4ZbsM6JUB49i2EmyA1O8E4wnBGDnkRDrH+pm+YZOu9figwXxafwziVEUm8Mr4K4MX2meSLVRZxyjomxUpDc5Jif4bWNr04vSExlj3uGe4fQP9fvy65b82wPgovXja+Hk08BnolQORxhP6FXTEP/ArZHlMqwI8Np4fJSO6tlcRuMiTkOpzCE660MsA/Dc9wtuHqJ6tB8OLATfz6foCVmNYz8F2slHU6pgJfDz6WIv7aMJzbg+KGHpOzOK039XOlxU1HuknGT6atm2r6r9JK9Sd24Vxz4QQQgghhJBZBW9sCCGEEEIIIbWn/lI0DVKNTdQ3Np+VNOnnhfZxbOKgUN0m5hFsxZjXYBGJz6eDKGbYGbWB7wv6hnKzSL+gDY0fn86Kd54KLQ94wu6JIOPJlAHeMPZxuxooUHKiR+MZfeF8qTHRvSI1/rlfcc9AZpr8dvacMqT8rPeMOQlery5dNrX+Z0NzHdFxuUH9NEBx6XHsP0sCWY8+7otAwtZ7WU9ObYPFYVkVlKLpNiDdAVG5O6bjbfCN6yjuGcjNfJla+nz+epl1SYjS7QwLJFZF1Xpuao0iuP6AmGhUz2LmC15poNcb1bOVYerXJJjFo8JE7gi/ox2ymoQsq2/FmkVyM1iz3u8C8KMhRWVm1wnAJzaEEEIIIYSQ2sMbG0IIIYQQQkjt4Y0NIYQQQgghpPbUw2OjpXU5mnGk9deeF9zRjAliDb0ITzsOiHK18ceJeuScxEHXB7E9joLOMABV9dGkLiPQsqZ6euLDZ9GriOPEr5uXEq00xmZOOA74TkhXXDU+vGdU9axV9dEEy3DxfqnrBg4Remr6TzHalqJshw32nwl1F3uy1tPGI+D7aEwb8t8gvwLyPOrrmF0X5AfN8Cv4vlHg44i2dOmb6EmAXgYUtyzmsg28MoGXITnuOcN/04635XhuEN72t/XseajifpjC7nu92sh/E/ho9BjGswXq2Xq/4DVdfyXrzUHnXPBIILWG7fJgNLJuC+aL14m9FletWT/u2V8B6P0CMdV+Pv3EF/+i3eWcG4FPbAghhBBCCCG1hzc2hBBCCCGEkNpTDymaBkXgVtT8FGa+ZGka0uNYvAxAOyaI70Nvip9u2UlVWRGSm6FxKsrbsiKdpwIt2ciRf+nvlBP1jcb0+oGIVis7AQsJnion6uT69cZsTdX49DyZ2uTlZjOtZMk4RbsthXSRRdhXA3gzAelOkHEMZGpIA4MkN3o2K9Xx5G4grlX8CNzgQAexut6YKCrXypiQjApdppHczJP1xONw7fLz3tQOpGhaUlaW8Ta7fT2J0eRkPUmAenYNf0ehKGi9T61EslCx6S6odS03A9dJdL0RMZI201XVc3gYxu0DqC79Yxv9JoxPh/HlQF4WRDPr9cyo2TJeX5VrVq83iJAO6NJGKRohhBBCCCFkVsEbG0IIIYQQQkjt4Y0NIYQQQgghpPbUz2PTDwLfTg+ioAMPQjyaEhomEqNjp4VUI8BEGtgqY9pxgkjPalHQyNNTpM43HfQiChpFOCP/jf2D1SMnbpteScMhqSU7UT/ko0HLS/XRoPlQXxQ9Pd3ni12FsbaIS9B7e/H/5lzieVX8f1/UXgN7HvP8CraAtF/A/JtlcgRthgweXv8CI0DaykBPjQWe/3Vb3DeE/Ak71ifuEYCxzSoSF8fq2ozhRE9COz5frnfBA9Ss161p/Rmq9qz/Rh8rqNZz/p1dL36C2Qq0afT+NdHq/rkTtNnlpXq7M3w03noGnjFUlwLaZlDNWrq10WNDCCGEEEIImU3wxoYQQgghhBBSe3ZtKZqfVxvvByU4IAoa5eqix/SWLNla4phTTa/kZVnjjn8MZBmJ84WSshm0TVHJAKVHqizN9kVKpQmTzYv4Y3S4SVEMer9BsbNZr0CfYDo2boYUzYG2ysygUq8TRbvty2uiHbU8B8Q2B2+7b6huVlKm4nGh3MyXfei+cLfn/FOnHagB2vrw2oJUuVm4fdVn8IZ1kYx4XPQ29kDCVia2AemOjdxFb3+PjdENIEWDUd864tjK1HQ9m7rU8rOgTReGlYk1E+tZBNd0gb4TGKMXNWsp49dQGOGMYsFBfdemZjv9KUUjhBBCCCGEzCJ4Y0MIIYQQQgipPbyxIYQQQgghhNSe+ntsPD+MaYJ+lGrRp9Zz44+Y6I0JBzUD5Zgkakiq/8WQHOE8UVviNpyOdFyUmOphJfvgOEiOOAbzBesCDifsqbHjzKCCnoyvRpEc41zRC4XGnEkWsV2W0TGRRnPHZxTVr3wBhYm51Xp67RewhIeZ9hbk+GjSvDnOzAmja+13RychtUhbo1VPAak+mjAKGvlmTN9+xOPCNjVtPQm6zXoSdF+7Lpocj43xtRRl0b2f4Br2xjC1p301QVtTzWeLpp3qNfNrOqhnL3Udvd4BmVqrAX00dnmoDcWQB56xGtZspw89NoQQQgghhJBZBG9sCCGEEEIIIbWn/lI0gJeajHVqZsZ4E1xeorbEBXm4cNBq9EqS0gul0ERPv1P1MxUlbDlR1FAW0Q8JG8hGDiQbaF1AaqXXrWJdTBz3rD72o56ztmnFZejF9UiWliU368GYYd8ZJPXbVRhrizTGdnyGUjT174YNsx90XK05YJ2Ny1X4l6b+R0FDaVoj3jcYR0fZCsDGYqdIVCRP1pP8Znaz/GAcFDddNR5Xtdk4XkmN1UVvaM+SojXibU1QX2Yb4stBxShovW72+LH71FsXU8+NeC1411Q7X+o1DkrrkWTQ9NU1hOrZzDslkc6q3oKa9eoS1LOVt3UboxyL9zHwiQ0hhBBCCCGk9vDGhhBCCCGEEFJ7eGNDCCGEEEIIqT3189ig2NkM3X8/oqC92YCQOPCU5MTj6iYk9JwCaX2yN8aSs26pfTN8NJrKnpp+bV9gDPOioCsODyXWGWVZOe45WKHEfr3yjE3xOJV9NBl9GfE8tbixMXE7Nf4FiGrWXhmrIddZttavoLwMrohrz4NDsAF8O57nJB7THKTa2tVOjM4NVq5IPHm1M06sif4FGOkcxOpaH40ax66b54eJjxPG8ybG42bE6mqfgwtidfXJGXgZRPx6bqT7WjwPWavptyH/hB4fREFLYcYs9H4xA5muXu2jejY+OK8tJ+654m8Wbxl2k3n1NME4OtI56IvqsgeRzmg+6/3S5x3rv/H6lY//jx4bQgghhBBCyCyCNzaEEEIIIYSQ2lM/KVoOQBqGVVyJGa05UrCqjy5zJG0ziapSrcrzVZSb9Wr5OaTGiedEQSfKIHOYKBnUX4FKTb2ThvWYSZVB6nfK+O7Jhzoq9hm6rWtHe0yk7CJFM1HFTst+mr4+Bh8TIDZZS7qsbEpJSQKZsvfWeCDNCuKrwasJSr+vlvKgmGh4fc0gOS53ErIeX8aVIWnTbYEMEY2ZFgXtxowsx4uwbsfbcqRoRiLpRXbbSHJdN1aqpMcIlofqUh0HRkPmxZkb6VkY2wzWILGeLb2o4aB+QT3BaHHUN5CNxeWxBapLT5KZEemsJZJAPhkeB11q1lGKRgghhBBCCJlF8MaGEEIIIYQQUnt4Y0MIIYQQQgipPfX32KR6C3JibhMF9lk6yxwvRep8uwoVvUJZ3hlveVM8HyInaTwxCjpncZU79yaVtTp98BRVpmrqedX1rlz4pBe40TFxO70IOmLZ+lOaVvyvAF4ZT6duxyxBWxHXyGv9fJBc6+Lr4swyvEXkGEl15G4/zggoOldsm54vw6+A+qI2Gzed6ldAngQ7pvbcmFhdh8Y0FLpmrR9HtTnjJytslK/XqLwyZr1do1rN+oPY+UCcufV+oXrWnhvzCAD6u1LJ8n55K2rGiddX1eUHY+q6Qecre/7wPGOmRkAUdLeadfTYEEIIIYQQQmYTvLEhhBBCCCGE1J76S9E0VeNpKz5V7JkCpqImZSalPU+LOqYfy5xulU/VKOhEehW1imPIe7OIqsvvB1NyrPViw82gc8Kuihtriyt2yCK0/MyhSGcbBa3fDh5IyoBMzRsEtAWRt1raASRsMCpXcH1plZx9i7v3newywJjeIPGmnOjc1DGzQLKeYJlov8VlY748x77FXUVBB5IfFblrZVtm/3rttp51FLRdBqrZxBjhQP4E/tm9APKyAD1uMy5TK8w4njTNHjOanMcDE6Rtp5Alg6talzn1i6SOKC5d12VCzToH5I4GPrEhhBBCCCGE1B7e2BBCCCGEEEJqD29sCCGEEEIIIbWnFh4bkHJbnV5oa6tqhXvErEt9ncHfty/7oh+1PgVFM5O8X7WF23DGsiPu+fEdpHwIQXK7joK2/oFCR6Sm//uiHieYrRcRtBOhl2H9N5XHVJ9z4u8rLy/R42L75vgVUvshv4LF898YDxOK3PXajG/HLkPXs92/el77ugHPq2LQ65pTs962N6OiQybIM+/zybSqbyarLuJdYTQ0GDfHq1Mgrwxatq4ZW7O6r417boeeMcY9E0IIIYQQQmYVvLEhhBBCCCGE1J5aSNE0M1p+NZPXjcxeKGsipHeUbZHHo2+9U759G3sZlwAl/5tiRXmZlZn0LObdW4Y/jSSoXjwvkgZlfN2evP29X4B1C2SJFcaA2MhdHQU9ZuQ8DRvpDCRHXmxytVXrGUimBtYtOC76LVPLoB+/bSsfI/04tuw5UNWpjSH34p93Rpsz7pkQQgghhBAym+CNDSGEEEIIIaT2zDgp2s5HUuW2bdO8JoQQMvvYee618oDZzs7tMSaj45IpJa+wso/Ca4vLMIrgbd1KclGYf3ssxnU2rm01N6qviUxzahwHUthcadOu7PL1Z9NXS/HAP5n2Sv4DZTZ6k9r94iU8mTHb/r7wlmGUMN5+a5tlaCmNHVPvX7TvS5MU5UkbfUmZlxjlRk1bu3u/HYP66wZq1psO1lvXs5UMqWIo/Zp1XqHE6zms2QK0+Xg13QA1a+sZ1HpPCM4X8TZdp8F5xkob1XTRtm1lUptNKfNq3e5f0OZKXZfxmnVGZubX8462MRl9vG3i69KMu7HZvHmziIg8cNZHpnlNCCFk9rJ582YZHh6e7tWYMey8Nt0g3x7/o/59N2JmsNOEzDSs9UtPjwohM46U61LhZtg/y5VlKb/97W/FOSdLliyRBx54QObPnz/dqzWj2LRpkyxevJjbxsDt0h1ulzjcNiHOOdm8ebPsv//+0mhQrbwTXpswPJbicNt0h9slDreNT851acY9sWk0GvKkJz1JNm3aJCIi8+fP506NwG3THW6X7nC7xOG28eGTmhBem9LgdonDbdMdbpc43DbjpF6X+M9xhBBCCCGEkNrDGxtCCCGEEEJI7ZmxNzaDg4PygQ98QAYHB6d7VWYc3Dbd4XbpDrdLHG4bkgtrpjvcLnG4bbrD7RKH26Y6My48gBBCCCGEEEJymbFPbAghhBBCCCEkFd7YEEIIIYQQQmoPb2wIIYQQQgghtYc3NoQQQgghhJDaM2NvbC644AI58MADZWhoSI444gi55ZZbpnuVppS1a9fK85//fJk3b57su+++8upXv1ruuusur8+2bdtk1apVsmDBAtljjz3k+OOPlw0bNkzTGk8P55xzjhRFIatXr+78bTZvl9/85jfyhje8QRYsWCBz586VQw89VH74wx922p1zcuaZZ8p+++0nc+fOleXLl8vdd989jWvcf9rttpxxxhmydOlSmTt3rhx00EHy4Q9/WHRuymzcLiSf2X5dEuG1KRVem8bhdak7vDb1CTcDueKKK9ycOXPc5z//effTn/7Uve1tb3N77rmn27Bhw3Sv2pSxYsUKd8kll7g777zT3XHHHe4Vr3iFW7JkiXv00Uc7ff7iL/7CLV682K1bt8798Ic/dC984QvdkUceOY1rPbXccsst7sADD3TPfvaz3Xve857O32frdnn44YfdAQcc4E466SR38803u1/96lfuu9/9rvvP//zPTp9zzjnHDQ8Pu69+9avuRz/6kfvjP/5jt3TpUvfYY49N45r3l7PPPtstWLDAffOb33T33nuvu/LKK90ee+zhPvnJT3b6zMbtQvLgdWkHvDZNDK9N4/C6FIfXpv4wI29sXvCCF7hVq1Z1ptvtttt///3d2rVrp3GtppcHH3zQiYi7/vrrnXPObdy40Q0MDLgrr7yy0+fnP/+5ExF34403TtdqThmbN292T33qU90111zjXvziF3cuHrN5u/zVX/2VO/roo6PtZVm6RYsWub/927/t/G3jxo1ucHDQ/eM//uNUrOK0cOyxx7o3v/nN3t+OO+44d+KJJzrnZu92IXnwutQdXpt8eG3y4XUpDq9N/WHGSdG2b98ut912myxfvrzzt0ajIcuXL5cbb7xxGtdsennkkUdERGSvvfYSEZHbbrtNRkdHve108MEHy5IlS2bFdlq1apUce+yx3vcXmd3b5etf/7ocfvjh8prXvEb23Xdfee5znyuf+cxnOu333nuvrF+/3ts2w8PDcsQRR+zS2+bII4+UdevWyS9/+UsREfnRj34kN9xwg7z85S8Xkdm7XUg6vC7F4bXJh9cmH16X4vDa1B9a070Clt///vfSbrdl4cKF3t8XLlwov/jFL6ZpraaXsixl9erVctRRR8khhxwiIiLr16+XOXPmyJ577un1Xbhwoaxfv34a1nLquOKKK+T222+XW2+9NWibzdvlV7/6lVx00UWyZs0a+eu//mu59dZb5d3vfrfMmTNHVq5c2fn+3Y6tXXnbnHbaabJp0yY5+OCDpdlsSrvdlrPPPltOPPFEEZFZu11IOrwudYfXJh9em0J4XYrDa1N/mHE3NiRk1apVcuedd8oNN9ww3asy7TzwwAPynve8R6655hoZGhqa7tWZUZRlKYcffrh89KMfFRGR5z73uXLnnXfKpz/9aVm5cuU0r9308c///M9y2WWXyeWXXy7Petaz5I477pDVq1fL/vvvP6u3CyGThdemcXht6g6vS3F4beoPM06Ktvfee0uz2QySQjZs2CCLFi2aprWaPk4++WT55je/Kd/73vfkSU96UufvixYtku3bt8vGjRu9/rv6drrtttvkwQcflOc973nSarWk1WrJ9ddfL+eff760Wi1ZuHDhrNwuIiL77befPPOZz/T+9oxnPEPuv/9+EZHO959tx9Z73/teOe200+SEE06QQw89VN74xjfKqaeeKmvXrhWR2btdSDq8LoXw2uTDa1N3eF2Kw2tTf5hxNzZz5syRww47TNatW9f5W1mWsm7dOlm2bNk0rtnU4pyTk08+Wa666iq57rrrZOnSpV77YYcdJgMDA952uuuuu+T+++/fpbfTy172MvnJT34id9xxR+e/ww8/XE488cTO59m4XUREjjrqqCB29Ze//KUccMABIiKydOlSWbRokbdtNm3aJDfffPMuvW22bt0qjYZ/qms2m1KWpYjM3u1C0uF1aRxem7rDa1N3eF2Kw2tTn5ju9IJuXHHFFW5wcNBdeuml7mc/+5l7+9vf7vbcc0+3fv366V61KeOd73ynGx4edt///vfd7373u85/W7du7fT5i7/4C7dkyRJ33XXXuR/+8Idu2bJlbtmyZdO41tODTp5xbvZul1tuucW1Wi139tlnu7vvvttddtllbrfddnNf/vKXO33OOecct+eee7qvfe1r7sc//rF71atetctHR65cudI98YlP7ERq/uu//qvbe++93fve975On9m4XUgevC7tgNemdHht4nUJwWtTf5iRNzbOOfepT33KLVmyxM2ZM8e94AUvcDfddNN0r9KUIiJd/7vkkks6fR577DH3rne9yz3hCU9wu+22m/uTP/kT97vf/W76VnqasBeP2bxdvvGNb7hDDjnEDQ4OuoMPPthdfPHFXntZlu6MM85wCxcudIODg+5lL3uZu+uuu6ZpbaeGTZs2ufe85z1uyZIlbmhoyD35yU92f/M3f+NGRkY6fWbjdiH5zPbrknO8NuXAa9MOeF3qDq9N/aFwTr3ilBBCCCGEEEJqyIzz2BBCCCGEEEJILryxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG1hzc2hBBCCCGEkNrDGxtCCCGEEEJI7eGNDSGEEEIIIaT28MaGEEIIIYQQUnt4Y0MIIYQQQgipPbyxIYQQQgghhNQe3tgQQgghhBBCag9vbAghhBBCCCG15/8DDbwFDayzgUwAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 720x432 with 2 Axes>"
+       "<Figure size 1000x600 with 2 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
    "source": [
     "N = 100\n",
     "x0 = init_problem(N)\n",
-    "x0.shape = N*N\n",
+    "x0 = x0.reshape(N*N)\n",
     "NAG_jacobi_info = NAG_solverinfo()\n",
     "NAG_jacobi_info.source = source(N)\n",
     "tol = 1e-9\n",
@@ -1029,13 +1185,13 @@
     "print(f\"Anderson Accelerated Jacobi with m={m} on a {N} by {N} grid\")\n",
     "print(f\"Solution found in {NAG_jacobi_info.iterations} iterations\")\n",
     "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 6))\n",
-    "NAG_jacobi_sol.shape = (N, N)\n",
+    "NAG_jacobi_sol = NAG_jacobi_sol.reshape(N, N)\n",
     "axes[0].imshow(NAG_jacobi_sol)\n",
     "axes[0].set_title('Potential')\n",
     "Ex, Ey = np.gradient(NAG_jacobi_sol)\n",
     "E = np.sqrt(Ex**2+Ey**2) # Magnitude of Electric field\n",
     "axes[1].imshow(E)\n",
-    "axes[1].set_title('Electric Field');"
+    "_ = axes[1].set_title('Electric Field')"
    ]
   },
   {
@@ -1057,13 +1213,20 @@
   {
    "cell_type": "code",
    "execution_count": 26,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:48:48.859423Z",
+     "iopub.status.busy": "2024-08-14T18:48:48.859201Z",
+     "iopub.status.idle": "2024-08-14T18:48:48.865957Z",
+     "shell.execute_reply": "2024-08-14T18:48:48.865151Z"
+    }
+   },
    "outputs": [],
    "source": [
     "@jit\n",
     "def NAG_gauss_seidel(x, solverinfo):\n",
     "    N = int(np.sqrt(x.size))\n",
-    "    x.shape = (N, N) # Make x 2D because that's how I think\n",
+    "    x = x.reshape(N, N) # Make x 2D because that's how I think\n",
     "    nextx = np.copy(x)\n",
     "    h = 1/(N-1)\n",
     "    for i in range(1, N - 1):\n",
@@ -1071,21 +1234,28 @@
     "            nextx[j, i] = 0.25 * (nextx[j+1, i] + nextx[j, i+1] + nextx[j-1, i] + nextx[j, i-1]) + 0.25*h**2*solverinfo.source[j, i]\n",
     "    solverinfo.iterations += 1\n",
     "    nextx -= x  # NAG requires this rather than nextx itself\n",
-    "    nextx.shape = N*N  # Make nextx 1D since that's what NAG needs\n",
+    "    nextx = nextx.reshape(N*N)  # Make nextx 1D since that's what NAG needs\n",
     "    return nextx"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 27,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:48:48.871228Z",
+     "iopub.status.busy": "2024-08-14T18:48:48.870942Z",
+     "iopub.status.idle": "2024-08-14T18:48:49.509652Z",
+     "shell.execute_reply": "2024-08-14T18:48:49.508644Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
       "Anderson Accelerated Gauss-Seidel with m=4 on a 100 by 100 grid\n",
-      "Solution found in 577 iterations\n"
+      "Solution found in 593 iterations\n"
      ]
     }
    ],
@@ -1094,7 +1264,7 @@
     "\n",
     "N = 100\n",
     "x0 = init_problem(N)\n",
-    "x0.shape = N*N\n",
+    "x0 = x0.reshape(N*N)\n",
     "NAG_gs_info = NAG_solverinfo()\n",
     "NAG_gs_info.source = source(N)\n",
     "tol = 1e-9\n",
@@ -1114,14 +1284,21 @@
   {
    "cell_type": "code",
    "execution_count": 28,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:48:49.515770Z",
+     "iopub.status.busy": "2024-08-14T18:48:49.515567Z",
+     "iopub.status.idle": "2024-08-14T18:48:49.841770Z",
+     "shell.execute_reply": "2024-08-14T18:48:49.840830Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
       "Anderson Accelerated Gauss--Seidel with m=7 on a 100 by 100 grid\n",
-      "Solution found in 445 iterations\n"
+      "Solution found in 434 iterations\n"
      ]
     }
    ],
@@ -1130,7 +1307,7 @@
     "\n",
     "N = 100\n",
     "x0 = init_problem(N)\n",
-    "x0.shape = N*N\n",
+    "x0 = x0.reshape(N*N)\n",
     "NAG_gs_info = NAG_solverinfo()\n",
     "NAG_gs_info.source = source(N)\n",
     "tol = 1e-9\n",
@@ -1150,35 +1327,47 @@
   {
    "cell_type": "code",
    "execution_count": 29,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:48:49.847699Z",
+     "iopub.status.busy": "2024-08-14T18:48:49.847512Z",
+     "iopub.status.idle": "2024-08-14T18:48:49.852471Z",
+     "shell.execute_reply": "2024-08-14T18:48:49.851563Z"
+    }
+   },
    "outputs": [],
    "source": [
-    "def find_best_m(m):\n",
+    "def find_best_m(m): # pylint: disable=function-redefined\n",
     "    N = 100\n",
     "    x0 = init_problem(N)\n",
-    "    x0.shape = N*N\n",
+    "    x0 = x0.reshape(N*N)\n",
     "    NAG_gs_info = NAG_solverinfo()\n",
     "    NAG_gs_info.source = source(N)\n",
     "    tol = 1e-9\n",
-    "    NAG_gs_sol, fvec = roots.sys_func_aa(NAG_gauss_seidel, x0, tol, eps, m, data=NAG_gs_info)\n",
+    "    _ = roots.sys_func_aa(NAG_gauss_seidel, x0, tol, eps, m, data=NAG_gs_info)\n",
     "    return NAG_gs_info.iterations"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 30,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:48:49.858160Z",
+     "iopub.status.busy": "2024-08-14T18:48:49.857901Z",
+     "iopub.status.idle": "2024-08-14T18:52:51.380163Z",
+     "shell.execute_reply": "2024-08-14T18:52:51.378173Z"
+    }
+   },
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAElCAYAAAAV9s4VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU1fn48c8zkz0EAiEgO7JJUWQRF1xxQ1Tq0harrRWtlfartrY/a5XW1tblW62tVq1flVYLVuvSWivugDsqICgomxLZ14QlhCRkm3l+f5wzcQjJTMDMTDDP+/WaV2bO3Z65M7nP3HPuPUdUFWOMMSaWQKoDMMYY0/pZsjDGGBOXJQtjjDFxWbIwxhgTlyULY4wxcVmyMMYYE5clC7MHEXlTRH6Q6jhaExH5rYg8luo4miIiq0XktFTH0VqIyBIRGdPEtDEisr6Z62nVn3uyWbL4ivAH+R0ikpnqWJLlq/Ce9+Xg9SW2MUpEXvD7qlRElorIbSLSMZHb/TJE5FARmSEi233MC0TkrOYsq6qHquqbCQ6xzbFk8RUgIn2BEwAFzklRDGlJ3l5fUvye4xEnpf9jInIs8CbwLjBYVfOBcUAdMCyFocXzPDATOAjoAvwEKEtpRG2cJYuvhkuAOcBUYGL0BBGZKiL3i8iLIrJLROaKSP+o6aeLyHIR2SkifwGkwfLfF5Fl/lfpqyLSJ2qaishVIrICWOEPjneLSLGIlInIJyJymJ+3g4g8KiIlIrJGRG6MHEhF5FIRmS0if/TbWSUiZ36J99xLRP7jt7XNv6/ItCv8+9nlf2GP9OXdReQZv8wqEflJUxsWkWNE5D3/i3dRdJWHP9u5TUTeBSqBfiJyWdQ2V4rID/28ucDLQHcRKfeP7iISEJEbRORzH//TItIpahvf8/twm4j8Ks5++gPwd1X9vapuAVDVtap6U+TXt4j0F5HX/fq2isjjIpIftT0VkQFRr6eKyK3+eWd/1lLqzwLeifpcrxeRDf59fyoip8aJNbL+zsDBwF9VtcY/3lXV2VHzjBeRhX6774nI4VHT6qvlRCTbx7tDRJYCRzbYVrM/9zZPVe1xgD+AIuBK4AigFugaNW0qsA04CkgDHgee9NM6A7uAbwHpwM9wvzh/4Kef69f9Nb/sjcB7UetW3K+/TkA2cAawAMjHJZ2vAd38vI8CzwF5QF/gM+ByP+1SH/cVQBD4H2AjIPv6nv3yi4C7gVwgCzjeT5sAbMAdMAQYAPTB/WhaAPwGyAD6ASuBM/xyvwUe8897+P15ll/udP+60E9/E1gLHOr3WTpwNtDfb/MkXBIZ6ecfA6xv8N6uwSXCnkAm8BDwhJ82BCgHTvTT7vKf2WmN7KNcIASMifP9GeDfRyZQCLwN/LnB5zygwXfqVv/898CD/n2m4872BDgEWAd09/P1Bfo38/sswArgBeA8or7PfvoIoBg42n/eE4HVQKafvjqyP4DbgXdw39FewOLI/t6Xz90easniQH8Ax+MOlp396+XAz6KmTwX+FvX6LGC5f34JMCdqmgDr+SJZvIw/oPvXAX+g6+NfK3BK1PRTcEngGCAQVR4EaoAhUWU/BN70zy8FiqKm5fh1H7Sv7xkYDZQAaY0s9ypwTSPlRwNrG5RNxv0i3+OgAVwP/KOR9U70z98Ebo7zmf03EgeNJ4tlwKlRr7v595vmD2xPRk3L9fu2sWTR0+/HwVFlfwBKgQrgxibiOw/4KOp1rGRxM+5HwIAG6xiAO6CfBqTvx/e6J/AX4HMgjEtgA/20B4BbGsz/KXCSf76aL5LFSmBc1HyT+CJZNPtzt4daNdRXwERghqpu9a//SYNqGWBz1PNKoJ1/3h336w8Adf8h66Lm7QPc40/1S4HtuITSI2qe6OVfx/2D3w8Ui8gUEWmPO4NJB9ZELbemwXo2R62n0j9tR+NivedewBpVrWtkuV64g09DfXBVQaVR7/WXQNcm5p3QYN7jcQf0iOh9iIicKSJzfDVNKS5hd27ivUW28WzU+pfhzhC6svdnVoE7s2nMDtyBtlvU/L9Q127xLC75ICJdReRJX2VUBjwWJ75od+LO8mb4KrYb/HaKgJ/iDrjFfv3d/fbKox69ReTBqNe/9MuvV9WrVbW/3x8VuLPTyP65tsFn0Mvvm4b22F/s+R3cl8+9zUtqo6RpWSKSDVwABEUkcrDNBPJFZJiqLoqzik24f7LI+iT6Ne6f7DZVfTzGOvbotlhV7wXuFZEuwNPAdbgDRi3un3Opn7U3rkpon8R7zz7m3iKS1kjCWIerDmpoHbBKVQc2I4R1uDOLK2LMU79PxF2p9QzuLO45Va0Vkf/yRdtQY90+rwO+r6rvNpwgIptw1XuR1zlAQaNBqFaIyFzgG8AbMeL9Xx/HUFXdLiLn4ZJ+RCXubC/iINwZKKq6C7gWd/A+DHhdRD5Q1ddU9Z/AP/0PhoeAO4DvqWrDHwE/8o9Gqeo6EbkfeMIXRb6Xt8V4TxGR7/gS/7p31LR9+dzbPDuzOLCdh/vFOQQY7h9fw9XRXtKM5V8EDhWRb4i7muknuANBxIPAZBE5FOobqSc0tTIROVJEjhaRdNwvwSogrKohXOK4TUTyxDWS/z/cL9h9Fe89z8MdIG4XkVwRyRKR4/yyfwN+LiJHiDPAxzIP2OUbZLNFJCgih4nIkQ037mP+uoic4efLEnf5a88m4s3AJbMSoE5cw/3YqOlbgAIR6RBV9iBuX/UBEJFCETnXT/s3MF5EjheRDFw1UKz/418A3xfXYN7Fr68nrgE5Ig/XDrJTRHrgEny0hcB3/Psdh2t3wa9rvN+PAuzEfTZhETlERE7xybIK2I07y4lLRDqKyO/8egPiGry/j2vHAfgr8CP/XRP/OZ8tInmNrO5p3He4o3/fP46ati+fe5tnyeLANhFXv7pWVTdHHrhfhd+VOJez+mqcCbhGwG3AQNwllpHpz+J+DT7pqycWA7GuUmqP+0fegTvd34arpgD3T1qBq0Oejas6emTf3i4Q5z3jfrF/HVdnvhb3C/jb/v38C7jNb3sXru2gk09m43GJZxWwFZdYog/g+HWswzX8/xKXANbhDq6N/i/5X94/wR20dgDfAaZHTV+O+8W80leFdAfu8fPMEJFduIPk0X7+JcBV/j1s8uts8j4NdVcQnYJrEP/MV7W8gmtbuc/P9jtgJO5g/yLwnwaruQa3T0tx+/i/UdMGArNwyeZ94P9U9Q1cgrwdty834y5/ndxUnA3U4BrEZ+Eul10MVOPatlDV+biLIf7i339RZFojfof7Lq4CZgD/iEzYl8/d+KtNjDHGmFjszMIYY0xcliyMMcbEZcnCGGNMXJYsjDHGxGXJwhwwJKpPohRsW0Tk7+L6GJrXyPTvisiMVMQWFcODIvLrVMZgvrosWZj9Jq7DtmJxHeJFyn4gIm+mMKxEOR7Xf1JPVT2q4URVfVxV6++fkAad77U08Z0vNojhR6p6S6K2ado2SxbmywrirsM/oIhIcB8X6QOs9t1rJFS8+2OMSQVLFubLuhN3V3R+wwki0tf/wk6LKqsfic//On5XXLfmpeL6FjrWl6/zZy0N+7nqLCIzxXV7/Zbs2WX6YD9tu7gusS+ImjZVRB4QkZdEpAI4uZF4u4vIdL98kYhc4csvx92sNVpc/0W/a2TZ+l/6IvK2L17k5/+2L4/Xrfb1IvIxUCEiafJFN+WR7tTP9/N+DXeXdySe0qj3eGvUOq/w72O7f1/do6apiPxIRFb4eO73d2Hj75x+S1y39VtF5KmG79fP97KIXN2gbJG4HgFEmuiuvpH1vCkit/p9Ui4iz4tIgbiu0stE5ANx45eYVEp1T4b2OHAf+N49cXf8Rnoh/QFf9CbbF9fnUFrUMm/yRa+2l+K6174Md4ZyK+6u6/txdwCPxd1p3c7PP9W/jnTPfQ8w20/Lxd1NfRmuz7MRuDtyh0QtuxM4DvcjKauR9/M28H+4bs2H4+7QPiUq1tkx9sUe09m7p9bmdKu9ENePUbYvm4DrCC+Auwu9gi+6fN8rHvbsDfYU//5H+n11H/B2g/hewHUn39u/13F+2hPAryL7Cd/FeyPv+RLg3ajXQ3B3eWcSo7v6RtbzJu4u7P64u6eX4novPs1/lo/ie4K1R+oedmZhWsJvgB+LSOF+LLtKVf+uruuFp3AHy5tVtVpVZ+C6foiu+39RVd9W1WrcAW20iPTCdduw2q+rTlU/wnXgF92X1XPqBtEJq2pVdBB+HccB16tqlaouxJ1NNKePreaYBDykqnNVNaSq03BdWBwTNc+9qrpOVXeD655EVTf6eJ/CjfGwV3tJE74LPKKqH/p9NRm3r/pGzXO7qpaq6lpcR4PDfXmk08fufl/s0TYS5VlgeNTZ3XeB//jt1eL6nBqM6ylimapuihHv31X1c1Xdiesa/3NVnaWuM8h/4ZKtSSFLFuZLU9XFuF+pN+zH4luinkcOkg3Lonspje6euxzXbXp33MHtaNmzu+nvsmfHiHt0Hd5Ad2C7ur6cIhp2o/5lNKdb7YZdm18SVW1VChxG87sO705Ud9x+X22jiW7h2bPr+l/gzgbmicgSEfl+Yxvw++pF4EJfdBFucC206e7qm9LwM4/1HTApYMnCtJSbcJ27RR+MIo3BDbu3/jKiu1RvhxsBbSPuQPuWquZHPdqp6v9ELRurI7SNQCfZs+fS/epGvQmRbrWj48tR1Sei5onu2rwPrlPGq4ECdWNQLCZ21+bRNuISVGR9ubiuzOO+H3WdM16hqt1xg1T9nzR9ZdcTwEUiMhpXZfVG1HruVdUjcNVTg9i7N1tzALFkYVqEusFunsL1sBopK8EdnC4W1/3z92l8PIl9cZZ80T33LbiR/tbhzmwGiRufOt0/jvSNwc2Jfx3wHvB7cd2OHw5czv51ow7ul3G/qNf70q02uDYYxbUlICKX4c4sotff0++HxjwBXCYiw8V1E/6/wFxVXR0vcBGZIF90ub7Dx9FU9+Iv4ZLSzcBTqhr262i0u/p42zatlyUL05Juxh3kol2B+0W5DTcu9Xtfchv/xJ3FbMeNv30x1FeJjMVViWzEVbHcgWtsba6LcI3yG3H18Tep6qz9jPO3wDRfhXSB7lu32qjqUuBPuG6/twBDieo+HngdN6DPZhHZ2sjys4Bf49ptNuGS9IUN52vCkcBcESnHdZV+jaqubCLOatwFDqfhPpuIWN3VmwOQdVFujDEmLjuzMMYYE5clC2OMMXFZsjDGGBOXJQtjjDFxfSU7LOvcubP27ds31WEYY8wBZcGCBVtVtdGeGL6SyaJv377Mnz8/1WEYY8wBRUTWNDXNqqGMMcbEZcnCGGNMXJYsjDHGxGXJwhhjTFwJSxa+M7Z5fuSsJeJHF/Ojea3yXS8vFJHhvlxE5F4/stfHIjIyal0T/YheK2TvkdOMMcYkWCKvhqrGjTJW7nuenC0iL/tp16nqvxvMfyYw0D+OBh7AjU/QCddx3Chc75cLRGS6qu5IYOzGGGOiJOzMQp1y/zLdP2L1Wngu8Khfbg6QLyLdcMMzzlTV7T5BzATGJSpuY4wxe0tom4Ufw2Ahbuzhmao610+6zVc13e372gc3aE70SGHrfVlT5Q23NUlE5ovI/JKSki8de1VtiLtmfMr81du/9LqMMeZAl9Bk4ccaHg70BI4SkcNwYwEPxvWZ3wm4voW2NUVVR6nqqMLC/RkKek91YeXe14v4aG1pC0RnjDEHtqRcDaWqpbjhFsep6iZf1VQN/J0vBqDfQNSQmbgEsyFGeUIF/OCVYRvvwxhjEno1VKGI5Pvn2cDpwHLfDoGICHAeblxhcCNyXeKvijoG2Kmqm4BXgbEi0lFEOuJGQ3s1UXFHBMRli5AlC2OMSejVUN1ww0oGcUnpaVV9QUReF5FC3MDzC4Ef+flfAs7CDTdZCVwGoKrbReQW4AM/382qmvCGhEiysFxhjDEJTBaq+jEwopHyU5qYX4Grmpj2CPBIiwYYR6QaKhS2bGGMMXYHdxOCPltYm4UxxliyaJJIJFmkOBBjjGkFLFnEEBAIW7YwxhhLFrEEA2LVUMYYgyWLmETEqqGMMQZLFjEFxBq4jTEGLFnEFBSxNgtjjMGSRUwBEbuD2xhjsGQRk4jdwW2MMWDJIia7GsoYYxxLFjEERKy7D2OMwZJFTIGAXTprjDFgySKmgIBaNZQxxliyiMWqoYwxxrFkEUPA7uA2xhjAkkVMgYBVQxljDFiyiMluyjPGGMeSRQxBq4YyxhjAkkVMYuNZGGMMYMkiJruD2xhjHEsWMbiroSxZGGOMJYsYRIRQONVRGGNM6iUsWYhIlojME5FFIrJERH7nyw8WkbkiUiQiT4lIhi/P9K+L/PS+Ueua7Ms/FZEzEhVzQ0G7dNYYY4DEnllUA6eo6jBgODBORI4B7gDuVtUBwA7gcj//5cAOX363nw8RGQJcCBwKjAP+T0SCCYy7nlVDGWOMk7BkoU65f5nuHwqcAvzbl08DzvPPz/Wv8dNPFRHx5U+qarWqrgKKgKMSFXc0ESFkucIYYxLbZiEiQRFZCBQDM4HPgVJVrfOzrAd6+Oc9gHUAfvpOoCC6vJFlorc1SUTmi8j8kpKSFok/aB0JGmMMkOBkoaohVR0O9MSdDQxO4LamqOooVR1VWFjYIuu0jgSNMcZJytVQqloKvAGMBvJFJM1P6gls8M83AL0A/PQOwLbo8kaWSShrszDGGCeRV0MViki+f54NnA4swyWNb/nZJgLP+efT/Wv89NfV1QFNBy70V0sdDAwE5iUq7miBANbdhzHGAGnxZ9lv3YBp/sqlAPC0qr4gIkuBJ0XkVuAj4GE//8PAP0SkCNiOuwIKVV0iIk8DS4E64CpVDSUw7noBEersRgtjjElcslDVj4ERjZSvpJGrmVS1CpjQxLpuA25r6Rjjse4+jDHGsTu4YxDrddYYYwBLFjEFBDuzMMYYLFnEFLSroYwxBrBkEZOIELb2bWOMsWQRi1VDGWOMY8kiBrsayhhjHEsWMVh3H8YY41iyiCEQEOzEwhhjLFnEZG0WxhjjWLKIISBCyJKFMcZYsoglYJfOGmMMYMkipoANfmSMMYAli5isGsoYYxxLFjEEAtaRoDHGgCWLmAICYcsWxhhjySIWG1bVGGMcSxYxBK0ayhhjAEsWMYlVQxljDGDJIiYbz8IYYxxLFjHY1VDGGONYsohBBLvPwhhjsGQRU1DE7uA2xhgSmCxEpJeIvCEiS0VkiYhc48t/KyIbRGShf5wVtcxkESkSkU9F5Iyo8nG+rEhEbkhUzA3ZeBbGGOOkJXDddcC1qvqhiOQBC0Rkpp92t6r+MXpmERkCXAgcCnQHZonIID/5fuB0YD3wgYhMV9WlCYwdiHRRnuitGGNM65ewZKGqm4BN/vkuEVkG9IixyLnAk6paDawSkSLgKD+tSFVXAojIk37exCeLgACuM0ERSfTmjDGm1UpKm4WI9AVGAHN90dUi8rGIPCIiHX1ZD2Bd1GLrfVlT5Q23MUlE5ovI/JKSkhaJO+AThFVFGWPauoQnCxFpBzwD/FRVy4AHgP7AcNyZx59aYjuqOkVVR6nqqMLCwpZYJUF/ZmG5whjT1iWyzQIRScclisdV9T8AqrolavpfgRf8yw1Ar6jFe/oyYpQnVKTmyW7MM8a0dYm8GkqAh4FlqnpXVHm3qNnOBxb759OBC0UkU0QOBgYC84APgIEicrCIZOAawacnKu5okWooSxbGmLYukWcWxwHfAz4RkYW+7JfARSIyHFBgNfBDAFVdIiJP4xqu64CrVDUEICJXA68CQeARVV2SwLjrBcWqoYwxBhJ7NdRsoLFLiF6KscxtwG2NlL8Ua7lEsWooY4xx7A7uGOqroezUwhjTxlmyiMGuhjLGGMeSRQw+V9h9FsaYNs+SRQyRu7atM0FjTFtnySIGq4YyxhjHkkUM9dVQdmZhjGnjLFnEYFdDGWOMY8kihkB9m0WKAzHGmBSzZBFDwO8dq4YyxrR1lixisL6hjDHGsWQRg7VZGGOMY8kihoB1JGiMMUAzk4WI/EFE2otIuoi8JiIlInJxooNLtaDfO1YNZYxp65p7ZjHWj3I3Htet+ADgukQF1VqIDatqjDFA85NFpCvzs4F/qerOBMXTqgTt0lljjAGaP57FCyKyHNgN/I+IFAJViQurdQhYNZQxxgDNPLNQ1RuAY4FRqloLVADnJjKw1qC+GsqShTGmjduXkfIGA31FJHqZR1s4nlYlaL3OGmMM0MxkISL/APoDC4GQL1a+4snCLp01xhinuWcWo4Ah2sZ+YtvgR8YY4zT3aqjFwEGJDKQ1CgSsuw9jjIHmn1l0BpaKyDygOlKoquckJKpW4ovuPlIciDHGpFhzk8Vv93XFItIL16bRFde+MUVV7xGRTsBTQF/cDX4XqOoOcZce3QOcBVQCl6rqh35dE4Eb/apvVdVp+xrP/ohUQ9mZhTGmrWvupbNvAcuBPP9Y5stiqQOuVdUhwDHAVSIyBLgBeE1VBwKv+dcAZwID/WMS8ACATy43AUcDRwE3iUjHZr/DL8GqoYwxxmlu31AXAPOACcAFwFwR+VasZVR1U+TMQFV3AcuAHrj7MyJnBtOA8/zzc4FH1ZkD5ItIN+AMYKaqblfVHcBMYNw+vMf9Zl2UG2OM09xqqF8BR6pqMYC/g3sW8O/mLCwifYERwFygq6pu8pM246qpwCWSdVGLrfdlTZU33MYk3BkJvXv3bk5YcQWtzcIYY4DmXw0ViCQKb1tzlxWRdsAzwE99Z4T1/KW4LfKzXVWnqOooVR1VWFjYEqtErM3CGGOA5ieLV0TkVRG5VEQuBV4EXoq3kIik4xLF46r6H1+8xVcv4f9GktAGoFfU4j19WVPlCWfVUMYY4zS3gfs6YApwuH9MUdXrYy3jr256GNcYflfUpOnARP98IvBcVPkl4hwD7PTVVa8CY0Wko2/YHuvLEi4YsDu4jTEG9qFvKFV9BneW0FzHAd8DPhGRhb7sl8DtwNMicjmwBtdgDu5M5SygCHfp7GV+u9tF5BbgAz/fzaq6fR/i2G92B7cxxjgxk4WIzFbV40VkF3u2LQiuyaF9U8uq6mw/X2NObWR+Ba5qYl2PAI/EijURxKqhjDEGiJMsVPV4/zcvOeG0LpFqKMsVxpi2rrlXNP2jOWVfNVYNZYwxTnOvhjo0+oUf0+KIlg+ndbGroYwxxomZLERksm+vOFxEyvxjF7CFL65i+soKWDWUMcYAcZKFqv7et1fcqart/SNPVQtUdXKSYkyZ+mooyxbGmDauWZfOqupkf4/DQCArqvztRAXWGgStGsoYY4DmD6v6A+Aa3N3TC3G9yL4PnJK40FKv/tJZa+A2xrRxzW3gvgY4ElijqifjOgUsTVhUrcQX41mkNg5jjEm15iaLKlWtAhCRTFVdDhySuLBah6CNZ2GMMUDzu/tYLyL5wH+BmSKyA9dVx1dapBrK7rMwxrR1zW3gPt8//a2IvAF0AF5JWFSthN3BbYwxTtxkISJBYImqDob6IVbbBBuD2xhjnLhtFqoaAj4VkZYZfu4AErmD2+6zMMa0dc1ts+gILBGReUBFpFBVz0lIVK1EJFlYrjDGtHXNTRa/TmgUrVR9NZQ1cBtj2rjmNnC/JSJ9gIGqOktEcoBgYkNLPauGMsYYp7ldlF8B/Bt4yBf1wF1G+5UWsGFVjTEGaP5NeVfhhkktA1DVFUCXRAXVmgTkwKuGCgaDDB8+nGHDhjFy5Ejee++9/VrPn//8ZyorKxud9sILLzBixAiGDRvGkCFDeOihh+qnTZkyhcGDBzN48GCOOuooZs+eXT9tzJgxHHLIIQwbNowjjzyShQsXNrb6hFi9ejWHHXYYAAsXLuSll15K2raNOdA1N1lUq2pN5IUfz+LAOoLup4DIAXfpbHZ2NgsXLmTRokX8/ve/Z/Lk/esguKlkUVtby6RJk3j++edZtGgRH330EWPGjAFcEnnooYeYPXs2y5cv58EHH+Q73/kOmzdvrl/+8ccfZ9GiRVx55ZVcd911ceMIhUL7FX8sliyM2TfNTRZvicgvgWwROR34F/B84sJqPQIBOaCrocrKyujYsWP96zvvvJMjjzySww8/nJtuugmAiooKzj77bIYNG8Zhhx3GU089xb333svGjRs5+eSTOfnkk/dY565du6irq6OgoACAzMxMDjnE9f5yxx13cOedd9K5c2cARo4cycSJE7n//vv3im306NFs2LCh0bj79u3L9ddfz8iRI/nXv/7FjBkzGD16NCNHjmTChAmUl5cDcMMNNzBkyBAOP/xwfv7znwNw6aWX8u9//7t+Xe3atdtj3TU1NfzmN7/hqaeeYvjw4Tz11FPN36HGtFHNvRrqBuBy4BPgh8BLqvrXhEXVigTkwLspb/fu3QwfPpyqqio2bdrE66+/DsCMGTNYsWIF8+bNQ1U555xzePvttykpKaF79+68+OKLAOzcuZMOHTpw11138cYbb9Qf+CM6derEOeecQ58+fTj11FMZP348F110EYFAgCVLlnDEEXsOojhq1CimTZu2V5yvvPIK5513XpPvo6CggA8//JCtW7fyjW98g1mzZpGbm8sdd9zBXXfdxVVXXcWzzz7L8uXLERFKS5vXt2VGRgY333wz8+fP5y9/+UuzljGmrWtusvixqt4D1CcIEbnGlzVKRB4BxgPFqnqYL/stcAVQ4mf7paq+5KdNxiWkEPATVX3Vl48D7sFdffU3Vb29+W/vywuKHHBtFpFqKID333+fSy65hMWLFzNjxgxmzJjBiBEjACgvL2fFihWccMIJXHvttVx//fWMHz+eE044Ie42/va3v/HJJ58wa9Ys/vjHPzJz5kymTp3arPi++93vUlNTQ3l5ecw2i29/+9sAzJkzh6VLl3LccccB7sxg9OjRdOjQgaysLC6//HLGjx/P+PHjm7V9Y8y+a2411MRGyi6Ns8xUYFwj5Xer6nD/iCSKIcCFuLG+xwH/JyJB39XI/cCZwBDgIj9v0rg2i2RusWWNHj2arVu3UlJSgqoyefJkFi5cyMKFCykqKuLyyy9n0KBBfPjhhwwdOpQbb7yRm2++uVnrHjp0KPKi1fAAAByXSURBVD/72c+YOXMmzzzzDABDhgxhwYIFe8y3YMECDj30i2HcH3/8cVauXMnEiRP58Y9/3OT6c3NzAVBVTj/99Pq4ly5dysMPP0xaWhrz5s3jW9/6Fi+88ALjxrmvW1paGuFwGIBwOExNTU2T2zDGNE+8MbgvEpHngYNFZHrU4w1ge6xl/Sh6MeeJci7wpKpWq+oqoAg4yj+KVHWlb2B/0s+bNHIAVkNFW758OaFQiIKCAs444wweeeSR+vr+DRs2UFxczMaNG8nJyeHiiy/muuuu48MPPwQgLy+PXbt27bXO8vJy3nzzzfrXCxcupE+fPgD84he/4Prrr2fbtm3106ZOncqVV165xzpEhFtuuYU5c+awfPnymO/hmGOO4d1336WoqAhwbSyfffYZ5eXl7Ny5k7POOou7776bRYsWAa69I5Kwpk+fTm1t7V7rbOq9GWMaF68a6j1gE9AZ+FNU+S7g4/3c5tUicgkwH7hWVXfg7tuYEzXPel8GsK5B+dH7ud39EgwceFdDRdoswP0qnzZtGsFgkLFjx7Js2TJGjx4NuIbfxx57jKKiIq677joCgQDp6ek88MADAEyaNIlx48bRvXt33njjjfr1qyp/+MMf+OEPf0h2dja5ubn1VVDnnHMOGzZs4Nhjj0VEyMvL47HHHqNbt257xZmdnc21117LnXfeycMPP9zk+yksLGTq1KlcdNFFVFdXA3DrrbeSl5fHueeeS1VVFarKXXfdBcAVV1zBueeey7Bhwxg3blz9GUq0k08+mdtvv53hw4czefLk+iovY0zjRBN4IBSRvsALUW0WXYGtuMtubwG6qer3ReQvwBxVfczP9zDwsl/NOFX9gS//HnC0ql7dyLYmAZMAevfufcSaNS0z3MYRt8xk3GEHcdv5Q1tkfcYY01qJyAJVHdXYtJhnFiKyi8bvpxBAVbX9vgSiqlui1v1X4AX/cgPQK2rWnr6MGOUN1z0FmAIwatSoFsuAcoC3WRhjTEuImSxUNa8lNyYi3VR1k395PrDYP58O/FNE7gK6AwOBebikNFBEDsYliQuB77RkTPEEA67axRhj2rLmXjq7z0TkCWAM0FlE1gM3AWNEZDjubGU17p4NVHWJiDwNLAXqgKv8OBqIyNXAq7hLZx9R1SWJirkxAREbVtUY0+YlLFmo6kWNFDfZiqmqtwG3NVL+EpCyfhkO9EtnjTGmJTT3Pos2K2DVUMYYY8kinoCIjWdhjGnzLFnEEbRqKGOMsWQRz4FwB3ekawtjjEkUSxZxBFp5R4JLly4lGAwyZ86c+DMbY8x+smQRR2vv7uOVV14BoEePHnHmNMaY/WfJIg4RIdSKa3nuvvtuAHr16hVnTmOM2X+WLOIISOu9dDYUCrF+/XrGjh2b6lCMMV9xliziaM3VUJGBgyZObGy4EWOMaTmWLOIQEUKtM1cwa9YsgL3GyDbGmJZmySKOYCuuhvrTn9wQI42NFWGMMS3JkkUcrm+o1pcs6urqKCkp4etf/3qqQzHGtAGWLOJorb3ORoYNvfjii1MciTGmLbBkEUcgQKvs7mPGjBkAjBkzJrWBGGPaBEsWcbTWO7j/+Mc/AtClS5cUR2KMaQssWcTRGtssampqKCsrY8KECakOxRjTRliyiCMQaH29zn7wwQcAXHjhhSmOxBjTVliyiCPQCnudffnllwE46aSTUhyJMaatsGQRR7AVVkNF2isKCgpSHIkxpq2wZBGHiNCahouorq6murraLpk1xiSVJYs4Wls1VGTcCmvcNsYkkyWLOFpbR4IvvPACACeeeGKKIzHGtCUJSxYi8oiIFIvI4qiyTiIyU0RW+L8dfbmIyL0iUiQiH4vIyKhlJvr5V4hI0rtXbW13cEfaK/Lz81MciTGmLUnkmcVUYFyDshuA11R1IPCafw1wJjDQPyYBD4BLLsBNwNHAUcBNkQSTLCLQWk4sKisrAbjiiitSHIkxpq1JWLJQ1beB7Q2KzwWm+efTgPOiyh9VZw6QLyLdgDOAmaq6XVV3ADPZOwElVGuqhnrvvfcAOP/881MciTGmrUl2m0VXVd3kn28GuvrnPYB1UfOt92VNle9FRCaJyHwRmV9SUtJiAQdECLWSZPH8888DcPzxx6c4EmNMW5OyBm51g0S02FFYVaeo6ihVHVVYWNhSq0WEVnPp7L333gtAXl5eiiMxxrQ1yU4WW3z1Ev5vsS/fAPSKmq+nL2uqPGmCIq1i8KPy8nIArr766hRHYoxpi5KdLKYDkSuaJgLPRZVf4q+KOgbY6aurXgXGikhH37A91pclTWuphpo9ezYA55xzToojMca0RWmJWrGIPAGMATqLyHrcVU23A0+LyOXAGuACP/tLwFlAEVAJXAagqttF5BbgAz/fzarasNE8oVpLR4LPPvssAMcdd1yKIzHGtEUJSxaqelETk05tZF4FrmpiPY8Aj7RgaPsk0ErG4J4yZQoAOTk5KY7EGNMW2R3ccbSGm/J27twJwLXXXpvSOIwxbZcliziCraAa6p133gHg7LPPTm0gxpg2y5JFHO7S2dRmi2eeeQaA0aNHpzQOY0zbZckijtYwrOrUqVNJT08nKysrpXEYY9ouSxZxpAWE2rCmrJF7+3Z38dfPf/7zlGzfGGPAkkVcB3XIoqYuTEl5dUq2//bbbwNw5plnpmT7xhgDCbx09quif2E7AD4vrqBLXvKqgVauXMnSpUuZOnUqAEcddVTStm2MMQ3ZmUUcA7r4ZFFSntTt3nfffXzzm9/kuefcTe6TJ09my5YtSY3BGGMiLFnEcVD7LHIyghQVJzdZrFu3jpqamvrX9957L6tWrUpqDMYYE2HJIo5AQOhXmJv0M4vNmzfv8XrAgAEcffTRSY3BGGMiLFk0w4DCdqwsqUjqNouLi+uft2vXjhtvvBERSWoMxhgTYcmiGfoXtmND6W4qquuSts3IJbMAaWlpXHDBBTHmNsaYxLJk0Qz9fSP3qq3JO7soKysDICsri5/97GdkZGQkbdvGGNOQJYtmSPYVURUVFXvcBHjllVcmZbvGGNMUSxbN0Kcgh4xggCUby5KyveLiYjIzMwkGg0yYMIHOnTsnZbvGGNMUSxbNkJkWZFivDsxduS0p2yspKUFEyMjI4IYbbkjKNo0xJhZLFs10TL8CFm8sY1dVbcK3VVJSQnl5OSNGjGDIkCEJ354xxsRjyaKZjj64gFBYmb9mR8K3Fbls9te//nXCt2WMMc1hyaKZRvbJJz0ozF2Z+CHAi4uL6d27N2PHjk34towxpjksWTRTTkYaw3rmMycJ7RZDhw7lvvvuIxCwj8cY0zpYr7P74Nj+Bdz/5udsKN1Nj/zshG3nrLPOSti6jTFmf9hP133w7aN6I8DD71iHfsaYtiUlyUJEVovIJyKyUETm+7JOIjJTRFb4vx19uYjIvSJSJCIfi8jIVMQM0CM/m3OGdefJD9ZSWlkTfwFjjPmKSOWZxcmqOlxVR/nXNwCvqepA4DX/GuBMYKB/TAIeSHqkUX54Un8qa0I8NmdNKsMwxpikak3VUOcC0/zzacB5UeWPqjMHyBeRbqkIEOCQg/I4YWBnHpuzltpQOFVhGGNMUqWqgVuBGSKiwEOqOgXoqqqb/PTNQFf/vAewLmrZ9b5sU1QZIjIJd+ZB7969v1x0Y8bEnDwxvz8/GPwNZkz4EWdv/+zLbcsYY1rSm28mZLWpOrM4XlVH4qqYrhKRE6MnqutFTxtdsgmqOkVVR6nqqMLCwhYMdW8nl66kV1Upfz/oCOzcwhjTFqTkzEJVN/i/xSLyLHAUsEVEuqnqJl/NFBn9ZwPQK2rxnr4sceJk5iBwxfur+c1zS/jJpLv444RhZKUHWbapjO4dsumQk57Q8IwxJtmSnixEJBcIqOou/3wscDMwHZgI3O7/PucXmQ5cLSJPAkcDO6Oqq1Lme8f0YXdNiNtfWc6SjWWM6tORfy1YT+9OOfxt4ihqQ2H6FuSSm2m3shhjDnwSPW5CUjYo0g941r9MA/6pqreJSAHwNNAbWANcoKrbxY0l+hdgHFAJXKaq82NtY9SoUTp/fsxZWszsFVu58b+fsHpbJROO6MmsZVvYUek6G+xTkMOfJgxjycYyqutCHNq9A8f2L6CyJsTbn5Uw9tCDCAZsqFRjTOsgIguirlDdc1qyk0UyJDNZAFTXhdhUWkXfzrms3lrBi59somNOBn+a8SnbKva8H+OeC4fzzoqt/HvBen511tfoXZDDr55dzLCeHbjixH4c068gaXEbY0w0SxYpsn5HJbOWbuG4AZ3pkpfFpVPn8enmXVTWhMjPSWd3TQgR6N4hm4qaOnbXhHjt2jEU5mWmOnRjTBtkyaKVWLW1gjPveZvu+dlMu+woxt83m3aZafz3quMoq6rlzD+/wwkDO3Nw51wUOGtoN47o05FwWHlrRQmfF5czpFt7jh2QuJHz3vy0mN88t4RvjuzJNacN3OflI98nV3u4f0JhZdmmMjbvrKJ9djoje+eTFgwQDiu7a0MEA0JWejBuHI3FEAortaEwNaEw4bCLNTczjfRgci8M3FFRQ1lVLX0KcpO6XWNisWTRiizfXEannAy6tM9i3fZKcjKCFLRzZxJ/nvUZf561goxgAARq6sL89LSBlO2u45F3XX9UAYE/XTCMId060DEnnS7ts6iqDbG7JkTH3AxUldqQIsIeB8AtZVUs37yLfp1z6dkxGxGhuKyK0t211IbClO2u47G5a3jx403kZgSpqAkx7ftHcdKgQop3VVG0pZzM9ABd8rLonp9NMCC89/lWXl9WzGlDuhIKKy8v3sSrS7ZQsquatICQFhT6FuRy3IDOdM/P5uiDO3FYjw7U1IVZvrmMj9fv5JP1O6msDdEpJ53FG8tYs62CXVV1VNd9cVHyiYMKOX1IV/7wynJ2VdUB0DEnnWAgQF3YHfS/MbIn4w/vxmNz1vDB6h1sKN1NTkaQy47ryw9P6s9fXi/itWVb+LykYq/PRAQKcjPp2j6Tkb07ct6I7gzr6RJUxLrtlfz1nZWs3lbJzsoaQqoM6prHecN7cOKgxi/Vfq9oKw/PXkVOZhp3XTCMHRU1bC6romNOBhdOmUPZ7lreuG4MndvZmaRpHSxZHCDqQmHeXlHCEb07EQwKNz23hGc+XA/AxNF9uPLkAVzz5EfM8WNqZKcH+elpA3n0/TVsLqvipEGFFBWXs3Z7JQD5Oen0LXDJYcbSLdT4A3BBbgYdctJZ2eDA2S4zjcuO68sPju/Ht6e8T1FxOe2y0iit3HN0wIxggK4dMlm3ffce5dnpQU4Z3IX+XdpRFwpTGwqzZGMZ81fvoCYURgTOHtqNOSu3s7W8GnAH/bysdLaVV3PIQXkcclAe7TLTOKxHB/oW5PLh2h3c9uIy6sLKMf06ccrgLtSGlI2lu1EgPSDsqKzl+Y83ogp5WWmcNKiQgzvnUlRczsuLN5ObEWR3bYiTBhUytGc+2elB0oNCwJ957NxdS/GuKjaUVjF35Taq68K0y0xj/OHd+OFJ/flo7Q5+9/xSqutCDOySR8fcDACWbtzJtooafnzKQNpnpdG5XSZnH96Nst21/O75pUxftJH8nHRKK2s5cVAhH63dwa6qOoIBITcjSGVNiAuO7MX/nj+UcFj5ZMNOvtatPRlpraljBdOWWLI4QIXCyq0vLkUVfjN+CIGAUFlTxz/nriU/J4N/zl3Dh2tL6ZGfzelDuvLK4s0MOiiPUX06AlC8q4oVW8r5vKScEwcV8o0RPVmzvYIFq3ewo7KGY/t35qAOWaQHA2SkCUf07lR/j8iG0t384/01lFfX0rtTDod270BtKMzmnVWs2lbBuu2VDO2Rz0VH9eKtz0rITAty0qBCsjP2rh4Kh5WtFdXcM2sFT8xby4mDCvnWET0Z1jO//iwnlg9Wb2fV1gq+NbIngSauHvtw7Q6WbSrj68O60z7LvQdV5cG3VvLy4k3c9PUhHNGnU9x9XlZVy1ufljB7xVb+89F6akPu/2NIt/Y8ePER9C7IqZ+3qjbEtf9axIsff3Eld4fsdMqqagmK8JNTBzLpxH488Obn3PPaCob26MB3ju7Ne59vY9IJ/fjPR+uZ9t5qxg45iCWbdrJu+27OPrwb9104gneKtlJeVUfPjtkc3rMDIoKqsqOylrAq6cEANXWuOq2mziXm/Ox0OrfLbHIfNVRdF2LttkpC/hhQW6ds3Lmb0soa6sLuzKljTjrVdWGGdGu/1+cUCisL15USCiuj+nQkEBBCYaW6LkRWWrDZcbSEsqpatpXX0CUvc4/L1WtD4aRXMR7ILFl8RVXXhXh+0SZOHdyl/tduaxcOa1IPIl/Gqq0VzFy6mWE98zmiT8c9qqUiwmFl6aYyurbP4pMNpTy3cCP9Ordj3GEHcchBeYBLWvPX7GBojw57tLWUVtZwzZML2Vi6m67ts+jVKZsn5q2jV6fsPc7aDu3enpyMICuKy/c6y2soUv2YHhCCAUFEyEoP0D4rnfbZ6eRkBAkGhI2lu1m1taI+GcZz6uAujOidz+Nz11JZEwLc96+q1p2tdm6XQSis9ZeNA+RlptE+O538nHT6F7bjglG9WLJxJx+u3UEw4M7s0gJCMBCgR34W3fKzqakLc1iPDozsnd/oj4i6UJi0YIDquhBvflrCu0Vbebdoa331Ym5GkDGDu7CtvJqi4nK2ltdwSNc8+nfJJSDCmm2VlFXVkhYQ0oMBOuZk0LdzLqB8XlLBx+tLEYQeHbM5rn8BWRlBNpZWsXTjTnburqNjTjrjD+9O9/wswP1gmLF0Cx+v3+nec1YaPfKzOXFQIecM605dWLnhmY9ZubWC3IwgE0b1orKmjqLico7s24nzR/SgoF0m7xVt5fOScg7qkM1pX+tCWOGzLbs4pGteUv9fLFkYcwBQVa7798e8vryYX5xxCCN6d+SD1dt56oN1ZKUHGNClHf0L25GR5s4qMtMCZPhHejDAjooaSnZVUxNS6kJh6sKKqlJVG6asqpayqloqqkOEwkrX9lkM6NKOr3XLc21kQCAgdOuQRSf/w+PTzbsor65jQ+lu/jxzBTWhcH0VH0BAhBG98wF4bdkWcjPTKMzLJCs9yO6aEGVVtezcXUtpZS0L1uxg526XSPp1ziUQEMJhpc5fcLClrIpw1KGoIDeDzLQA7bPT6do+i4J2GXyyficrt1ZwZN+OFBVXsLW8muz0IEf368RRB3eiS14Wc1Zu450VJfTIz2ZAl3Z0ycti0fpSNpbupi6s9O6UQ0FuBrVhpbYuTEl5NWu2VRL0731k746kB4VPt5Qzd+U2FChsl8lhPdrTKTeTz0vKmbdqz6GVe+Rnc9IhhaQHhLKqOj7bsoslG8sICGSmBclMDzDu0INYs62S91duq9/W+h1uELVvjuzBva8X1a/vGyN7ULKrmndWbKVf51wmHtuX4wZ05qkP1rJqawVZ6UEuPqZPQi6zt2RhzAFCVQkrre5mzaJid8n34T3z92v5ypo6XltWzCEH5TGoa95e06vrQmwrryEYEN76rIT5q7cTViitdO1JxWXV9CnIYUj39rxXtI1u+VlcdtzBjO5XkLA2nqauqNtWXl1/dhUICN3aZ+31639j6W6mvb+aTaVV/GLcIfTs6Kov12yrIC8rnU65GXy0dgdXPDqfreU1nPa1Ltx63lCe/GAtf561gvSg8IMT+vH+59tYuK4UcN+JQ7rmsaWsim0VrsotPRggEIC0QIBgQLjjm0ObVd3aFEsWxhjTCq3bXsmsZVv47tF96pPe68u3UNgui6E9OwDw0dodzF21nbOHdqNXpxyqakP8c+5alm8uIxSGsLoztHBYufqUAXytW/v9jseShTHGmLhiJQu7TMAYY0xcliyMMcbEZcnCGGNMXJYsjDHGxGXJwhhjTFyWLIwxxsRlycIYY0xcliyMMcbE9ZW8KU9ESnDjeH8ZnYGtLRBOS7O49o3F1XytMSawuPbVl4mrj6o2OkDLVzJZtAQRmd/UnYypZHHtG4ur+VpjTGBx7atExWXVUMYYY+KyZGGMMSYuSxZNm5LqAJpgce0bi6v5WmNMYHHtq4TEZW0Wxhhj4rIzC2OMMXFZsjDGGBOXJYtGiMg4EflURIpE5IYUxdBLRN4QkaUiskRErvHlvxWRDSKy0D/OSkFsq0XkE7/9+b6sk4jMFJEV/m/HJMd0SNQ+WSgiZSLy01TsLxF5RESKRWRxVFmj+0ece/137WMRGZnkuO4UkeV+28+KSL4v7ysiu6P224NJjqvJz01EJvv99amInJHkuJ6Kimm1iCz05UnZXzGOC4n/fqmqPaIeQBD4HOgHZACLgCEpiKMbMNI/zwM+A4YAvwV+nuJ9tBro3KDsD8AN/vkNwB0p/gw3A31Ssb+AE4GRwOJ4+wc4C3gZEOAYYG6S4xoLpPnnd0TF1Td6vhTsr0Y/N/8/sAjIBA72/6vBZMXVYPqfgN8kc3/FOC4k/PtlZxZ7OwooUtWVqloDPAmcm+wgVHWTqn7on+8ClgE9kh3HPjgXmOafTwPOS2EspwKfq+qXvYt/v6jq28D2BsVN7Z9zgUfVmQPki0i3ZMWlqjNUtc6/nAP0TMS29zWuGM4FnlTValVdBRTh/meTGpeICHAB8EQith0jpqaOCwn/flmy2FsPYF3U6/Wk+CAtIn2BEcBcX3S1P6V8JNnVPZ4CM0RkgYhM8mVdVXWTf74Z6JqCuCIuZM9/4lTvL2h6/7Sm79v3cb9CIw4WkY9E5C0ROSEF8TT2ubWW/XUCsEVVV0SVJXV/NTguJPz7ZcmilRORdsAzwE9VtQx4AOgPDAc24U6Fk+14VR0JnAlcJSInRk9Ud/6bkmuyRSQDOAf4ly9qDftrD6ncP00RkV8BdcDjvmgT0FtVRwD/D/iniLRPYkit7nNr4CL2/EGS1P3VyHGhXqK+X5Ys9rYB6BX1uqcvSzoRScd9IR5X1f8AqOoWVQ2pahj4Kwk6BY9FVTf4v8XAsz6GLZHTW/+3ONlxeWcCH6rqFh9jyveX19T+Sfn3TUQuBcYD3/UHGnw1zzb/fAGubWBQsmKK8bm1hv2VBnwDeCpSlsz91dhxgSR8vyxZ7O0DYKCIHOx/pV4ITE92EL5O9GFgmareFVUeXd94PrC44bIJjitXRPIiz3ENpItx+2iin20i8Fwy44qyxy++VO+vKE3tn+nAJf6qlWOAnVHVCQknIuOAXwDnqGplVHmhiAT9837AQGBlEuNq6nObDlwoIpkicrCPa16y4vJOA5ar6vpIQbL2V1PHBZLx/Up06/2B+MBdQfAZ7tfBr1IUw/G4U8mPgYX+cRbwD+ATXz4d6JbkuPrhrkZZBCyJ7B+gAHgNWAHMAjqlYJ/lAtuADlFlSd9fuGS1CajF1RFf3tT+wV2lcr//rn0CjEpyXEW4Ou3Id+xBP+83/ee7EPgQ+HqS42rycwN+5ffXp8CZyYzLl08FftRg3qTsrxjHhYR/v6y7D2OMMXFZNZQxxpi4LFkYY4yJy5KFMcaYuCxZGGOMicuShTHGmLgsWRhjjInLkoUxxpi4LFkYk2B+rIPlIjJVRD4TkcdF5DQRedePP5CqLkiMaTZLFsYkxwBcZ3iD/eM7uLtxfw78MoVxGdMsliyMSY5VqvqJuo7xlgCvqes+4RPcwDnGtGqWLIxJjuqo5+Go12EgLfnhGLNvLFkYY4yJy5KFMcaYuKzXWWOMMXHZmYUxxpi4LFkYY4yJy5KFMcaYuCxZGGOMicuShTHGmLgsWRhjjInLkoUxxpi4/j9kBQDtFgtNngAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHcCAYAAAA3PbXpAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9uUlEQVR4nO3deVhU1R8G8HcGmGGdYd8EEcENFRc0xdxRkNA0NZdMzVyytEXLzDLXfmlaallmq0tqLqWV+76LmiTu4gZiyqIg+86c3x80N0dQgXBmcN7P88wTc++ZO987F5m3c8+9RyaEECAiIiIyYXJDF0BERERkaAxEREREZPIYiIiIiMjkMRARERGRyWMgIiIiIpPHQEREREQmj4GIiIiITB4DEREREZk8BiIiIiIyeQxERI/w0ksvoVatWoYuw2Q9qZ9/XFwcZDIZli5dauhSTErHjh3RsWPHR7bbt28fZDIZ9u3bV+H3WLp0KWQyGeLi4ir8WjIcBiKq1hYtWgSZTIZWrVoZupQnwpYtWyCTyeDp6QmNRmPocozCokWLjCK0JCcn47333kPjxo1ha2sLS0tL+Pv7Y9iwYTh06JChy3tsDh06hPDwcNSoUQOWlpaoWbMmevTogVWrVhm6NHrCMBBRtbZy5UrUqlULx48fx5UrVwxdTrWn/TwTEhKwZ88eQ5djFIwhEB0/fhwNGzbEggULEBQUhE8++QRffvkl+vfvj+PHj6Ndu3Y4cOCAQWt8HNatW4f27dsjKSkJb775JhYuXIgXX3wRd+/exXfffVepbe7YsQM7duyo4krpSWBu6AKIKis2NhZHjhzB+vXr8corr2DlypWYOnWqoct6KCEE8vLyYGVlZehSSsnOzsbvv/+OWbNmYcmSJVi5ciW6dOli6LKqlDF//g9y9+5d9OrVC+bm5oiOjkb9+vV11n/00UdYvXp1tdqn8po2bRoCAgJw9OhRKBQKnXXJycmV2ub92yHSYg8RVVsrV66Eg4MDIiIi0LdvX6xcubJUG+04jU8//RTffvst/Pz8oFQq0bJlS/z555+l2v/2229o1KgRLC0t0ahRI2zYsKHM99ZoNFiwYAEaNmwIS0tLuLm54ZVXXsHdu3d12tWqVQvdu3fH9u3b0aJFC1hZWeGbb74BAOzcuRNt27aFvb09bG1tUa9ePbz//vs6r09OTsbw4cPh5uYGS0tLNGnSBMuWLftP+/ggGzZsQG5uLp5//nkMGDAA69evR15eXql2eXl5mDZtGurWrQtLS0t4eHigd+/euHr1qs7n8/nnn6Nx48awtLSEi4sLunXrhhMnTuhsa8WKFQgKCoKVlRUcHR0xYMAA3Lhx45G1VsXnv2TJEnTu3Bmurq5QKpUICAjA119/Xer1586dw/79+yGTySCTyXTGn6SlpeGtt96Ct7c3lEol/P398cknn5Q63ZiWloaXXnoJarUa9vb2GDp0KNLS0h65nwCwePFiJCQkYMGCBaXCEADIZDIMHDgQLVu2lJZdv34dr732GurVqwcrKys4OTnh+eefLzWmZdq0aZDJZKW2WdYYmBMnTiAsLAzOzs6wsrKCr68vXn75ZZ3XrV69GkFBQbCzs4NKpULjxo3x+eefl2s/y3L16lW0bNmyzBDj6uqq87y8vxNljSH6+++/0atXL9jY2MDV1RXjxo1Dfn5+mTUdO3YM3bp1g1qthrW1NTp06IDDhw9Xeh/JiAiiaqp+/fpi+PDhQgghDhw4IACI48eP67SJjY0VAESzZs2Ev7+/+OSTT8ScOXOEs7Oz8PLyEgUFBVLb7du3C7lcLho1aiTmzZsnPvjgA6FWq0XDhg2Fj4+PznZHjBghzM3NxciRI8XixYvFxIkThY2NjWjZsqXONn18fIS/v79wcHAQ7733nli8eLHYu3evOHv2rFAoFKJFixbi888/F4sXLxbvvPOOaN++vfTanJwc0aBBA2FhYSHGjRsnvvjiC9GuXTsBQCxYsKBS+/gw3bp1EyEhIUIIIa5fvy5kMplYu3atTpuioiIREhIiAIgBAwaIL7/8UsyaNUt07txZ/Pbbb1K7l156SQAQ4eHhYsGCBeLTTz8VPXv2FAsXLpTafPTRR0Imk4n+/fuLRYsWienTpwtnZ2dRq1YtcffuXand0KFDq/zzF0KIli1bipdeeknMnz9fLFy4UISGhgoA4ssvv5Rev2HDBuHl5SXq168vfvrpJ/HTTz+JHTt2CCGEyM7OFoGBgcLJyUm8//77YvHixWLIkCFCJpOJN998U9qGRqMR7du3F3K5XLz22mti4cKFonPnziIwMFAAEEuWLHnocQkODhZWVlblPo5CCLFu3TrRpEkTMWXKFPHtt9+K999/Xzg4OAgfHx+RnZ0ttZs6daoo62tgyZIlAoCIjY0VQgiRlJQkHBwcRN26dcXcuXPFd999Jz744APRoEED6TU7duwQAERISIj46quvxFdffSXGjh0rnn/++XLXfb+6desKb29vcePGjUe2Le/vRIcOHUSHDh2k5zk5OaJu3brC0tJSvPvuu2LBggUiKChIOj7a3xchhNi9e7dQKBQiODhYfPbZZ2L+/PkiMDBQKBQKcezYsQd+flQ9MBBRtXTixAkBQOzcuVMIUfKl4+XlpfNFJMS/YcHJyUmkpqZKy3///XcBQGzcuFFa1rRpU+Hh4SHS0tKkZdo/8vd+IR88eFAAECtXrtR5r23btpVa7uPjIwCIbdu26bSdP3++ACBu3779wH1csGCBACBWrFghLSsoKBDBwcHC1tZWZGRkVHgfHyQpKUmYm5uL7777TlrWpk0b0bNnT512P/74owAg5s2bV2obGo1GCCHEnj17BADxxhtvPLBNXFycMDMzE//73/901p85c0aYm5vrLL8/EFXF5y9EyRfh/cLCwkTt2rV1ljVs2FDnC1Rr5syZwsbGRly6dEln+XvvvSfMzMxEfHy8EEKI3377TQAQc+bMkdoUFRVJ4fZRgcjBwUE0bdq01PKMjAxx+/Zt6ZGVlfXQfYuMjBQAxPLly6Vl5Q1EGzZsEADEn3/++cA633zzTaFSqURRUdFD96cifvjhBwFAKBQK0alTJ/Hhhx+KgwcPiuLiYp12FfmduD8Qaf+d3Rv+s7Ozhb+/v04g0mg0ok6dOiIsLEz6PRai5LP29fUVXbt2lZYxEFVPPGVG1dLKlSvh5uaGTp06ASg5bdC/f3+sXr0axcXFpdr3798fDg4O0vN27doBAK5duwYASEhIQHR0NIYOHQq1Wi2169q1KwICAnS2tW7dOqjVanTt2hV37tyRHkFBQbC1tcXevXt12vv6+iIsLExnmb29PQDg999/f+DVXFu2bIG7uzsGDhwoLbOwsMAbb7yBrKws7N+/v0L7+DCrV6+GXC5Hnz59pGUDBw7E1q1bdU45/Prrr3B2dsbrr79eahvaUy+//vorZDJZmeO5tG3Wr18PjUaDfv366XyG7u7uqFOnTqnP8F5V8fkD0Blzk56ejjt37qBDhw64du0a0tPTH/j+99bRrl07ODg46NTRpUsXFBcXS4Oct2zZAnNzc7z66qvSa83MzMr8DMuSkZEBW1vbUssHDx4MFxcX6TFx4sQy962wsBApKSnw9/eHvb09/vrrr3K97720v6+bNm1CYWHhA9tkZ2dj586dFd7+g7z88svYtm0bOnbsiEOHDmHmzJlo164d6tSpgyNHjkjtKvo7ca8tW7bAw8MDffv2lZZZW1tj1KhROu2io6Nx+fJlvPDCC0hJSZHeIzs7GyEhIThw4ACvzKzmOKiaqp3i4mKsXr0anTp1QmxsrLS8VatW+Oyzz7B7926EhobqvKZmzZo6z7XBQftlf/36dQBAnTp1Sr1fvXr1dL5ELl++jPT09FJjGLTuH+zp6+tbqk3//v3x/fffY8SIEXjvvfcQEhKC3r17o2/fvpDL5VJNderUkZ5rNWjQQKfm8u7jw6xYsQJPPfUUUlJSkJKSAgBo1qwZCgoKsG7dOunL4erVq6hXrx7MzR/8p+Pq1avw9PSEo6PjA9tcvnwZQogyP2+gJPg97LX/9fMHgMOHD2Pq1KmIjIxETk6Ozrr09HSdYPygOk6fPg0XF5eH1nH9+nV4eHiUCjX16tV76Pa17OzskJWVVWr5jBkzMHbsWAAlwf1eubm50uD4mzdvQgghrStP2Ltfhw4d0KdPH0yfPh3z589Hx44d0atXL7zwwgtQKpUAgNdeew1r166VLpEPDQ1Fv3790K1bNwAl/25v376ts13t70hqaqrOchcXF5iZmQEAwsLCEBYWhpycHERFRWHNmjVYvHgxunfvjosXL8LV1bXCvxP3un79Ovz9/UuNpbr/+Fy+fBkAMHTo0AduKz09Xed/Sqh6YSCiamfPnj1ISEjA6tWrsXr16lLrV65cWSoQaf+43u/eL4ry0mg0cHV1LXMQN4BSX5BlXf1jZWWFAwcOYO/evdi8eTO2bduGNWvWoHPnztixY8cD632Yyu7j5cuXpcHXZQWUlStXlvq/5f9Ko9FAJpNh69atZdZdVo/Iva/9r5//1atXERISgvr162PevHnw9vaGQqHAli1bMH/+/HL9n75Go0HXrl3x7rvvlrm+bt26j9xGedSvXx+nTp1CYWGhTlAMDAx84Gtef/11LFmyBG+99RaCg4OhVqshk8kwYMAAnX0ra0A1gFK9rDKZDL/88guOHj2KjRs3Yvv27Xj55Zfx2Wef4ejRo7C1tYWrqyuio6Oxfft2bN26FVu3bsWSJUswZMgQLFu2DDdu3CgVTrU9N9qeXq3Y2NhSN+O0trZGu3bt0K5dOzg7O2P69OnYunUrhg4dWuHficrQfm5z585F06ZNy2zzsN9bMn4MRFTtrFy5Eq6urvjqq69KrVu/fj02bNiAxYsXV+gyZB8fHwD//l/gvWJiYnSe+/n5YdeuXXj66af/06XOcrkcISEhCAkJwbx58/Dxxx/jgw8+wN69e9GlSxf4+Pjg9OnT0Gg0Or1EFy9e1Kn5v1q5ciUsLCzw008/lQonhw4dwhdffIH4+HjUrFkTfn5+OHbsWKkv53v5+flh+/btSE1NfWAvkZ+fH4QQ8PX1rXBwqIrPf+PGjcjPz8