-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtest_zarr.py
538 lines (483 loc) · 19.9 KB
/
test_zarr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Copyright 2024 - present The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
from dataclasses import asdict
import numpy as np
import pytest
import xarray as xr
import zarr
from arviz import InferenceData
import pymc as pm
from pymc.backends.zarr import ZarrTrace
from pymc.stats.convergence import SamplerWarning
from pymc.step_methods import NUTS, CompoundStep, Metropolis
from pymc.step_methods.state import equal_dataclass_values
from tests.helpers import equal_sampling_states
@pytest.fixture(scope="module")
def model():
time_int = np.array([np.timedelta64(np.timedelta64(i, "h"), "ns") for i in range(25)])
coords = {
"dim_int": range(3),
"dim_str": ["A", "B"],
"dim_time": np.datetime64("2024-10-16") + time_int,
"dim_interval": time_int,
}
rng = np.random.default_rng(42)
with pm.Model(coords=coords) as model:
data1 = pm.Data("data1", np.ones(3, dtype="bool"), dims=["dim_int"])
data2 = pm.Data("data2", np.ones(3, dtype="bool"))
time = pm.Data("time", time_int / np.timedelta64(1, "h"), dims="dim_time")
a = pm.Normal("a", shape=(len(coords["dim_int"]), len(coords["dim_str"])))
b = pm.Normal("b", dims=["dim_int", "dim_str"])
c = pm.Deterministic("c", a + b, dims=["dim_int", "dim_str"])
d = pm.LogNormal("d", dims="dim_time")
e = pm.Deterministic("e", (time + d)[:, None] + c[0], dims=["dim_interval", "dim_str"])
obs = pm.Normal(
"obs",
mu=e,
observed=rng.normal(size=(len(coords["dim_time"]), len(coords["dim_str"]))),
dims=["dim_time", "dim_str"],
)
return model
@pytest.fixture(params=["include_transformed", "discard_transformed"])
def include_transformed(request):
return request.param == "include_transformed"
@pytest.fixture(params=["frequent_writes", "sparse_writes"])
def draws_per_chunk(request):
spec = {
"frequent_writes": 1,
"sparse_writes": 7,
}
return spec[request.param]
@pytest.fixture(params=["single_step", "compound_step"])
def model_step(request, model):
rng = np.random.default_rng(42)
with model:
if request.param == "single_step":
step = NUTS(rng=rng)
else:
rngs = rng.spawn(2)
step = CompoundStep(
[
Metropolis(vars=model["a"], rng=rngs[0]),
NUTS(vars=[rv for rv in model.value_vars if rv.name != "a"], rng=rngs[1]),
]
)
return step
def test_record(model, model_step, include_transformed, draws_per_chunk):
store = zarr.TempStore()
trace = ZarrTrace(
store=store, include_transformed=include_transformed, draws_per_chunk=draws_per_chunk
)
draws = 5
tune = 5
trace.init_trace(chains=1, draws=draws, tune=tune, model=model, step=model_step)
# Assert that init was successful
expected_groups = {
"_sampling_state",
"sample_stats",
"posterior",
"constant_data",
"observed_data",
}
if include_transformed:
expected_groups.add("unconstrained_posterior")
assert {group_name for group_name, _ in trace.root.groups()} == expected_groups
# Record samples from the ZarrChain
manually_collected_warmup_draws = []
manually_collected_warmup_stats = []
manually_collected_draws = []
manually_collected_stats = []
point = model.initial_point()
for draw in range(tune + draws):
tuning = draw < tune
if not tuning:
model_step.stop_tuning()
point, stats = model_step.step(point)
if tuning:
manually_collected_warmup_draws.append(point)
manually_collected_warmup_stats.append(stats)
else:
manually_collected_draws.append(point)
manually_collected_stats.append(stats)
trace.straces[0].record(point, stats)
trace.straces[0].record_sampling_state(model_step)
assert {group_name for group_name, _ in trace.root.groups()} == expected_groups
# Assert split warmup
trace.split_warmup("posterior")
trace.split_warmup("sample_stats")
expected_groups = {
"_sampling_state",
"sample_stats",
"posterior",
"warmup_sample_stats",
"warmup_posterior",
"constant_data",
"observed_data",
}
if include_transformed:
trace.split_warmup("unconstrained_posterior")
expected_groups.add("unconstrained_posterior")
expected_groups.add("warmup_unconstrained_posterior")
assert {group_name for group_name, _ in trace.root.groups()} == expected_groups
