-
Notifications
You must be signed in to change notification settings - Fork 868
/
Copy pathgradio_helper.py
133 lines (114 loc) · 5.61 KB
/
gradio_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
from transformers import TextIteratorStreamer
from threading import Thread
import re
import time
import requests
from pathlib import Path
from PIL import Image
def download_examples():
example_images = {
"weather.png": "https://github.com/user-attachments/assets/85af4410-6e46-484d-b13b-fd9260eb2b7c",
"newyork.jpg": "https://github.com/user-attachments/assets/c530b689-2ff6-4c4d-91bc-e6ac5331df59",
"document.jpg": "https://github.com/user-attachments/assets/ac7225b6-bf90-4faf-b05f-bbba41a87142",
"rococo.jpg": "https://github.com/user-attachments/assets/9e26e36e-f2be-4fa2-affd-891448abcc7d",
"rococo_1.jpg": "https://github.com/user-attachments/assets/d39bdb95-833c-4ebd-8390-15a8fc2cd0b6",
}
for file_name, url in example_images.items():
if not Path(file_name).exists():
Image.open(requests.get(url, stream=True).raw).save(file_name)
def make_demo(model, processor):
download_examples()
def model_inference(input_dict, history, max_tokens):
resulting_messages = []
user_content = []
media_queue = []
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg")):
media_queue.append({"type": "image", "path": file_name})
elif file_name.endswith(".mp4"):
media_queue.append({"type": "video", "path": file_name})
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], str):
text = hist["content"]
parts = re.split(r"(<image>|<video>)", text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({"role": "user", "content": user_content})
resulting_messages.append({"role": "assistant", "content": [{"type": "text", "text": hist["content"]}]})
user_content = []
text = input_dict["text"]
c_user_content = []
c_media_queue = []
text = input_dict["text"].strip()
for file in input_dict.get("files", []):
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
c_media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
c_media_queue.append({"type": "video", "path": file})
if "<image>" in text or "<video>" in text:
parts = re.split(r"(<image>|<video>)", text)
for part in parts:
if part == "<image>" and c_media_queue:
c_user_content.append(c_media_queue.pop(0))
elif part == "<video>" and c_media_queue:
c_user_content.append(c_media_queue.pop(0))
elif part.strip():
c_user_content.append({"type": "text", "text": part.strip()})
else:
c_user_content.append({"type": "text", "text": text})
for media in c_media_queue:
c_user_content.append(media)
current_message = {"role": "user", "content": c_user_content}
if text == "":
gr.Error("Please input a query and optionally image(s).")
resulting_messages.append(current_message)
print("resulting_messages", resulting_messages)
inputs = processor.apply_chat_template(
resulting_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
# Generate
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer
time.sleep(0.01)
yield buffer
examples = [
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["weather.png"]}],
[{"text": "What art era this artpiece <image> and this artpiece <image> belong to?", "files": ["rococo.jpg", "rococo_1.jpg"]}],
[{"text": "Describe this image.", "files": ["newyork.jpg"]}],
[{"text": "What is the date in this document?", "files": ["document.jpg"]}],
[{"text": "What is happening in the video?", "files": ["dog.mp4"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
title="SmolVLM2: The Smollest Video Model Ever 📺",
description="Play with SmolVLM2 and OpenVINO in this demo. To get started, upload an image and text or try one of the examples.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
type="messages",
)
return demo