-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
340 lines (275 loc) · 12.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import json
from jsonschema import validate, ValidationError
from flask import Flask, request, jsonify
from celery import Celery, Task
from kombu import serialization
import pandas as pd
import arviz as az
from pymc_marketing.mmm import (
GeometricAdstock,
LogisticSaturation,
MMM,
)
import logging
import dill
import os
import io
from functools import wraps
__version__ = "0.5"
API_KEY = os.environ.get('API_KEY', None)
running_in_google_cloud = os.environ.get('RUNNING_IN_GOOGLE_CLOUD', 'False').lower() == 'true'
# Configure standard logging
# Configure logging at the start of your app
logging.basicConfig(
level=logging.DEBUG, # Set to DEBUG to see debug messages
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger()
if running_in_google_cloud:
# Configure Google Cloud Logging only if running in Google Cloud
from google.cloud import logging as google_logging
# Instantiates a Google Cloud logging client
logging_client = google_logging.Client()
# The name of the log to write to
log_name = 'GPT-MMM'
# Sets up Google Cloud logging
cloud_handler = google_logging.handlers.CloudLoggingHandler(logging_client, name=log_name)
logger.addHandler(cloud_handler)
else:
# Additional local logging configuration (if needed)
# For example, you can set a file handler or a stream handler for local logging
pass
# from celery.utils.log import get_task_logger
# logging = get_task_logger(__name__)
# Register dill as the serialization method for Celery
serialization.register(
name = 'dill',
encoder = dill.dumps,
decoder = dill.loads,
content_type='application/octet-stream'
)
# Create module-level Celery instance
celery = Celery(
"app",
broker="redis://localhost:6379/0",
backend="redis://localhost:6379/0"
)
def celery_init_app(app: Flask) -> Celery:
class FlaskTask(Task):
def __call__(self, *args: object, **kwargs: object) -> object:
with app.app_context():
return self.run(*args, **kwargs)
celery.Task = FlaskTask
celery.config_from_object(app.config["CELERY"])
app.extensions["celery"] = celery
return celery
# Initialize Flask app
app = Flask(__name__)
app.config.from_mapping(
CELERY=dict(
broker_url="redis://localhost:6379/0",
result_backend="redis://localhost:6379/0",
worker_pool='threads',
task_time_limit=600,
broker_connection_retry=True,
broker_connection_max_retries=0, # Retry forever
task_serializer='dill',
result_serializer='dill',
accept_content=['dill']
),
)
celery_app = celery_init_app(app)
# Create a data directory if it doesn't exist
DATA_DIR = "/tmp/mmm_data"
os.makedirs(DATA_DIR, exist_ok=True)
# Ensure proper permissions (readable/writable by all users)
os.chmod(DATA_DIR, 0o777)
# Extract the request schema from the OpenAPI spec
def get_mmm_request_schema():
try:
with open('gpt-agent/api_spec.json', 'r') as f:
api_spec = json.load(f)
return api_spec['paths']['/run_mmm_async']['post']['requestBody']['content']['application/json']['schema']
except Exception as e:
logging.error("Failed to load API spec: %s", str(e))
raise e
@celery.task(bind=True)
def run_mmm_task(self, data):
"""Run Marketing Mix Model analysis task.
Args:
data (dict): Input data containing DataFrame and model parameters
Returns:
dict: Model summary statistics or error message
"""
try:
logging.info("Starting run_mmm_task here!!")
# Use the dedicated data directory
data_file = os.path.join(DATA_DIR, f"data_{self.request.id}.pkl")
# Save the data to file
with open(data_file, "wb") as f:
dill.dump(data, f)
# Ensure the file is readable/writable
os.chmod(data_file, 0o666)
try:
file_refs = data.get("openaiFileIdRefs", [])
if len(file_refs) == 0:
logging.info("No file references found")
raise ValueError("No file references found")
else:
download_url = file_refs[0].get("download_link", "") # TODO: handle multiple files
logging.info("Downloading data from %s", download_url)
# Add headers to the request
headers = {
'User-Agent': 'Mozilla/5.0',
'Accept': 'text/csv'
}
try:
# Use requests library for better control over the HTTP request
import requests
response = requests.get(download_url, headers=headers)
response.raise_for_status() # Raise an exception for bad status codes
# Read CSV from the response content
df = pd.read_csv(io.StringIO(response.text))
logging.info("Data downloaded successfully")
except requests.exceptions.RequestException as e:
logging.error("Failed to download file: %s", str(e), exc_info=True)
raise ValueError(f"Failed to download file: {str(e)}")
logging.info("Saving data to file")
file_name = file_refs[0].get("name", "")
file_path = os.path.join(DATA_DIR, file_name)
df.to_csv(file_path, index=False)
logging.info("Data saved to file %s", file_path)
except Exception as e:
logging.error("Error reading data attempting to read CSV: %s", str(e), exc_info=True)
raise e
logging.info("DataFrame loaded with shape=%s and columns=%s", df.shape, df.columns)
logging.info("First 5 rows:\n%s", df.head(5))
# Check if DataFrame has at least 15 rows
if len(df) < 15: raise ValueError(f"DataFrame must have at least 15 rows for reliable model fitting. Current shape: {df.shape}")
# Extract optional parameters from 'data'
date_column = data.get('date_column', 'date')
channel_columns = data.get('channel_columns', [])
adstock_max_lag = data.get('adstock_max_lag', 8)
yearly_seasonality = data.get('yearly_seasonality', 2)
control_columns = data.get('control_columns', None)
y_column = data.get('y_column', 'y')
logging.debug("Parameters extracted: date_column=%s, channel_columns=%s, adstock_max_lag=%d, yearly_seasonality=%d, control_columns=%s",
date_column, channel_columns, adstock_max_lag, yearly_seasonality, control_columns)
def is_valid_dates(df, column):
return pd.to_datetime(df[column], format='%Y-%m-%d', errors='coerce').notna().all()
if not is_valid_dates(df, date_column):
raise ValueError(f"Date column must be in YYYY-MM-DD format (e.g. 2023-12-31). Found values like: {df[date_column].iloc[0]} with dtype: {df[date_column].dtype}")
logging.debug("Creating MMM model")
mmm = MMM(
adstock=GeometricAdstock(l_max=adstock_max_lag),
saturation=LogisticSaturation(),
date_column=date_column,
channel_columns=channel_columns,
control_columns=control_columns,
yearly_seasonality=yearly_seasonality,
)
logging.info("MMM model defined.")