# trace.consolidate()
# Assert observed data is correct
assert set(dict(trace.observed_data.arrays())) == {"obs", "dim_time", "dim_str"}
assert list(trace.observed_data.obs.attrs["_ARRAY_DIMENSIONS"]) == ["dim_time", "dim_str"]
np.testing.assert_array_equal(trace.observed_data.dim_time[:], model.coords["dim_time"])
np.testing.assert_array_equal(trace.observed_data.dim_str[:], model.coords["dim_str"])
# Assert constant data is correct
assert set(dict(trace.constant_data.arrays())) == {
"data1",
"data2",
"data2_dim_0",
"time",
"dim_time",
"dim_int",
}
assert list(trace.constant_data.data1.attrs["_ARRAY_DIMENSIONS"]) == ["dim_int"]
assert list(trace.constant_data.data2.attrs["_ARRAY_DIMENSIONS"]) == ["data2_dim_0"]
assert list(trace.constant_data.time.attrs["_ARRAY_DIMENSIONS"]) == ["dim_time"]
np.testing.assert_array_equal(trace.constant_data.dim_time[:], model.coords["dim_time"])
np.testing.assert_array_equal(trace.constant_data.dim_int[:], model.coords["dim_int"])
# Assert unconstrained posterior has correct shapes and kinds
assert {rv.name for rv in model.free_RVs + model.deterministics} <= set(
dict(trace.posterior.arrays())
)
if include_transformed:
assert {"d_log__", "chain", "draw", "d_log___dim_0"} == set(
dict(trace.unconstrained_posterior.arrays())
)
assert list(trace.unconstrained_posterior.d_log__.attrs["_ARRAY_DIMENSIONS"]) == [
"chain",
"draw",
"d_log___dim_0",
]
assert trace.unconstrained_posterior.d_log__.attrs["kind"] == "freeRV"
np.testing.assert_array_equal(trace.unconstrained_posterior.chain, np.arange(1))
np.testing.assert_array_equal(trace.unconstrained_posterior.draw, np.arange(draws))
np.testing.assert_array_equal(
trace.unconstrained_posterior.d_log___dim_0, np.arange(len(model.coords["dim_time"]))
)
# Assert posterior has correct shapes and kinds
posterior_dims = set()
for kind, rv_name in [
(kind, rv.name)
for kind, rv in itertools.chain(
itertools.zip_longest([], model.free_RVs, fillvalue="freeRV"),
itertools.zip_longest([], model.deterministics, fillvalue="deterministic"),
)
]:
if rv_name == "a":
expected_dims = ["a_dim_0", "a_dim_1"]
else:
expected_dims = model.named_vars_to_dims[rv_name]
posterior_dims |= set(expected_dims)
assert list(trace.posterior[rv_name].attrs["_ARRAY_DIMENSIONS"]) == [
"chain",
"draw",
*expected_dims,
]
assert trace.posterior[rv_name].attrs["kind"] == kind
for posterior_dim in posterior_dims:
try:
model_coord = model.coords[posterior_dim]
except KeyError:
model_coord = {
"a_dim_0": np.arange(len(model.coords["dim_int"])),
"a_dim_1": np.arange(len(model.coords["dim_str"])),
"chain": np.arange(1),
"draw": np.arange(draws),
}[posterior_dim]
np.testing.assert_array_equal(trace.posterior[posterior_dim][:], model_coord)
# Assert sample stats have correct shape
stats_bijection = trace.straces[0].stats_bijection
for draw_idx, (draw, stat) in enumerate(
zip(manually_collected_draws, manually_collected_stats)
):
stat = stats_bijection.map(stat)
for var, value in draw.items():
if var in trace.posterior.arrays():
assert np.array_equal(trace.posterior[var][0, draw_idx], value)
for var, value in stat.items():
sample_stats = trace.root["sample_stats"]
stat_val = sample_stats[var][0, draw_idx]
if not isinstance(stat_val, SamplerWarning):
unequal_stats = stat_val != value
else:
unequal_stats = not equal_dataclass_values(asdict(stat_val), asdict(value))
if unequal_stats and not (np.isnan(stat_val) and np.isnan(value)):
raise AssertionError(f"{var} value does not match: {stat_val} != {value}")
# Assert manually collected warmup samples match
for draw_idx, (draw, stat) in enumerate(
zip(manually_collected_warmup_draws, manually_collected_warmup_stats)
):
stat = stats_bijection.map(stat)
for var, value in draw.items():
if var == "d_log__":
if not include_transformed:
continue
posterior = trace.root["warmup_unconstrained_posterior"]
else:
posterior = trace.root["warmup_posterior"]
if var in posterior.arrays():
assert np.array_equal(posterior[var][0, draw_idx], value)
for var, value in stat.items():
sample_stats = trace.root["warmup_sample_stats"]
stat_val = sample_stats[var][0, draw_idx]
