-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path__init__.py
107 lines (107 loc) · 3.95 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def get_info():
return {
"backend_name": "graphblas",
"project": "graphblas-algorithms",
"package": "graphblas_algorithms",
"url": "https://github.com/python-graphblas/graphblas-algorithms",
"short_summary": "OpenMP-enabled sparse linear algebra backend.",
# "description": "TODO",
"functions": {
"adjacency_matrix": {},
"all_pairs_bellman_ford_path_length": {
"extra_parameters": {
"chunksize : int or str, optional": "Split the computation into chunks; "
'may specify size as string or number of rows. Default "10 MiB"',
},
},
"all_pairs_shortest_path_length": {
"extra_parameters": {
"chunksize : int or str, optional": "Split the computation into chunks; "
'may specify size as string or number of rows. Default "10 MiB"',
},
},
"ancestors": {},
"average_clustering": {},
"bellman_ford_path": {},
"bellman_ford_path_length": {},
"bethe_hessian_matrix": {},
"bfs_layers": {},
"boundary_expansion": {},
"clustering": {},
"complement": {},
"compose": {},
"conductance": {},
"cut_size": {},
"degree_centrality": {},
"descendants": {},
"descendants_at_distance": {},
"difference": {},
"directed_modularity_matrix": {},
"disjoint_union": {},
"edge_boundary": {},
"edge_expansion": {},
"efficiency": {},
"ego_graph": {},
"eigenvector_centrality": {},
"fast_could_be_isomorphic": {},
"faster_could_be_isomorphic": {},
"floyd_warshall": {},
"floyd_warshall_numpy": {},
"floyd_warshall_predecessor_and_distance": {},
"full_join": {},
"generalized_degree": {},
"google_matrix": {},
"has_path": {},
"hits": {},
"in_degree_centrality": {},
"inter_community_edges": {},
"intersection": {},
"intra_community_edges": {},
"is_connected": {},
"is_dominating_set": {},
"is_isolate": {},
"is_k_regular": {},
"isolates": {},
"is_regular": {},
"is_simple_path": {},
"is_tournament": {},
"is_triad": {},
"is_weakly_connected": {},
"katz_centrality": {},
"k_truss": {},
"laplacian_matrix": {},
"lowest_common_ancestor": {},
"mixing_expansion": {},
"modularity_matrix": {},
"mutual_weight": {},
"negative_edge_cycle": {},
"node_boundary": {},
"node_connected_component": {},
"node_expansion": {},
"normalized_cut_size": {},
"normalized_laplacian_matrix": {},
"number_of_isolates": {},
"out_degree_centrality": {},
"overall_reciprocity": {},
"pagerank": {},
"reciprocity": {},
"reverse": {},
"score_sequence": {},
"single_source_bellman_ford_path_length": {},
"single_source_shortest_path_length": {},
"single_target_shortest_path_length": {},
"s_metric": {},
"square_clustering": {
"extra_parameters": {
"chunksize : int or str, optional": "Split the computation into chunks; "
'may specify size as string or number of rows. Default "256 MiB"',
},
},
"symmetric_difference": {},
"tournament_matrix": {},
"transitivity": {},
"triangles": {},
"union": {},
"volume": {},
},
}