cff/yh07NW1qmVB4UGPz8/ZGVlPfLWBD4+Pti9ezeysrJ0vjDv/716kO7du+Po0aPYsGED+vXrV67X/PLLLxg6dCg+++wzaVleXl6pK9u0vRlpaWnSaTGgdO+jVuvWrdG6dWv873//w6pVqzBo0CCsXr0aI0aMAFBySXuPHj3Qo0cPaDQavPbaa/jmm2/w4YcfwsvLq9TptCZNmgBAqeXu7u4P3b8WLVoAKDnVDfy33wkfHx+cPXsWQgidY13Wv3sAUKlUT9ztKKgExxBRtZKbm4v169eje/fu6Nu3b6nH2LFjkZmZiT/++KNC2/Xw8EDTpk2xbNkynVMKO3fuxPnz53Xa9uvXD8XFxZg5c2ap7RQVFZXrcur7TxEAkP6vU3u57zPPPIPExESsWbNGZ/sLFy6Era0tOnToUJ5de6SVK1eiXbt26N+/f6nPc8KECQCAn3/+GQDQp08f3LlzB19++WWp7Wh7ovr06QMhBKZPn/7ANr1794aZmRmmT59eqgdLCCGdtitLVXz+2uB3/6mkJUuWlGprY2NT5jb79euHyMhIbN++vdS6tLQ0FBUVASg5jkVFRTqX9BcXF2PhwoWPrBMAXn31Vbi5uWHcuHG4dOlSqfVl9QCamZmVWr5w4cJSPT/aL/l7b+qYnZ1d6tYOd+/eLbW9+39f7z9mcrlc6sXKz8+HpaUlunTpovNwcHCAg4NDqeWWlpYAgN27d5f5mWzZsgXAv6e1/svvxDPPPINbt27hl19+kZbl5OTg22+/1WkXFBQEPz8/fPrpp2Wewrz/dCBVP+whomrljz/+QGZmJp599tky17du3RouLi5YuXIl+vfvX6Ftz5o1CxEREWjbti1efvllpKamYuHChWjYsKHOH8AOHTrglVdewaxZsxAdHY3Q0FBYWFjg8uXLWLduHT7//HOdAZplmTFjBg4cOICIiAj4+PggOTkZixYtgpeXF9q2bQsAGDVqFL755hu89NJLiIqKQq1atfDLL7/g8OHDWLBgAezs7Cq0f2U5duwYrly5Io1FuV+NGjXQvHlzrFy5EhMnTsSQIUOwfPlyjB8/XrpDcnZ2Nnbt2oXXXnsNPXv2RKdOnTB48GB88cUXuHz5Mrp16waNRoODBw+iU6dOGDt2LPz8/PDRRx9h0qRJiIuLQ69evWBnZ4fY2Fhs2LABo0aNwjvvvFNmTVXx+YeGhkq9Ga+88gqysrLw3XffwdXVVep10AoKCsLXX3+Njz76CP7+/nB1dUXnzp0xYcIE/PHHH+jevTteeuklBAUFITs7G2fOnMEvv/yCuLg4ODs7o0ePHnj66afx3nvvIS4uDgEBAVi/fn25x/I4Ojpiw4YN6NGjB5o0aYIBAwagZcuWsLCwwI0bN7Bu3ToAumPIunfvjp9++glqtRoBAQGIjIzErl274OTkVOpzqFmzJoYPH44JEybAzMwMP/74I1xcXBAfHy+1W7ZsGRYtWoTnnnsOfn5+yMzMxHfffQeVSoVnnnkGADBixAikpqaic+fO8PLywvXr17Fw4UI0bdpUGvdWUT179oSvry969OgBPz8/6Xdt48aNaNmyJXr06AHgv/1OjBw5El9++SWGDBmCqKgoeHh44KeffoK1tbVOO7lcju+//x7h4eFo2LAhhg0bhho1auDmzZvYu3cvVCoVNm7cWKn9JCNhgCvbiCqtR48ewtLSUudeKvd76aWXhIWFhbhz5450SfrcuXNLtQMgpk6dqrPs119/FQ0aNBBKpVIEBASI9evXl3kfHCGE+Pbbb0VQUJCwsrISdnZ2onHjxuLdd98Vt27dktr4+PiIiIiIUq/dvXu36Nmzp/D09BQKhUJ4enqKgQMHlrqEOykpSQwbNkw4OzsLhUIhGjduXOoy7Yru471ef/11AUBcvXr1gW2mTZsmAIhTp04JIUouM/7ggw+Er6+vsLCwEO7u7qJv37462ygqKhJz584V9evXFwqFQri4uIjw8HARFRWls+1ff/1VtG3bVtjY2AgbGxtRv359MWbMGBETEyO1eRyfvxBC/PHHHyIwMFBYWlqKWrVqiU8++US6rcC9l0snJiaKiIgIYWdnJwDoXLKdmZkpJk2aJPz9/YVCoRDOzs6iTZs24tNPP9W5901KSooYPHiwUKlUQq1Wi8GDB4uTJ0+W67J7rYSEBDFhwgQREBAgrKyshFKpFLVr1xZDhgwRBw4c0Gl79+5d6ffG1tZWhIWFiYsXLwofHx8xdOhQnbZRUVGiVatWQqFQiJo1a4p58+aVumz8r7/+EgMHDhQ1a9YUSqVSuLq6iu7du4sTJ05I2/nll19EaGiocHV1lbb1yiuviISEhHLtX1l+/vlnMWDAAOHn5yesrKyEpaWlCAgIEB988IF024l7led34v7L7oUoue/Ws88+K6ytrYWzs7N48803pUv2770PkRBCnDx5UvTu3Vs4OTkJpVIpfHx8RL9+/cTu3bulNrzsvnqSCVGJUaVERERETxCOISIiIiKTx0BEREREJo+BiIiIiEweAxERERGZPAYiIiIiMnkMRERERGTyGIiITNC+ffuk+amqg6SkJPTt2xdOTk6QyWRYsGDBA9vKZDJMmzZNb7X9V3FxcZDJZFi6dKmhSyEyaQxERI/J0qVLIZPJYGlpiZs3b5Za37FjRzRq1MgAlVU/48aNw/bt2zFp0iT89NNP0gzq5XHkyBFMmzatXFN6PE6rVq16aJAjIsPi1B1Ej1l+fj5mz55d7rmrqLQ9e/agZ8+eD5zO4165ubkwN//3T9uRI0cwffp0vPTSSzoTmOrbqlWrcPbsWbz11ls6y318fJCbm/vAyXKJSD/YQ0T0mDVt2hTfffcdbt26ZehS9C47O7tKtpOcnFzuMGNpaakTiB6XnJycKtmOthdRO+EsERkGAxHRY/b++++juLgYs2fPfmi7h40luX9czLRp0yCTyXDp0iW8+OKLUKvVcHFxwYcffgghBG7cuIGePXtCpVLB3d0dn332WZnvWVxcjPfffx/u7u6wsbHBs88+ixs3bpRqd+zYMXTr1g1qtRrW1tbo0KEDDh8+rNNGW9P58+fxwgsvwMHBQZqo9kGuXbuG559/Ho6OjrC2tkbr1q2xefNmab32tKMQAl999RVkMhlkMtlDt3nvZzVt2jRMmDABAODr6yu9Pi4uTmq/YsUKBAUFwcrKCo6OjhgwYECpz0B7ejMqKgrt27eHtbU13n//fQDA77//joiICHh6ekKpVMLPzw8zZ87UmVm+Y8eO2Lx5M65fvy7VUKtWLQAPPu579uxBu3btYGNjA3t7e/Ts2RMXLlwo8zO/cuWK1AOmVqsxbNiwUoFt586daNu2Lezt7WFra4t69epJ+/AgjRo1QqdOnUot12g0qFGjhs6EqatXr0ZQUBDs7OygUqnQuHFjfP755w/dvnbfP/30U3z11VeoXbs2rK2tERoaihs3bkAIgZkzZ8LLywtWVlbo2bMnUlNTH7pNosriKTOix8zX1xdDhgzBd999h/feew+enp5Vtu3+/fujQYMGmD17NjZv3oyPPvoIjo6O+Oabb9C5c2d88sknWLlyJd555x20bNkS7du313n9//73P8hkMkycOBHJyclYsGABunTpgujoaFhZWQEo+WIODw9HUFAQpk6dCrlcjiVLlqBz5844ePAgnnrqKZ1tPv/886hTpw4+/vhjPGyqxKSkJLRp0wY5OTl444034OTkhGXLluHZZ5/FL7/8gueeew7t27fHTz/9hMGDB6Nr164YMmRIhT6f3r1749KlS/j5558xf/58ODs7AwBcXFyk/f/www/Rr18/jBgxArdv38bChQvRvn17nDx5UqdXKiUlBeHh4RgwYABefPFFuLm5ASgJbba2thg/fjxsbW2xZ88eTJkyBRkZGZg7dy4A4IMPPkB6ejr+/vtvzJ8/HwBga2v7wLp37dqF8PBw1K5dG9OmTUNubi4WLlyIp59+Gn/99ZcUprT69esHX19fzJo1C3/99Re+//57uLq64pNPPgEAnDt3Dt27d0dgYCBmzJgBpVKJK1eulAq19+vfvz+mTZuGxMREuLu7S8sPHTqEW7duYcCAAQBKwtbAgQMREhIiveeFCxdw+PBhvPnmmw99DwBYuXIlCgoK8PrrryM1NRVz5sxBv3790LlzZ+zbtw8TJ07ElStXsHDhQrzzzjv48ccfH7lNogoz5MyyRE8y7YzXf/75p7h69aowNzcXb7zxhrS+Q4cOomHDhtJz7az1Zc1+jvtmrZ86daoAIEaNGiUtKyoqEl5eXkImk4nZs2dLy+/evSusrKx0Zjnfu3evACBq1KihM2v42rVrBQDx+eefCyGE0Gg0ok6dOiIsLExoNBqpXU5OjvD19RVdu3YtVdPAgQPL9fm89dZbAoA4ePCgtCwzM1P4+vqKWrVqieLiYp39HzNmTLm2e/9nNXfu3DJnHo+LixNmZmbif//7n87yM2fOCHNzc53lHTp0EADE4sWLS71fTk5OqWWvvPKKsLa2Fnl5edKyiIgI4ePjU6ptWce9adOmwtXVVaSkpEjLTp06JeRyuRgyZIi0TPuZv/zyyzrbfO6554STk5P0fP78+QKAuH37dqn3f5iYmBgBQCxcuFBn+WuvvSZsbW2lfX/zzTeFSqUSRUVFFdq+dt9dXFxEWlqatHzSpEkCgGjSpIkoLCyUlg8cOFAoFAqdz5WoqvCUGZEe1K5dG4MHD8a3336LhISEKtvuiBEjpJ/NzMzQokULCCEwfPhwabm9vT3q1auHa9eulXr9kCFDYGdnJz3v27cvPDw8sGXLFgBAdHQ0Ll++jBdeeAEpKSm4c+cO7ty5g+zsbISEhODAgQPQaDQ62xw9enS5at+yZQueeuopndNqtra2GDVqFOLi4nD+/PnyfQiVtH79emg0GvTr10/arzt37sDd3R116tTB3r17ddorlUoMGzas1Ha0PWkAkJmZiTt37qBdu3bIycnBxYsXK1xXQkICoqOj8dJLL8HR0VFaHhgYiK5du0rH5l73f+bt2rVDSkoKMjIyAEDq6fr9999LHa+HqVu3Lpo2bYo1a9ZIy4qLi/HLL7+gR48e0r7b29sjOzsbO3fuLPe27/X8889DrVZLz1u1agUAePHFF3XGg7Vq1QoFBQVlXrVJ9F8xEBHpyeTJk1FUVPTIsUQVUbNmTZ3narUalpaW0qmhe5ffvXu31Ovr1Kmj81wmk8Hf318aY3P58mUAwNChQ+Hi4qLz+P7775Gfn4/09HSdbfj6+par9uvXr6NevXqlljdo0EBa/zhdvnwZQgjUqVOn1L5duHABycnJOu1r1KgBhUJRajvnzp3Dc889B7VaDZVKBRcXF7z44osAUOqzKQ/tfj/os9EG0nvd/3vg4OAAANIx79+/P55++mmMGDECbm5uGDBgANauXVuucNS/f38cPnxYCiH79u1DcnIy+vfvL7V57bXXULduXYSHh8PLywsvv/wytm3bVu59Luv3GAC8vb3LXF7W7zLRf8UxRER6Urt2bbz44ov49ttv8d5775Va/6DBwvcOzr1fWVcmPehqJfGQ8TwPov3CnDt3Lpo2bVpmm/vHwtzbY2LMNBoNZDIZtm7dWuZnVp79SktLQ4cOHaBSqTBjxgz4+fnB0tISf/31FyZOnFih3pj/4lHH3MrKCgcOHMDevXuxefNmbNu2DWvWrEHnzp2xY8eOh17h1r9/f0yaNAnr1q3DW2+9hbVr10KtVuvcC8rV1RXR0dHYvn07tm7diq1bt2LJkiUYMmQIli1bVun6q/J3mehRGIiI9Gjy5MlYsWKFNPD0Xtr/q7//BoKPs6dE2wOkJYTAlStXEBgYCADw8/MDAKhUKnTp0qVK39vHxwcxMTGllmtPM/n4+FTJ+zwoaPr5+UEIAV9fX9StW7dS2963bx9SUlKwfv16nQHrsbGx5a7jftr9ftBn4+zsDBsbmwrXKpfLERISgpCQEMybNw8ff/wxPvjgA+zdu/ehx9bX1xdPPfUU1qxZg7Fjx2L9+vXo1asXlEqlTjuFQoEePXqgR48e0Gg0eO211/DNN9/gww8/hL+/f4XrJdI3njIj0iM/Pz+8+OKL+Oabb5CYmKizTqVSwdnZGQcOHNBZvmjRosdWz/Lly5GZmSk9/+WXX5CQkIDw8HAAQFBQEPz8/PDpp58iKyur1Otv375d6fd+5plncPz4cURGRkrLsrOz8e2336JWrVoICAio9LbvpQ0P9wfN3r17w8zMDNOnTy/V4yCEQEpKyiO3re3BuPf1BQUFZR4zGxubcp1C8/DwQNOmTbFs2TKdms+ePYsdO3bgmWeeeeQ27lfWperaHr/8/PxHvr5///44evQofvzxR9y5c0fndBmAUp+VXC6XQnV5tk9kDNhDRKRnH3zwAX766SfExMSgYcOGOutGjBiB2bNnY8SIEWjRogUOHDiAS5cuPbZaHB0d0bZtWwwbNgxJSUlYsGAB/P39MXLkSAAlX2zff/89wsPD0bBhQwwbNgw1atTAzZs3sXfvXqhUKmzcuLFS7/3ee+/h559/Rnh4ON544w04Ojpi2bJliI2Nxa+//gq5vGr+fy0oKAhAyec+YMAAWFhYoEePHvDz88NHH32ESZMmIS4uDr169YKdnR1iY2OxYcMGjBo16pF3xm7Tpg0cHBwwdOhQvPHGG5DJZPjpp5/KPKUTFBSENWvWYPz48WjZsiVsbW3Ro0ePMrc7d+5chIeHIzg4GMOHD5cuu1er1ZWap23GjBk4cOAAIiIi4OPjg+TkZCxatAheXl6PvFcUUHJZ/zvvvIN33nkHjo6OpXqURowYgdTUVHTu3BleXl64fv06Fi5ciKZNm0pjwoiMHQMRkZ75+/vjxRdfLHNsxZQpU3D79m388ssvWLt2LcLDw7F161a4uro+llref/99nD59GrNmzUJmZiZCQkKwaNEiWFtbS206duyIyMhIzJw5E19++SWysrLg7u6OVq1a4ZVXXqn0e7u5ueHIkSOYOHEiFi5ciLy8PAQGBmLjxo2IiIioit0DALRs2RIzZ87E4sWLsW3bNmg0GsTGxsLGxgbvvfce6tati/nz52P69OkASgbyhoaG4tlnn33ktp2cnLBp0ya8/fbbmDx5MhwcHPDiiy8iJCQEYWFhOm1fe+01REdHY8mSJZg/fz58fHweGIi6dOmCbdu2YerUqZgyZQosLCzQoUMHfPLJJ+UetH6vZ599FnFxcVIPj7OzMzp06IDp06frXN31IF5eXmjTpg0OHz6MESNGlJpmRDs2btGiRUhLS4O7u7t0D6OqCrZEj5tMcHQaERERmThGdyIiIjJ5DERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCaP9yEqB41Gg1u3bsHOzq7ct98nIiIiwxJCIDMzE56eno+8JxYDUTncunWr1KzLREREVD3cuHEDXl5eD23DQFQOdnZ2AEo+UJVKZeBqiIiIqDwyMjLg7e0tfY8/DANROWhPk6lUKgYiIiKiaqY8w104qJqIiIhMHgMRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCbPoIHo66+/RmBgoHTDw+DgYGzdulVa37FjR8hkMp3H6NGjdbYRHx+PiIgIWFtbw9XVFRMmTEBRUZFOm3379qF58+ZQKpXw9/fH0qVL9bF7REREVE0Y9E7VXl5emD17NurUqQMhBJYtW4aePXvi5MmTaNiwIQBg5MiRmDFjhvQaa2tr6efi4mJERETA3d0dR44cQUJCAoYMGQILCwt8/PHHAIDY2FhERERg9OjRWLlyJXbv3o0RI0bAw8MDYWFh+t1hIiIiMkoyIYQwdBH3cnR0xNy5czF8+HB07NgRTZs2xYIFC8psu3XrVnTv3h23bt2Cm5sbAGDx4sWYOHEibt++DYVCgYkTJ2Lz5s04e/as9LoBAwYgLS0N27ZtK1dNGRkZUKvVSE9P59QdRERE1URFvr+NZgxRcXExVq9ejezsbAQHB0vLV65cCWdnZzRq1AiTJk1CTk6OtC4yMhKNGzeWwhAAhIWFISMjA+fOnZPadOnSRee9wsLCEBkZ+cBa8vPzkZGRofMgIiKiJ5fBJ3c9c+YMgoODkZeXB1tbW2zYsAEBAQEAgBdeeAE+Pj7w9PTE6dOnMXHiRMTExGD9+vUAgMTERJ0wBEB6npiY+NA2GRkZyM3NhZWVVamaZs2ahenTp1f5vpZHWk4BsvKLYGdpAbWVhUFqICIiMjUGD0T16tVDdHQ00tPT8csvv2Do0KHYv38/AgICMGrUKKld48aN4eHhgZCQEFy9ehV+fn6PraZJkyZh/Pjx0vOMjAx4e3s/tve716wtF7HmxA1MCKuHMZ389fKeREREps7gp8wUCgX8/f0RFBSEWbNmoUmTJvj888/LbNuqVSsAwJUrVwAA7u7uSEpK0mmjfe7u7v7QNiqVqszeIQBQKpXSlW/ah77I/zkiRja0i4iI6Ilm8EB0P41Gg/z8/DLXRUdHAwA8PDwAAMHBwThz5gySk5OlNjt37oRKpZJOuwUHB2P37t0629m5c6fOOCVjIpPJAAAa5iEiIiK9Megps0mTJiE8PBw1a9ZEZmYmVq1ahX379mH79u24evUqVq1ahWeeeQZOTk44ffo0xo0bh/bt2yMwMBAAEBoaioCAAAwePBhz5sxBYmIiJk+ejDFjxkCpVAIARo8ejS+//BLvvvsuXn75ZezZswdr167F5s2bDbnrDyQvyUPQsIeIiIhIbwwaiJKTkzFkyBAkJCRArVYjMDAQ27dvR9euXXHjxg3s2rULCxYsQHZ2Nry9vdGnTx9MnjxZer2ZmRk2bdqEV199FcHBwbCxscHQoUN17lvk6+uLzZs3Y9y4cfj888/h5eWF77//3mjvQSRnDxEREZHeGd19iIyRPu9DNO2Pc1h6JA6vd/bH26H1Hut7ERERPcmq5X2IqISMp8yIiIj0joHIyPCUGRERkf4xEBkZDqomIiLSPwYiI6PtIWIeIiIi0h8GIiMj3YeI58yIiIj0hoHIyPx7ysywdRAREZkSBiIj8++gaiYiIiIifWEgMjLaHiLeHoqIiEh/GIiMDOcyIyIi0j8GIiPDU2ZERET6x0BkZDiomoiISP8YiIyMXK69DxETERERkb4wEBkZzmVGRESkfwxERoZzmREREekfA5GR4VxmRERE+sdAZGQ4lxkREZH+MRAZGRkvuyciItI7BiIjw8vuiYiI9I+ByMjwxoxERET6x0BkZDiXGRERkf4xEBkZaQyRxsCFEBERmRAGIiPDU2ZERET6x0BkZDiomoiISP8YiIzMv/chYiIiIiLSFwYiI8O5zIiIiPSPgcjIcC4zIiIi/WMgMjLyf44Ie4iIiIj0h4HIyHAuMyIiIv1jIDIynMuMiIhI/xiIjIycg6qJiIj0joHIyHBQNRERkf4xEBkZzmVGRESkfwxERkbGHiIiIiK9YyAyMpzLjIiISP8YiIyMNKiaXURERER6w0BkZDiomoiISP8YiIwM5zIjIiLSPwYiI8MeIiIiIv1jIDIy/07dwURERESkLwxERoaTuxIREekfA5GR4SkzIiIi/TNoIPr6668RGBgIlUoFlUqF4OBgbN26VVqfl5eHMWPGwMnJCba2tujTpw+SkpJ0thEfH4+IiAhYW1vD1dUVEyZMQFFRkU6bffv2oXnz5lAqlfD398fSpUv1sXuVwvsQERER6Z9BA5GXlxdmz56NqKgonDhxAp07d0bPnj1x7tw5AMC4ceOwceNGrFu3Dvv378etW7fQu3dv6fXFxcWIiIhAQUEBjhw5gmXLlmHp0qWYMmWK1CY2NhYRERHo1KkToqOj8dZbb2HEiBHYvn273ve3PP6dusOwdRAREZkSmTCy0buOjo6YO3cu+vbtCxcXF6xatQp9+/YFAFy8eBENGjRAZGQkWrduja1bt6J79+64desW3NzcAACLFy/GxIkTcfv2bSgUCkycOBGbN2/G2bNnpfcYMGAA0tLSsG3btnLVlJGRAbVajfT0dKhUqqrf6XtEXb+LPl8fgY+TNfZP6PRY34uIiOhJVpHvb6MZQ1RcXIzVq1cjOzsbwcHBiIqKQmFhIbp06SK1qV+/PmrWrInIyEgAQGRkJBo3biyFIQAICwtDRkaG1MsUGRmpsw1tG+02jI2c9yEiIiLSO3NDF3DmzBkEBwcjLy8Ptra22LBhAwICAhAdHQ2FQgF7e3ud9m5ubkhMTAQAJCYm6oQh7Xrtuoe1ycjIQG5uLqysrErVlJ+fj/z8fOl5RkbGf97P8pLGEGn09pZEREQmz+A9RPXq1UN0dDSOHTuGV199FUOHDsX58+cNWtOsWbOgVqulh7e3t97em/chIiIi0j+DByKFQgF/f38EBQVh1qxZaNKkCT7//HO4u7ujoKAAaWlpOu2TkpLg7u4OAHB3dy911Zn2+aPaqFSqMnuHAGDSpElIT0+XHjdu3KiKXS2Xf6fu0NtbEhERmTyDB6L7aTQa5OfnIygoCBYWFti9e7e0LiYmBvHx8QgODgYABAcH48yZM0hOTpba7Ny5EyqVCgEBAVKbe7ehbaPdRlmUSqV0KwDtQ1942T0REZH+GXQM0aRJkxAeHo6aNWsiMzMTq1atwr59+7B9+3ao1WoMHz4c48ePh6OjI1QqFV5//XUEBwejdevWAIDQ0FAEBARg8ODBmDNnDhITEzF58mSMGTMGSqUSADB69Gh8+eWXePfdd/Hyyy9jz549WLt2LTZv3mzIXX+gf+9Ubdg6iIiITIlBA1FycjKGDBmChIQEqNVqBAYGYvv27ejatSsAYP78+ZDL5ejTpw/y8/MRFhaGRYsWSa83MzPDpk2b8OqrryI4OBg2NjYYOnQoZsyYIbXx9fXF5s2bMW7cOHz++efw8vLC999/j7CwML3vb3lwDBEREZH+Gd19iIyRPu9DdCU5E13mHYCDtQVOTgl9rO9FRET0JKuW9yGiEjLOZUZERKR3DERGhoOqiYiI9I+ByMhwLjMiIiL9YyAyMuwhIiIi0j8GIiMj41xmREREesdAZGTkHFRNRESkdwxERob3ISIiItI/BiIjI+dcZkRERHrHQGRkZBxUTUREpHcMREbm3svuedqMiIhIPxiIjIx2DBHAexERERHpCwORkbk3EPG0GRERkX4wEBkZ2T1HhAOriYiI9IOByMiwh4iIiEj/GIiMjPzfPMQxRERERHrCQGRk2ENERESkfwxERuaePMRAREREpCcMREZGt4fIgIUQERGZEAYiI6N7HyImIiIiIn1gIDIycp1TZoarg4iIyJQwEBkZGQdVExER6R0DkRH6d8Z7BiIiIiJ9YCAyQtpxRMxDRERE+sFAZIS0gYg9RERERPrBQGSEZNIpM8PWQUREZCoYiIyQ1EPERERERKQXDERGSDuommfMiIiI9IOByAhxDBEREZF+MRAZIRkvuyciItIrBiIjJJdre4gMXAgREZGJYCAyQv/eh4iJiIiISB8YiIyQnJfdExER6RUDkRGScVA1ERGRXjEQGSHOZUZERKRfDERGiHOZERER6RcDkRHifYiIiIj0i4HICHEuMyIiIv1iIDJC7CEiIiLSLwYiIyQNqmYXERERkV4wEBmhf3uIDFwIERGRiWAgMkKcy4yIiEi/GIiMEMcQERER6ZdBA9GsWbPQsmVL2NnZwdXVFb169UJMTIxOm44dO0Imk+k8Ro8erdMmPj4eERERsLa2hqurKyZMmICioiKdNvv27UPz5s2hVCrh7++PpUuXPu7dqzTeh4iIiEi/DBqI9u/fjzFjxuDo0aPYuXMnCgsLERoaiuzsbJ12I0eOREJCgvSYM2eOtK64uBgREREoKCjAkSNHsGzZMixduhRTpkyR2sTGxiIiIgKdOnVCdHQ03nrrLYwYMQLbt2/X275WBE+ZERER6Ze5Id9827ZtOs+XLl0KV1dXREVFoX379tJya2truLu7l7mNHTt24Pz589i1axfc3NzQtGlTzJw5ExMnTsS0adOgUCiwePFi+Pr64rPPPgMANGjQAIcOHcL8+fMRFhb2+HawkszkHFRNRESkT0Y1hig9PR0A4OjoqLN85cqVcHZ2RqNGjTBp0iTk5ORI6yIjI9G4cWO4ublJy8LCwpCRkYFz585Jbbp06aKzzbCwMERGRpZZR35+PjIyMnQe+sQxRERERPpl0B6ie2k0Grz11lt4+umn0ahRI2n5Cy+8AB8fH3h6euL06dOYOHEiYmJisH79egBAYmKiThgCID1PTEx8aJuMjAzk5ubCyspKZ92sWbMwffr0Kt/H8tLeh0gwEBEREemF0QSiMWPG4OzZszh06JDO8lGjRkk/N27cGB4eHggJCcHVq1fh5+f3WGqZNGkSxo8fLz3PyMiAt7f3Y3mvssi0PUQavb0lERGRSTOKU2Zjx47Fpk2bsHfvXnh5eT20batWrQAAV65cAQC4u7sjKSlJp432uXbc0YPaqFSqUr1DAKBUKqFSqXQe+iTnoGoiIiK9MmggEkJg7Nix2LBhA/bs2QNfX99HviY6OhoA4OHhAQAIDg7GmTNnkJycLLXZuXMnVCoVAgICpDa7d+/W2c7OnTsRHBxcRXtStXinaiIiIv0yaCAaM2YMVqxYgVWrVsHOzg6JiYlITExEbm4uAODq1auYOXMmoqKiEBcXhz/++ANDhgxB+/btERgYCAAIDQ1FQEAABg8ejFOnTmH79u2YPHkyxowZA6VSCQAYPXo0rl27hnfffRcXL17EokWLsHbtWowbN85g+/4w/96HiImIiIhIHwwaiL7++mukp6ejY8eO8PDwkB5r1qwBACgUCuzatQuhoaGoX78+3n77bfTp0wcbN26UtmFmZoZNmzbBzMwMwcHBePHFFzFkyBDMmDFDauPr64vNmzdj586daNKkCT777DN8//33RnnJPXDvfYgMWwcREZGpMOig6kf1gHh7e2P//v2P3I6Pjw+2bNny0DYdO3bEyZMnK1SfofCyeyIiIv0yikHVpEv+z1FhICIiItIPBiIjxLnMiIiI9IuByAjJeMqMiIhIrxiIjJCcg6qJiIj0ioHICHFQNRERkX4xEBkhzmVGRESkXwxERkjGO1UTERHpFQOREeJcZkRERPrFQGSEOJcZERGRfjEQGSHOZUZERKRfDERGSJrLjF1EREREesFAZIR4yoyIiEi/GIiMEAdVExER6RcDkRHiXGZERET6xUBkhDiXGRERkX4xEBkhzmVGRESkXwxERohzmREREekXA5ERkv9zVHgfIiIiIv1gIDJCnMuMiIhIvxiIjBAvuyciItIvBiIjxBszEhER6RcDkRHiXGZERET6xUBkhGQ8ZUZERKRXDERGiKfMiIiI9IuByAhxUDUREZF+MRAZIc5lRkREpF8MREZIug8Rz5kRERHpBQOREeJcZkRERPpVqUCUm5uLnJwc6fn169exYMEC7Nixo8oKM2Wcy4yIiEi/KhWIevbsieXLlwMA0tLS0KpVK3z22Wfo2bMnvv766yot0BRpe4h4HyIiIiL9qFQg+uuvv9CuXTsAwC+//AI3Nzdcv34dy5cvxxdffFGlBZoizmVGRESkX5UKRDk5ObCzswMA7NixA71794ZcLkfr1q1x/fr1Ki3QFPGUGRERkX5VKhD5+/vjt99+w40bN7B9+3aEhoYCAJKTk6FSqaq0QFPEQdVERET6ValANGXKFLzzzjuoVasWWrVqheDgYAAlvUXNmjWr0gJNkVzOucyIiIj0ybwyL+rbty/atm2LhIQENGnSRFoeEhKC5557rsqKM1Wcy4yIiEi/KhWIAMDd3R3u7u46y5566qn/XBBxLjMiIiJ9q1Qgys7OxuzZs7F7924kJydDo9HorL927VqVFGeqOJcZERGRflUqEI0YMQL79+/H4MGD4eHhIV0mTlWDc5kRERHpV6UC0datW7F582Y8/fTTVV0P4d77EDERERER6UOlrjJzcHCAo6NjVddC/+Bl90RERPpVqUA0c+ZMTJkyRWc+M6o6cs52T0REpFeVCkSfffYZtm/fDjc3NzRu3BjNmzfXeZTXrFmz0LJlS9jZ2cHV1RW9evVCTEyMTpu8vDyMGTMGTk5OsLW1RZ8+fZCUlKTTJj4+HhEREbC2toarqysmTJiAoqIinTb79u1D8+bNoVQq4e/vj6VLl1Zm1/WCg6qJiIj0q1JjiHr16lUlb75//36MGTMGLVu2RFFREd5//32Ehobi/PnzsLGxAQCMGzcOmzdvxrp166BWqzF27Fj07t0bhw8fBgAUFxcjIiIC7u7uOHLkCBISEjBkyBBYWFjg448/BgDExsYiIiICo0ePxsqVK7F7926MGDECHh4eCAsLq5J9qUocQ0RERKRfMmFEt0O+ffs2XF1dsX//frRv3x7p6elwcXHBqlWr0LdvXwDAxYsX0aBBA0RGRqJ169bYunUrunfvjlu3bsHNzQ0AsHjxYkycOBG3b9+GQqHAxIkTsXnzZpw9e1Z6rwEDBiAtLQ3btm17ZF0ZGRlQq9VIT0/Xy9Qkq47F4/0NZ9A1wA3fDWnx2N+PiIjoSVSR7+9KnTLTioqKwooVK7BixQqcPHnyv2wKAJCeng4A0oDtqKgoFBYWokuXLlKb+vXro2bNmoiMjAQAREZGonHjxlIYAoCwsDBkZGTg3LlzUpt7t6Fto93G/fLz85GRkaHz0CftKTMjyqpERERPtEqdMktOTsaAAQOwb98+2NvbAwDS0tLQqVMnrF69Gi4uLhXepkajwVtvvYWnn34ajRo1AgAkJiZCoVBI76Hl5uaGxMREqc29YUi7XrvuYW0yMjKQm5sLKysrnXWzZs3C9OnTK7wPVYV3qiYiItKvSvUQvf7668jMzMS5c+eQmpqK1NRUnD17FhkZGXjjjTcqVciYMWNw9uxZrF69ulKvr0qTJk1Cenq69Lhx44Ze359zmREREelXpXqItm3bhl27dqFBgwbSsoCAAHz11VcIDQ2t8PbGjh2LTZs24cCBA/Dy8pKWu7u7o6CgAGlpaTq9RElJSdI8au7u7jh+/LjO9rRXod3b5v4r05KSkqBSqUr1DgGAUqmEUqms8H5UFfYQERER6Veleog0Gg0sLCxKLbewsCg1r9nDCCEwduxYbNiwAXv27IGvr6/O+qCgIFhYWGD37t3SspiYGMTHxyM4OBgAEBwcjDNnziA5OVlqs3PnTqhUKgQEBEht7t2Gto12G8ZG/s9R4RgiIiIi/ahUIOrcuTPefPNN3Lp1S1p28+ZNjBs3DiEhIeXezpgxY7BixQqsWrUKdnZ2SExMRGJiInJzcwEAarUaw4cPx/jx47F3715ERUVh2LBhCA4ORuvWrQEAoaGhCAgIwODBg3Hq1Cls374dkydPxpgxY6RentGjR+PatWt49913cfHiRSxatAhr167FuHHjKrP7j52cl90TERHpl6iE+Ph40bRpU2FhYSFq164tateuLSwsLESzZs3EjRs3yr0dAGU+lixZIrXJzc0Vr732mnBwcBDW1tbiueeeEwkJCTrbiYuLE+Hh4cLKyko4OzuLt99+WxQWFuq02bt3r2jatKlQKBSidu3aOu/xKOnp6QKASE9PL/dr/os/om8Kn4mbxIBvIvXyfkRERE+iinx/V/o+REII7Nq1CxcvXgQANGjQoNSl7U8Kfd+HaPPpBIxZ9Rda+TpizSvGeVqPiIjI2FXk+7tSg6qBkrspd+3aFV27dq3sJugB/r0PkWHrICIiMhXlDkRffPEFRo0aBUtLS3zxxRcPbVvZS++pBKfuICIi0q9yB6L58+dj0KBBsLS0xPz58x/YTiaTMRD9R5zclYiISL/KHYhiY2PL/JmqHu9DREREpF+Vuux+xowZyMnJKbU8NzcXM2bM+M9FmTreh4iIiEi/KhWIpk+fjqysrFLLc3JyDDoH2JNCxh4iIiIivapUIBJCSF/a9zp16pQ0Uz1VHm/MSEREpF8VuuzewcEBMpkMMpkMdevW1QlFxcXFyMrKwujRo6u8SFPz76Bqw9ZBRERkKioUiBYsWAAhBF5++WVMnz4darVaWqdQKFCrVi2jnR+sOtH2EHEMERERkX5UKBANHToUAODr64s2bdqUOcEr/XcyXnZPRESkV5W6U3WHDh2kn/Py8lBQUKCzXh/TWzzJeNk9ERGRflVqUHVOTg7Gjh0LV1dX2NjYwMHBQedB/w0HVRMREelXpQLRhAkTsGfPHnz99ddQKpX4/vvvMX36dHh6emL58uVVXaPJ4VxmRERE+lWpU2YbN27E8uXL0bFjRwwbNgzt2rWDv78/fHx8sHLlSgwaNKiq6zQpnMuMiIhIvyrVQ5SamoratWsDKBkvlJqaCgBo27YtDhw4UHXVmSjOZUZERKRflQpEtWvXluYzq1+/PtauXQugpOfI3t6+yoozVdIYIo2BCyEiIjIRlQpEw4YNw6lTpwAA7733Hr766itYWlpi3LhxmDBhQpUWaIp4HyIiIiL9qtQYonHjxkk/d+nSBRcvXkRUVBT8/f0RGBhYZcWZKhnvVE1ERKRXFe4hKiwsREhICC5fviwt8/HxQe/evRmGqggvuyciItKvCgciCwsLnD59+nHUQv+Q/3NU2ENERESkH5UaQ/Tiiy/ihx9+qOpa6B8cQ0RERKRflRpDVFRUhB9//BG7du1CUFAQbGxsdNbPmzevSoozVbzsnoiISL8qFYjOnj2L5s2bAwAuXbqks057U0GqPBnnMiMiItKrSgWivXv3VnUddA8OqiYiItKvSo0h0rpy5Qq2b9+O3NxcABzzUlU4lxkREZF+VSoQpaSkICQkBHXr1sUzzzyDhIQEAMDw4cPx9ttvV2mBpog9RERERPpVqUA0btw4WFhYID4+HtbW1tLy/v37Y9u2bVVWnKmScVA1ERGRXlVqDNGOHTuwfft2eHl56SyvU6cOrl+/XiWFmTI5B1UTERHpVaV6iLKzs3V6hrRSU1OhVCr/c1GmjvchIiIi0q9KBaJ27dph+fLl0nOZTAaNRoM5c+agU6dOVVacqZJzLjMiIiK9qtQpszlz5iAkJAQnTpxAQUEB3n33XZw7dw6pqak4fPhwVddocmQcVE1ERKRXleohatSoES5duoS2bduiZ8+eyM7ORu/evXHy5En4+flVdY0m597L7nnajIiI6PGrVA9RfHw8vL298cEHH5S5rmbNmv+5MFMmv+du30L8e9UZERERPR6V6iHy9fXF7du3Sy1PSUmBr6/vfy7K1N0biHjajIiI6PGrVCASQpQ5Z1lWVhYsLS3/c1GmTnbPUeHAaiIiosevQqfMxo8fD6Bk0O+HH36oc+l9cXExjh07hqZNm1ZpgaaIPURkTOLi4uDr64uTJ0/y3zcRPbEq1EN08uRJnDx5EkIInDlzRnp+8uRJXLx4EU2aNMHSpUsfU6mmQ35P55sp56GXXnoJMplMejg5OaFbt244ffp0lb3HtGnTyvUln5OTg0mTJsHPzw+WlpZwcXFBhw4d8Pvvv+u0O3fuHPr16wcXFxcolUrUrVsXU6ZMQU5Ojk67WrVqSftlbW2Nxo0b4/vvv6+y/Xqc9u3bB5lMhrS0NEOXQkRUZSrUQ6Sd5X7YsGH44osvYGdn91iKMnXsIfpXt27dsGTJEgBAYmIiJk+ejO7duyM+Pl6vdYwePRrHjh3DwoULERAQgJSUFBw5cgQpKSlSm6NHj6JLly7o0qULNm/eDDc3Nxw/fhxvv/02du/ejb1790KhUEjtZ8yYgZEjRyInJwfr1q3DyJEjUaNGDYSHh5e7rsLCQlhYWFTpvhIRmSRRAc8991y5Hk+a9PR0AUCkp6fr5f3yCouEz8RNwmfiJpGRW6CX9zRGQ4cOFT179tRZdvDgQQFAJCcnS8vi4+PF888/L9RqtXBwcBDPPvusiI2Nldbv3btXtGzZUlhbWwu1Wi3atGkj4uLixJIlSwQAnceSJUvKrEWtVoulS5c+sFaNRiMCAgJEixYtRHFxsc666OhoIZPJxOzZs6VlPj4+Yv78+TrtHB0dxbhx4x76mQAQixYtEj169BDW1tZi6tSpQgghfvvtN9GsWTOhVCqFr6+vmDZtmigsLJRqmzp1qvD29hYKhUJ4eHiI119/XWebGzZsKLW/2s8iNjZWABAnT56Ufr73MXTo0IfWTERkKBX5/q5QD5Fara66JEYPpNtDZMBCjExWVhZWrFgBf39/ODk5ASjpIQkLC0NwcDAOHjwIc3NzfPTRR9KpNblcjl69emHkyJH4+eefUVBQgOPHj0Mmk6F///44e/Ystm3bhl27dgF48O+4u7s7tmzZgt69e5fZMxodHY3z589j1apVkMt1z0Q3adIEXbp0wc8//4yJEyeWeq1Go8GGDRtw9+5dnR6kB5k2bRpmz56NBQsWwNzcHAcPHsSQIUPwxRdfoF27drh69SpGjRoFAJg6dSp+/fVXzJ8/H6tXr0bDhg2RmJiIU6dOPfJ9yuLt7Y1ff/0Vffr0QUxMDFQqFaysrCq1LSIiY1KhQKQ9dUGPl+59iEw7EW3atAm2trYASubQ8/DwwKZNm6TQsWbNGmg0Gnz//ffSlY9LliyBvb099u3bhxYtWiA9PR3du3eXbhraoEEDafu2trYwNzeHu7v7Q+v49ttvMWjQIDg5OaFJkyZo27Yt+vbti6effhoAcOnSpVLbvleDBg1w6NAhnWUTJ07E5MmTkZ+fj6KiIjg6OmLEiBGP/ExeeOEFDBs2THr+8ssv47333sPQoUMBALVr18bMmTPx7rvvYurUqYiPj4e7uzu6dOkCCwsL1KxZE0899dQj36csZmZmcHR0BAC4urrC3t6+UtshIjI2lbrsvqocOHAAPXr0gKenJ2QyGX777Ted9fcPqpXJZOjWrZtOm9TUVAwaNAgqlQr29vYYPnw4srKydNqcPn0a7dq1g6WlJby9vTFnzpzHvWv/yb2Dqk29h6hTp06Ijo5GdHQ0jh8/jrCwMISHh+P69esAgFOnTuHKlSuws7ODra0tbG1t4ejoiLy8PFy9ehWOjo546aWXEBYWhh49euDzzz9HQkJCheto3749rl27ht27d6Nv3744d+4c2rVrh5kzZ+q0q0iAnTBhAqKjo7Fnzx60atUK8+fPh7+//yNf16JFC53np06dwowZM6T9t7W1xciRI5GQkICcnBw8//zzyM3NRe3atTFy5Ehs2LABRUVF5a6TiMgUGDQQZWdno0mTJvjqq68e2KZbt25ISEiQHj///LPO+kGDBuHcuXPYuXMnNm3ahAMHDkinCwAgIyMDoaGh8PHxQVRUFObOnYtp06bh22+/fWz79V/JOKhaYmNjA39/f/j7+6Nly5b4/vvvkZ2dje+++w5AyWm0oKAgKTRpH5cuXcILL7wAoKTHKDIyEm3atMGaNWtQt25dHD16tMK1WFhYoF27dpg4cSJ27NiBGTNmYObMmSgoKEDdunUBABcuXCjztRcuXJDaaDk7O8Pf3x/t2rXDunXr8MYbb+D8+fPl+kzulZWVhenTp+vs/5kzZ3D58mXpfwJiYmKwaNEiWFlZ4bXXXkP79u1RWFgIoOT37f4gp11HRGQqKjV1R1UJDw9/5BU1SqXygaczLly4gG3btuHPP/+U/q954cKFeOaZZ/Dpp5/C09MTK1euREFBAX788UcoFAo0bNgQ0dHRmDdvnk5wMjZyWUnvkMbUu4juI5PJIJfLkZubCwBo3rw51qxZA1dXV6hUqge+rlmzZmjWrBkmTZqE4OBgrFq1Cq1bt4ZCoUBxcXGlagkICEBRURHy8vLQtGlT1K9fH/Pnz8eAAQN0xhGdOnUKu3btwqxZsx64LW9vb/Tv3x+TJk0qdSn/ozRv3hwxMTEP7V2ysrJCjx490KNHD4wZMwb169fHmTNn0Lx5c7i4uOj0ml2+fLnUbQLupR3nVNnPjYjIGBm0h6g89u3bB1dXV9SrVw+vvvqqzmXOkZGRsLe31zmF0KVLF8jlchw7dkxq0759e53BqmFhYYiJicHdu3f1tyMVJJdmvDdwIQaWn5+PxMREJCYm4sKFC3j99deRlZWFHj16ACjpIXR2dkbPnj1x8OBBxMbGYt++fXjjjTfw999/IzY2FpMmTUJkZCSuX7+OHTt24PLly9JYn1q1aiE2NhbR0dG4c+cO8vPzy6yjY8eO+OabbxAVFYW4uDhs2bIF77//Pjp16gSVSgWZTIYffvgB58+fR58+fXD8+HHEx8dj3bp16NGjB4KDg/HWW289dF/ffPNNbNy4ESdOnKjQZzRlyhQsX74c06dPx7lz53DhwgWsXr0akydPBgAsXboUP/zwA86ePYtr165hxYoVsLKygo+PDwCgc+fO+PLLL3Hy5EmcOHECo0ePfuil/D4+PpDJZNi0aRNu375d6hQ1EVF1ZNSBqFu3bli+fDl2796NTz75BPv370d4eLj0f6aJiYlwdXXVeY25uTkcHR2RmJgotXFzc9Npo32ubXO//Px8ZGRk6Dz07d9AZNqJaNu2bfDw8ICHhwdatWqFP//8E+vWrUPHjh0BANbW1jhw4ABq1qyJ3r17o0GDBhg+fDjy8vKgUqlgbW2Nixcvok+fPqhbty5GjRqFMWPG4JVXXgEA9OnTB926dUOnTp3g4uJS6pSsVlhYGJYtW4bQ0FA0aNAAr7/+OsLCwrB27VqpTZs2bXD06FGYmZkhPDwc/v7+mDRpEoYOHYqdO3dCqVQ+dF8DAgIQGhqKKVOmVOgzCgsLw6ZNm7Bjxw60bNkSrVu3xvz586XAY29vj++++w5PP/00AgMDsWvXLmzcuFG6Uu+zzz6Dt7c32rVrhxdeeAHvvPOOzl3o71ejRg1Mnz4d7733Htzc3DB27NgK1UtEZIxkwkguY5LJZNiwYQN69er1wDbXrl2Dn58fdu3ahZCQEHz88cdYtmwZYmJidNq5urpi+vTpePXVVxEaGgpfX19888030vrz58+jYcOGOH/+fJlXBU2bNg3Tp08vtTw9Pf2hp2WqUr3JW5FfpMGhiZ3g5fDgLyciIiIqW0ZGBtRqdbm+v426h+h+tWvXhrOzM65cuQKg5N4wycnJOm2KioqQmpoqjTtyd3dHUlKSThvt8weNTZo0aRLS09Olx40bN6p6Vx5J20NkHHGViIjoyVatAtHff/+NlJQUeHh4AACCg4ORlpaGqKgoqc2ePXug0WjQqlUrqc2BAwd0rprZuXMn6tWrBwcHhzLfR6lUQqVS6Tz0TXvpvamfMiMiItIHgwairKws6TJhANLg1vj4eGRlZWHChAk4evQo4uLisHv3bvTs2RP+/v4ICwsDUHKzu27dumHkyJE4fvw4Dh8+jLFjx2LAgAHw9PQEUHITO4VCgeHDh+PcuXNYs2YNPv/8c4wfP95Qu10uHFRNRESkPwYNRCdOnJAuhwaA8ePHo1mzZpgyZQrMzMxw+vRpPPvss6hbty6GDx+OoKAgHDx4UGdw6sqVK1G/fn2EhITgmWeeQdu2bXXuMaRWq7Fjxw7ExsYiKCgIb7/9NqZMmWLUl9wDgIw9RERERHpjNIOqjVlFBmVVlaYzdiAtpxC7xreHv2vpubOIiIjo4Z7YQdWmhKfMiIiI9IeByEhxUDUREZH+MBAZKamHSGPgQoiIiEwAA5GR4p2qiYiI9IeByEhpT5kxDxERET1+DERGSsYeIiIiIr1hIDJS8n+ODAMRERHR48dAZKR42T0REZH+MBAZqX8nd2UiIiIietwYiIzUv1N3GLYOfdm0aRMUCgW+/PJLQ5dCREQmiIHISJnaZfebNm1CYWEhrl+/buhSiIjIBDEQGSlTu1P1unXrAADBwcEGroSIiEwRA5GR+ncMkYEL0YPMzEykpqYCAFq3bm3gaoiIyBQxEBkpU7oP0YkTJ6SfPT09DVgJERGZKgYiIyU3oUHVkZGRAIA+ffoYuBIiIjJVDERGypQGVe/btw8A8PTTTxu2ECIiMlkMREbq37nMnuxAJITAzp07AXBANRERGQ4DkZGSxhBpDFzIY3bt2jXp52bNmhmwEiIiMmUMREbKVC67144f8vPzg1KpNHA1RERkqhiIjJSpzGV29OhRAECPHj0MXAkREZkyBiIjZSpzmf32228AOH6IiIgMi4HISJnCXGY5OTm4efMmAN6QkYiIDIuByEiZwmX3UVFR0s/e3t4GrISIiEwdA5GRkv9zZJ7kQKQdUN2jRw/pqjoiIiJDYCAyUqYwl9nBgwcBAO3atTNwJUREZOoYiIzUkz6XmRACmzZtAsAB1UREZHgMREbqSZ/LLD4+Xvo5KCjIgJUQERExEBmtJ31Qtfb+Q15eXrCysjJwNUREZOoYiIzUkz6XmXZAda9evQxbCBERERiIjJbsCb9T9R9//AGA44eIiMg4MBAZqSd5LrO8vDzExsYC4A0ZiYjIODAQGakneS6zkydPSj/7+voasBIiIqISDERG6kmey0w7fqhbt268ISMRERkFBiIjJc1l9gR2ER06dAgA0L59ewNXQkREVIKByEg9yafMNmzYAIADqomIyHgwEBmpJ3VQ9d9//y393KJFCwNWQkRE9C8GIiP1pM5lduzYMQCAi4sLbG1tDVwNERFRCQYiI/WkzmWmHVDdp08fA1dCRET0LwYiI/WkzmW2efNmALz/EBERGRcGIiP1JM5lVlBQgIsXLwLggGoiIjIuDERGSv7PkXmS7kN06tQp6ec6deoYsBIiIiJdDERG6kmcy0w7fqhTp068ISMRERkVgwaiAwcOoEePHvD09IRMJsNvv/2ms14IgSlTpsDDwwNWVlbo0qULLl++rNMmNTUVgwYNgkqlgr29PYYPH46srCydNqdPn0a7du1gaWkJb29vzJkz53Hv2n/2JF52f/jwYQAlgYiIiMiYGDQQZWdno0mTJvjqq6/KXD9nzhx88cUXWLx4MY4dOwYbGxuEhYUhLy9PajNo0CCcO3cOO3fuxKZNm3DgwAGMGjVKWp+RkYHQ0FD4+PggKioKc+fOxbRp0/Dtt98+9v37L57EGzOuXbsWAMcPERGR8TE35JuHh4cjPDy8zHVCCCxYsACTJ09Gz549AQDLly+Hm5sbfvvtNwwYMAAXLlzAtm3b8Oeff0o3+Vu4cCGeeeYZfPrpp/D09MTKlStRUFCAH3/8EQqFAg0bNkR0dDTmzZunE5yMzZM2l1lSUpL081NPPWXASoiIiEoz2jFEsbGxSExMRJcuXaRlarUarVq1ksaiREZGwt7eXueOx126dIFcLpduABgZGYn27dtDoVBIbcLCwhATE4O7d++W+d75+fnIyMjQeeib7Ak7ZXb06FEAgEqlgkqlMnA1REREuow2ECUmJgIA3NzcdJa7ublJ6xITE+Hq6qqz3tzcHI6OjjptytrGve9xv1mzZkGtVksPb2/v/75DFfSknTLThth+/foZuBIiIqLSjDYQGdKkSZOQnp4uPW7cuKH3GuRP2Gz327dvB8DxQ0REZJyMNhC5u7sD0B17on2uXefu7o7k5GSd9UVFRUhNTdVpU9Y27n2P+ymVSunUjqFO8TxJN2YsKipCdHQ0AN6hmoiIjJPRBiJfX1+4u7tj9+7d0rKMjAwcO3ZM6mUIDg5GWloaoqKipDZ79uyBRqNBq1atpDYHDhxAYWGh1Gbnzp2oV68eHBwc9LQ3Ffck3YfozJkz0s/169c3YCVERERlM2ggysrKQnR0tNR7EBsbi+joaMTHx0Mmk+Gtt97CRx99hD/++ANnzpzBkCFD4OnpiV69egEAGjRogG7dumHkyJE4fvw4Dh8+jLFjx2LAgAHw9PQEALzwwgtQKBQYPnw4zp07hzVr1uDzzz/H+PHjDbTX5fMk3YdIO37o6aefhlxutBmciIhMmEEvuz9x4oTOTfq0IWXo0KFYunQp3n33XWRnZ2PUqFFIS0tD27ZtsW3bNlhaWkqvWblyJcaOHYuQkBDI5XL06dMHX3zxhbRerVZjx44dGDNmDIKCguDs7IwpU6YY9SX3wL2X3Ru4kCqgDUQhISEGroSIiKhsMvGk3OjmMcrIyIBarUZ6errexhPN2xGDL/ZcwZBgH8zo2Ugv7/m4aE//bd26Fd26dTNwNUREZCoq8v3N8xdGSvaEDKq+c+eO9LN2XBcREZGxYSAyUk/KfYi0N8hUKBRGPYidiIhMGwORkdIOqq7uZzS144deeOEFA1dCRET0YAxERkr+TyLSaAxcyH+0c+dOALwhIxERGTcGIiP1JMxlVlxcjOPHjwPgDRmJiMi4MRAZqSdhDNH58+elnxs2bGjASoiIiB6OgchImUn3Iaq+iUg7fqhly5YwMzMzcDVEREQPxkBkpJ6EU2baQNS1a1cDV0JERPRwDERG6kk4Zfbzzz8D4IBqIiIyfgxERqq6z2V29+5d5OfnA+ANGYmIyPgxEBkp7WX31TQPSVeXAYCLi4sBKyEiIno0BiIjVd2n7tCOHxo0aJCBKyEiIno0BiIjVd1Pme3evRsA0KZNGwNXQkRE9GgMREaqOg+q1mg0OHToEADekJGIiKoHBiIjVZ3nMouJiZF+DgwMNGAlRERE5cNAZKRk1biHSDt+KDAwEObm5gauhoiI6NEYiIyU9pRZ9I00DPr+KH48FGvgisrvyJEjAIDw8HADV0JERFQ+DERGyslGAQBIzS7A4Ssp+HjLBRQVawxc1YMVFhbi5s2bEEJg3bp1ADh+iIiIqg8GIiPVvq4LvnqhOWb1bgwLMxmKNAJJmfmGLuuB5s2bBy8vL7i4uCAjIwMAUFBQgOzsbANXRkRE9GgMREbKTC5DRKAHBj5VEx5qKwDAzbu5Bq7qwW7evAkzMzOkpKRIy/r37w9HR0edWe+JiIiMEQNRNVDD/p9AlJZj4EoeLCMjQxoIfi8hBNzd3Q1QERERUfkxEFUDNRyMv4coMzMTxcXFOsvMzc2lXiIiIiJjxkBUDfzbQ2S8gSg9Pb3UPZOKioowevRoA1VERERUfgxE1YC2h+hvI+4hunv3bqll9erV49QdRERULTAQVQNe1aCHSHtlmZZMJsNrr71W5rgiIiIiY8NAVA1oe4hupeUa7VQeWVlZOs8tLCwwePBgA1VDRERUMQxE1YCH2goyGZBXqEFKdoGhyynTvYHI3NwcAwYMgIODgwErIiIiKj8GompAYS6Hq50SgHFeaSaEQE7Ov7cE4GBqIiKqbhiIqglPIx5HlJubC42mZFoRmUyGBg0acNoOIiKqVhiIqgnp0nsj7CHKzMzUeT5mzBgOpiYiomqFgaiakG7OaIQ9RPcGIqVSiRdffNGA1RAREVUcA1E1ob303hjvRXTvJfcDBw6EWq02YDVEREQVx0BUTVSXHiIOpiYiouqIgaiaqGFvDQC4edf4JnjVBqJGjRqhZcuWBq6GiIio4hiIqgltD1FGXhEy8woNXI0u7Skz3pmaiIiqKwaiasJWaQ61lQUA4NrtbANXo0utVsPNzQ2DBg0ydClERESVwkBUjbSu7QgAWBd1w8CV6IqIiMDNmzehUqkMXQoREVGlMBBVI0Pb1AIA/Bp1E+m5xnXazMzMzNAlEBERVRoDUTUSXNsJ9dzskFtYjHUnjKuXiIiIqDpjIKpGZDKZ1Eu0PPI6ijXCsAURERE9IRiIqplezTyhtrJAfGoO9l5MNnQ5RERETwSjDkTTpk2DTCbTedSvX19an5eXhzFjxsDJyQm2trbo06cPkpKSdLYRHx+PiIgIWFtbw9XVFRMmTEBRUZG+d6XKWCvMMaClNwBgWWScYYshIiJ6Qhh1IAKAhg0bIiEhQXocOnRIWjdu3Dhs3LgR69atw/79+3Hr1i307t1bWl9cXIyIiAgUFBTgyJEjWLZsGZYuXYopU6YYYleqzIutfSCXAQcv38HlpMxHv4CIiIgeyugDkbm5Odzd3aWHs7MzACA9PR0//PAD5s2bh86dOyMoKAhLlizBkSNHcPToUQDAjh07cP78eaxYsQJNmzZFeHg4Zs6cia+++goFBQWG3K3/xNvRGl0auAFgLxEREVFVMPpAdPnyZXh6eqJ27doYNGgQ4uPjAQBRUVEoLCxEly5dpLb169dHzZo1ERkZCQCIjIxE48aN4ebmJrUJCwtDRkYGzp07p98dqWIvPV0LgHFegk9ERFTdmBu6gIdp1aoVli5dinr16iEhIQHTp09Hu3btcPbsWSQmJkKhUMDe3l7nNW5ubkhMTAQAJCYm6oQh7XrtugfJz89Hfn6+9Pze2dwfi+yK33k62M0SgfbmuJychQ0HY/DS076PoTAiIiI9sbEx6NsbdSAKDw+Xfg4MDESrVq3g4+ODtWvXwsrK6rG976xZszB9+vTHtv1SbG0r/BIZgD+0T+ZXZTFEREQGIAx7KxmjP2V2L3t7e9StWxdXrlyBu7s7CgoKkJaWptMmKSkJ7u7uAAB3d/dSV51pn2vblGXSpElIT0+XHjdu8CaIRERETzKj7iG6X1ZWFq5evYrBgwcjKCgIFhYW2L17N/r06QMAiImJQXx8PIKDgwEAwcHB+N///ofk5GS4uroCAHbu3AmVSoWAgIAHvo9SqYRSqXz8O6SVlVXpl45bE41tZxMxJNgHk55pIC3/cs9lfL3vKr4f2gLBfs5VUSUREdETy6gD0TvvvIMePXrAx8cHt27dwtSpU2FmZoaBAwdCrVZj+PDhGD9+PBwdHaFSqfD6668jODgYrVu3BgCEhoYiICAAgwcPxpw5c5CYmIjJkydjzJgx+g08j/Ifzpt2D/bHhktp+DUmDRN6W8HcTI7MvEJ8/Wcisi0s8WP0bQQH+lRhsURERE8eow5Ef//9NwYOHIiUlBS4uLigbdu2OHr0KFxcXAAA8+fPh1wuR58+fZCfn4+wsDAsWrRIer2ZmRk2bdqEV199FcHBwbCxscHQoUMxY8YMQ+1SlWtf1wWONgrcycrHwSt30KmeK36J+hvZBcUAgH0xyUjPKYTa2sLAlRIRERkvmRAGHsVUDWRkZECtViM9PR0qlcrQ5ZQy9fezWBZ5HRGNPbBwYDN0/mwf4lJyYCaXoVgjMLt3Y/QJ8sIXuy/DTC7Dc81qwMfJsKP5iYiIHreKfH8bdQ8RlU/v5l5YFnkdm88k4HZmPuJScmBnaY6hwbXw5d4r+D36Fq7dyca3B64BABbsugxvRyvkF2qgEUAdV1s09FThxdY+qOXMoERERKaHPUTlYOw9RADw9b6rmLv9IjT/HM0RbX0xtE0ttJuzV6ddCx8HRMXfLfPqRjulOeb1bwpfZ2v8cCgOADD92YZQmFerixGJiIgAsIfIJL3a0Q/NatrjzdUnkVeowdA2teDtaI0WPg44cf0ugJKQNLl7AJIy8hCfmgNrhRmKNQIXEzOx5s8biLp+FyOXn9DZrrXCDB92L7kiL7egGEpzOeRymd73j4iI6HFiD1E5VIceIq3CYg1y8oulQdRr/ozHxF/PIMjHAatHtYaFWdm9PQVFGvxv83ksi7wOmQwIru2EI1dTAABz+gQi8loKNpy8CRuFGep7qGAmk+F2Vj68Ha3xzYtBsFKY6W0fiYiIyqMi398MROVQnQLR/YQQiLyagmY1HcoVWqKu34WjjQK+zjaYuek8fjgU+8jXDGpVE/97rnFVlEtERFRleMqMJDKZDG38y39jxiAfB+nnid3q40RcKk79nY7GNdSY3rMh7JTmuJCYCbkMyMorwnvrz2DlsXh0qOuCrgFuKCjWQGlefXqLYhIzsetCEl5s5cNbExARmTAGInoghbkcq0a2xtmb6WhRyxFm/4wdquNmJ7XRXr325upoWJjJkJFXhMkRDTCiXW0IITB3e4w0hqmGvRUmhdeHq8rSIPtzv21nEzBuzSnkFhYj+kYavh0cBJms+o2PupGagyNX76CgWMBGYYam3vao7VJ6fjyNRuhl/JcQAoXF/3Y8W5jJqs3nqtEI7DifhAYedrw1BZGJYSCih7JRmqNVbacHrn8ntB6OXL2DszczkFtYsmzOthh0rOeKo9dSsGjfVZ32MYmZWPNKa9hZGq43JiOvEF/vu4qv76lt5/kkbDmTiIhAjwptKzE9D6nZBWjgYSd96V9OysQfp25h69lEpOUUQmEmg4W5HBZmcqgszdGxniu6NXKHn4utFDLLIoTA33dzcervNCjM5KjlbIM7Wfk4cOkOzidkIDu/CLcz8xGfmqPzOgszGRYObI6whm5YcfQ6vtp7Fak5BSgo0kBtZYFaTtZQWVmgsFiDwmKBwmINFGZyjO7ghy4BbhBC4MjVFOy9mIw/r9/FrbRcWCvM4GqnxHvhDaRexEtJmdh6JhH7LyXj6u3sf7an0QlDAGBpIYenvRU81VbwtLeEj5MNegR6oqaT9SM/36u3s3ApMRPXU3OQllOInIIi2CjN0bymA1rWcoC9taLcx+r8rQz8dDQOrWs7oWfTGmW2+XRHDBbtuwofJ2vsGt/hgWPuiOjJwzFE5VCdxxDpQ3pOIU7euAsPtRVmbb2AfTG30cBDhdg7Wcgr1GBEW1809lJj5qbzuJNVgDZ+Tuhc3xWxd7LRqZ4rugS4lbldIQRikjKRnlOStOytFajlbK1zSu7otRQsPRwHK4UZAjxUaFrTHs287WFuJseN1BxEXb+L5Mw8pGQVoEgjkF9UjI2nEpD+T3obGuwDO0sLfLn3CpxtFVg3ug0cbRS4mJCB/Zdu4+Y/YUBlaQFfZxvUcbOFv4sdbC3NseRwLD7dEYO8Qg0a11CjfV1n7Ll4GxcSMsr1ucllgKONEt0aueH9ZxrAWmGO5Iw8bD2biD/jUnEi7i4SM/IeuR1zuQzNazrA0UaBv9NycPZmBszlJadKD1y6Xa5atAa39sG1O1k4fCWlzPW2SnP8NPwpnIi7i1lbL0i3eagomQzoVM8VzzbxRLs6znCy1Z1KR6MR+N+WCw8dw6Ywk2N2n8bo3dzroe+VmJ6HmZvOY/OZBAAln/vKEa0R7OeE1cfjsftiMno08URWXhHe33BGet2cvoHo18K7cjtIREaBg6qrGANR+d1Ky0XXefulqUPa1XHGsmFPQS6X4czf6RjwbaS0TmtCWD08H+SFxfuv4eytdDT0VKGGvRV+/etmqXBhJpfBx9Ea/q62KCjWYF9M6S98O0tzONoocD0lp9Q6LT8XG7wTWg/hjT2QX1SMHgsP4VJS+SfZtVWaIyu/CEDJl/u9/4rM5TJ0qOuCZ5t6oo6rHYo0JT0nBUUC8anZ2HY2EYeu3NHpSanjaoun/Z3x8/F45BdpdLYV4KmCEEBcSjYsLczQzt8ZT/k6wt5aATtLcwR6qaUet6JiDd5Zdwq/Rd8CUPLlP7FbfUQEesDSwgy3M/NxPSUbOQXFUPzTa6Uwk+Pg5Tv48fC/4UNhJsdzzWog2M8J/q62yCssxmc7LiHyWgrM5TIU/ZOE2td1QXgjdzSraQ9rC3OYm8lgYSb/9zSZANJyC3AzLRe30vJwKy0Xf8al4uDlOzqfZ+f6rpjRsyG8HKyRV1iMt9eekgJME2971HKyhrOtEjYKM9zOysexa6m4dicbMhnwSe9ABPs54czNdNRxtdU5pXvsWgrGrPoLd7IKAAC1nW1w7U42nG2VeKaxO5ZHXi91bBt4qHAhIQM+TtbYPb4DzNlLRFRtMRBVMQaiivnp6HV8+NtZOFhbYPtb7XXGDB25cgefbLsID7UVLMzl2Hiq5Iv73i/Ze1layFHD3goCwO3MfGTmFemsN5PL0L+lNzxUljh3KwPHYlNw958eJTO5DE281KjpaA0nW6V0g8kGHipENPbQOV115u90jFx+AsmZedAIwNFGgfZ1nBHgqUJ+oQYp2QW4ejsLV5KzkJBe0mtjqzTHBxENEBrghrUn/sa5W+lo4+eM8EbucLB5+KmcomINUnMKcPZmOt779QySM/OldU297RFS3xUtajmiqbd9hW9pUKwRmLnpPA5fuYPpzzYs96D6neeT8L/N5xHoZY8JYfXg7ah7Sis7vwhDfzyOE9fvwlwuw5QeARjc2qdS44Ou3c7CL1F/Y1/MbZz/J/RaK8zQro4zjlxJQWZ+ESzMZPisX1M828Sz1Os1GoEpf5zFiqPxOstlMqBvcy90qu+Kg5fvYN2JGyjSCNR3t8P8/k1Ry8kGzy06jIuJmdJrejTxxNFrKbidmY9nm3hiVu/GaD9nL1KyCzC3byCeb+GNS0mZWLz/Kg5cuoNpzwage2DpmojI+DAQVTEGoooRQmDT6QTUc7dD3Xv+b70sSw7HYsam8xACaF7THn2CvBCTmInYO9noUNcFzwd5S1d/CSGQnJmPy0lZuJycidTsAjzbxFOnR6BYI3DmZjpSs/PRopYjVBUcqySEQH5RyZiaBw1AzswrxPWUHHg7WFfJlWl3svLx4W9nkZpdgNc6+aN9HWejHYScmVeIFUfjEeznhKbe9lWyzSvJWXjv19PS4HugZAD+3OcD0cbvwWFOCIEZm85jyeE4mMtl8HW2weXk0r18zzbxxOw+jWGtKBkyee12Fnp+eRi5hcX4pE8g+gR5oaBIg0tJmQjwUEEul+Gb/Vcxa+tFmMtlsFKY6QRxa4UZNr/RDr7ONvgzLhVXkrNgrTBDDXsrBPk4lPvYCSFQUKxBQZEG+UUa2CjMq+x+XgVFGqTlFOgsK9II3EzLRdyd7H/GYxXDWmGG5j4OqO9uh4y8QuQWFMPX2eaR+5CWU4DIqynwcrBGYy91ldRsSIXFGty8mwsfJ2uj/bdHlcNAVMUYiB6vv+LvIr9Qg9a1HfnHyERpNALrT95EfEo2OtRzRTNv+3JfERd3JxtuKktYKczwV/xdzNtxCUkZeSVj1Rq4lRkwE9PzUKTRwMuh7IHdOQVF6DrvAG6m5QIo6Xnq1tAdyZn5iLp+F0281KjvrsKaEzd0XtfE2x6vdqiN7PxinE/IwPlbGbiQmIGc/GJYK81gLpejoKgY+f+EoPu5qZRwV1tBaSaHhbn29KMc2o/CysIMaisLqK0VsLeygNrKAjZKcyjN5UjMyEPcnWxE30hD9I20MrdfHk/7O2HRC0FQmMvxw6FrOHMzXWd9Rm4R/oxLlXp0m3ipEeTjiBt3c5CYnofs/KKSgKc0g72VAmprC9hbWcDRRgEXOyVqOdmgYz0XmJvJIYTAuVsZyMgrhLlcDjO5DOZyGczNZDCXy6Ewl8PLwarKB7dn5RchMT0PgMDBy3fw/cFY3EzLRRs/J3wQ0QANPf8NeTdSc/BX/F2cv5WB5Mx8NPRUobmPA1ztlLBRlJw6T0jPQ0J6LhLT85CQniddbOHnaoMgH0c42yqkCxgKizUwk8tQz80Ovs420inZu9kFWHokDhZmMrzW0b/M33+NRmDm5vM483c6rJXmsLeyQH0POzT0VCPIxwG2SnPcTMvF8iNxuJSUiex/Qm/v5l7o1tDdJKdhYiCqYgxERKYnr7BYOj2qsjSHk60St9JyEf75QWlQvkwGtPV3RlGxQPSNNOQWFj9sk3oll0EnCMplgLvaEj6ONnC2VcBaaY7bmfk4EZeKuzmFMP/nC7hII+DrbIOCIo0UCMtS28UGf6fmoqC44sGrtrMN+rf0xpYzCTj1d/pD2yrM5ajjaguFuRw5+cXwdrTGoNY10aGOy0NDc0ZeIXLyi+Gu1r3Nx6bTtzDxl9OlxjJqyWQl9dV0tMb1lBxcu5Nd4f0rL6W5HPXdS27xsOdisjQu8e2udfF6SB38GvU3vtx7BS8/XQuDg2vhyz2X8emOS2Vuy8JMhgAPFc7dyihz+IGLnRJz+gSiU31X5BUWY862GOQVFeO5ZjXQwEOFyKsp0ti5AA8V/F1tn4j/QWUgqmIMRESktfVMAsas+gseait81q8JWv9zW4rbmfn4et9V7LyQCA+1FQI8VAjwVCHAQwUHGwVyC4pQUCSgtJBDaS6H0txM+llhJkd6biHiUnJwOzNf6kkoKCq5jYGAgBAlIS0tpxBpuQVIyylEem7Jqa/cgmK4qZTwcbJBfXc7tKjlCD+XR5/6AkpO3WXkFsHO0hwxSZkYseyEFIQ81ZZ4ua2vzqk8c7kMLWs5oraLLVKy8vFL1N9IzsxHLSdreNpbwVZpDqWFGbLzi3RqTc0uQHJmPg5dvi2N8wNKQkFNR2sUawSKNOKf/2pQrBHIzi9+YMhUW1lAaV7Sq+Rqpyy5tYO9FTzUljh5Iw07zyehoEiDVr6O6N/SG1YWZjgWm4qlR+IAlIwBNDcree3QNrXQytcJn+++LI1rvHd/G3up0chTDRc7JU7/nYZTf6cjPbcQBUUaKM3l8FBbwl1tCQ+1FdxUlvBQW0JtZYELCRn4K/4ucgqKpQsYLMxlyC0oRkxiZqlQ5uNUEsK0Y+HWRf0trevdrAZ+i74JjQDeDKmDmo7WSMrMw4WETETfuIsbqf+G1zZ+TujRxBMqSwtcSsrEz8fjkZyZD3O5DNN7NsRvJ2/iz7i7eJg2fk5YOLCZzhWgOQVFiEnMRG0XW6itHj5c4OzNdCyPjEOnf24zYqhwxUBUxRiIiOhef9/NgbOtEpYW1eeu7OWVnJmHWVsuwtvBCqM7+kljr6pKZl4hlh6Ow4HLtxFc2wlD29QqddsFLY1G4MbdHMT8MwheaWGGA5duY92JG8i47wKLinilQ21MCK1X5hWEiel5uJKcheupJVcjtvFzeuB904r+Of1VmS97jUYgPjUH5xMycDkpC/U97NC1gRsm/34Wq479e7HAU76OOB6bKj3v38Ibn/QNLLW9uDvZiLp+F3Xd7EqN6yoo0uDdX/69+hQouRo3pL4rdp5PQnZBMWo6WqN5TXvcuJuLMzfTUVCkgafaEm+H1oOlRcnp6LUnbiAzrwgyGVDPzQ4+TtZwsVPC1c4SLnZKqCwtIJOVXN3509Hr0m05whq6YXQHP6isLGAmkyG7oAgFRRpYKcxgozCH6p/Tv48DA1EVYyAiIjIeuQXFiEvJhhAlA6ITM0pu6ZCQnoebablwV1niuWY14GSrwKpj8Thw6TYU5nLYWVqgXwtvdGvkbuhdeKD8omIM/v44jsel4p3QuhjTyR9Lj8RhxqbzaOSpxrrRwZUK4hqNwLSN57A88jo81JZYOuwp1HO3Q25BMdJzC3VOLV5OysQrP0WVebrQztK81NW+D9K6tiNOxN0t8xTevbo1dMfiwUEV26FyYiCqYgxERESkL0XFGtzOyoeH2kpalpSRBwdrxX8aGC2EwF/xafB3sX3kFbIZeYWYuy0GMUklvXPOtgo838IbHeq44E52PqLj05CYkYfbmfm4k5WP25n5Uq+drdIcw9v64ml/Z1xIyMD/Nl/A1dtZyM4vgkaUXKmpMJcjr7AY2fnFCG/sjnn9mlZ6vx66HwxEVYuBiIiI6PEQQjy2MUYV+f42vWvwiIiIyGgYy9VsDERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCaPgYiIiIhMHgMRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCbP3NAFVAdCCABARkaGgSshIiKi8tJ+b2u/xx+GgagcMjMzAQDe3t4GroSIiIgqKjMzE2q1+qFtZKI8scnEaTQa3Lp1C3Z2dpDJZI/lPTIyMuDt7Y0bN25ApVI9lvcwJO5f9fak7x/w5O8j96964/5VjhACmZmZ8PT0hFz+8FFC7CEqB7lcDi8vL728l0qleiJ/2bW4f9Xbk75/wJO/j9y/6o37V3GP6hnS4qBqIiIiMnkMRERERGTyGIiMhFKpxNSpU6FUKg1dymPB/avenvT9A578feT+VW/cv8ePg6qJiIjI5LGHiIiIiEweAxERERGZPAYiIiIiMnkMREbiq6++Qq1atWBpaYlWrVrh+PHjhi6pUmbNmoWWLVvCzs4Orq6u6NWrF2JiYnTadOzYETKZTOcxevRoA1VcMdOmTStVe/369aX1eXl5GDNmDJycnGBra4s+ffogKSnJgBVXTK1atUrtn0wmw5gxYwBUv2N34MAB9OjRA56enpDJZPjtt9901gshMGXKFHh4eMDKygpdunTB5cuXddqkpqZi0KBBUKlUsLe3x/Dhw5GVlaXHvXiwh+1fYWEhJk6ciMaNG8PGxgaenp4YMmQIbt26pbONso757Nmz9bwnZXvU8XvppZdK1d6tWzedNtX1+AEo89+iTCbD3LlzpTbGfPzK831Qnr+Z8fHxiIiIgLW1NVxdXTFhwgQUFRVVeb0MREZgzZo1GD9+PKZOnYq//voLTZo0QVhYGJKTkw1dWoXt378fY8aMwdGjR7Fz504UFhYiNDQU2dnZOu1GjhyJhIQE6TFnzhwDVVxxDRs21Kn90KFD0rpx48Zh48aNWLduHfbv349bt26hd+/eBqy2Yv7880+dfdu5cycA4Pnnn5faVKdjl52djSZNmuCrr74qc/2cOXPwxRdfYPHixTh27BhsbGwQFhaGvLw8qc2gQYNw7tw57Ny5E5s2bcKBAwcwatQofe3CQz1s/3JycvDXX3/hww8/xF9//YX169cjJiYGzz77bKm2M2bM0Dmmr7/+uj7Kf6RHHT8A6Natm07tP//8s8766nr8AOjsV0JCAn788UfIZDL06dNHp52xHr/yfB886m9mcXExIiIiUFBQgCNHjmDZsmVYunQppkyZUvUFCzK4p556SowZM0Z6XlxcLDw9PcWsWbMMWFXVSE5OFgDE/v37pWUdOnQQb775puGK+g+mTp0qmjRpUua6tLQ0YWFhIdatWyctu3DhggAgIiMj9VRh1XrzzTeFn5+f0Gg0QojqfewAiA0bNkjPNRqNcHd3F3PnzpWWpaWlCaVSKX7++WchhBDnz58XAMSff/4ptdm6dauQyWTi5s2bequ9PO7fv7IcP35cABDXr1+Xlvn4+Ij58+c/3uKqQFn7N3ToUNGzZ88HvuZJO349e/YUnTt31llWXY6fEKW/D8rzN3PLli1CLpeLxMREqc3XX38tVCqVyM/Pr9L62ENkYAUFBYiKikKXLl2kZXK5HF26dEFkZKQBK6sa6enpAABHR0ed5StXroSzszMaNWqESZMmIScnxxDlVcrly5fh6emJ2rVrY9CgQYiPjwcAREVFobCwUOdY1q9fHzVr1qyWx7KgoAArVqzAyy+/rDOHX3U+dveKjY1FYmKizvFSq9Vo1aqVdLwiIyNhb2+PFi1aSG26dOkCuVyOY8eO6b3m/yo9PR0ymQz29vY6y2fPng0nJyc0a9YMc+fOfSynIx6Xffv2wdXVFfXq1cOrr76KlJQUad2TdPySkpKwefNmDB8+vNS66nL87v8+KM/fzMjISDRu3Bhubm5Sm7CwMGRkZODcuXNVWh/nMjOwO3fuoLi4WOdgA4CbmxsuXrxooKqqhkajwVtvvYWnn34ajRo1kpa/8MIL8PHxgaenJ06fPo2JEyciJiYG69evN2C15dOqVSssXboU9erVQ0JCAqZPn4527drh7NmzSExMhEKhKPVl4+bmhsTERMMU/B/89ttvSEtLw0svvSQtq87H7n7aY1LWvz3tusTERLi6uuqsNzc3h6OjY7U7pnl5eZg4cSIGDhyoM1fUG2+8gebNm8PR0RFHjhzBpEmTkJCQgHnz5hmw2vLp1q0bevfuDV9fX1y9ehXvv/8+wsPDERkZCTMzsyfq+C1btgx2dnalTsFXl+NX1vdBef5mJiYmlvlvVLuuKjEQ0WMzZswYnD17VmeMDQCd8/eNGzeGh4cHQkJCcPXqVfj5+em7zAoJDw+Xfg4MDESrVq3g4+ODtWvXwsrKyoCVVb0ffvgB4eHh8PT0lJZV52NnygoLC9GvXz8IIfD111/rrBs/frz0c2BgIBQKBV555RXMmjXL6O+KPGDAAOnnxo0bIzAwEH5+fti3bx9CQkIMWFnV+/HHHzFo0CBYWlrqLK8ux+9B3wfGhKfMDMzZ2RlmZmalRtUnJSXB3d3dQFX9d2PHjsWmTZuwd+9eeHl5PbRtq1atAABXrlzRR2lVyt7eHnXr1sWVK1fg7u6OgoICpKWl6bSpjsfy+vXr2LVrF0aMGPHQdtX52GmPycP+7bm7u5e6uKGoqAipqanV5phqw9D169exc+fOR84k3qpVKxQVFSEuLk4/BVah2rVrw9nZWfp9fBKOHwAcPHgQMTExj/z3CBjn8XvQ90F5/ma6u7uX+W9Uu64qMRAZmEKhQFBQEHbv3i0t02g02L17N4KDgw1YWeUIITB27Fhs2LABe/bsga+v7yNfEx0dDQDw8PB4zNVVvaysLFy9ehUeHh4ICgqChYWFzrGMiYlBfHx8tTuWS5YsgaurKyIiIh7arjofO19fX7i7u+scr4yMDBw7dkw6XsHBwUhLS0NUVJTUZs+ePdBoNFIYNGbaMHT58mXs2rULTk5Oj3xNdHQ05HJ5qVNN1cHff/+NlJQU6fexuh8/rR9++AFBQUFo0qTJI9sa0/F71PdBef5mBgcH48yZMzrBVhvsAwICqrxgMrDVq1cLpVIpli5dKs6fPy9GjRol7O3tdUbVVxevvvqqUKvVYt++fSIhIUF65OTkCCGEuHLlipgxY4Y4ceKEiI2NFb///ruoXbu2aN++vYErL5+3335b7Nu3T8TGxorDhw+LLl26CGdnZ5GcnCyEEGL06NGiZs2aYs+ePeLEiRMiODhYBAcHG7jqiikuLhY1a9YUEydO1FleHY9dZmamOHnypDh58qQAIObNmydOnjwpXWU1e/ZsYW9vL37//Xdx+vRp0bNnT+Hr6ytyc3OlbXTr1k00a9ZMHDt2TBw6dEjUqVNHDBw40FC7pONh+1dQUCCeffZZ4eXlJaKjo3X+PWqvzjly5IiYP3++iI6OFlevXhUrVqwQLi4uYsiQIQbesxIP27/MzEzxzjvviMjISBEbGyt27dolmjdvLurUqSPy8vKkbVTX46eVnp4urK2txddff13q9cZ+/B71fSDEo/9mFhUViUaNGonQ0FARHR0ttm3bJlxcXMSkSZOqvF4GIiOxcOFCUbNmTaFQKMRTTz0ljh49auiSKgVAmY8lS5YIIYSIj48X7du3F46OjkKpVAp/f38xYcIEkZ6ebtjCy6l///7Cw8NDKBQKUaNGDdG/f39x5coVaX1ubq547bXXhIODg7C2thbPPfecSEhIMGDFFbd9+3YBQMTExOgsr47Hbu/evWX+Pg4dOlQIUXLp/Ycffijc3NyEUqkUISEhpfY7JSVFDBw4UNja2gqVSiWGDRsmMjMzDbA3pT1s/2JjYx/473Hv3r1CCCGioqJEq1athFqtFpaWlqJBgwbi448/1gkUhvSw/cvJyRGhoaHCxcVFWFhYCB8fHzFy5MhS/yNZXY+f1jfffCOsrKxEWlpaqdcb+/F71PeBEOX7mxkXFyfCw8OFlZWVcHZ2Fm+//bYoLCys8no52z0RERGZPI4hIiIiIpPHQEREREQmj4GIiIiITB4DEREREZk8BiIiIiIyeQxEREREZPIYiIiIiMjkMRARERGRyWMgIiIiIpPHQEREREQmj4GIiIiITB4DERGZlI4dO+L111/HW2+9BQcHB7i5ueG7775DdnY2hg0bBjs7O/j7+2Pr1q2GLpWI9IiBiIhMzrJly+Ds7Izjx4/j9ddfx6uvvornn38ebdq0wV9//YXQ0FAMHjwYOTk5hi6ViPSEs90TkUnp2LEjiouLcfDgQQBAcXEx1Go1evfujeXLlwMAEhMT4eHhgcjISLRu3dqQ5RKRnrCHiIhMTmBgoPSzmZkZnJyc0LhxY2mZm5sbACA5OVnvtRGRYTAQEZHJsbCw0Hkuk8l0lslkMgCARqPRa11EZDgMRERERGTyGIiIiIjI5DEQERERkcnjVWZERERk8thDRERERCaPgYiIiIhMHgMRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCaPgYiIiIhMHgMRERERmTwGIiIiIjJ5/wdITYiw6VgzuQAAAABJRU5ErkJggg==",
       "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
+       "<Figure size 640x480 with 1 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -1200,10 +1389,10 @@
     "    facecolor=\"black\", width=0.5,\n",
     "    headwidth=4, shrink=0.1)\n",
     "\n",
-    "plt.annotate(\n",
+    "_ = plt.annotate(\n",
     "    \"Best SOR result\", xy=(arrow_x, arrow_y),\n",
     "    xytext=(label_x, label_y),\n",
-    "    arrowprops=arrow_properties);"
+    "    arrowprops=arrow_properties)"
    ]
   },
   {
@@ -1216,7 +1405,14 @@
   {
    "cell_type": "code",
    "execution_count": 31,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:52:51.386952Z",
+     "iopub.status.busy": "2024-08-14T18:52:51.386701Z",
+     "iopub.status.idle": "2024-08-14T18:52:53.873980Z",
+     "shell.execute_reply": "2024-08-14T18:52:53.872450Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -1232,7 +1428,7 @@
     "\n",
     "N = 100\n",
     "x0 = init_problem(N)\n",
-    "x0.shape = N*N\n",
+    "x0 = x0.reshape(N*N)\n",
     "NAG_gs_info = NAG_solverinfo()\n",
     "NAG_gs_info.source = source(N)\n",
     "tol = 1e-9\n",
@@ -1254,13 +1450,20 @@
   {
    "cell_type": "code",
