-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtest_utils.py
56 lines (44 loc) · 2.04 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2024 - present The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import scipy.integrate as ode
from pymc.ode.utils import augment_system
def test_gradients():
"""Tests the computation of the sensitivities from the PyTensor computation graph"""
# ODE system for which to compute gradients
def ode_func(y, t, p):
return np.exp(-t) - p[0] * y[0]
# Computation of graidients with PyTensor
augmented_ode_func = augment_system(ode_func, n_states=1, n_theta=1)
# This is the new system, ODE + Sensitivities, which will be integrated
def augmented_system(Y, t, p):
dydt, ddt_dydp = augmented_ode_func(Y[:1], t, p, Y[1:])
derivatives = np.concatenate([dydt, ddt_dydp])
return derivatives
# Create real sensitivities
y0 = 0.0
t = np.arange(0, 12, 0.25).reshape(-1, 1)
a = 0.472
p = np.array([y0, a])
# Derivatives of the analytic solution with respect to y0 and alpha
# Treat y0 like a parameter and solve analytically. Then differentiate.
# I used CAS to get these derivatives
y0_sensitivity = np.exp(-a * t)
a_sensitivity = (
-(np.exp(t * (a - 1)) - 1 + (a - 1) * (y0 * a - y0 - 1) * t) * np.exp(-a * t) / (a - 1) ** 2
)
sensitivity = np.c_[y0_sensitivity, a_sensitivity]
integrated_solutions = ode.odeint(func=augmented_system, y0=[y0, 1, 0], t=t.ravel(), args=(p,))
simulated_sensitivity = integrated_solutions[:, 1:]
np.testing.assert_allclose(sensitivity, simulated_sensitivity, rtol=1e-5)