-
Notifications
You must be signed in to change notification settings - Fork 658
/
Copy pathdet_pose.py
85 lines (67 loc) · 2.89 KB
/
det_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import cv2
import numpy as np
from mmdeploy_runtime import Detector, PoseDetector
def parse_args():
parser = argparse.ArgumentParser(
description='show how to use SDK Python API')
parser.add_argument('device_name', help='name of device, cuda or cpu')
parser.add_argument(
'det_model_path',
help='path of mmdeploy SDK model dumped by model converter')
parser.add_argument(
'pose_model_path',
help='path of mmdeploy SDK model dumped by model converter')
parser.add_argument('image_path', help='path of input image')
args = parser.parse_args()
return args
def visualize(frame, keypoints, filename, thr=0.5, resize=1280):
skeleton = [(15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11),
(6, 12), (5, 6), (5, 7), (6, 8), (7, 9), (8, 10), (1, 2),
(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6)]
palette = [(255, 128, 0), (255, 153, 51), (255, 178, 102), (230, 230, 0),
(255, 153, 255), (153, 204, 255), (255, 102, 255),
(255, 51, 255), (102, 178, 255),
(51, 153, 255), (255, 153, 153), (255, 102, 102), (255, 51, 51),
(153, 255, 153), (102, 255, 102), (51, 255, 51), (0, 255, 0),
(0, 0, 255), (255, 0, 0), (255, 255, 255)]
link_color = [
0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16
]
point_color = [16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]
scale = resize / max(frame.shape[0], frame.shape[1])
scores = keypoints[..., 2]
keypoints = (keypoints[..., :2] * scale).astype(int)
img = cv2.resize(frame, (0, 0), fx=scale, fy=scale)
for kpts, score in zip(keypoints, scores):
show = [0] * len(kpts)
for (u, v), color in zip(skeleton, link_color):
if score[u] > thr and score[v] > thr:
cv2.line(img, kpts[u], tuple(kpts[v]), palette[color], 1,
cv2.LINE_AA)
show[u] = show[v] = 1
for kpt, show, color in zip(kpts, show, point_color):
if show:
cv2.circle(img, kpt, 1, palette[color], 2, cv2.LINE_AA)
cv2.imwrite(filename, img)
def main():
args = parse_args()
# load image
img = cv2.imread(args.image_path)
# create object detector
detector = Detector(
model_path=args.det_model_path, device_name=args.device_name)
# create pose detector
pose_detector = PoseDetector(
model_path=args.pose_model_path, device_name=args.device_name)
# apply detector
bboxes, labels, _ = detector(img)
# filter detections
keep = np.logical_and(labels == 0, bboxes[..., 4] > 0.6)
bboxes = bboxes[keep, :4]
# apply pose detector
poses = pose_detector(img, bboxes)
visualize(img, poses, 'det_pose_output.jpg', 0.5, 1280)
if __name__ == '__main__':
main()