    "execution_count": 32,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:52:53.880726Z",
+     "iopub.status.busy": "2024-08-14T18:52:53.880423Z",
+     "iopub.status.idle": "2024-08-14T18:52:53.889930Z",
+     "shell.execute_reply": "2024-08-14T18:52:53.888495Z"
+    }
+   },
    "outputs": [],
    "source": [
     "@jit\n",
     "def NAG_SOR(x, solverinfo):\n",
     "    N = int(np.sqrt(x.size))\n",
-    "    x.shape = (N, N) # Make x 2D because that's how I think\n",
+    "    x = x.reshape(N, N) # Make x 2D because that's how I think\n",
     "    nextx = np.copy(x)\n",
     "    h = 1/(N-1)\n",
     "    w = solverinfo.w\n",
@@ -1270,14 +1473,21 @@
     "            nextx[j, i] += w * (new - nextx[j, i])\n",
     "    solverinfo.iterations += 1\n",
     "    nextx -= x  # NAG requires this rather than nextx itself\n",
-    "    nextx.shape = N*N  # Make nextx 1D since that's what NAG needs\n",
+    "    nextx = nextx.reshape(N*N)  # Make nextx 1D since that's what NAG needs\n",
     "    return nextx"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 33,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:52:53.896868Z",
+     "iopub.status.busy": "2024-08-14T18:52:53.896571Z",
+     "iopub.status.idle": "2024-08-14T18:52:56.818369Z",
+     "shell.execute_reply": "2024-08-14T18:52:56.817349Z"
+    }
+   },
    "outputs": [
     {
      "name": "stdout",
@@ -1292,7 +1502,7 @@
     "# Define and run the simulation using SOR and NAG Anderson Acceleration\n",
     "N = 100\n",
     "x0 = init_problem(N)\n",
-    "x0.shape = N*N\n",
+    "x0 = x0.reshape(N*N)\n",
     "NAG_SOR_info = NAG_solverinfo()\n",
     "NAG_SOR_info.w = 1.94\n",
     "NAG_SOR_info.source = source(N)\n",
@@ -1320,25 +1530,39 @@
   {
    "cell_type": "code",
    "execution_count": 34,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:52:56.824423Z",
+     "iopub.status.busy": "2024-08-14T18:52:56.824206Z",
+     "iopub.status.idle": "2024-08-14T18:52:56.829371Z",
+     "shell.execute_reply": "2024-08-14T18:52:56.828456Z"
+    }
+   },
    "outputs": [],
    "source": [
     "def find_best_mw(m, w):\n",
     "    N = 100\n",
     "    x0 = init_problem(N)\n",
-    "    x0.shape = N*N\n",
+    "    x0 = x0.reshape(N*N)\n",
     "    NAG_SOR_info = NAG_solverinfo()\n",
     "    NAG_SOR_info.source = source(N)\n",
     "    NAG_SOR_info.w = w\n",
     "    tol = 1e-9\n",
-    "    NAG_SOR_sol, fvec = roots.sys_func_aa(NAG_SOR, x0, tol, eps, m, data=NAG_SOR_info)\n",
+    "    _ = roots.sys_func_aa(NAG_SOR, x0, tol, eps, m, data=NAG_SOR_info)\n",
     "    return NAG_SOR_info.iterations"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 35,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-14T18:52:56.834573Z",
+     "iopub.status.busy": "2024-08-14T18:52:56.834371Z",
+     "iopub.status.idle": "2024-08-15T01:09:17.435841Z",
+     "shell.execute_reply": "2024-08-15T01:09:17.434827Z"
+    }
+   },
    "outputs": [],
    "source": [
     "# This will take a LONG LONG time!\n",
@@ -1350,21 +1574,28 @@
   {
    "cell_type": "code",
    "execution_count": 36,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-15T01:09:17.452298Z",
+     "iopub.status.busy": "2024-08-15T01:09:17.452039Z",
+     "iopub.status.idle": "2024-08-15T01:09:17.469929Z",
+     "shell.execute_reply": "2024-08-15T01:09:17.469009Z"
+    }
+   },
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[(199, 1.6700000000000006, 230),\n",
-       " (198, 1.6600000000000006, 231),\n",
-       " (198, 1.6700000000000006, 231),\n",
-       " (198, 1.6800000000000006, 231),\n",
-       " (198, 1.7300000000000006, 231),\n",
-       " (199, 1.6400000000000006, 231),\n",
-       " (199, 1.6500000000000006, 231),\n",
-       " (199, 1.6600000000000006, 231),\n",
-       " (199, 1.6800000000000006, 231),\n",
-       " (199, 1.6900000000000006, 231)]"
+       "[(np.int64(199), np.float64(1.6700000000000006), 230),\n",
+       " (np.int64(198), np.float64(1.6600000000000006), 231),\n",
+       " (np.int64(198), np.float64(1.6700000000000006), 231),\n",
+       " (np.int64(198), np.float64(1.6800000000000006), 231),\n",
+       " (np.int64(198), np.float64(1.7300000000000006), 231),\n",
+       " (np.int64(199), np.float64(1.6400000000000006), 231),\n",
+       " (np.int64(199), np.float64(1.6500000000000006), 231),\n",
+       " (np.int64(199), np.float64(1.6600000000000006), 231),\n",
+       " (np.int64(199), np.float64(1.6800000000000006), 231),\n",
+       " (np.int64(199), np.float64(1.6900000000000006), 231)]"
       ]
      },
      "execution_count": 36,
@@ -1382,22 +1613,28 @@
    "cell_type": "code",
    "execution_count": 37,
    "metadata": {
+    "execution": {
+     "iopub.execute_input": "2024-08-15T01:09:17.487646Z",
+     "iopub.status.busy": "2024-08-15T01:09:17.487206Z",
+     "iopub.status.idle": "2024-08-15T01:09:17.502926Z",
+     "shell.execute_reply": "2024-08-15T01:09:17.501638Z"
+    },
     "scrolled": true
    },
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[(5, 1.9800000000000009, 1543),\n",
-       " (6, 1.9800000000000009, 1479),\n",
-       " (8, 1.9800000000000009, 1442),\n",
-       " (7, 1.9800000000000009, 1352),\n",
-       " (9, 1.9800000000000009, 1326),\n",
-       " (11, 1.9800000000000009, 1281),\n",
-       " (10, 1.9800000000000009, 1192),\n",
-       " (12, 1.9800000000000009, 1175),\n",
-       " (15, 1.9800000000000009, 1122),\n",
-       " (13, 1.9800000000000009, 1107)]"
+       "[(np.int64(9), np.float64(1.9800000000000009), 1571),\n",
+       " (np.int64(7), np.float64(1.9800000000000009), 1475),\n",
+       " (np.int64(6), np.float64(1.9800000000000009), 1466),\n",
+       " (np.int64(11), np.float64(1.9800000000000009), 1369),\n",
+       " (np.int64(8), np.float64(1.9800000000000009), 1365),\n",
+       " (np.int64(10), np.float64(1.9800000000000009), 1305),\n",
+       " (np.int64(16), np.float64(1.9800000000000009), 1134),\n",
+       " (np.int64(12), np.float64(1.9800000000000009), 1121),\n",
+       " (np.int64(15), np.float64(1.9800000000000009), 1113),\n",
+       " (np.int64(13), np.float64(1.9800000000000009), 1092)]"
       ]
      },
      "execution_count": 37,
@@ -1440,7 +1677,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -1454,7 +1691,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.12.0"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/special_functions/mathieu_functions.ipynb b/special_functions/mathieu_functions.ipynb
index 1219326..98d0d4f 100644
--- a/special_functions/mathieu_functions.ipynb
+++ b/special_functions/mathieu_functions.ipynb
@@ -16,7 +16,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAHiCAYAAAB7iyTuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xc1Zn/8c+ZGfVqW7LcLRdZNgZCwLRQDKFXF7LZBEjZsCHJL8mmbcImmwLYYHonhSQESIGQBJLAElsugDHYMTbFxrHBVrXKqHeNpCnn94cksHGTrJm5M9L3/Xrxinzn3nseOaCj597nPMdYaxEREREREZHY5HI6ABERERERETk0JW0iIiIiIiIxTEmbiIiIiIhIDFPSJiIiIiIiEsOUtImIiIiIiMQwJW0iIiIiIiIxTEmbyBAZY3YYY85xOo4BxphrjDFFTschIiIyINbmSpF4p6RNRiVjjDXGzP7QsRuNMb870rXW2vnW2pciEFOiMeZuY0ylMabDGFNmjLlvEPH83lp74T73scaYzv57VBlj7jHGuMMdr4iIjGwxOld+vj+u733oeOWHk8R9zv33g9ynwBjzlDGm3hjTZozZbYx50BgzJdwxi4SDkjaR2PF9YAFwCpABnAO8cZT3+oi1Nh04D7ga+GI4AhQREYkBTcD3jDEZRzjvc/3nfnbfg/2J6D+BauCj1tpM4AygGDgz/OGKDJ+SNpGDMMbkGGOeN8a0GGOajDGvGGNc/Z+VGWPO7//6RmPM08aYJ4wx7f3lIAv2uc+Jxpg3+z/7kzHmj8aY5YcY9mTgWWttte1TZq19Yp97TTXGPNP/VLDRGPNQ//HPG2M2HOyG1tpdwCvAscaY7xpj/vKh7/MBY8z9w/m7EhGR0cmhuRJgJ7AR+PZhYpsOLASuBy4yxkzY5+MbgVettd+21lYCWGvrrLX3WWufOsq/DpGIUtImcnDfASqBXCAP+AFgD3HulcBTQDbwd2AgmUoEngUeA8YCTwJLDjPmJuDbxpj/Z4w5zhhjBj7oL298HigH8oHJ/WMeljHmGOAs4E3gd8DFxpjs/s88wKeAJw59BxERkUNyYq4c8CPgm8aYsYf4/LPAFmvtX+hL8q7Z57Pzgb8c9CqRGKWkTeTg/MBEYLq11m+tfcVae6iJaIO19gVrbRD4LfCR/uOnAR7ggf57PANsPsyYK4Db6ZtYtgBVxpjP9X92CjAJ+K61ttNa222tPejbtX5vGGOageeAXwG/sdbWAOuBf+s/52KgwVq79TD3ERERORQn5koArLVvAauBGw5xymeBP/R//Qf2L5HMAbwDfzDGfK3/bWGHMeaXRxpbxAlK2mS0CgIJHzqWQN8EBHAnsAcoMsaUGGP+5zD38u7zdReQ3P8WaxJQ9aEJbO+hbmKtDVprH7bWnkHfk8hbgEeNMfOAqUC5tTYwiO8N4ERr7Rhr7Sxr7Q+ttaH+448D1/Z/fS19E6eIiMjBxNxc+SE/Br5ijMnb96Ax5gxgBh9UpPwBOM4Yc0L/nxvpSzYBsNY+ZK3NBu7jwO9XJCYoaZPRqoK+MsN9zaCv/BBrbbu19jvW2pn0lXR82xhz3hDHqAEm71vmSF/ydUTWWp+19mGgGTiGvglsWv8ENxx/BY43xhwLXA78fpj3ExGRkSvW58pdwDPA/37oo88BBnjLGOOlr+nIwHGAtcDSIcYp4iglbTJa/RH4oTFmijHG1b9Y+grgzwDGmMuNMbP7J5FW+p42hg59u4Pa2H/d14wxHmPMIvrKHA/KGPNNY8w5xpiU/vM/R18XyTfpKxWpAW4zxqQZY5L7nyQOibW2u/97/AOw2VpbMdR7iIjIqBFzc+VB3AT8B30VKhhjkoFP0teA5IR9/vk6cHX/w88bgbNM35Y4k/uvywHmDTF2kahR0iaj1c3Aa8AG+t5m3QFcY619p//zAmAN0EHfhPJTa+2LQxnAWttL35O864AW+soRnwd6DnFJF3A3fSUkDcBXgaustSX9awCuAGbT9+SzEjhg35lBehw4DpVGiojI4cXiXPnh60vpm8/S+g8tBnzAE9Za78A/wKP0rZ272Fr7HnAqMAV42xjTDrxK3xYAPxpK/CLRYg69XlREws0Y80/g59ba3zgYwzRgFzDBWtvmVBwiIiIHEwtzpUis0Zs2kQgyxiw0xkzYp9zxeGClg/G46NvX5iklbCIiEgtiba4UiUXDbWogIodXCDxNX9lGCfCJ/tb7UWeMSQNq6VtAfrETMYiIiBxEzMyVIrFK5ZEiIiIiIiIxTOWRIiIiIiIiMUxJm4iIiIiISAyLiTVtOTk5Nj8/3+kwREQkCrZu3dpgrc11Oo54oTlSRGR0ONz8GBNJW35+Plu2bHE6DBERiQJjTLnTMcQTzZEiIqPD4eZHlUeKiIiIiIjEMCVtIiIiIiIiMUxJm4iIiIiISAxT0iYiIiIiIhLDlLSJiIiIiIjEMCVtIiIiIiIiMUxJm4iIiIiISAxT0iYiIiIiIhLDlLSJiIiIiIjEMCVtIiIiIiIiMUxJm4iIiIiISAxT0iYiIiIiIhLDlLSJiIiIiIjEMCVtIiIiIiIiMUxJm4iIiIiISAxT0iYiIiIiIhLDlLSJiIiIiIjEMCVtIiIyKA29AadDEBERiTlN/gAhayM6hpI2ERE5rLfbu1j8xm5+W93gdCgiIiIxozcU4ucVdZy+aSe9ocgmbZ6I3l1EROJWTU8vK0pq+JO3GQssHJvhdEgiIiIx4YX6Fm4urqbM1xuV8ZS0iYjIfrqCIR6uqOWnFfX4QiGnwxEREYkZb7d38ZPdVWxq7YzquEraREQEAGstT3ubWVFSg7fX73Q4IiIiMaOmp5dbS2r4c3/1SbQpaRMREV5r7uDGPVVs6/A5HYqIiEjM6AwGebiijp85XH2ipE1EZBQr6ephWXE1/2hodToUERGRmBGylj96m7i9xBsT1SdK2kRERqFmf4B7yrw8VtWIP8JtikVEROLJhuZ2btxTzTsxVH2ipE1EZBTxhyy/qarnnrJaWgJBp8MRERGJGXu6ullWXM2qhjanQzmAkjYRkVHihfoWlhVXUxql9sQiIiLxoMkf4O5SL49XNxCI0eITJW0iIiNYMNhDUfGfeLBpJm/4Up0OR0REJGb0hkL8urKB+8praY3x6hMlbSIiI1RVdy/f/udvWR88EWtcTocjIiISM/5e18ItxdWUd8dH9YmSNhGREaYjEOShijp+sbcOX2gBGKcjEhERiQ1vtHbykz3VvN4W3c2xh+uISZsx5lHgcqDOWnts/7E/AoX9p2QDLdbaE4wx+cBO4N3+zzZZa78c7qBFRORAQWv5Q00jd5R6qe8NOB3OqKA5UkQkPlT4eri1pIa/1rU4HcpRGcybtseAh4AnBg5Ya/994GtjzN3Avhv8FFtrTwhXgCIicmTrGtu4qbiadzu7nQ5ltHkMzZEiIjGrLRDk/vJaflVZT08oRruMDMIRkzZr7fr+p4MHMMYY4JPAx8MbloiIDMa/OnzctKeal5vbnQ5lVNIcKSISmwIhy+PVDdxd5qXJH9tNRgZjuGvazgJqrbW79zk2wxjzJtAG/NBa+8owxxARkQ+p7fFze2kNT9U0EXI6GDkUzZEiIg5Y1dDKsuJq9nT1OB1K2Aw3afs08OQ+f64BpllrG40xJwF/NcbMt9YesEOdMeZ64HqAadOmDTMMEZHRoTMY5GcV9fx0bx1dQaVrMU5zpIhIFL3d3sWNe6rY2BJfTUYG46iTNmOMB1gKnDRwzFrbA/T0f73VGFMMzAG2fPh6a+0jwCMACxYsiN8CUxGRKAhZy1PeJu4o8eLt9TsdjhyB5kgRkeip6u5lRUkNf6ltZqT+wBzOm7bzgV3W2sqBA8aYXKDJWhs0xswECoCSYcYoIjKqvdTUxs17qvmXmozEE82RIiIR1h4I8mB5LY9U1tMdx01GBmMwLf+fBM4BcowxlcBPrLW/Bj7F/mUfAGcDNxtj/EAI+LK1tim8IYuIjA47O3zcXFzNi01qMhKrNEeKiERfIGT5bU0jd5V6afSPji1uBtM98tOHOP75gxz7C/CX4YclIjJ61fb4uaO0hifVZCTmaY4UEYmuVQ2tLC+uZvcIajIyGMNtRCIiImGiJiMiIiIH91ZbFzcVj8wmI4OhpE1ExGFBa3mqpok7Smuo7R0dZR4iIiKDsbe7l9tKanhmBDcZGQwlbSIiDlrb2May4mp2qcmIiIjI+9oCQe4vr+XXo6DJyGAoaRMRccA77V3cXFzN+uYOp0MRERGJGf6Q5fHqBu4p89LkDzodTsxQ0iYiEkXV3b3cVlrDn73NajIiIiKyj+frWrilpJpSX6/TocQcJW0iIlEwsJfMLyvr8anMQ0RE5H1bWju5aU81r7eNziYjg6GkTUQkggLvl3nUjpq9ZERERAajtKuH5SXV/F99q9OhxDwlbSIiEfJ/9S3cWlxDsW907SUjIiJyOI29Ae4p8/JEdSN+q+qTwVDSJiISZltaO7m5uJrNrSrzEBERGdAdDPHLynoerKilLaCV3UOhpE1EJExKu3q4paSa51XmISIi8r6Qtfy5tpnbS2qo6vE7HU5cUtImIjJMKvMQERE5uJeb2rm5uIodHdqPdDiUtImIHCXfQJlHeS3tQZV5iIiIDNjR4WPZnmpeam53OpQRQUmbiMgQhazlj94m7iz1Uq0yDxERkfdVdfdyu/YjDTslbSIiQ7CusY1lxdXs7BxdZR4uYHpKktNhiIhIjGoLBHmgvJZfVdbTPcr2I52anIjHmIiOoaRNRGQQtrV3say4mleaO5wOJermpydzZ+FUTsxMczoUERGJMb2hEI9VNXBfeS1N/qDT4USVx8AXp+Ty3RkT8biUtImIOKbC18PtpV6eqW1mdD03hBSX4Tv5E/jy1PERn4xERCS+WGv5W10Lt5bUUNHd63Q4UfeRjBTuLpzKsRmpURlPSZuIyEE0+wPcV17LY1UN9IyyMg+Ac8dmcNucKe+XRPb2NuDz7SUr66MORyYiIk7b0NzOsuJq3m73OR1K1KW5XfzPjIl8YUoO7v6SyIbGlxg75kxcrsilVkraRET20R0M8avKeh6sqKM1MLrKPAByEz3cPHsyS/LGABAK+dlb+ThlZQ8xbep/KmkTERnFdnb4WF5cw9qmNqdDccRFOZncWjCFycmJAHR2FrN7zy00Nr7MOQv/RSRTKyVtIiL0dYT8k7eZO0pH58afBrhm4jh+OGsi2Ql9U0NDwzre230LPl+Zo7GJiIizqrt7uaPUy9PeplHZEXJiUgK3FEzm0txsAPz+NkrLHqCy8rdYG4hKDEraRGTUW9fYxvLiav41yjpCDihMS+bOOVM4JTsdgI7O3ezefQtNTa84HJmIiDipLRDkwf6OkL5RuFTABXxhSg7/M2Mi6R431gapqnqKktL78PubohqLkjYRGbXebu9i+SjtCAl9jUa+lT+Br0wdT4LL4Pe3UFJ6H1VVT0btyaGIiMSe3lCI31Q1cP8o7Ag54Pj0FO4onMoJmX2NRpqaXmX37lvo6HzXkXiUtInIqFPu62FFSQ1/q2sZdR0hB+zbaCQUCrB37+8pKX2AQKDF6dBERMQh1lqerWthRUkNe0dhR0iAdLeLG/ZpNNLVVc7uPbfS0LDG0biUtInIqNHYG+C+ci+PVzXSa0dnupaX6OHmgsksGt/XaKSxcT2799xKZ+duhyMTEREnvdzUzvLiarZ3jL6OkAMuy81i2ezJTEpOJBBoZ0/ZT6nY+xjWOp/AKmkTkRGvKxjikb11PFxRR3twNC6hBheWz0/O5fszJ5LhcdPVVcp7u2+hsfFFp0MTEREHbW/vYnlxDS83tzsdimOmJidyS8FkLszJwtoQVdV/pKTkHnp7G5wO7X1K2kRkxApay5M1TdxZWkNt7+hdo5Vvi/nRpFYum/MF/P423tv9YH/Hq9HXJVNERPpU+Hq4rdTLs7XNo3apQIIxfGlqLt/On0Cq20Vz82Z2715Oe8cOp0M7gJI2ERmRXqjvq8nf3dXjdCiOyXC7WBJ4hAtYxeyk/6Ky6g+UlNwb9Y5XIiISO7RUoM9pWWncVjiFuWkp+HyVbN9zG3X1/3A6rENS0iYiI8o/WzpYVlzNlrYup0Nx1KLx2dw4M5d/bfwHY8acTlraHLa/8/+cDktERByipQJ9xia4+dGsSXxqwliCwS6Ki++iYu+jhEKx/ZBXSZuIjAi7On3cWlxDUWOb06E4amZKEivmTGHh2Ay6u6s5/rifkZNzAaWlDzgdmoiIOCAQsjzpbeSuUu+oXipggKsnjuWHsyaR7XFT4/0LxcV309tb53Rog6KkTUTiWnV3L3eWeXna20Rw9FZ5kOwyfH1aHl+bPh53qJPde1ZQVfUU5yx8u+8EY5wNUEREou7/+pcK7BnFSwUA5qcnc/ucqSzISqOlZQuv715Oe/t2p8MaEiVtIhKXWvwBHiiv49GqerpDozhbo2/PtRVzpjA9OYHq6qcpLrkHv78RYxKdDk1ERBywsX+pwBujfKlAutvF92ZM4LopufR2V7P9ne9TV/d/Tod1VJS0iUhc6Q6G+FVlPQ9V1NESCDodjqMmJyVwc8FkLsvNpql5I5u330JHx873P9fLNRGR0WVnh49bSmpYM8qXCkDf2u6bZk8m1+OnrPReKip+FfPr1g5HSZuIxIWgtfzR28RdpV6qe0Z3q/oEY/jilFy+MyMP01PJtu3fp76+6AhXKYMTERmp9nb3ckdpDX/xNjN6W4z0mZ2axIqCKZw5Jh2v91k2Ft9FT2+t02ENm5I2EYl5/6hv4dZR3r5/wMey01kxZwqzkvwUv7OCqqbfY23vIc5WoiYiMpI1+QPcX1bLY9UN9IzypQIpLhffys/jy1Nz6Wp/ky1bltPWvs3psMJGSZuIxKxNLR0sV/t+AMYnevjJrEkszcumuvppXutftyYiIqOP2vfv75KcLG4umEwuDbz3r29RW/e80yGFnZI2EYk5Ozt83FpSw2rV5OM28IXJOXxvxkT87ZvZ/Pr+69YGS+/cRETiXyBk+V1NI/eUeakbxe37B+SnJLK8YArnZnsoK3+IjRW/JhTqdjqsiFDSJiIxQzX5+zs1K40Vc6aQ76pjz86vDWLd2ocpVRMRGQmstfy9voXbSmoo9R2qJH70SHEZvjYtj69Oy6W57q9s3Hj3iFi3djhK2kTEcY29Ae4vr+WxqgZ67eiuyQfITfTwo1mTWJqTQGnZfWza+8Rh1q2JiMhItr6pneUl1Wxr9zkdSky4KCeTm2dPJqtnO9ve+HLc7bd2tJS0iYhjOgNBflFZz08r6uhQTf77pZD/nT+e9ro/89rGe/H7m8J0d711ExGJJ2+1dXFrSTXrmzucDiUm5Kcksmz2ZM5M62BP8X+zp+4Fp0OKKiVtIhJ1/pDlieoG7i2rpcGvmnyA0/pLIfN632DXG9fT0fluGO6qRE1EJN4Ud3VzW4mX5+tbUO1JXynk16fn8aVJaXj3/oJN7zwa1/utHS0lbSISNSFreba2mTtKvZR3q9wPIC/Rw49nTeKSzFZ27/kmbzasicxAYdhpOykpLwyBiIjIwXh7/Nxd5uXJmkYCytYAuDQnixtnT8TT/BxvbL6b3t56p0M6qMTEHIxxRXQMJW0iEhVrGttYUVLNjo6R2dVpqBKM4bopOXxjchr1lQ+zaedvsTY2Nw1PSBjLvLm3kJt7odOhiIiMOC3+AA9V1PHrynp8o3yvtQGzUpJYXjCZE1w72b39G7R37HA6pEPKyTmPeXNX4HIlRHQcJW0iElGvt3ZyS3E1m1o7nQ4lZpw1Jp3lsyaQ2vos27fcj9/fHJFxTBjero0dexbHzLuDpKTxYYhIREQG+IIhflVZz0MVdbQGgk6HExPS3C6+OT2Pz4zzUVH6P7xRv8rpkA7J5UqhoOAHTJl8dVTGU9ImIhGxs8PHbaU1rGrQXmsDJiclcNPsyZzufpv3dnyVyq49URvbDHF9m8uVxOxZNzB16uciFJGIyOgUCFn+UNPIPWW1eHtjs8LCCUvGZ/OD/Cy6a37BG68/HtNdkzMzjmf+/HtITZ0RtTGVtIlIWFX4erizzKu91vaR7DJ8Zep4vpDTTlXJt3irab3TIR1WRvp8jpl/N+lpBU6HIiIyYlhr+VtdC3eUeinxjb5GGodyTFoyywsmMa3reUreCGfX5PAzxs306V9hRv7Xcbmim0YpaRORsKjv9XN/eS1PVDVqr7V9XJyTyf9OTydY8zDbtz6FtdHsljnU8kgX06d9kZkzv4nLlRiRiERERqMXG9u4taSG7R3aa21AtsfNd2dM4IrkXZS89y3e7XzP6ZAOKyV5GsfMv4vsrJMcGf+ISZsx5lHgcqDOWnts/7EbgS8CAy1cfmCtfaH/s+8D1wFB4L+stbFbjCoiw9YeCPLTijoeqaynU3utvW92ahI3z8pjdtezlL71EIGA02Wih0/gkpMnc8y8uxgz5pQoxTMyaI4UkcPZ2trJ8pJqNrZoXfcAF3DNpHH8V143jeXfZ3vji06HdEQTJ/4bcwp+hMeT5lgMg3nT9hjwEPDEh47fa629a98DxphjgE8B84FJwBpjzBxrrVZXioww3cEQv6lq4MGKWpr8+k98QLrbxbfzJ7Ao+U3Kd3+V3b5yp0M6ogkTFlM450Y8ngynQ4lHj6E5UkQ+ZFenj9tKalipdd37OTkzjZtmZpBW/wt2v/mHKFefDF1Cwljmzl3O+NyLnA7lyEmbtXa9MSZ/kPdbBDxlre0BSo0xe4BTgI1HHaGIxJSgtTxV08TdZV6qe7SAeoABPjFhDN/Ka6e57Jvsavmn0yFxpLdrHk82c+cuI2/8pVGKZ+TRHCki+9K67oPLS/Tww5l5nNL7HGXbH6I50Op0SEc0btxC5s29naSkXKdDAYa3pu1rxpjPAluA71hrm4HJwKZ9zqnsPyYicc5ay3P1rdxRWsOeLi2g3tcJGancmJ9KZv2DlL71DMTkVL1/AtfXyv92bZgdOZojRUaR+l4/95bV8rtqreveV6IxXD81l8+k7aCq9Bvs8ZU5HdIRuVwpFMz+PlOmXON0KPs52qTtZ8AywPb/793AF4ZyA2PM9cD1ANOmTTvKMEQkGl5sbGNFSQ3btIB6P7mJHr6fn8NpPX+iYscjdAa7nA7piFyuZGbP+h5Tpnw2LPu4yUFpjhQZJdr2WdfdpXXd+7lgXCY3TOyiZ+9/s6c8FqpPjsyJVv6DdVRJm7W2duBrY8wvgef7/1gFTN3n1Cn9xw52j0eARwAWLFigRxIiMWhLaye3aAH1ARKM4brJOVyTuoXasi9R2uN1OqRBycg4lvnH3ENa2qyjur6zs5O0NOcWYccLzZEiI58vGOLXlfU8XFFHszbG3s/s1CR+ND2Nqc0PU7M9VqtP9meMh/zp/4/8/K8eVSv/rq4ukpOTcblcEYiuz1ElbcaYidbamv4/LgHe6f/678AfjDH30LfIugDYPOwoRSSqdnb4WFFSQ1GjFlB/2HljM/nvvCYCe79Gxd5tToczaLm5FzJt2nW4XAlDvraqqoqioiJmzpzJwoULIxDdyKI5UmTk8r+/MbaX2t7YbqIRbZkeF9+clsMFwWeoevcX1MRB9QlASko+84+5m6ysE4Z8bSAQYPPmzaxfv57vfOc7ziZtxpgngXOAHGNMJfAT4BxjzAn0lX6UAV8CsNbuMMY8DfwLCABfVVcskfhR5uvhzlIvz9ZqAfWHzUpJ4n+nJTC18R7q/vUPp8MZsrS0mUO+prW1lbVr17JtW19yOnPm0O8x0mmOFBkdQtbybG0zd5Z5KfP1Oh1OTHEBn5o4luvS36K5/CtUxEn1CcDkyddQMPv7uN0pQ752x44drFmzhubm5ghEdqDBdI/89EEO//ow598C3DKcoEQkurw9fu4p8/JkTRN+LaDeT6bHxTemjuHj/t9T8+7j1Nn4mawnTlhyVNf19PTw6quv8tprrxEI6Eny4WiOFBn5VjW0cltJDTs7u50OJeacmpXGdye0kFj1X3irtzsdzqAlJo5n3rwV5Iw7Z8jXVlVVsXLlSvbu3Rv+wA5jON0jRSTONfsDPFhex2+q6vGFlKztywV8asIYPpfyKq1776Xa3+R0SIOWmJjLvLkryMk5d0jXhUIh3nrrLdatW0dHR0eEohMRiQ8bmttZUVLD1rb4KPOLpslJCdwwNZG5LfdRv2sl8dRTevz4S5lbeDMJCWOGdF1raytr1qxh+3ZnklMlbSKjUGcgyC8q6/lZRR3t6nZ1gNOy0vhObg2eqhtoqNnjdDhDMj73EubOXTbkyaikpIRVq1ZRW1t75JNFREawN9u6uK2khpeb250OJeakuFx8ZUoWlwafpG7P49THUfWJx5NJ4ZwbmTBh0ZCu6+npYcOGDWzcuNHR6hMlbSKjSHcwxOPVDTxQXkejX2VvHzYlOYHvTYaCxmU07X6V+JmKwOPJYM6cG5k4YfGQrmtoaKCoqIj33nsvQpGJiMSHdzu7ub2khhcaYn/jZycsHp/FdSkb8VXdQ60/Ouu4wmXsmDOYN+92kpMnDvqaUCjEm2++yYsvvhgT1SdK2kRGgUDI8pS3iXvKvFT3+J0OJ+akul18ZVIaF/Y+SsOep2mKszYsY8Z8jGPm3U5y8qRBX9PV1cVLL73Eli1bCIXi6/sVEQmn8v4mXM+oCddBnZCRyndyq0mv+S5ttSVOhzMkR7s3aXFxMUVFRTFVfaKkTWQEs9by17oW7iz1UuKLp4rz6DDAVeMz+WziarqqHqYhGF/70blIYnbBDUOajAKBAK+//jovv/wy3d1aVC8io1dtfxOuP6gJ10HlJXr49iTLsU030VK8iXhb2ZeZ+RGOmXfXkLonx3L1iZI2kRGqqL/b1b/U7eqgFmSm8s0xu0mu+SrtcdSeeEBm5kfI7/keuVNPG/Q1O3fuZPXq1TQ1xU9TFRGRcGvyB3hITbgOKdll+M9JqVzS+ygtpX+mJc7ePxqTwIz8r5Kf//8wxj2oa+Kh+kRJm8gIo25Xhzc5KYFvTehkTuOPaS/bEVcdr2BgMvoa+flfoXPj4Mo2qqurWbVqFeXl5cMaOy0tbVjXi4g4qSMQ5Od76/jfoKUAACAASURBVPnFXjXhOpQrctP5fOJqeqsepiXkczqcIUtLK2D+MXeTkTF/UOcHg0E2b9487OqTlJSUiG6sDUraREaMra2drCipYUOL84tlY1Gq28WXJiZwbteDtJetIh57gqWlzemfjI4Z1PltbW2sW7eOt99+GzuM0p/U1FQuu+wy5s8f3CQoIhJLfMEQv6lq4KGKWpr82s/+YD6SkcI3st8lw7uC7t46p8M5Ci6mTbuOWTO/hcuVNKgrwlV9UlBQwJVXXonbPbi3ekdLSZtInPtXh4/bSmooamxzOpSYZICluWlc7f4LPZW/od3GY9dMF9OnfZGZM7+x/2R0iETM7/fz6quv8uqrr+L3D6/xTGFhIVdccQXp6enDuo+ISLT5Q5bf1zRyX1kt3l414TqYCYkJ/FdeO8c0/i+dFbviqmvygJSUaRwz706ysxcM6vyamhpWrVpFWVnZsMZNSkrioosu4sQTTxzWfQZLSZtInCru6ubOUi9/q2tBFfkHd0pmCv8vYwsp3jvpDsTjuzVISZnOMcfcSXbWSQd89uH/3621bNu2jbVr19LWNrwkPikpiUsuuYQTTjhhWPcREYm2oLX82dvM3WVeKrrjMQ2JvBSX4boJbs733U9nxVriqw3XByZPvoaC2f+D2516xHPb29tZu3btsKtPAGbMmMGiRYvIzs4e1n2GQkmbSJzZ293LPWVenvY2EVS2dlDTkhP5Wk41s+qX0d1aSTy+WwPDlCnXMnvWDbjdKUc8u6KigpUrV1JdXT3skWfOnMmiRYvIysoa9r1ERKLFWstz9a3cWVrD7q54W7EcHQZYlJvKp83TBKufoNPGZ7loUtIE5s27nXFjzzziuX6/n9dee40NGzYMu/okISGBCy64gJNPPnlIWwiEg5I2kThR1+PnvvJaflfdSK9aEx9UhtvF9Xl+zmi7Ed/ercRr38zkpEnMm3c7Y8d+7PAnWmhubmbNmjXs2LFj2OMmJCRw4YUXcvLJJw/7XiIi0bS6oZU7Sr1s74i/5hnRsiAzhS+nbyLdezeBONviZl8TJyxlzpwf4/FkHPY8ay3bt29nzZo1w64+AZg6dSqLFy9m3Lhxw77X0VDSJhLjmvwBHq6o49HKBnwx2obWaW4Dn8xNZHHg1wSq/ko8T9mTJn6SgoIfHHEy6unp4ZU9m9n64jsEg8N/Ujp16lSWLFnC2LFjh30vEZFo2dDczu0lXl5vi98kJNKmJifwtbF7mdWwjJ5WL/H5bg0SE3OZO/cWcnPOO+K5e/fuZeXKlVRVVQ17XLfbzbnnnsvHPvaxiHeIPBwlbSIxqj0Q5Od763hkb71aEx/G2dnJfCFxJYl1Pydg43eheVJiHnPn3UrOuHMOe14oFOLNN99k3bp1dHYO/5eUWJmMRESGYmtrJ7eV1vBKszomH0qG28V/5nZzZttNdFdti7stbvaVN/5yCgtvIiHh8GvIWlpaWLNmDe+88054xs3LY+nSpeTl5YXlfsOhpE0kxnQFQ/y6sp6fVtTRHIjX52GRNyc1ka9kvsOk+hUEAm1x3YxlwoTFzCn4CQkJmYc9r6SkhFWrVlFbO7j92Y487gSWLFkSE5ORiMhgvNPexe2lXlarY/IhuQ18MsfDIv8vCNa8ELdLBQASEsYyt3AZ48dffNjzenp62LBhAxs3biQQGP5KdmMMZ5xxBueccw4eT2ykS7ERhYjQEwrx2+pG7i+vpb43PltnRMO4BA9fGlfHCU3L8NdUxGmTkT6JibnMLVxObu75hz2voaGBoqIi3nvvvbCMa4zhzDPP5Jxzzon4vjIiIuHwXmdfx+Tn69Ux+XAWZifxec9zJNX/imCcNhkZkJt7MXMLbyYx8dBryEKhEG+99Rbr1q2joyM8b13Hjh3LkiVLmDp1aljuFy5K2kQcFghZnvI2cW+Zl6qe+C3vi7Qkl+HanAAXdt1GoOZ14v1vKi/vSgrn/OSwpR4+n4+XX36ZzZs3EwrTesZYnYxERA6m3NfDnaVenqltRgsFDq0wNZEvpb/BpIY7CAY74zqxTUgYQ+GcG8nLu/yw55WWlrJq1Sq8Xm/Yxl6wYAEXXnghiYmJYbtnuChpE3FIyFr+Utu3j0yZT/vIHM7lYxP4ZOgx3LXPxPWbNYDExBwKC29mfO5FhzwnGAyyZcsWXnrpJXy+8LVVieXJSERkX1XdvdxXXsuTNY0E4jkDibDcBA9fHFvNRxpvIlAbv01GBuTmXkhh4TKSEnMOeU5jYyOrV69m165dYRs3IyODRYsWMXv27LDdM9yUtIlEmfaRGbyTMhK5Lnk12fU/xdp4T9cGFlLfSELCmEOe895771FUVERDQ0PYxk1PT2fRokUUFBSE7Z4iIpFQ1+PngYpaflvdSE9I2dqhpLgMn8np5tyOmwh5t8X9A82EhDHMKfgxEyZcechzuru7368+CUfX5AHz58/n8ssvJyXlyHuiOklJm0gUFTW0cntpDTs64nlZcORNT07g+sx3mNVwK8G2jrgu84D+t2tzbmb8+EO/Xaurq2PVqlUUFxeHdez58+dz2WWXkZqaGtb7ioiEk7a3GRwDXDnOxVWBR3DX/mNElIwe6e1aKBRi69atvPjii3R1dYVt3OTkZC677DKOO+64sN0zkpS0iUTBS01t3F7i5c328P2wGYmyPG6+MKaOU1puJlRbGfdlHgB5eVf0r107+Nu1zs5OXnrpJbZs2YIN46bpycnJXHrppRx//PFhu6eISLi1BYL8rKKOX1bW06HtbQ7r1MwE/sPzdzIaHoURkK4N5u3anj17WLVqFfX19WEde+bMmSxevJjMzMN3bY4lStpEIui15g7uKK1hU6s2/TycBGP41LheLuq6FVO3dQRMRQOdIW8mN/fCg34eCATYvHkz69evp7s7vG9eZ8yYweLFi8nKygrrfUVEwqUzEOSXlfX8fG89Ldre5rBmpiRwfdoWpjfeQSg0Mip1+jpD3kTiId6u1dfXU1RUxO7du8M6rsfj4YILLuCUU07BGBPWe0eakjaRCNja2sntpTWs16afR3TRGBf/HnyUpPrnnA4lbPr2XfvRITtD7tq1i6KiIpqamsI6rsfj4fzzz+fUU0+Nu8lIREYHXzDEb6oaeKiilia/krXDGZvg5rrsvZzYdBOhroYR8UAzIWEshYU3kTf+0oN+3tXV9X71Sbi6Jg+YOHEiS5cuJTc3N6z3jRYlbSJhtK29i9tLvKxt0qafR3JCegJfSHyBcY2PMBLKPACSkiYwt3A5OTnnHvRzr9fLypUrKSsrC/vYEyZMYOnSpYwfPz7s9xYRGa6BvUgfKK+lTnuRHlayy3D12A4+3rECU7dzhMyQfc245sz5CYmJYw/4LBgM8vrrr/PSSy+FvfrEGMNZZ53FwoUL43pvUiVtImGws8PHnaVeXmhodTqUmDc92cN1aW9Q0HQ7ofaRUeYBMGniJyko+AEeT8YBn3V0dLBu3TrefPPNsK5bg77J6IwzzuDcc8+N68lIREYmf8jyZE0j95XXUq29SA/LAJePsSzxP0RS/YtOhxM2iYnjmVt40yGXC7z33nusWrWKxsbGsI89ZswYli5dOiL2JlXSJjIMuzu7uavMy9/rWuK+w2GkZXvcfD57L6c034xtqB8xTw6Tkyczd+6tjBt75gGfdft8bH59Mxs2vEpvb/j34stKzuCqq/+NadOmhf3eIiLDEbSWp71N3FtWS0W39iI9ktMyPHzG/Seym37ndChhNXHCUgoKfkhCwoFrrGtraykqKgp71+QBJ554IhdffPGI2ZtUSZvIUSjt6uHuMi/P1DaPmOQjUhKN4VNjOzi/YwXu+p0jKLk1TJlyLbNmfhePJ+2AT9ev+gcvb3iVoDsyP2ZPOOEEzkw7jhwlbCISQ0LW8mxtM3eX1VLi016kRzI7xcN1Ka8wvel+rB05byKTkyYxd+5yxo1beMBnnZ2dvPjii2zdujXs1ScAaWlpXHnllRQWFob93k5S0iYyBBW+Hu4tr+VP3iYCIyf7iAgDXJIdYqn/p6Q0jJwyD4DU1BnMm3sb2dkLDvisurqalStXUlFRARFI2FJTU7niiiuYN28ebS9WhP3+IiJHw1rLc/Wt3Flaw+4uJWtHkpvg5j8y3+WEpuXYrvYR9UBz8uSrmT3re3g86ft9MtA1+eWXX6anJzL/jsyZM4crr7yS9PT0I58cZ5S0iQxCdXcv95XX8mRNE/4IPBUaaU7JcPMZ19OMbf6D06GElTFupk39T2bM+AZud9J+n7W3t7N27VreeuutiI0/e/ZsFi1aREbGgevmRESc8o/6Fu4s9fKvzpGzTjlSUl0urhlTz9ltt+BqKB9ByRqkpOQzb+4Kxow55YDPdu7cyerVq8PeNXlAQkICF110EQsWHPgwdaRQ0iZyGLU9fh4or+V3NY30hEbSj9bImJ3i4T9S1jOj6X6sHVndwdLT5zFv3m1kZhy733G/389rr73Ghg0b8PsjU9ri8Xi48MILOeWUD02E+ldSRBy0uqGVO0u9bOvwOR1KzHMbWJLdw6Xdd5HU8IbT4YRV3wPN65gx45sHPNCMZNfkAZMnT2bp0qWMGzcuYmPEAiVtIgdR3+vnofI6nqhuwKdk7YjGJ7j5fMZOTmheju3qHFG5hMuVyIz8rzNt2vW4XPv/yNy+fTtr1qyhtTVyXUMPu69MFP+iQ90Bgi09JEw4cP2eiIwuLza2cWeZlzfaupwOJS6cmwWfDP6azKYXnA4l7NLT5zFv7goyM4/b73gkuyYPMMZw9tlnc/bZZzvePbmnvI3EqRkYV+T2SFXSJrKPxt4AP91bx6OVDfjCvKnjSJTqcnFttpez2pbhaqweUckaQFbWAubNXUFa2sz9jldWVrJy5UoqKysjNnastPIP9QTpeLWK9leqyDhzspI2kVFsQ3M7d5R62dza6XQoceG4NDef8/ydiS2/YaSVRhzqgWYgEGDTpk2sX78+Il2TB8RKK//eynbaVpfT/W4zk5edAUraRCKr2R/g53vr+VVlPZ1BJWtH4jGwJLuLS3x3ktS4zelwws7tTmf2rO8xefLVGPPBD+DW1lbWrl3Ltm2R/Z6zs7NZsmQJ06dPj+g4hxPqDdK5sYb29XsJdfaVupoEl2PxiIhzNrZ0cEdpDRtblKwNxrRkD59P2URh810wgjpCDsjOOpm5c2894IHmjh07WL16NS0tLREd/6Mf/SgXX3wxSUlJRz45QnqrO/qStZ39a/Tcpq8DWwQpaZNRrdUf4BeV9fxybz3tStYG5bysEFf5f0FW0xqnQ4mInJzzKJxzE8nJE98/1tvby6uvvsprr70WsXVrA44//nguvfRSkpOTIzrOoVh/iI5/1tD+0l5CHX3fqzs7iayL80n5yEFKNEVkxHq9tZM7Smt4pbnD6VDiwhiPm89m7ObkluUYX+TK5p3idqcze/YNTJ706f0eaO7XNTmC9u2e7BR/bSdtayrwvdPQ9/LUQMrxuWRdlI/xRPbBppI2GZXaA0F+WVnPL/bW0xoIOh1OXPhouovPuP5CXsvI2vhzQGJiDnMKfkxe3mXvH7PWsm3bNtasWUN7e3tEx09OTubyyy/n2GOPPfLJA8K4TsAGQnRu8dK+bi/Btr6SFpPsJvPcaaSfMSnik5GIxI43Wju5s8zLi02R/bk3UiS7DJ/KauCc9uUkNI3MrVhycy6gsPAmkpLy3j8Wja7JA5zunuxv8NG2phzf2/XvV7om5meSfdlMEqdGJyYlbTKqdAaC/KqygZ/vraNZydqgzEx287nklyloeQBrR+bf2cSJ/0bB7O+TkJD1/rGKigpWrlxJdXV1xMefMWMGixcvJisr68gnh5kNWrreqKVtbQXBlv59c9yG9FMnknHeNNxpCVGPSUSc8VZbF3eWelnb1OZ0KHHBBVyZ7eOy7ntIbRpZHSEHJCaOp3DOTxg//uL3j0Wja/IAj8fDBRdcwKmnnhrRcQ4l0NRN29oKut6shf6CLE9OSl/1ybE5UY1FSZuMCp3BII9WNvCzvXU0+Udm4hFuuQluPpv+Dh9tvhXj6xphS6j7pKTkM3fucsaOOf39Yy0tLaxevZodO3ZEfHy32815553H6aefvl+pSTTYkMW3rZ62NRUEGj5o1518zDiyLsknITc1qvGIiHO2t/cla0WNStYGa2FmiH8L/poxzSudDiVCDJMm/TsFs/8Hj+eDN0nR6Jo8YMKECSxdupTx48dHfKwPC7b20PbiXjpf90Kw7zcgV6qHjI9PI/30iRh39KtPlLTJiNYVDPFYVQMPV9TR6B9Z+4ZFSprbxdWZlZzVthx3U63T4USEMQlMn/af5Od//f09ZXp6etiwYQMbN24kEIj8vyu5ublcddVVTJgw4ajvcTTVkdZaunc00rq6nEDtB+26Eyank33ZDJJmZh91PCISX3Z0+Lir1Ms/Gkbe+qtIOT7NxbXuZ5nc+oTToURMauos5s69hTHZJ79/LBpdkwcYYzj99NP5+Mc/jscT3VQl2NFL+0uVdGyqgUD/qzW3If30SWR+fCquVOeqT5S0yYjkC4Z4vKqBh/fWUd+rZG0wPAaWZrVxUdftJDftcjqciMnM/Cjz5t5CenohAKFQiLfeeot169bR0RGdxfannnoq559/PgkJ0f3h79vVRNvqcvxVH3yfrsxEsi7KJ/XE8VF/2yciztjZ4eOuMi8v1LeOyCqKSMhPdvPZpFcobL0PRuhSAWMSyc//CvnTv4zLlQj0dU1es2YN27dvj0oMmZmZLFmyhBkzZkRlvAGhLj/t66voeK0K2/tBY7rk+ePIvmQGnpyUqMZzMEraZETpDob4bXUjD1bUUqdkbdAuzPKzpPchMps3OB1KxLjd6cya9d9MmXwNxvSVNZSVlbFy5Uq8Xm9UYkhPT2fx4sXMnj07KuMN6C5uoa2onN7yD0qfTIKL9LOnkLFwCq5EZzclFZHo2NXp4+7SWp6vb1GyNkg5CW4+k/4OJzavwOUbuVseZGefwtzC5aSlzQKi2zV5wPz587n88stJSYleghTqCdKxoYr2Vyqx3R8k4wmT0si+fGZMVZ8oaZMRoTsY4nc1jTxYXkutkrVBOzUdPm1/S27LX50OJaJycy+icM5P3u961dTUxOrVq9m5c2fUYpg7dy5XXHEFaWlh3Jz6CPWRPRVttBWV07Nnnz1zDKSeMJ7Mi/PxZDm3x42IRM+7nd3cU+bluboWtLnN4KS5XXw6s5KzWpfjGaFLBQA8nixmz76BSRM/iTEGay1vv/02a9eujXjX5AFJSUlceumlfOQjH4nKeNC/vc3Gatpf/mAvUgBXRiJZF00n9cQ8TAQ3yj4aStokrvWEQvyuupEHy+vw9o68DSwjZW6qi894XiC/9ZdOhxJRSUkTKSy8idyc8wDo7u5m/fr1/POf/yQYjE55S4LHw8WXXMJJJ50UlfEAems6aSsq+2DTz36J0zLIunwmSdMyoxaLiDhnd3+y9jcla4OWYAxLslq4qPN2kpvedTqciMrLu5I5Bf9LYmJfF8Rodk0eMHXqVJYuXcqYMWOiMp4Nhuh8vZa2dRWE+re3AcDjIuOsyWScMxVXUmxWnyhpk7jUEwrxh5omHiivpaZHydpgTUly85mUTcxvuRtjR+7fmzFupkz5HDNnfBOPJ41QKMQbb7zBunXr6OrqOvINwsTl6+TqL1zHjMK5URnP3+CjbXU5vm0f7CMD4M5KJOuSGaSeEP0OXCISfXu6urmnrJa/1jYrWRskA1yY1cPingfJbN7odDgRlZIyjcLCZYwbeyYAzc3NrFmzJipdkwe4XC4WLlzIWWedhcsV+U6MNmTperOub3ubpu79Pks5LoesS2bgGZsc8TiGQ0mbxJXefZK1aiVrgzbG4+La9F2c3HIr7u6RvVlqZsbxzJ27nIyM+QAUFxezatUq6urqohaDMYZpWek07tzCmOwI1sP3J2aBlh7a11bQubUWQh9ka1q3JjK6FHd1c29ZLc8oWRuS0zIsnwo9Tm7Lc06HElEf7pzc09PDK6+8wqZNm6LSNXnA2LFjWbp0KVOmTInKeL53GmgtKidQt/9D2751a7NImhn9PVKPhpI2iQu9oRBP9idrVUrWBi3FZfj3zGrOab+VhObolTs4oa/RyHeYMvlajHHR0NBAUVER7733XlTjyM7OZsmSJZS+XEQTHF1f/kEKdQdoea6Yjn/WQGD/cVKOzyHr0hl4smP7yaGIDN9AsvZsXfPAllIyCMekurjW/Temtz3mdCgRl511MoVzl5GeVkAoFGLr1q2sW7eOzs7oNlc58cQTufjii0lMTIz4WN3vNdNaVIa/cv/O0K60BDIvmk7aggkxt27tcI6YtBljHgUuB+qstcf2H7sTuALoBYqB/7DWthhj8oGdwEAR8CZr7ZcjELeMEkrWjo7HwKKsVi7pvIOU5pHbvn/A+PGXMqfghyQl5eHz+XjppZd4/fXXCYWi+6z5+OOP59JLLyU5OZmSCP7iFOoO0L6+ks7Xaz/YR6ZfwsQ0sq+cRdKM+HhyGO80R4qTSrp6uKfMq2RtiKYlufhM8gaOGcHt+wckJIxh9qwbmDjxExhjKC0tZeXKldTWRre5SkpKCldeeSXz5s2L+Fg95W20riyjt/RD+w8O7Ld2/jRcyfH33mowET8GPATsu4vgauD71tqAMeZ24PvADf2fFVtrTwhrlDLq9IZCPFXTxP1K1obEAOdn9rC49yGym19zOpyIS0meRmHhjYwbt5BgMMimTZt4+eWX8fl8UY0jOTmZyy67jOOOOy6i41h/kI7Xqml/uZJQ1/6lLK40D5kX5pN2cnw9ORwBHkNzpERZSVcP95Z7eaZWydpQ5CS4uDZtOye13IarO3rrm51hmDjxKmbPuoHExLE0NjZSVFTEu+9Gv7nKzJkzWbJkCRkZGREdp7emk7ZVZXTvajrgs6Q5Y8i+fCYJ41MjGkMkHTFps9au7386uO+xon3+uAn4RHjDktFKydrROy09xCft4+S1Pu90KBFnTGJ/Xf5XcbuTeffddykqKqKxsTHqsUyfPp0lS5aQfYi1azYMuyEdstsVgAvST+t/cpga3c26RXOkRJeStaOT7nbxqYwyzmq7BU9zg9PhRFxaWgGFhcsYk30yPp+PlStXsnnz5qhXn7jdbs4//3xOO+00jIncw8RAo4/WogObcAG4xyaTfflMUo4ZF7HxoyUc7wa/APxxnz/PMMa8CbQBP7TWvhKGMWSEU7J29OanGq5x/43pbY87HUpUjMk+jcLCm0lLm0VtbS2rVj1NSUlJ1ONwuVyce+65nHHGGQfvfBWGtWzWWnxv19O6upxgY/cBnyfNzCL7ylkkTAjj3m8SbpojZdhUBnl0Eo3hqqwGzuu4jZTm6M8T0eZypTBjxteZNvULWOti8+bNvPjii1GvPgEYP348V111FXl5eREbI9jWQ9vair6lAqH9/8MwiS4yzplKxtlTMJ7Id6eMhmElbcaY/wUCwO/7D9UA06y1jcaYk4C/GmPmW2vbDnLt9cD1ANOmTRtOGBLHtGbt6OUnu7g26SXmtjyIGQV9whITcyiY/QMmTFhER0cHzz33HG+88QY2go0+DmXcuHFcddVVTJo0KWJj+HY10bayDL/3wEXi7qxEsi6bSerxuREbX4ZPc6QMlxqMHB0XcGlWJ5f77iGj+S2nw4mKnJzzmVPwY1JSJrN7925WrVpFQ4MzbxVPPfVULrjgAjyeyKwbC3X5aXu5ks7XqrH+A3//STk+h6zLZuLJSorI+E456r9NY8zn6Vt8fZ7t/63JWtsD9PR/vdUYUwzMAbZ8+Hpr7SPAIwALFizQj6JRZqB1/4NK1oZsfIKLa1Lf4sTW23H5Dnz7MvK4mDL5GmbN+g6QwoYNG3jllVfo6elxJJoFCxZw4YUXHrHz1ftlkUNMKnvKWmn9Rxm95Qf8Hg9uQ8bZU8g4d6pa+Mc4zZEyHErWjt7CDD9XBX7BuJYXnQ4lKpKTpzBnzo/JzTmPuro6/vzn31JcXOxILOnp6SxevJjZs2dH5P6h3iAdr1bR/nIltvvABjKevFSyr5xF8qwIbrXjoKNK2owxFwPfAxZaa7v2OZ4LNFlrg8aYmUABMPLfR8ug9YZC/L4/WdM+a0OT6XZxdcYeTm+9FU9Ls9PhREVmxvEUFt5MZuZx7Nixg9WrV9PS0uJILKmpqSxatIjCwsKI3P9wC6gBkgvHkH3FLDw5KREZX8JHc6QcrT39ydpflawN2Ulp8O/8nsltzzgdSlT0re2+jvz8r9HdHeT5559n69atjlSfAMydO5crr7yS1NTwN/qwwRCdm71967rbD/zd0SS5yTx/Oukfm4Rxj9xGXINp+f8kcA6QY4ypBH5CXyesJGB1/8LCgbbFZwM3G2P8QAj4srX24L+ByKjSEwrx++pGHqqoU7I2RMkuwycyvXy8/VaSmiudDicqPJ4sZs36byZP+hTV1TX8+c+PUlFR4Vg8s2fPZvHixaSnpw/52iPNn4FGH22ry+l6+8AF1ADuMUlkXz6LlPnxv4h6JNIcKeGwu7Obe8tr+as2xR6ywhTDNZ7/Y1bbr50OJWrGjPkYhXNuIilpGps2/ZP169c7Vn2SkJDAxRdfzEknnRT2e7+/rruonGDTwSuLUj86nqxLZ+DOiPy+b04bTPfITx/k8EH/y7DW/gX4y3CDkpGjOxji9zV9yVqNkrUh8Ri4IrOVS7ruJK15p9PhRIlh4sRPMHvW9/D53Dz77F/Ztm2bc9EYQ0FBAVdfffXQLz5CshZs76VtXQWdm70c9JG6p68UMvPcqZgElULGKs2RMhzvdXZzb5mXv9W1KFkboqlJLq5N2sD8tvsxNnDkC0aApMQ8Cgp+QF7e5ezYsYM1ax6mudm5yptJkyZx1VVXMW5c+B8q+nY10baqDH/NwTf/TpiQSvai2aNqT9L421lOjAJF2gAAIABJREFU4kJ3MMTvahp5qLwOb6+StaEwwIWZ3VzR8yBjWjY5HU7UpKcfQ2HhjaSmHMerr77Ka6+9ht/v3L87EyZMYOHChezaFd7NyQc2xu7YUIXtPfivaSqFFBnZdnX6uLeslueUrA1ZboKLq1PfZkHr7bi6o98V0QnGeJg65XPMmPFf1Na28uijzlafGGM466yzWLhwIW53eB8q9m2MXUpv6UHWddNfCnnBdNJPH9mlkAejpE3CyhcM8UR1Aw9X1FHXOzqefIXTGekBPhH8NeNbi4588gjh8WQwc8a3mDTparZte4d16x6kvb3dsXiMMZx++ul8/OMfp7W1NQwbkfa9RbOBEB0ba2h/seKAjbEHuLOT+vaTOTZnmGOKSCza2eHjnrJanq9vCcMOjqNLptvFpzL28LHWW0kYJeu6AbKzT6Vwzo2EQhP4+9+LHK0+6Ysnm6VLl4a9q62/tpPWVeV0/+vQ+62mfCSX7Mtm4s4c+aWQB6OkTcLi/7P33uFRnVm+7rt35aiEkEBCCIQEBkwyOecogQADTp17+kz3zJwwZ+KZe0/PPfd57sx0t7PH7uDutrvbbgeMwYFoTM45GTBJOYcKkkoV9/1DEsZGucKuKu33efqBLm3tb5WRau3f9631Wy3+AG+W1/FqaQ21iljrM5NM8ATvMsz5ntyhRBCBIenrGTXqH6moaOL1139HZWWlrBFZrVbWr1/PiBEjgr5XRzO4JEk0n63G8VkxflsXPQcqAcvcDCxLshRXSAWFOORak4vniqrYWWtXxFofaevrrmSx898GTF83gFY7mNxR/0xy8sr26pP3Za0+AZgwYQKrV69Gr9eH7J4+m7utr/tCNV0dO6tTDSSuG4V+VHy6QvYWRbQpBEWz388b5fW8VlJDnVcRa30lzyDylHoXuY5fyx1KRDGbxzI676f4/SPYtm1fyEsQ+8O4cePIz8/HYAhdSeJQQw6tb5fjqu860WpHJJBUmIMmTRmQraAQb1xxtvBcUTW76xSx1lfUAqyz2ljR8jNMjcFWPMQOHaWQw4f/Ndeu3eGtt+StPgHQ6/Xk5+czfvz4kN0z0OLFcbCUpuOV4OtcrQkaEcviLCzzMuJmQHYwKKJNoV80+/z8rryO10praPA+PCtDoXuG6USe1h1l/ABqoAZQq62MHPm3pCSv5/Dho5w+vZNAQN6ODp1Ox+rVq5k4cWLI7ukudjCsNJvR6eOQuhBsollDwuoRmKakhWxdBQWF6OCio4XniqrYW995X45C1wjACmsLa90vkmB7aIRhXJOUOJO8vJ9SW6vhd797m6qqKrlDIjs7m/Xr15OQEBrDD8nrx3m0on3WWtfPP/oxySSuzUGdHLpTvVhHEW0KfcLp8/Pbslp+VVpLo08Ra30l9f5g7J+hGiAN1G0IDB2yiezsv+XSpTu8/dZ/4nLJ//6zsrJYv349SUlJXV7TbtneKx6syTfSxcmZAKbp6SSsyEY0avoasoKCQhRz3t7Ms0XV7G9QxFp/WGDxst77G1Lt++UOJaLodOnkjvpn1OpZfPJJdFSfqFQqFi9ezOzZs/uUB7tCCkg0n63C8VkJAYen63UTdCSuHYlhnNLb/U0U0abQK+xeH78pq+P1slpsiljrMwlqkSdMXzLb8W+oZRoOLRdWywTyRv8rlRU6Xn/9Herru24yjhSiKLJw4ULmzp2LKHZdctHbROW3u6n+8DaBmw3dWv1rhphIXD8KXZa1ryErKChEMWfszTxXVMWBBnnL2GKVqSaJzbxFhuNDuUOJKIKgJSvr+6SnfZ+jR89w+vR/yl59ApCamsrGjRtJT08Pyf1cV+uw7ynCV9vNZq0oYJ4zFOuy4Upvdxcook2hWxq9Pn5dWstvy2txdFFzrNA1RlFgk7WMBY7/D51N/jKHSKLRJJOT83cIzOPDbXspKiqSOyQAUlJS2LBhAxkZGUHfK+Dy4TxYivNYRZc1+QCCVsS6dDjmORkDzqJYQSGeOWFr4rmiKo40NskdSkwy1ijwlLidEc4/yB1KxElJWUDOyH/h2rVaPtj6elRUnwDMmDGDpUuXotEEXwnivmfHvusenpLuNzO0WRYSC0ehHWoOes14RhFtCp1S7/Hxy9Iafl9eR5NfEWt9RSsIFFprWdb8Hxgb78odTkQRBBUZGU+TOuiHHD58hkuXfnPfSVFupk6dyvLly9Fqg7MLlnwBmo5X4DhQiuTqvidRHGFg8JbxqBOVunwFhXjhaKOTZ4uqOGHrfPCvQveM1Is8pf2MMfZXEQaYRYtBn0Vu7r9QV5fB73//KQ0NDXKHBIDZbKawsJBRo0YFfS9vdTP2XUW03uj+vQl6FQkrszFNH4IgKhuaPaGINoWvUevx8mpJDW9W1NOiiLU+owLWJDhY5XoOq+2K3OFEnMTEGYwc8b+4dKmOre+/Ibs9cQcmk4m1a9cyevToPn/vgyWSUkCi5UINjn3d2Pe341V7OVX+Mcv++m8VwaagECccbHDwXFE1p+2KWOsPGVqRp/Qnmeh4DsEVHfkhUoiigezsH6NRr+GTTw5QXHxU7pDu88gjj1BQUIDRaAzqPj57u33/uepuWwUADBMGkViQg8oyMGeu9QdFtCkAUOVuE2t/rKjDFRhYu16hQACWWltZ636FZNsJucOJODrdEEbl/BNVVZn87nd7ZLcnfpC8vDzWrl2L2dz3sosHBZvrZgOOXUV4q3p4WBPAPGso56s/o/zWLXrMXAoKClHPvjo7zxdXc97RIncoMUmqRuRJ42Wm2f8d0R0dZYCRZPDgNQxJ/xuOHLnKpUtvyB3OfbRaLatWrWLy5MlB3aejVaDpeAWSt/sNf1WSjsTCURhGJwe15kBEEW0DnPJWD6+U1PB2ZT1uRaz1i7kWHxt9rzPYvk/uUCKOKOrIyvoLkFayffshqqqix55Zo9GwYsUKpk6dGtR9As1ean99Gfdde4/XqgYbSdmUh3aYhcDre4JaV0FBQV4kSWJ3nZ3ni6q53DTwhEYoSFCJbDF/yWzHv6OxNcodTsQxmx9h5Ih/5soVNx/teC9qqk8Ahg0bxvr160lO7r946mgVcB4sJdDSw/giUcA8dyjWpYrRSH9RRNsApdjl5pWSGt6tbMATJf1GscZUk8RmaeC5XXWQmrqCQSl/yaFD17h58125w/kaGRkZbNiwgZSUlH7fw1fvwvbJHVy363F7B3d7raAR8T86iMRlw9EmxWcppN/no9nWiHVQqtyhKCiElYAk8UmtnReKqviiuVXucGISoyiwyVLKAue/DTgTLgCNJokR2f+NmpoxvPnmIZqaoseoprfuyd0hSRItF2tx7CnqsVUAQJNpJmlDblwbjdhrqrEOSkXo53/T3qCItgHG3RY3LxZX80F1Az5Fq/WL8UZ4QvyQEc4/yR2KLJhMeQzP+gcuXHCx/cPtUWFP3IEoisybN4/58+ejUvVvJ8/f7MW5v4SmU5W0BloQeriNLjeRpMJRlFe1dNpIHS0mLP2lxWGn/OYXCK1usmfMljscBYWw4ZckdtTYeKGomi9bFLHWH3SCwHprDUub/wOD7Z7c4UScNiOupxBYxyefnKS6+lO5Q/oaKSkpbNy4kaFDh/b7Hq23GrHvuoe3oue+TkErYl2WjXnO0Lg1Gqn48jrNdhuJaUPCKthAEW0Dhi+bW3mxuJrtNY34Y/sZUjZGGQSeUu9ltONXDMQ+JbU6kezs/0ppyUjeeOMobnfPu2uRJDk5mQ0bNpCZmdmv7w94/DQdK8d5sAzJ3fMsQtGoJmHNSEyPpbW9UPXNXpfY/hmpLb5HQ0U5psREcqfNwldbizpI100FhWjEF5DYWt3AS8U13HVF1+darKAWoMBqZ0XLz7HYrssdjiwkJc1mUMpPOHz4Drdv75A7nIeYNm0ay5cv77eVv6eiCfuue7hv9W7WrH50EomFo1DHYfWJz+Oh+MoF/D4fGaPHMjTvkYisq4i2OOeLJhfPF1Xzaa2N6DkPiS2ydCJP6Q4zzv4SIgNvsLggqMgY+hRu9wo+3HYKm22/3CE9xGOPPcaKFSv6ZeUvBSRazlW3OUI6PJ1c8fDuoHFSKgn5I1GZH1gvtjUaAFIgQPGVi7Q2OUnNHsnoWXPlDklBIWx4AgHerWrg5eIaSlo7+91X6AkRWGFtJr/1RRJt5+QORxYM+iwyM/87ly6JfPzR3qirrjCbzaxbt47c3Nx+fb/P1opjTzEtF2t6ledEk4bEgpEYJ3XfVhCLNNsaKb12GZVWy4iJj0V8I1MRbXHKRUcLLxRXsafOEQ/PkrIwRCvypP4MkxzPoWodmKUySUmzsZh/yKFDtygriz5jDZPJxLp168jLy+vX97tuNGDfdQ9fdeeOcMI3BJsqUUfi+s5dr7pM1FGWwDvD42rh7vkzSJLE8AmTMVoTHrom2h5EFBT6S6s/wFuV9fxnSQ0V7ugxhog1FlvcFHp/SYr9sNyhyIJKZWLYsB9RVvoIf/rTKTye6BP+wVj5B1w+HAfaHCHx9W7b3zh5cNuGpin4wdzRRPXd29SVFmNOTmH07Plfc5aOJIpoizPO2Jt5rqiKAw3RY7keawzSiDxhvMI0+89Qu6OneTiSGAxZpKf9DWfP+vjiiwNyh9MpY8aMoaCgAJPJ1Ofv9ZQ5se+81ytHSOC+jb91RTairne9crEgcuw1VZRcu4zOaGLU9Nmouyubif63o6DQLc1+P38or+e10hpqPD043Sl0yWyzj8f9vyPNEX0beZFBID19PR73anZsv4DDcUTugB5Cp9OxatUqJk2a1OfvlXwBmk5U4DzQC0fIdlSJOpI25KLPS+rzetGKFAhw7+I5mu2NpI/MZdyCJXKHpIi2eOFoo5MXiqo5ahuYIiMUJKhFtpgGrjUxgEplJjPjR9y5k83+z87j90dfOWgwc2V8Da3Y9xThulzbaxEiGtSkPjMR3XBrt9fFgEa7T9mNa9SXFpOYNpRHFy2XOxwFhbDi9Pn5fXkdvyytocEbfZ9pscJjpgCb+TOZzm1yhyIbCdbJmMw/4PChEiorD8kdTqcMHz6c9evXk5iY2KfvkyQJ16Va7HuK8Df2srezY0NzZXbc2Ph7XC3cOn0Cv8/HyCnTMCdFzzw5RbTFOJ/XO3ihuJrT9p5dfBQ6x6wS2WQuYr7z39HaquUORyZE0tM3YLct4oMPLuFynZE7oE4ZPnw4hYWFJCX1bTcv0OLF8XkpTScq6LUTj0rAPHMoRtw9CjagTbV1cuto0XJ+n487Z0/S1NjIsLHjmbhstdwhKSiEFZvXx2/KavltWR02nyLW+sujRtgibmOE8y25Q5ENnW4IaYN/zNmzIjdvnpI7nE5RqVQsWbKEmTNn9tnKv/WODfvOe3jLe7/xrx5sIGljXu/yYwxgr6nm7oUzaPUG8mbMQaOPPgMVRbTFIJIksafOwfPFVVxyKgM/+4teFNhoqWBR088w2ErkDkc2EhOnoxKf5LN992hsPCl3OJ2iUqlYvHgxs2bN6lMy6hj86fi8FKm19+VQmkwzyY/n0WLwwZF+2lZHiVprbWri5okj+H0+cmfMwpI8qJ93ipI3pKDQA3UeH78sreGN8jqa/IoFV38ZYxDYot5JnuN1uUORDVE0MHTId7l9O4fP91+JqhE3D5Kens769etJS0vr0/d5q5ux7yqi9UZD779JJWBZkIl1cRaCOrwW95Gg4svrVNy8TkL6ECYuW4UoRu+JoSLaYoiAJPFRjY0Xi6u5rgz87DdaQaDQWsvS5p9jst2WOxzZ0OuHkZT4Q06ccFNael7ucLokLS2NDRs29CkZ3S/z2N27wZ/3UYskLBuOeV5G20wZu73XDcfRVh7ZWFXB7dMn0BlNPDJ3AVpD3xvRv0a0vUEFhW9Q5fbyakkNf6yoxxWlD9exwEi9yJOaz3nE8QrCgN2sERg8uIDGhkVs23YNt/uS3AF1iiAIzJkzh4ULF6JW9/6R3u/w4PismOazVfTFWlyTYSZpY+wPyQ4E/Nw+c5LGygoyxoxlasEGuUPqFYpoiwF8AYltNY28VFzN7RZlhkx/UQuQb7WxsuU5LLZrcocjGyqVmbTB3+XKlTT27f1S7nC6RBAEZs+ezaJFi/qUjPpT5gGgzbaStDEXTepX4qZPDlFdPdtEWOyUXb9KydXLJA/N4LE1hYj9HDKuoBArlLjcvFJSw7tVDbgDA1VkBM8wnchTuqM86ngRwTVwjVoSrFOALezbW4LDEb0bmklJSaxfv56srKxef0/A7cd5uIymI2VInj6oNbWAdelwLPMyEVSxOyTb42rhiyMHcTc3kTtjNnkz5sgdUp9QRFsU4wkEeKeygVdKlBkywSACq6xNrGl9kQRb9H4Ahx+RwYPXU142ja1bb+D399I5UQb6k4z6VeYBCFqRhJUjMM0aElIbXymCO9SBgJ8vTx6jrqSIzLGPMnvTUxFbW0FBLu60tPJScQ0fVDfgU7Rav1HG27Sh12dgtXyX48e9VFZelTucbunrbFIpINF8pgrHZ8UEnH0bc6HNspD0eB6awUFWa8iIo66W60cOIIgi4xYswZQYmy6XimiLQlz+AH+qqOfV0hoqlRky/UYAllld5LtfJcV+XO5wZCUxcRaulnw+/aSI1tboPmXsazLyOz049vW9zANANyqRpA25qJODbziWw+Lf42rh6sHPaG5sIG/WPMbMnh++xZTySIUo4XqTixeLq/moxtbXX3mFB0jViDxhvMQ0+89QuTufVTkQUKlMDEp5hkuXBnPrVpHc4XSLxWJh7dq1fRqU7bpej31XEb6avv0bCxoR6/JszHOGtrULxCDVd29z8+RRzEkpTF5VgFZvkDukoFBEWxTR1G5L/KvSWuq8A7c0IRQstLgp9P6GVHt0zhiLFEbjSDTqJzly2IHNdkPucLqlr8ko4PHTdLgM5+FyJE/fnOEEnYqE1SMwzxjSn1A75SFN0/5COMScs76OK5/vIeAP8OjiZSQMTg/5Gg+hiDYFmbnoaOGF4ir21DkGbKdVKEhWi2wxfcEM+8/Q2KK34iL8iKSmFlJcPIlDB28jSUVyB9Qt48ePZ/Xq1b0elN3neaQPoB1hJXljHupBsSdyJEni3oWz3Lt4jvScXOZsfgZVH1osopn4eBcxTqPXx+uKLXFImGvxst73BumO3XKHIitqdSKJCc9w6pSBiorod8YcP348a9aswWDoOUFIAYmWc9XY9xYTcPa9bFiXm0jSxjzUiboerxUEoU8lk+HWNTVFd7l28DP0FguTVuRjtCaEd0EFhSjgpK2JF4qqOdjolDuUmCZBJbLFcotZ9p+htdXJHY6sJCbMxOFYyScfl+Lx3JI7nG4xGAysWbOG8ePH9+p6n60Vx55iWi7W9Nn0N1ztApHA5/XyxeHPqb5zi5GPTWfx9/5LzL2HnlBEm4zUery8VlLLmxV1NCu2xEExw+zn8cCfGOr4SO5QZEUQtKQkb+D69RwOfF4CRPcuqsFgID8/n3HjxvXq+tabDdh33cNb1fdSHkGnIjF/JKZp4TmVCmd5ZNGl89w4fpjUrBHMfeLbUTk/RkEh1Byod/BicTUnlTmkQWFWCWwyF7fNIm0cqLNI2zAaRyKwiQMHHDQ13ZE7nB7Jzc1l7dq1WCyWHq8NtPpwHijFeawCfH1/ptSNTCDp8byQtAtEEleTk8v7dmGvrWbcgqVMWLJC7pDChiLaZKCs1cOrJTW8XVlPq+J0FRSPmSQe5x2ynFvlDkV2kpKWUFkxmx1HSggEov90LS8vj7Vr12I292wd7Klowr7rHu5btn6tpctLImljLuqEnk/XQkWwGs7v83Hz+GHunj9D9sQpLPuLv5a3xEMpj1SIAJIksbvOzgvF1coc0iAxigKPW8tZ6PwPdLYyucORFY0mGZNpCydP6KitrZA7nB7RarWsXLmSKVOm9Hit5A/QfKoKx/5iAs19b60RtCIJq0Zgmhlbp2v2miou7P4En8fNpBX5DBo2XO6Qwo4i2iLI3RY3L5dUs7WqEa/yABQUE42wSdzGCOdbcociO2bzo7ha1rB7Vy0eT5Hc4fSITqdj5cqVTJ48ucdr/Q439j3FtJyv7tds53CfroUDj6uFy5/tpvzmdcbOW8Sa//YPUZFIlY8shXDilyR21Nh4qbiaG8oc0qDQiwIbLFUsavoZxsYiucORFVHUkpi4gSuXs7h7txLo2ygYOcjOzqawsJDExMQer3VdrcO+uwhfXf82OGLxdK367m0u7P4EndHIY2sKsaYOljukiKGItgjQ4XT1ca0Nv/LgExTjjLBZ/JhRzjfkDkV2dLqhqMSNHDnspampXO5wesXIkSNZt24dCQnd92IF3H6ch0ppOlKO5O1f6XBfete6oi89bV2VR/a2bLKpsYHzuz6isaKcScvXxMywTwWFYPAEArxf1cgrJdXccymjbYJBJwgUWmtY0vwLTLbbcocjO0mJyygufoxDB8uBSrnD6RGNRsPSpUuZPn16j3nHU+rE9uldPEWOfq0Vi71r9y6e4/Jnu0nOyGT+09/FmNCzqI03FNEWRs47mnmxuJq9itNV0IwxCGxR7yLP8Ru5Q5EdlcqM2bSJ06ct1NQ0yh1Or9BqtSxbtoxp06Z1e10ws2Q6CIczZK946Je8d7/19WWlnP3kQzyuFqbmr2dI7uiQhxYalE8xhdDh8gd4q7KeV0tqqFBG2wSFRhBYa61necuzmKPcJTgSWMwTsdmW8+mntfj9sbGhOWzYMAoLC0lJSen2Ol9DK/Y9Rbgu1/b7I1k7wkry43moU6LfGTLg93Pj2CGuHdpP1viJrPzJf0dnNMkdlmwooi0MHG108mJxNUcao/8YPtrJNQg8ofmM0fbXEAb4Q6MgqElIyOfa1ZHcvVsLxIZgGz58OOvWrSM5Obnb61w3G7DvvIevuv/zgnQ57aUeSXKVevT+Z7T85nXOffIhaq2W6eseZ1BWdvjCCgVKfaRCCHC2j7b5tTLaJmjUAhRY7Sx3PYfVFt3DoCOBXj+MgH8dBw54cLmq5A6nV6jVahYtWsSsWbMQRbHL6wKtPhyfl9J0vJz+TpIXNCLWFe1z16L8dM3T6uLK/r18efIoo2fPo/Af/zcabeR60qMVRbSFkL11dl4qruasY+AOqQwVI/UiT2oPMMb+n4goYxASrPMoKZnO4UM1QK3c4fQKjUbDkiVLmDFjRrcJwlPR1DZL5nb/TEYgOhqpu9Q0D3xBkiTunj/NuU93kJiWzrynv0tS+tDIBKigICP1Hh+/Kavl9+V12JXRNkGhAlYnOFjleokE2wW5w5EdtToBnW4Dp04aaGyMbsfkB8nIyKCwsJDU1NQur5H8AZpPVuLYX0Kgpf+bHNosC0mb8tCk9m7Gm1y02G1c2P0xRZcvMGHJSjb/9N/iZsZaKFD+SwRJQJL4qMbGyyXVXGtSmqeDJVsv8oT2MOMdLyO4lF1Yk2ksdtsydu2y4/fXyB1Or+lNqUewJiMdaLOtJG8KT6lHn+a0fUO1PdjL5vf5uHHsEBd2f8zQvEdY+ZP/gXVQ14laQSFeqHR7eK2klj9W1OMKKKNtgkEEVlmbWNX6Mkm2s3KHIzuCoMViKeDihQzKyxuB2Jjjp1KpWLhwIXPmzOn2dM11rQ77rv6bjACgFrAuHY5lfiaCGL2na7bqKs5+vI2qO7d4bM06Zm16ClFUyR1W1KGItn7iDUi8X93AK8U13HW55Q4n5snSiTyhO8YExwuKWKPNZMTvK+DA5z7c7ga5w+k1arWaxYsXM3PmzC6TUcDjx3mojKbDZf02GWlbTCRh+XDMczOiOhld+XwvpdcuM/Kx6az/x59iSkySO6T+oZRHKvSBIpebV4preK+qAY/ysxMUIrDc2swa96sk20/KHU4UIJBgXcytW49y+FA9sdIqADB06FAKCwsZPLhrx0NPWbvJyL3+mYx0oMkwk7w5D01a9PaA1RTd5fSOrdirK5m+bhNLfvDjqC/dlBNFtPWRFn+Atyvrea2khnKleTpoMnUiT+hOMtHxPGKr4hymVlvRaNZx6qQJe4wNlB02bBjr1q1j0KBBnX5dCki0nK3Gvq+YgDO4f2tNppnkzaPRDI6eUo8Hn0tbHHbs1VVoDUb0ZgtP/J+fYbBY5QsuFCgP3gq94HqTi5eKq/lIcUsOGgFYZnVR4HmNZPsxucOJCszmyVRVzePoERuSVC93OL1GpVKxYMEC5s6d2+WGps/WimN3ES2X+m8yAoAoYFk0DOviLARVdAqg0muXOb1jK+6WZmZueIKRU7o3KVNoQxFtvcTh8/P7sjp+XVZLvdI8HTQZWpEthtNMsj+PqlUpKxUELWbTGs6fH0JVlROIHcHWm9O11i8bse+8i7cqyH5PlYB1cRaWhcOiLhlJEjgbajm9Yye3Th3n0cUrWPf3/xd6U8/DwxUUYp1z9mZeKlHckkOBACy2tLLW+ysG2Q/LHU5UYNCPoLl5Bfv2uvH5YudkDXo+XQu0+nAeLMV5tAJ8wZUQqwcbSd6chzbTEtR9woEkSdw+e5Iz27ciqlXM3PAE2RN7Hh6u8BWKaOuBWo+X35S2NU87/Uo9frAM0Yo8YTjLZPtzqNxB1