# Ensure date_week is in datetime format
df[date_column] = pd.to_datetime(df[date_column])
# X = df.drop(y_column, axis=1).astype(float)
X = df.drop(y_column, axis=1)
y = df[y_column].astype(float)
mmm.fit(X, y)
logging.info("Model fitting completed.")
logging.info("run_mmm_task completed successfully.")
return mmm
except Exception as e:
logging.error("run_mmm_task failed: %s\nJSON data: %s", str(e), data, exc_info=True)
return {"status": "failed", "error": str(e)}
def require_api_key(func):
@wraps(func)
def decorated_function(*args, **kwargs):
api_key = request.headers.get('X-API-Key')
if api_key and api_key == API_KEY:
return func(*args, **kwargs)
else:
return jsonify({"message": "Unauthorized"}), 401
return decorated_function
@app.route('/run_mmm_async', methods=['POST'])
@require_api_key
def run_mmm_async():
try:
logging.info("Received request to run_mmm_async")
data = request.get_json()
logging.debug("run_mmm_async request data: %s", data)
try:
schema = get_mmm_request_schema()
validate(instance=data, schema=schema)
except ValidationError as e:
logging.error("Schema validation failed: %s", str(e))
return jsonify({
"error": "Invalid request format",
"details": {
"message": str(e),
"path": " -> ".join(str(p) for p in e.path),
"schema_path": " -> ".join(str(p) for p in e.schema_path)
}
}), 400
task = run_mmm_task.apply_async(args=[data])
logging.info("Task submitted with ID: %s", task.id)
return jsonify({"task_id": task.id})
except Exception as e:
logging.error("Error in run_mmm_async: %s", str(e), exc_info=True)
return jsonify({"error": str(e)}), 500
@app.route('/get_task_status', methods=['GET'])
@require_api_key
def get_task_status():
task_id = request.args.get('task_id')
task = run_mmm_task.AsyncResult(task_id)
return jsonify({"status": task.state})
def check_task_status(f):
@wraps(f) # Preserve function metadata
def wrapper(*args, **kwargs):
try:
task_id = request.args.get('task_id') # Simplify task_id extraction
if not task_id:
return jsonify({"status": "failure", "error": "No task_id provided"}), 400
logging.info("Checking task status with task_id: %s", task_id)
task = run_mmm_task.AsyncResult(task_id)
if task.state == 'PENDING':
logging.info("Task %s is still pending.", task_id)
return jsonify({"status": "pending"})
elif task.state == 'FAILURE':
logging.error("Task %s failed.", task_id)
return jsonify({"status": "failure", "error": str(task.info)})
# If task completed successfully, proceed with the decorated function
logging.info("Task %s completed successfully.", task_id)
return f(*args, **kwargs)
except Exception as e:
logging.error("Error in check_task_status: %s", str(e), exc_info=True)
return jsonify({"status": "failure", "error": str(e)}), 500
return wrapper
@app.route('/get_summary_statistics', methods=['GET'])
@require_api_key
@check_task_status
def get_summary_statistics():
try:
task_id = request.args.get('task_id')
task = run_mmm_task.AsyncResult(task_id)
mmm = task.result
logging.info("MMM model: %s", mmm)
# Extract and return summary statistics
summary = az.summary(mmm.fit_result)
# Filter only the most important statistics
important_params = summary[summary.index.str.contains('alpha|beta|sigma|intercept|lam|gamma_control', case=False)]
# Limit decimal places and convert to more compact format
important_params = important_params.round(5)
summary_json = important_params.to_json(orient="split", double_precision=5)
logging.info("Summary statistics extracted.")
logging.info("summary_json=%s", summary_json)
return jsonify({"status": "completed", "summary": summary_json})
except Exception as e:
logging.error("Error in extract_summary_statistics: %s", str(e), exc_info=True)
return jsonify({"status": "failure", "error": str(e)}), 500
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--port', default=5001, type=int)
args = parser.parse_args()
# Update this line to use args.port instead of hardcoded 8080
app.run(host='0.0.0.0', port=args.port, debug=False)