-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathdf016_vecOps.py
43 lines (37 loc) · 1.6 KB
/
df016_vecOps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
## \file
## \ingroup tutorial_dataframe
## \notebook -draw
## Process collections in RDataFrame with the help of RVec.
##
## This tutorial shows the potential of the VecOps approach for treating collections
## stored in datasets, a situation very common in HEP data analysis.
##
## \macro_image
## \macro_code
##
## \date February 2018
## \author Danilo Piparo (CERN)
import ROOT
df = ROOT.RDataFrame(1024)
coordDefineCode = '''ROOT::RVecD {0}(len);
std::transform({0}.begin(), {0}.end(), {0}.begin(), [](double){{return gRandom->Uniform(-1.0, 1.0);}});
return {0};'''
d = df.Define("len", "gRandom->Uniform(0, 16)")\
.Define("x", coordDefineCode.format("x"))\
.Define("y", coordDefineCode.format("y"))
# Now we have in our hands d, a RDataFrame with two columns, x and y, which
# hold collections of coordinates. The sizes of these collections vary.
# Let's now define radii radii from the x and y coordinates. We'll do it treating
# the collections stored in the columns without looping on the individual elements.
d1 = d.Define("r", "sqrt(x*x + y*y)")
# Now we want to plot 2 quarters of a ring with radii .5 and 1.
# Note how the cuts are performed on RVecs, comparing them with integers and
# among themselves.
ring_h = d1.Define("rInFig", "r > .5 && r < 1 && x*y < 0")\
.Define("yFig", "y[rInFig]")\
.Define("xFig", "x[rInFig]")\
.Histo2D(("fig", "Two quarters of a ring", 64, -1.1, 1.1, 64, -1.1, 1.1), "xFig", "yFig")
cring = ROOT.TCanvas()
ring_h.Draw("Colz")
cring.SaveAs("df016_ring.png")
print("Saved figure to df016_ring.png")