GnHERbLIm7eGMedO3ZipSa/g55617xVzdh23sP9ZfBJVp1mJHnzaLQZkRNBve1pqy8r5dLeP9BQfp3HVq/lu8++hs4YPaeACgrh4nBDm1vyMZvilhwKFlvcrPX+hlTHAblDiQo0mhSQ8jlyRIPLFTubmdBz75rkl2g+U4ljXwmB5iArtwQwz8sgYXk2grrrPjk56OjpPr1jK6aEROY++R2yxk+QO6yYRBFtXVDW6uHVkhr+XFmPK6DsGwZLulbkCcMFpth/roi1dsymyZRXzObIYQcQO45X8JUz5PTp0ztNRn6nB8e+YprPVkGwex0CmOdlkrB8eNQlo8rbNzm9/X0qvrxB5rjFLP/RT0geGqM9az27mcjZAAAgAElEQVShlEcqtCNJErvr7LxYXMNFp+KWHAoWWtys8/6WwY79cocSFahURrTaNZw5nURjowuILe+AjIwM1q1b1+XpmutGA/add/HVBP88pErWk7wpD92IhKDvFUq8HjdX9u/l7CfbSEofwrIf/hWZY8fLHVZMo4i2b3CruZWXS6r5sNqGV3lICZq0drH2mP0XqNxKcgcw6EficCxlz1E3gUBwjcZy0N3cNcnrx3mkHOfBMiRP8LbeqmQ9yZvz0GVHVzIqvnKR09vfp7akiKn561n913/HrXMNaPTRP6y0v0jK5+GAxxeQ+LCmkZeLa/iyRSlrDwULLB7W+X5HmmOf3KFEBYKgwmRczqVLw6moaAZia5O3p7lroRhx8yCm6ekkrBmJqIsep0V3SzMX93zKuZ07SM3KZvXf/B2ZY8bJHVZcoIi2di46Wni5pJpdtfagDwYUYLBGZIvxElPtv0DtVspmALTaVHze1Rw8KOLxxFYiAtBqtSxdupRp06Y9VDIoSRItF2pw7CnCbw+NoUy0JaOOevzT29/HXlPN1Pz1FP79/41GL9cgbwWFyNDqD/DnqgZeLamhVDGMCgnzLR7W+d4g3bFH7lCiBrN5DrdvTeDWrSZiqa+7g6ysLNauXdupGVeoRtx0IFq0JG3MxTDm4c1TuWix2zj36XYu7t1Jek4u6/7nv5AxZqzcYcUVA160HW108nJxDYcaY6uXKFppE2uXmWr/OWqlxwEAlcqEWrWGU6csOJ0egq8XjDw5OTkUFBSQmJj40Nda79iw77yHtzw0/97RlIw6xOkXRw5wevv7tNhtTC3YwOQV+Q+JNUkpo1aIM5w+P2+Utxlw1XoUA65QMM/ipdD3BumO3XKHEjUYjeOpqpzNkcMuIPaeGzQaDUuXLmX69OkPbWiGbMTNAxgmDCKpcBSiUROS+wWLo66GMx9t4+qBfQzNG836f/qpcrIWJgakaJMkib31Dl4qruacQynZCwWpGpEtxitMs/9MEWvtCIIGg345588Ppba2FYi9HWq9Xs+KFSuYPHnyQ1/z1rZg31VE6xehs102PDqIxMJRqEzyJyOf18vVg59x5eBBbtdVMDV/PZNXFaCN4xLIblE06YCh1uPl9bI6fl9eiyNINzuFNuZZvBT63yTdsUvuUKIGvS4Lp3Mp+476CQRir/oEYOTIkRQUFJCU9PVeZikg0XKuGvve4EfcdCDo1SQV5mCc1PWMt0jSUFHO6R3vc/3IQYaOHsPGf/5/lJ61MDOgRJsvILG9ppGXS2q42azU44eCr8Taz1HblNPKDkymBVz/YgzFxS1AbP6sjRkzhjVr1mCxfN062N/sxbm/hKaTlRCi0yVBryZpXQ7GyfInI6+7lcuf7ebsx9vweD3kzFnMmn/9f9EaBrobpKLa4p3SVg+vKQZcIUURaw+j0aTg863k8GEt7hidd6vX61m+fDlTpjxsWd96q7Gt+qQydCWeutxEkh/PQ5WgC9k9+0tN0V1ObX+fWyePtYm1//V/FDfICDEgRJtSjx96FLHWOUbjZEqKp7WXecTmKa7JZGL16tWMG/f18gbJF6DpeAWOz0uRWkNXKqUblUjSpjzUMicjd0szF3Z/wvmdO/D7vExZvY6p+evRGU29+n7Fp0MhVrnZ3MorJdV8WN2IT/k5DgnzLF7W+f/AEMdOuUOJGlQqEypxJadPJ7a3CsRmye2YMWNYvXo1Vqv1a697a1qwf3qX1puhmyMnaEQSVmZjmj20V+NnwknlrZuc3PYOd8+fIX1UHhv++V+VOWsRpleiTRCE3wH5QI0kSePbX0sG3gWygSJgsyRJjULbT9WLwGranlq/K0nS+dCH3jOOjnr80lrqlIHYIUERa51j0OdSVzefo0e8SFJslnkATJw4kRUrVmD8xoyxlsu12HcX4W8I4amhWiRhVTZmmZORy+ng3Kc7uLjnE/x+H5NXFjCtYAMGi7Xnb36QeFdt8f7++kms5keA8+0DsfcoA7FDhnKy9jCCoEGvW8b580Opq3MTi60C0PWGpr/Jg+OzEppPV4a0ZV2TaSZ5y2g0qfJWeZReu8zJbe9ScvUSqdkjKfyH/03OY9NljWmg0tuTtjeAV4A/PPDaPwH7JUn6d0EQ/qn9//8jsArIbf/fDOC19j8jRq3Hy69Ka3lTGYgdMgZrRDYrYu0htNqhtDQvYf8xEb8/NhMRQGJiIvn5+YwaNeprr7tLHNg/vYenOLSjCTQZ7closHzJqNnWyJmPt3F53y4CAT8Tl65ieuEmTIlxOmctWBTR1hVvEEP5EeBgg4OXi2uUgdghRBFrnSFgNM7n+hd5lJS0Emuz1h6ksw1NyRvAeawc54FSJHfwI27uI4JlURbWxVkIKvk2NO9dPMfJbe9ScfMLkjOGUfA//oncGXNkP/EbyPRKtEmSdFgQhOxvvLwOWNj+9zeBg7QlpXXAH6S2oT4nBUFIFARhiCRJlaEIuDuKXW5eLanh3aoGWpV6/JCQphXZbFDcIL+JWp2I37+co0eMuN1+YtEREtrcEWfMmMHixYvRarX3X/c1tGLfU4TrUm3I17QsGoZ1aRaCSp5B2Y66Ws589AFXP99LIOBn/MJlzNz4BJaUh22a+4KiaQYmsZIfA5LEJ7V2Ximu5nJT7FYDRBtt1v1vKm6Q38BonMK9u1P48ks3sdrXDW0bmgUFBeTk5Nx/TZIkXJfaq09soRWi6kEGkjbnocvqY6VHiJAkiTtnT3Fy27tU371FQlo6q/7qb3lk7kKETubOKUSWYHra0h5INFVAWvvfM4DSB64ra3/ta0lJEIQfAT+CttkWwbK3zs73rt7Drzw4hYQ2sabMWfsmomhApVrOmdPJOJ0+IIS7axFm8ODBrF27lszMzPuvBVp9OA6U0nSsnHA1tySsyA7LfXvCXlPFqe3v88Wh/QT8AcbMmc/sTU+TmD4kJPdXRJvCAwSVHyH0OXLTxTvKyVoIWWDxsFaZs/YQBv1oqqtnc+Swj1g+WRMEgZkzZ7Jo0aKvbWi6i+zYPr2HtzT0FUemGe2zSbWRn00qBQJ8eeoYp7a9S21JEebkFJb+8CeMX7QclXpA2F/EBCH5l5AkSRIEoU+PLJIk/Rr4NcDUqVODftyp8/oUwRYC0rUiWwwXmGJ/ThFrDyAIanS6xVy8MIza2thtoAZQq9XMnz+fOXPmoFK1JQfJL9F8uhLHZyUEmsPg5iUi22FkY2U5pz58j+tHDxLw+8mZOoM5W75FalZ2iFeK8w8gRZX2i/7kx/bvC2mOrPHEpktftLHQ4mGt73ekOfbJHUpUodNl4rAv4thRgUAgdvMjQHp6OgUFBWRkZNx/zVfvwr67CNeVupCvJ1o0JG3Mk2U2aSDg5+axw5z88D0aykvRW6zMf+b7TF6Rj/oBsaoQHQQj2qo7yjoEQRgC1LS/Xg4Me+C6zPbXFKKYoVqRzYbzTLE/i8odm66H4UHAaJjLtWu5lJV5idUG6g6ys7PJz89n0KCvSgFd1+ux77yHrzb0JVOiWUPShty2+9dFtiSrvqyUk9ve4eaJI0iBAMPGPsrcJ7/D0LwxYVlPktpKS+KVeH5vYUDJj3GEACyyuCnw/pbBjv1yhxNVaDTJeNzLOXRQh9cbIJY3r9RqNQsXLmTWrFn3NzQDLh+O/SU0naggHCcD+nEpJG3Ijfhs0oDfzxdHDnB6+3s0Vlag0RuYufHJdsfkgT7eJnoJRrR9BHwH+Pf2P3c88PpfC4LwDm0N1vZI1Osr9I8Mrchmw1km259D5Vb6HB7EaJjC3buTuHXLC8T2LnXHTJnJkyffbyL2VDRh33kP921beNZ8JJmkjbmozFrsO++1vRiB/uXakiJObnuXWyePIUkBBo/IYd6T3wm/NXHsPqv0iN8fwO+XCAQkRFFpQu8FSn6MAwRgsaWVAu/rpDoOyB1OVKFSmYDlnDyRQEtL7PZ1dzBy5Ejy8/NJTm477ZL8AZpOVuLcX0KgJfQnh4JORWLBSExT00N+7+7w+3xcO7Sf09vfw15TjUqtZsqqtczYsAWjNSGiscQLkiQR8EkggEod3r6/3lr+/5m2pupBgiCUAT+lLRm9JwjCD4BiYHP75TtpszO+TZul8fdCHLNCCMjUiWzRn2ai/XlU7thtEg4HBv0YKipncuSwn1gXawDjx49n5cqVmM1mAPwON/Y9xbScrw6L0BC0IglrRmKeEZpesd5SU3SXkx+8w60zJ0CSSBoylDlbvkXezLmK21U/CPgDSO3PYaJaQKUSFMHWCUp+jD8EYJnVxRrPrxnkOCx3OFGFIGjRaJZy7mwaNlts93UDGI1GVqxYwcSJE++/5rpWh31XUdiqQ7TDrSRvzkOdYgjL/TvD7/Ny9cA+Tu/YiqO2BkEQGTt/MXM2P4M1dXDE4ogn/N6OBAkqTWRMWnrrHvlkF19a0sm1EvBXwQSlED6ydCJbdCeY4HgBURk0/jV0uiwaG+dz9IiAJMV2IoI216s1a9aQm5sLQMDjp+lwGc7DZUie8OyKaodZSN4yGvWgyCWj6nt3OLH1z9w5dwokCVNiErMef5JHF69AVEWuoTseygcDAYmAP4CAgKASUGkeEGmx//bCgpIf4wcRWG5tZrXnV6TYj8kdTpQhotcv5PKl4VRX+4jlvu4OJk2axPLly+/b+HvKnNg+vYfnnj08C6oErEuysCwchhChDTCf18vVz/dyasf7NNW39eONnDKNeU9+h0Eh7+uOf/zeABISAkLEhNqDKJYwA4RsvcgW7VHGO15WxNo30GgG42pZzPFjWvxx4GYjiiKzZs1iwYIFaLVapIBEy/lq7HuLCTjC9G8vCm1W/l3NlQlDfqq6c4sTH/yZu+dOA6A1GJlWsIHH1hSi0etDv2CcIkkSfl+biBdFAbWmK6Eb+78bCgqdoQJWWJtY5X6NZPtJucOJOgyGmdy8MZbiYi/xINZSUlLIz89nxIgRAPjsbhy7i2i5WBO2jzl1qoHkLaPRZlrCs8A38Hk8XN6/hzMfbaWpoR6AIXljmP/Ud8l8ZHxEYogX/P4AUvsYMZVaRBDkG32giLY4J0cvsll7iHGOVxBcsf9hG0rUait+3zKOHTXjdsd2A3UHmZmZFBQUkJbW5jDeetuG/dO7eCubw7amOkVP0pbREZsrU3XnFie2vs3d82cAUKnVTFi2ipkbnpC1Jj/WDtp8nrbTZEHoTqgpKMQvagFWWRysaP1Pkuxn5Q4n6jAYJlJ0bwpffukjHloFVCoVc+fOZd68eajVagJuP85DpTQdKUfyhq8nzzRzCIlrRiBE4HO2Tazt5syOrTQ1NgCQNDSTeU98m9wZs8O+frwQ8AcItG/ii2pRllO1zlBEW5ySaxDYrP6cMY7XEF2xX+oXSkTRgCgs5czpZJqaAsR6AzW0GY0sWbKEqVOnIggC3poW7Dvv0XqjIazrmqank5Dfh7kyQZy4Vd3+su1krV2sIQiMnjmXuU9+h8S0yDZzd4pE1Ot+n9eP1NYvjVqGWUAKCtGARhBYY7Wx3PUyCfYLcocTdej1eVRVzuTIYYl4OFmDrzsnSwGJptOVOPYVE3CGT4yKFg1Jj+dhGB1+K/8OsXZ6x1aa28WaMSGR2ZueinirQKwiBSR8HVUnKiEqc6Qi2uKMMQaBTeq9jHb8CiHanyAjjCBo0GgWceH8UBoaYt/tqoMHjUb8TR4cn5XQfLoKAuH79xdNGpI25mIYmxK2NTr45skaQObY8Sx4+vukj8oL+/q9RYrS3ze/76sdQ7VG7H8vRawdJSoofAOtIJBvrWeZ60WstqtyhxN16HRZNDbM4+gRMS56dKHNaGT58uVMmjQJgNYvG7F9ehdfdXhHG+nHprS5J4fZyr8zsabR6ZlasJ6pBRvQ6iPXXx6reD1+kEAQQROFQu1BFNEWJ4w3wkbVLnIdv1XE2kOI6HXzuXJlBFVVse921UFycjJr1qwhJycHyRfAcbAU54FSJHd4359+dBJJj+ehsvRh8Kbw0F96pPrubY6//9bXxFry0EzmP/M9ch6b0fu1I0UU/doFAtJ9ZyuVWkCjC0EiipOHOIWBh14UWGupZUnL85htN+QOJ+rQaAbT0ryIY0e1BOJjLxOAKVOmsHTpUoxGI96qZmw77+H+sjGsawpakcT8HEzTw1v94fN6ufzZbs7seP9+GaQgioxftIzZm57GnBT5Qd2xhM/TVnWCEP1C7UEU0RbjTDJJbBA+Jsf5ptyhRCUG/Uxu3BhDSYmfeCnzUKlUzJs3j7lz56JSqWi5VIN9VxF+mzus6woakYTVIzDPGhrWdarv3ub41rfvG4yAUubRWzytbT/joipEQk1BIYYxiAKFlioWNT+HyXZb7nCiDrU6Ea9nCUePmPB44mdTJi0tjfz8fIYNG4bf6aFx2y2az1aFvbgmEu7JPq+XK5/v4fT29+8bjACMmPQY85/5PoOGDQ/b2rGO3xe4b7ql0aoi5uAZShTRFqM8ZgqwgQ/Jbnpb7lCiEoN+EnfvTeT2rQDxcrIGkJOTw+rVq0lJScFdZKfh03t4Sp1hX1eTYSZ5y2g0g439vIPwtT86o6boLsfff5s7Z79yb1NrtDyWX8j0dY+jNfR37cggVzmR1+O/72yl1YfxI105aVOIEUwqgQ3mcuY3PYvRViR3OFGHSmVEkpZy6mQSLS3xYcIFoNVqWbhwITNmzEAMgOPzEpwHy5A8YX4GEMGyKKtr9+QQ4Pd5ufL5Pk5tf+++dT9AalY287/1A7InTA7LurFOICDdN91SqcXw5sgIENvRD0Bmmv0USu8xrGmr3KFEJXr9GMrLp/PFNYl46VkDsFgsrFixgvHjx+Ord1H/py9wXa3v+RuDRQDLgmFYl2UhqMLjnlRbUsSJ99++PxS7bV2BR+YsYO6T38E6KDUs68Yyfu9XO4ZqnSoiQ6/jpcdFIX6xqkQ2mIuY1/QseluZ3OFEHYKgRa1awrlzg7Hb48OEq4OxY8eycuVKLBYLLedrcOwtwm8P/3gjVYqe5DC6J/t9Pq4d/IyTH76Ls672/uumpGTmbH6G8QuXIojR4WwYTXhafW19aioh5oXag8TPO4lz5lm8rPX/iaHOT+QOJSrR6UZQVzubI4dF4mXXENpmrk2fPp1Fixah8YvYPrlL04kKiMA8OVWSjuTNo9GNCIGNfieaor6slONb3+bLk0e/doozdPRYFn37h1FlMtIbwq1pAgEJb3u/olotojUoH98KCgCJapHHTbeZ7fwFOlu13OFEHYKgRqtZwMWLmdTVxZdYS05OZvXq1YwaNYrWOzZq3ryIt7wpImsbp6aRWJCDGIZS9IDfz7XD+zn5wbs4ar/6mVZrdUzNL2TauscVk5Fv4PX4CfglBIjb/Bif7ypOEICFFjcFvt+T5tgndzhRiVabgd0+n6NH1HFXvZWVlcWaNWsYnJJK08lK6j8vIdASmb484+TBJK7LQQzDDlVDRTkntr7NzeNHkKSvHh6sqWnMf/p7jJ41N+RrRoQw/fy5XT6QJARRQBeniUhBoT+kaEQ2GW8ww/EsWltdz98w4BDQ6+Zy7VoOFRXx45gMoFarmTt3LnPnzkVq9FD35jVar4d3xE0HoklN0vpcDOMHhfzegYCfG0cPceKDP2OrqvzqC4LAmNnzmffUd5Xqkwfw+wL3yx/VOlVMmYr0B+UJIAoRgaXWFtZ4X2eQ45Dc4UQlGk0qLS0LOXHcgM8XX2rNZDKxbNkyJk6ciOtqPdV/OIevvjUiawsGNUnrR2GcEJ6kEPD7eeN//hjpAYsyrcHA9HWbeCx/PWpNeO2Rw0vofg69Hv9990edUY0gREHDdHz9minEMGlakU2GK0y1P4vGZpc7nKhEr5/BzRtjKCmJr75ugLy8PFatWoVVa8bxaRHNp8I74uZBdHlJJD+eh8raB/fkXiAFAtw8cYTjW/9MY8XXS3uH5I5m0Xd+xJDc0SFdM5ZpbW6br6fSiOiMsfzc0DcU0RZFqICVVicr3b8k2X6yx+sHIm1uV4s5etSMxx0D04z7gCAITJs2jUWLFiHWeqn91WU8RY6Ira/LSSBp82jUCbqQ3tdRV0tTQz16DEiBwH3BJggiYxcsZt6T38GUmBTSNWORgD+Ax+W/b0GsCfN8nz4Tb0fZCjFHhlZks+Eck+3PoXKHd85WrKLXT+Le3Qncvh1ffd0AiYmJrFq1irycXJqOlVN14DpSa4QEqVokcVU25jkZIb2tJEncPn2C4++/RV1p8de+Zk4ZxPwnv8OYuQujY+NOZjytPgI+CQTQR1t+jBCKaIsCtILAamsjy12vkGC/IHc4UYlKZSIQWMLJk4m4WuJLrAEMGzaM1atXk6pLwr69CNfl2si9RbVAwvJszPMyQpoYmhobOPXhe1zZv5ulad9CrzXcH0A9dPRYFn/3R6SNHBWy9eSmv5qmtdmLJEmoVCJ688BMRAoK3TFcJ7JZd4JHHS+hckem6iDW0OsfoaxsKte/gHjLj2q1mjlz5jB37ly81xqp+sXZsI+4eRDNEBPJT4xGk2YK6X3vnDvN8ffeoqboztdeV2t1TC3YwPR1G9Ho9CFdM9bwewN43G1tIVqDGq1+YJuuKKJNRjoGfi5ueQGL7brc4UQloqhHFBZz9mwqTmf8WBN30FEK+ejocTgPlFF1/CxEsNxTnWYk+YkxaIeELhm1OOyc3rGVS3t34vN8PbEKgsDq//r3PDJnQcjWixb6Ito8rb775Y96s0bZRVVQ6IRRBoFNmsOMc7yC0BofczZDjV43iurqmRy5HJ+fIXl5eaxcuRKTXUXDr67iLYuMyQgAApjnZ5KwbDiCOnRiofjyRY69+0cqb9986Gt5M+ey4JnvY00dHLL1YhGXs835U6URMZhDW4oayyiiTQZMKoFCcwULmp/HZLvT8zcMQARBg1q9iAvnh9DYGF9uV9DmCjlt2jQWzl+A/2Ij1T8/GzGTEaAtGc0eSsKqESFLRq3NTZz9+EPO7/oIb6vr4QUBlVbLI3PmhGS9WCPgD9Da3PZvrNGrMFhiLRHF14aJQvQy1ggbVfsY7fgVgvJz1yk6XRYN9XM5ekQVl5XLSUlJrFq1ihHJw7B/eo/aaxEYcfMAqkQdyZvz0I1MDNk9y25c49i7f6Tsi6sPfS01K5tF3/svDBv7aMjWizXcrq82M40h7hmMFxTRFkES2mfIzFVmyHSJgAqNdj6XL2VRWxt/Yg1g+PDhrF69GmutCvtrX+Cr+6bACS+iVUvypjz0uaHpI/O0ujj/6Q7Ofvoh7ubmh74+atoskskgUOfpbrZ27CNJnT48uZo8BPxt5Y8xnYji8clQIaqYbJJYL3xMjvNNuUOJWrTaITjs8zl2VEsg/tIjGo2GefPmMWPiNFyHKqg+dS4iI24exDAplaTCUSFzT666c4tj7/6RokvnH/qa3mxhzuZnmLBsJaIY386HneH3Be6biuiManSGGM6REUARbREgWS3yuOlLZjp+jk6xJe4CAZ1uLteujqSyMj7FmtVqZfny5eQlDMf24V3qI2gy0oHh0UEkrR+FGAK3Ja/HzaU9n3J6x1ZczoffS3LGMBZ990dkT5hM9YvnCRD+Qady8qCm8br9uFt8CAIYLBrEMA0mV1CIB2aY/ayTtjK86T25Q4lavnJM1uOL00rRsWPHsnzJMlRXm6l7/kLkTEbaEfRqkgpzME4KTWliXUkRx977E7fPPGwsJwgiE5auYM4T38ZgtoRkvViixeFBCkio1CKmEJufxTOKaAsjbbbEV5lq/4ViS9wNev1MblwfTWlpfIo1lUrF7NmzmTV+Gq7PK6i5fDHilWaCTkXi2hxMj6UFfS+/z8eVz/dyats7NDU+PBdHazAwa+OTTF61FpV6YH3EtDZ5UakFNDoV5qQ4S0TKSZtCiJlv8VDgf4uhzk/kDiVqUauT8LgXc/SkEU+c7nsNHjyYlStXku4wY//NrYiajHSgG9nunpwY/Od2Y2U5x99/eBZpB0PzHmHx9/+StBE5Qa8VS3hafXhcbTsOxgQdohjXtTdhYWA9UUWIYTqRx3Vnmex4XrEl7ga9fiq3b43l3r34sybuIC8vj+ULl6K+2ETDy5cjajLSgTbbSvLm0aiTg3OhkgIBvjhygBNb38ZeU93pNY/MW8T8p7+HOSm585vE4Wd0a7MXr9vPmFlDADAnxanblyLaFEKACCyxuljt+R2DHZ/LHU7UolJZ8fsXceJ4Aq2t8fm7p9frWbhwIRMHjcaxs4iGsvLIB6F6wD05SBHhqKvl5Ad/5tqh/QT8D58SGhMSmf/09xg7f/GAMZ+SAhJN7SJcq1fFb36MEIpoCyE5epHHtUcY73gFsTVOt8RCgF4/kaJ7E7l1K/6s+zsYNGgQK5YtJ73WhPP1O7RG0mSkA5WAdWkWlgXDgkpGkiRx6/Rxjr37JxrKSzu9ZlBWNku+/5dkPjK+3+vEEn5/gObGtkSkN2uwtAtie21k+xMVFGIFtQArLU5WKHNIu0UlGpGkJZw5nURzc3zmSEEQmDJlCvMnzsJ7sIb67Q8bc0QCdZqR5C2j0Q41B3WfFruNUx++x6XPduH3eh/6uiCKTF6Rz+zNT6MzhnZsQLTiavLgbfUjiML9/KgQPIpoCwFtTlefkef4NaIrsjXYsYReP47SksncuCEQj4kIQKfTsWDBAh41jaTpo1Ls9Z2fSIUbdaqhLRllBlcrX3TxHEff/SPVd293+nWtwcjsTU8zeWU+oqqbJmrhob/EJM12Nz6PH5VaxDrIIHc4CgpRj04QyLfWs9T1Mlb7ZbnDiVpEUY8gLObcuUE4HfEp1gCysrJYvmAppisenL+8AQEZ3meHe/LKEQia/vcb33dM3rkDbxfzAzPGjGXJ939M6vAR/V4nVvD7AjQ1tgICBosGwyDFVCTUKKItCKaYJAoVp6se0etHU1ExjWtXY/uBvTsEQWDy5MnMzZuO79fptiEAACAASURBVPMq7CW3ZIvFNGsIiatHIGj670RVfuMLjr7zB8qud70DOmbOAhZ86wddl0LGCV6P//6pmilJ123TdDxXvEhKeaRCHzCKAoWWShY2P4/J1vmmjwIIgha1ahHnz6djs8XfLNIOrFYryxYvYXhjEs4/lNHslmeDW2XVkhSke7LX3cr5XR9z9qMPaG3ufG7cQCqFbGps38zUiCSkGuUOJ65RRFs/mG32sVZ6n2FNW+UOJappG/o5gyOX49s5Lysri2UzF2E876LlDfnEmmjRkvx4LvrR/RdRNUV3OfbuH7l7/kyX1yQPzWTJD35C1vgJfV8ghnKXo86F3xdArVWRmKYkojh9llQIMQlqkQ0mZbRNTwiCBo16ARcvZlBfH58mXABqtZo5s+cw2ZSLa1c5DnuxbLEYJgxqs/Lvp3uy3+fl8v49nNr2Ls22xk6vaXOFXMncJ7+N3hRc2WU04/X4aWpoO100J+vjz3grSlFEWy8RgMXWVlZ7/0C6c4/c4UQ1Ol029XWzOXJYJKae0vtIQkICS+YvJqvcTNNb5bgiPEvmQQzjUkjckIvK1L9k1FhZzrH33uLmiSNdGk6odTpmrt/C1IINfXeFjJGdRo/Lh7OxFQEBa6oedRCnlQoKA4lUjchG4w1mOJ5Fq4y26RJBUKPRzOfypWFxO4u0g/HjxzNv1DQ4VE9T5T3Z4hD0KpLWjcI4uX9W/r0x4QJIG5nL0h/+hPSc3P6GGvXYa134vQHUOpGk9IHRnxdNKKKtB9QCrLA0sdLza5Ltx+QOJ6rRaYfR2DiHo0c0cW00p9FomDNrDo9Kw2n9uJKm1sjPW+sgWCt/Z0MdJ7e+w9WD+zp1u+pg5JRpLP7eX5IwOPiRAdGIrboFvy+A1qAmJcimdAWFgUSGVmST4QKT7c+htnVeKqYAIKLTzuPq1WyqquJbrA0ZMoSl0xdiveDF/U6JrLG0WfnnoU7snxnGrTMnOPbOH6kv6/p96Iwm5jzxLSYtW40gxl9lkafVh6OuFUEAa6oBjVbZzJQLRbR1QUfz9BLXKyTYL8kdTlSj1WZgt89tF2uxcaLSXyY8OoHZaRORjtTjsstb+hOMlb+rycnp7e9zcfcn+LxdO51aUlJZ9N2/IHf67GBCjUrcLV4cda0gQFK6UTlV65E43olR6DM5epGN2mM86ngJ0a24JXeNgE43hy+u5VBREd9izWw2s3j2AoaXWXG9V4Nbzo8M9QNW/v2o9Ci5epmjf36Tyts3u71u9Oz5LPrOX2BK7H+PXLRiq27B6/ajNagZlKlsZkYDimj7BiaVQKG5ggXNLyjN0z2g1abjdC7g+DEt3RzSxAWZmZksHjcH02kX3jMV8gajEkhYPhzzvMw+W/l7W1s59+l2zn7yIe6W5i6vE0SRKasKmL35GbT6ELokRoGmb6hoxuf1ozNqSM0Kzl3zIaLg/YWNeD4+V+g144ywQbWPPMdvFLfkbhHQ62Zx/XouZWXxLdbUajUzp81goj8bz64aXN4aWePRpJtIfmI0mn6U71Xfvc2RP79J8eUL3V6XmDaEJT/4MdkTp/Q3zKjE4/LRWN2CIEBSugmNTtnMjCYU0dZOklpko+kOs5zPordVyh1OVKPRDKaleQEnjuvxyTB+LJIkJCSwcOo8Mm/pce+o4+EJLJFFk24kaXPf58r4fV4uf7abk9vepcVu6/ba9Jxclv3obxicPTKYUL+OzGLG7fLRWNkMAqRkmJXyDgWFPjLVFKBQ2MEI55/kDiXq0etncPPmaEqKJeJZrAGMGzuO2SkTEI434m6ukjcYAczzM0lYNhxB3bcyxYaKco69+0e+PHWs2w0qlVrN1IKNzNywBbU2fiztGyqb8bh86Ixq0rKtcoej0AUDXrSla0U2Gq4xzfEsmi7cgBTa0GhScbkWcOK4Ie7FmlarZfbUmYxtSMezsx63JPPQZAHM8zJIWJ7dp2QkBQJcP3aI4+/9qdsGagCtwcDcJ779/7P3noFxHemZ7nNOR3Q30I2ccwZJEIEEmHNWoCKVcx5pZjwzXq/X3rV3r319d3197et1Woe1NAqURGlESaQSKUoiCeacA0Bkgggkcux09gcAEswI3ehUzw9RbJxT9RHdfb56q75AwYp73BiXP7nq7crFbgb67OgNGmLSzG6fz99LOwsCjwXBVu5zrCeue5OnTfF69PoSystzqa7y39L9w8THx7MocxbBBwewH272+L9WFaojbF02utSxPee7Wi+z59MPOfXT93fM64bBnmvLX3mL8ISkiZjqNVj77Vyu70YCwuJNhMWKwiLeTsCKtmSdzKO6feR3/i2qAQ8vyL0cjSac/r5F7NtrwOrnqQuSJFEwbToz1VkoO9uw2q542iRUFh1h67LQpVnGdF/l4QOUffhbWmqr73ptxszZLHnxNYLDIsZppfdg7bfTUtMFEkQkmAiPF7H4LkGERwYMKmB5SA+rbf+biM7tnjbH69Hri7lQMYXKSv8/WQsJCWHh9DkknNVh+7Ydb9i/NcyIxnJfGrJu9Eva/u5u9n/xCUe+3YzdOnDHa3VGIwueeoFpS1b6xcZc66Ue+jqtaIPUxGWMbV0h8CwBJ9pygyQeUv9ATuf/Qu73hseN96JWh2IdWMyufSYGPJpRPDmkpqQwL7qIoAM9OHs9L9YADMVDzkg/+q/qxXNn2Ln+HS6ePXXXa01h4Sx98Q0yZs6aiJmjx43+rrWhh56OAbR6NXFZFr9wrl6FEG1+j06SuCeklWV9/4C54845PQLQ64uovDCFCxfA30/WtFotswtLyG2Kwr61A5vHkwVANmkIfTCToCnho77HZh3g8NdfcuDLTxnouX1e9zDZs+ez+PlXfb7QiN3moLGyE0VRCIs1ilM1HyVgRFux0ckD0ibSut71tClej1oditW6iN27TAwMgL87o/DwcBZmlhJ5XMJxtsMr9knH44wu19VQ9tG7XDi47+4XSxIFK9Yw7/Hn0BkmoXG0mwSUw+akoaIdp1MhPM5EWJxwRALBWLlWgOt/Ymw/72lzvB69voDqqnzKy/3bN8JQ9MnU6RQ70mBnJ3Znh6dNAkCfF07oQxmoTKPLK3M6HJz8cSt7Pl1Pd1vrXa8Pjohk2Us/I61o5kRN9Sjtzb10NPeh1srEZVqQx1i8TOBd+L1oWxBs5V7HR8R3f+FpU7wetdqCzbqYPbuD6e/3f2dkMBiYO6WEtMpgHD/14i110MbqjDovN7N7w3pO7/gBRbm75AxPSGLFaz8nLit3oqaOGVdpt46WPlobulFrVcRlWVCp/K83jrehiJM2vyNMLfOQsYLZXX8tCnCNAr1+OjXV+Zw/D/6+mQmQlpLGXMs09If7UKzeIdYknQrLfekYZ4y+Z+j5vWWUffQebZcu3n18SaZw1b3MffwZ11ZOnkScToWG823YrE4sUUEkTx395q/Au/FL0aYCVoT0sErE448KtdqM3TYs1sDfnZFKpWLm1CKmtcah7OzGQa+nTQLG7oz6urvYt3EDR7/bjMN291AVlVpNyQPrKH3wUVRqzUTNHROu0GqKU6H+fBvWPjuWKAOp0yNdMKpr8euITP9+LAQUcVqZh4OOU9zx12javWMx7s3o9dOprZnOuXOB8SWIjIxkflIxEcfAebbba776Y22UXXvyGDvXv0PjhfJRXR+RmMyK135BbGb2RMz0GD0dAzRe6EBWScRnh6IdQ1qFwDfwq3dUL0vcE3yFpX3/KOLxR8GgWFvEnt0hQ2LN/5mSncdMZwbq/T0oSrenzbmKLt1M6KOjc0a2gf6hmPzf3bHX2kjisnJZ8dovCE9InKipk05fl5X6c21IkkRCTih64+QKzrHhz6pN4Ouk6yUe1u5mauffoxoIkIf+BNDr84fEGgTCroXRaGRu1kxSzhtx7ur3ilQBAEkjE7IyBdPcuFHlKjdXV7Jz/TtUHzs8qvFVGg2lD66jZO2jqNS+tyy+VNFOd9sARouO9KIoT5sjcCO+9+m8DXlSFX8n/yGG9ipPm+L1qFUh2B2L2bvXTF+v/zsigKSEROaap2E8ZgP76ITOZCBpZMyrUjDOubszGmtMPoBGP1jGv3ClO8v4j4JxaJnGyg7am3sxhGjJKIoacyNxgUBwjZ8HfU3Y5X9C6guMZ/5E0OunUVdbwNmznrZkctBoNJTkFpHXEImypw8n3iPoNYnBhK3LQhN599zrjuZGyj56j7O7d4y6cJKvbmha++3UnLyC0+4kNtNCrKgCGRD4jWiLclZxxSYE2524Ktb2DYs1/3fe4WHhzI0vJOaUCmfFncv6TjbapGBCHx2dMyrft5udH71LW0P9qMdPmV7E8lfeIiTSi3be7qK77FYHVccvY+t3EJNuJmdW7OTY5SL8OzzS/58X/kxi7xZ6A+CZPxECTaxJkkR+9lQKe5JR7+9DwYvaH6kkQpYmEbwo8a4bdr2dHez97COOb/0GxyibyHrNhuYYaWvsoaG8HW2QmtT8CNRaladNEkwifiPaBLcnEMWawWBgdloxaeVGlAM2nF7RTWYIlUTI8mSCFyTc1RnVnz7JjvVvc6n83KiH1xtNLHruFaYsXDpRSyeNzst91J66gkqjIq0wEl2QeDR5H/7/3BAEJoEm1gDSklOZpcnFcHwAnF4k1gBNjJHQdVlo4+7cY9PW38+hrz7nwKbfYe0b/b8hOb+QFa/+3Ls2NO+A06lQc/IK3a39hMUZmTI/3tMmCTyEWBn5MWq1Gbt9UUCJNbVazcysQvIuRiIdHEDxgl4yI9HEGQlbl40m5s6l6S/X1bBz/TtUHj4wpvGDgkN47q/+wYt7ylwTqYqiUHemldaGHsxRBqbMjxchkAKBYNLQ6/Opq50eUGItJiqaOWH5hJ8CxeZd0SfIELwwkZClSUjq259+OR0OTvzwHXs+/ZCe9rZRD68zGln0zMtMXbzcFda6nb5uKxcOt+B0OEmZFkFqfoSnTRJ4GCHa/JCbC4z4v1iTJIn8zCkUdCSiOWwFvM0ZSQQvTiRkSSLSHcrTd15uYfeGD0Zdvv9GtEFB3inYRsQNWvvtlB9oYqDXTtKUcJLy/KgcsdCcAoHXM1gNMn+owEhgYA4xMzu+gIQzOqh1eN2qQB0VRNij2WgTg+943fl9uyj78N1Rle8fSfqMUpa99DNMYd7vb1pqu6g9fYWgYC3ZpTFodCIEUjCIEG1+xGCftUUjSvcHBunJaZQqmRiO2wGrp825CXW0gbB12Wjjbx/q0d/Tzf7PP+HIN5uw28b2b8iZuxCVWs2p7du8PqnK6lQ4XdZAVkkMhpDR9aETeAe6jAxPmyAQTIhAFGt6vZ6SlAIyK81IR+zgNR1Jh5DAND8e8/IUJM3tNzTrT59kxwdvc6libG+ePjiEJS+8Ru7chRO11K04HU4uHGmh9VIP0SkhFK1MHlWlTEFgIUSbH6BWh44Qa962f+Y+YqNjmW3KI+yMBE4vylkbRobgBYmELLt9qIfdZuPot5vYt3ED/T1ja0FgtISy7OU3yZg5i5/e/TdXWOxyFGUwFr+vz46mMIqU+9NJEflqPok6QoTmCHwTvb6AmuppQ02xAwOVSkVR+jSmXIpGfdQO3pTXPYQ6IojQR7PQJYfc9por9bXs+ODtMacKAGSVzmXpS29gMHtvZcW+Litn9zRi7beTURxF5hiahgsCD7F68mHU6lCsA4vYvc/EwAAEQhgkQKjFwuzI6cSd1YDNO3P11FEGwh7Num2oh+J0cqbsJ3ZteJ/OluYxj583fzGLn38NvWno9G5oR07ykvg8a7+ds3sa6WzpIzk/nNxfF3vaJIFAEGDo9UVUVU6hosLTlkwuU9JyKOpKRnfcO8UaEpjmxGFelYKkuXXoX1frZXZvWM+p7d+jOMeWKhAUYmbpi2+QPXueK6x1Cy21XZQfaEJrUJM3N05EnghGhRBtPohGE05//yL27zMyMOB9gsVdGAwGSuPzSasIRmp04o1ibfB0LYGQZcm3PV2rPnqIHevfoaVm7C0qjKFhLH/lTdKLSydqqVvoaOnldNklnA4nuXPjCFuc4GmTBAJBgKHXF1N5IY8LFzxtyeSSlpjCTEcGwacVvFKsMXS69kgmuhTzLX8+0NvD/i8+5fDXX2K3jj03PWv2fJa++DqGkFuP70mcToWqoy3Unm4lKjmYkvtTUd9GtAoEt0KINh9Co4mkr28B+/YasFrBK0WLG9BoNMxIySenJgzVCScw9gIdk4EqMojwdbdPpG6qrGDH+neoPXF0XOPfdLo2Ak/HvtefbeX8/iaCw/UULEskKDgwdw09/T4IBIGMXl/ChYocKisDwzcOExMVzaygKUScl7y3n+JdTtccdhvHtnzNns8+pr+rc8zDB4WYWfbSG2TN8r7TtYFeG6fLLtHa0E16URSLnsoWvkIwLsYt2iRJygY+HvFSGvAngAV4BWgZev2PFEX5etwWCtBoountnc/ePUHYvKuCvVuRZZn8lDzym2PRerFYQ5YIXpBAZ6LploKto7mJso/e5ezuHeNyqEZLKMtffWt0p2uT6AfsNgfn9zdRe/IKCblhLHg8SzT6FAiGED5yspDQ60soP59NdbV3hsu7i1CzhVnh04g7r0XyzoM14M6na4qicHb3DnZ9/B4dTY3jGj+rdC5LX/6Z152utTX2cHL7RWxWB1MXxFO4IsnTJgl8nHGLNkVRzgEFAJIkqYCLwEbgBeBvFEX5K5dYGMBotbF0d89jz249di9+ILuDnORMirqSMZxW8FqxBmhiDIQ+koU2IZjOM63X/ayvu4t9n33M0S1f4Rin2s6Zu5AlL75OkOnOZZAnk56OAU5uv8jl+m5yZ8ey8pWpor+aQHADwke6Gwm9bhbnzmdSWxNYYs1oMFISO420ChNSkxf/u2UwzYvHvDz5lqdrtSePs+ODf6epcnxJh0HBISx58XVy5iyYqKUupe5MK6fLGjCYtUxfmkhIRJCnTRL4Ca4Kj1wKXFAUpUYc+U4crTaers557N6lxeFl1XndTXJcEiXODMznJLzaCaskghfd0HdtyFy71crhb75k/xefMNDTM67hDWYLy17+GZklc8Z0nzu/f5fruzi2rQ7bgIP8JYmU3p/mtrl8FfH4E9wG4SNdhoxON4ezZ9Kpr/fS3GY3odVqmZE4jezqUFSnvFuoqqMMg6drSTdXhrxcW82OD96m6uihcY+fMXMWy15+02v6kjpsTs7tb6T8QBPxWRYWPpmN3qjxtFkCP8NVou1x4MMRf39LkqRngYPAbxRFuallvSRJrwKvAiQliSNjAJ02ifb22ewq0zLGYkk+T0xkNKW6HCIvqL3ZDwGgiTcNnq7FGq973ak4OLV9G7s+fp+uKy23ufvujCfUw10LQUVRqDlxhRM/1WOw6ChckUzYDf9ugUBwV4SPnCASKrTaeZw+nUJDgxeHy7sBlUrF9OQ8pl6KRuvlYg1ZInhhAiFLb25103XlMrs2vM/p7T+gKON7//RGE4tfeI28+YtdYe2E6e20cnJ7PXVnWskujeGeN/NFcREPoiiKX+cLTli0SZKkBe4H/tPQS/8E/BmDT5U/A/4/4MUb71MU5V+AfwGYMWOGFz+B3I9Ol0rrlVmUHVF7bQ6xuwizhFISkkd8hR7J232wWiZkWRLBCxJuCgesPnaY7//3v9HRVDvu4fWmYJa++Do5E2oC6pqHlc3q4NzeRk6XNRCXZWHxM7mYQnUuGVswNpQRDwV/dkb+ivCRE0OS1Gg08zl1MonGxsASa5IkkZeURUFrAkGnwavFGqCJMw5uaMZdXyxroLeX/V98Mu6KkMOkFhSz4rVfYAoLn6ipE+ZKQzfHttXRdqmH/CWJzLgnFVmkCXiEYR8pSZLf+0hXnLStBg4ritIEMPwngCRJ/wpsdsEcfolel0FLSwk7j8pMagUJL8BkNFISOZXUCyak8eUeTyralBBCH85EE2m47vXm6kp2fPA2NcePTGj8tKKZLH/155hCw8Y3gIseVMP5ahcON5NVEs39vywQIR4eIJCcUAAgfOQ4kCQNGvVCjh+Pp6UlsMQaQEZCKsW9qQSf84Hvv1omZOnQhqbqmr0Ou51jW79m7+8+om8cFSGH0QYFsfCZl8hfusoV1k6IutOtHN1Wi8OuULQyiaQ8zwvIQOPGjcxA8pGuEG1PMCLsQ5KkWEVRLg399UHgpAvm8Cv0+hwaG4s5cVwi0MSaXq9nRuxUMqssqK54964hgKRTYV6VgnFW7HUPhs7Lzez66D1Ol/00oRLL2qAgFj33CtMWr3CBtYxbvF1p6Obo93VcKm9n2uIEHv2jmWhEJcixM86vcyA7oQBA+MgxIMs6VPIijh2L4cqVwBNrCdHxlJBJWIVvPH9vt6F5bs9Oyj58l/amS7e5c3Qk5E1l1Ru/whwVPaFxJoLD7qT8QBNHt9UREq5n5r2pxKR6V6VKf0dsZA4yIdEmSZIRWA68NuLlv5QkqYDBc/zqG34W0Oj1U2m4WMCpU4H3gVOr1RQlTiG3LgLNGfD2MA8AfU4YlgcyUFuuhQX293Szb+MGjn67GbvNOqHxE6fks+qN3yMkMmqipo6bujOtHN1aS1drP4Urklj0VDYq1a2bggtciwh79H+Ejxw9smxAkhZy9EgU7e2BJ9aiwiMp0eUQU6X1Bfc4uKG5OgVj6fUbmvWnT7L9g3+nseL8hMZXa7TMe+I5itbc77HnY3+PjVM7L3Jy+0XisiwsfzGP8Lib+6QKXI/YyLw1ExJtiqL0AOE3vPbMhCzyQ/T6AmprpnHunKctmXxkWWZaYg7TmmLQn/GNL51s1GC5Lw1DwTUx5bDbOPLtZvZt3EB/d9eExldrdcx/4lkKV7vOGUk3/HknnA4n5QebOfr9YP5d8aoU0gsjRdl+FyDd4R0QTijwED7y7qhUJhTnIg4fDqOr07tbvLiDULOFkpA8Ei4EeX9e9xD63KENTfO1Dc0r9XXs/PAdLhzcN+HxY9IzWfXmrwmPT5zwWOOh83Ifx36o4/y+JtKLInng10WYI0XZfnei3BCxJPzjrXFV9UjBLdDrZ1JVmUtFhQ9sm7mBvMQsprclYPSFmPwhDEVRmO9JQzWUx3W18edH79LR3HSXu+9OTHomq9/6DWFxCRMea6xY++2cLmvg2LY6jBYdpfelkZIfMel2+DU3fNTFaZpAcGvUajN2+yIO7DfT0+PlFRHdQLDJxMywKaRUGpGbfOPZIJs0WO5Px5AfefW1nvY2dm/4gBM/bkGZYNlrWaVi1kOPU/rgOmTV5IeHNtd0cmRrLbUnr5A7J47H/0sJRosowOUurvpHRUGSRYTPaBCizeUMNvwsL8+kujrwHBFAenwqxT3JhJT7Rkw+gCpMT+iDGegzr/V8qTt1nO3vv01TZfmEx3e7M7qDIOhpH+DYD3Wc2tlARIKJJc/mkpg7zoIngjuiKMq1hYs4TRMIbkKjCWegfwF79gfT3x94PjJIH8SM6ClkVJlRXfa0NaPHMCMay5pUZMPghqa1v4+Dmz7j4KaN2Ab6Jzx+eEISq9/8NdFpGRMea6zUnLzCka01NNd0MW1hAk//2WyCgrWTbkcgcEv/KPzkqBGizUVIqNDq5nLmdAoXLwaeIwJIiklghj2dsAs+9LGSJUzz4zEvS0Ia6q1yua6GnevfofLwAZdMERafyJq3fjM5zmjEw6/1Ug9HttZyfn8jcRkW7vlZPnGZFvfbEGCM3F2WJEnsGAoEt0Cjiaa3dz779gZhtUKg+UitVktRbB45tWGofSj6RB0RhOXBDPTpg77D6XBw4oct7P7kA3o72ic+gSRRvOZ+5j3+HGrt5Aklh8NJxYEmjmytpat1gPzFCax6dZqoluxiFEW5VqxN+McJ40Ora+9EkjRDPWQSh3rIBJYjAoiNjGamnE1UtW897DSJwYQ+mHG1p0x3Wyu7N7zPyZ++n3CYBwCSRNHq+5n/hPud0cgTnYaKdo5sqaX6xGWS8sJ48NdFxKSJSleu4s5OyOERmwQCb0WrTaCrcy57dmux2z1tzeSjUqkoSMgl72IUOh8Sa6iGmmQvudYku+LgPnZ+8DatDfUumSI4IpJVb/yKpKn5LhlvNIxME7ANOJi+NJH8JYnogsRy2FVct5Epy+IkzYWIT+k4kWUdKtVCjh+L5fLlwKt0BRAZFsFMXTZx1Xqf0qqSToV55VAZf1nC2tfLgU2fcXDzRuwD42/8OZLJdkbDseFdV/rZ+FeHSZ4azsN/UCzKEruI60S82C0UCO6KTpdKa2spZTvVKErgLdpkWWZqQjbTmmMIOudbzwttSgihD2WiiRos43+p/Bzb3/93Lp495bI5pixcyuLnX0NnMNz9YhfQ22nl+I91nNx+ESQoWJpI/uJEtEKsuYSbhJrALYhP6xhRyQaQFnHkcAQdHYFX6QrAYrZQYsolsSoIyelbzjhoajiW+9JRmXU4HQ6ObfmOPZ+ud02YxxB58xez5MXX0RmMLhvzdjgcTs7va+L0zgYAJFnikf84g+jUELfP7e8oDsfVHULhhASC0aHXZ9PcVMyxYzKB1ocUBqMechIyKGhNwHjet54bskGNeVUqhpnRSJJEe+Mldn70Luf37HTZHEHBISx/5S0yS+e4bMw70dHSx9GttZzZcwm1RqZgWRL5ixOEWJsg10WcIHzkZCE+taNErQrB4VjEwYMWursDM2ct2BTMzNBcUipNPlPtahiVRYdlbTpBuYPVt8sP7GHn+t/S5qIwDwBtkImVr79F1qx5LhvzdtgGHJzaeZFj2+robhvAYBz8KgeH6YVgGyeKosDIJOlxFIwRUSCCQEWvn0bDxekB2Yd0mMz4VAq7fKsI1zCGwijM96SiMmnp6+pk7+8+4uiWr3E6XBfTmlY0kxWv/QKjJfTuF0+QlroujnxXQ8XhFrR6FcWrkpm+RJysTQTFMSL8X5aFUPMA4tN7F65VujLR3w+BKNaMEhBjZgAAIABJREFUBiPFEbmkV4WguuxjDnmo0EjI0iRkrYqG82fZ/v6/03DutEunSS0oJnvuU2TNynLpuDfS323j+I91HP+pnoEeOwk5oax4eSqVBy+y13X6M2BQnM5ru4WyPC6hJhAEMnp9MTXVeZyfWC9lnyY1Nomi/lRCfakI1xDqyCAsazPQZ1iwW63s+/wTDnzxKQO9PS6bQ6PTs+jZl8lftsplY96Oi+fbOPxdDbWnWgfF2upkCpYliZy1cTJSqAn/6HnEp/g2aLWx9HTPZe+eIGw2T1vjGfR6PcVReWTWWFC3+phYYygu/4EMNDFG2hobKFv/W87v2+XSOdQ6HQuffomCFWu4cLjZpWOPpLutn6Nb6zi1qwH7gIPYDDOl96cRnzW4Y1l5cPA6UWL+7igOx6BQkyTX7xaK378gILixtU1gkhgdzwx7OuFVvlWECwC1TMjiRIIXJoAMp7ZvY9fH79N1pcWl08Rm5bD6zV8TGhPn0nFHoigK1SeucPjbahorO1HrVBStSqZweZKoBjlGFEWBkakBQqh5FUK03YBOl0x72yx2lWlxRQFBX0Sr1VIYM1iaWHPe9xahsnEoLn9GNH1dnex8+585tvUbl4Z5AMRkZLH6zd8QFhcPXBfe7TLam3o5/F0N5/Y14nQoRCUHU7o2jaS8cNdP5scoI8rWSWrx2BMIxoMkqdFq5nLmTAoXLwZmtWSA2MgYZkoZRNX4ZuNlXVYooWvTUYcHUX3sMDs+eJuWmiqXziGrVMx++AlKHnwUWXbPwt/pVCg/0MTh72pobehBpZGZvjSRopXJGEJEn7XRojid11IDZFn4SC9GvDND6HVZtLTMoOyYyi2Lb19ArVZTEJdLXn0kWh8Ua0hgnBmDeVUKDrWT/Z9/wv4vPsXa1+vSaWSVitIH1zHroceva5StuPCD01LbxaFva6g80oyiQFickdL700griLz1DeKE5zqu7hYOIZyQQDB+BqslL+DE8VhaWgKzABdAVHgkMzVZxFbrPW3KuFCZtZjvTccwLYLm6kp2/K+3qTl+xOXzhMUlsObnv++23qQOm5Mzey5xZEsNnZf7kVUSU+bHMWNNKqZQ3xTSk83ViBMAlUr4SB8h4N8lvT6fhov5AZ08rVKpyI/PYUpDNHpfFGuAJs6I5YEMtAmmwTCPDe/T3XrF5fOExsax+q3fEJuR7fKxAS5VtHPwmxpqTw3aHhIZRMm9qWTNjEaSR/HeBLB4U5zOa0LNQ7uFgfvbF/gjKpURWMjRI5G0twfuyVpEaDgz9NnEV+uRfLF9gUrCNHcwt7u7q5Vv/uGvObPzJxTF9eK7YOW9LHj6BTRa14sna7+dUzsbOPp9Lb0dViQJskqiKbkvFXPk5LQO8GUUu/2aUFOrRTqFDxKwok2vn0lVZQ4VFZ62xHPIssy0+GymNsUQ5GOliYeR9GrMK5Ixzoql+tghdvzdO1yurXbLXNOXr2bhMy+h0bl+l7X29BUOfVNDQ/lg6wGDWcvMe1LJnRuLSjWa9yYwH76Kw3EtrEOlQtJ4OH8hMN8GgZ+hVltw2BdyYL+Znp7APVkLNYcyw5hNUrXB59rbDKNLM2NZm47DpFD26bsc+WYTdpvV5fMYQ8NY9fovSSkodvnY/T02TvxUz/Ef6unvGSwykJIfway1aYTHm1w+nz+hWK3X8tM87R8FEyagRJuECq1uNufOpVFXG5g7hjBYrGJKQjbTWmIxlvumWEMCQ1E05tUpXG6u5Zv/+4+pPXncLVMZzBZWvvFL0gpn3vnCMX6kFEWh6thlDn1TTXNNFwA6g5rCFUnkL0lEox1Hyfkx3+F7KDbb9buFwhEJBC5Bo4miv28++/cZGBiAQD1ZMweHMCMkl+Qqo8+1txlGDtZiuScV3dRQjn73NXs3fkx/V6db5soqncuyV98iyBTs0nF7O60c21bHie312PoHoyhiM8zMfjCD2HSzS+fyFxRF4Wr1PElC0orcPn8iIESbJGnQqBdw6lQCjY2BG+IhSRK58Rnkt8Zj8sE+MsNo4oxY1mbQH9THt//+t5zdvcM9VUCAjJmzWP7qzzGE3N1BKKP8XClOhYpDzRz8pprWhsGyyiqNTP6iBIpWJY+r2pW/RzkoVisKQ6JUoxFhHQKBC9Fpk+jonMWe3Trsrq3X5FOEmIIptuSSUmVC1eKjzxhZwjQ3juCliZQf2k3Zr96lo7nJLVNpgwwseeE1pixc6tJxu9sGOLK1htM7G7DbBk95w+KMzH4gnZT8CJfO5Q8oTufVYluSEGp+jV+LNpVsQJIWcvRoFG1tTgI1xAMgOz6DgvYEgit8V6xJQYOhkPJUE3s2buDolq9wuKkfg0YfxOLnXmHakhWjv+kums3pcHJu32Clq/amweIokgTZs2MpvS8VU6gLwi79SMw4rddCeGStNiBOEQWCyUQU4BrEZDRRHJZDWpUZ1WVPWzN+dOlmLPenc6nlApv/2x/QVFnutrnic6aw+s1fY46KdtmYnZf7OPxdDWf2XMJpH/xAmkJ1lN6fRnZpzOjyugMExeG42kNNkmVkIdQCAr8UbVfj8Q8Edjw+QFZ8GgWdSYRc8F2xNlwV0rg4jmM7v2XfLzcw0OO6xp83EpeVy+q3foMlOmZM991u0eOwOzm75xKHvxusdDVM8tRwZj+Y7qKYfP9wZs7BmCwAZJ2oAiYQuAO9fjoX66dx+rR/PDfGi9FgoDg8j/TqEFRXfPd3obLoMK9JpdfSw6a3/1+qjhx031xqNXPWPc3M+x5yWY/L9qZeDn1bzfl9TTidg45UZ1BTtCqZ/MUJqDU+vH5xIYrdfk2oqVRCqAUgfiXatJoYevvmsn+fkYEBhUANgwTIiEulsDsJ8wXffou1ScGY70ujovIAu/7zX9B12bWNP0ciq9TMfuQJSh54xCV9Zew2B6fLBssSd7ddEyORScHMeTiDhOzQCc9xEz520qYoCsqwUJMknxdqImxT4K1IkoReX0rlhWwuXAhc3whgCDJQFJFLRo0ZdasPf2fVMsEL4pGmG9i5cT2nftrmloqQw4QnJLHm579PVEqaS8Zrbejh4DfVVBxqRhkSa7JaYtrCBGasSRGNsRnM4b4q1NRqn/eRgonh2yv6EXR0JPPTT8uHKn4HrkNKj0uhsDcZS6Vvv7VysBbz6hRa5Hq+/bs/dnnjzxtxSV+ZoaM2m9XBqR0XObJ1sCzxMKYwHbPWppNVEu3yxb0viQVFUVD6h04cZRlZ75s9j26J77wNggCjovxeKiouE8j+MUgfRFFULpnVFtRtvv1l1eeFY1gay6EdX3L497/Ebh24+03jRZIoWnUf8598HrULTneuXOzmwFfVV/uQDpNRHMXsB9MJiQia8By+jGK1XhNqGo1/+UjBhPDtlf0I+vrUI3vpBhxpsckU9KUQ5uNiDZVE8Lx4+tLtfL3h76g9cdTtU04tKmXe2kcwTrARqFqn4siWWo5sraGv61qunVavomhVMtOXJgZsmIfidF4v1IIC2ykLBJNNe7unLfAcer2eoshcMmtD0fhoL9Jh1FEGQtYkcbZyN3v/9M/pc1NFyGFMYeGseuNXJOcXTHisltouDn5dTeWxluv2DmLSzMx9JIOYtMCtCOm0WhmuAiRptSL0UXBLfHyFL0iNSaJwIIWwKt8PI9DnhqGaFcKuLR9z5rfb3VYRchhjaBgrX/8l4Y0tqJzjn8vab+fk9ov0dVk5+n3d1dclWSJvXhyl96USFDw5D2DJi456FKcTpa9v8C8qFbJBND8VCASTh16npzAql6w6CxpfbW8zhBSkJmRpEheVCjb/43+io6nR7XNmz57PspffRG+aWN51c00nB76qpvr49VVeQiL0zH4wg4ziqAmN76s4BwauCTWdDkn4SMFdEKLNR0kZEmvh1b4v1tRRBoKWxnDk2Dcc/TP3VYQcSWbpHJa/8hZBwSF0fvPNuMaw9ts5/mM9x76vo7/HRs6sa4VLkvLCmPNIBuFxk9T400u0muJ04uztBSQklYxsNHraJIFAEGDodDoKo3LJrgv1ebGGDMaSWLoSu/ji079ya0XIYXQGI0tffJ3c+YsnNE5TdScHv6qi+sSV617X6lUUr05h+pJEVBoff3/GiHNgAMU2KNRkvQ5J5KgJxoAQbT5GSkwihQOpfiHWZIMa46I4zrUeYP///5cM9LqvIuQwt+wroyiDDSlHybBYO/p9LQM9I5oaSRAaY2DOwxmkTPNQLxkPiDdFUXB2dw9OL8uoJrgr68t4iXYWCAKSYbGWVReGttz3v426dDPOYj0/fPce1R8empQ5E/OmserNXxESMf7Tr6bqTg5srqLm5PViTZIgd14cpfelYQgJnPA/58AAitV6tdiWbBKbmYLxIUSbj5ASk0ih1T/EGrKEsTSGi/pKNn30p3RfmZzGOHfsKzMKzWbtt3P8h3qObrtBrDFYnjgiIZjFT+cgqyZ/59ATYZGOzqFcCllGFRw86fMLBAIB+J9YU4fr0cwPY/+hLzjzlz+5tSLkMCqNhnmPPUPxvQ+Ou7DV7cQaQHyWhXnrMolICAxf4RwYuFoZWdbrkYWPFLgAIdq8HH86WQPQZ4fSmdLN95v/miv1tZMy5936ytztlO22J2sM5q1NmRdH6f1ptDf3ekSwXWePm6tIOjo6hidCFRLi1rkEAoHgTvibWJP0KoLmRXOiYTtH/n7TpKQKAEQmpbD6579PZFLKuO5vrulk/+Yqak7cLNaCw/XMfTiD9CL/z1tzWq0ovb0gSUh6vfCRApcjRJuX4k85awDqaAOO6Rq+3/4eF789NWnzRiQms/qt39y5r4zCLYueWPvtnPipnqNbB3PWbiQu08L8x7KISBgKB3RfC7m740ax5ujsRHE4kCQJ2Wz2qfYCk4741QgEbsffxBoyBBVHUaWcZO/6v2Wgx/2pAgCSJFN87wPMe/wZVOqxrzWaawZP1m7MWQNQa2WKViZTuCLJr6smKzYbjqH0AFmnQ2WxeNgigT8jRJuXkRqTRIEfiTXZqEFVEsK+E59T/s+7J29iSaJ4zVrmPfEcas1ofpfXRJttwMGJn+o5srWW/u6bxZopVMechzPInHGLMEuP45oFjKOrC2Vol1dlNiOp/NfpuhJvqt4pEPgbep2egqgcsuvC0PiDWAN0WRaaIxv56pv/Z9JSBQBCIqNY/bNfk5A3dcz3ttR1sX9T1U3VIIfJKI5izsMZBIf5Z38xxeHA0d4+eKKm0aAODfW0SYIAQYg2LyEtNpmC/mTC/ESsoZbQFYdzvOlHjv/2O5yT2EQvOCKS1T/7FYlT8kd3w9Apm93q4MT2ixzZcn2ftWFUapmC5YkUr05Bo71ZxHhywe6K0y9Hdw9K/2CJflVICJKIwRcIBF6AXq+nMNI/SvcPo4420Jtp5fsf/2nSUgWGmbJwKYuffw3dGEvMX7nYzf5NVTf1WRsmLM7IgseyiM/2TxFjvzwkUlUq1OHhnjVGEJAI0eZh0uNSmN6bTFiVn7wVEujyQqlQjrN/499gH0rEnSzyFixhyQuvoTOMvjqTw6Fw6mgvJ97bQ2+n9ZbXJE8NZ966TCxRd3ByXrDxO1bt5uzrw9HZBRKoTCZUER6qeikQCAQ3EBQURGFEzmBTbD85WZNNGpz5On46+CEX3zs9qXMHBYew/NW3yCyZM6b7Wht62L+5igtHmm8p1rR6FSX3pTFtUbzH87pdjf3KlavpAerISE+bIwhw/EQp+B4ZcalM70kktNJPTtYATXIwjZY6yrb9E/1dnZM6d1BwCMteeZOs0rmjvsdhd3K6rIGDPwXR23/rHILgcD3z12WSOt1/HtaKzTa4YyhJyAYDmmj/TxCfNPxjXSkQeBRDkGFQrNVYULf5x5dK0siopgezv3Iz5R9MYqrAEGlFM1nx2i8wWkZ/Ctbe1Mv+zVVUHGy6Vdo3ANmlMcx5OMOvSvjb29oGKz9KEurwcCS1WCoLvAPxSZxksuLSyO9OxFLpP796VbiezqQutu/4W7ouT341jrE6I6fDydk9jRz8upqu1n7g5p1BlVqmcEUSxauSUd8iFPJWeHN9DkVRsF+6BIqCpNWiiY31tEkCgUBwHUaDgaLwXNJrzH4j1pBAM8XMyfYyjv3uWxSn+8v3j0SjD2LRsy+Tv3TlqO/pvNzHga+qOLevCcV5a7UWHm9kwePZxGX6R+ENR3c3zo6OwcrIoaHIIk9N4IX4j3LwYiRJIisujemdCYT4kViTjWoGMuGHg7+l5WD1pM8/6IxeIn/pqlFd73QqlO9vZP9X1XS29N32usS8MBY8loUlemzx/h5lWDHeoBxtTc0o1gEkWUYdFycqP7ob8esVCMaMyWiiKDSH9JoQVK3+8yXSpAZTKZ9k/7efYbfdOvTenQz2Jv0V5qiYUV3f1drPwW+qObv7Ek7HrcWaRqei5L5U8hcn+HwopNNqxd7UNCjUTCY08fGeNkkguCP+oyC8EEmSyInPIL8tjuAL/vOrljQySo6WXec2UrvxuEdsGIszUhSFikPNHNhcRVtj722vM5q1zFuXRUaxb4cL2tvaru4YqmNikHU6T5skEAgENxFsCqbYkkNKdTDqK/4j1tTRQTRa6inb+feTVr5/JCqNhrnrnmbGvQ/esjfpjfR0DHDo2xpO72zAYb/9SWB6USTzHs3CFOq7PkVRFGz19eB0Iul0aBMTPW2SQDBq/EdJeBGyLJMXl8nU1lhMFX5UKl0CVbaBQ43fc+7LnR4xQaXRMPexZ5hxzwOjckZVx1rYt6mKK/Xdt71GkhRyp+iZ+3IpWv34vxKePMVS7HYiYuPJmz4DAG1KisdsCWT8Z9kpELgPc4iZ4pBskqtMqC77z7dGNmvpjO/kp93/Sk9bq0dsiEpJZ/WbvyJiFI2y+7ttHP6uhhM/1WO33V6shUToWfBENslTfLdioq2xEedQ42ttUpJoYyPwSYRocyEqlYopcZlMaYnFWOHbYQM3ok41crp3H0e//QZFmdyY/GGiUtNZ/eaviUhMvuu1dadb2ftlJc3Vdy6IEpUcTHHcJWKmhU1IsHkCRVGwVlaiOBxMKypl1iNPeNokgUAguC1h5lCKjFkkVRuRm/1HrEl6Ff2pdnYeeZsrR+s9Y4MsU/rAo8x6+AlUdymcMdBn5+j3tRzbVoet//bteGSVROHyJGasSRl1brc34ejowNbUNFj5MTYOTczowkQFAm/Ft1apXoparWZabDZ5TVEE+UkPmWFUsUHUqM+yd8enOOx2j9ggq1SUPLCOWQ89dldn1FDRzr4vKmkob7/jdVq9itK16UxbGE/HF19wyzrGXoqtoQFHRwfIKnTpaaKylUAg8GoiQsMp0meSUGNAbvIfsYZawpmuYte539Hw9VmPmREWl8CqN39FbEb2Ha+zWR0c/6GOI1tqGei9sz+PzTCz6MkcwuJG3z7HG1BsNgYuXABAZbGgz8rysEUCgesQq70JoNFoyI/JIfdSBHp/E2uhOhotF9m5ez22/tsX7XA34QlJrPrZr4hJz7zjdc01nez7spLaU3cPSUkrjGT+uhFx+berZTxW3LgWcXR1Ya2uBklGEx+HPi7OfZMJxo8o9CIQXCU6PIoiTQZxNXokxY++GxJI6XoO1n1NxbcHPGeGJFO05j7mPf4cau3tS+47bE5O7rzIoW9r6LtNL9JhdAY1cx7KIHdurE8VrhqorMTZ04uk1aLLzvYp2wWC0SJE2zjQ6XRMj84mpz4crZ+JNdmkoT2qje37/5nerjufVrkTSZIpvvcB5j72DGrN7XvZtTb0sH9TJReOttz1sMwUqmPB41m37rnmAuHmah+hOJ30nzqNYrehMlsImjbNtRMIXI5YJggEEBcZQ6GUTmyt3tOmuBw5Wc/JjjJObN3mUTvM0TGsev33SMibettrnA4nZ/c2cuCrKrpbB+46ZuaMKOaty/KZnmv2K1ew1tQiyRLajAxUJpOnTRII3IoQbWMgKCiIgogcMutC0Z73r+WZpFPRm9DPjiPv0n7ikkdtCY2NY+UbvyI+O/e213Re7mP/5irO72u8q96SJJi6KIFZa9NunbemKK47bXMB1pqawTh8tQb91CnId9hBFQgEAm8hKTqeAkcqUXW+W13wdsgxei44j3Fg+5cey+sGQJKYvmw1C59+EY3+1qJYURQqDjazb1MlHc13j5QJDtOz8Mlskqd6f6ERxWaj78QJcDhQR0ZiKCr0tEkCwaQhRNsoMBmNFIbl+FfDz2FUErZkhbIzH9P8/QXP2iJJFK66l/lPPIdGd2tn1NMxwMGvqzld1nDbPjIjCYszsvjpHGLSzHe4ylWCbfyfDUd3D/0nBtsnaFNSMJaUuMgmgUAgcC9psclMH0givMb/NpjkcB31ugp279vgsbzuYYIjIln5+i9JnlZw22uqj19m75eVd6yYPIwkS+QvSqB0bRoanXcXGhkoL8fe0oKk0xGUn490hwgcgcBfEaLtDoQEh1Bkzva7HjIASOBMVrG3ehN120542pq7hnr09wyVJv7xzqWJh1GpZYpXJ1O0KhnVaBqAeig8su/oURwdHcjBIRhKS0fVxkDgxfjZY0IguBNZcWlM60kgtMr/FtByiIZmcwM79n2IbcBzed3DTFu6kkXPvIQ2yHDLn18838bezytprOwY1Xjh8UYWP5NLdEqIK810KY6ODvqOHgVJQpedjTHzzrntAoG/I0TbLbhalrjGiNzih6uwRA2Hm76n/Me9nrYEJImCFfew4MnnbxnqYRtwcGxbLUe21mHtG90uZ0yamcXP5BAWO8qqV4qCMonhkbamZvqOH0NSqQgqLCQoNHTS5hYIBIKJIEkSufEZTG2PJ6TSu09nxoNkUNMe0cqOg+vp7RmdAHInwRGRrHj156RML7rlz5trOtn7RSV1p0fXF06llpmxJpnClaPc0JxkFEWh79Ah7G1tqENDMS5YIIqKCARDCNE2gqiwSAp1GSRUB/lXpashpDgtpzp3cWLHD542BQBLdCwrXv8FiXk3F9hw2J2c3HGRQ99U09dlG9V4Gp2KWQ+kMW1hApI8+vdvMgSbYrfTs2cPzq4u1DGxhCxf7vY5BQKBwFUM9yHNuxyDqcIPxZpWpju2l51HP6TjVLOnzQEGT9cWPv0SOsPNp2ttjT3s+7KSC4dbRj3emDc0JxFbYyO9hw4hqdQYZs7AMGOGp00SCLwOIdqAuMhYCqU0v6x0BSBHaTlvO8Kh3V95RcENSZIpWHXPLXPXnE6Fc3sbObC5iq7W/lGPmZgXxqKnsgkJDxqfUa74tdxCJ1qrq+k9fARJq8U0by4qi8UFEwkEAsHkoNFomBaTTV5jpN+1tgFALTEQZ6Ps9AYun6vztDUAhERGseLVX5Ccf3PuWldrPwc2V3F2byOKc3SOS61TMWttGvmLxrah6W4Um43usjIc7R1o4uMIWbNGnKoJBHcgoEVbSkwi020pRNb5X/I0gBympVo+w94Dn6E4PVjtagShsfGsfP2XxOfk3fSzC0ea2fdFJW2NvaMeT2dQM/eRDHLnTKBvmYuqR0pDqs05MED3jz/haG9Hl56G5aEHJzy2wDcQCw6Bv6DX6ZkelU32xTC/a20DgAy2BNhT/hmXtp/3tDWDSBLTl69hwVPPo9VfvwHZ12Xl0Dc1nNxxEYd99P48ISeUxU/nEBIxzg1NN2CtrqZn777BzcyFC1CHe3/VSoHAG5iwaJMkqRroAhyAXVGUGZIkhQEfAylANbBOUZS2ic7lKjLj0sjvSSC02v+SpwFks4aL+ip2HdyAwz660EJ3I8kyxfc8wNx1T9/UBLT+bCt7Pq+kubpzTGOm5Eew6MlsjBbvKC9tra2hdesBJH0QwcuWCkckEAQ4vugfjQYjBeHZZNRa0JT74SaEBI54mQN1X1Gz/binrbmKJSaWFa/dnC5g7bdzdGstR7fVYet3jHo8rV7FnIczmDI/3tWmjgun1Ur3tm3Ym5vRpqVheWyd2OQSCMaIq07aFiuKcnnE3/8Q2KYoyn+XJOkPh/7+H10017iQZZmcuAymtsX5ZfI0gGRS0xzcwM6DH2Gzer7a1TARSSmsfP2XxKRfX/mpuaaTPRsvUH92bOsVvVHDvHWZZJfGuMZA5ep/xoyzv5+uLVuwNVzCHpdN9DPPiAqQAoFgJF7vHwHMwSEUDldLbvXPxbQSr+Zw41Yqdu73tClXkWSZojVrmfvY02i01zYgHTYnJ7bXc+jbGvq7x7b5mjQljMVP52AK9XzKx0BlFd0/bAO1mpAVK9DETSAqRiAIcNwVHrkWWDT0/78FfsJDTkmtVjM1Nou85igMfpg8DSAFqWgNvcyOw+vp77t7b5bJQqVWU/rgY5Q88Cgq9bWP2ngSqIdJK4hk4ZPZGEJcGNI6jvDIgfJyOrdsQVJrCLlnDeb7E2hr7BGCTSAQ3A2v8Y8AEaHhFAZlklht8M9qyQAxGo637eBM2Q5PW3IdEYnJrHj9F8RmZF99bTCv+xL7N1fR3TowpvFcki7gApxWK11btjJQXo4uK5OwZ59F0vpnGopAMJm4QrQpwBZJkhTgnxVF+RcgWlGUS0M/bwSiXTDPmNDpdORHZ5N9Mdw/k6cBSaeiI6KdnUc/pPu010TXABCblcPK135BeELS1de62wYTqM/sGX0C9TB6o4YFj2eROXPSP0pXcVqtdH33HX0nTqDPySX85ZeRdd4RmikQCLwSr/SPAHGRMRTI6cTW6vyyWjKAFKXhTM9eju353tOmXMftNjQrj7Sw94sLY8rrHiZ5ajiLnsrBFOo5n2StqaHjiy9RbDZC1qzGfO89HrNFIPBHXCHa5imKclGSpChgqyRJZ0f+UFEUZchhXYckSa8CrwIkJSXd+ONxYzQYKAjPIaPOjOa8n4o1rUxXVDc7j39M51nvKE08jEYfxLzHn6Vw5T1XT536e2wc+raGEz/V4xhFY+wbccvp2nXc+aQcD3uHAAAgAElEQVTNWlND++8+w9nbO3iqdt99brJDIBD4GePyj+A+H5kSk8h0ezKRdf674SRFaDhvPcLhfV952pSbiMvKZcVrvyA8IfHqa/Xn2tj7+QWaqsaW1w2gDVIz79FMcufEutLMUaPY7XT98AM9O8vQpqYS9tyzqMxmj9giEPg7ExZtiqJcHPqzWZKkjUAJ0CRJUqyiKJckSYoFblIWQzuO/wIwY8aMCZfuM6qCWJQw06/j8VFL9Mb0UXbqE9rONXjamptIK5rJ0pfeICQiCgCb1cGxbXUc2VI76sbYI9EZ1Sx4LIusEhflrt2OWzTXVhwOun/8kc4tW9AmJhH69FNooqLca4dAIPArxusfh+5xqY/MiEhmoS3PbwtwAUhhGiqdJ9l/8AuvaG8zEm2QgflPPMf0FdfK2rfUdrH38wvUjrIx9o0M5q7leuR0zdbURPuGT7DW1RKyciUx/+2/ivQAgcDNTEi0SZJkBGRFUbqG/n8F8H8BXwLPAf996M8vJmro3UiwhmKsCHH3NJ5BJdEfa2XXmd9xubzG09bchMFsYfHzr5IzZwEADoeTM2UNHPiqmt5O67jGTMmPYNFT2RjNk+uM7C0ttH3yCf0nThK8YgWxf/7nyKOMxReVsAQCwTDe5B8BChpisTd7T4EqVyJZNNTIZ9l7xHva24wkY+Yslrz4OsFhEQC0N/ey/8tKyg81j6sGllavYu4jmeTNm9zcNUVR6N27l/bffYZsMhL6xJPos7Mm1QaBIJCZ6ElbNLBxaLGqBtYrivKtJEkHgA2SJL0E1ADrJjhPYCJLDMTa2FO+kaaKSk9bczOSxLTFy1nw1IvoTSYURaHiYDN7v6yks2V8iwNtkJr56zLJmT15oR6KomCYOZOLv/l9FKeDsCefJPJnP5u0+QUCgV8i/KObkcwa6tUV7D7yKU7H2KM53I0pLJwlL7xGZskcAHo6Bjj4VTWnyxpwjjGve5iEnFCWPJtLcNjkVYZ0dHXRsXEjXd9vwzhnNtF//EeoQ0MnbX6BQDDIhESboiiVwPRbvH4FWDqRsQMaGayxTvZVfkFDmZc0/byBsPhElr/yJgm5UwGoPXWFPZ9f4HLd+KtXJuaFseSZyStT7OztpePLL5Fkmc6vvyby936JNjHx7jfeDnHQJhAIhhD+0X1IIWoadNXsOvQJDsf4ojnciSTJTF+xhnmPP4vOYGCgz86R72o49kMdduv4TgLVWpk5D2UwdWH8pEV19J87T9v69QxUVBC67lGS/u1fRRVIgcCDuKvkv2A8SGCLU9hftYn6sjOetuaWqDVaSh96jJn3P4xKraapqpM9n1dw8Vz7+MfUqZj7cAZTF0xOE1BrdTWt69fTu2cP5rVrsaxbhyrET0NrBQKBwE+QTGoaDbWUHd6A3Ta2cviTRVRKOstfeZOYjCzsNgdHttZy6NtqBnrGfxIYm25myXO5WKIMLrT01ih2O13ff0/bB+uRDQbCXngB46xSt88rEAjujhBt3oAE9jjYX/0VdWUnPW3NbUmZXsTSF9/AEhM72GvtizNcODL2Xmsjic0ws/S5PMyRQS6y8tYoikLPjh20vv8B9suXCX/heaL/w39A0rguKV+ktAkEAoHrkUxqmgz17Dq8AavNO/PytEFBzHn0aQpX3wvInN7VwIHNVXS3jV9cqtQyJfenUrgsCUl2r4OxX7lC+4YNtH+2EUNpCTH/9U/Rpae7dU6BQDA2hGjzJBLYY+Fg3bfUlB3ztDW3xRQaxqLnXiF79ny62wb48b0z4+q1NhKVWqZ0bRoFSxPd6owc3d10fPYZrR98gDY+nrAXX8I0b66bZhOqTSAQCFyFZFTTbLpI2eENWK1j7102WWSWzmHx868SHBZB5dEW9n4+vl5rI4lINLHshTzC40wusvLW9J08Rdt779G9exeWhx4mZf0HqCMj3TqnQCAYH0K0eQIJHENirXqX94o1SZYpXHUfc9c9hdOpYfdnFZz4sR77OHqtjSQyKZhlz+cRFmd0kaU3M1BVRdv7H9CxaROmeXNJ+Ju/QZ+X57b5QJy0CQQCgSuQjGpaTA3sPPIx1gHvFWuW6FiWvPg6qQXFNJS38d2/HhxXr7WRyLJE0apkZtyTgkrlnhL6it1O15YttL73PrZLlwh7/jli/uS/IBvd55MFAsHEEaJtMhkWa/XfUb3rqKetuSNxWbksfekNwuKSOf5jPYe/q2Ggd2LVudztjBRFoadsF63vvUvv/gOYH3yA1N99OrHiIoJboigKkiRd7W8n2h0IBIKJIhnUtIRcouzIxwz093janNui1miZufYRStY+QnvzAJv//hg1J69MeFxLtIFlz+cRneqeHGt7WxvtGz6hbf16ZJOJ8JdewnzfvS5NExAMMtJHCv8ocBVCtE0GQ2LtUP13VHm5WDOYLcx/8nly5y3m7J5Gvv6nPfR0TLw6lzudkbOvj44vvqT1vfewNzUR+sTjxP3FX6COiHD5XIHKyObjkiRddULCGQkEgoniK2INIK1oJouffw1ZZebH98s5f6BpXL3WrkOCaYsSmPNgOmqtyiV2jmSgvJzWd9+jY9MmdJmZRP/nPyZ42TLx/HYhwkcKJgMh2tyJD4k1SZaZvnwNcx97mvqzvXz0Zwdob3JBWIobnZGtqYm29z+gfcMGkCTCnnuW0Kee8lwlSD96Nt/OAQkEAoGrkIxqWoJ9Q6yZo6JZ9NyrxGUVcvCbak7tPIPTPlG1BqZQHUueyyUxJ8wFVl5DURR6du6k9Z3f0rN7N4aSEhL/8R8wzpnj0nkCFeEjBZ5AiDZ3MFRg5JCX56wNE5+Tx5IXXsfab2HT/zxDc02XS8Y1hepY8mwuibmudUZ9J0/R+s47dH73HSqLmfDXXiP08ceQDe4vh+yvjHRAIHYHBQKB+xjOWSs7usHrxZpaq6Nk7SNMX7GWk9sb+eG9PdgGHC4ZO6s0mgWPZaEzuC480dnfT8fnX9D67rtYKysxzp9P8voPMBQVuWyOQONW/lH4SIEnEKLNlYysBukDYs0UGsaCp14gInkGezZWUHem2mVjZ5VEs+Bx1zkjxemk+8cfaX37HXoPHkQdE0P0H/wBlnWPIut0LpljovjSQ1yINIFAMNlIJjXNRu+vBjlMZskc5j/5IrWnbXz0Z4fo67K5ZFy9UcPCJ7PJKI5yyXgA9pYWWtevp/3Dj3C0t2NasoS4//E/CJo21WVzBArCPwq8FSHaXMFQU+yD1V9Tu8t7+6wNo1KrKb7nAXLm3c/hLQ38sP7AxGPyh9AZ1Sx6MsdlzsjZ10f7xo20/fZdrDU1qGNjifnTP8H88MPIWq1L5ggEnIoTaUT8pnBCAoFgshjss1bHrsOfeG2ftZGEJySx6NlX6O+LYdPfVdLV2u+ysZOnhrP4mRyMZtdsNvafP0/rO7+lc/NmFJuN4GVLifjZz9Dn5rpk/EBAiDSBryBE20SQwRrrZH/VZi6Wnfk/7d13eFRl+vDx73OmpvfeSEIooYQq3QJWrNgbqKisdVFsa9vVFV333d82d22o2AuCKFbsZREbKkVa6CShpEB6nZnz/jEBEkhCyvTcn+vKRebMOc+5PSZz5z7nKd6OplOyR43hmHOmk/9TA4seXYWjB2utHS59UDSTZwx0STKylZay75VXKH9jAfbycmex9sCfiDz3XJSPFmu+9Dnv0A8ty6BQaMo9U0cLIUR7VJiR3dYdLP91EU1Nrit83MUaEsq4Cy4lImkM3y3Zzr5drsvrRouBCef1ZfCxKS5pr2b5csrmP0/NsmWglLNYu/FGrAMGuKT9QKbrOnqLO9WSH4W/kKKtOzRFQ1ITP255j13L8r0dTafEpKYz4aKrKN0VzXv/2Y6tsWdrrbVkNGvOZHRcao/bati6lX3PP0/FknfRGxsxJiSQcP99RF1wgc8Wa76gZZEGkoSEEN6jIowUmbay/Je3sNt7PvuwuylNY+iUU8k+5kx+/biY3UvWurT9xKxwplyZS2R8z8Zd601NVH70EWXPv0DDemdBGXrCCcTdfJPb1yH1Z4cXaXIjU/grKdq6wqCoT2zk+/wl7N2yxdvRdIo1NIyx516Crg3m6zcKaajd4dL2EzLDOfHKXCITepaMalesoOy5+VR/9RXoOoaYGGJnXUvkxRf7zJi1o/PcozaH7mi1/oskICGEt6lIEwXaJr5f+RZ2e8/W9fSU9MF5DDv1Mjb+2MSHT2xyaduaQTH69D6MOLUPmtb9/GCvrqF84UL2vfQStt27AQiZOJG42b8naMgQV4UbUOwO52QxSikp0kTAkKKtM4yKuoR6lm9YTOnmnd6OplM0g5G8k04jOvUEVn5WTE3Fdte2rylGnd6Hkad1PxnpDgdVn3/Ovmefo26Vc+IWLSKCmKuvJvryy/xuNkh3do/Udb3V0zSDZgioJQaEEP5LRZvY7ljHj6uW4HC4ZmZFd4tKSmbUmZezd0cMn87fg+66kQLO9hODOWnmIOLSw7rdhq2khH0vvcz+BQtwVFYCEDxqFHG33kLwyJGuCjUg2Fv83CmlnDlSiAAjRVsHlEmjOq6a5eveYt+mXd4Op9OyRh5Dn2Fns3ZZLet/KHR5+1GJwZx4VS7xGd1bD83R2EjFO++wb/7zNG7fDoAKDiZ6xnRirr4aQ1j3k1yg0HUdu958p7D5LqEkISGEL1ExJrY0reKnX97H5VWPm1hDQhlxxgU01A3k28V7cdj3uvYECoaekMq4adkYTd37zG7Yto198+cfHCYAYB00iLhbbiF00kRXRuu37A47OvrBCbYkP4reQIq2NiiLgYqYcpavWURFfrG3w+m0uD5Z5E66gK2rrSxfXOb6E/RwoWx7dTX7X3+dfS+9hL2k1NmkyUTkhRcSe/11GGNjXR2xZ/XwyZfNYTuYhDSlYdTk11MI4YPijOTX/syvK5Z6O5JO0wxGhkw+FUvYeFZ/vR9bwx6Xn6OnC2XXrV5N2TPPUvX55+Bw9qww9+lD3C2zCTvllF49q6FDd7S6kSn5UfRG8lPfggoysD+ylGWrFlKzYb+3w+m00KhoBk8+n+KCZH54vxJwzVoyrc/R/YWynV08XmL/62/gqK52blSK8NNPJ2727zGnpbk4Wv9gd9hx4EzMkoSEEL5OTzCwvuJ71vz4hbdD6ZLsUWOJzTiFDT/U0VBT6pZz9GRt0upl31L2zDPU/vDDwW3GuDhib7yRyPPPQxl7Z25ochz6W8agDJg01y1CLoQ/6p2fBIdRoUZKQnbz7co3qa+v9nY4nWayBjH4+DOoqR7Eyi8qgUq3nCdndALHXdL1ZNRYUEDZc89R8fY76A0NB7eHjB9P/O23BdxsV0e7C6rrOjaH7eATOaMyYlDSpUMI4dscSRprSr5hw/ffejuULknM7kf60LPY8quRoi1VbjlHd9cm1R0Oqj75hLJ5z1C/bt3B7VpICDHXXkP0FVegBQW5OlyfZnPYnGumKeeNTCnShGitVxdtKtzIbov/rCFzgGYw0G/cZJRpDBt+rEXX3VOsWUKMHHdJf3JGJXTpuPqN+ZQ98wyVH30E9kODgy39+xN/++29qk9+k/3QnUKlFCaDJCEhhB9QYEuCX3d9xtblP3s7mi6JiE8k+5izKNwYy+qv6gH3LDuQPiiGyTO6tlC23thIxbvvUvbMszTuaDGbs9FI1EUXEXvjDRiju9e90t84dAc2h+3guDSjZkT1YJZNIQJdryzaVJSJApXP9ysX+820xAf0GXYMIdHHs221HYe91m3nSR8UzeTpAwmJ7Hwyqlu5ktKn5x2ctv8AY3w8cbNnEzHtHJQW2NPu2h12bPqhJGQ2yNpyQgg/oikak2ys2PYRBd+6dr0yd7OGhdNv7OmUFmWx7ts6wD03Y7uzULajro7yhQspm/88tj2tx9OFnjiF+Ntuw5KZ6epQfU5ji3X7NKVJjhSiC3pX0RZrZGvjalb8+gG67rrFpT0hMbs/MRmnsOM3M3t2uK/QNFoMTDg3u0sLZdd89x2lTz3dqj8+gAoKIubqq4m5emZAd/NosDc410yz6uhoWAz+sq6cEEI0MyrqEhr4If9dv1mH9ACj2ULOmJOoqRpC/ooGoM5t5+rqQtn2qir2v/oq+158Cfv+1mPlrYMGkfCHuwgePdodofoEu8N+cGyaUkryoxA90DuKtgQjG6p+ZNVPn3o7ki6LSkolqf+pFOZHU/6rDXBfsdnVZFT15ZeUPvUU9atWt35DKSLOOou4ObdiSuha10p/YHPYDiUhFFaj1csRCSFE9yizRlVsFd+tW+xXS9sAKE0ja+SxOPRj2PabDWg46jHdpRkVx5yRyfCTMzq1Nqlt/372vfAi+197DUdV6/F0xvh44m69lYhzzg7IGSHrbfXoOHvbGDWj5EghXCSgizZHksbq4q/Z+P1yb4fSZaFRMaQOPpU925PZusoOuO/pWleS0YHB06VPPU3Dhg1HvB80fDgJ99xN0JAh7grXK+psdc4B0oBJMxFkDNwnh0KIwOecLbmM5asXUbXRDUvEuFn6kNGYgiZStEnhzvwIEJMSwolX5RKbevQ1RJuKi9k3/3n2v/kmem3rIQzKYiF65lXEXnstWnDnbo76A7vDToP9UMEcZAwKyGJUCG8LvKJNg6YknV92fsz25au8HU2XWUJCyRh6MqW7stn+mx2wH/WYnohJCW1ORqEd7qfb7VR+8AGlT8+jsY2uM8bEROJvu42IM89wV6geZXfYqbPVoZQ6+DRNU4E9Hk8IEfhUmJHioEK+XbWIhvoab4fTZYl9cwmJPZ5d+Va3r+etNMXwk9I55sxMDMaOP/+bdu2i7NlnKX9rcavZkg8IO+UUEu68A1NK58fB+bJ6W/3BddMMykCwKXCKUCF8VcAUbQ7loD6lkR82v8eeZZu9HU6XGS0W+gydTPm+XHZu0HF3saY0xYiT0xl9RsfJSG9qouLddyl9eh5NO3ce2Y7Z7LxzOGuW3985rLfVH+z2aFAGQs0dF7JCCOEvHGGKQtt2vl/5Nna7e2ZTdKfYtEwiUqawe1ME5WVurtaAiPggTrwyl8SsiA73aywooGzePMrfWQJNR66RaunXj4R77iFk7Bh3heoxVY3Obp4HbmRaNen2KIQnBUzRtqNqLR8v+7e3w+gyzWAkY+ix1NTkUbhZAe5PRpEJwUy5ciCJme0nI72xkfLFb1M2bx5Nu9oe5xB6wgkk3P0HzOnp7grV7SobKw92ewwyBhFmPnr3FyGE8DefbHiOssIjb7z5uoiEZGIzprB7azzVG3XcniMVDDkulXHnZmMyt7+OZsO2bZQ9PY+K998H25HdM7XwcOJuvpmoSy9BGfxzPc4mexO1NmcXT6UU4eZwL0ckRO8WMEWb7oFix5WU0kgbPI7GppHs3u6h/w0K8k5IY+w5WRjbSUaOxkbntMTPPHvEtMQHmNLTSbjnbsKOP96NwbqH3WGnstG5rp1CEW4Jl26PQoiAp7u7L6GLhUbHkpB9Int2plC0yQPFGhAWbWXyjAGkDmh/nbSGrVspffIpKj/8sNU6pAcpRcS0acTfNgdjTIwbo3WP2qZaGuwNKBRmg5kIS8dPGoUQnhMwRZvfUIrUAaNwcAzFhZ6b+jY81sqUKwaSnBPV5vuOhgbK31xI2TPPYCsubnMfZbEQM+taYq69Fs3sP2ur1NvqqW6qRqEwakairG1fAyGEEN4VFB5BUr8plBRmUOSh3icAuROTmXB+X8zWtv8sati8mdInnqRy6VJwtD2Ls2XgQBL/eD/Bw4e7M1SX21+/H7tuR6EINYcSZZIcKYQvkqLNg5L75aFM4yjd5cGxXwoGH5vC+HP7YrIc+XTNUV9P+ZtvOp+slZS020zocceRcP99mFM7v36bN1U1VjknEmnuex8bFOvtkIQQQrTDEhJK8oATKNudza4tnuv9EBpl4YTLB5A+qO2nYvX5+ZQ++SRVH3/SbrGmhYYSN3u233SF1HWdkjpnvlcooqxRGDX5c1AIXye/pR6QkJWLKXgCpUWeHS8VFmNl8oyBpPY/8q6Zo76e8gULKH32Wewlpe22YUxKIuGeuwk/6SR3huoSZXVlNNobD/a9jw+O93ZIQgghOmC2BpE88HjKS/qze6tnu6oPHJ/EhAtysAQd+adQfX4+pU88SdXHH9PRNJXhU6cS/4e7MMX7dr5pcjRRUluCpjQ0pUl+FMIPSdHmRnF9+mENm0RJYQTs9+CJm5+ujZuWfURXD0dDg7NYe+aZDos1DAaip08n7uab0EJC3Bxw9+2p2UOTowlNacQGxWIxeK7LqRBCiO4xWiykDDiOirKB7Nnu2adToVEWjr98ABltPF1r2LSJksefOGqxZspIJ/GPfyR0wgR3htojdbY6SmtLUco5Pi05NNnbIQkhekCKNjeIScsmKHISpYXRVFV49tzhsVYmTx9IymFP15zF2pvOMWsddIMEsA4dStKDD2AdONCdoXZbQWWBs/+9UiSHJGMymLwdkhBCiE4wmMykDJxIVflg9u70/J8guROSmHB+DubDnq41bN5MyeOPU7W042JNmUxEX3M1sdddh2bxvZuE1Y3VlNQ5n6gFGYNIC0/zdkhCCBeRos2FolMzCYmaRElRLDXVnj23UjDkhFTGntN6mmJHY6NzgpF589qdYOQALSSEuFtvdfbL13xnRkVd19lWuQ2Hw4GmNNLC0zBpUqgJIYS/MJhMpAyYQFXFYIoLPD+RVViMlRMuH0DawNYzQzZs3Urpfx/vcIKRA4JGjiTpzw9iyc52Z6hdVtFQwd7avWhohJnDyIzI9HZIQgg3kKLNBaKSMwiNmURJUTy1NV44f2IwJ0wfSFL2oal59cZGyt96i9Kn57U7dX9LoVOmkHj/fZgSE90Zaqc5dAebyzdjd9jRlEZWZJYUakII4WcMRiPJAyZQUzWE4kLPF2tKweDjUhk3LbvVZFyN27dT8vgTVH7wwVGLNS0sjPjbbyfywgtQSrk75E4pry9nV80uNKURaYmkX1Q/b4ckhHAzKdp6ICopndDYYykujKOu0PMf5JqmGH5KOqOnZmIwOZ+M6U1NlL/9NqVPPYVt1+6jtmGMiyPhvvsIP+Vkd4d7VA7dwcZ9G2l0NGJURvpF9ZOuj0II4Yc0g5GUAeOpqR5CSZF3uhFGJQZzwuUDSOobeXBbY0EBpY8/QcV777W9ztphwk4+mYT77vWJiUbK68vZXrkdTWlEW6PJjcn1dkhCCA+Soq0bnMXaJIoL46krVHjjvlt8RhgnTB9AbKpzRkrdbqdiybuUPvkkTQUFnWoj8oLzib/jDgzh4e4MtUO6rrN+33pqmmowakYGRg/EarR6LR4hhBDdZzAaSeo/jtrqoZTs8k6xphkUw09ufUOzqaiI0qeeovztd8BmO2obxrg4Ev54v9dnTq5srGTjvo0oFNHWaIbFD/NqPEII75GirQt8oVgzWgyMOTOToZPT0DSF7nBQ+cEHlP73cRp37OhUG6b0dJL+/CAhY8e6Odr2bdi3gdK6UgzKwKDYQYSbvVc4CiGE6BmD0Uhy//HUVA2h1EvFGkBCZjgnXD6AmJRQAJr27qX0qaeoWPQWelNTp9qIvOB84u+8E0OYZ5fpOaC2qZaVJSvRdZ1IaySjE0d7JQ4hhG+Roq0TopIzCImZRElzN0hv9WhPHxTNcZf0Jzw2CF3XqVy6lJL//pfGzVs614CmET1jBnGzf48WFOTeYNuwtXwrWyq2OAu1mEEMiB7g8RiEEEK4jsFkIrn/eKorB1Gyy3u9JExWA2PPzmLIcakoTWErLaV03jzK31iA3tjYuTZSU0l66M+EjBvn5miP1Ghv5Kc9P1FvqyfMHMYxicfIgtdCiFbkE6ED0SmZBEdNpHRXHHWFeK1YCwo3M+mCHHJGJwBQ9cUXlDz2Hxo2bOh0G+a+2STPnUvQMM92rdhTs4cVe1egUORE5XBShu8v0i2EEKJjBpP5ULHmpTFrB2TmxXLsxf0IjbJi27+fsmefZf9rr6PX1XWuAU0j6vLLiL/1Vo/e0LQ77KzYu4Li2mKCTcGMTRpLiMl310UVQniXFG1tiEnLxhoxgbKiWGprvRiIgkETkxk3LRtLsInq/y2j5LHHqF+zpvNtGI3EXH01sTfegGb2zMxdFQ0VfFP4DfX2elJCU5iaORVN+c4SAkIIIbrHaDaT1G8i1eW5lBR5fjbIlkKjLEy6qB9Zw+KwV1ZS/O+n2f/SyzhqOj+Ns7lPH5IeeZjgESPcGGlra8vWsrZ0LSbNxLjkcYxJGuOxcwsh/JcUbS3EZfTDFDKOfbtjPL7O2uFiUkM5/tL+JGZFUPPjj+z+92PU/fxzl9qw9OtH0iOPEDR4kJuiPKTR3sj/Cv9HQVUB0UHRTE6bTKg51O3nFUII4X4mq5XEnIlU7h9ISZF3Z/XVNMXQyamMPiMTo72B0qeeomz+8zgqK7vSCNFXXukcLuCBRbKLqov4quArbA4beXF5XNj/QrefUwgRWKRoA+KzcjFaxrBvTxR04TPfHUxWA2POzGLICak0rF7FzpmPUbP8u641YjQSc+01xF1/PcrNT9dWFq9k+a7lmA1mJqdPZkrGFLeeTwghhOeYg4JJzJlEeUl/Sgq9/ydDUnYEx13an6gYI/tfe5myZ57Bvn9/l9owZ2WR/MjDbh8uUNVYxSfbP2F3zW4ywjM4L+c8mR1ZCNFt3v8E9qLEvnlgGEV5ccTRd/aAnNEJTDi/L4ZdWym64Qaqv/qqy21YcnJIevQvBA1y39O1wqpCPtz2Ifvr9zM6cTSzhs6SAdNCCBFArKFhxGcdy/7ivhQXGI5+gJsFhZkYN60v/UdGU75oEVueehpbSUnXGvHA0zW7w863u77lu13fEW4J54zMM0gLT3PLuYQQvUuv+0tbKY2kfiOwOYZTXuqd6XwPF50cwqSL+hFn3EfJH++i6pNPQNe71ojBQMw11xB34w1ueVW8KXsAACAASURBVLpW21TLJzs+4cfdP5IRnsHZfc8mMSTR5ecRQgjhPcERUcRmTKJsT6ZPFGtKUwyelMwxp2dQ/8n7bLnvCWy7dne5HefYtUcIHjHcDVHCpv2beG/re5TXl3N82vHcNuo2uZkphHCpXvOJohkMJPU7hoaGPPYVB3s7HADMQUZGn96HAX119j35KFvfex8cjq63k51N8qN/IWjIEJfGp+s6K/au4L0t71Fvq+eM7DOYO3GuTCoihBABJjQmjuiUYyndnUZxgW98xif1jWDShTmYV31D0QWzO70WaStKETX9cuLnzEGzurZrYkVDBR9u+5Bvi76lf3R/Lu5/McmhyS49hxBCHNDtok0plQa8BCQAOjBP1/V/K6UeAK4FDvRbuEfX9Q97Gmh3GUxmkvuNpaZ6MGV7fKQvuYIB45IYPT6UmhefYdstb4PN1vV23NTVY0/NHpZsXsKyomWMThzN9XnXkxSa5LL2hRAi0PlLjoxISCYifiIlRSkUF3hrYZvWQiItjD8vm8T9qym98QEaNm3uVjum1FSS//IIwaNdtzi1Q3fw/a7veWfzO1Q2VXJu33P51wn/kqdqQgi368mnjA24Tdf1X5RSYcDPSqlPm9/7p67r/9fz8LrPZA0iMWcCVfsHULLLu9MSt5SYFcH4k2NRH7zKrnM7v+jn4Uzp6c5kNHKkS+JqcjTxVcFXLN60mNqmWi7qfxHzT5mPyeDdWcKEEMJP+XSOjE7JJCRqPCVF8RQX+kaxZjBpDD8pnX6hBZQ/ehNFa9d2u63Iiy4i4c470EJcs+7ZrupdvLP5HT7d8SmjEkZxXd51ZEVmuaRtIYTojG4Xbbqu7wZ2N39fpZRaD6S4KrDusoaGE581kfKSvj4x09UBoVEWxpycSPTPb7Pvqtc6v+hnGyIvuZiEO+5AC+55N89tFdtYvGkxS7cvZUziGG4efjO5Mbk9blcIIXozX82R8X0GYgw+hn27Y7y7Dulh+o6MZ1hmFXXP3ceeX3/tdjvGhASS5s4ldNLEHsfU5Gjii51fsHjTYnZV7+LiARfzytRXZAFsIYRXuKSqUUr1AYYDPwATgJuUUjOAFTjvNHZtPt5uMJrDSB96DmV7Mnxi8PQBRouB4cclkrbzUypvf4GyLiz6eURbiYkkPTyX0AkTehRTg72BT7Z/wqL8RRRUFXBh/wtZcMYCoq3RPWpXCCHEkXwhR8akDcIcerJztuQKd5+t8+IzwhiVB9qbf2ff37/vUVvhZ51J4n33YQgP71E7Oyp38Fb+WyzZsoT+Uf25PPdyJqVMQinfeCIphOidely0KaVCgbeAW3Rdr1RKPQk8hLMP/0PA34GZbRw3C5gFkJ6e3tMw0MmguKD7T69cTSnoPzqOfrU/UvvXuyiv6FmWjDj7LBLuvbdHyWhr+VYW5i/kva3vkRicyPTc6UzNnCpdIIUQwk18JUdWV4yivNh3Hq2FRlsYOcpC2MfPUPviNz1qyxAVReKDDxB+8sndbqPJ3sTnOz9nYf5CVpWsYmrmVJ49+VlyonJ6FJsQQrhKj4o2pZQJZzJ6Vdf1xQC6ru9t8f4zwPttHavr+jxgHsCoUaO6OL+9b0sbEMkg03rsz/2R6rKyHrVliI52JqOTTurW8U32Jj7b+RkLNi7gl72/MD55PH879m+MSx7Xo7iEEEJ0THLkkcxWA0NHhZD4/SvU3vsJtV1d3uYwoZMnk/TnBzHGxnbr+IKqAhblL+Kdze9g1+1c2O9C/nrsX4kN6l57QgjhLj2ZPVIBzwHrdV3/R4vtSc19+QGmAb/1LET/EZsSwuDoAswLHqSxuLjH7YVOmeJMRjExXT62qLqIhRsX8vbmt6lsqOSUzFNYeOZC+kf373FcQgghOiY5sjXNoBgwLIyM9W/R8Mi71HZjeZtW7YWGknDPPUSeO63Lx9oddr4p/IYF+QtYXrScpJAkZg2dxbS+0wg2+caSQEIIcbiePGmbAEwH1iilVjZvuwe4RCk1DGfXj+3A73oUoR8Ii7YwOLGUsHcexrZrF92YvL+V7iYjXddZVrSMNza+wbKiZZg0E9P6TuPKwVeSEur18e9CCNGbSI4EUJA1MIzswqXY/7WABru9x00GjxlD8l8ewZTctTXRyurKWLxpMQvzF7K7ZjfZEdk8PPFhTss8TabsF0L4vJ7MHrkMaGtUrtfWm/E0a6iJQalVRH/4N+w7t/e4WIPuJaOKhgre2fwOCzYuoKCqgBBTCFcMuoIZuTOki4cQQniB5EhIyQqh3/5vUM+8jL2pqcftKauV+Dm3EjV9epcmBVlVsorXN7zOJ9s/ocnRRG5MLneNvovJ6ZNlchEhhN+QW0vdYLIaGJBWT8Ln/8bxfj49v2/YvWSUvz+f19a/xofbPqTOVkeYKYzfDf0d03OnE2GJcEFUQgghRNfEpQQxoP4nzC8/i+6CYg3AOmQIyX99FEtW59ZGa7Q38tG2j3h9w+usLXOu9zY0bijXDb2OSamTXBJTr6DrzpnVDvwrhPAaKdq6wGDS6JfeRNKyp2DpGnrWI/8Q69ChJD/6KJaszKPua3fY+argK17d8Co/7fkJgDBTGNfnXc/luZcTbu7ZVMcBreWAd0lCQgjhUlFxFvrrqwlZ9DR6QwMumT3FZCL2ut8R+7vfoYxH/5OluLaYBRsXsCh/Efvq9wGQF5fHDXk3MD5lvCsiClyH58i2/hVCeI0UbZ2gGRTZaXZSfpiP9unPrmvYZCL2+uucycjQ8dpylY2VLM5fzOsbXmdXzS4AQkwhXDbwMq4YdIUUay21NRuZUkcmHUlCQgjRY+HRZvobNhD23hNQX+eaYg2w5PQl6dFHCRo06Kj7ri5ZzSvrX+HTHZ9iczgHKwyOGcyNw29kYkrPF9oOKJ3NkUIInyJFWweUpshMc5D280sYPv/BpW1bcnJI/uujWHNzO9xvR+UOXln3Cku2LKHO5lyHzmqwclH/i7h6yNVEWaNcGpffaS/5CCGEcKvQSBP9TJuJeP9xVF2N6xrWNKKvvJK4W2ajmc3t7mZz2Phsx2e8vP5lVpesPrg9JyqHm4bdxOT0ya6LyV9JjhQiYEjR1galICNVJ23lK5i++M61jRsMxMy8iribb0Z1kIx+3P0jL617iW8Kv0Fvvm9pVEbOyTmH64ZeR0JIgmvj8geHTxEtdwaFEMLjgsNN9DdvIfKjJ1A1VS5t25SeTvKjfyF4xIh296lqrGJR/iJe2/Aae2r2HNyeGprKjcNvZGrmVDSluTQun6frR3ZvlBwpRECRoq0lBRkpOmmrXsP85XKXN2/u04ekvzxC8PDhbb7f5Ghi6balvLTuJTbs29DqvZMyTuL3w39Pn4g+Lo/LJ7W1ho/Wy5KwEEL4kOAwI/0s24j86Am0mkrXNq4UUZdcQvztt6EFt71WWmFVIa+uf5XFmxZTa6s9uD3aGs2sobO4sP+FmDSTa+PyRYcXaODMj1KgCRHQpGiDQ8Xaytcxf/mtG9pXRE2/nPg5c9Cs1iPermqsYmH+Ql5d/yrFta0X5R4RP4I5o+aQF5fn+rh8hePw+TeVFGhCCOEjgkON5Fi2EbXUDcUaYEpOJunhuYSMG9fm+6tLVvPi2hf5fOfn2PVD+SLIGMT03OnMHDyTEFOIy+PyCQ4HHD5KUDNIgSZEL9SrizalID3ZQdrK1zB/6eJukM1M6ekkPzyX4NGjj3hvT80eXl73Mm9teouaptbjAdLD0rl15K2cmHGiW+LyGnuL1ewOJB2t40lYhBBCeF5wmJEc01ZnsVbr2m6QB0RecAHxd92FIbR10aXrOl8Xfs3zvz3PL8W/tHpPUxpnZJ3B74f/PrCGCuh665uYSoHSnF9CiF6vVxZtSkFGso20X17F9OWPbjtJ1GWXET/n1iO6euTvz+f5355n6bal2PTWS3KHmZ1rrV068FL/7+bhsIPespujAkOv/JETQgi/ERJupK+2iailT6LVu3CCkRaMyUkkPfQQoRMmtNreZG/i/a3v88LaF9hasfWI40YmjOTO0XeSG9PxJF5+wd5yDbvmAk1ypBCiHb3q00HTFH0SG0j58SVMX/7qtvOYMtJJnnvk07Wf9vzE/N/ms6xo2RHHGJSB83LO46bhN/nnjJC6DvZGoEWXDc0IBj8vPIUQopcIjTDRV19H1MdPoxrq3HMSpYi88ELi77ij1dO16sZqFuYv5JV1r1BcV3zEYckhydw26jZO7nOye+JyN3tT803MFuueSX4UQnRBryjaNIMiK6GWpOXPY/pirRtPpBE9Y4ZzmuLmsWu6rvNFwRfMXzOf1aWr2zxsRPwI7h5zNwOiB7gvNlezNbROQJoBjBavhiSEEKLrIqJNZNevJPyDZ9FsjW47jyk1laS5DxEyduzBbaV1pbyy7hXe3PgmVU1HdsG0GqzMHDKTmYNnYjH4SY7RdbDVN79onsFRM0mRJoTokYAu2oxmjeyYChK+eRbj55vdei5LTl+S5s4lKM85YUiTo4kPt37I/N/mt9nFAyA+KJ45o+Zwetbpbo2tx3Qdmg7M1NVcpBmtMlmIEEL4sehYI1mVPxD2zouoIyaEciFNI3r65cTNnn1wuEBhVSEvrH2Bdza/Q4O9oc3DTkw/kTtG30FyaLL7YnMFWwM4bBx6iqaBKcirIQkhAk9AFm3mIAN9w4uJ+/xpDKVFbj2XMpmImTWL2N/NQpnN1NvqeWvTW7y49kV21+xu8xijMnLpwEu5YdgNvjnjla3ReZdQtUhAZh+MUwghRJfFJRjI3PsNIYtew91zEFpyckia+9DBG5qb9m/iud+eY+m2pa1mgmwpIzyDu4+5mwkpE9p83+saqp09TZQClLOXieRIIYSbBVTRFhRqpK9lBzGfPo1WWeb+840YQdKfH8TSty/VjdW8seYlXl73Mvvq97V7zIj4Edw79l76RfVze3yd1ljbokhrTkDWcG9HJYQQwlWUIjlJkb7tI4IXvOf+05nNxF5/HTHXXIMymVhTsoZn1jzDVwVfoR8+hX0zi8HCNUOuYebgmZgNZrfH2Gm1+1pMsa/AEi49TYQQHhcwRVtszWbGfDbHbTNdtaSFhxM/Zw6RF11IRUMF8379D69veJ2qxvanRI6wRDBn5Bym9Z2G8vb6KvWVzu4cB4o0cwgER3s3JiGEEG4zYvdC9K8+8Mi5gseMIfGBP2HJzOSnPT8xb/U8vt/9fYfHjE8ez31j7iMtPM0jMbbL4YDaUg6ORVOa5EchhE8ImKLNXFXikYIt/IwzSPjDXZSHwN9X/J0389+kztbxLFtnZp3J7aNvJ9rqpQ/+unJorDmUgKwR8iRNCCF6EVPBBtw3xYiTITqa+DvvIPKcc1hWtIx5H/2JX4s7nqk5xhrDnaPvZGrWVDdH1w5dh6rdzn+V5pxUKzTeO7EIIUQHAqZoczdzVhaJf7yfqiF9+Ouap3l789vtDp4+IC0sjfvH3s+45HEeirJZfSXUlBxalDMoCiJSPBuDEEKI3kHTiLzwAuJuuYWvK39m3vsXsa5sXYeHKBTTcqYxZ+QcIiwRHgq0WXkBOJqaizQjhKe06P4ohBC+SYq2o1DBwcRefx21503hbxteYsniJdgctg6PMSgDMwbN4Ia8G7Aare4P0tYI+7Y0B2yAoEiIyXb/eYUQQvRq1qFDSbj/Xr4J28W8b2ayaf+mox6TEZ7Bn8b9idGJo4+6r0tU7Wkel9ZcpEWmg9GHxswJIUQnSNHWgfDTT6fxuov55963+fD987DpHRdrAAOiB/Dg+AfJjcl1b3Al+dBQ5RwMbQqG2P4yMFoIIYRHGGJiiL31Fr4dZmb2b/exrWLb0Y9RBq4YdAU3DLvBvWuuNdZA8YZDQwIiUiHBzTlZCCHcTIq2NlgHDcL++yt5TP2Pj7+7pt1piVsya2auy7uOqwZfhVFzw2Wt3Qd71hxapDN+AMT50AyUQgghAp4ymYi4/DJ+Oi2DeVteYMe3Ozp1XP+o/jw44UEGxQxyT2B7fnNOIKIZnbM7Jg+XG5lCiIAiRVsLxoQE7NdezOOpm/h0x704dEenjhsaN5SHxj9EVmSW64LRddi9Esp3Oou00HjoM0mSkBBCCK8IOXEKK88fyhNliyn6tXNroJo0E9cOvZZrhlyDSTO5Lpj6Ctj5PdibwGCCpDxIHOy69oUQwsdI0QZoISE4Lj2LpweX8smeJ9B3tL2GzOEsBgs3DbuJGYNmoCkXFFMNVbD1a6gtA6MVUkdB7tk9b1cIIYToJsuQway75Bgec3zK7h1fd/q43JhcHprwkOvWJS3ZCAU/OnuchMQ5b2Sag13TthBC+LjeXbSZTOhnTuG5MbV8VL4Q9nT+0Ly4POZOmEufiD49i6F8J2z6xDnjY0gs5JwMYYk9a1MIIYToIVNGOvkXjOYfEd+zt+qlzh+nmbgu7zpmDp7Zs+ECdhvs+BaKVjh7nCQOgbxLwNC7/3QRQvROvfOTT9NwTBnPyxNsfNDwGZR3/lCXPF3bvRo2fgR1+yE2BwaeDaFx3WtLCCGEcCFDfBxbpo3k74kr2du4BGo7f+zA6IE8PPFhcqJyunfyhmrY/Cns/AFMVsieDBNuca6fJoQQvVivK9rsE0fx2iSd9/geOl5m7QhDYocwd+JcsiK6OHbN4YCCH2D9e1CxE9LGwIjpEJ7ctXaEEEIIN9Gio9h2Rh5/T1/HHvtndGU1bqNmZNbQWVw75NquP12r3QcbP4TNn4M5BAaeBSfPlSdqQgjRQq/5RLSNG8ZrExy8b1rZ5WNNmokbht3AVYOuwtDZu30Ou7Nbx7olULgCso6HETOcsz4KIYQQPkKLjGDr1CH8I2MDe1gGR58wuZV+Uf14ZOIj9I/u3/mDqktg/bvOm5lKgyEXwNn/dRZtQgghjhDwRVvjuDxeGdvIUutv3Tp+YPRA5k6c27mB1A4H7FwOvy2G/KWQMtJZqJ32/6RrhxBCCJ+iRUWy6ZQB/KPPBkrU910+3qAMzBw8k+vzrsdk6MTMkDVlsH4JrH3bOZ477xI46zHnYtdCCCE6FJhFm1LUTcjjxdE1fGFd260mjMrINUOvYdbQWUefprjwZ1iz0JmITFYYeSXM+lrGqQkhhPA5Wmw0607O4R9p6yjXVnSrjcyITB6e8DBD4oZ0vGN9JWx4H9YscvY+6XsijJ/tHKsmS9gIIUSnBVbRZjRSeexQnsvbx3fdfLIG0DeyLw9PfJjcmNz2dyrdDKsXOIu1/dsh5yRn146+JzqnIxZCCCF8iEpK4Ncp6TyWupZq9XO32tCUxvSB07l5xM1YDJa2d7I1OmdFXvMm5H8MljDnzcyz/gMRKd3/DxBCiF4sYIq2nWlB/OWWBH4zre52GwZl4IpBV3DjsBsxG8xH7lC7z3m3cPUbUPQzmENh2GUw5ncQk92D6IUQQgj3+frcLB43fEOjKut2G+lh6Tw04SFGJIxoe4eCH2HVG7B2sXN25MQhcMY/YfB5YGynwBNCCNEpAVO0bYlq4DfT3m4f3ye8D3MnziUvLq/1G3ab847hyleddwwdTRCaAFP+BKNmQlBkDyMXQggh3GtJzA4aK7o4w0gzheKSAZdwy8hbCDIGtX6zoghWve78Ktvs3JY9GSbMdk7AJYQQwiUCpmjrLk1pzMidwU3Db2rd1aMkH359CVYtgJpi57bIDJh4i/Ppmtw1FEIIEeBSQ1P584Q/Mzpx9KGNtkbY+AH88jJs/RJ0h3MGyNxzYNIcSMprv0EhhBDd0quLtsyITB6a8NChp2tNdc7JRH5+EQpazKQVnQWTboehF8m6MUIIIQLegadrs0fMJtgU7NxYkg+/vOh8qlbb3M3ywHT9x94BcV2Y8l8IIUSX9MoKxKiMXDn4Sq7Pu945dq14Pax43jlWrb7i0I4R6XDcnc5piaVYE0II0Qv0Ce/Dg+MfdI5dszU6x3KvmO+c/fEgBblnwwn3SLEmhBAe0OsqkUExg3hg/AMMiMh2Luz503OHJSIgONZ513DUTDC2MSGJEEIIEWCMmpGrBl3FdXnXYa7aA5894OwCWVvaesfsyXDiA9INUgghPKjXFG0hphBuGnYTl6ROxvDzi/DzC1C9p/VOxiAYd6Nz3JolzCtxCiGEEJ42PH4494+9n5x9hfDmFZC/1DlWraXEIXDSQ5B9gneCFEKIXqxXFG2n9jmV21NPIWHlAlh0i3MGyFaUs0/+iX+CiFSvxCiEEEJ4WrQ1mluGXs85VdWoVy+D0o1H7hSaAJPvd07CJQtiCyGEVwR00dY/qh93xU9k9NqP4Mt5be+UNAym/g3SjvFscG6k63qr10oW+xZCCNGCUTNyceYZXF9rJ3zJXVBffuROmgnGXu8c2x1AvU9a5kjJj0IIfxGQRVtCcDw3hg/m7PVfoP3yWds7BUXBlD/CiCv94s6hw3F4IQa67vy39XYlSUgIIUS7Tow/htk1TfT54sk2ep40yzoepv4fxOZ4MrRu0XWdlvcq28uPzvckRwoh/FNAFW2x1mhmWtO5cMP/sNStaH/HvEvh5IcgJNZzwbWjye4cM9AyhRyeUBSgaUcmGck7QgghOkOhmBCVy03llQz+YVH7O4YmwCmPwJDzPRdcOxwOHbuuHzU/KnVkjpT8KIQINAFTtE1odDB100YstpXt7xSdDWf+CzKP9UhMdY32g98fSCAH/0WhFJgMvv+UTwghhH/7T61GWv7SDvZQMPJK56yQQZFuj8dmd9BodxzMhdA6PwIYNCU5UgghmgVM0RbfUAu2urbf1Iww/mY47g9gsrrsnPtrGrHrOppSaOpAt4vmJ2NKEWw2SDcMIYQQXpe2r7D9N2P6wln/gYzxLjtfg81OZZ0NTdGcI53J8UCuNBkUweaA+RNECCHcLvA/MRMGw9mPQ/KwLh9qd+jsKq+jrsmOQVMYNYVBcyYfo6aIDjFjlLuAQggh/JEywPib4Ph7unVDs6q+id0V9WgKDJqGUVNomvMmZrDJSFyYxQ1BCyFE7xS4RZtmhEm3ORfJNpg63LWqvonNxdUUVzVgMWqYjRoWo4bFaCAjJpg0a7CHghZCCCE8ILY/nPMkpI7scDdd1yncX8eWkmpsdh2LScNs0DAZNaKDzfSNC21zzLUQQgjXCsyiLW4gTHvqiKdrTXYHm/ZWs2FPJVtLajAZNEKtRhLDrQxJiWB4epSXAhZCCCE8QGkw9gbnumuHPV0rq25g/e4qNuypZH9tI6EWE6FWI/3iQxnVJ5pQS2D+ySCEEP7AbZ/ASqlTgX8DBuBZXdcfdde5WpwVxt0IU/5IIybWFZSzprCcNUUVrN9dRZDZwNjMaMZlxzJ1SBJWk8H9IQkhhBAteCc/ApHpcM5T0GcCxVX1rN60l9VFFfxWVMGu8jpyEsKY2DeGk3ITyIgJ8UhIQgghOsctRZtSygA8DpwEFAI/KaXe1XV9nTvOB1BjiWf1pOf5pLYfvzy9gvW7KkHBsTlxnDY4kbtPG0hUiNldpxdCCCGOyhv5EWBvn7NZGnImP35r49fXP2dXRT2pUUGcPiSJG0/IZnhalHRzFEIIH+auJ23HAJt1Xd8KoJR6AzgbcFtS+qA2lzs/XQ1sZ1haJA+ePYipQ5KICOp4PJsQQgjhQR7PjwCX5U9kc3EBIWYDZ+Ylc8GoVEZmRLvzlEIIIVzIXUVbClDQ4nUhMMZN5wLAZFScOyKFmRMyGZwS4c5TCSGEEN3l8fwIkBEdzOVj0jl/VJqMTRNCCD/ktU9updQsYBZAenp6j9ubNjyVacNTe9yOEEII4W2uzpHPXTm6x20IIYTwHnctMlYEpLV4ndq87SBd1+fpuj5K1/VRcXFxbgpDCCGE8ClHzY8gOVIIIURr7irafgJylFKZSikzcDHwrpvOJYQQQvgLyY9CCCG6zC3dI3VdtymlbgI+xjml8Xxd19e641xCCCGEv5D8KIQQojvcNqZN1/UPgQ/d1b4QQgjhjyQ/CiGE6Cp3dY8UQgghhBBCCOECUrQJIYQQQgghhA+Tok0IIYQQQgghfJgUbUIIIYQQQgjhw6RoE0IIIYQQQggfJkWbEEIIIYQQQvgwKdqEEEIIIYQQwodJ0SaEEEIIIYQQPkyKNiGEEEIIIYTwYVK0CSGEEEIIIYQPk6JNCCGEEEIIIXyYFG1CCCGEEEII4cOkaBNCCCGEEEIIHyZFmxBCCCGEEEL4MCnahBBCCCGEEMKHKV3XvR0DSqkSYIcLmooFSl3QjqdJ3J4lcXuWxO1Z/hB3hq7rcd4Owl+4KEf6w89FWyRuz/PX2CVuz5K43aPd/OgTRZurKKVW6Lo+yttxdJXE7VkSt2dJ3J7lr3EL9/LXnwuJ2/P8NXaJ27Mkbs+T7pFCCCGEEEII4cOkaBNCCCGEEEIIHxZoRds8bwfQTRK3Z0ncniVxe5a/xi3cy19/LiRuz/PX2CVuz5K4PSygxrQJIYQQQgghRKAJtCdtQgghhBBCCBFQAqJoU0qdqpTaqJTarJT6g7fjaY9SKk0p9aVSap1Saq1Sanbz9mil1KdKqU3N/0Z5O9a2KKUMSqlflVLvN7/OVEr90HzdFyilzN6O8XBKqUil1CKl1Aal1Hql1Dh/uN5KqVubf0Z+U0q9rpSy+ur1VkrNV0oVK6V+a7GtzWusnB5r/m9YrZQa4WNx/635Z2W1UuptpVRki/fubo57o1LqFO9E3XbcLd67TSmlK6Vim1/7zPUW3iM50jMkR3qOv+RIyY+eF8g50u+LNqWUAXgcOA3IBS5RSuV6N6p22YDbdF3PBcYCNzbH+gfgc13Xc4DPm1/7otnA+hav/wr8U9f1vsB+4GqvRNWxfwNLdV0fAOThjN+nr7dSKgX4PTBK1/XBgAG4GN+93i8Apx62rb1rfBqQ0/w1C3jSQzG25QWOjPtTYLCu60OBfOBugObf04uBQc3HPNH82eMNL3Bk3Cil0oCTgZ0tNvvS9RZeIDnSoyRHeoCf5cgX76sDXwAABC9JREFUkPzoaS8QoDnS74s24Bhgs67rW3VdbwTeAM72ckxt0nV9t67rvzR/X4XzwzEFZ7wvNu/2InCOdyJsn1IqFTgdeLb5tQImA4uad/G5uJVSEcCxwHMAuq436rpejh9cb8AIBCmljEAwsBsfvd66rn8D7Dtsc3vX+GzgJd3peyBSKZXkmUhbaytuXdc/0XXd1vzyeyC1+fuzgTd0XW/QdX0bsBnnZ4/HtXO9Af4J3Am0HKjsM9dbeI3kSA+QHOlxfpEjJT96XiDnyEAo2lKAghavC5u3+TSlVB9gOPADkKDr+u7mt/YACV4KqyP/wvnD7mh+HQOUt/gF9sXrngmUAM83d1l5VikVgo9fb13Xi4D/w3k3aDdQAfyM71/vltq7xv70+zoT+Kj5e5+OWyl1NlCk6/qqw97y6biFR/jlz4DkSI+QHOkdkh89LFByZCAUbX5HKRUKvAXcout6Zcv3dOd0nj41padS6gygWNf1n70dSxcZgRHAk7quDwdqOKybh49e7yicd38ygWQghDYe9fsLX7zGR6OUuhdnV61XvR3L0SilgoF7gD96OxYhXEFypMdIjvQyX7y+R+NP+RECK0cGQtFWBKS1eJ3avM0nKaVMOJPRq7quL27evPfA49jmf4u9FV87JgBnKaW24+xaMxlnP/jI5q4J4JvXvRAo1HX9h+bXi3AmKF+/3icC23RdL9F1vQlYjPP/ga9f75bau8Y+//uqlLoSOAO4TD+0Joovx52N84+XVc2/o6nAL0qpRHw7buEZfvUzIDnSoyRHeofkR88KmBwZCEXbT0BO86xBZpyDId/1ckxtau7j/hywXtf1f7R4613giubvrwCWeDq2jui6freu66m6rvfBeX2/0HX9MuBL4Pzm3Xwx7j1AgVKqf/OmKcA6fPx64+zyMVYpFdz8M3Mgbp++3odp7xq/C8xonrFpLFDRopuI1ymlTsXZxeksXddrW7z1LnCxUsqilMrEOWj5R2/EeDhd19fouh6v63qf5t/RQmBE88+/T19v4RGSI91McqTH+XuOlPzoQQGVI3Vd9/svYCrOmWy2APd6O54O4pyI8zH4amBl89dUnH3fPwc2AZ8B0d6OtYP/huOB95u/z8L5i7kZWAhYvB1fG/EOA1Y0X/N3gCh/uN7Ag8AG4DfgZcDiq9cbeB3nuIImnB+GV7d3jQGFcya7LcAanLN/+VLcm3H2bz/w+/lUi/3vbY57I3CaL8V92PvbgVhfu97y5b0vyZEe/W+QHOmZuP0iR0p+9I3YD3vfb3Okag5aCCGEEEIIIYQPCoTukUIIIYQQQggRsKRoE0IIIYQQQggfJkWbEEIIIYQQQvgwKdqEEEIIIYQQwodJ0SaEEEIIIYQQPkyKNiGEEEIIIYTwYVK0CSGEEEIIIYQPk6JNCCGEEEIIIXzY/we1xNr6e9DZ+AAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAHiCAYAAAB7iyTuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU55X48e87Xb0gIYFAiCKJ5oINxvRiei/uTk82m+xmf1uym2y2JbGdOLbjFjs9cewU97jEjd6baaYYAwbUe59RGU29vz8kYTBNZWbuzOh8nseP4c6d+x6B0Dvn3vOeV2mahhBCCCGEEEKI8GTQOwAhhBBCCCGEEFcmSZsQQgghhBBChDFJ2oQQQgghhBAijEnSJoQQQgghhBBhTJI2IYQQQgghhAhjkrQJIYQQQgghRBiTpE2IHlJKnVBKzdY7ji5KqfuUUhv0jkMIIYToEm5zpRCRTpI20S8ppTSl1KjPHPuBUurP13qvpmnjNE3bFoSYLEqpx5RSZUqpFqVUkVLqyW7E8xdN0xZccB1NKdXaeY1ypdTjSiljoOMVQggR3cJ0rvxSZ1zf+czxss8miRece9dlrpOrlHpJKVWrlHIopc4opZ5WSg0JdMxCBIIkbUKEj+8BE4FbgARgNnC4l9e6QdO0eOA24F7g7wIRoBBCCBEGGoDvKKUSrnHeFzvP/cKFBzsT0Q+ACmCCpmmJwDTgHDA98OEK0XeStAlxGUqpNKXUO0qpJqVUg1Jqp1LK0PlakVJqXuevf6CUekUp9UelVHNnOcjEC65zk1Lqw87XXlVKvayUevAKw04C3tA0rULrUKRp2h8vuNZQpdTrnXcF65VSz3Qe/5JSatflLqhp2ilgJzBeKfUfSqm/fubr/JlS6qm+/FkJIYTon3SaKwFOAnuBf7tKbMOAWcDXgYVKqcwLXv4BsFvTtH/TNK0MQNO0Gk3TntQ07aVe/nEIEVSStAlxed8GyoB0IAP4L0C7wrkrgJeAZOBvQFcyZQHeAJ4DUoEXgdVXGXMf8G9KqX9QSl2nlFJdL3SWN74DFAM5QFbnmFellBoLzAA+BP4MLFJKJXe+ZgLuBv54xQsIIYQQV6bHXNnlf4F/UUqlXuH1LwAHNU37Kx1J3n0XvDYP+Otl3yVEmJKkTYjL8wCDgGGapnk0TdupadqVJqJdmqa9p2maD/gTcEPn8VsBE/Czzmu8Duy/ypgPAQ/TMbEcBMqVUl/sfO0WYDDwH5qmtWqa1q5p2mWfrnU6rJRqBN4Gfgf8QdO0SmAHcEfnOYuAOk3TDl3lOkIIIcSV6DFXAqBp2hFgI/DdK5zyBeCFzl+/wMUlkmlAVddvlFLf6nxa2KKU+u21xhZCD5K0if7KB5g/c8xMxwQE8ChwFtiglCpQSv3nVa5VdcGv2wBb51OswUD5Zyaw0itdRNM0n6ZpP9c0bRoddyJ/BDyrlBoDDAWKNU3zXvtLA+AmTdNSNE0bqWna/2ia5u88/jzwuc5ff46OiVMIIYS4nLCbKz/j/4BvKqUyLjyolJoGDOfTipQXgOuUUjd2/r6ejmQTAE3TntE0LRl4kku/XiHCgiRtor8qoaPM8ELD6Sg/RNO0Zk3Tvq1p2gg6Sjr+TSl1Ww/HqASyLixzpCP5uiZN05yapv0caATG0jGBZXdOcH3xJnC9Umo8sAz4Sx+vJ4QQInqF+1x5Cngd+O/PvPRFQAFHlFJVdDQd6ToOsBlY08M4hdCVJG2iv3oZ+B+l1BCllKFzsfRy4DUApdQypdSozknETsfdRv+VL3dZezvf9y2llEkptZKOMsfLUkr9i1JqtlIqpvP8L9LRRfJDOkpFKoGfKKXilFK2zjuJPaJpWnvn1/gCsF/TtJKeXkMIIUS/EXZz5WX8EPgyHRUqKKVswJ10NCC58YL//gm4t/Pm5w+AGapjS5yszvelAWN6GLsQISNJm+iv7gf2ALvoeJr1CHCfpmkfdb6eC2wCWuiYUH6hadrWngygaZqbjjt5XwWa6ChHfAdwXeEtbcBjdJSQ1AH/CKzVNK2gcw3AcmAUHXc+y4BL9p3ppueB65DSSCGEEFcXjnPlZ99fSMd8Ftd5aBXgBP6oaVpV13/As3SsnVukadonwGRgCHBUKdUM7KZjC4D/7Un8QoSKuvJ6USFEoCmlPgB+pWnaH3SMIRs4BWRqmubQKw4hhBDicsJhrhQi3MiTNiGCSCk1SymVeUG54/XAOh3jMdCxr81LkrAJIYQIB+E2VwoRjvra1EAIcXX5wCt0lG0UALd3tt4POaVUHFBNxwLyRXrEIIQQQlxG2MyVQoQrKY8UQgghhBBCiDAm5ZFCCCGEEEIIEcYkaRNCCCGEEEKIMBYWa9rS0tK0nJwcvcMQQggRAocOHarTNC1d7zgihcyRQgjRP1xtfgyLpC0nJ4eDBw/qHYYQQogQUEoV6x1DJJE5Uggh+oerzY9SHimEEEIIIYQQYUySNiGEEEIIIYQIY5K0CSGEEEIIIUQYk6RNCCGEEEIIIcKYJG1CCCGEEEIIEcYkaRNCCCGEEEKIMCZJmxBCCCGEEEKEMUnahBBCCCGEECKMSdImhBBCCCGEEGFMkjYhhBBCCCGECGOStAkhhBBCCCFEGJOkTQghhBBCCCHCmCRtQgghhBBCCBHGJGkTQgghhBBCiDAmSZsQQgghhBBChDFJ2oQQQgghhBAijEnSJoQQQgghhBBhTJI2IYQQ3VLn9uodghBCCBF2Gjxe/JoW1DEkaRNCCHFVR5vbWHX4DH+qqNM7FCGEECJsuP1+flVSw5R9J3H7g5u0mYJ6dSGEEBGr0uXmoYJKXq1qRANmpSboHZIQQggRFt6rbeL+cxUUOd0hGU+SNiGEEBdp8/n5eUk1vyipxen36x2OEEIIETaONrfx/TPl7LO3hnRcSdqEEEIAoGkar1Q18lBBJVVuj97hCCGEEGGj0uXmxwWVvNZZfRJqkrQJIYRgT2MLPzhbzrEWp96hCCGEEGGj1efj5yU1/FLn6hNJ2oQQoh8raHPxwLkK3q+z6x2KEEIIETb8msbLVQ08XFAVFtUnkrQJIUQ/1Ojx8nhRFc+V1+MJcptiIYQQIpLsamzmB2cr+CiMqk8kaRNCiH7E49f4Q3ktjxdV0+T16R2OEEIIETbOtrXzwLkK1tc59A7lEpK0CSFEP/FebRMPnKugMETtiYUQQohI0ODx8lhhFc9X1OEN0+ITSdqEECKK+XwuNpx7lacbRnDYGat3OEIIIUTYcPv9/L6sjieLq7GHefWJJG1CCBGlytvd/NsHf2KH7yY0ZdA7HCGEECJs/K2miR+dq6C4PTKqTyRpE0KIKNPi9fFMSQ2/Lq3B6Z8ISu+IhBBCiPBw2N7K989WcMAR2s2x++qaSZtS6llgGVCjadr4zmMvA/mdpyQDTZqm3aiUygFOAqc7X9unado3Ah20EEKIS/k0jRcq63mksIpat1fvcPoFmSOFECIylDhd/LigkjdrmvQOpVe686TtOeAZ4I9dBzRNu6vr10qpx4ALN/g5p2najQGKTwghRDdsqXfww3MVnG5t1zuU/uY5ZI4UQoiw5fD6eKq4mt+V1eLyh2mXkW64ZtKmadqOzruDl1BKKeBOYG6A4xJCCNENH7c4+eHZCrY3NusdSr8kc6QQQoQnr1/j+Yo6HiuqosET3k1GuqOva9pmANWapp254NhwpdSHgAP4H03TdvZxDCGEEJ9R7fLwcGElL1U24Nc7GHElMkcKIYQO1tfZeeBcBWfbXHqHEjB9TdruAV684PeVQLamafVKqZuBN5VS4zRNu2SHOqXU14GvA2RnZ/cxDCGE6B9afT5+WVLLL0praPNJuhbmZI4UQogQOtrcxg/OlrO3KbKajHRHr5M2pZQJWAPc3HVM0zQX4Or89SGl1DkgDzj42fdrmvYb4DcAEydOjNwCUyGECAG/pvFSVQOPFFRR5fboHY64BpkjhRAidMrb3TxUUMlfqxuJ1h+YfXnSNg84pWlaWdcBpVQ60KBpmk8pNQLIBQr6GKMQQvRr2xoc3H+2go+lyUgkkTlSCCGCrNnr4+nian5TVkt7BDcZ6Y7utPx/EZgNpCmlyoDva5r2e+BuLi77AJgJ3K+U8gB+4BuapjUENmQhhOgfTrY4uf9cBVsbpMlIuJI5UgghQs/r1/hTZT0/Layi3tM/trjpTvfIe65w/EuXOfZX4K99D0sIIfqvapeHRworeVGajIQ9mSOFECK01tfZefBcBWeiqMlId/S1EYkQQogAkSYjQgghxOUdcbTxw3PR2WSkOyRpE0IInfk0jZcqG3iksJJqd/8o8xBCCCG6o7TdzU8KKnk9ipuMdIckbUIIoaPN9Q4eOFfBKWkyIoQQQpzn8Pp4qria3/eDJiPdIUmbEELo4KPmNu4/V8GOxha9QxFCCCHChsev8XxFHY8XVdHg8ekdTtiQpE0IIUKoot3NTworea2qUZqMCCGEEBd4p6aJHxVUUOh06x1K2JGkTQghQqBrL5nfltXilDIPIYQQ4ryD9lZ+eLaCA47+2WSkOyRpE0KIIPKeL/Oo7jd7yQghhBDdUdjm4sGCCt6ttesdStiTpE0IIYLk3domfnyuknPO/rWXjBBCCHE19W4vjxdV8ceKejyaVJ90hyRtQggRYAftrdx/roL9dinzEEIIIbq0+/z8tqyWp0uqcXhlZXdPSNImhBABUtjm4kcFFbwjZR5CCCHEeX5N47XqRh4uqKTc5dE7nIgkSZsQQvSRlHkIIYQQl7e9oZn7z5VzokX2I+0LSdqEEKKXnF1lHsXVNPukzEMIIYTocqLFyQNnK9jW2Kx3KFFBkjYhhOghv6bxclUDjxZWUSFlHkIIIcR55e1uHpb9SANOkjYhhOiBLfUOHjhXwcnW/lXmYQCGxVj1DkMIIUSYcnh9/Ky4mt+V1dLez/YjHWqzYFIqqGNI0iaEEN1wrLmNB85VsLOxRe9QQm5cvI1H84dyU2Kc3qEIIYQIM26/n+fK63iyuJoGj0/vcELKpODvhqTzH8MHYTJI0iaEELopcbp4uLCK16sb6V/3DSHGoPh2TibfGDow6JOREEKIyKJpGm/VNPHjgkpK2t16hxNyNyTE8Fj+UMYnxIZkPEnahBDiMho9Xp4srua58jpc/azMA2BOagI/yRtyviTS7a7D6SwlKWmCzpEJIYTQ267GZh44V8HRZqfeoYRcnNHAfw4fxFeGpGHsLImsq99Gasp0DIbgpVaStAkhxAXafX5+V1bL0yU12L39q8wDIN1i4v5RWazOSAHA7/dQWvY8RUXPkD30a5K0CSFEP3ayxcmD5yrZ3ODQOxRdLExL5Me5Q8iyWQBobT3HmbM/or5+O7NnfUwwUytJ2oQQgo6OkK9WNfJIYf/c+FMB9w0awP+MHESyuWNqqKvbwidnfoTTWaRrbEIIIfRV0e7mkcIqXqlq6JcdIQdZzfwoN4sl6ckAeDwOCot+RlnZn9A0b0hikKRNCNHvbal38OC5Cj7uZx0hu+TH2Xg0bwi3JMcD0NJ6hjNnfkRDw06dIxNCCKEnh9fH050dIZ39cKmAAfjKkDT+c/gg4k1GNM1HeflLFBQ+icfTENJYJGkTQvRbR5vbeLCfdoSEjkYj/5qTyTeHDsRsUHg8TRQUPkl5+Yshu3MohBAi/Lj9fv5QXsdT/bAjZJfr42N4JH8oNyZ2NBppaNjNmTM/oqX1tC7xSNImhOh3ip0uHiqo5K2apn7XEbLLhY1G/H4vpaV/oaDwZ3i9TXqHJoQQQieapvFGTRMPFVRS2g87QgLEGw1894JGI21txZw5+2Pq6jbpGpckbUKIfqPe7eXJ4iqeL6/HrfXPdC3DYuL+3CxWDuxoNFJfv4MzZ39Ma+sZnSMTQgihp+0NzTx4roLjLf2vI2SXpelJPDAqi8E2C15vM2eLfkFJ6XNomv4JrCRtQoio1+bz85vSGn5eUkOzrz8uoQYDGl/KSud7IwaRYDLS1lbIJ2d+RH39Vr1DE0IIoaPjzW08eK6S7Y3Neoeim6E2Cz/KzWJBWhKa5qe84mUKCh7H7a7TO7TzJGkTQkQtn6bxYmUDjxZWUu3uv2u0crRz/O9gO0vzvoLH4+CTM093drzqf10yhRBCdChxuvhJYRVvVDf226UCZqX4+6Hp/FtOJrFGA42N+zlz5kGaW07oHdolJGkTQkSl92o7avLPtLn0DkU3CUYDq72/YT7rGWX9f5SVv0BBwRMh73glhBAifMhSgQ63JsXxk/whjI6Lweks4/jZn1BT+77eYV2RJG1CiKjyQVMLD5yr4KCjTe9QdLVyYDI/GJHOx3vfJyVlCnFxeRz/6B/0DksIIYROZKlAh1Szkf8dOZi7M1Px+do4d+6nlJQ+i98f3jd5JWkTQkSFU61Ofnyukg31Dr1D0dWIGCsP5Q1hVmoC7e0VXH/dL0lLm09h4c/0Dk0IIYQOvH6NF6vq+WlhVb9eKqCAewel8j8jB5NsMlJZ9VfOnXsMt7tG79C6RZI2IUREq2h382hRFa9UNeDrv1Ue2AyKf8rO4FvDBmL0t3Lm7EOUl7/E7FlHO05QSt8AhRBChNy7nUsFzvbjpQIA4+JtPJw3lIlJcTQ1HeTAmQdpbj6ud1g9IkmbECIiNXm8/Ky4hmfLa2n39+NsjY491x7KG8Iwm5mKilc4V/A4Hk89Sln0Dk0IIYQO9nYuFTjcz5cKxBsNfGd4Jl8dko67vYLjH32Pmpp39Q6rVyRpE0JElHafn9+V1fJMSQ1NXp/e4egqy2rm/twslqYn09C4l/3Hf0RLy8nzr8vDNSGE6F9Otjj5UUElm/r5UgHoWNv9w1FZpJs8FBU+QUnJ78J+3drVSNImhIgIPk3j5aoGflpYRYWrf7eqNyvF3w1J59vDM1CuMo4d/x61tRuu8S7J4IQQIlqVtrt5pLCSv1Y10n9bjHQYFWvlodwhTE+Jp6rqDfae+ykud7XeYfWZJG1CiLD3fm0TP+7n7fu7TE2O56G8IYy0ejj30UOUN/wFTXNf4WxJ1IQQIpo1eLw8VVTNcxV1uPr5UoEYg4F/zcngG0PTaWv+kIMHH8TRfEzvsAJGkjYhRNja19TCg9K+H4CBFhPfHzmYNRnJVFS8wp7OdWtCCCH6H2nff7HFaUncn5tFOnV88vG/Ul3zjt4hBZwkbUKIsHOyxcmPCyrZKDX5GBV8JSuN7wwfhKd5P/sPXLxurbvkmZsQQkQ+r1/jz5X1PF5URU0/bt/fJSfGwoO5Q5iTbKKo+Bn2lvwev79d77CCQpI2IUTYkJr8i01OiuOhvCHkGGo4e/Jb3Vi39lmSqgkhRDTQNI2/1Tbxk4JKCp1XKonvP2IMim9lZ/CP2ek01rzJ3r2PRcW6tauRpE0Iobt6t5eniqt5rrwOt9a/a/IB0i0m/nfkYNakmSksepJ9pX+8yro1IYQQ0WxHQzMPFlRwrNmpdyhhYWFaIvePyiLJdZxjh78Rcfut9ZYkbUII3bR6ffy6rJZflNTQIjX550sh/z1nIM01r7Fn7xN4PA0Buro8dRNCiEhyxNHGjwsq2NHYoncoYSEnxsIDo7KYHtfC2XP/ztma9/QOKaQkaRNChJzHr/HHijqeKKqmziM1+QC3dpZCZrgPc+rw12lpPR2Aq0qiJoQQkeZcWzs/KajindompPakoxTyn4Zl8PeD46gq/TX7Pno2ovdb6y1J2oQQIePXNN6obuSRwiqK26XcDyDDYuL/Rg5mcaKdM2f/hQ/rNgVnoADstG21ZgQgECGEEJdT5fLwWFEVL1bW45VsDYAlaUn8YNQgTI1vc3j/Y7jdtXqHdFkWSxpKGYI6hiRtQoiQ2FTv4KGCCk60RGdXp54yK8VXh6Txz1lx1Jb9nH0n/4Smheem4WZzKmNG/4j09AV6hyKEEFGnyePlmZIafl9Wi7Of77XWZWSMlQdzs7jRcJIzx/+Z5pYTeod0RWlptzFm9EMYDOagjiNJmxAiqA7YW/nRuQr22Vv1DiVszEiJ58GRmcTa3+D4wafweBqDMo4KwNO11NQZjB3zCFbrwABEJIQQoovT5+d3ZbU8U1KD3evTO5ywEGc08C/DMvj8ACclhf/J4dr1eod0RQZDDLm5/8WQrHtDMp4kbUKIoDjZ4uQnhZWsr5O91rpkWc38cFQWU4xH+eTEP1LWdjZkY6serm8zGKyMGvldhg79YpAiEkKI/snr13ihsp7Hi6qpcodnhYUeVg9M5r9ykmiv/DWHDzwf1l2TExOuZ9y4x4mNHR6yMSVpE0IEVInTxaNFVbLX2gVsBsU3hw7kK2nNlBf8K0cadugd0lUlxI9j7LjHiI/L1TsUIYSIGpqm8VZNE48UVlHg7H+NNK5kbJyNB3MHk932DgWHA9k1OfCUMjJs2DcZnvNPGAyhTaMkaRNCBESt28NTxdX8sbxe9lq7wKK0RP57WDy+yp9z/NBLaFoou2X2tDzSwLDsv2PEiH/BYLAEJSIhhOiPttY7+HFBJcdbZK+1LskmI/8xPJPltlMUfPKvnG79RO+QrirGls3YcT8lOelmXca/ZtKmlHoWWAbUaJo2vvPYD4C/A7pauPyXpmnvdb72PeCrgA/4f5qmhW8xqhCiz5q9Pn5RUsNvympplb3WzhsVa+X+kRmManuDwiPP4PXqXSZ69QTOZsti7JifkpJyS4jiiQ4yRwohruaQvZUHCyrY2yTrursYgPsGD+D/ZbRTX/w9jtdv1Tukaxo06A7ycv8XkylOtxi686TtOeAZ4I+fOf6Epmk/vfCAUmoscDcwDhgMbFJK5WmaJqsrhYgy7T4/fyiv4+mSaho88k+8S7zRwL/lZLLS9iHFZ/6RM85ivUO6pszMVeTn/QCTKUHvUCLRc8gcKYT4jFOtTn5SUMk6Wdd9kUmJcfxwRAJxtb/mzIcvhLj6pOfM5lRGj36QgekL9Q7l2kmbpmk7lFI53bzeSuAlTdNcQKFS6ixwC7C39yEKIcKJT9N4qbKBx4qqqHDJAuouCrg9M4V/zWimsehfONX0gd4hca2nayZTMqNHP0DGwCUhiif6yBwphLiQrOu+vAyLif8ZkcEt7rcpOv4MjV673iFd04ABsxgz+mGs1nS9QwH6tqbtW0qpLwAHgW9rmtYIZAH7LjinrPOYECLCaZrG27V2Hims5GybLKC+0I0JsfwgJ5bE2qcpPPI6hOVUfXEC19HK/2HZMDt4ZI4Uoh+pdXt4oqiaP1fIuu4LWZTi60PT+XzcCcoL/5mzziK9Q7omgyGG3FHfY8iQ+/QO5SK9Tdp+CTwAaJ3/fwz4Sk8uoJT6OvB1gOzs7F6GIYQIha31Dh4qqOSYLKC+SLrFxPdy0rjV9SolJ35Dq69N75CuyWCwMWrkdxgy5AsB2cdNXJbMkUL0E44L1nW3ybrui8wfkMh3B7XhKv13zhaHQ/XJtenRyr+7epW0aZpW3fVrpdRvgXc6f1sODL3g1CGdxy53jd8AvwGYOHGi3JIQIgwdtLfyI1lAfQmzUnw1K437Yg9SXfT3FLqq9A6pWxISxjNu7OPExY3s1ftbW1uJi9NvEXakkDlSiOjn9Pn5fVktPy+poVE2xr7IqFgr/zssjqGNP6fyeLhWn1xMKRM5w/6BnJx/7FUr/7a2Nmw2GwaDIQjRdehV0qaUGqRpWmXnb1cDH3X++m/AC0qpx+lYZJ0L7O9zlEKIkDrZ4uShgko21MsC6s+6LTWRf89owFv6LUpKj+kdTrelpy8gO/urGAzmHr+3vLycDRs2MGLECGbNmhWE6KKLzJFCRC/P+Y2xq6h2h3cTjVBLNBn4l+w05vtep/z0r6mMgOoTgJiYHMaNfYykpBt7/F6v18v+/fvZsWMH3/72t/VN2pRSLwKzgTSlVBnwfWC2UupGOko/ioC/B9A07YRS6hXgY8AL/KN0xRIichQ5XTxaWMUb1bKA+rNGxlj572wzQ+sfp+bj9/UOp8fi4kb0+D12u53Nmzdz7FhHcjpiRM+vEe1kjhSif/BrGm9UN/JoURVFTrfe4YQVA3D3oFS+Gn+ExuJvUhIh1ScAWVn3kTvqexiNMT1+74kTJ9i0aRONjY1BiOxS3ekeec9lDv/+Kuf/CPhRX4ISQoRWlcvD40VVvFjZgEcWUF8k0WTgn4emMNfzFypPP0+NFjmT9aDM1b16n8vlYvfu3ezZswevV+4kX43MkUJEv/V1dn5SUMnJ1na9Qwk7k5Pi+I/MJizl/4+qiuN6h9NtFstAxox5iLQBs3v83vLyctatW0dpaWngA7uKvnSPFEJEuEaPl6eLa/hDeS1OvyRrFzIAd2em8MWY3dhLn6DC06B3SN1msaQzZvRDpKXN6dH7/H4/R44cYcuWLbS0tAQpOiGEiAy7Gpt5qKCSQ47IKPMLpSyrme8OtTC66UlqT60jknpKDxy4hNH592M2p/TofXa7nU2bNnH8uD7JqSRtQvRDrV4fvy6r5ZclNTRLt6tL3JoUx7fTKzGVf5e6yrN6h9MjA9MXM3r0Az2ejAoKCli/fj3V1dXXPlkIIaLYh442flJQyfbGZr1DCTsxBgPfHJLEEt+L1Jx9ntoIqj4xmRLJz/sBmZkre/Q+l8vFrl272Lt3r67VJ5K0CdGPtPv8PF9Rx8+Ka6j3SNnbZw2xmflOFuTWP0DDmd1EzlQEJlMCeXk/YFDmqh69r66ujg0bNvDJJ58EJzAhhIgQp1vbebigkvfqwn/jZz2sGpjEV2P24ix/nGpPaNZxBUpqyjTGjHkYm21Qt9/j9/v58MMP2bp1a1hUn0jSJkQ/4PVrvFTVwONFVVS4PHqHE3ZijQa+OTiOBe5nqTv7Cg0R1oYlJWUqY8c8jM02uNvvaWtrY9u2bRw8eBC/P7K+XiGECKTiziZcr0sTrsu6MSGWb6dXEF/5HziqC/QOp0d6uzfpuXPn2LBhQ1hVn0jSJkQU0zSNN2uaeLSwigJnJFWch4YC1g5M5AuWjbSV/5w6X2TtR2fAyqjc7/ZoMvJ6vRw4cIDt27fT3i6L6oUQ/Vd1ZxOuF6QJ12VlWEz822CN8Q0/pOncPiJtZV9i4g2MHfPTHnVPDufqE0nahIhSGzq7XX0s3a4ua2JiLP+ScgZb5T/SHEHtibskJt5Ajus7pA+9tdvvOXnyJBs3bqShIXKaqgghRKA1eLw8I024rshmUHxtcCyL3c/SVPgaTRH2/FEpM8Nz/pGcnH9AKWO33hMJ1SeStAkRZaTb1dVlWc38a2YrefX/R3PRiYjqeAVdk9G3yMn5Jq17u1e2UVFRwfr16ykuLu7T2HFxcX16vxBC6KnF6+NXpbX8ulSacF3J8vR4vmTZiLv85zT5nXqH02NxcbmMG/sYCQnjunW+z+dj//79fa4+iYmJCerG2iBJmxBR45C9lYcKKtnVpP9i2XAUazTw94PMzGl7muai9URiT7C4uLzOyWhst853OBxs2bKFo0ePovWh9Cc2NpalS5cyblz3JkEhhAgnTp+fP5TX8UxJNQ0e2c/+cm5IiOGfk0+TUPUQ7e4avcPpBQPZ2V9l5Ih/xWCwdusdgao+yc3NZcWKFRiN3Xuq11uStAkR4T5ucfKTgko21Dv0DiUsKWBNehz3Gv+Kq+wPNGuR2DXTwLDsv2PEiH++eDK6QiLm8XjYvXs3u3fvxuPpW+OZ/Px8li9fTnx8fJ+uI4QQoebxa/ylsp4ni6qpcksTrsvJtJj5fxnNjK3/b1pLTkVU1+QuMTHZjB3zKMnJE7t1fmVlJevXr6eoqKhP41qtVhYuXMhNN93Up+t0lyRtQkSoc23tPFpYxVs1TUhF/uXdkhjDPyQcJKbqUdq9kfhsDWJihjF27KMkJ918yWuf/XvXNI1jx46xefNmHI6+JfFWq5XFixdz44039uk6QggRaj5N47WqRh4rqqKkPRLTkOCLMSi+mmlknvMpWks2E1ltuD6VlXUfuaP+E6Mx9prnNjc3s3nz5j5XnwAMHz6clStXkpyc3Kfr9IQkbUJEmNJ2N48XVfFKVQM+ydYuK9tm4VtpFYysfYB2exmR+GwNFEOGfI5RI7+L0RhzzbNLSkpYt24dFRUVfR55xIgRrFy5kqSkpD5fSwghQkXTNN6utfNoYSVn2iJtxXJoKGBleiz3qFfwVfyRVi0yy0Wt1kzGjHmYAanTr3mux+Nhz5497Nq1q8/VJ2azmfnz5zNp0qQebSEQCJK0CREhalweniyu5s8V9bilNfFlJRgNfD3DwzTHD3CWHiJS+2barIMZM+ZhUlOnXv1EDRobG9m0aRMnTpzo87hms5kFCxYwadKkPl9LCCFCaWOdnUcKqzjeEnnNM0JlYmIM34jfR3zVY3gjbIubCw3KXENe3v9hMiVc9TxN0zh+/DibNm3qc/UJwNChQ1m1ahUDBgzo87V6Q5I2IcJcg8fLz0tqeLasDmeYtqHVm1HBnekWVnl/j7f8TSJ5yh486E5yc//rmpORy+Vi59n9HNr6ET5f3++UDh06lNWrV5OamtrnawkhRKjsamzm4YIqDjgiNwkJtqE2M99KLWVk3QO47FVE5rM1sFjSGT36R6Sn3XbNc0tLS1m3bh3l5eV9HtdoNDJnzhymTp0a9A6RVyNJmxBhqtnr41elNfymtFZaE1/FzGQbX7Gsw1LzK7xa5C40t1oyGD3mx6QNmH3V8/x+Px9++CFbtmyhtbXvH1LCZTISQoieOGRv5SeFlexslI7JV5JgNPC19HamO35Ie/mxiNvi5kIZA5eRn/9DzObkq57X1NTEpk2b+OijjwIzbkYGa9asISMjIyDX6wtJ2oQIM20+P78vq+UXJTU0eiP1fljw5cVa+GbiRwyufQiv1xHRzVgyM1eRl/t9zObEq55XUFDA+vXrqa7u3v5s1x43k9WrV4fFZCSEEN3xUXMbDxdWsVE6Jl+RUcGdaSZWen6Nr/K9iF0qAGA2pzI6/wEGDlx01fNcLhe7du1i7969eL19X8mulGLatGnMnj0bkyk80qXwiEIIgcvv508V9TxVXE2tOzJbZ4TCALOJvx9Qw40ND+CpLInQJiMdLJZ0Ruc/SHr6vKueV1dXx4YNG/jkk08CMq5SiunTpzN79uyg7ysjhBCB8ElrR8fkd2qlY/LVzEq28iXT21hrf4cvQpuMdElPX8To/PuxWK68hszv93PkyBG2bNlCS0tgnrqmpqayevVqhg4dGpDrBYokbULozOvXeKmqgSeKqih3RW55X7BZDYrPpXlZ0PYTvJUHiPQ/qYyMFeTnff+qpR5Op5Pt27ezf/9+/AFazxiuk5EQQlxOsdPFo4VVvF7diCwUuLL8WAt/H3+YwXWP4PO1RnRiazankJ/3AzIyll31vMLCQtavX09VVVXAxp44cSILFizAYrEE7JqBIkmbEDrxaxp/re7YR6bIKfvIXM2yVDN3+p/DWP16RD9ZA7BY0sjPv5+B6QuveI7P5+PgwYNs27YNpzNwbVXCeTISQogLlbe7ebK4mhcr6/FGcgYSZOlmE3+XWsEN9T/EWx25TUa6pKcvID//AayWtCueU19fz8aNGzl16lTAxk1ISGDlypWMGjUqYNcMNEnahAgx2Uem+25OsPBV20aSa3+BpkV6uta1kPoHmM0pVzznk08+YcOGDdTV1QVs3Pj4eFauXElubm7ArimEEMFQ4/Lws5Jq/lRRj8sv2dqVxBgUn09rZ07LD/FXHYv4G5pmcwp5uf9HZuaKK57T3t5+vvokEF2Tu4wbN45ly5YRE3PtPVH1JEmbECG0oc7Ow4WVnGiJ5GXBwTfMZubriR8xsu7H+BwtEV3mAZ1P1/LuZ+DAKz9dq6mpYf369Zw7dy6gY48bN46lS5cSGxsb0OsKIUQgyfY23aOAFQMMrPX+BmP1+1FRMnqtp2t+v59Dhw6xdetW2traAjauzWZj6dKlXHfddQG7ZjBJ0iZECGxrcPBwQRUfNgfuh000SjIZ+UpKDbc03Y+/uiziyzwAMjKWd65du/zTtdbWVrZt28bBgwfRArhpus1mY8mSJVx//fUBu6YQQgSaw+vjlyU1/LaslhbZ3uaqJiea+bLpbyTUPQtRkK515+na2bNnWb9+PbW1tQEde8SIEaxatYrExKt3bQ4nkrQJEUR7Glt4pLCSfXbZ9PNqzEpx9wA3C9t+jKo5FAVTUVdnyPtJT19w2de9Xi/79+9nx44dtLcH9snr8OHDWbVqFUlJSQG9rhBCBEqr18dvy2r5VWktTbK9zVWNiDHz9biDDKt/BL8/Oip1OjpD/hDLFZ6u1dbWsmHDBs6cORPQcU0mE/Pnz+eWW25BKRXQawebJG1CBMEheysPF1ayQzb9vKaFKQbu8j2LtfZtvUMJmI591/73ip0hT506xYYNG2hoaAjouCaTiXnz5jF58uSIm4yEEP2D0+fnD+V1PFNSTYNHkrWrSTUb+WpyKTc1/BB/W11U3NA0m1PJz/8hGQOXXPb1tra289Ungeqa3GXQoEGsWbOG9PT0gF43VCRpEyKAjjW38XBBFZsbZNPPa7kx3sxXLO8xoP43REOZB4DVmsno/AdJS5tz2derqqpYt24dRUVFAR87MzOTNWvWMHDgwIBfWwgh+qprL9KfFVdTI3uRXpXNoLg3tYW5LQ+hak5GyQzZ0YwrL+/7WCypl7zm8/k4cOAA27ZtC3j1iVKKGTNmMGvWrIjem1SSNiEC4GSLk0cLq3ivzq53KGFvmM3EV+MOk9vwMP7m6CjzABg86E5yc/8LkynhktdaWlrYsmULH374YUDXrUHHZDRt2jTmzJkT0ZORECI6efwaL1bW82RxNRWyF+lVKWBZisZqzzNYa7fqHU7AWCwDGZ3/wysuF/jkk09Yv3499fX1AR87JSWFNWvWRMXepJK0CdEHZ1rb+WlRFX+raYr4DofBlmwy8qXkUm5pvB+trjZq7hzabFmMHv1jBqROv+S1dqeT/Qf2s2vXbtzuwO/Fl2RLYO29d5CdnR3wawshRF/4NI1Xqhp4oqiaknbZi/Rabk0w8XnjqyQ3/FnvUAJqUOYacnP/B7P50jXW1dXVbNiwIeBdk7vcdNNNLFq0KGr2JpWkTYheKGxz8VhRFa9XN0ZN8hEsFqW4O7WFeS0PYaw9GUXJrWLIkM8xcsR/YDLFXfLqjvXvs33XbnzG4PyYvfHGG5kedx1pkrAJIcKIX9N4o7qRx4qqKXDKXqTXMirGxFdjdjKs4Sk0LXqeRNqsgxk9+kEGDJh1yWutra1s3bqVQ4cOBbz6BCAuLo4VK1aQn58f8GvrSZI2IXqgxOniieJqXq1qwBs92UdQKGBxsp81nl8QUxc9ZR4AsbHDGTP6JyQnT7zktYqKCtatW0dJSQkEIWGLjY1l+fLljBkzBsfWkoBfXwghekPTNN6utfNoYSVn2iRZu5Z0s5EvJ57mxoYH0dqao+qGZlbWvYwa+R1MpviLXunqmrx9+3ZcruB8j+Tl5bFixQri4+OvfXKEkaRNiG6oaHfzZHE1L1Y24AnCXaFoc0uCkc8bXiG18QW9QwkopYxkD/0aw4f/M0aj9aLXmpub2bx5M0eOHAna+KNGjWLlypUkJFy6bk4IIfTyfm0TjxZW8XFr9KxTDpZYg4H7UmqZ6fgRhrriKErWICYmhzGjHyIl5ZZLXjt58iQbN24MeNfkLmazmYULFzJx4qU3U6OFJG1CXEW1y8PPiqv5c2U9Ln80/WgNjlExJr4cs4PhDU+hadHVHSw+fgxjxvyExITxFx33eDzs2bOHXbt24fEEp7TFZDKxYMECbrnlMxOhfEsKIXS0sc7Oo4VVHGtx6h1K2DMqWJ3sYkn7T7HWHdY7nIDquKH5VYYP/5dLbmgGs2tyl6ysLNasWcOAAQOCNkY4kKRNiMuodXt4priGP1bU4ZRk7ZoGmo18KeEkNzY+iNbWGlW5hMFgYXjOP5Gd/XUMhot/ZB4/fpxNmzZhtweva+hV95UJ4R+0v92Lr8mFOfPS9XtCiP5la72DR4uqOOxo0zuUiDAnCe70/Z7Ehvf0DiXg4uPHMGb0QyQmXnfR8WB2Te6ilGLmzJnMnDlT9+7JrmIHlqEJKEPw9kiVpE2IC9S7vfyitIZny+pwBnhTx2gUazDwueQqZjgewFBfEVXJGkBS0kTGjH6IuLgRFx0vKytj3bp1lJWVBW3scGnl73f5aNldTvPOchKmZ0nSJkQ/tquxmUcKq9hvb9U7lIhwXZyRL5r+xqCmPxBtpRFXuqHp9XrZt28fO3bsCErX5C7h0srfXdaMY2Mx7acbyXpgGkjSJkRwNXq8/Kq0lt+V1dLqk2TtWkwKVie3sdj5KNb6Y3qHE3BGYzyjRn6HrKx7UerTH8B2u53Nmzdz7Fhwv+bk5GRWr17NsGHDgjrO1fjdPlr3VtK8oxR/a0epqzIbdItHCKGfvU0tPFJYyd4mSda6I9tm4ksx+8hv/ClEUUfILslJkxg9+seX3NA8ceIEGzdupKmpKajjT5gwgUWLFmG1Wq99cpC4K1o6krWTnWv0jKqjA1sQSdIm+jW7x8uvy2r5bWktzZKsdcttSX7Wen5NUsMmvUMJirS028jP+yE226Dzx9xuN7t372bPnj1BW7fW5frrr2fJkiXYbLagjnMlmsdPyweVNG8rxd/S8bUak60kLcoh5obLlGgKIaLWAXsrjxRWsrOxRe9QIkKKycgXEs4wqelBlDN4ZfN6MRrjGTXqu2QNvueiG5oXdU0Oogu7J+vFU92KY1MJzo/qOh6eKoi5Pp2khTkoU3BvbErSJvqlZq+P35bV8uvSWuxen97hRIQJ8QY+b/grGU3RtfFnF4sljbzc/yMjY+n5Y5qmcezYMTZt2kRzc3NQx7fZbCxbtozx48df++QuAVwnoHn9tB6sonlLKT5HR0mLshlJnJNN/LTBQZ+MhBDh47C9lUeLqtjaENyfe9HCZlDcnVTH7OYHMTdE51Ys6Wnzyc//IVZrxvljoeia3EXv7smeOieOTcU4j9aer3S15CSSvHQElqGhiUmSNtGvtHp9/K6sjl+V1tAoyVq3jLAZ+aJtO7lNP0PTovPPbNCgO8gd9T3M5qTzx0pKSli3bh0VFRVBH3/48OGsWrWKpKSka58cYJpPo+1wNY7NJfiaOvfNMSriJw8i4bZsjHHmkMckhNDHEUcbjxZWsbnBoXcoEcEArEh2srT9cWIboqsjZBeLZSD5ed9n4MBF54+FomtyF5PJxPz585k8eXJQx7kSb0M7js0ltH1YDZ0FWaa0mI7qk/FpIY1FkjbRL7T6fDxbVscvS2to8ERn4hFo6WYjX4j/iAmNP0Y526JsCXWHmJgcRo9+kNSUKeePNTU1sXHjRk6cOBH08Y1GI7fddhtTpky5qNQkFDS/hvNYLY5NJXjrPm3XbRs7gKTFOZjTY0MajxBCP8ebO5K1DfWSrHXXrEQ/d/h+T0rjOr1DCRLF4MF3kTvqPzGZPn2SFIquyV0yMzNZs2YNAwcODPpYn+Wzu3BsLaX1QBX4Oj4BGWJNJMzNJn7KIJQx9NUnkrSJqNbm8/NceR0/L6mh3hNd+4YFS5zRwL2JZcxwPIixoVrvcIJCKTPDsr9GTs4/nd9TxuVysWvXLvbu3YvXG/zvlfT0dNauXUtmZmavr9Gb6khN02g/UY99YzHe6k/bdZuz4kleOhzriORexyOEiCwnWpz8tLCK9+uib/1VsFwfZ+BzxjfIsv9R71CCJjZ2JKNH/4iU5Ennj4Wia3IXpRRTpkxh7ty5mEyhTVV8LW6at5XRsq8SvJ2P1oyK+CmDSZw7FEOsftUnkrSJqOT0+Xm+vI6fl9ZQ65ZkrTtMCtYkOVjY9jC2hlN6hxM0iYkTGDP6R8TH5wPg9/s5cuQIW7ZsoaUlNIvtJ0+ezLx58zCbQ/vD33mqAcfGYjzln36dhkQLSQtziL1pYMif9gkh9HGyxclPi6p4r9YelVUUwZBjM/IF607y7U9ClC4VUMpCTs43yRn2DQwGC9DRNXnTpk0cP348JDEkJiayevVqhg8fHpLxuvjbPDTvKKdlTzma+9PGdLZxA0hePBxTWkxI47kcSdpEVGn3+flTRT1Pl1RTI8laty1I8rDa/QyJjbv0DiVojMZ4Ro78d4Zk3YdSHWUNRUVFrFu3jqqqqpDEEB8fz6pVqxg1alRIxuvSfq4Jx4Zi3MWflj4ps4H4mUNImDUEg0XfTUmFEKFxqtXJY4XVvFPbJMlaN6WZjXw+/iNuanwIgzN6tzxITr6F0fkPEhc3Eght1+Qu48aNY9myZcTEhC5B8rt8tOwqp3lnGVr7p8m4eXAcyctGhFX1iSRtIiq0+/z8ubKep4urqZZkrdsmx8M92p9Ib3pT71CCKj19Ifl53z/f9aqhoYGNGzdy8uTJkMUwevRoli9fTlxcADenvkZ9pKvEgWNDMa6zTZ8eVBB740ASF+VgStJvjxshROicbm3n8aIq3q5pQja36Z44o4F7EsuYYX8QU5QuFQAwmZIYNeq7DB50J0opNE3j6NGjbN68Oehdk7tYrVaWLFnCDTfcEJLxoHN7m70VNG//dC9SAEOChaSFw4i9KQMVxI2ye0OSNhHRXH4/f66o5+niGqrc0beBZbCMjjXwedN75Nh/q3coQWW1DiI//4ekp90GQHt7Ozt27OCDDz7A5wtNeYvZZGLR4sXcfPPNIRkPwF3ZimND0aebfnayZCeQtGwE1uzEkMUihNDPmc5k7S1J1rrNrBSrk5pY2PowtobTeocTVBkZK8jL/W8slo4uiKHsmtxl6NChrFmzhpSUlJCMp/n8tB6oxrGlBH/n9jYAmAwkzMgiYfZQDNbwrD6RpE1EJJffzwuVDfysuJpKlyRr3TXEauTzMfsY1/QYSovePzeljAwZ8kVGDP8XTKY4/H4/hw8fZsuWLbS1tV37AgFicLZy71e+yvD80SEZz1PnxLGxGOexT/eRATAmWUhaPJzYG0PfgUsIEXpn29p5vKiaN6sbJVnrJgUsSHKxyvU0iY179Q4nqGJissnPf4ABqdMBaGxsZNOmTSHpmtzFYDAwa9YsZsyYgcEQ/E6Mml+j7cOaju1tGtovei3mujSSFg/HlGoLehx9IUmbiCjuC5K1CknWui3FZOBz8aeY1PRjjO3RvVlqYsL1jB79IAkJ4wA4d+4c69evp6amJmQxKKXIToqn/uRBUpKTgzdQZ2LmbXLRvLmE1kPV4P80W5N1a0L0L+fa2nmiqJrXJVnrkVsTNO72P09609t6hxJUn+2c7HK52LlzJ/v27QtJ1+QuqamprFmzhiFDhoRkPOdHddg3FOOtufimbce6tZFYR4R+j9TekKRNRAS338+LnclauSRr3RZjUNyVWMHs5h9jbgxduYMeOhqNfJshWZ9DKQN1dXVs2LCBTz75JKRxJCcns3r1agq3b6ABeteXv5v87V6a3j5HyweV4L14nJjr00haMhxTcnjfORRC9F1XsvZGTWPXllKiG8bGGvic8S2GOZ7TO5SgS06aRP7oB4iPy8Xv93Po0CG2bNlCa2tom6vcdNNNLFq0CIvFEvSx2j9pxL6hCE/ZxZ2hDXFmEhcOI25iZtitW7uaayZtSqlngWVAjaZp4zuPPQosB9zAOeDLmqY1KaVygJNAVxHwPk3TvhGMwEX/IMla75gUrEyys7j1EWIao7d9f5eBA5eQl/s/WK0ZOJ1Otm3bxoEDB/D7Q3uv+frrr2fJkiXYbDYKgvjByd/upXlHGa0Hqj/dR6aTeVAcyStGYh0eGXcOI53MkUJPBW0uHi+qkmSth7KtBj5v28XYKG7f38VsTmHUyO8yaNDtKKUoLCxk3bp1VFeHtrlKTEwMK1asYMyYMUEfy1XswL6uCHfhZ/Yf7NpvbV42BlvkPbfqTsTPAc8AF+4iuBH4nqZpXqXUw8D3gO92vnZO07QbAxmk6H/cfj8vVTbwlCRrPaKAeYkuVrmfIblxj97hBF2MLZv8/B8wYMAsfD4f+/btY/v27TidzpDGYbPZWLp0Kdddd11Qx9E8Plr2VNC8vQx/28WlLIY4E4kLcoibFFl3DqPAc8gcKUKsoM3FE8VVvF4tyVpPpJkNfC7uODc3/QRDe+jWN+tDMWjQWkaN/C4WSyr19fVs2LCB06dD31xlxIgRrF69moSEhKCO465sxbG+iPZTDZe8Zs1LIXnZCMwDY4MaQzBdM2nTNG1H593BC49tuOC3+4DbAxyX6KckWeu9W+P93Kk9T4b9Hb1DCTqlLJ11+f+I0Wjj9OnTbNiwgfr6+pDHMmzYMFavXk3yFdauaQHYDemK3a4ADBB/a+edw9jQbtYtZI4UoSXJWu/EGw3cnVDEDMePMDXW6R1O0MXF5ZKf/wApyZNwOp2sW7eO/fv3h7z6xGg0Mm/ePG699VaUCt7NRG+9E/uGS5twARhTbSQvG0HM2AFBGz9UAvFs8CvAyxf8frhS6kPAAfyPpmk7AzCGiHKSrPXeuFjFfca3GOZ4Xu9QQiIl+Vby8+8nLm4k1dXVrF//CgUFBSGPw2AwMGfOHKZNm3b5zlcBWMumaRrOo7XYNxbjq2+/5HXriCSSV4zEnBnAvd9EoMkcKfpMyiB7x6IUa5PquK3lJ8Q0hn6eCDWDIYbhw/+J7KFfQdMM7N+/n61bt4a8+gRg4MCBrF27loyMjKCN4XO4cGwu6Vgq4L/4H4ayGEiYPZSEmUNQpuB3pwyFPiVtSqn/BrzAXzoPVQLZmqbVK6VuBt5USo3TNM1xmfd+Hfg6QHZ2dl/CEBFM1qz1Xo7NwOes2xjd9DSqH/QJs1jSyB31X2RmrqSlpYW3336bw4cPowWx0ceVDBgwgLVr1zJ48OCgjeE81YBjXRGeqksXiRuTLCQtHUHs9elBG1/0ncyRoq+kwUjvGIAlSa0scz5OQuMRvcMJibS0eeTl/h8xMVmcOXOG9evXU1enz1PFyZMnM3/+fEym4Kwb87d5cGwvo3VPBZrn0s8/MdenkbR0BKYka1DG10uv/zSVUl+iY/H1bVrnpyZN01yAq/PXh5RS54A84OBn369p2m+A3wBMnDhRfhT1M12t+5+WZK3HBpoN3Bd7hJvsD2NwXvr0JfoYGJJ1HyNHfhuIYdeuXezcuROXy6VLNBMnTmTBggXX7Hx1viyyh0mlq8iO/f0i3MWXfI4HoyJh5hAS5gyVFv5hTuZI0ReSrPXerAQPa72/ZkDTVr1DCQmbbQh5ef9Hetpt1NTU8Nprf+LcuXO6xBIfH8+qVasYNWpUUK7vd/to2V1O8/YytPZLG8iYMmJJXjES28jkoIyvt14lbUqpRcB3gFmaprVdcDwdaNA0zaeUGgHkAtH/PFp0m9vv5y+dyZrss9YziUYD9yacZYr9x5iaGvUOJyQSE64nP/9+EhOv48SJE2zcuJGmpiZdYomNjWXlypXk5+cH5fpXW0ANYMtPIXn5SExpMUEZXwSOzJGit852JmtvSrLWYzfHwV38hSzH63qHEhIda7u/Sk7Ot2hv9/HOO+9w6NAhXapPAEaPHs2KFSuIjQ18ow/N56d1f1XHuu7mSz87KquRxHnDiJ86GGWM3kZc3Wn5/yIwG0hTSpUB36ejE5YV2Ni5sLCrbfFM4H6llAfwA9/QNO3yn0BEv+Ly+/lLRT3PlNRIstZDNoPi9sQq5jb/GGtjmd7hhITJlMTIkf9O1uC7qaio5LXXnqWkpES3eEaNGsWqVauIj4/v8XuvNX966504NhbTdvTSBdQAxhQryctGEjMu8hdRRyOZI0UgnGlt54niat6UTbF7LD9GcZ/pXUY6fq93KCGTkjKV/LwfYrVms2/fB+zYsUO36hOz2cyiRYu4+eabA37t8+u6NxTja7h8ZVHshIEkLRmOMSH4+77prTvdI++5zOHL/svQNO2vwF/7GpSIHu0+P3+p7EjWKiVZ6xGTguWJdha3PUpc40m9wwkRxaBBtzNq5HdwOo288cabHDt2TL9olCI3N5d7772352++RrLma3bj2FJC6/4qLntL3dRRCpk4ZyjKLKWQ4UrmSNEXn7S280RRFW/VNEmy1kNDrQY+Z93FOMdTKM177TdEAaslg9zc/yIjYxknTpxg06af09ioX+XN4MGDWbt2LQMGBP6movNUA471RXgqL7/5tzkzluSVo/rVnqSRt7OciAjtPj9/rqznmeIaqtySrPWEAhYktrPc9TQpTfv0Didk4uPHkp//A2JjrmP37t3s2bMHj0e/753MzExmzZrFqVOB3Zy8a2Psll3laO7Lf0yTUkghotupVidPFFXztiRrPZZuNnBv7FEm2h/G0B76roh6UMrE0CFfZPjw/0d1tZ1nn9W3+kQpxYwZM5g1axZGY2BvKnZsjF2Iu/Ay67rpLIWcP4z4KdFdCnk5krSJgHL6/Pyxoo6fl9RQ4+4fd74CaVq8l9t9v2egfcO1T44SJlMCI4b/K4MH38uxYx+xZcvTNDc36xaPUoopU6Ywd+5c7HZ7ADYi7XiKpnn9tOytpHlrySUbY3cxJls79pMZn9bHMYUQ4ehki5PHi6p5p7YpADs49i+JRgN3J5xlqv3HmPvJum6A5OTJ5Of9AL8/k7/9bYOu1Scd8SSzZs2agHe19VS3Yl9fTPvHV95vNeaGdJKXjsCYGP2lkJcjSZsIiDafn+fL6/hFaQ21kqz12I1xcDcvM7T5Fb1DCSHFoMzVjBr1XSoqWvjd756lsrJS14gSExNZvXo1w4cP7/O1uhaDa5pG68FqHJuK8TVdYc2BUZEwPYuE27KlK6QQUehEi5PHi6p4r9YuyVoPdazrrmRu80P9Zl03gMUykNxR3yM1dVFn9cmrulafAFx//fUsWbIEm80WsGt6m1wd67o/rOZKj51N6TEkrxyFbVRywMaNRJK0iT5p9fl4rryeX5bUUOeRZK2n8mIM3Gt6n1zHb/QOJaTi48eSn/d9fL7hvP76xoCXIPbGuHHjWLZsGTExgStJHBwzkvYXynHWX3mitQxPImXVSMwZskG2ENHmeHMbjxdVs65OkrWeMilYmdjEwrZHiGvsa8VD5OgqhRw27FucOHGOv/xF3+oTAJvNxrJlyxg/fnzArulv8+DYVkrLnkrwXj5bU2YDCXOzSZiRFTUbZPeFJG2iV1q9Pp4tr+OXpTU0eC7dK0Nc3VCrgfusuxjfjxZQA5hMiYwY8W8MSF3Njh272L//Pfx+fVd0WK1WlixZwg033BCwa7qKHQwtzSE/cxzaFRI2Q7yZpCXDibspI2DjCiHCwxFHG48XVbGh/vLrcsSVKWBhYhsrXE+R1HTJFoZRLSX5VvLyvk9trZlnn32BqqoqvUMiJyeH1atXk5QUmIYfmsdH866Kzr3Wrvz5xzY6leQVIzGlBu6pXqSTpE30SLPXx+/Lavl1aS2NXknWeir9/MbYj2DsJwuoOygGD7qDnJx/4+jRc7zwl5/jdOr/9WdnZ7N69WpSUlKueE5ny/ZuubAmP5YrPDlTEHdLJkkLczDEmnsashAijB22t/JYUTWbGyRZ641ZCR5We35Lun2z3qGElNWaSe6o72EyTeGdd8Kj+sRoNDJ37lymTp3ao3nwSjS/RuvBKhybSvA73FceN8lK8ooRxIyTtd2fJUmb6Ba7x8tvy+r4XVktTZKs9ViSycDdcZ8w1fEQJp02h9ZLYsL15OX/gMoKK7/73UvU1195kXGoGAwGZs+ezfTp0zEYrlxy0d2Jymd3Uf3GWfynG67a6t88KI7k1aOwZif2NGQhRBg7YG/l8aIqtjboW8YWqSbGadzJX8hyvKF3KCGllIXs7K+QmfEVdu06wP79P9e9+gQgPT2dtWvXkpmZGZDrOT+qw76+CG/tVW7WGhTx0waTOH+YrO2+AknaxFU1erz8prSW35fX4rhCzbG4sliD4o7EMmY5foy1Sf8yh1Aym1MZOfLfUczgjdc3UFRUpHdIAAwYMIA1a9aQlZXV52v5nV6at5XSvLviijX5AMpiIHHeMOKnZfW7FsVCRLO9TS08XlTFzsYWvUOJSGNjFfca3mR48x/1DiXkBgyYxcgR/82JE7X89bXfhUX1CcDkyZOZN28eZnPfK0FchXbs7xfiLrn6zQxLdgLJq0ZhGRzf5zGjmSRt4rLq3V5+VVrDH8rraPFJstZTFqVYlVjL/NaHiW0s0DuckFLKSFbWfaSnfY0dOw5w9Ohvz3dS1NvEiRNZsGABFkvf2gVrXj8teypwbC1Fc159TaJheAwD7xqPKVnq8oWIFrsam3msqIq9TZff+Fdc3QibgXstmxht/wWqn7VoibFlk5v739TVZfGHP7xLQ0OD3iEBEB8fz6pVqxg1alSfr+WpbsX+fhHtp67+tSmbkaRFOcTdMghlkBua1yJJm7hIrdvDL0pqeL6injZJ1nrMCCxNcrDY+TiJTcf1DifkkpMnM2L4f3H0aB2vvfqc7u2Ju8TFxbFixQry8/N7/N4LSyQ1v0bbhzU4Nl6lfX8nj8nDB+VvM/9b/yYJmxBRYluDg8eLqtlvl2StN7IsBu617eMGx+MoZ3jMD6FiMMSQk/NNzKalvPPOVoqLd+kd0nljxoxh+fLlxMbG9uk6Xntn+/5D1VddKgAQc30ayctHYkzon3uu9YYkbQKAKldHsvanijqc/v511ysQFDAvsZ0VrmdIbdqrdzghZ7UOYtTI/6SqagjPPrte9/bEF8rLy2PFihXEx/e87OLChM15ugHH+0V4qq7xYU1B/JTBHK7eRPmZM1xz5hJChL2NdXaeKK7msKNN71AiUrrZwD2xx5hk/wkGV3iUAYbSwIFLGZT5T+zc+RFHjz6ndzjnWSwWFi9ezIQJE/p0na6lAi17KtA8V7/hb0yxkrxqFDH5qX0asz+SpK2fK29380xJDS9U1uOSZK1Xpid4Wev9HQPtG/UOJeQMBivZ2X8H2iLefHM7VVXh057ZbDazcOFCJk6c2Kfr+Fs91P7mGK4C+zXPNQ6MZcAdeViGJuD/3fo+jSuE0Jemaayrs/NEUTXHWvpfohEISUYDd8V/wlTHTzA3NeodTsjFx49hxPDvcfy4i7+99UrYVJ8ADB06lNWrV5Oa2vvkqWupQPO2Uvxt19i+yKCInz6YxHnSaKS3JGnrp4qdLp4pqeHlygbcYbLeKNJMjNO4U+t/3a66pKcvJG3AN9i+/QSnT7+sdzgXycrKYs2aNQwYMKDX1/DWO2l65xzOs/W4PAOveq4yG/Bdl0by/GFYUqKzFNLn9dLa1EhiWrreoQgRVH5N451aO08WVfFxa7ve4USkWIPijoRSZjU/1O+acAGYzSkMz/lnampG8/zz22lpCZ9GNd3tnnw1mqbRdqQWx/qiay4VADAPiSdlTW5UNxqx11STmJaO6uWfaXdI0tbPFLS5eKq4mr9WN+CVXK1XxsfC3YY3GN78Z71D0UVcXB7Dsr/Dhx86efONN8OiPXEXg8HAjBkzmDlzJkZj7+7k+Vo9NG8uoeWDStr9bahrXMaam0zKqlGUV7VddiF1uDRh6a02h53y0x+j2l3kTJ6qdzhCBI1P03irpokni6r5pE2Std6wKsXqxBrmtT5MTFOh3uGEXEcjrntRrOSdd/ZRXf2u3iFdZMCAAaxdu5bBgwf3+hrtZxqxv1+Ip+La6zqVxUDi/Bzipw2O2kYjFZ+cpNXeRHLGoKAmbCBJW7/xSWs7TxVX82ZNI77I/gypm1ExintNG8h3/Jr+uE7JZEomJ+f/UVoyguee24XLde27a6GUmprKmjVrGDJkSK/e73f7aNldTvO2MjTXtfciNMSaSFo6gribMzoOVH12rUtkf4/UFhfSUFFOXHIyuZOm4K2txdTHrptChCOvX+O16gZ+VlxDgTO8fq5FCpOC5Yl2FrY9SkLTSb3D0UVKylTSBvwDO3ac4+zZt/QO5xKTJk1iwYIFvW7l765owf5+Ia4zTd0635afQvKqUZiisPrE63ZTfPxDfF4vWfljGZw3JiTjStIW5T5ucfJEUTXv1jYRPs9DIku21cC91h2Ms/8MA/1vY3GljGQNvheXayFvvP4BTU2b9Q7pEjfffDMLFy7sVSt/za/Rdqi6oyOkw32ZMy69Oxh7YzpJy0ZgjL9gvMjO0QDQ/H6Kjx+hvaWZ9JwR5E+ZrndIQgSN2+/n5aoGni6uoaT9cv/2xbUYgIWJrSxrf4rkpkN6h6OLGFs2Q4b8C0ePGnj7bxvCrroiPj6elStXkpub26v3e5vacawvpu1ITbfmOUOcmeTlI4i98erLCiJRa1MjpSeOYbRYGH7DzSG/kSlJW5Q64mjjyeIq1tc5ouGzpC4GWQzcYzvAjY7HMbb3z1KZlJSpJMR/je3bz1BWFn6NNeLi4li5ciV5eXm9er/zVAP29wvxVl++I5z6TMJmTLaSvPryXa+uOFGH2QR+OW5nGwWHD6BpGsOun0BsYtIl54TbBxEheqvd5+cvlfX8vKSGClf4NIaINHMTXKzy/IoB9h16h6ILozGOoUO/TlnpGP785w9wu8Mv8e9LK3+/04tja0dHSLzdu+0fO2Fgxw3NuL5vzB1OqgvOUldaTHzqAPKnzryos3QoSdIWZQ7YW3m8qIqtDeHTcj3SpJkN3B17nEn2RzC5wmfxcCjFxGSTmfFPHDzo5eOPt+odzmWNHj2a5cuXExcX1+P3usuasb9X2K2OkMD5Nv6JC3MwWLu3Vi4Skhx7TRUlJ45hjY1j1C1TMV2tbCb8vxwhrqrV5+OP5fX8srSGGvc1Ot2JK5oa7+V237NkOMLvRl5oKDIzV+N2LeGtNz/E4dipd0CXsFqtLF68mBtvvLHH79W8flr2VtC8tRsdITsZk62krMnFlpfS4/HCleb3U3jkEK32RjJH5DJu1m16hyRJW7TY1djMk0XV7Grqn0lGICSZDNwV139bEwMYjfEMyfo6587lsHnTYXy+8CsH7cu+Mt6Gduzri3Aeq+12EmKIMZH+uRuwDku86nkRkKOdV3bqBPWlxSRnDOa6OQv0DkeIoGr2+vhDeR2/Kq2hwRN+P9Mixc1xfu7kRYY0v653KLpJSpxAXPxX2bG9hMrK7XqHc1nDhg1j9erVJCcn9+h9mqbhPFqLfX0RvsZuru3suqG5KCdq2vi7nW2c2b8Xn9fLiJsmEZ8SPvvJSdIW4bbUO3iyuJr99mt38RGXF280cEd8ETObf4KlqVrvcHRiIDNzDfamOfz1r0dxOg/oHdBlDRs2jFWrVpGS0rO7ef42D44tpbTsraDbnXiMivhbBxOL65oJG9CRtV3m0uGSy/m8Xs4d3EdLYyNDx47nhvlL9A5JiKBq8nj5bVktvy+ro8kryVpvXRcLdxleZ3jzX/QORTdW6yAyBn6TgwcNnD79gd7hXJbRaOS2227j1ltv7XEr//ZzTdjfK8RT3v0b/6aBMaSszeve/BgB7DXVFHx4AIsthrzJ0zDbwq+BiiRtEUjTNNbXOXiiuIqjzbLhZ2/ZDIq1CRXMaXmEmKYSvcPRTXLyLRgN97BpYyGNjfv0DueyjEYjc+fOZcqUKT2ajLo2/nRsKUVr7345lHlIPKm359EW44WdvWxbHSbZWntLC6f37sTn9ZI7eQoJqWm9vFKYfEFCXEOd28uvSmt4rryOFp+04Oqt0TGKu0zvkef4nd6h6MZgiGHwoC9x9uxItmw+HlZb3FwoMzOT1atXk5GR0aP3eapbsb9fRPuphu6/yahImDWExLnZKFNwW9yHQsUnJ6k4fZKkzEHcMH8xBkP4PjGUpC2C+DWNv9U08VRxNSdlw89esyjFqsRa5rU+SlzTWb3D0Y3NNpSU5K+xd6+L0tLDeodzRRkZGaxZs6ZHk9H5Mo913dv48zyTgaT5w4ifkdWxp4zd3u0Fx+FWHtlYVcHZ/XuxxsYxZvosLDE9X4h+kXD7AoX4jCqXh1+U1PCninqcYfrhOhKMsBm4x7yFMY5nUP32Zo1i4MDlNDbM4fXXT+ByHdU7oMtSSjFt2jRmz56NydT9j/Q+hxvHpmJaD1bRk9bi5qx4UtZG/ibZfr+Pswf20VhZQdbosUxcvkbvkLpFkrYI4PVrvF7TyM+KqznbJnvI9JZJwbLEJha1PU5C0wm9w9GN0RhPxsAvcfx4Bhs3fKJ3OFeklGLq1KnMmTOnR5NRb8o8ACw5iaSszcWc/mly06MOUVf6bBPiZKfs5EeUfHSM1MFZ3Lx0FYZebjIuRKQocbp4pqSGl6sacPn7a5LRd0OtBu617uI6x1MoZ/9t1JKUeBNwFxs3lOBwhO8NzZSUFFavXk12dna33+N3+WjeUUbLzjI0dw+yNZMicd4wEmYMQRkjd5Nst7ONj3duw9XaQu7kqeRNnqZ3SD0iSVsYc/v9vFTZwDMlsodMXxiAxYktLG1/iqSm8P0BHHwGBg5cTXnZJF577RQ+Xzc7J+qgN5NRr8o8AGUxkLRoOHFTBgW0ja8WwjvUfr+PT/btpq6kiCFjr2PqHfeGbGwh9HKurZ2fFdfw1+oGvJKr9Zpsb9PBZssiMeFL7NnjobLyI73Duaqe7k2q+TVaD1Th2FSMv7ln21xYshNIuT0P88A+VmvoyFFXy8mdW1EGA+Nm3UZccmR2uZSkLQw5fX7+XFHPL0prqJQ9ZHpNAfMTnSxz/YIB9j16h6Or5OQpONuW8e47RbS3h/dTxp5ORr5mN46NPS/zALCOSiZlTS6m1L4vONajxb/b2cZH2zbR2thA3pQZjJ46M3iDSXmkCBMnW5w8VVzN32qaevpPXlwg3Wzg7tijTLI/gtF1+b0q+wOjMY60AZ/j6NGBnDlTpHc4V5WQkMCKFSt6tFG282Q99veL8Nb07O9YmQ0kLsghftrgjuUCEai64Cyn9+0iPmUAExYvx2KL0TukPpGkLYy0dLYl/nVpLXWe/luaEAizE1ys8vyWdHt47jEWKrGxIzCb7mHnDgdNTaf0DueqejoZ+d0+WnaU0byjHM3ds85wymokaclw4icP6k2ol3VJTtN5IBjJXHN9Hce3rMfv83Pd3PkkDcwM+BiXkKRN6OyIo40ni6tYX+fotyutAiHVZOCuuI+ZbH8Ec1P4VlwEn4H09FUUF9/I9m1n0bQivQO6qvHjx7NkyZJub5Td4/1IL2AZnkjq2jxMaZGX5GiaRuGHByk8cojMkblMu/NzGHuwxCKcRcdXEeEaPV5+J22JA2J6gofV3ufIdKzTOxRdmUzJJCd9jg8+iKGiIvw7Y44fP56lS5cSE3PtCULza7Qdqsa+oRh/c8/Lhq25yaSszcOUbL3muUqpHpVMBjuvqSkq4MS2TdgSErhx4TJiE5OCO6AQYWBfUwtPFlWzrbFZ71AiWpLRwF0JZ5hifwRLU53e4egqOelWHI5FvPN2KW73Gb3DuaqYmBiWLl3K+PHju3W+t6kdx/pi2o7U9Ljpb7CWC4SC1+Ph4x1bqD53hhE338LcL/99xH0N1yJJm45q3R5+WVLL8xV1tEpb4j6ZHO/jdv+fGez4m96h6EopCwNS13Dy5Ei2bikBwvsuakxMDMuWLWPcuHHdOr/9dAP29wvxVPW8lEdZjSQvG0HcpOA8lQpmeWTR0cOc2rOD9OzhTL/7C2G5f4wQgba13sFTxdXsk31I+yTeqLgjvrhjL9LG/roXaYfY2BEo7mDrVgctLef0DueacnNzWbFiBQkJCdc819/upXlrKc27K8Db88+U1hFJpNyeF5DlAqHkbGnm2Mb3sddWM27WPK6/baHeIQWNJG06KGt384uSGl6orKddOl31yc1xGrfzEtnNr+kdiu5SUm6jsmIqb+0swe8P/6dreXl5rFixgvj4a7cOdle0YH+/ENeZpl6NZc1LIWVtLqakaz9dC5S+5nA+r5fTe3ZQcPgAOTfcxPy/+5a+JR5SHilCQNM01tXZebK4WvYh7aNYg+L2xHJmNz+MtalM73B0ZTanEhd3F/v2WqmtrdA7nGuyWCwsWrSIm2666Zrnaj4/rR9U4dhcjL+150trlMVA0uLhxN0aWU/X7DVVfLjuHbxuFzcuXEba0GF6hxR0krSFUEGbi6dLqnmtqhGPfADqkxti4Q7D6wxv/oveoeguPv46nG1LWfd+LW53kd7hXJPVamXRokVMmDDhmuf6HC7s64tpO1zdq72dg/10LRjczjaObVpH+emTjJ0xh6X//J2wmEjlR5YIJp+m8VZNEz8rruaU7EPaJzaDYk1CFXNaHiG2sUjvcHRlMFhITl7D8WPZFBRUAj3bCkYPOTk5rFq1iuTk5Gue6/yoDvu6Irx1vbvBEYlP16oLzvLhunewxsZy89JVJKYP1DukkJGkLQS6Ol29XduETz749Mm4WLjT8Dajmp/TOxTdWa2DMRrWsnOHh5aWcr3D6ZYRI0awcuVKkpKuvhbL7/LRvL2Ulp3laJ7elQ73ZO3alfRkTduVyiO7WzbZ0tjA4ff/RmNFOTcuWBoxm30K0Rduv59Xqxp5pqSaQqdsbdMXVqVYlVjDba0/Ja7prN7h6C4leT7FxTezfVs5UKl3ONdkNpuZN28et9xyyzXnHXdpM03vFuAucvRqrEhcu1Z45BDHNq0jNWsIM+/7ErFJyXqHFHKStAXRYUcrTxVXs0E6XfXZ6BjFXab3yXP8Vu9QdGc0xhMfdwf79ydQU9OodzjdYrFYmD9/PpMmTbrqeX3ZS6ZLMDpDdssl/8i796++vqyUg++8gdvZxsRlqxmUmx/w0AJDfoqJwHH6/Pylsp5flNRQIVvb9IlZKVYk1rOg7THiw7xLcCgkxN9AU9MC3n23Fp8vMm5oDh06lFWrVjFgwICrnudtaMe+vgjnsdpe/0i2DE8k9fY8TAPCvzOk3+fj1O7tnNi+mezxN7DoH/4Fa2yc3mHpRpK2INjV2MxTxdXsbAz/x/DhLjdGcbd5E/n2X6L6+YdGpUwkJS3jxEcjKCioBSIjYRs2bBgrV64kNTX1quc5Tzdgf68Qb3Xv9wuyjuws9UjRq9Sj+9+j5adPcuidNzBZLNyy8nbSsnOCF1YgSH2kCIDmzq1tfiNb2/SZScHyRDsLnI+T2BTem0GHgs02FL9vJVu3unE6q/QOp1tMJhNz5sxhypQpGAyGK57nb/fi2FJKy55yeruTvDIbSFzYue9amD9dc7c7Ob55A5/s20X+1Bms+u7/YbaEbk16uJKkLYA21Nn5WXE1Bx39d5PKQBlhM3CPZSuj7T/HgGyDkJQ4g5KSW9ixvQao1TucbjGbzdx2221Mnjz5qhOEu6KlYy+Zs029HiscFlJfMae54AVN0yg4vJ9D775FckYmM+77EimZg0MToBA6qnd7+W1ZLX8or8MuW9v0iRFYkuRgsfNnJDV9qHc4ujOZkrBa1/DBvhgaG8O7Y/KFsrKyWLVqFenp6Vc8R/P5ad1XiWNzCf623t/ksGQnkHJHHub07u3xppc2exMfrnubomMfcv1ti7jz+w9FzR5rgSB/En3k1zT+VtPE0yXVnGiRxdN9lWMzcLdlB+MdT6Occhc2Lm4s9qb5vP++HZ+vRu9wuq07pR59bTLSxZKTSOodwSn16NE+bZ/J2i5cy+bzejm1ezsfrnubwXljWPQP/0pi2pUnaiGiRaXLzS9LavlTRT1Ov2xt0xcGYHFiC4vbnyal6aDe4ehOKQsJCcs58mEW5eWNQGTs42c0Gpk9ezbTpk276tM154k67O/3vskIACZF4rxhJMwcgjKE79O1puoqDr79OlXnznDz0pVMueNeDAaj3mGFHUnaesnj13i1uoFnimsocLr0DifiZVsN3G3dzfWOJyVZo6PJiM+7nK1bvLhcDXqH020mk4m5c+dy6623XnEy8rt9NG8vo2VHWa+bjHQMZiBpwTDip2eF9WR0fMsGSk8cY8TNt7D6u98nLjlF75B6R8ojRQ8UOV08U1zDK1UNuOV7p08MwILEVpa6fkGqfZ/e4YQBRVLiXM6cuY4d2+uJlKUCAIMHD2bVqlUMHHjljofuss4mI4W9azLSxZwVT+qdeZgzwncNWE1RAfvfeg17dSW3rLyD2776zbAv3dSTJG091Obz80JlPb8sqaFcFk/32RCrgbut+7jB8QSGdukcZjIlYjav5IN9cdgjbEPZoUOHsnLlStLS0i77uubXaDtYjX1jMf7mvv1dm4fEk3pnPuaB4VPqceHn0jaHHXt1FZaYWGzxCdx9/yPEJCTqF1wgyAdv0Q0nW5z8rLiav0m35D5TwPxEJ8vdvyTVvlvvcMJCfPwEqqpmsGtnE5pWr3c43WY0Gpk1axbTp0+/4g1Nb1M7jnVFtB3tfZMRAAyKhDlDSZybjTKGZwJUeuIY+996DVdbK7euuZsRN129SZnoIElbNzm8Pv5QVsdvymqpl8XTfZZlMXBXzH5utD+BsV3KSpWyEB+3lMOHB1FV1QxETsLWnadr7Z80Yn+vAE9VH9d7GhWJc7NJmD007CYjTYPmhlr2v/UeZz7Yw3VzF7LyP/4HW9y1Nw8XItIdsrfysxLplhwICpib0M4Kz69Js+/QO5ywEGMbTmvrQjZucOH1Rs6TNbj20zV/u5fmbaU076oAb99KiE0DY0m9Mw/LkIQ+XScYNE3j7MF9HHjzNQwmI7euuZucG669ebj4lCRt11Dr9vDb0o7F080+qcfvq0EWA3fHHGSC/XGMrj7UaUeRhIQ5nD41jnPn7ERKTX6Xa61d81S10vReIa5P+j7JmjJiSb0zH0tW6JKg7q5pqy8r5eiGP9JQfpKbl6zgS4/9Emts+DwFFCJYdjR0dEve3STdkgNhboKLFZ7fku7YqncoYcFsHgDaMnbuNON0Rs7NTLj22jXNp9F6oBLHxhL8rX2s3FIQPyOLpAU5KNOV18npoWtN9/63XiMuKZnp93yR7PHX6x1WRJKk7QrK2t38oqSGFyvrcfrlvmFfZVoM3B3zITfZH5VkrVN83ATKK6ayc4cDiJyOV/BpZ8hbbrnlspORr9mNY2MxrQeroK/3OhTEzxhC0oJhYTcZVZ49zf43X6Xik1MMGTeXBV//B1IHR+iatWuR8kjRSdM01tXZeaq4hiPN0i05EGYnuFjp+T0DHZv1DiUsGI2xWCxLObA/hcZGJxBZvQOysrJYuXLlFZ+uOU81YH+vAG9N3z8PGVNtpN6Rh3V4Up+vFUget4vjmzdw8J3XSckcxPyv/SNDxo7XO6yIJknbZ5xpbefpkmreqG7CIx9S+iyjM1m72f5TjC6Z3AFibCNwOOaxfpcLv79vC431cLV91zSPj+ad5TRvK0Nz972ttzHVRuqdeVhzwmsyKj5+hP1vvkptSRETl61mybf+nTOHGjDbwn+z0t7S5Odhv+f1a7xR08jTxTV80iZl7YEwK8HNSu+zZDg26h1KWFDKSFzsAo4eHUZFRSsQWTd5r7XvWiC2uLlQ3C2ZJC0dgcEaPp0WXW2tHFn/Lofee4v07ByW/NO/M2T0OL3DigqStHU64mjj6ZJq3q+19/nBgICBZgN3xR5lov2nmFxSNgNgsaTj9Sxh2zYDbndkTUQAFouFefPmMWnSpEtKBjVNo+3DGhzri/DZA9NQJtwmo656/P1vvoq9ppqJy1az6j/+F7NNr428hQiNdp+fF6sa+EVJDaXSMCogZia4Wel9jkzHer1DCRvx8dM4e+Z6zpxpIZLWdXfJzs5mxYoVl23GFagtbroYEiykrM0lZvSlN0/10mZv4tC7b3Jkw3tkjsxl5bf/m6zRY/UOK6r0+6RtV2MzTxfXsL0xstYShauOZO0YE+2PYpI1DgAYjXGYjEv54IMEmpvd9L1eMPRGjhzJ8uXLSU5OvuS19nNN2N8rxFMemL/vcJqMupLTj3duZf+br9Jmb2Li8jVMWLjskmRNkzJqEWWavT6eK+9owFXrlgZcgTAjwcMq73NkOtbpHUrYiI0dT1XlVHbucAKR97nBbDYzb948brnllktuaAZsi5sLxFyfRsqqURhizQG5Xl856mo48LfX+WjrRgbn5bP6P78vT9aCpF8mbZqmsaHewc+KqznkkJK9QEg3G7gr9jiT7I9IstZJKTMxtgUcPjyY2tp2IPLuUNtsNhYuXMiECRMuec1T24b9/SLaPw5c2+WY69JIXjUKY5z+k5HX4+GjbZs4vm0bZ+sqmLhsNRMWL8cSxSWQVyU5ab9R6/bwu7I6/lBei6OP3exEhxkJHlb5nifT8b7eoYQNmzWb5uZ5bNzlw++PvOoTgBEjRrB8+XJSUi5ey6z5NdoOVWPf0Pctbroom4mUVSOJvfHKe7yFUkNFOfvfepWTO7cxOH80a7/3Q1mzFmT9Kmnz+jXerGnk6ZIaTrdKPX4gfJqsPYqpSZ5WdomLm8XJj0dTXNwGROb32ujRo1m6dCkJCRe3Dva1emjeXELLvkoI0NMlZTORsnIksRP0n4w8rnaObVrHwbdfx+1xM3LaXJb+4AEsMf29G6RkbdGutN3NL6UBV0BJsnYps3kAXu8iduyw4IrQ/W5tNhsLFizgppsubVnffqaxo/qkMnAlntbcZFJvz8OYZA3YNXurpqiAD958lTP7dncka/91v3SDDJF+kbRJPX7gSbJ2ebGxEygpntRZ5hGZT3Hj4uJYsmQJ48ZdXN6gef207KnAsaUUrT1wpVLWUcmk3JGHSefJyNXWyofr3uHwe2/h83q4aclKJi5bjTU2rlvvlz4dIlKdbm3nmZJq3qhuxCvfxwExI8HDSt8fGeR4T+9QwobRGIfRsIj9+5M7lwpEZsnt6NGjWbJkCYmJiRcd99S0YX+3gPbTgdtHTpkNJC3KIW7q4G5tPxNMlWdOs+/1lyg4fIDMUXms+d4PZJ+1EOtW0qaUehZYBtRomja+81gq8DKQAxQBd2qa1qg6vqueApbQ8an1S5qmHQ586Nfm6KrHL62lTjbEDghJ1i4vxpZLXd1Mdu30oGmRWeYBcMMNN7Bw4UJiP7PHWNuxWuzrivA1BPCpoclA0uIc4nWejJzNDg69+xZH1r+Dz+dlwqLlTFq+hpiExGu/+ULRnrVF+9fXS5E6PwIc7twQe71siB0w8mTtUkqZsVnnc/jwYOrqXETiUgG48g1NX4sbx6YSWvdXBnTJunlIPKl35WNO17fKo/TEMfa9/jIlHx0lPWcEq77zf4y8+RZdY+qvuvuk7TngGeCPFxz7T2Czpmk/UUr9Z+fvvwssBnI7/5sM/LLz/yFT6/bw69JanpcNsQNmoNnAnZKsXcJiGUxb621s3m3A54vMiQggOTmZZcuWMWrUqIuOu0oc2N8txF0c2K0JzFmdk9FA/Saj1qZGDrz9Osc2vo/f7+OGeYu5ZdUdxCVH6T5rfSVJ25U8RwTNjwDbGhw8XVwjG2IHkCRrl6OIjZ3JyY/zKClpJ9L2WrvQ5W5oah4/zbvLad5aiubq+xY35xkgYU42iXOzUUb9bmgWHjnEvtdfpuL0x6RmDWX5v/4nuZOn6f7Erz/rVtKmadoOpVTOZw6vBGZ3/vp5YBsdk9JK4I9ax6Y++5RSyUqpQZqmVQYk4qsodrr4RUkNL1c10C71+AGRYTFwZ4x0g/wskykZn28Bu3bG4nL5iMSOkNDRHXHy5MnMnTsXi8Vy/ri3oR37+iKcR2sDPmbCnKEkzstGGfXZKNtRV8uBv/2Vj7ZswO/3MX72fG5dezcJAy5t09wTktP0T5EyP/o1jXdq7TxTXM2xlsitBgg3Ha37n5dukJ8RG3sThQU38cknLiJ1XTd03NBcvnw5I0eOPH9M0zScRzurT5oCm4ia0mJIuTMPa3YPKz0CRNM0zh38gH2vv0x1wRmSMjJZ/I//xpjps1GX2XdOhFZf1rRlXDDRVAEZnb/OAkovOK+s89hFk5JS6uvA16Fjb4u+2lBn58sfFeKTD04B0ZGsyT5rn2UwxGA0LuDA/lSam71AAO+uhdjAgQNZsWIFQ4YMOX/M3+7FsbWUlt3lBGtxS9LCnKBc91rsNVV88OarfLx9M36fn9HTZjL1jvtIzhwUkOtL0iYu0Kf5EQI/R95x5Jw8WQugWQluVsg+a5eIseVTXT2VnTu8RPKTNaUUt956K3PmzLnohqaryE7Tu4V4SgNfcRQ3uXNvUkvo9ybV/H4++WA3H7z+MrUlRcSnDmDe1/6B8XMWYDT1i/YXESEgfxOapmlKqR59ZNE07TfAbwAmTpzY5487dR6vJGwBkGkxcFfMh9xkf1yStQsoZcJqncuRD4dSWxu5C6gBTCYTM2fOZNq0aRiNHZOD5tNo3V+JY1MJ/tYgdPMyoNvDyMbKcj544xVO7tqG3+dj5MTJTLvr86Rn5wR4pCj/ASRZaa/0Zn7sfF9A58gad2R26Qs3sxPcrPA+S4Zjo96hhBWrdQgO+xx271L4/ZE7PwJkZmayfPlysrKyzh/z1juxryvCebwu4OMZEsykrM3TZW9Sv9/H6d072PfGKzSUl2JLSGTm577ChIXLMF2QrIrw0JekrbqrrEMpNQio6TxeDgy94LwhncdEGBtsMXBnzGFusj+G0RWZXQ+DQxEbM50TJ3IpK/MQqQuou+Tk5LBs2TLS0j4tBXSerMf+XiHe2sCXTBnizaSsye24fl1oS7Lqy0rZ9/pLnN67E83vZ+jY65h+zxcZnDc6KONpWkdpSbSK5q8tCGR+jCIKmJPgYrnn9wx0bNY7nLBiNqfidi1g+zYrHo+fSL55ZTKZmD17NlOmTDl/Q9Pv9OLYXELL3gqC8WTANm4AKWtyQ743qd/n4+OdW9n/5is0VlZgtsVw69p7Ojsm9/ftbcJXX5K2vwFfBH7S+f+3Ljj+LaXUS3QssLaHol5f9E6WxcCdMQeZYH8co0vWOVwoNuYmCgpu5MwZDxDZd6m79pSZMGHC+UXE7ooW7O8V4jrbFJwxx6SSsjYXY7wF+3uFHQdDsH65tqSIfa+/zJl9u9E0PwOHj2TGPV8MfmviyP2sck0+nx+fT8Pv1zAYZBF6N8j8GAUUMDehneWe35Hu2Kp3OGHFaIwDFrBvbxJtbZG7rrvLiBEjWLZsGampHU+7NJ+fln2VNG8uwd8W+CeHymokefkI4iZmBvzaV+PzejmxfTP733wFe001RpOJmxavYPKau4hNTAppLNFC0zT8Xg0UGE3BXffX3Zb/L9KxqDpNKVUGfJ+OyegVpdRXgWLgzs7T36OjnfFZOloafznAMYsAGGI1cJdtPzfYn8DoitxFwsEQYxtNReWt7NzhI9KTNYDx48ezaNEi4uPjAfA5XNjXF9N2uDooiYayGEhaOoL4yYFZK9ZdNUUF7PvrS5w5sBc0jZRBg5l21+fJu3W6dLvqBb/Pj9b5OcxgUhiNShK2y5D5MfooYH6ik6Xu35Dm2KF3OGFFKQtm8zwOHcygqSmy13UDxMbGsnDhQm644Ybzx5wn6rC/XxS06hDLsERS78zDNCAmKNe/HJ/Xw0dbN7L/rddw1NaglIGxM+cy7c7PkZg+MGRxRBOfp2uCBKM5NE1auts98p4rvHTbZc7VgH/sS1AieLKtBu6y7uV6x5MYZKPxi1it2TQ2zmTXToWmRfZEBB1dr5YuXUpubi4AfrePlh1lNO8oQ3MH566oZWgCqXflY0oL3WRUXXiOva+9yLlDH4CmEZecwpTb7+G6uQsxGEO3oDsaygf9fg2/z49CoYwKo/mCJC3yv7ygkPkxehiABYmtLHH/mgH23XqHE2YM2GyzOXZ0GNXVXiJ5XXeXG2+8kQULFpxv4+8ua6bp3ULchfbgDGhUJN6WTcLsoagQ3QDzejx8tGUDH7z1Ki31HevxRtw0iRn3fJG0gK/rjn4+jx8NDYUKWaJ2IWkJ00/k2AzcZdnFeMfTkqx9htk8EGfbXPbstuCLgm42BoOBKVOmMGvWLCwWC5pfo+1wNfYNxfgdQfq7N6iOVv5X2lcmCPNT1bkz7P3rixQc2g+AJSaWScvXcPPSVZhttsAPGKU0TcPn7UjiDQaFyXylRDfy/20IcTlGYGFiC4tdvyTVvk/vcMJOTMytnD41luJiD9GQrA0YMIBly5YxfPhwALx2F451RbQdqQnajzlTegypd+VjGZIQnAE+w+t2c2zzeg787TVaGuoBGJQ3mpn3fokhY8aHJIZo4fP50Tq3ETOaDCil39YHkrRFuZE2A3datjPO8QzKGfk/bAPJZErE553P7l3xuFyRvYC6y5AhQ1i+fDkZGR0dxtvPNmF/twBPZWvQxjQNsJFyV37I9pWpOneGva+9QMHhAwAYTSaun7+YW9fcrWtNfqQ9aPO6O54mK3W1RE2I6GVSsDjBwcL2n5NiP6h3OGEnJuYGigpv4pNPvETDUgGj0cj06dOZMWMGJpMJv8tH8/ZSWnaWo3mCtyYv7tZBJC8djgrBz9mOZG0dB956jZbGBgBSBg9hxt1fIHfy1KCPHy38Pj/+zpv4BpNBl6dqlyNJW5TKjVHcadrCaMcvMTgjv9QvkAyGGAxqHgf2p9LS4ifSF1BDR6OR2267jYkTJ6KUwlPThv29QtpPNQR13LhbMkla1oN9ZfrwxK3q7CcdT9Y6kzWUIv/W6Uy/54skZ4R2MfdlaYR93u/1+NA61ktj0mEvICHCgVkpliY2scD5NEn2D/UOJ+zYbHlUVd7Kzh0a0fBkDS7unKz5NVr2V+LYWIy/OXjJqCHBTMrtecTkB7+Vf1eytv+t12jtTNZik5KZese9IV8qEKk0v4a3q+rEqMJyjpSkLcqMjlHcYdpAvuPXqHD/BBliSpkxm+fw4eHBNDREfrerLhc2GvG1uHFsKqF1fxX4g/f3b4gzk7I2l5ixA4I2RpfPPlkDGDJ2PLPu+wqZo/KCPn53aWH6783n/fSOocls6P1aikh7lCjEZ1iUYlliPfOdT5HY9JHe4YQdqzWbxoYZ7NppiIo1utDRaGTBggXceOONALR/0kjTuwV4q4O7tZFt7ICO7slBbuV/uWTNbLUxcflqJi5fg8UWuvXlkcrj9oEGygDmMEzULiRJW5QYHwtrje+T6/i9JGuXMGCzzuT48eFUVUV+t6suqampLF26lJEjR6J5/Ti2ldK8tRTNFdyvz5afQsrteRgTerDxprrkF9dUXXCWPa/+5aJkLXXwEGZ+7suMvHly98cOlTD6Z+f3a+c7WxlNCrM1ABNRlHyIE/2PzaBYkVDLbW1PEN90Su9wwo7ZPJC21jns3mXBHx33MgG46aabmDdvHrGxsXiqWml6rxDXJ41BHVNZDCQvG0ncLcGt/vB6PBzbtI4Db716vgxSGQyMnzOfqXfcR3xK6DfqjiRed0fVCSr8E7ULSdIW4W6M01ij3mZk8/N6hxKWYmy3curUaEpKfERLmYfRaGTGjBlMnz4do9FI29Ea7O8X4WtyBXVcZTaQtGQ48VMGB3Wc6oKz7HnthfMNRkDKPLrL3d7xPW4wBihREyKCxRgUqxKqmNP6OHFNZ/UOJ+yYTMl43Lexa2ccbnf03JTJyMhg2bJlDB06FF+zm8bXz9B6sCroxTWh6J7s9Xg4vmU9+9989XyDEYDhN97MzM99hbShw4I2dqTzef3nm26ZLcaQdfAMJEnaItTNcX7W8AY5LS/oHUpYirHdSEHhDZw94ydanqwBjBw5kiVLljBgwABcRXYa3i3EXdoc9HHNWfGk3pWPeWBsL6+gLvrf5dQUFbDn1Rc4d/DT7m0ms4Wbl63ilpW3Y4np7dihoVc5kcftO9/ZymIL4o90edImIkScUbEmvpyZLY8R21Skdzhhx2iMRdPm8cG+FNraoqMJF4DFYmH27NlMnjwZgx8cW0po3laG5g7yZwADJMzJvnL35ADweT0c37KRD9585XzrfoD07Bxmfv6r5Fw/ISjjRjq/XzvfdMtoMgR3jgyByI6+H7o13scq7RWGtrymdyhhyWYbTXn5LXx8QiNa1qwBJCQksHDhQsaPH4+33kn9nz/G+VH9td/YVwoSZg0lcX42yhic7km1JUXsffWF85tid4yrGDNtFtPv+SKJaelBGTeS+Tyf3jE0WY0h2fQ6Wta4iOiVaDSwJr6IGS2PYWsq0zucsKOUBZPxNg4dGojdHh1NuLqMHTuWRYsWkZCQQNvhGhwbivDZg7+9kXGAjdQgdk/2eb2c2LaJfW+8THNd7fnjcSmpTLvzc4yfPQ9lCI/OhuHE3e7tWKdmVBGfqF0oer6SKDcjwcMK358Z3PyO3qGEJat1OHW1U9m5w0C03DWEjj3XbrnlFubMmYPZZ6DpnQJa9lZACPaTM6ZYSb0zH+vwALTRv0xOUV9Wyp7XXuCTfbsueoozOH8sc77wtbBqMtIdwc5p/H4NT+d6RZPJgCVGfnwLAZBsMnB73FmmNv8Ua1O13uGEHaVMWMyzOHJkCHV10ZWspaamsmTJEkaNGkX7uSZqnj+Cp7wlJGPHTswgeflIDEEoRff7fJzYsZl9f30ZR+2n39Mmi5WJy1YxaeXt0mTkMzxuH36fhoKonR+j86uKEgqYneBiufcPZDg26h1OWLJYsrDbZ7Jrpynqqreys7NZunQpAwek07KvkvotJfjbQrMuL3bCQJJXjsQQhDtUDRXl7H3tBU7v2YmmffrhITE9g5n3fZn8KdMDPmZIBOn7z+X0gqahDAprlE5EQvTGALOBO2JPMdnxGJamumu/od9R2KzTOXFiJBUV0dMxGcBkMjF9+nSmT5+O1uim7vkTtJ8M7hY3XQxxJlJW5xIzPi3g1/b7fZzatZ29f32RpqrKT19QitFTZzLj3i9J9ckFfF7/+fJHk9UYUU1FekM+AYQhAzAvsY2lnt+R5tiudzhhyWxOp61tNnv3xOD1Rle2FhcXx/z587nhhhtwflRP9R8P4a1vD8nYKsZEyupRxF4fnEnB7/Px3Le/iXZBizJLTAy3rLyDm5etxmQObnvk4Arc96HH7Tvf/dEaa0KpMFgwHV3/zEQEy7AYuCPmOBPtj2FususdTliy2SZz+tRoSkqia103QF5eHosXLybREo/j3SJaPwjuFjcXsualkHp7HsbEHnRP7gbN7+f03p3see1FGisuLu0dlJvPnC9+nUG5+QEdM5K1t3bsr2c0G7DGRvLnhp6RpC2MGIFFic0scv2KVPu+a57fH3V0u5rLrl3xuF0RsJtxDyilmDRpEnPmzMFQ66H218dwFzlCNr51ZBIpd+ZjSrIG9LqOulpaGuqxEYPm959P2JQyMHbWXGbc80XiklMCOmYk8vv8uJ2+8y2IzUHe36fHou1Rtog4WRYDd8YcYoL9cYyu4O6zFalsthspLLies2eja103QHJyMosXLyZvZC4tu8up2noSrT1ECanJQPLiHOKnZQX0spqmcXb/Xva8+hfqSosvei1+QBoz7/kio6fPDo8bdzpzt3vxezVQYAu3+TFEJGkLAxalWJLYyALnMyTZP9Q7nLBkNMbh99/Gvn3JONuiK1kDGDp0KEuWLCHdmoL9zSKcx2pD9yWaFEkLcoifkRXQiaGlsYEP3niF45vXMS/j89gsMec3oB6cP5a5X/o6GSNGBWw8vfU2p2lv9aBpGkajAVt8/5yIhLiaYVYDd1r3cp3jZxhdoak6iDQ22xjKyiZy8mOItvnRZDIxbdo0pk+fjudEI1U/PRj0LW4uZB4UR+rd+Zgz4gJ63XOH9rPnlb9QU3TuouMmi5WJy9dwy8q1mK22gI4ZaXweP25Xx7IQS4wJi61/N12RpE1HXRt+zm17koSmk3qHE5YMBhsGNZeDB9Npbo6e1sRdukohr8sfR/PWMqr2HIQQlnuaMmJJvXs0lkGBm4zaHHb2v/UaRze8h9d98cSqlGLJ//sPxkybFbDxwkVPkjZ3u/d8+aMt3ix3UYW4jFExijvMOxjneAbVHh37bAaazTqK6upb2XksOn+G5OXlsWjRIuLsRhp+/RGestA0GQFAQfzMISTNH4YyBS5ZKD52hN0v/4nKs6cveS3v1unM+txXSEwfGLDxIpGzuaPzp9FsICY+sKWokUySNh3EGRWr4iuY1foEcU3nrv2GfkgpMybTHD48PIjGxujqdgUdXSEnTZrE7Jmz8B1ppPrRgyFrMgJ0TEZTB5O0eHjAJqP21hYOvv0Gh9//G55256UDAkaLhTHTpgVkvEjj9/lpb+34OzbbjMQkRNpEFF03TET4GhsLa40byXf8GiXfd5dltWbTUD+dXTuNUVm5nJKSwuLFixmeOhT7u4XUngjBFjcXMCZbSb0zD+uI5IBds+zUCXa//CfKPv7oktfSs3OY8+W/Z+jY6wI2XqRxOT+9mRkb4DWD0UKSthBK6txDZrrsIXNFCiNmy0yOHc2mtjb6kjWAYcOGsWTJEhJrjdh/+THeus8mOMFlSLSQekcettzArCNztzs5/O5bHHz3DVytrZe8PmrSFFLJwl/nvtre2pFP0y774cnZ4sbv6yh/jOiJKBo/GYqwMiFOY7V6m5HNz+sdStiyWAbhsM9k9y4L/uibHjGbzcyYMYPJN0zCub2C6g8OhWSLmwvF3JhOyqpRAeueXHXuDLtf/hNFRw9f8potPoFpd36O6+cvwmCI7s6Hl+Pz+s83FbHGmrDGRPAcGQKStIVAqsnA7XGfcKvjUazSlvgKFFbrdE58NILKyuhM1hITE1mwYAF5ScNoeqOA+hA2GekSc10aKatHYQhAtyWP28XR9e+y/63XcDZf+rWkZg1lzpe+Ts71E6h+6jB+gr/RqZ4uzGk8Lh+uNi9KQUyCGUOQNiYXIhpMjvexUnuNYS2v6B1K2Pq0Y7INb5RWio4dO5YFt83H+FErdU98GLomI52UzUTKqpHE3hiY0sS6kiJ2v/Jnzh64tLGcUgaun7eQaXd/gZj4hICMF0naHG40v4bRZCAuwM3PopkkbUHU0Zb4Iybafyptia/CZruVUyfzKS2NzmTNaDQydepUpoyfhHNLBTXHjoS80kxZjSSvGEnczRl9vpbP6+X4lg188PpLtDReui+OJSaGKWvvYcLiFRhN/etHTHuLB6NJYbYaiU+JsolInrSJAJuZ4Ga57y8Mbn5H71DClsmUgts1l137YnFH6X2vgQMHsmjRIjId8dh/eyakTUa6WEd0dk9O7vvP7cbKcva8eulepF0G541h7le+QcbwkX0eK5K42724nR13HGKTrBgMUV17ExT96xNViAy1GrjdepAJjiekLfFV2GwTOXtmLIWF0deauEteXh4LZs/DdKSFhqePhbTJSBdLTiKpd+ZjSu1bFyrN7+fjnVvZ+9oL2GuqL3vOmBlzmHnfl4lPSb38RaLwZ3R7qwePy8foKYMAiE+J0m5fkrSJADAAtyU6WeJ+loGOLXqHE7aMxkR8vjns3ZNEe3t0/tuz2WzMnj2bG9LycbxXRENZeeiDMF7QPbmPSYSjrpZ9f32RE9s34/dd+pQwNimZmfd9mbEz5/ab5lOaX6OlMwm32IzROz+GiCRtATTSZuB2y07GO57B0B6lt8QCwGa7gaLCGzhzJvpa93dJS0tj4fwFZNbG0fy7c7SHsslIF6MicV42CbOG9mky0jSNM/v3sPvlP9NQXnrZc9Kyc7jtK99gyJjxvR4nkvh8flobOyYiW7yZhM6E2F4b2vWJQkQKk4JFCc0slH1Ir8poiEXTbuPA/hRaW6NzjlRKcdNNNzHzhil4ttVQ/+aljTlCwZQRS+pd+VgGx/fpOm32Jj544xWObnofn8dzyevKYGDCwmVMvfM+rLGB3TYgXDlb3HjafSiDOj8/ir6TpC0AOjpdbSLP8RsMztDWYEcSm20cpSUTOHVKEY0TEYDVamXWrFlcFzeClr+VYq+//BOpYDOlx3RMRkP6VitfdOQQu17+E9UFZy/7uiUmlql33MeERcswGK+yiFpd8ouI1Gp34XX7MJoMJKbF6B2OEGHPqhTLEuuZ53yaRPsxvcMJWwaDDaXmcuhQGs2O6EzWALKzs1kwax5xx900/+oU+HX4Oru6Jy8ajjL3fr3x+Y7J772F5wr7B2aNHsttX/km6cOG93qcSOHz+mlpbAcUMQlmYtKkqUigSdLWBzfFaaySTlfXZLPlU1ExiRMfRfYH9qtRSjFhwgSm592Cd0sV9pIzusUSN2UQyUuGo8y970RVfupjdr30R8pOXvkO6Ohps5j1+a9euRQySnjcvvNP1eJSrFddNB3NFS+alEeKHog1KFYlVDK79Qnimi5/00eAUhZMxjkcPpxJU1P07UXaJTExkflzb2NYYwrNfyyj1aXPDW5jooWUPnZP9rjaOfz+2xz8219pb738vnH9qRSypbHzZqbZQFJ6rN7hRDVJ2npharyXFdqrDG15Te9QwlrHpp+T2XksujvnZWdnM//WOcQedtL2nH7JmiHBQurtudjye59E1RQVsPvlP1Fw+MAVz0kdPITbvvoPZI+/vucDRNDc5ahz4vP6MVmMJGfIRBSlnyVFgCWZDKyJk61trkUpM2bTLI4cyaK+PjqbcAGYTCamTZ3GhLhcnO+X47AX6xZLzPVpHa38e9k92ef1cGzzej54/WVamxove05HV8hFTL/nC9ji+lZ2Gc48bh8tDR1PF+NTbdHXeCtMSdLWTQqYm9jOEs8fyWxer3c4Yc1qzaG+bio7dxiIqE/pPZSUlMRtM+eSXR5Py1/KcYZ4L5kLxYwbQPKaXIxxvZuMGivL2f3KXzi9d+cVG06YrFZuXX0XE5ev6XlXyAi50+h2emlubEehSEy3YerD00oh+pN0s4G1saeY7HgMi2xtc0VKmTCbZ3Ls6NCo3Yu0y/jx45kxahJsr6elslC3OJTNSMrKUcRO6F0r/+404QLIGJHLvK/9A5kjc3sbatiz1zrxefyYrAZSMvvH+rxwIknbNZgULExoYZH7N6Tad+sdTlizWobS2DiNXTvNUd1ozmw2M23KNK7ThtH+diUt7aHfb61LX1v5NzfUse+1l/ho28bLdrvqMuKmScz98jdIGtj3LQPCUVN1Gz6vH0uMiQF9XJQuRH+SZTFwR8yHTLA/jqnp8qViAsCA1TKDjz7KoaoqupO1QYMGMe+W2SR+6MH1UomusXS08s/DlNy7ZhhnDuxl90t/or7syl+HNTaOaXd/nhvnL0EZoq+yyN3uxVHXjlKQmB6D2SI3M/UiSdsVdC2evs35DEn2o3qHE9Yslizs9umdyVpkPFHpreuvu56pGTeg7azHade39KcvrfydLc3sf/NVjqx7B6/nyp1OEwakM+dLf0fuLVP7EmpYcrV5cNS1g4KUzFh5qnZNUXwnRvTYSJuBtZbdXOf4GQaXdEu+MoXVOo2PT4ykoiK6k7X4+HjmTp3FsLJEnK/U4NLzR4bpglb+vaj0KPnoGLtefJ7Ks6evel7+1JnM+eLfEZfc+zVy4aqpug2Py4clxkTaELmZGQ4kafuMOKNiVXwFs1qflMXT12CxZNLcPIs9uy1c5SFNVBgyZAhzx00jbr8Tz4EKfYMxKpIWDCN+xpAet/L3tLdz6N03OfjOG7jaWq94njIYuGnxcqbe+TkstgB2SQyDnL6hohWvx4c11kx6dt+6a14iDL6+oInmx+ei28bFwhrjRvIcv5VuyVelsFmncPJkLmVl0Z2smUwmbp00mRt8Objfr8HpqdE1HnNmHKl352PuRfledcFZdr74PMXHPrzqeckZg7jtq98k54abehtmWHI7vTRWt6EUpGTGYbbKzcxwIklbpxSTgbVx55jS/Bi2pkq9wwlrZvNA2lpnsXePDa8O24+FUlJSErMnzmDIGRuut+q4dAeW0DJnxpJyZ8/3lfF5PRzbtI59r79Mm73pqudmjsxl/tf/iYE5I/oQ6WfonMy4nF4aK1tBwYCseCnvEKKHJsb5WaXeYnjzn/UOJezZbJM5fTqfkmKNaE7WAMaNHcfUAdej9jTiaq3SNxgF8TOHkDR/GMrUszLFhopydr/8Jz75YPdVb1AZTSYmLl/LrWvuwmSJnpb2DZWtuJ1erLEmMnIS9Q5HXEG/T9oyLQbWxpxgkuMxzFfoBiQ6mM3pOJ2z2LsnJuqTNYvFwtSJtzK2IRP3e/W4NJ03TVYQPyOLpAU5PZqMNL+fk7u3s+eVP191ATWA5f+3d9fxcV5X4v8/9xkUMzNbMjNz4jAnDjNDmyalLW67Sbvd39J3u1tK2nAcZnI4sR0zM8qSJcu2JItxNDPP74+RbdmWbcGwzvv1SmwN3Od4JM2Z8zz3nhsSwowbbmPMgks8OC/fu9Xb0YMtdLbbsYaaSM6N8vjxgr21sxh6ZkXYuMyxiNSWD3wdit+zWiexZ08xZfuDt3X/MWlpacwpmELE2k7s66t9/q81xFiIXViEJad/7/PNdbWsePMVtn3zxVnXdYNrz7Xz732EuPTMwYTqN2wddmorW1BAbFo4sSnSWMTfDdmiLcuicZ1lFaOa/gdDp48/kPs5kymOjvY5rFoZii3Ily4opRgzcjQTjYXoS+uxdR31dUgYoi3ELizEkhvdr+eVrl/Dsleep+ZA2Tkfmz9xKvPuup+I2PiBBelHbB12asqbQUF8ejhxaTIX3y1keuSQYQDOj2zloq5/EN/0ra/D8XtW63j27R1OaWnwX1mLjIxk9uhppO+00LW4AX84fxs6IYnoy3LRLH3/SNvR0sLq995gw+IPsds6z/pYS1gYs26+k5HzLgiKE3N1h1ppb7JhDjGSmh/t63BEPwy5oq04RHG18SuGNf0VrcMf3m78l9EYg61zLt+tCqfTpyuKvSMnO5sZSeMIWdOKs833xRpA6PjuZGTt+6/qwV07WLroOQ7u3HbOx4bHxjH/rgfJnzhlMGH2nQfzXV1VK62NnZitRlILo4MiufoVKdqCnkUpLoms47z2PxHVePY1PQKs1nGU7hvOvn0Q7FfWzGYzU8dOovhIIvbPG+ny+WIB0MJNxFxVQMjwuD4/p8vWyfqP32fN+2/S2Xrmdd3HFE2dydw77gv4RiP2LgeHS5vQdZ3YlDC5qhaghkzRNj7MyZXqA3KbX/B1KH7PaIzBZpvD8u/C6eyEYE9GcXFxzC6YTMJmhWNno1+cJx1IMqqtKGfZqy+wb+2qcz9YKcYsuJgZN9yOJdQLG0d7qIBydDmp2tuA06kTlxpObKokIiH660QDrj8S1rDb1+H4Pat1DGX7R7FnT3DnRuiefTJiNOMdubC0Cbuz0dchAWAtiSPm6nwM4X1bV+Z0ONj69eeseHMRLfV153x8RHwC5939ELnjJg42VJ9qqG6jsbodo1kjtSAarZ/Ny4R/CfqibVaEjUsdr5LW8p6vQ/F7RmM0Xba5rFgeQUdH8Cej0NBQpg+fRG5pBI5v2vCXPmj9TUZNtdUsf30R25d8ha6fu+SMS89kwf3fI7WweLCh9pu7arfGmnbqqlowmg2kFkZjMATf3jj+RpcrbUEn1qhxddhepjb/lzTg6gOrdTTlZaPYvRuC/WQmQG52LtOjR2Jd345u849iTVkMRF+WR9iEvu8ZunvlMpa9+iL1hw6ee3ylMfbCS5l+w63u7ZzsRU6nTtXuerpsTqITQ8ga0feTv8K/BWXRZgAWRLZyoczH7xOjMQp717FiDYI9GRkMBiaOGMfIulT0pS04aPN1SED/k1F7SzOr3nmdjZ9+iKPr3FNVDEYjk65cyOSrrsNgNA023H5xR62mO3Uqd9dja7cTnRhKzugEN4zqXkE9IzO43xaGlFSzxjUhmxnf+F+YGvzjw7g/s1pHc6B8NLt2DY1fgoSEBGZmjid+Ezh3tvjNr35/N8o+sHUTSxc9x+F9e/r0+PiMLBbc/31SCooGE6bPtDZ2cnhfI5pBkVYUg7kfyypEYAiq76hVU1wScZT57X+W+fh94CrW5rBieWR3sRb8hheVMNGZj3F1K7re4utwjrPkRRFzXd+SUVdnR/ec/LfOutdaT6mFxSy4//vEpWcMNlSva2+2UbmrHqUU6cNisIZ5t+Dsn2Cu2kSgy7MqrjEvZ0TT/2HoHCJv+oNgtY7qLtZgKJy1CAsLY3rhRLJ3h+H8rsMvlgoAKJNG5AXZhE9P7dNa5eqyUpYueo6yTev7NL7BZGLyVQuZdMV1GIyB97H40N4GWuo7CYu2kDcu0dfhCA8KvJ/OMyhR+/lf7Z8Ibdjv61D8ntEQid0xl5Uro2hvC/5EBJCZnsH0qJGEbeoCe98KHW9QJo2oC7MJm3buZNTfOfkAJqurjf/YCzzZxr8PBlDLHC5tpKG6jdBIM/njEvu9kbgQ4oTvhXxMbO1fUO1D4z1/MKzWkVQcGMPOnb6OxDtMJhOTisdRUpWAvqIdJ/5T0JsyIohdWIgp4dxrrxurD7Ps1RfZuXxJnxsnBeoJTVuHnfKtR3HanaQURJMiXSCHhKAp2hKd+znaJQXb2Rwv1lYdK9aCP3nHxcYxPW0sydsMOPeeva2vt5kzI4i5rm/JaM+q5Sx99QXqqyr7PH726HGcf+8jRCb40Zm3c9RddpuD/Ztr6epwkJwXxbApKd6Jy02Ce3pk8L9fBLOMts9oGwLv+YMx1Io1pRSjikYwtjUL4+p2dPxo+yODInJ+JhFzMs55wq6tqZGVb7/K5s8/wdHHTWT95oRmP9UfbqVqTwPmECM5o+Ixmg2+Dkl4UdAUbeLMhmKxFhoaytTc8eTuCUNf04XTL3aT6WZQRJ6fRcSs9HMmo8rtW1my6FkO7dnV5+GtYeHMuf1ehs+eP9hIvaaptp0D245iMBnIHZuAJUTemvxP8L9viKFpqBVrALlZOUwxFRO6uROcflSsAabkMGIWFmJOPfsem10dHaz76F3WfPAWtva+/xuyRo1lwX3f868TmmfhdOqUbz1KS10HsalhDJ+Z5uuQhI/IJ6MgZjRGYbfPGVLFmtFoZGLhWEoOJqDWdqL7wV4yPZlSw4hdWIQp+eyt6Wsrylm66DlK16/p1/ghEZHc/h9/8uM9ZU4UqbquU7GjjrqqVqISQxk+M02mQAohvMZqHUXFgdFDqlhLTkxiWuwo4raB3uVfs0/QIGJ2BpHzM1HGM1/9cjocbPnqU1a8+QqtDfV9Ht4SFsacW+9hxNzz3RGtx7W32Ni3vganw0n2yHhyRsX7OiThY1K0BaHTG4wEf7GmlGJUwXDGNGZgWm8D/C0ZKSLmZhA5LwN1lvb0TbU1LH/95T637z+VOSTEPwu2HvMGbR129qw5QmebnczhcWSWBFE7Yqk5hfB7rm6Qo7objAwNUZFRTE0bQ/oOCxxw+N2nAmNiCLHXFWHOiDjr43av+o5lr7zQp/b9PeVNmMx5dz9EeKz/55uaA80c2H6UkAgzRZOTMVlkCqRwkaItiLj2WZvTo3X/0JCXlctkvYDQzXbA5utwTmNMCiV2YRHmtDNP9ehobWH1u2+w4ZMPsHf1798wbPpsDEYj27790u8XVdmcOtuXVVE4KZnQyL7tQyf8gyU/39chCDEoQ7FYs1qtTMoeQ0FpFGqDHfxmR9JuCsJnphF1fjbKdOYTmpXbt7Lk5Wc5tLd/3zxrRCTz7ryf4umzBxupRzkdTvZtqKHuUCtJ2ZGMuyCrT50yxdAiRVsQMBpjehRr/nb+zHNSklKYGl5C7A4FTj9as3aMBhGzMog878xTPexdXWxc/AGr3nmdjtb+bUEQFh3Defc8TP7EKXzzwt/dEbHb6bprLn57ux3T2ESyL88jW9arBSRjvEzNEYHJah1DednI7k2xhwaDwcC4vJEMP5SEcaMd/GlddzdjfAgx1xViyYo842OOVh5gycvP9nupAEDh5OnMv/tBQqOiBxGlZ7U329i54jC2Djv54xMp6Mem4WLokU9PAcxojMHWOYflq8Lp7IShMA0SICY6mqkJo0ndaYIu/1yrZ0wMJfa6wjNO9dCdTnYs+4bvXn+Jpprqfo9fMnMuc++4H2t499W77jNyyk/m59k67OxccZimmnayRsVR/Ph4X4ckhBhirNZx7C8dzt69vo7Eu4bnDmNccxaWzf5ZrKEgfFoqURdmo0y9T/1rrqtl+euL2PbtF+jO/i0VCImMYv5dD1I0dYY7ovWImgPN7FlzBHOokZLpqTLzRPSJFG0ByGSKo6NjDqtXhdHZ6X8Fi6eEhoYyOW0UuXsjUIed+GOx5rq6lk7keVlnvLpWtnEdSxY9R015/7eoCIuJ5fx7HyZv/OTBRuoRjTVtbF92CKfDSfH0VGLnpvs6JCHEEGO1jqd0Xwn79vk6Eu/KzchmoiOfiO06flms0X117doCLNlRvd7f2dbK6vfeZP3H72O39X9teuHUmcy/6wFCI3sf35ecTp39G2s4sL2OxKwIJl2eg/EMRasQvZGiLYCYTAm0t89i1cpQbDbwy6LFA0wmExOyRzGsPBbDFifQ/wYd3mBICCFu4ZkXUh8p3cuSRc9xYMvGAY1/2tW1Hnw9971yZx27Vx8hIs7KmPMyCIkYmmcNff19EGIos1onsW/vMEpLh0ZuPCY5MYkpIcOJ3638dz/Fc1xdc9i72PTZx6x4+zU6mpv6PXxIZBTn3f0ghVP87+paZ1sX25cdoq6qhbxxicy5uUhyhRiQARdtSqki4LUeN+UCvwaigXuBmu7bf67r+scDPY4AkymJtraZrFwRQpd/dbD3KE3TGJVdwqjqFMx+XKyhKSJmpdOUEd5rwdZYfYRlr77AzuVLBpRQw6JjOP++R/p2dc2LecDe5WD36iMc2HqU9OJYZt1QKBt9CtFNcqS3KKzWSezZXURZmX9Ol/eUmKhopsSNJHW3GeWfF9aAs19d03WdncuX8N1rL9J45PCAxi+cPJ359zzkd1fX6g+3svXbg3TZHIyYlcbYBZm+DkkEuAEXbbqu7wLGACilDMBB4B3gTuC/dV3/D3cEOJSZzSm0tMxgxXIrdj9+Q/aEYVkFjGvOInS7jt8Wa4ApOZSYawsxp0fQtKPupPvaW5pZ9fZrbPzsIxwDrLaHTZ/NvLseICT87G2Qvam1sZOt3x6ktrKF4qkpXHDvCNlfTYhTSI70NIXVMoVduws4UD60irWw0DAmpYwkd2846ogf/7s1CJ+RRtT5Wb1eXTuwdTNLXn6GI6UDW3QYEhHJvLseYNi0WYON1K0qdtSxfVkVoVFmRs/PIDI+xNchiSDhrumR84F9uq6XyyXfwTOb02humsHy78w4/Kw7r6dlpWYyyZlP1C6FXydhgyJizin7rnWHa7fZWP/J+6x+7w06W1sHNHxoVDTn3fMQBZOm9et5nvz9q61sZtOXFXR1Ohg1L4PJl+d67FiBSt7+xBlIjnQbDYtlGjt35FFZ6adrmz3EbDYzIWMkRWUxGLb5d6FqTAx1XV3LPL0zZO2BMpa8/Cz7N64b8Pj5E6dw3j0P+82+pI4uJ7tWH2bPmiOkFUYz+6YirGEmX4clgoy7irYbgFd6fP2IUuo2YC3wQ13XT9uyXil1H3AfQGamXDIGsJgzaWiYynfLzPSzWVLAS05IYrJlGAn7jP6chwAwpYW7rq6lhJ10u1N3sO3bL/nutZdoPlpzhmef20Cmenjqg6Cu65RvOcqWbyoJjbYwdkEWsaf8u4UQ5yQ5cpAUBszmGWzfnk1VlR9Pl/cAg8HA6KwSRhxKwuznxRqaImJ2OpHzT9/qpvloLd+9/hLbv/0KXR/Y988aFs7cO++nZOZcd0Q7aG1NNrZ+W0nFjjqKJidzycOjpLmID+m6HtTrBQddtCmlzMDlwM+6b/oL8ASud5UngP8E7jr1ebquPwU8BTBhwgQ/fgfyPIslh7qjU1i2wei3a4g9JTY6hkmRJaTttaL8PQcbNSLPyyRiVvpp0wHLNq3ni3/8ncYjBwY8vDU8gvl3PcCwQW0C6p43qy6bg10rD7N9WRWphdHMvbWY8BiLW8YW/aP3eFMI5mQUrCRHDo5SRkymmWzbmsnhw0OrWFNKUZJZyJi6dEK2g18Xa4ApNcx1QjP15GZZnW1trH7vjQF3hDwmZ8x4Ftz/fcJj4wYb6qAdrWph05cV1B9qZdS8DCZckoMmywR84liOVEoFfY50x5W2i4D1uq4fATj2J4BS6mngQzccIyhZLfnU1Exi6UYNr3aQ8APhYWFMShhBzr5w1MDWHnuVOTuSmGsKMCWEnnR7dVkpS15+lvLNGwY1fu64iZx/3/cIj4kd2ABueqM6tl5t3/pqCiclcfmjY2SKhw8MpSQ0BEiOHAClTJiMs9m8OY2amqFVrAHkp+cwvi2HiF0B8Ptv1Iic331C03AiXofdzqbPP2blW6/SPoCOkMeYQ0KYfevdjJp/oTuiHZSK7XVs/PIADrvOuAsyySzxfQE51Jx6InMo5Uh3FG030mPah1IqRdf1Q91fXgVsdcMxgorVOozDh8ezZbNiqBVrVquVCSkjKNgfjeGof581BFAWA1EXZhM2JeWkN4am2mq+e/VFti/7ZlAtls0hIcy5/V5Gzl3ghmgZcPF2tKqFjV9UcGhPAyPnpnPdzydikk6Q/TfAX+ehnISGAMmR/aBpFgzaHDZtSubo0aFXrKUnpTGJAmL3Bsb775lOaO5asZRlr7xAw5FDZ3hm36SXjODCBx8jKjFpUOMMhsPuZM+aI2z8soLIOCsTL80hOce/OlUGOzmR6TKook0pFQacD9zf4+b/Tyk1Btd1/LJT7hvSrNYRVB0cw7ZtQ+8Hzmg0Mi5jOMUV8Zh2gL9P8wCwDosl+sp8jNEnpgV2tLaw6p3X2bj4Q+xdtkGNnzF8FBc++AMiExIHG+qAVeyoY+PnB2iu62Dsgkzm3FyEwdD7puDCvWTaY/CTHNl3mhaKUrPZuCGRhoahV6wlxiUwyTKM5P3mQEiPrhOaF2UTNvnkE5qV27fy7cvPcHjv7kGNbzSZmXHj7Yy7+HKfvT92tHaxbelBtn57kNTCaM6/q4S41NP3SRXuJycyezeook3X9VYg7pTbbh1UREHIah3DgfKR7Nrl60i8T9M0RmYMY+SRZKw7AuOXTgszEX1ZLqFjThRTDnsXGxZ/yKp3XqejpXlQ4xvNFmbeeBtjL3JfMlKn/Hk2ToeTPWur2fiFa/3d+AuzyRubIG373UCd5TsgSWjokRx5bgZDOLpzDuvXx9Lc5N9bvHhCTFQ0kyJLSN8X4v/rurtZi7tPaEadOKF5tLKCpa88x761qwY9fnJeARc+/DhxaRmDHmsgmmrb2fRVBbtXHSFvXAJXPj6OqARp2+9J+ikzliQ/9s5d3SNFL6zWiewvLWbv3gA4beYBJRmFjK5PJywQ5uR3Cx2XSNQluRi613Ed3/jz1RdorD5yjmefW3JeARc98kNiU9MHPVZ/2TrsbF9WxaYvKwiLtjD5slyyR8V7PY6gdsqPulxNE6J3RmMUdvsc1qyOorXVzzsiekBEeDgTY4eTXRqGdiQw3hu0cBPRl+cROirh+G2tDfUsf/1ltnz9Gfog215rBgNTrr6ByVctRDN4f3podXkTGz4/wIGtRymelsoNv5pEWLQ04PKU4/lR11GazPDpCyna3M614eeePQWUlQ29RASQl5bD+NYsIvcExpx8AEOslZir8rEWnNjzpWLbZr596VmOlO4Z9PgeT0ZnKQhaGzrZ9FUF25ZWEZ8ezrzbiskoHmDDE3FWuq6f+OAiV9OEOI3JFEdnxyxWrI6go2Po5cgQawgTkoaTvz8KQ62vo+m70AlJRF+cgxbqOqFp62hn7Qdvs/aDd+jq7Bj0+HHpmVz08OMk5eYPeqz+Kt96lA2fl1Nd3szI2enc8sRUQiLMXo9jKOg1P0qe7DMp2txEYcBsmc6O7dkcPDj0EhFAZnI6E+x5xO4LoB8rTRE+M42o8zJR3Xur1FaUs3TRc5SuX+OWQ8SmZXDxIz/0TjLq8eZXd6iVDZ8fYPfqw6TmR3PJQ6NILYj2fAxDTM+zy0opOWMoRC9MpiTa2mayamUINhsMtRxpNpsZl1LCsAOxGANo9okxPoToq/Kx5kUD4HQ42PLVZyx/42XaGhsGfwClGH/x5cy44XaMZu8VSg6Hk71rjrDh8wM013Uyam46F943Urolu5mu6yeatUl+HLQA+nTtn5Qyde8hk9G9h8zQSkQAKQlJTNSKSCwLrDc7U0YEMVflH99TpqW+juWvv8TWb74Y9DQPAJRi3EWXM/NGzyejnld0qvY2sOGzA5RtqSWzJJarHh9Hcq50unKXsychh09iEsJfmc3pNDdNZ8VyM3a7r6PxPoPBwJj0YkoOJmIJoGINQ/cm2fNObJK9d+0qlr78LHVVlW45RER8Ahc++BiZI0a5Zby+6LlMoKvTwej5GYyal4ElRD4Ou8tJJzI1Ta6kuZH8lA6QplkwGGazeVMKtbVDr9MVQEJsPBMtRaSWWQOqVlUWA1EXdLfx1xS29jbWfPA2az98B3vnwDf+7MnbyejY3PDmox288x/ryRoRxzU/GS9tid3kpCJezhYKcU4WSw51dZNZttSIrg+9D22apjEivYiR1cmE7Aqs9wtzdiQxVxdgSnS18T+0ZxffvvQMB3duc9sxhs+ez9w77scSGnruB7tBW5ONzV9XsPXbg6BgzPwMRs3NwCzFmlucVqgJj5Cf1n4yaKGg5rBhfTyNjUOv0xVAdFQ0k8KLydgfgnIGVjIOGRFH9GV5GKIsOB0ONn32KSveXOSeaR7dSmbOZd5dD2AJDXPbmGficDjZveoI25dWAaA0xbU/nUBSTqTHjx3sdIfj+BlCSUJC9I3VWkT1kfFs2qQx1PYhBdesh2Hp+YypSydsd2C9b2ihRqIuzCF0YhJKKRoOH2Lpqy+we8VStx0jJCKS8+99hILJ09w25tk01rSz8fMD7FhxCKNJY8x5mYyamy7F2iCdNOMEyZHeIj+1fWQ0ROJwzGHt2mhaWobmmrWI8AgmxhSTXRoeMN2ujjFEW4i+Io+QYlf37T1rVrB00fPUu2maB4A5JJwLHniEwikz3DbmmXR1Oti29CCbvqygpb6T0DDXr3JErFUKtgHSdR16LpIeQMMYmQUihiqrdSRVB0cPyX1IjylIy2Fsc2A14TomdGwiUZfkYAg3097cxMq3XmXjZx/jdLhvTmvuuIksuP/7hEXHnPvBg1RT0cyGT8vZu74Gs9XA+AuzGD1PrqwNhu7oMf1f06RQ8wH56T2HE52uwunogKFYrIWFhjE+vpi8/ZEYagMsIXc3Gomcn4lmNlC1eyffvvQMVbu2u/UwOWPGUzT9ZgqnFLp13FN1tHSx+esKNn9TSWernfRhMSy4ZwSlaw+y0n3155ChO50nzhZq2oAKNSGGMqt1POVlJewe3F7KAS0nJZNxHTnEBFITrm7GhBCir8jHmh+N3WZj1btvsOa9N+lsa3XbMUwWK3Nuu4dR513otjHP5ODuetZ/Ws6BbXWuYu2iLMaclylr1gaoZ6Em+dH35Kf4DMzmFFpbprNyRQhdXb6OxjesVivjE0soKI/GWBdgxRrd8/KvzMeUHEb94SqWLXqe3au+c+sxjBYLs2+5mzELLmbf+mq3jt1TS30HGz+vYNt3Vdg7HaTkRzH58lzSCl1nLEvXuh4nLebPTXc4XIWaUu4/WyivvxgSTt3aZmjKSEpjgj2PuP2B1YQLAKNG5NwMImangwbbvv2S7157ieajNW49TErhMC56+HFiklPdOm5Puq5TtuUo6xeXcbi0CaPFwLgLsxh7fqZ0g+wnXdeh59IAKdT8ihRtp7BYsmion8J3y8y4o4FgIDKbzYxNdrUmNu0OvA+hWlj3vPwJSbQ3N7H02b+x6fNP3DrNAyA5v5CLHv4hsalpwEnTu92m4Ugb6z8tZ9eqwzgdOolZEUy+IpfMkjj3HyyI6T3a1imjvO0JMRBKGTGbprNjRzYHDw7NbskAKQnJTFT5JJYH5sbLlsIYYq7IwxgXQtmm9Sx5+Vlqyve79RiawcDUa25k0lXXoWme+eDvdOrsWXOE9Z+WU1fVisGkMXp+BuMuyCI0UvZZ6yvd6TyxNEDTJEf6MfnOdLNaCqmpmcCyTQaPfPgOBEajkTGpxZRUJmAOwGINBWETk4m6MBuH0cnqd99g9XtvYmtvc+thNIOByVctZMrVN5y0Ubbuxh+cmgPNrFtcTumGanQdYlPDmHx5LrljEnp/glzhOcnxs4XdJAkJMXCubsmz2LI5hZqaodmACyAxLoGJpkJSyqy+DmVADFFmoi7NI3RkPNVlpSz567OUb97g9uPEpqZz8fd+5LG9SR1dTnasOMSGz8ppqu1AMyiGz0xlwsU5hMcEZiHtbcdnnAAYDJIjA8SQ/y5ZraOoOjhqSC+eNhgMjEobxvCqJKyBWKwBptQwoq/Mx5we7prm8fpLtNQddftxYlJSueiRH5KSX+T2sQEO7W1g7SflHNjmij0yIYRJl+ZQODEJpfXhezOEizfd6TxRqPnobOHQffVFMDIYwoDZbNyQQEPD0L2yFh8TxwRrEWllVlQgbl9gUIRPd63tbmmu45M//Rc7ln6Drru/+B5zwaXMuuVOTGb3F0+2Djvbllax8YsDtDXaUAoKJyUx6bIcohK8s3VAINPt9hOFmtEoyykC0JAt2qzWiewvHcbevb6OxHc0TWNkWhEjjiQTEmCtiY9RViNRC7IIm5JC2aZ1LPnf56g9UOaRY40+/yJm33o3Jov7z7Ie2H6UdZ+UU7WnAYDQKDMTL8mheHoKBkNfvjdD881XdzhOTOswGFAmH69fGJrfBhFkjMZoHPbZrFkdRWvr0L2yFhMVw4SwIjLLQgNue5tjLLlRRF+RhyNcZ9mbL7Dhkw+wd9ncfpywmFgufOBRsseMd/vYHa1dbPmmks1fVdLR6moykD0qnilX5BKXFu724wUT3WY7sT7N1/lRDNqQKtoUBsyWqezalUvFgaF5xhBczSqGpxcxsiaFsD2BWayhIHRcElEXZVNbfYBPfvcLDmzd7JFDhUZFc8GDj5I7duLZH9jPHyld19m/qZZ1n5RRXd4MgCXUyNgFmYyal4HJPICW8/1+RuDRu7pOPlsoiUgItzCZEulon8nqVaF0dsJQvbIWFRHJhMhisvaHBdz2NsdoEWaiL8nBMiKGjZ9+zMp3XqOjuckjxyqcPJ3z7nuEkPAIt47b1mRj05cVbPm2kq4O1yyKlPwopl6VT0pelFuPFSx0Xed49zylUGZZ2xdMhkTRppQJk3EW27alc/jw0J3ioZSiOC2fUXVphAfgPjLHmFLDiL4in46QdhY/8z/sXL7EM11AgPyJUzj/vu8RGnnuBKH38edKd+rsXVfN2k/KqKtytVU2mDRGzUln3IVZA+p2FeyzHHSbDZ3uotRkkmkdQriRxZxJY9MUViy3YHdvv6aAEhkewfjoYrL3h2OoCdD3GE0RPj2ViPkZ7Fm3nGWPvUBj9RGPHMocEsq8O+9n+Oz5bh23pb6TDZ+Xs31pFfYu11Xe2NQwpl6ZR/aoeLceKxjoTufxZltKCrWgFtRFm0ELRanZbNyYSH29k6E6xQOgKC2fMQ3pROwN3GJNhbimQmojwlnxzuts/OwjHB7aj8FkDWHu7fcyct6Cvj/pHDWb0+Fk1ypXp6uGI67mKEpB0dQUJl+WQ3iMG6ZdBlEx47SdmMKjmc1D4iqiEN4kDbhcwsPCGR87jNz9URhqfR3NwFnyooi+PI9DNfv48Lc/4UjpHo8dK23YcC56+HGiEpPcNmZTbTvrPy1nx4pDOO2uH8jwGAuTL8+laHJy39Z1DxG6w3F8DzWlaWhSqA0JQVm0HZ+Pv2Zoz8cHKEzLZUxTJpH7ArdYO9YVMmxuKpuWLmbVo6/T2eq+jT9PlVpYzEWP/JDopOR+Pe9MH3ocdic7Vxxi/aeuTlfHZI2IY+pVeW6akx8cyczpmpMFgGaRLmBCeILVOpqDlSPZvj043jcGKiw0lPFxJeSVRWI4GrivhSHaQtTFObRFt/LBs//O/g1rPXcso5FpC29h4mVXu22Py4YjbaxbXMbuVUdwOl2J1BJqZNyFWYyam47RFMCfX9xIt9tPFGoGgxRqQ1BQFW1mUzJt7dNZvSqMzk6doToNEiA/NYexLZlE7Qvsb7E5M4Koy3LZW7qG7375e5pr3bvxZ0+awcjUa29k0pXXumVfGXuXg+3LXG2JW+pPFCMJmRFMuyaf9KKYQR/jNAF2pU3XdfRjhZpSAV+oybRN4a+UUlitkyndV8S+fUM3NwKEhoQyLr6Y/PIojHUB/Dtr1IiYlYYaHcrSdxax7ZsvPdIR8pi49Ewu/t6PSMzOdct4dVWtrP2kjL3rqtG7izXNqBg5O50JF2fLxti41nAfL9SMxoDPkWJwAvsTfQ+NjVl888353R2/h25CykvNZmxbFtGlgf2t1SLMRF2UTY1WyeL//YXbN/48lVv2lem+1NZlc7BtyUE2fO5qS3xMeKyFKVfkUTgpye0f7gOpWNB1Hb2j+4qjpqFZA3PPo14FzrdBDDF791zK3r21DOX8GGINYVxiMQVl0RjrA/uX1VoSR+j8FNYteZ/1P3ofu63z3E8aKKUYd+FlzLzpDoxuuLpz9GALaz4qO74P6TH54xOZelUekfEhgz5GINNtthOFmskUXDlSDEpgf7Lvob3d2HMv3SEnNyWLMe3ZxAZ4sYZBETEjjfY8Ox+//r8c2LLR44ccMW4yM664lrBBbgRqtBjY8NkBNnxeTnvzibV2ZquBcRdmMXp+xpCd5qE7nScXaiFDOykL4W0NDb6OwHesVivjEoopOBCDKUD3Ij3GmBhK5MWZ7Cxdzsp/fpJ2D3WEPCY8No4LH3yMrFFjBj1WzYFm1n5cRummmpPOHSTnRjH92nySc4duR0inzcaxLkDKbJapj6JXAf4JX+QkZzK2M5vY/YE/jcBaHIthSiTfffYaO57/1mMdIY8Ji4nlggceJe5wDQbnwI9l67Cz9duDtDfb2PhFxfHblaYomZHK5MtyCInwzhuw8qNLPbrTid7e7vrCYEALlc1PhRDeY7VYGZtYTGFFNKZA3d6mmwoxEjk/k4P6Xj78889oPHLY48csmjqT8+55GGv44NZdV5c3seajMso2n9zlJTLeytSr8skfnzio8QOVs7PzRKFmsaAkR4pzkKItQGV3F2txZYFfrBkTQwmZn8yGTZ+w8QnPdYTsqWDyNM6/9xFCIiJp+uSTAY1h67Cz+etKNn1RQUdrF8OmnGhcklkSy7Rr84lL9dLGn35Sq+lOJ862NkChDBpaWJivQxJCDDEWi4WxicUUVcQEfLGGBmGTUmjOaOa9N//Dox0hj7GEhjH/rgconjl3UOMcKWti7Uf7Kdty9KTbzVYD4y/KZvS8DAymAP/+9JOzsxO9y1WoaVYLStaoiX6Qoi3AZCdnMLYzJyiKNS3USNicVHbVrWH1//v/6GzzXEfIY3rdV0bXXRtS9tGxYm3jFwfobO2xqZGCmORQpl2TT/ZIH+0l44PiTdd1nC0trsNrGoZBnpUNZH5SOwsxJB0r1gorYjHvCfzfRkteFM7xVr769EXKXlnnlWNmlIzkwocfIzJ+4Fe/jpQ1sebD/ZRvPblYUwqKZ6Qy+bJcQiOHzvQ/Z2cnus12vNmWFi4nM8XASNEWILKTMxhrC45iDU0RNjmZg9ZSPnj1n2k56p2Ncc66r0wfajZbh53NX1Wy8ctTijVc7Ynj0yOYe8swNIP3zxz6Ylqko6l7LYWmYYiI8PrxhRACgq9YM8ZZMc2MZfW699jx/33j0Y6QxxhMJmZcfyvjL71qwI2tzlSsAaQVRjNjYQHx6UMjVzg7O493RtasVjTJkcINpGjzc8F0ZQ3AWhRDU3YLX3z4XxytPOCVY55rX5lzXWU745U1XOvWhs9IZfLluTRUt/mkYDspHg93kXQ0Nh47EIbISI8eSwghzibYijVlNRAyI4ktVd+y4f8+8MpSAYCEzGwu+t6PSMjMHtDzq8ubWP3hfsq3nF6sRcRZmX5NPnnjgn/dmtNmQ29rA6VQVqvkSOF2UrT5qWBaswZgTArFMdrEF9++yMHF27x23PiMLC565Idn31dGp9emJ7YOO1u+qWTj5641a6dKLYhm5vWFxKd3Twf03BZy5+bBYs3R1ITucKCUQouKCqjtBbxOXhohPC7YijU0CBmfyH59KysX/Q+drZ5fKgCglMb4S69kxg23YjD2/7NGdbnrytqpa9YAjGaNcRdkMXZBZlB3Tda7unB0Lw/QLBYM0dG+DUgENSna/ExOciZjgqhY08JMGCZFsmrLu+z523LvHVgpxl98BTNuvB2jqS+v5YmiravTwZZvKtnw+QE6Wk4v1sJjLEy7Jp+CCb1Ms/Q593yAcTQ3o3ef5TVERaEMwZt03cmfuncKEWysFitjEodRVBGLKRiKNcBSGE11wmE++uRfvbZUACAyIZGLHnqc9JIR/X5uTUUzqz/Yf1o3yGPyxycy7Zp8ImKDc38x3eHA0dDguqJmMmGMifF1SGKIkKLNT+SmZDGmI4vYICnWMCos4+PYfORrNj//KU4vbqIXEZ/ARQ89RsbwUX17QvdVNrvNwZZvD7Lhs5P3WTvGYNQYc34G4y/KxmQ+vYjx5Qd2d1z9crS0one4WvQbIiNRMgdfCOEHrFYrYxOCo3X/McakUNoKbHzx9V+8tlTgmOGz5zP3jvux9LPF/NGDLaz+YP9p+6wdE5saxqzrC0krCs4ixl7bXaQaDBjj4nwbjBiSpGjzsbzUbEa3ZRG7P0i+FQosJTHs1Tez+p3/xt69ENdbSmbNY96d92MJ7Xt3JodDZ9vGNra8uIK2Jluvj8kaEceMhQVEJ54lyfnBid/+1m7O9nYcTc2gwBAejiHeR10vhRDiFCEhIYyNH+baFDtIrqxp4Sacoyx8s/YVDr643avHDomI5Pz7HqFg0rR+Pa+uqpXVH+5n34bqXos1s9XApMtyGTknzefrut3NfvTo8eUBxoQEX4cjhrggqRQCT35qDqNbM4gpDZIra4ApK4LD0RUs+/IvdDQ3efXYIRGRnHfvwxROnt7n5zjsTrYvq2LtNyG0dfS+hiAizsrMhQXkjA6eN2u9q8t1xlAptNBQTEnBv0Dca4Ljc6UQPhUaEuoq1sqjMdYHxy+VMmkYRkewuvRD9rzsxaUC3XLHTWTB/d8nLLrvV8EajrSx+sP97F17pLdl3wAUTU5m2jX5QdXC315f7+r8qBTGuDiUUT4qC/8gP4leVpiay6iWDKJLg+elN8RZacps5tsl/0Nzrfe7cfQ3GTkdTnauOMzaj8torusATj8zaDBqjF2QyfgLszD2MhWyN/7cn0PXdeyHDoGuo8xmTCkpvg5JCCFOEhYayri4YvLKo4KmWEOBaXgUWxuWsemtxehOz7fv78lkDWHObfcwav4FfX5OU207az7az65VR9CdvVdrcWlhzLqhiNSCaDdF6luOlhacjY2uzsgxMWiyTk34oeCpHPyYUorC1FxGN6UTGUTFmhZmpLMAvlr7PDVry7x+fFcyuptR8y/s0+OdTp09qw+z+qMymmraz/i4jJJYZl1fSHRS/+b7+9SxivGUyrHrSDW6rROlaRhTU6Xzo6fJyytEv4WHhTMuZhh55ZEY6oLnl8iUE0GptpXVi9/G3tX71HtPcu1N+hhRicl9enxzXQdrPylj5/JDOB29F2smi4FJl+Uwam56wE+FdNps2I8ccRVq4eGY0tJ8HZIQZxU8FYQfUkoxLC2fUfWpROwLnpdamTT0YWa+2/UOB97Z7JMY+pOMdF1n77pq1ny4n/rDbWd8XFiUmRkLC8kfH9jTBe319cfPGBqTk9EsFl+HJIQQp4kIj2B89DCyyyIwHg2eYs2YFMLh6EqWLf0/r7Xv78lgMjF94S1MuPSqXvcmPVVrYyfrFpezfWkVDvuZrwTmjUtgxnWFhMcEbk7RdZ2uykpwOlEWC+aMDF+HJESfBU8l4Uc0TaMktYARdSmE7w2iVukKDEWhrDv8BbveX+qTEAwmE9Ovv5UJl1zZp2S0f1MNqz7Yz9HKljM+Rimd4uFWpt8zGbN14L8SvryKpdvtxKekUTJ6AgDm7GyfxTKUBc/HTiE8JyoyivGRRWTtD8dQGzy/NVqUmaa0Jr5Z/jSt9XU+iSExO4+LHn6M+D5slN3R0sX6T8vZ8k0l9q4zF2uR8VZm3VhE1vDA7ZjYdfgwzu6Nr82ZmbKNjQhIUrS5kcFgYHhqAcNrUgjbG9jTBk5lzAlje9sqNi7+BF337pz8YxJz8rjo4ceJz8g652Mrttex8v1SqsvO3hAlMSuC8amHSB4ZO6iCzRd0XcdWWorucDBy3GSmXHujr0MSQogzio2KYVxYIZllYWjVwVOsKauBjhw7Szc8y9GNlb6JQdOYfOV1TLnmRgznaJzR2W5n4xcH2PRlBV0dZ96ORzMoxp6fyYSLs/u8ttufOBob6TpyxNX5MSUVU3LfpokK4a8C61OqnzIajYxMKaLkSCIhQbKHzDGGlBDKjTtZueRNHHa7T2LQDAYmXbmQKVdff85kVLW3gVXvlVK1p+GsjzNbDUy+Io+Rs9NofO89eu1j7Ke6qqpwNDaCZsCSlyudrYQQfi0+Jo5x1gLSy0PRjgRPsYZR4cwz8N2ut6j6eKfPwohNTefChx8jJb/orI/rsjnY/FUFGz47QGfb2fN5Sn4Uc24aRmxq37fP8Qd6Vxed+/YBYIiOxlpY6OOIhHAf+bQ3CCaTiVHJwyg+FI812Iq1GAuHow+ydPkiujrO3LTD0+LSM7nwocdIzis46+Oqy5tY9X4pB7ade0pK7tgEZi7sMS//TL2M+8uDn0Uczc3YyspAaZjSUrGmpnruYGLgpNGLEMclxSUyzpRParkVpQfR74YClWdlbcXH7F28xndhKI1xF1/GjBtux2g+c8t9R5eTrUsPsm5xOe1n2Iv0GEuokWlX51M8PSWgGld1lpbibG1Dmc1YiooCKnYh+kqKtgGwWCyMTipiWGUc5iAr1rRwEw2J9Xy7+m+0NTf4LA6lNMZfeiXTr78Vo+nMe9nVVbWy+oNS9m2sOefFsvAYC7NuKOx9zzU3FG7uzhG600nHtu3o9i4MUdGEjBzp3gMIt5OPCUJAakIyY1UeKQesvg7F7bQsK1sbl7Hl8y99GkdUUjIXPvAD0ktGnPExToeTnSsPs+aj/bTUdZ5zzIIJicxYWBgwe67Zjx7FVn4ApSnM+fkYwsN9HZIQHiVFWz+EhIQwJn4YBRUxmHcH18czZTHQlt7Bkg0v0LDlkE9jiUlJ5YIHHyOtqPiMj2mqbWf1h/vZverwOestpWDEnHSmXJHb+7o1XXff1TY3sJWXu+bhG01YRwxHO8sZVCGE8BeZSWmMceSQWBG43QXPREu2ss+5iTXfvu+zdd0AKMXo8y5i9i13YbL2XhTrus7etdWs+qCUxupzz5SJiLUy+6Yiskb4f6MRvauL9i1bwOHAmJBA6Lixvg5JCK+Roq0PwsPCGBs7LLg2/DzGoOjK0lm24zWqv9jn21iUYuyFlzLzxtsxWXpPRq2Nnaz9uIzty6rOuI9MT7GpYcy9ZRjJuVFneZS7CraB/2w4Wlrp2OLaPsGcnU3YpEluikkIITwrNyWL0Z2ZxJUH3wkmLc5CpWUvy1e97rN13cdExCdwwQOPkjVyzBkfU7a5lpXvl561Y/IxSlOMmpPO5CtyMVn8u9FI55492GtqUBYLIaNGoc4yA0eIYCVF21lERkQyLqoo6PaQAUCBM8vAyrIPqPhyi6+jOedUj47W7tbEX5+9NfExBqPG+IuyGHdhFoa+bADqo+mR7Rs34mhsRIuIJHTy5D5tYyD8WJC9TQhxNoWpuYxsTSdmf/B9gNYiTVRHVbFk1St0dfpuXfcxI+dfwJxb78YcEtrr/Qd317Py3VIOlzb2aby4tDDm3lpMUnakO8N0K0djI+0bN4JSWIqKCCs4+9p2IYKdFG29ON6WuDwMrSYIP4VlmFh/5Av2fL3S15GAUoxZcAmzbrqj16keXZ0ONn15gA2fV2Br79tZzuTcKObeOozYlD52vdJ1dC9Oj+w6Uk375k0og4GQsWMJiYnx2rGFEGIwlFIUp+UzoiGNyFL/vjozECrUSEN8HUvWLqKttW8FkCdFxCew4L7vkT16XK/3V5c3sfK9Uiq2921fOINRY8LFWYy9oI8nNL1M13Xa163DXl+PMSaGsFmzpKmIEN2kaOshMTaBsZZ80stCgqvTVTeVamZb03dsWfKVr0MBIDophQUPfJ+MktMbbDjsTrYuOci6T8pob+7q03gmi4EpV+YycnY6Suv7988bBZtut9O6YgXO5maMySlEnn++x48phBDucmwf0pLaZML3BmGxZtZoSWlj6cZXaNxW7etwANfVtdm33I0l9PSra/WHW1n1fin71tf0ebx+n9D0oq7Dh2lbtw5lMBI6cQKhEyb4OiQh/I4UbUBqQgpjVW5QdroC0BLN7O7awLrlH/lFww2lNMZceEmva9ecTp1dKw+z5sP9NNd19HnMjJJY5txcRGRcyMCCcsfL0kudaCsro239BpTZTPiM6Riio91wICGE8A6TycTI5CJKDicE3dY2ABgVnaldLNv+OrW7KnwdDQCRCYksuO/7ZI0ac9p9zXUdrPlwPztXHkZ39i1xGS0GplyRy6g5/Tuh6Wl6Vxcty5bhaGjElJZK5MUXy1U1Ic5iSBdt2ckZjO7KJqEi+BZPA2ixZsq0Haxc8za604fdrnqISUnjggceJW1YyWn37dtQzar3Sqk/3Nbn8SyhRqZfm0/xtEHsW+am7pGqu2pzdnbS8vU3OBoasOTlEn31VYMeWwQG+cAhgoXVYmV0YhFFB2ODbmsbADToSocVe97m0Le7fR2Ni1KMPv9iZt18B2bryScg25ttrPuknK1LDuKw9z2fpw+LYe4tw4iMH+AJTQ+wlZXRunKV62Tm7FkY4/y/a6UQ/mDQRZtSqgxoBhyAXdf1CUqpWOA1IBsoAxbqul4/2GO5S0FqLqNa04kpC77F0wBalImD1v18t/Z1HPa+TS30NKVpjL/kSqYvvOW0TUArd9ax4t1Sqsua+jVm9qh45txURFi0f7SXth0op+7zNShrCBHnzZdEJMQQF4j5MSw0jDFxReQfiMa0JwhPQihwpGmsqfiI8m83+zqa46KTU1hw/+nLBWwddjZ+foCNX1bQ1eHo83hmq4Fp1+QzfGaau0MdEKfNRsuXX2Kvrsacm0v09QvlJJcQ/eSuK21zdV2v7fH1PwFf6rr+B6XUP3V//VM3HWtANE1jWGo+I+pTg3LxNIAKN1IdUcXSta/SZfN9t6tj4jOzueCBR0nOO7nzU3V5Eyve2Uflzv59XrGGmZixsICiycnuCVA//r9+c3Z00PzZZ3RVHcKeWkTSrbdKB0ghRE9+nx8BoiIiGXusW3JdcH6Y1tOMrD/8OXuXrvZ1KMcpTWPcxVcw/fpbMJlPnIB0dDnZ8m0l6xaX09HSv5OvmcNjmXvLMMJjfL/ko7N0Py1ffQlGI5ELFmBKHcSsGCGGOE9Nj7wCmNP99+eBb/BRUjIajYxIKaSkOpHQIFw8DaBCDNTF1LJk/SI62s+9N4u3GIxGJl91PZOuvA6D8cSP2kAWUB+TOyaB2TcVERrpximtA5ge2blnD02ffYYymoi85GKiLk+n/nCrFGxCiHPxm/wIEB8Tx9iQAjLKQoOzWzJAsonN9UvYsWyJryM5SXxGFgse+D4p+UXHb3Ot6z7E6g/301LX2a/x3LJcwA2cNhvNn31O5549WAoLiL3tNpQ5OJehCOFN7ijadOAzpZQO/E3X9aeAJF3XD3XffxhIcsNx+sVisTAqqYiig3HBuXgaUBYDjfENLN34Ci3b/WZ2DQAphcO44P7vE5eeefy2lnrXAuodK/q+gPoYa5iJWTcUUjDR6z9KxzltNpo//ZT2LVuwDism7p570Cz+MTVTCOGX/DI/AqQmJDNGyyPlgCUouyUDqEQTO1pXsmnFF74O5SRnOqFZuqGGle/t69e67mOyRsQx5+ZhhMf4LifZystpfO999K4uIi++iKhLL/FZLEIEI3cUbTN0XT+olEoEPldK7ex5p67renfCOolS6j7gPoDMzMxT7x6wsNBQxsQNI78iCtPuIC3WzBrNiS0s3fwaTTv9ozXxMSZrCDNuuI2xF1xy/KpTR2sX6xaXs+WbShx92Bj7VB65unaSs19ps5WX0/DW2zjb2lxX1S67zENxCCGCzIDyI3guR2YnZzDankVCRfCecFLxJnbbNrB+1Ue+DuU0qYXFLLj/+8SlZxy/rXJXPSvf3ceR/f1b1w1gDjEy47oCiqeluDPMPtPtdpq/+orWpcsw5+QQe/ttGKKifBKLEMFu0EWbrusHu/+sVkq9A0wCjiilUnRdP6SUSgFOqyy6zzg+BTBhwoRBt+4LM4QwJ31iUM/Hx6hoS25n2bY3qN9V5etoTpM7biLz736QyPhEALpsDjZ9WcGGzw70eWPsnixhRmZdX0jhJDetXTuTXjbX1h0OWr7+mqbPPsOckUnMLTdjSkz0bBxCiKAy0PzY/Ry35sj8+Cxmd5UEbQMuABVrotS5ldVr3/OL7W16MoeEMvPG2xm94ERb+5oDzax8dx8H+rgx9qlca9eKfXJ1revIERpefwNbxQEiL7iA5N/+RpYHCOFhgyralFJhgKbrenP33xcA/wK8D9wO/KH7z/cGG+i5pNtiCNsb6enD+IZB0ZFi47sdb1G7p9zX0ZwmNCqauXfcx7BpswBwOJzsWFbFmo/KaGuyDWjM7FHxzLm5iLAo7yYje00N9W+8QceWrUQsWEDKk0+i9XEuvnTCEkIc40/5EWBMVQr2av9pUOVOKtpEubaTlRv8Z3ubnvInTmHeXQ8QERsPQEN1G6vfL2XPuuoB9cAyWw1Mv7aAkhneXbum6zptK1fS8NbbaOFhxNx4E9aiQq/GIMRQNtgrbUnAO90fVo3AIl3XFyul1gCvK6XuBsqBhYM8ztCkKTpTulix5x2O7C31dTSnU4qRc89n1s13YQ0PR9d19q6tZuX7pTTVDOzDgTnEyMyFBQyb6r2pHrquEzpxIgd/+CN0p4PYm24i4aGHvHZ8IURQkvzoYSrKRKVxL8s3vInT0f/ZHJ4WHhvHvDvvp2DSNABaGztZ+1EZ25dV4eznuu5j0ofFMO+2YiJivdcZ0tHcTOM779D8xZeETZtK0i9+jjEmxmvHF0K4DKpo03W9FBjdy+1HgfmDGXtI08CW4mRV6XtULfOTTT9PEZuWwfn3Pkx68QgADmw7yop391FbMfDulRklscy71Xttip1tbTS+/z5K02j6+GMSfvAo5oyMcz/xTORCmxCim+RHz1GRRqosZXy37g0cjoHN5vAkpTRGL7iYGTfchiU0lM52Oxs+LWfTVxXYbQO7Emg0a0y7Op8Rs9O8NqujY9du6hctonPvXmIWXkfm35+WLpBC+JCnWv6LgVDQlaqzev8HVC7b4etoemU0mZl89fVMvPwaDEYjR/Y3seLdvRzc1TDwMS0Gpl+Tz4hZ3tkE1FZWRt2iRbStWEHUFVcQvXAhhsggnVorhBBBQoUbORx6gGXrX8fe1b92+N6SmJ3H+fc+THJ+IfYuBxs+P8C6xWV0tg78SmBKXhTzbi8mOjHUjZH2Trfbaf7iC+pfXoQWGkrsnXcSNmWyx48rhDg3Kdr8gQJ7Kqwu+4iKZVt9Hc0ZZY8ex/y7HiQ6OcW119p7O9i3of97rfWUkh/F/NtLiEoIcVOUvdN1ndYlS6h76WXstbXE3XkHST/+McrkvkX5sqRNCCHcT4UbORJayXfrX8fW5Z/r8swhIUy77hbGXnQpoLH9uyrWfLiflvqBF5cGo8aky3MYe14mSvNsgrEfPUrD66/T8PY7hE6eRPJv/hlLXp5HjymE6B8p2nxJgT0F1lYspnzZJl9Hc0bhMbHMuf1eiqbOpKW+k69f3DGgvdZ6Mhg1Jl+Ry5j5GR5NRo6WFhrffpu6l1/GnJZG7F13Ez5juoeOJlWbEEK4iwozUh1+kGXrX8dm6//eZd5SMHkac++4j4jYeEo31rDy3YHttdZTfEY4591ZQlxquJui7F371m3Uv/giLcu/I/rqa8he9DLGhASPHlMIMTBStPmCAkd3sVb2nf8Wa0rTGHvhZUxfeDNOp4nlb+9ly9eV2Aew11pPCZkRnHdHCbGpYW6K9HSd+/dT/9LLNH7wAeEzppP+3/+NtaTEY8cDudImhBDuoMKM1IRXsXTDa9g6/bdYi05KYd5dD5AzZjxVe+r59Om1A9prrSdNU4y7MIsJl2RjMHimhb5ut9P82WfUvfgSXYcOEXvH7ST/+ldoYZ7LyUKIwZOizZuOFWuVn1L23UZfR3NWqYXFzL/7QWJTs9j8dSXrPy2ns21w3bk8nYx0Xad12XfUvfgCbavXEHXVleS89ebgmouIXum6jlLq+P52st2BEGKwVKiRmshDLNvwGp0drb4O54yMJjMTr7iWSVdcS0N1Jx/+3ybKtx4d9LjRSaGcd0cJSTmeWWNtr6+n4fU3qF+0CC08nLi77ybqskvdukxAuPTMkZIfhbtI0eYN3cXauspP2e/nxVpoVDQzb7qD4hlz2bniMB//ZQWtjYPvzuXJZORsb6fxvfepe/FF7EeOEHPjDaT+/vcY4+Pdfqyhqufm40qp40lIkpEQYrACpVgDyB03kbl33I9miOLrl/awe82RAe21dhIFI+ekM+2qPIxmg1vi7Klzzx7qXniRxg8+wFJQQNIvf0HEeefJ+7cbSY4U3iBFmycFULGmNI3R51/M9OtvoXJnG68+sYaGI26YluLBZNR15Aj1L71Mw+uvg1LE3n4bMTff7LtOkEH03nymBCSEEO6iwozURARGsRaVmMSc2+8jtXAsaz8pY9vSHTjtg63WIDzGwrzbi8kYFuuGKE/QdZ3WpUupe+55WpcvJ3TSJDL+/CfCpk1z63GGKsmRwhekaPOE7gYj6/x8zdoxacNKmHfnA9g6ovngjzuoLm92y7jhMRbm3VZMRrF7k1H71m3UPfccTZ9+iiE6irj77yfmhuvRQj3fDjlY9UxAIGcHhRCec2zN2rKNr/t9sWY0W5h0xbWMXnAFW789zFcvrqCr0+GWsQsnJzHr+kIsoe6bnujs6KDx3feoe+EFbKWlhM2cSdailwkdN85txxhqesuPkiOFL0jR5k49u0EGQLEWHhPLrJvvJD5rAive2UvFjjK3jV04KYlZN7gvGelOJy1ff03ds8/RtnYtxuRkkn7yE6IXXodmsbjlGIMVSG/iUqQJIbxNhRupDvP/bpDHFEyaxsyb7uLA9i5efWId7c1dbhnXGmZi9k1F5I9PdMt4APaaGuoWLaLhlVdxNDQQPm8eqf/2b4SMHOG2YwwVkh+Fv5KizR26N8VeW/YxB77z333WjjEYjYy/5EqGzbic9Z9V8dWiNYOfk9/NEmZkzk3D3JaMnO3tNLzzDvXPv4CtvBxjSgrJ//xroq65Bs1sdssxhgKn7kT1mL8pSUgI4S2ufdYq+G79G367z1pPcemZzLntXjrak/ngf0tprutw29hZI+KYe+swwqLcc7KxY/du6p57nqYPP0Tv6iLivPnEP/QQ1uJit4w/FEiRJgKFFG2DoYEtxcnq/R9ycNkOX0fTJ3kTJjPpylvZvaaTN/+wCecg9lo7VebwWObdVuyWZGSvraXupZdoePU1HA0NrmLtN/9M9NVXo/y0WPOn93mnfmJbBoVCU55pHS2EEGeiIowcspazfMObdHW5r/DxFGtYOFOvu4molMmseK+Muir35XWjxcD0a/IZMSvNLeO1Ll/O0WeepXXZMlDKVaw9/DDWYcPcMn4w03UdvceZasmPIlBI0TYQmqIzpYvV+z6gatluX0fTJ3HpmUy//k5qq2L54H/LsNsGt9daT0az5kpGs9MHPVZnaSl1zz5L43vvo9tsGJOSSPrVL4m57jq/Ldb8Qc8iDSQJCSF8R0UZOWgqZfn6t3A4Bt992NOUpjFq/oXkTbqMDZ9Wc+i9bW4dPzk3kvl3lBCdOLh113pXF02ffMLRZ5+jc4eroAyfO5eE7z3i8X1IA9mpRZqcyBSBSoq2/jAoOpJtrNz9Hkf27fN1NH1iDY9gytU3omsj+PbVSjrbyt06flJOJOfdUUJ00uCSUdvatRz9xzO0fPMN6DqGuDji77uX6Btu8Js1a+fmvUttTt150v4vkoCEEL6mok1UaHtYufEtHI7B7evpLZkjRjPmwpvZtbqLj/+8x61jawbFxEuyGXdhNpo28PzgaGml4Y03qHvhBeyHDgEQNmMGCY9+n5CRI90VblBxOF3NYpRSUqSJoCFFW18YFe1JHSzf+Ta1ew/4Opo+0QxGRp9/EbHpc9n4RTWtjWXuHV9TTLgkm/EXDTwZ6U4nzV9+Sd3f/0H7JlfjFi0qiri77yb2lpsDrhukJ6dH6rp+0tU0g2YIqi0GhBCBS8WaKHNuZ/Wm93A63dNZ0dNiUlKZcNktHCmP4/NnDqO7b6WAa/zkUM6/azgJmREDHsNeU0PdCy9S/9prOJuaAAidMIGEx35A6Pjx7go1KDh6/NwppVw5UoggI0XbWSiTRktCC8u3v0Xdnipfh9NnueMnkT3mCrYta2PHqkq3jx+THMp5d5aQmDWw/dCcNhuN775L3TPPYisrA0CFhhJ7263E3X03hoiBJ7lgoes6Dr37TGH3WUJJQkIIf6LiTOzr2sSa9R/i9qrHQ6xh4Yy79Do624v57u0jOB1H3HsABaPmpjP1qjyMpoG9Z3fu30/dM88cXyYAYB0+nIQf/IDwmTPcGW3Acjgd6OjHG2xJfhRDgRRtvVAWA41xDSzf8iaNu6t9HU6fJWTnUjLzOko3W1n+9lH3H2CQG2U7Wlqof+UV6l54AUdNrWtIk4nohQuJf/ABjPHx7o7YuwZ55cvutB9PQprSMGry6ymE8EMJRna3rWPD2sW+jqTPNIORkfMuxBIxjc3f1mPvPOz2Ywx2o+z2zZs5+vTfaf7yS3C6ZlaYs7NJ+MGjRFxwwZDuaujUnSedyJT8KIYi+anvQYUYqI+uZdmmN2jdWe/rcPosPCaWEfOupboilVUfNgHu2Uvm5GMMfKNs1xSPF6h/5VWcLS2uG5Ui8pJLSHj0+5gzMtwcbWBwOB04cSVmSUJCCH+nJxnY0biSLau/8nUo/ZI3YQrxWRewc1U7na21HjnGYPYmbVn2HUeffpq2VauO32ZMSCD+4YeJvvYalHFo5oYu54nPMgZlwKS5bxNyIQLR0HwnOIUKN1ITdojvNr5OR0eLr8PpM5M1hBFzLqW1ZTgbv2oCmjxynIKJScy+sf/JyFZRwdF//IPGd95F7+w8fnvYtGkk/uiHQdft6lxnQXVdx+60H78iZ1RGDEqmdAgh/JszRWNLzRJ2rvzO16H0S3JeIZmjLmffBiMH9zV75BgD3ZtUdzpp/uwzjj71NB3btx+/XQsLI+7ee4i9/Xa0kBB3h+vX7E67a8805TqRKUWaECcb0kWbijRyyBI4e8gcoxkMFE6dhzJNZufqNnTdM8WaJczI7BuLKJiQ1K/ndezazdGnn6bpk0/AcWJxsKWoiMQf/WhIzcnvcpw4U6iUwmSQJCSECAAK7CmwoeoLSpev83U0/RKVmEzepMup3BXP5m86AM9sO5A5PI55t/Vvo2zdZqPx/fc5+vTfsZX36OZsNBJz/fXEP/wQxtiBTa8MNE7did1pP74uzagZUYPosilEsBuSRZuKMVGhdrNy49sB05b4mOwxkwiLncP+zQ6cjjaPHSdzeCzzbi0mLLrvyah940Zq//bU8bb9xxgTE0l49FGirroSpQV3212H04FdP5GEzAbZW04IEUA0hS3Fztr9n1DxnXv3K/M0a0QkhVMuofZgLtu/awc8czJ2IBtlO9vbaXjjDY4+8yz2wyevpws/bz6JP/whlpwcd4fqd2w99u3TlCY5Uoh+GFpFW7yRUttm1m74CF133+bS3pCcV0Rc1gWUbzVzuNxzhabRYmD61Xn92ii7dcUKav/6t5Pm4wOokBDi7r6buLvvCuppHp2OTteeaVYdHQ2LIVD2lRNCiG5GRXtSJ6t2vx8w+5AeYzRbKJh8Pq3NI9m9thNo99ix+rtRtqO5mfqXX6bu+Rdw1J+8Vt46fDhJ//RTQidO9ESofsHhdBxfm6aUkvwoxCAMjaItycjO5tVsWvO5ryPpt5iUdFKKLqRydywNG+yA54rN/iaj5q+/pvavf6Vj0+aT71CKqMsvJ+HxxzAl9W9qZSCwO+0nkhAKq9Hq44iEEGJglFmjOb6ZFdvfDqitbQCUppE7fhZOfRL7t9qBznM+Z6A0o2LSpTmMXZDVp71J7fX11D33PPWLFuFsPnk9nTExkYTHHiPqyiuCsiNkh70DHddsG6NmlBwphJsEddHmTNHYXP0tu1Yu93Uo/RYeE0f6iAs5XJZK6SYH4Lmra/1JRscWT9f+9W907tx52v0hY8eS9POfETJypKfC9Yl2e7trgTRg0kyEGIP3yqEQIvi5uiUfZfnmN2ne5YEtYjwsc+RETCEzOLhH4cn8CBCXFsZ5d5YQn37uPUS7qqupe+ZZ6l9/Hb3t5CUMymIh9q47ib/3XrTQvp0cDQQOp4NOx4mCOcQYEpTFqBC+FnxFmwZdKTrrD3xK2fJNvo6m3yxh4WSNWkBtVR5lWx2A45zPGYy4tPDuZBR+1sfpDgdNH31E7d+ewtbL1BljcjKJP/whUZdd6qlQvcrhdNBub0cpdfxqmqaCez2eECL4qQgj1SGVfLfpTTo7Wn0dTr8l55cQFj+Hqt1Wj+/nrTTF2PMzmXRZDgbj2d//u6qqOPr3v9Pw1tsndUs+JuKCC0j6yY8xpfV9HZw/67B3HN83zaAMhJqCpwgVwl8FTdHmVE460mys2vsBh5ft9XU4/Wa0WMgeNY+GuhIO7NTxdLGmNMW4BZlMvPTsyUjv6qLx/fep/dtTdB04cPo4ZrPrzOF99wX8mcMOe8fxaY8GZSDcfPZCVgghAoUzQlFpL2PlxndwODzTTdGT4jNyiEqbz6E9UTQc9XC1BkQlhnDeHSUk50ad9XG2igqOPvUUDe++B12n75FqKSwk6ec/J2zKZE+F6jXNNtc0z2MnMq2aTHsUwpuCpmgrb97Gp8v+x9dh9JtmMJI1ahatraOp3KsAzyej6KRQ5t9RTHLOmZORbrPR8PY7HH3qKbqqel/nED53Lkk/+yfMmZmeCtXjmmxNx6c9hhhDiDCfe/qLEEIEms92/oOjlaefePN3UUmpxGfN51BpIi27dDyeIxWMnJ3O1KvzMJnPvI9m5/79HP3bUzR++CHYT5+eqUVGkvC97xFz040oQ2Dux9nl6KLN7priqZQi0hzp44iEGNqCpmjTvVDsuJNSGhkjpmLrGs+hMi99GxSMnpvBlCtzMZ4hGTltNldb4qf/flpb4mNMmZkk/fxnRMyZ48FgPcPhdNBkc+1rp1BEWiJl2qMQIujpnp5L6GbhsfEk5Z3H4QNpHNzjhWINiIi1Mu+2YaQPO/M+aZ2lpdT+5a80ffzxSfuQHqcUUVddReIPH8cYF+fBaD2jrauNTkcnCoXZYCbKcvYrjUII7wmaoi1gKEX6sAk4mUR1pfda30bGW5l/ezGpBTG93u/s7KTh9Tc4+vTT2Kure32MsliIu+9e4u69F80cOHurdNg7aOlqQaEwakZirL2/BkIIIXwrJDKKlML51FRmcdBLs08ASmakMv3afMzW3j8Wde7dS+2f/0LT4sXg7L2Ls6W4mORf/4rQsWM9Garb1XfU49AdKBTh5nBiTJIjhfBHUrR5UWrhaJRpKrVVXlz7pWDErDSmXZ2PyXL61TVnRwcNr7/uurJWU3PGYcJnzybpV7/EnN73/dt8qdnW7Gok0j33Pj4k3tchCSGEOANLWDipw+Zy9FAeVfu8N/shPMbC3FuGkTm896tiHbt3U/uXv9D86WdnLNa08HASHn00YKZC6rpOTbsr3ysUMdYYjJp8HBTC38lvqRck5ZZgCp1O7UHvrpeKiLMy77Zi0otOP2vm7Oig4bXXqP3733HU1J5xDGNKCkk//xmR55/vyVDd4mj7UWwO2/G594mhib4OSQghxFmYrSGkFs+hoaaIQ6XenapePC2F6dcVYAk5/aNQx+7d1P75LzR/+ilna1MZefHFJP7TTzEl+ne+6XJ2UdNWg6Y0NKVJfhQiAEnR5kEJ2YVYI2ZSUxkF9V48cPfVtalX5Z021cPZ2ekq1p5++qzFGgYDsbfeSsL3HkELC/NwwAN3uPUwXc4uNKURHxKPxeC9KadCCCEGxmixkDZsNo1Hizlc5t2rU+ExFubcMoysXq6ude7ZQ82f/nzOYs2UlUnyr39N+PTpngx1UNrt7dS21aKUa31aaniqr0MSQgyCFG0eEJeRR0j0TGorY2lu9O6xI+OtzLu1mLRTrq65irXXXWvWzjINEsA6ahQpv/0N1uJiT4Y6YBVNFa7590qRGpaKyWDydUhCCCH6wGAyk1Y8g+aGERw54P2PICXTU5h+bQHmU66ude7dS82f/kTz4rMXa8pkIvaeu4l/4AE0i/+dJGyxtVDT7rqiFmIMISMyw9chCSHcRIo2N4pNzyEsZiY1B+NpbfHusZWCkXPTmXLlyW2KnTabq8HIU0+dscHIMVpYGAmPPeaal6/5T0dFXdfZ37Qfp9OJpjQyIjMwaVKoCSFEoDCYTKQNm05z4wiqK7zfyCoizsrcW4aRUXxyZ8jO0lJq/+9PZ20wckzI+PGk/MtvseTleTLUfmvsbORI2xE0NCLMEeRE5fg6JCGEB0jR5gYxqVmEx82k5mAiba0+OH5yKHNvLSYl70RrXt1mo+Gtt6j921NnbN3fU/j8+ST/6peYkpM9GWqfOXUnexv24nA60JRGbnSuFGpCCBFgDEYjqcOm09o8kupK7xdrSsGI2elMvSrvpGZctrIyav70Z5o++uicxZoWEUHij35E9MLrUEp5OuQ+aehooKq1Ck1pRFuiKYwp9HVIQggPk6JtEGJSMgmPn0V1ZQLtld5/I9c0xdgLMpl4cQ4Gk+vKmN7VRcM771D7179irzp0zjGMCQkk/fKXRF6wwNPhnpNTd7Krbhc2pw2jMlIYUyhTH4UQIgBpBiNpw6bR2jKSmoO+mUYYkxzK3FuGkZIfffw2W0UFtX/6M40ffND7PmuniFiwgKRf/sIvGo00dDRQ1lSGpjRirbGUxJX4OiQhhBdJ0TYArmJtJtWVibRXKnxx3i0xK4K5tw4jPt3VkVJ3OGh8731q//IXuioq+jRG9HXXkvjjH2OIjPRkqGel6zo76nbQ2tWKUTNSHFuM1Wj1WTxCCCEGzmA0klI0lbaWUdRU+aZY0wyKsQtOPqHZdfAgtX/9Kw3vvAt2+znHMCYkkPTrX/m8c3KTrYlddbtQKGKtsYxJHOPTeIQQviNFWz/4Q7FmtBiYfFkOo+ZloGkK3emk6aOPqP2/P2ErL+/TGKbMTFL+5beETZni4WjPbGfdTmrbazEoA8PjhxNp9l3hKIQQYnAMRiOpRdNobR5JrY+KNYCknEjm3jKMuLRwALqOHKH2r3+l8c230Lu6+jRG9HXXkviTn2CI8O42Pce0dbWxsWYjuq4TbY1mYvJEn8QhhPAvUrT1QUxqFmFxM6npngbpqxntmcNjmX1jEZHxIei6TtPixdT83/9h27uvbwNoGrG33UbCo99HCwnxbLC9KG0oZV/jPlehFjecYbHDvB6DEEII9zGYTKQWTaOlaTg1Vb6bJWGyGphyRS4jZ6ejNIW9tpbap56i4dXX0G22vo2Rnk7KE/9C2NSpHo72dDaHjTWH19Bh7yDCHMGk5Emy4bUQ4iTyjnAWsWk5hMbMoLYqgfZKfFashUSamXldAQUTkwBo/uorav74v3Tu3NnnMcz5eaQ++SQhY8Z4KMreHW49zNoja1EoCmIKOD/L/zfpFkIIcXYGk/lEseajNWvH5IyOZ9YNhYTHWLHX13P073+nftEr6O3tfRtA04i55WYSH3vMqyc0HU4Ha4+spbqtmlBTKFNSphBm8t99UYUQviVFWy/iMvKwRk3n6MF42tp8GIiC4TNSmXpVHpZQEy1Ll1Hzxz/SsWVL38cwGom7+27iH34Izeydzl2NnY0sqVxCh6ODtPA0Ls65GE35zxYCQgghBsZoNpNSOIOWhhJqDnq/G2RP4TEWZl5fSO6YBBxNTVT/z9+of+FFnK19b+Nszs4m5fe/I3TcOA9GerJtR7exrXYbJs3E1NSpTE6Z7LVjCyEClxRtPSRkFWIKm0rdoTiv77N2qrj0cObcVERybhStq1dz6H/+SPu6df0aw1JYSMrvf0/IiOEeivIEm8PG0sqlVDRXEBsSy7yMeYSbwz1+XCGEEJ5nslpJLphBU30xNQd929VX0xSj5qUz8dIcjI5Oav/6V44+8yzOpqb+DELsHXe4lgt4YZPsgy0H+abiG+xOO6MTRrOwaKHHjymECC5StAGJuSUYLZOpOxwD/XjP9wST1cDky3IZOTedzs2bOHDXH2ldvqJ/gxiNxN17DwkPPojy8NW1jdUbWV61HLPBzLzMeczPmu/R4wkhhPAec0goyQUzaagpoqbS9x8ZUvKimH1TETFxRuoXvcjRp5/GUV/frzHMubmk/v53Hl8u0Gxr5rOyzzjUeoisyCyuKbhGuiMLIQbM9+/APpScPxoME2iojjr3g72gYGIS06/Nx1BVysGHHqLlm2/6PYaloICUP/wrIcM9d3WtsrmSj/d/TH1HPROTJ3LfqPtkwbQQQgQRa3gEibmzqK/Op7rCcO4neFhIhImpV+VTND6WhjffZN9f/4a9pqZ/g3jh6prD6eC7qu9YUbWCSEskl+ZcSkZkhkeOJYQYWobcJ22lNFIKx2F3jqWh1jftfE8VmxrGzOsLSTDWUfPrn9L82Weg6/0bxGAg7p57SHj4IY9cXWvrauOz8s9YfWg1WZFZXJF/BclhyW4/jhBCCN8JjYohPmsmRw/n+EWxpjTFiJmpTLoki47PPmTfL/+MvepQv8dxrV37PaHjxnogSthTv4cPSj+goaOBORlz+OGEH8rJTCGEWw2ZdxTNYCClcBKdnaOpqw71dTgAmEOMTLwkm2H5OnV/+QOlH3wITmf/x8nLI/UP/0rIyJFujU/XddYeWcsH+z6gw97BpXmX8uSMJ6WpiBBCBJnwuARi02ZReyiD6gr/eI9PyY9i5sICzJuWcPC6R/u8F+lJlCLm1ltIfPxxNKt7pyY2djby8f6P+e7gdxTFFnFD0Q2khqe69RhCCHHMgIs2pVQG8AKQBOjAU7qu/49S6jfAvcCxeQs/13X948EGOlAGk5nUwim0tozg6GE/mUuuYNjUFCZOC6f1+afZ/4N3wG7v/zgemupxuPUw7+19j2UHlzExeSIPjn6QlPAUt40vhBDBLlByZFRSKlGJM6g5mEZ1ha82tjlZWLSFadfkkVy/mdqHf0Pnnr0DGseUnk7qv/6e0Inu25zaqTtZWbWSd/e+S1NXE1fnX83/m/v/5KqaEMLjBvMuYwd+qOv6eqVUBLBOKfV5933/rev6fww+vIEzWUNILphOc/0waqp825a4p+TcKKYtiEd99DJVV/d9089TmTIzXclo/Hi3xNXl7OKbim94e8/btHW1cX3R9TxzwTOYDL7tEiaEEAHKr3NkbFoOYTHTqDmYSHWlfxRrBpPG2PMzKQyvoOEPj3Bw27YBjxV9/fUk/eTHaGHu2fesqqWKd/e+y+flnzMhaQIPjH6A3Ohct4wthBB9MeCiTdf1Q8Ch7r83K6V2AGnuCmygrOGRJObOoKEm3y86XR0THmNh8oJkYte9Q92di/q+6Wcvom+8gaQf/xgtdPDTPPc37uftPW+zuGwxk5Mn872x36MkrmTQ4wohxFDmrzkyMbsYY+gk6g7F+XYf0lPkj09kTE4z7f/4JYc3bBjwOMakJFKefJLwmTMGHVOXs4uvDnzF23vepqqlihuG3cBLF78kG2ALIXzCLVWNUiobGAusAqYDjyilbgPW4jrT2L9+vANgNEeQOepKjh7O8ovF08cYLQbGzk4m48DnNP3oOY72Y9PP08ZKTibld08SPn36oGLqdHTyWdlnvLn7TSqaK1hYtJDXLn2NWGvsoMYVQghxOn/IkXEZwzGHL3B1S2709NH6LjErggmjQXv9P6n7z5WDGivy8stI/uUvMURGDmqc8qZy3tr9Fu/te4+imCJuKbmFmWkzUco/rkgKIYamQRdtSqlw4C3gB7quNyml/gI8gWsO/xPAfwJ39fK8+4D7ADIzMwcbBjpZVFcM/OqVuykFRRMTKGxbTdu//ZSGxsFlyagrLifpF78YVDIqbSjljd1v8EHpBySHJnNrya1cnHOxTIEUQggP8Zcc2dI4gYZq/7m0Fh5rYfwECxGfPk3b80sGNZYhJobk3/6GyAULBjxGl6OLLw98yRu732BTzSYuzrmYvy/4OwUxBYOKTQgh3GVQRZtSyoQrGb2s6/rbALquH+lx/9PAh709V9f1p4CnACZMmNDP/vb+LWNYNMNNO3D849e0HD06qLEMsbGuZHT++QN6fpejiy8OfMFru15j/ZH1TEudxr/P+nempk4dVFxCCCHOTnLk6cxWA6MmhJG88iXafvEZbf3d3uYU4fPmkfIvv8UYHz+g51c0V/Dm7jd5d++7OHQHCwsX8m+z/o34kIGNJ4QQnjKY7pEK+AewQ9f1/+pxe0r3XH6Aq4CtgwsxcMSnhTEitgLza7/FVl096PHC5893JaO4uH4/92DLQd7Y9Qbv7H2Hps4mLsi5gDcue4Oi2KJBxyWEEOLsJEeeTDMoho2JIGvHW3T+/n3aBrC9zUnjhYeT9POfE331Vf1+rsPpYEnlEl7b/RrLDy4nJSyF+0bdx1X5VxFq8o8tgYQQ4lSDudI2HbgV2KKU2th928+BG5VSY3BN/SgD7h/EMQJCRKyFEcm1RLz7O+xVVQygef9JBpqMdF1n2cFlvLrrVZYdXIZJM3FV/lXcMeIO0sJ9vv5dCCGGEsmRAApyiyPIq1yM4/+9RqfDMeghQydPJvVff48ptX97oh1tP8rbe97mjd1vcKj1EHlRefxuxu+4KOciadkvhPB7g+keuQzobVWuz/ab8TZruInh6c3EfvzvOA6UDbpYg4Elo8bORt7d+y6v7XqNiuYKwkxh3D78dm4ruU2meAghhA9IjoS03DAK65egnn4RR1fXoMdTViuJjz9GzK239qspyKaaTbyy8xU+K/uMLmcXJXEl/HTiT5mXOU+aiwghAoacWhoAk9XAsIwOkr78H5wf7mbw5w0Hlox21+9m0Y5FfLz/Y9rt7USYIrh/1P3cWnIrUZYoN0QlhBBC9E9CWgjDOtZgfvHv6G4o1gCsI0eS+m9/wJLbt73RbA4bn+z/hFd2vsK2o6793kYljOKBUQ8wM32mW2IaEnTd1Vnt2J9CCJ+Roq0fDCaNwswuUpb9FRZvYXAz8k+wjhpF6h/+gCU355yPdTgdfFPxDS/vfJk1h9cAEGGK4MHRD3JLyS1EmgfX6jio9VzwLklICCHcKibBQpG+mbA3/4be2YlbuqeYTMQ/cD/x99+PMp77I0t1WzWv7XqNN3e/SV1HHQCjE0bz0OiHmJY2zR0RBa9Tc2RvfwohfEaKtj7QDIq8DAdpq55B+3yd+wY2mYh/8AFXMjKcfW+5JlsTb+9+m1d2vkJVaxUAYaYwbi6+mduH3y7FWk+9dSNT6vSkI0lICCEGLTLWTJFhJxEf/Bk62t1TrAGWgnxS/vAHQoYPP+djN9ds5qUdL/F5+efYna7FCiPiRvDw2IeZkTb4jbaDSl9zpBDCr0jRdhZKU+RkOMlY9wKGL1e5dWxLQQGp//YHrCUlZ31ceVM5L21/iff2vUe73bUPndVg5fqi67l75N3EWGPcGlfAOVPyEUII4VHh0SYKTXuJ+vBPqPZW9w2sacTecQcJP3gUzWw+48PsTjtflH/BizteZHPN5uO3F8QU8MiYR5iXOc99MQUqyZFCBA0p2nqhFGSl62RsfAnTVyvcO7jBQNxdd5Lwve+hzpKMVh9azQvbX2BJ5RL07vOWRmXkyoIreWDUAySFJbk3rkBwaotoOTMohBBeFxpposi8j+hP/oxqbXbr2KbMTFL/8K+Ejht3xsc025p5c/ebLNq5iMOth4/fnh6ezsNjH+binIvRlObWuPyerp8+vVFypBBBRYq2nhRkpelkbFqE+evlbh/enJ1Nyr/+ntCxY3u9v8vZxeL9i3lh+wvsrNt50n3nZ53P98d+n+yobLfH5Zd628NHG2JJWAgh/EhohJFCy36iP/kzWmuTewdXipgbbyTxRz9EC+19r7TK5kpe3vEyb+95mzZ72/HbY62x3DfqPhYWLcSkmdwblz86tUADV36UAk2IoCZFG5wo1ja+gvnr7zwwviLm1ltIfPxxNKv1tLubbc28sfsNXt7xMtVtJ2/KPS5xHI9PeJzRCaPdH5e/cJ7af1NJgSaEEH4iNNxIgWU/MYs9UKwBptRUUn73JGFTp/Z6/+aazTy/7Xm+PPAlDv1EvggxhnBrya3cNeIuwkxhbo/LLzidcOoqQc0gBZoQQ9CQLtqUgsxUJxkbF2H+2s3TILuZMjNJ/d2ThE6ceNp9h1sP8+L2F3lrz1u0dp28HiAzIpPHxj/GeVnneSQun3H02M3uWNLRzt6ERQghhPeFRhgpMJW6irU2906DPCb6uutI/OlPMYSfXHTpus63ld/y7NZnWV+9/qT7NKVxae6lfH/s94NrqYCun3wSUylQmus/IcSQNySLNqUgK9VOxvqXMX292mMHibn5ZhIff+y0qR6763fz7NZnWbx/MXb95C25I8yuvdZuKr4p8Kd5OB2g95zmqMAwJH/khBAiYIRFGsnX9hCz+C9oHW5sMNKDMTWFlCeeIHz69JNu73J08WHphzy37TlKG0tPe974pPH8ZOJPKIk7exOvgODouYddd4EmOVIIcQZD6t1B0xTZyZ2krX4B09cbPHYcU1YmqU+efnVtzeE1PLP1GZYdXHbacwzKwDUF1/DI2EcCsyOkroPDBvSYsqEZwRDghacQQgwR4VEm8vXtxHz6N1Rnu2cOohTRCxeS+OMfn3R1rcXWwhu73+Cl7S9R3V592tNSw1L54YQfsiB7gWfi8jRHV/dJzB77nkl+FEL0w5Ao2jSDIjepjZTlz2L6apsHD6QRe9ttrjbF3WvXdF3nq4qveGbLM2yu3dzr08YljuNnk3/GsNhhnovN3eydJycgzQBGi09DEkII0X9RsSbyOjYS+dHf0ew2jx3HlJ5OypNPEDZlyvHbattreWn7S7y+63Wau06fgmk1WLlr5F3cNeIuLIYAyTG6DvaO7i+6OzhqJinShBCDEtRFm9GskRfXSNKSv2P8cq9Hj2UpyCflyScJGe1qGNLl7OLj0o95ZuszvU7xAEgMSeTxCY9zSe4lHo1t0HQduo516uou0oxWaRYihBABLDbeSG7TKiLefR51WkMoN9I0Ym+9hYRHHz2+XKCyuZLntj3Hu3vfpdPR2evTzss8jx9P/DGp4amei80d7J3gtHPiKpoGphCfhiSECD5BWbSZQwzkR1aT8OXfMNQe9OixlMlE3H33EX//fSizmQ57B2/teYvntz3PodZDvT7HqIzcVHwTD415yD87XtltrrOEqkcCMvthnEIIIfotIclAzpElhL25CE/3ILQUFJDy5BPHT2juqd/DP7b+g8X7F5/UCbKnrMgsfjbpZ0xPm97r/T7X2eKaaaIUoFyzTCRHCiE8LKiKtpBwI/mWcuI+/xta01HPH2/cOFL+5bdY8vNpsbXw6pYXeHH7i9R11J3xOeMSx/GLKb+gMKbQ4/H1ma2tR5HWnYCskb6OSgghhLsoRWqKInP/J4S+9oHnD2c2E//gA8Tdcw/KZGJLzRae3vI031R8g35qC/tuFoOFe0bew10j7sJsMHs8xj5rq+vRYl+BJVJmmgghvC5oirb41r1M/uJxj3W66kmLjCTx8ceJvn4hjZ2NPLXhf3ll5ys0287cEjnKEsXj4x/nqvyrUL7eX6WjyTWd41iRZg6D0FjfxiSEEMJjxh16A/2bj7xyrNDJk0n+zT9jyclhzeE1PLX5KVYeWnnW50xLncYvJ/+SjMgMr8R4Rk4ntNVyfC2a0iQ/CiH8QtAUbebmGq8UbJGXXkrSP/2UhjD4z7X/yeu7X6fdfvYuW5flXsaPJv6IWKuP3vjbG8DWeiIBWaPkSpoQQgwhpoqdeK7FiIshNpbEn/yY6CuvZNnBZTz1yT+zofrsnZrjrHH8ZOJPuDj3Yg9Hdwa6Ds2HXH8qzdVUKzzRN7EIIcRZBE3R5mnm3FySf/0rmkdm829b/sY7e9854+LpYzIiMvjVlF8xNXWql6Ls1tEErTUnNuUMiYGoNO/GIIQQYmjQNKIXXkfCD37At03reOrD69l+dPtZn6JQXFVwFY+Pf5woS5SXAu3WUAHOru4izQiRaT2mPwohhH+Sou0cVGgo8Q8+QNs18/n3nS/w3tvvYXfaz/ocgzJw2/DbeGj0Q1iNVs8HabdB3b7ugA0QEg1xeZ4/rhBCiCHNOmoUSb/6BUsiqnhqyV3sqd9zzudkRWbxz1P/mYnJE8/5WLdoPty9Lq27SIvOBKMfrZkTQog+kKLtLCIvuQTbAzfw30fe4eMPr8Gun71YAxgWO4zfTvstJXElng2uZjd0NrsWQ5tCIb5IFkYLIYTwCkNcHPGP/YDvxph5dOsv2d+4/9zPUQZuH347D415yLN7rtlaoXrniSUBUemQ5OGcLIQQHiZFWy+sw4fj+P4d/FEt5dMV95yxLXFPZs3MA6Mf4M4Rd2LUPPCyttXB4S0nNulMHAYJftSBUgghRNBTJhNRt9zMmouyeGrfc5R/V96n5xXFFPHb6b9leNxwzwR2eKurgYhmdHV3TB0rJzKFEEFFirYejElJOO69gT+l7+Hz8l/g1J19et6ohFE8Me0JcqNz3ReMrsOhjdBwwFWkhSdC9kxJQkIIIXwi7Lz5bLx2FH8++jYHN/RtD1STZuLeUfdyz8h7MGkm9wXT0QgHVoKjCwwmSBkNySPcN74QQvgZKdoALSwM502X87cRtXx2+M/o5b3vIXMqi8HCI2Me4bbht6EpNxRTnc1Q+i20HQWjFdInQMkVgx9XCCGEGCDLyBFsv3ESf3R+zqHyb/v8vJK4Ep6Y/oT79iWt2QUVq10zTsISXCcyzaHuGVsIIfzc0C7aTCb0y+bzj8ltfNLwBhzu+1NHJ4zmyelPkh2VPbgYGg7Ans9cHR/D4qFgAUQkD25MIYQQYpBMWZnsvm4i/xW1kiPNL/T9eZqJB0Y/wF0j7hrccgGHHcq/g4NrXTNOkkfC6BvBMLQ/ugghhqah+c6naTjnT+PF6XY+6vwCGvr+VLdcXTu0GXZ9Au31EF8AxVdAeMLAxhJCCCHcyJCYwL6rxvOfyRs5YnsP2vr+3OLYYn4343cUxBQM7OCdLbD3cziwCkxWyJsH03/g2j9NCCGGsCFXtDlmTGDRTJ0PWAln32btNCPjR/LkjCfJjern2jWnEypWwY4PoPEAZEyGcbdCZGr/xhFCCCE8RIuNYf+lo/nPzO0cdnxBf3bjNmpG7ht1H/eOvLf/V9fa6mDXx7D3SzCHQfHlsOBJuaImhBA9DJl3RPvUMSya7uRD08Z+P9ekmXhozEPcOfxODH092+d0uKZ1bH8PKtdC7hwYd5ur66MQQgjhJ7ToKEovHsl/Ze3kMMvg3A2TT1IYU8jvZ/yeotiivj+ppQZ2vO86mak0GHkdXPF/rqJNCCHEaYK+aLNNHc1LU2wstm4d0POLY4t5csaTfVtI7XTCgeWw9W3YvRjSxrsKtYv+P5naIYQQwq9oMdHsuWAY/5W9kxq1st/PNygDd424iwdHP4jJ0IfOkK1HYcd7sO0d13ru0TfC5X90bXYthBDirIKzaFOK9umjeX5iK19Ztw1oCKMycs+oe7hv1H3nblNcuQ62vOFKRCYrjL8D7vtW1qkJIYTwO1p8LNsXFPBfGdtp0NYOaIycqBx+N/13jEwYefYHdjTBzg9hy5uu2Sf558G0R11r1WQLGyGE6LPgKtqMRppmjeIfo+tYMcArawD50fn8bsbvKIkrOfODavfC5tdcxVp9GRSc75rakX+eqx2xEEII4UdUShIb5mfyx/RttKh1AxpDUxq3Ft/K98Z9D4vB0vuD7DZXV+Qtr8PuT8ES4TqZefn/QlTawP8BQggxhAVN0XYgI4R//UESW02bBzyGQRm4ffjtPDzmYcwG8+kPaKtznS3c/CocXAfmcBhzM0y+H+LyBhG9EEII4TnfXp3LnwxLsKmjAx4jMyKTJ6Y/wbikcb0/oGI1bHoVtr3t6o6cPBIu/W8YcQ0Yz1DgCSGE6JOgKdr2xXSy1XRkwM/PjszmyRlPMjph9Ml3OOyuM4YbX3adMXR2QXgSzP9nmHAXhEQPLnAhhBDCw96LK8fW2M8OI90UihuH3cgPxv+AEGPIyXc2HoRNr7j+O7rXdVvePJj+qKsBlxBCCLcImqJtoDSlcVvJbTwy9pGTp3rU7IYNL8Cm16C12nVbdBbM+IHr6pqcNRRCCBHk0sPT+Zfp/8LE5IknbrTbYNdHsP5FKP0adKerA2TJlTDzcUgZfcbxhBBCDMyQLtpyonJ4YvoTJ66udbW7momsex4qenTSis2FmT+CUdfLvjFCCCGC3rGra4+Oe5RQU6jrxprdsP5511W1tu5plsfa9c/6MST0o+W/EEKIfhmSFYhRGbljxB08OPpB19q16h2w9lnXWrWOxhMPjMqE2T9xtSWWYk0IIcQQkB2ZzW+n/da1ds1uc63lXvuMq/vjcQpKroC5P5diTQghvGDIVSLD44bzm2m/YVhUnmtjzzX/OCURAaHxrrOGE+4CYy8NSYQQQoggY9SM3Dn8Th4Y/QDm5sPwxW9cUyDbak9+YN48OO83Mg1SCCG8aMgUbWGmMB4Z8wg3ps/DsO55WPcctBw++UHGEJj6sGvdmiXCF2EKIYQQXjc2cSy/mvIrCuoq4fXbYfdi11q1npJHwvlPQN5c3wQphBBD2JAo2i7MvpAfpV9A0sbX4M0fuDpAnkS55uSf988Qle6LEIUQQgivi7XG8oNRD3Jlcwvq5ZuhdtfpDwpPgnm/cjXhkg2xhRDCJ4K6aCuKKeSniTOYuO0T+Pqp3h+UMgYu/nfImOTV2DxJ1/WTvlay2bcQQogejJqRG3Iu5cE2B5Hv/RQ6Gk5/kGaCKQ+61nYH0eyTnjlS8qMQIlAEZdGWFJrIw5EjuGLHV2jrv+j9QSExMP/XMO6OgDhz6HSeWoiBrrv+PPl2JUlICCHEGZ2XOIlHW7vI/uovvcw86ZY7By7+D4gv8GpsA6HrOj3PVZ4pP7rukxwphAhMQVW0xVtjucuaycKdS7G0rz3zA0ffBAuegLB47wV3Bl0O15qBnink1ISiAE07PclI3hFCCNEXCsX0mBIeaWhixKo3z/zA8CS44Pcw8lrvBXcGTqeOQ9fPmR+VOj1HSn4UQgSboCnaptucXLxnFxb7xjM/KDYPLvt/kDPLKzG12xzH/34sgRz/E4VSYDL4/1U+IYQQge1/2zQydi8+yyMUjL/D1RUyJNrj8dgdTmwO5/FcCCfnRwCDpiRHCiFEt6Ap2hI728De3vudmhGmfQ9m/xOYrG47Zn2rDYeuoymFpo5Nu+i+MqYUoWaDTMMQQgjhcxl1lWe+My4fLv9fyJrmtuN12h00tdvRFN050pUcj+VKk0ERag6ajyBCCOFxwf+OmTQCrvgTpI7p91MdTp2qhnbauxwYNIVRUxg0V/IxaorYMDNGOQsohBAiECkDTHsE5vx8QCc0mzu6ONTYgabAoGkYNYWmuU5ihpqMJERYPBC0EEIMTcFbtGlGmPlD1ybZBtNZH9rc0cXe6haqmzuxGDXMRg2LUcNiNJAVF0qGNdRLQQshhBBeEF8EV/4F0sef9WG6rlNZ386+mhbsDh2LScNs0DAZNWJDzeQnhPe65loIIYR7BWfRllAMV/31tKtrXQ4ne460sPNwE6U1rZgMGuFWI8mRVkamRTE2M8Y38QohhBDeoDSY8pBr37VTrq4dbelkx6Fmdh5uor7NRrjFRLjVSGFiOBOyYwm3BOdHBiGECAQeewdWSl0I/A9gAP6u6/ofPHWsHkeFqQ/D/F9jw8T2iga2VDaw5WAjOw41E2I2MCUnlql58Vw8MgWryeD5kIQQQogefJMfgehMuPKvkD2d6uYONu85wuaDjWw92EhVQzsFSRHMyI/j/JIksuLCvBKSEEKIvvFI0aaUMgB/As4HKoE1Sqn3dV3f7onjAbRaEtk881k+aytk/d/WsqOqCRTMKkjgohHJ/OyiYmLCzJ46vBBCCHFOvsiPAEeyr2Bx2GWs/s7Ohle+pKqxg/SYEC4ZmcLDc/MYmxEj0xyFEMKPeepK2yRgr67rpQBKqVeBKwCPJaWP2kr4yeebgTLGZETz2yuGc/HIFKJCzr6eTQghhPAir+dHgJt3z2BvdQVhZgOXjU7lugnpjM+K9eQhhRBCuJGnirY0oKLH15XAZA8dCwCTUXH1uDTump7DiLQoTx5KCCGEGCiv50eArNhQbpmcybUTMmRtmhBCBCCfvXMrpe4D7gPIzMwc9HhXjU3nqrHpgx5HCCGE8DV358h/3DFx0GMIIYTwHU9tMnYQyOjxdXr3bcfpuv6UrusTdF2fkJCQ4KEwhBBCCL9yzvwIkiOFEEKczFNF2xqgQCmVo5QyAzcA73voWEIIIUSgkPwohBCi3zwyPVLXdbtS6hHgU1wtjZ/RdX2bJ44lhBBCBArJj0IIIQbCY2vadF3/GPjYU+MLIYQQgUjyoxBCiP7y1PRIIYQQQgghhBBuIEWbEEIIIYQQQvgxKdqEEEIIIYQQwo9J0SaEEEIIIYQQfkyKNiGEEEIIIYTwY1K0CSGEEEIIIYQfk6JNCCGEEEIIIfyYFG1CCCGEEEII4cekaBNCCCGEEEIIPyZFmxBCCCGEEEL4MSnahBBCCCGEEMKPSdEmhBBCCCGEEH5MijYhhBBCCCGE8GNStAkhhBBCCCGEH5OiTQghhBBCCCH8mNJ13dcxoJSqAcrdMFQ8UOuGcbxN4vYuidu7JG7vCoS4s3RdT/B1EIHCTTkyEH4ueiNxe1+gxi5xe5fE7RlnzI9+UbS5i1Jqra7rE3wdR39J3N4lcXuXxO1dgRq38KxA/bmQuL0vUGOXuL1L4vY+mR4phBBCCCGEEH5MijYhhBBCCCGE8GPBVrQ95esABkji9i6J27skbu8K1LiFZwXqz4XE7X2BGrvE7V0St5cF1Zo2IYQQQgghhAg2wXalTQghhBBCCCGCSlAUbUqpC5VSu5RSe5VS/+TreM5EKZWhlPpaKbVdKbVNKfVo9+2xSqnPlVJ7uv+M8XWsvVFKGZRSG5RSH3Z/naOUWtX9ur+mlDL7OsZTKaWilVJvKqV2KqV2KKWmBsLrrZR6rPtnZKtS6hWllNVfX2+l1DNKqWql1NYet/X6GiuXP3b/GzYrpcb5Wdz/3v2zslkp9Y5SKrrHfT/rjnuXUuoCnwRN73H3uO+HSildKRXf/bXfvN7CdyRHeofkSO8JlBwp+dH7gjlHBnzRppQyAH8CLgJKgBuVUiW+jeqM7MAPdV0vAaYAD3fH+k/Al7quFwBfdn/tjx4FdvT4+t+Ao4QM2AAABLRJREFU/9Z1PR+oB+72SVRn9z/AYl3XhwGjccXv16+3UioN+D4wQdf1EYABuAH/fb2fAy485bYzvcYXAQXd/90H/MVLMfbmOU6P+3NghK7ro4DdwM8Aun9PbwCGdz/nz93vPb7wHKfHjVIqA1gAHOhxsz+93sIHJEd6leRILwiwHPkckh+97TmCNEcGfNEGTAL26rpequu6DXgVuMLHMfVK1/VDuq6v7/57M643xzRc8T7f/bDngSt9EuBZKKXSgUuAv3d/rYB5wJvdD/G7uJVSUcAs4B8Auq7bdF1vIABeb8AIhCiljEAocAg/fb11XV8C1J1y85le4yuAF3SXlUC0UirFK4Geore4dV3/TNd1e/eXK4H07r9fAbyq63qnruv7gb243nu87gyvN8B/Az8Bei5U9pvXW/iM5EgvkBzpdQGRIyU/el8w58hgKNrSgIoeX1d23+bXlFLZwFhgFZCk6/qh7rsOA0m+iuss/h+uH3Zn99dxQEOPX2B/fN1zgBrg2e4pK39XSoXh56+3rusHgf/AdTboENAIrMP/X++ezvQaB9Lv613AJ91/9+u4lVJXAAd1Xd90yl1+HbfwioD8GZAc6RWSI31D8qOXBUuODIaiLeAopcKBt4Af6Lre1PM+3dXO069aeiqlLgWqdV1f5+tY+skIjAP+ouv6WKCVU6Z5+OnrHYPr7E8OkAqE0cul/kDhj6/xuSilfoFrqtbLvo7lXJRSocDPgV/7OhYh3EFypNdIjvQxf3x9zyWQ8iMEV44MhqLtIJDR4+v07tv8klLKhCsZvazr+tvdNx85djm2+89qX8V3BtOBy5VSZbim1szDNQ8+untqAvjn614JVOq6vqr76zdxJSh/f73PA/brul6j63oX8Dau74G/v949nek19vvfV6XUHcClwM36iT1R/DnuPFwfXjZ1/46mA+uVUsn4d9zCOwLqZ0BypFdJjvQNyY/eFTQ5MhiKtjVAQXfXIDOuxZDv+zimXnXPcf8HsEPX9f/qcdf7wO3df78deM/bsZ2Nrus/03U9Xdf1bFyv71e6rt8MfA1c2/0wf4z7MFChlCrqvmk+sB0/f71xTfmYopQK7f6ZORa3X7/epzjTa/w+cFt3x6YpQGOPaSI+p5S6ENcUp8t1XW/rcdf7wA1KKYtSKgfXouXVvojxVLqub9F1PVHX9ezu39FKYFz3z79fv97CKyRHepjkSK8L9Bwp+dGLgipH6roe8P8BF+PqZLMP+IWv4zlLnDNwXQbfDGzs/u9iXHPfvwT2AF8Asb6O9Sz/hjnAh91/z8X1i7kXeAOw+Dq+XuIdA6ztfs3fBWIC4fUGfgvsBLYCLwIWf329gVdwrSvowvVmePeZXmNA4epktw/Ygqv7lz/FvRfX/PZjv59/7fH4X3THvQu4yJ/iPuX+MiDe315v+c93/0mO9Oq/QXKkd+IOiBwp+dE/Yj/l/oDNkao7aCGEEEIIIYQQfigYpkcKIYQQQgghRNCSok0IIYQQQggh/JgUbUIIIYQQQgjhx6RoE0IIIYQQQgg/JkWbEEIIIYQQQvgxKdqEEEIIIYQQwo9J0SaEEEIIIYQQfkyKNiGEEEIIIYTwY/8/tcTa+oUFSwsAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 1080x576 with 2 Axes>"
       ]
@@ -82,7 +82,7 @@
     {
      "data": {
       "text/plain": [
-       "'1.5.0'"
+       "'1.8.0'"
       ]
      },
      "execution_count": 2,
@@ -91,7 +91,6 @@
     }
    ],
    "source": [
-    "import scipy as sp\n",
     "sp.__version__"
    ]
   },
@@ -103,7 +102,7 @@
     {
      "data": {
       "text/plain": [
-       "'27.0.2.0'"
+       "'28.3.0.1'"
       ]
      },
      "execution_count": 3,
@@ -119,7 +118,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -133,7 +132,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,
diff --git a/special_functions/opt_imp_vol/graphs.PNG b/special_functions/opt_imp_vol/graphs.PNG
new file mode 100644
index 0000000..0b51c1c
Binary files /dev/null and b/special_functions/opt_imp_vol/graphs.PNG differ
diff --git a/special_functions/opt_imp_vol/imp_vol_demo.ipynb b/special_functions/opt_imp_vol/imp_vol_demo.ipynb
new file mode 100644
index 0000000..e08dbb3
--- /dev/null
+++ b/special_functions/opt_imp_vol/imp_vol_demo.ipynb
@@ -0,0 +1,311 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Fast Implied Volatilities using the NAG Library"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The Black-Scholes formula for the price of a European call option is\n",
+    "\n",
+    "$$P = S_0\\Phi\\left(\\frac{\\ln\\left(\\frac{S_0}{K}\\right)+\\left[r+\\frac{\\sigma^2}{2}\\right]T}{\\sigma\\sqrt{T}}\\right) - Ke^{-rT}\\Phi\\left(\\frac{\\ln\\left(\\frac{S_0}{K}\\right)+\\left[r-\\frac{\\sigma^2}{2}\\right]T}{\\sigma\\sqrt{T}}\\right),$$\n",
+    "\n",
+    "where $T$ is the time to maturity, $S_0$ is the spot price of the underlying asset, $K$ is the strike price, $r$ is\n",
+    "the interest rate and $\\sigma$ is the volatility. A similar formula applies for European put options.\n",
+    "\n",
+    "An important problem in finance is to compute the implied volatility, $σ$, given values for $T$, $K$, $S_0$,\n",
+    "$r$ and $P$. An explicit formula for $\\sigma$ is not available. Furthermore, $\\sigma$ cannot be directly measured from\n",
+    "financial data. Instead, it must be computed using a numerical approximation. Typically, multiple values\n",
+    "of the input data are provided, so the Black-Scholes formula must be solved many times.\n",
+    "\n",
+    "As shown in the figure below, the volatility surface (a three-dimensional plot of how the volatility varies\n",
+    "according to the price and time to maturity) can be highly curved. This makes accurately computing\n",
+    "the implied volatility a difficult problem.\n",
+    "\n",
+    "<img src=\"impvolsurf.png\" width=500 />\n",
+    "\n",
+    "Before introducing our new NAG Library routine, let’s demonstrate how one might naively\n",
+    "compute implied volatilities using a general purpose root finder. First we need to import a few things:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import time\n",
+    "from naginterfaces.library import rand, roots, specfun"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's generate some input data using a random number generator from the NAG Library:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "n = 10000 # This is the number of volatilities we will be computing\n",
+    "statecomm = rand.init_nonrepeat(1)\n",
+    "p = rand.dist_uniform(n, 3.9, 5.8, statecomm)\n",
+    "k = rand.dist_uniform(n, 271.5, 272.0, statecomm)\n",
+    "s0 = rand.dist_uniform(n, 259.0, 271.0, statecomm)\n",
+    "t = rand.dist_uniform(n, 0.016, 0.017, statecomm)\n",
+    "r = rand.dist_uniform(n, 0.017, 0.018, statecomm)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We have chosen the limits of the various uniform distributions above to ensure the input data takes\n",
+    "sensible values.\n",
+    "\n",
+    "There are various standard root finding techniques that we could use to compute implied volatilities,\n",
+    "a common example being bisection. The NAG Library routine ```contfn_cntin```, is a general\n",
+    "purpose root finder based on the secant method. It uses a *callback*, with data passed in via a communication object:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def black_scholes(sigma, data):\n",
+    "    try:\n",
+    "        price = specfun.opt_bsm_price('C', [data['k']], data['s0'], [data['t']], sigma, data['r'], 0.0)\n",
+    "    except:\n",
+    "        price = np.zeros((1,1))\n",
+    "    return price[0, 0] - data['p']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " ```contfn_cntin``` operates on scalars, so we need to call the routine\n",
+    "once for every volatility we want to compute. We will time the computation and count how many errors are caught:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Using a general purpose root finder:\n",
+      "    Time taken: 51.561 seconds\n",
+      "    There were 4 failures\n"
+     ]
+    }
+   ],
+   "source": [
+    "data = {}\n",
+    "errorcount = 0\n",
+    "tic = time.perf_counter()\n",
+    "for i in range(n):\n",
+    "    data['p'] = p[i]\n",
+    "    data['k'] = k[i]\n",
+    "    data['s0'] = s0[i]\n",
+    "    data['t'] = t[i]\n",
+    "    data['r'] = r[i]\n",
+    "    try:\n",
+    "        sigma = roots.contfn_cntin(0.15, black_scholes, 1.0e-14, 0.0, 500, data)\n",
+    "        if sigma < 0.0:\n",
+    "            errorcount += 1\n",
+    "    except:\n",
+    "        errorcount += 1\n",
+    "toc = time.perf_counter()      \n",
+    "print('Using a general purpose root finder:')\n",
+    "print('    Time taken: {0:.3f} seconds'.format(toc-tic))\n",
+    "print('    There were {} failures'.format(errorcount))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Can a bespoke implied volatility routine do better? Our new routine at Mark 27.1 is called ```opt_imp_vol```. We call it as follows:\n",
+    "\n",
+    "```sigma, ivalid = specfun.opt_imp_vol('C', p, k, s0, t, r, mode=2)```\n",
+    "\n",
+    "The return argument ```ivalid``` is an array recording any data points for which the volatility could not be computed. The argument ```mode``` allows us to select which algorithm to use – more on that in a moment, but\n",
+    "for now we choose ```mode=2```. This selects the algorithm of Jäckel (2015), a very accurate method based\n",
+    "on third order Householder iterations.\n",
+    "\n",
+    "Here is the call surrounded by some timing code:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "omp_imp_vol with mode = 2 (Jäckel algorithm):\n",
+      "    Time taken: 0.01415 seconds\n",
+      "    There were 0 failures\n"
+     ]
+    }
+   ],
+   "source": [
+    "tic = time.perf_counter()\n",
+    "sigma, ivalid = specfun.opt_imp_vol('C', p, k, s0, t, r, mode=2)\n",
+    "toc = time.perf_counter()\n",
+    "print('omp_imp_vol with mode = 2 (Jäckel algorithm):')\n",
+    "print('    Time taken: {0:.5f} seconds'.format(toc-tic))\n",
+    "print('    There were {} failures'.format(np.count_nonzero(ivalid)))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The new routine is several orders of magnitude faster than the root finder, with no failures reported. We could try\n",
+    "tweaking the convergence parameters and iteration limits in ```nag_roots_contfn_cntin```, and we could certainly\n",
+    "improve the way data is passed through the callback, but we are unlikely to match the\n",
+    "performance of ```opt_imp_vol```.\n",
+    "\n",
+    "Recently NAG embarked upon a collaboration with mathematicians at Queen Mary University of\n",
+    "London, who have been developing an alternative algorithm for computing implied volatilities. The new\n",
+    "algorithm (based on Glau et. al. (2018)) uses Chebyshev interpolation to remove branching and give\n",
+    "increased SIMD performance. We access it by setting ```mode=1``` in the call to ```opt_imp_vol```:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "omp_imp_vol with mode = 1 (Glau algorithm):\n",
+      "    Time taken: 0.01770 seconds\n",
+      "    There were 0 failures\n"
+     ]
+    }
+   ],
+   "source": [
+    "tic = time.perf_counter()\n",
+    "sigma, ivalid = specfun.opt_imp_vol('C', p, k, s0, t, r, mode=1)\n",
+    "toc = time.perf_counter()\n",
+    "print('omp_imp_vol with mode = 1 (Glau algorithm):')\n",
+    "print('    Time taken: {0:.5f} seconds'.format(toc-tic))\n",
+    "print('    There were {} failures'.format(np.count_nonzero(ivalid)))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Depending on your system, you should find that, for similar accuracy, there is a modest speedup over the Jäckel algorithm. Our numerical experiments have shown that for very small arrays (containing fewer than 100 elements) the Jäckel algorithm actually\n",
+    "outperforms that of Glau et.al., but for larger arrays the converse is true. As vector units continue\n",
+    "to improve in the future, we expect the performance of the highly vectorizable Glau et.al. approach to\n",
+    "improve similarly.\n",
+    "\n",
+    "So far, we have been computing implied volatilities with a relative accuracy as close as possible to\n",
+    "double precision. However, in some applications implied volatilities are only required with a few decimal\n",
+    "places of precision. One advantage of the Glau et.al. algorithm is that it can be run in a lower accuracy\n",
+    "mode, aiming only for seven decimal places of accuracy. This is accessed by setting ```mode=0``` in the call\n",
+    "to ```opt_imp_vol```. It roughly doubles the speed of the routine:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "omp_imp_vol with mode = 0 (lower accuracy Glau algorithm):\n",
+      "    Time taken: 0.01556 seconds\n",
+      "    There were 0 failures\n"
+     ]
+    }
+   ],
+   "source": [
+    "tic = time.perf_counter()\n",
+    "sigma, ivalid = specfun.opt_imp_vol('C', p, k, s0, t, r, mode=0)\n",
+    "toc = time.perf_counter()\n",
+    "print('omp_imp_vol with mode = 0 (lower accuracy Glau algorithm):')\n",
+    "print('    Time taken: {0:.5f} seconds'.format(toc-tic))\n",
+    "print('    There were {} failures'.format(np.count_nonzero(ivalid)))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The charts below summarize the results, using timings collected on an Intel Skylake machine. We can see that the Glau et.al. algorithm outperforms the Jäckel algorithm for large arrays but not for small arrays. Note that the general purpose root finder\n",
+    "is omitted here as it is so much slower ```opt_imp_vol```.\n",
+    "<img src=\"graphs.PNG\" width=800 />\n",
+    "\n",
+    "In summary, NAG’s new state-of-the art algorithm can be run in three different modes, according to\n",
+    "the length of the input arrays and the required accuracy. For more information, and to access the NAG\n",
+    "Library, go to: https://www.nag.co.uk/content/nag-library.\n",
+    "\n",
+    "### References\n",
+    "\n",
+    "P. Jäckel (2015). Let’s be rational. *Wilmott* 2015, 40-53.\n",
+    "\n",