if not isinstance(stat_val, SamplerWarning):
unequal_stats = stat_val != value
else:
unequal_stats = not equal_dataclass_values(asdict(stat_val), asdict(value))
if unequal_stats and not (np.isnan(stat_val) and np.isnan(value)):
raise AssertionError(f"{var} value does not match: {stat_val} != {value}")
# Assert manually collected posterior samples match
for draw_idx, (draw, stat) in enumerate(
zip(manually_collected_draws, manually_collected_stats)
):
stat = stats_bijection.map(stat)
for var, value in draw.items():
if var == "d_log__":
if not include_transformed:
continue
posterior = trace.root["unconstrained_posterior"]
else:
posterior = trace.root["posterior"]
if var in posterior.arrays():
assert np.array_equal(posterior[var][0, draw_idx], value)
for var, value in stat.items():
sample_stats = trace.root["sample_stats"]
stat_val = sample_stats[var][0, draw_idx]
if not isinstance(stat_val, SamplerWarning):
unequal_stats = stat_val != value
else:
unequal_stats = not equal_dataclass_values(asdict(stat_val), asdict(value))
if unequal_stats and not (np.isnan(stat_val) and np.isnan(value)):
raise AssertionError(f"{var} value does not match: {stat_val} != {value}")
# Assert sampling_state is correct
assert list(trace._sampling_state.draw_idx[:]) == [draws + tune]
assert equal_sampling_states(
trace._sampling_state.sampling_state[0],
model_step.sampling_state,
)
# Assert to inference data returns the expected groups
idata = trace.to_inferencedata(save_warmup=True)
expected_groups = {
"posterior",
"constant_data",
"observed_data",
"sample_stats",
"warmup_posterior",
"warmup_sample_stats",
}
if include_transformed:
expected_groups.add("unconstrained_posterior")
expected_groups.add("warmup_unconstrained_posterior")
assert set(idata.groups()) == expected_groups
for group in idata.groups():
for name, value in itertools.chain(
idata[group].data_vars.items(), idata[group].coords.items()
):
try:
array = getattr(trace, group)[name][:]
except AttributeError:
array = trace.root[group][name][:]
if "sample_stats" in group and "warning" in name:
continue
np.testing.assert_array_equal(array, value)
@pytest.mark.parametrize("tune", [0, 5, 10])
def test_split_warmup(tune, model, model_step, include_transformed):
store = zarr.MemoryStore()
trace = ZarrTrace(store=store, include_transformed=include_transformed)
draws = 10 - tune
trace.init_trace(chains=1, draws=draws, tune=tune, model=model, step=model_step)
trace.split_warmup("posterior")
trace.split_warmup("sample_stats")
assert len(trace.root.posterior.draw) == draws
assert len(trace.root.sample_stats.draw) == draws
if tune == 0:
with pytest.raises(KeyError):
trace.root["warmup_posterior"]
else:
assert len(trace.root["warmup_posterior"].draw) == tune
assert len(trace.root["warmup_sample_stats"].draw) == tune
with pytest.raises(RuntimeError):
trace.split_warmup("posterior")
for var_name, posterior_array in trace.posterior.arrays():
dims = posterior_array.attrs["_ARRAY_DIMENSIONS"]
if len(dims) >= 2 and dims[1] == "draw":
assert posterior_array.shape[1] == draws
assert trace.root["warmup_posterior"][var_name].shape[1] == tune
for var_name, sample_stats_array in trace.sample_stats.arrays():
dims = sample_stats_array.attrs["_ARRAY_DIMENSIONS"]
if len(dims) >= 2 and dims[1] == "draw":
assert sample_stats_array.shape[1] == draws
assert trace.root["warmup_sample_stats"][var_name].shape[1] == tune
@pytest.fixture(scope="function", params=["discard_tuning", "keep_tuning"])
def discard_tuned_samples(request):
return request.param == "discard_tuning"
@pytest.fixture(scope="function", params=["return_idata", "return_zarr"])
def return_inferencedata(request):
return request.param == "return_idata"
@pytest.fixture(
scope="function", params=[True, False], ids=["keep_warning_stat", "discard_warning_stat"]
)
def keep_warning_stat(request):
return request.param
@pytest.fixture(
scope="function", params=[True, False], ids=["parallel_sampling", "sequential_sampling"]
)
def parallel(request):
return request.param
@pytest.fixture(scope="function", params=[True, False], ids=["compute_loglike", "no_loglike"])
