-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtest_ndarray.py
161 lines (120 loc) · 4.07 KB
/
test_ndarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright 2024 - present The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import numpy.testing as npt
import pytest
from pymc.backends import base, ndarray
from tests.backends import fixtures as bf
STATS1 = [{"a": np.float64, "b": bool}]
STATS2 = [
{"a": np.float64},
{
"a": np.float64,
"b": np.int64,
},
]
class TestNDArray0dSampling(bf.SamplingTestCase):
backend = ndarray.NDArray
name = None
shape = ()
class TestNDArray0dSamplingStats1(bf.SamplingTestCase):
backend = ndarray.NDArray
name = None
sampler_vars = STATS1
shape = ()
class TestNDArray0dSamplingStats2(bf.SamplingTestCase):
backend = ndarray.NDArray
name = None
sampler_vars = STATS2
shape = ()
class TestNDArray1dSampling(bf.SamplingTestCase):
backend = ndarray.NDArray
name = None
shape = 2
class TestNDArray2dSampling(bf.SamplingTestCase):
backend = ndarray.NDArray
name = None
shape = (2, 3)
class TestNDArrayStats(bf.StatsTestCase):
backend = ndarray.NDArray
name = None
shape = (2, 3)
class TestNDArray0dSelection(bf.SelectionTestCase):
backend = ndarray.NDArray
name = None
shape = ()
sampler_vars = STATS1
class TestNDArray0dSelection2(bf.SelectionTestCase):
backend = ndarray.NDArray
name = None
shape = ()
sampler_vars = STATS2
class TestNDArray0dSelectionStats1(bf.SelectionTestCase):
backend = ndarray.NDArray
name = None
shape = ()
sampler_vars = STATS2
class TestNDArray0dSelectionStats2(bf.SelectionTestCase):
backend = ndarray.NDArray
name = None
shape = ()
class TestNDArray1dSelection(bf.SelectionTestCase):
backend = ndarray.NDArray
name = None
shape = 2
class TestNDArray2dSelection(bf.SelectionTestCase):
backend = ndarray.NDArray
name = None
shape = (2, 3)
class TestMultiTrace(bf.ModelBackendSetupTestCase):
name = None
backend = ndarray.NDArray
shape = ()
def setup_method(self):
super().setup_method()
self.strace0 = self.strace
super().setup_method()
self.strace1 = self.strace
def test_multitrace_nonunique(self):
with pytest.raises(ValueError):
base.MultiTrace([self.strace0, self.strace1])
def test_multitrace_iter_notimplemented(self):
mtrace = base.MultiTrace([self.strace0])
with pytest.raises(NotImplementedError):
for _ in mtrace:
pass
class TestSqueezeCat:
def setup_method(self):
self.x = np.arange(10)
self.y = np.arange(10, 20)
def test_combine_false_squeeze_false(self):
expected = [self.x, self.y]
result = base._squeeze_cat([self.x, self.y], False, False)
npt.assert_equal(result, expected)
def test_combine_true_squeeze_false(self):
expected = [np.concatenate([self.x, self.y])]
result = base._squeeze_cat([self.x, self.y], True, False)
npt.assert_equal(result, expected)
def test_combine_false_squeeze_true_more_than_one_item(self):
expected = [self.x, self.y]
result = base._squeeze_cat([self.x, self.y], False, True)
npt.assert_equal(result, expected)
def test_combine_false_squeeze_true_one_item(self):
expected = self.x
result = base._squeeze_cat([self.x], False, True)
npt.assert_equal(result, expected)
def test_combine_true_squeeze_true(self):
expected = np.concatenate([self.x, self.y])
result = base._squeeze_cat([self.x, self.y], True, True)
npt.assert_equal(result, expected)