+    "K. Glau, P. Herold, D. B. Madan, C. Pötz (2019). The Chebyshev method for the implied volatility.\n",
+    "*Journal of Computational Finance*, 23(3).\n",
+    "\n",
+    "### NAG Library for Python Setup\n",
+    "\n",
+    "Find instructions to install the NAG Library for Python in the documentation here: https://www.nag.com/numeric/py/nagdoc_latest/readme.html#installation"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/special_functions/opt_imp_vol/impvolsurf.png b/special_functions/opt_imp_vol/impvolsurf.png
new file mode 100644
index 0000000..20b4c23
Binary files /dev/null and b/special_functions/opt_imp_vol/impvolsurf.png differ
diff --git a/time_series_analysis/cp_pelt.ipynb b/time_series_analysis/cp_pelt.ipynb
index beb1afc..e7768a0 100644
--- a/time_series_analysis/cp_pelt.ipynb
+++ b/time_series_analysis/cp_pelt.ipynb
@@ -6,7 +6,7 @@
    "source": [
     "# Change Point Analysis\n",
     "\n",
-    "Change points are time points at which some feature of a data set changes. For detecting change points in a univariate time series we can use [`tsa.cp_pelt`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.tsa.html#naginterfaces.library.tsa.cp_pelt).\n",
+    "Change points are time points at which some feature of a data set changes. For detecting change points in a univariate time series we can use [`tsa.cp_pelt`](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.tsa.cp_pelt.html).\n",
     "\n",
     "Consider the following time series, showing the EUR/GBP exchange rate between January 1999 and February 2020 (numbers indicate Euros per Pound, with FX data from www.macrotrends.net)"
    ]
@@ -160,36 +160,38 @@
      "data": {
       "application/javascript": [
        "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
        "window.mpl = {};\n",
        "\n",
-       "\n",
-       "mpl.get_websocket_type = function() {\n",
-       "    if (typeof(WebSocket) !== 'undefined') {\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
        "        return WebSocket;\n",
-       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
        "        return MozWebSocket;\n",
        "    } else {\n",
-       "        alert('Your browser does not have WebSocket support. ' +\n",
-       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
-       "              'Firefox 4 and 5 are also supported but you ' +\n",
-       "              'have to enable WebSockets in about:config.');\n",
-       "    };\n",
-       "}\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
        "    this.id = figure_id;\n",
        "\n",
        "    this.ws = websocket;\n",
        "\n",
-       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
        "\n",
        "    if (!this.supports_binary) {\n",
-       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
        "        if (warnings) {\n",
        "            warnings.style.display = 'block';\n",
-       "            warnings.textContent = (\n",
-       "                \"This browser does not support binary websocket messages. \" +\n",
-       "                    \"Performance may be slow.\");\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
        "        }\n",
        "    }\n",
        "\n",
@@ -204,11 +206,11 @@
        "\n",
        "    this.image_mode = 'full';\n",
        "\n",
-       "    this.root = $('<div/>');\n",
-       "    this._root_extra_style(this.root)\n",
-       "    this.root.attr('style', 'display: inline-block');\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
        "\n",
-       "    $(parent_element).append(this.root);\n",
+       "    parent_element.appendChild(this.root);\n",
        "\n",
        "    this._init_header(this);\n",
        "    this._init_canvas(this);\n",
@@ -218,285 +220,366 @@
        "\n",
        "    this.waiting = false;\n",
        "\n",
-       "    this.ws.onopen =  function () {\n",
-       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
-       "            fig.send_message(\"send_image_mode\", {});\n",
-       "            if (mpl.ratio != 1) {\n",
-       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
-       "            }\n",
-       "            fig.send_message(\"refresh\", {});\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_device_pixel_ratio', {\n",
+       "                device_pixel_ratio: fig.ratio,\n",
+       "            });\n",
        "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
        "\n",
-       "    this.imageObj.onload = function() {\n",
-       "            if (fig.image_mode == 'full') {\n",
-       "                // Full images could contain transparency (where diff images\n",
-       "                // almost always do), so we need to clear the canvas so that\n",
-       "                // there is no ghosting.\n",
-       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
-       "            }\n",
-       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
-       "        };\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
        "\n",
-       "    this.imageObj.onunload = function() {\n",
+       "    this.imageObj.onunload = function () {\n",
        "        fig.ws.close();\n",
-       "    }\n",
+       "    };\n",
        "\n",
        "    this.ws.onmessage = this._make_on_message_function(this);\n",
        "\n",
        "    this.ondownload = ondownload;\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._init_header = function() {\n",
-       "    var titlebar = $(\n",
-       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
-       "        'ui-helper-clearfix\"/>');\n",
-       "    var titletext = $(\n",
-       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
-       "        'text-align: center; padding: 3px;\"/>');\n",
-       "    titlebar.append(titletext)\n",
-       "    this.root.append(titlebar);\n",
-       "    this.header = titletext[0];\n",
-       "}\n",
-       "\n",
-       "\n",
-       "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
-       "\n",
-       "}\n",
+       "};\n",
        "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
        "\n",
-       "}\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
        "\n",
-       "mpl.figure.prototype._init_canvas = function() {\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var canvas_div = $('<div/>');\n",
-       "\n",
-       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
        "\n",
-       "    function canvas_keyboard_event(event) {\n",
-       "        return fig.key_event(event, event['data']);\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
-       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
-       "    this.canvas_div = canvas_div\n",
-       "    this._canvas_extra_style(canvas_div)\n",
-       "    this.root.append(canvas_div);\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
        "\n",
-       "    var canvas = $('<canvas/>');\n",
-       "    canvas.addClass('mpl-canvas');\n",
-       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
        "\n",
-       "    this.canvas = canvas[0];\n",
-       "    this.context = canvas[0].getContext(\"2d\");\n",
+       "    this.context = canvas.getContext('2d');\n",
        "\n",
-       "    var backingStore = this.context.backingStorePixelRatio ||\n",
-       "\tthis.context.webkitBackingStorePixelRatio ||\n",
-       "\tthis.context.mozBackingStorePixelRatio ||\n",
-       "\tthis.context.msBackingStorePixelRatio ||\n",
-       "\tthis.context.oBackingStorePixelRatio ||\n",
-       "\tthis.context.backingStorePixelRatio || 1;\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
        "\n",
-       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
        "\n",
-       "    var rubberband = $('<canvas/>');\n",
-       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
        "\n",
-       "    var pass_mouse_events = true;\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
        "\n",
-       "    canvas_div.resizable({\n",
-       "        start: function(event, ui) {\n",
-       "            pass_mouse_events = false;\n",
-       "        },\n",
-       "        resize: function(event, ui) {\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
-       "        stop: function(event, ui) {\n",
-       "            pass_mouse_events = true;\n",
-       "            fig.request_resize(ui.size.width, ui.size.height);\n",
-       "        },\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
        "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
        "\n",
-       "    function mouse_event_fn(event) {\n",
-       "        if (pass_mouse_events)\n",
-       "            return fig.mouse_event(event, event['data']);\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
-       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'dblclick',\n",
+       "        on_mouse_event_closure('dblclick')\n",
+       "    );\n",
        "    // Throttle sequential mouse events to 1 every 20ms.\n",
-       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
        "\n",
-       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
-       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
        "\n",
-       "    canvas_div.on(\"wheel\", function (event) {\n",
-       "        event = event.originalEvent;\n",
-       "        event['data'] = 'scroll'\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
        "        if (event.deltaY < 0) {\n",
        "            event.step = 1;\n",
        "        } else {\n",
        "            event.step = -1;\n",
        "        }\n",
-       "        mouse_event_fn(event);\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
        "    });\n",
        "\n",
-       "    canvas_div.append(canvas);\n",
-       "    canvas_div.append(rubberband);\n",
-       "\n",
-       "    this.rubberband = rubberband;\n",
-       "    this.rubberband_canvas = rubberband[0];\n",
-       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
-       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
        "\n",
-       "    this._resize_canvas = function(width, height) {\n",
-       "        // Keep the size of the canvas, canvas container, and rubber band\n",
-       "        // canvas in synch.\n",
-       "        canvas_div.css('width', width)\n",
-       "        canvas_div.css('height', height)\n",
-       "\n",
-       "        canvas.attr('width', width * mpl.ratio);\n",
-       "        canvas.attr('height', height * mpl.ratio);\n",
-       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
-       "\n",
-       "        rubberband.attr('width', width);\n",
-       "        rubberband.attr('height', height);\n",
-       "    }\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
        "\n",
-       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
-       "    // upon first draw.\n",
-       "    this._resize_canvas(600, 600);\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
        "\n",
        "    // Disable right mouse context menu.\n",
-       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
        "        return false;\n",
        "    });\n",
        "\n",
-       "    function set_focus () {\n",
+       "    function set_focus() {\n",
        "        canvas.focus();\n",
        "        canvas_div.focus();\n",
        "    }\n",
        "\n",
        "    window.setTimeout(set_focus, 100);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
        "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
        "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
        "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
        "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
        "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
        "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
        "\n",
        "        if (!name) {\n",
-       "            // put a spacer in here.\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
        "            continue;\n",
        "        }\n",
-       "        var button = $('<button/>');\n",
-       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
-       "                        'ui-button-icon-only');\n",
-       "        button.attr('role', 'button');\n",
-       "        button.attr('aria-disabled', 'false');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
        "\n",
-       "        var icon_img = $('<span/>');\n",
-       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
-       "        icon_img.addClass(image);\n",
-       "        icon_img.addClass('ui-corner-all');\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
        "\n",
-       "        var tooltip_span = $('<span/>');\n",
-       "        tooltip_span.addClass('ui-button-text');\n",
-       "        tooltip_span.html(tooltip);\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
        "\n",
-       "        button.append(icon_img);\n",
-       "        button.append(tooltip_span);\n",
-       "\n",
-       "        nav_element.append(button);\n",
+       "        buttonGroup.appendChild(button);\n",
        "    }\n",
        "\n",
-       "    var fmt_picker_span = $('<span/>');\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
        "\n",
-       "    var fmt_picker = $('<select/>');\n",
-       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
-       "    fmt_picker_span.append(fmt_picker);\n",
-       "    nav_element.append(fmt_picker_span);\n",
-       "    this.format_dropdown = fmt_picker[0];\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
        "\n",
        "    for (var ind in mpl.extensions) {\n",
        "        var fmt = mpl.extensions[ind];\n",
-       "        var option = $(\n",
-       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
-       "        fmt_picker.append(option);\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
        "    }\n",
        "\n",
-       "    // Add hover states to the ui-buttons\n",
-       "    $( \".ui-button\" ).hover(\n",
-       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
-       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
-       "    );\n",
-       "\n",
-       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
-       "}\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
        "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
        "    // which will in turn request a refresh of the image.\n",
-       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
-       "}\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.send_message = function(type, properties) {\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
        "    properties['type'] = type;\n",
        "    properties['figure_id'] = this.id;\n",
        "    this.ws.send(JSON.stringify(properties));\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.send_draw_message = function() {\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
        "    if (!this.waiting) {\n",
        "        this.waiting = true;\n",
-       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
        "    }\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
        "    var format_dropdown = fig.format_dropdown;\n",
        "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
        "    fig.ondownload(fig, format);\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
        "    var size = msg['size'];\n",
-       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
-       "        fig._resize_canvas(size[0], size[1]);\n",
-       "        fig.send_message(\"refresh\", {});\n",
-       "    };\n",
-       "}\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
-       "    var x0 = msg['x0'] / mpl.ratio;\n",
-       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
-       "    var x1 = msg['x1'] / mpl.ratio;\n",
-       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
        "    x0 = Math.floor(x0) + 0.5;\n",
        "    y0 = Math.floor(y0) + 0.5;\n",
        "    x1 = Math.floor(x1) + 0.5;\n",
@@ -507,78 +590,96 @@
        "    var height = Math.abs(y1 - y0);\n",
        "\n",
        "    fig.rubberband_context.clearRect(\n",
-       "        0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
        "\n",
        "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
        "    // Updates the figure title.\n",
        "    fig.header.textContent = msg['label'];\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
-       "    var cursor = msg['cursor'];\n",
-       "    switch(cursor)\n",
-       "    {\n",
-       "    case 0:\n",
-       "        cursor = 'pointer';\n",
-       "        break;\n",
-       "    case 1:\n",
-       "        cursor = 'default';\n",
-       "        break;\n",
-       "    case 2:\n",
-       "        cursor = 'crosshair';\n",
-       "        break;\n",
-       "    case 3:\n",
-       "        cursor = 'move';\n",
-       "        break;\n",
-       "    }\n",
-       "    fig.rubberband_canvas.style.cursor = cursor;\n",
-       "}\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
        "    fig.message.textContent = msg['message'];\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
        "    // Request the server to send over a new figure.\n",
        "    fig.send_draw_message();\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
        "    fig.image_mode = msg['mode'];\n",
-       "}\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
        "    // Called whenever the canvas gets updated.\n",
-       "    this.send_message(\"ack\", {});\n",
-       "}\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
        "\n",
        "// A function to construct a web socket function for onmessage handling.\n",
        "// Called in the figure constructor.\n",
-       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
        "    return function socket_on_message(evt) {\n",
        "        if (evt.data instanceof Blob) {\n",
-       "            /* FIXME: We get \"Resource interpreted as Image but\n",
-       "             * transferred with MIME type text/plain:\" errors on\n",
-       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
-       "             * to be part of the websocket stream */\n",
-       "            evt.data.type = \"image/png\";\n",
+       "            var img = evt.data;\n",
+       "            if (img.type !== 'image/png') {\n",
+       "                /* FIXME: We get \"Resource interpreted as Image but\n",
+       "                 * transferred with MIME type text/plain:\" errors on\n",
+       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "                 * to be part of the websocket stream */\n",
+       "                img.type = 'image/png';\n",
+       "            }\n",
        "\n",
        "            /* Free the memory for the previous frames */\n",
        "            if (fig.imageObj.src) {\n",
        "                (window.URL || window.webkitURL).revokeObjectURL(\n",
-       "                    fig.imageObj.src);\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
        "            }\n",
        "\n",
        "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
-       "                evt.data);\n",
+       "                img\n",
+       "            );\n",
        "            fig.updated_canvas_event();\n",
        "            fig.waiting = false;\n",
        "            return;\n",
-       "        }\n",
-       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
        "            fig.imageObj.src = evt.data;\n",
        "            fig.updated_canvas_event();\n",
        "            fig.waiting = false;\n",
@@ -591,9 +692,12 @@
        "        // Call the  \"handle_{type}\" callback, which takes\n",
        "        // the figure and JSON message as its only arguments.\n",
        "        try {\n",
-       "            var callback = fig[\"handle_\" + msg_type];\n",
+       "            var callback = fig['handle_' + msg_type];\n",
        "        } catch (e) {\n",
-       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
        "            return;\n",
        "        }\n",
        "\n",
@@ -602,62 +706,74 @@
        "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
        "                callback(fig, msg);\n",
        "            } catch (e) {\n",
-       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
        "            }\n",
        "        }\n",
        "    };\n",
-       "}\n",
+       "};\n",
        "\n",
-       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
-       "mpl.findpos = function(e) {\n",
+       "// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
        "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
        "    var targ;\n",
-       "    if (!e)\n",
+       "    if (!e) {\n",
        "        e = window.event;\n",
-       "    if (e.target)\n",
+       "    }\n",
+       "    if (e.target) {\n",
        "        targ = e.target;\n",
-       "    else if (e.srcElement)\n",
+       "    } else if (e.srcElement) {\n",
        "        targ = e.srcElement;\n",
-       "    if (targ.nodeType == 3) // defeat Safari bug\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
        "        targ = targ.parentNode;\n",
+       "    }\n",
        "\n",
-       "    // jQuery normalizes the pageX and pageY\n",
        "    // pageX,Y are the mouse positions relative to the document\n",
-       "    // offset() returns the position of the element relative to the document\n",
-       "    var x = e.pageX - $(targ).offset().left;\n",
-       "    var y = e.pageY - $(targ).offset().top;\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
        "\n",
-       "    return {\"x\": x, \"y\": y};\n",
+       "    return { x: x, y: y };\n",
        "};\n",
        "\n",
        "/*\n",
        " * return a copy of an object with only non-object keys\n",
        " * we need this to avoid circular references\n",
-       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " * https://stackoverflow.com/a/24161582/3208463\n",
        " */\n",
-       "function simpleKeys (original) {\n",
-       "  return Object.keys(original).reduce(function (obj, key) {\n",
-       "    if (typeof original[key] !== 'object')\n",
-       "        obj[key] = original[key]\n",
-       "    return obj;\n",
-       "  }, {});\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
        "}\n",
        "\n",
-       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
-       "    var canvas_pos = mpl.findpos(event)\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
        "\n",
-       "    if (name === 'button_press')\n",
-       "    {\n",
+       "    if (name === 'button_press') {\n",
        "        this.canvas.focus();\n",
        "        this.canvas_div.focus();\n",
        "    }\n",
        "\n",
-       "    var x = canvas_pos.x * mpl.ratio;\n",
-       "    var y = canvas_pos.y * mpl.ratio;\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
        "\n",
-       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
-       "                             step: event.step,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
        "\n",
        "    /* This prevents the web browser from automatically changing to\n",
        "     * the text insertion cursor when the button is pressed.  We want\n",
@@ -665,265 +781,337 @@
        "     * 'cursor' event from matplotlib */\n",
        "    event.preventDefault();\n",
        "    return false;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
        "    // Handle any extra behaviour associated with a key event\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype.key_event = function(event, name) {\n",
+       "};\n",
        "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
        "    // Prevent repeat events\n",
-       "    if (name == 'key_press')\n",
-       "    {\n",
-       "        if (event.which === this._key)\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.key === this._key) {\n",
        "            return;\n",
-       "        else\n",
-       "            this._key = event.which;\n",
+       "        } else {\n",
+       "            this._key = event.key;\n",
+       "        }\n",
        "    }\n",
-       "    if (name == 'key_release')\n",
+       "    if (name === 'key_release') {\n",
        "        this._key = null;\n",
+       "    }\n",
        "\n",
        "    var value = '';\n",
-       "    if (event.ctrlKey && event.which != 17)\n",
-       "        value += \"ctrl+\";\n",
-       "    if (event.altKey && event.which != 18)\n",
-       "        value += \"alt+\";\n",
-       "    if (event.shiftKey && event.which != 16)\n",
-       "        value += \"shift+\";\n",
+       "    if (event.ctrlKey && event.key !== 'Control') {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    else if (event.altKey && event.key !== 'Alt') {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
        "\n",
-       "    value += 'k';\n",
-       "    value += event.which.toString();\n",
+       "    value += 'k' + event.key;\n",
        "\n",
        "    this._key_event_extra(event, name);\n",
        "\n",
-       "    this.send_message(name, {key: value,\n",
-       "                             guiEvent: simpleKeys(event)});\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
        "    return false;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
-       "    if (name == 'download') {\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
        "        this.handle_save(this, null);\n",
        "    } else {\n",
-       "        this.send_message(\"toolbar_button\", {name: name});\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
        "    }\n",
        "};\n",
        "\n",
-       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
        "    this.message.textContent = tooltip;\n",
        "};\n",
-       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
        "\n",
-       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
        "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
        "    // object with the appropriate methods. Currently this is a non binary\n",
        "    // socket, so there is still some room for performance tuning.\n",
        "    var ws = {};\n",
        "\n",
-       "    ws.close = function() {\n",
-       "        comm.close()\n",
+       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
+       "    ws.readyState = comm.kernel.ws.readyState;\n",
+       "    function updateReadyState(_event) {\n",
+       "        if (comm.kernel.ws) {\n",
+       "            ws.readyState = comm.kernel.ws.readyState;\n",
+       "        } else {\n",
+       "            ws.readyState = 3; // Closed state.\n",
+       "        }\n",
+       "    }\n",
+       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
        "    };\n",
-       "    ws.send = function(m) {\n",
+       "    ws.send = function (m) {\n",
        "        //console.log('sending', m);\n",
        "        comm.send(m);\n",
        "    };\n",
        "    // Register the callback with on_msg.\n",
-       "    comm.on_msg(function(msg) {\n",
+       "    comm.on_msg(function (msg) {\n",
        "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        var data = msg['content']['data'];\n",
+       "        if (data['blob'] !== undefined) {\n",
+       "            data = {\n",
+       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
+       "            };\n",
+       "        }\n",
        "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
-       "        ws.onmessage(msg['content']['data'])\n",
+       "        ws.onmessage(data);\n",
        "    });\n",
        "    return ws;\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.mpl_figure_comm = function(comm, msg) {\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
        "    // This is the function which gets called when the mpl process\n",
        "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
        "\n",
        "    var id = msg.content.data.id;\n",
        "    // Get hold of the div created by the display call when the Comm\n",
        "    // socket was opened in Python.\n",
-       "    var element = $(\"#\" + id);\n",
-       "    var ws_proxy = comm_websocket_adapter(comm)\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
        "\n",
-       "    function ondownload(figure, format) {\n",
-       "        window.open(figure.imageObj.src);\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
        "    }\n",
        "\n",
-       "    var fig = new mpl.figure(id, ws_proxy,\n",
-       "                           ondownload,\n",
-       "                           element.get(0));\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
        "\n",
        "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
        "    // web socket which is closed, not our websocket->open comm proxy.\n",
        "    ws_proxy.onopen();\n",
        "\n",
-       "    fig.parent_element = element.get(0);\n",
+       "    fig.parent_element = element;\n",
        "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
        "    if (!fig.cell_info) {\n",
-       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
        "        return;\n",
        "    }\n",
-       "\n",
-       "    var output_index = fig.cell_info[2]\n",
-       "    var cell = fig.cell_info[0];\n",
-       "\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
        "};\n",
        "\n",
-       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
-       "    var width = fig.canvas.width/mpl.ratio\n",
-       "    fig.root.unbind('remove')\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
        "\n",
        "    // Update the output cell to use the data from the current canvas.\n",
        "    fig.push_to_output();\n",
        "    var dataURL = fig.canvas.toDataURL();\n",
        "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
        "    // the notebook keyboard shortcuts fail.\n",
-       "    IPython.keyboard_manager.enable()\n",
-       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
        "    fig.close_ws(fig, msg);\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
        "    fig.send_message('closing', msg);\n",
        "    // fig.ws.close()\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
        "    // Turn the data on the canvas into data in the output cell.\n",
-       "    var width = this.canvas.width/mpl.ratio\n",
+       "    var width = this.canvas.width / this.ratio;\n",
        "    var dataURL = this.canvas.toDataURL();\n",
-       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
-       "}\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.updated_canvas_event = function() {\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
        "    // Tell IPython that the notebook contents must change.\n",
        "    IPython.notebook.set_dirty(true);\n",
-       "    this.send_message(\"ack\", {});\n",
+       "    this.send_message('ack', {});\n",
        "    var fig = this;\n",
        "    // Wait a second, then push the new image to the DOM so\n",
        "    // that it is saved nicely (might be nice to debounce this).\n",
-       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
-       "}\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._init_toolbar = function() {\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
        "    var fig = this;\n",
        "\n",
-       "    var nav_element = $('<div/>');\n",
-       "    nav_element.attr('style', 'width: 100%');\n",
-       "    this.root.append(nav_element);\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
        "\n",
-       "    // Define a callback function for later on.\n",
-       "    function toolbar_event(event) {\n",
-       "        return fig.toolbar_button_onclick(event['data']);\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
        "    }\n",
-       "    function toolbar_mouse_event(event) {\n",
-       "        return fig.toolbar_button_onmouseover(event['data']);\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
        "    }\n",
        "\n",
-       "    for(var toolbar_ind in mpl.toolbar_items){\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
        "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
        "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
        "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
        "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
        "\n",
-       "        if (!name) { continue; };\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
        "\n",
-       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
-       "        button.click(method_name, toolbar_event);\n",
-       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
-       "        nav_element.append(button);\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
        "    }\n",
        "\n",
        "    // Add the status bar.\n",
-       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
-       "    nav_element.append(status_bar);\n",
-       "    this.message = status_bar[0];\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
        "\n",
        "    // Add the close button to the window.\n",
-       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
-       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
-       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
-       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
-       "    buttongrp.append(button);\n",
-       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
-       "    titlebar.prepend(buttongrp);\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._root_extra_style = function(el){\n",
-       "    var fig = this\n",
-       "    el.on(\"remove\", function(){\n",
-       "\tfig.close_ws(fig, {});\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
        "    });\n",
-       "}\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
        "    // this is important to make the div 'focusable\n",
-       "    el.attr('tabindex', 0)\n",
+       "    el.setAttribute('tabindex', 0);\n",
        "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
        "    // off when our div gets focus\n",
        "\n",
        "    // location in version 3\n",
        "    if (IPython.notebook.keyboard_manager) {\n",
        "        IPython.notebook.keyboard_manager.register_events(el);\n",
-       "    }\n",
-       "    else {\n",
+       "    } else {\n",
        "        // location in version 2\n",
        "        IPython.keyboard_manager.register_events(el);\n",
        "    }\n",
+       "};\n",
        "\n",
-       "}\n",
-       "\n",
-       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
-       "    var manager = IPython.notebook.keyboard_manager;\n",
-       "    if (!manager)\n",
-       "        manager = IPython.keyboard_manager;\n",
-       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
        "    // Check for shift+enter\n",
-       "    if (event.shiftKey && event.which == 13) {\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
        "        this.canvas_div.blur();\n",
        "        // select the cell after this one\n",
        "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
        "        IPython.notebook.select(index + 1);\n",
        "    }\n",
-       "}\n",
+       "};\n",
        "\n",
-       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
        "    fig.ondownload(fig, null);\n",
-       "}\n",
-       "\n",
+       "};\n",
        "\n",
-       "mpl.find_output_cell = function(html_output) {\n",
+       "mpl.find_output_cell = function (html_output) {\n",
        "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
        "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
        "    // IPython event is triggered only after the cells have been serialised, which for\n",
        "    // our purposes (turning an active figure into a static one), is too late.\n",
        "    var cells = IPython.notebook.get_cells();\n",
        "    var ncells = cells.length;\n",
-       "    for (var i=0; i<ncells; i++) {\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
        "        var cell = cells[i];\n",
-       "        if (cell.cell_type === 'code'){\n",
-       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
        "                var data = cell.output_area.outputs[j];\n",
        "                if (data.data) {\n",
        "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
        "                    data = data.data;\n",
        "                }\n",
-       "                if (data['text/html'] == html_output) {\n",
+       "                if (data['text/html'] === html_output) {\n",
        "                    return [cell, data, j];\n",
        "                }\n",
        "            }\n",
        "        }\n",
        "    }\n",
-       "}\n",
+       "};\n",
        "\n",
        "// Register the function which deals with the matplotlib target/channel.\n",
        "// The kernel may be null if the page has been refreshed.\n",
-       "if (IPython.notebook.kernel != null) {\n",
-       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
        "}\n"
       ],
       "text/plain": [
@@ -936,7 +1124,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"640\">"
+       "<img src=\"\" width=\"640\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -968,13 +1156,13 @@
     "    '(FX data from www.macrotrends.net)\\n'\n",
     "    'Showing change points determined in the mean')\n",
     "plt.legend(handles=[vl, hl], loc='upper right')\n",
-    "plt.show();"
+    "plt.show()"
    ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -988,7 +1176,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   }
  },
  "nbformat": 4,
diff --git a/time_series_analysis/inhom_iema.ipynb b/time_series_analysis/inhom_iema.ipynb
index 7eb566c..824705a 100644
--- a/time_series_analysis/inhom_iema.ipynb
+++ b/time_series_analysis/inhom_iema.ipynb
@@ -27,7 +27,7 @@
     "\n",
     "The value of $\\nu$ depends on the method of interpolation chosen.\n",
     "\n",
-    "See the NAG Library for Python documentation for the further details on this function: [NAG Library for Python docs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.tsa.html#naginterfaces.library.tsa.inhom_iema)"
+    "See the NAG Library for Python documentation for the further details on this function: [NAG Library for Python docs](https://www.nag.com/numeric/py/nagdoc_latest/naginterfaces.library.tsa.inhom_iema.html)"
    ]
   },
   {
@@ -944,7 +944,7 @@
     "plt.ylabel('Value')\n",
     "plt.suptitle('Exponential Moving Averages')\n",
     "plt.title(r'3 $\\tau$' + ' values applied to simulated data', fontsize=10)\n",
-    "plt.show();"
+    "plt.show()"
    ]
   },
   {
@@ -1004,7 +1004,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -1018,7 +1018,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.8.10"
   }
  },
  "nbformat": 4,