def log_likelihood(request):
return request.param
def test_sample(
model,
model_step,
include_transformed,
discard_tuned_samples,
return_inferencedata,
keep_warning_stat,
parallel,
log_likelihood,
draws_per_chunk,
):
if not return_inferencedata and not log_likelihood:
pytest.skip(
reason="log_likelihood is only computed if an inference data object is returned"
)
store = zarr.TempStore()
trace = ZarrTrace(
store=store, include_transformed=include_transformed, draws_per_chunk=draws_per_chunk
)
tune = 2
draws = 3
if parallel:
chains = 2
cores = 2
else:
chains = 1
cores = 1
with model:
out_trace = pm.sample(
draws=draws,
tune=tune,
chains=chains,
cores=cores,
trace=trace,
step=model_step,
discard_tuned_samples=discard_tuned_samples,
return_inferencedata=return_inferencedata,
keep_warning_stat=keep_warning_stat,
idata_kwargs={"log_likelihood": log_likelihood},
)
if not return_inferencedata:
assert isinstance(out_trace, ZarrTrace)
assert out_trace.root.store is trace.root.store
else:
assert isinstance(out_trace, InferenceData)
expected_groups = {"posterior", "constant_data", "observed_data", "sample_stats"}
if include_transformed:
expected_groups |= {"unconstrained_posterior"}
if not return_inferencedata or not discard_tuned_samples:
expected_groups |= {"warmup_posterior", "warmup_sample_stats"}
if include_transformed:
expected_groups |= {"warmup_unconstrained_posterior"}
if not return_inferencedata:
expected_groups |= {"_sampling_state"}
elif log_likelihood:
expected_groups |= {"log_likelihood"}
assert set(out_trace.groups()) == expected_groups
if return_inferencedata:
warning_stat = (
"sampler_1__warning" if isinstance(model_step, CompoundStep) else "sampler_0__warning"
)
if keep_warning_stat:
assert warning_stat in out_trace.sample_stats
else:
assert warning_stat not in out_trace.sample_stats
# Assert that all variables have non empty samples (not NaNs)
if return_inferencedata:
assert all(
(not np.any(np.isnan(v))) and v.shape[:2] == (chains, draws)
for v in out_trace.posterior.data_vars.values()
)
else:
dimensions = {*model.coords, "a_dim_0", "a_dim_1", "chain", "draw"}
assert all(
(not np.any(np.isnan(v[:]))) and v.shape[:2] == (chains, draws)
for name, v in out_trace.posterior.arrays()
if name not in dimensions
)
# Assert that the trace has valid sampling state stored for each chain
for step_method_state in trace._sampling_state.sampling_state[:]:
# We have no access to the actual step method that was using by each chain in pymc.sample
# The best way to see if the step method state is valid is by trying to set
# the model_step sampling state to the one stored in the trace.
model_step.sampling_state = step_method_state
def test_sampling_consistency(
model,
model_step,
draws_per_chunk,
):
# Test that pm.sample will generate the same posterior and sampling state
# regardless of whether sampling was done in parallel or not.
store1 = zarr.TempStore()
parallel_trace = ZarrTrace(
store=store1, include_transformed=include_transformed, draws_per_chunk=draws_per_chunk
)
store2 = zarr.TempStore()
sequential_trace = ZarrTrace(
store=store2, include_transformed=include_transformed, draws_per_chunk=draws_per_chunk
)
tune = 2
draws = 3
chains = 2
random_seed = 12345
initial_step_state = model_step.sampling_state
with model:
parallel_idata = pm.sample(
draws=draws,
tune=tune,
chains=chains,
cores=chains,
trace=parallel_trace,
step=model_step,
discard_tuned_samples=True,
return_inferencedata=True,
keep_warning_stat=False,
idata_kwargs={"log_likelihood": False},
random_seed=random_seed,
)
model_step.sampling_state = initial_step_state
sequential_idata = pm.sample(
draws=draws,
tune=tune,
chains=chains,
cores=1,
trace=sequential_trace,
step=model_step,
discard_tuned_samples=True,
return_inferencedata=True,
keep_warning_stat=False,
idata_kwargs={"log_likelihood": False},
random_seed=random_seed,
)
for chain in range(chains):
assert equal_sampling_states(
parallel_trace._sampling_state.sampling_state[chain],
sequential_trace._sampling_state.sampling_state[chain],
)
xr.testing.assert_equal(parallel_idata.posterior, sequential_idata.posterior)