-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathgoftest.C
243 lines (198 loc) · 8.79 KB
/
goftest.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/// \file
/// \ingroup tutorial_math
/// \notebook
/// Example showing usage of goodness of fit tests.
///
/// Using Anderson-Darling and Kolmogorov-Smirnov goodness of fit tests,
/// 1st sample test is performed comparing data with a log-normal distribution
/// and a 2nd sample test is done comparing two gaussian data sets.
///
/// \macro_image
/// \macro_output
/// \macro_code
///
/// \author Bartolomeu Rabacal
#include <cassert>
#include "TCanvas.h"
#include "TPaveText.h"
#include "TH1.h"
#include "TF1.h"
#include "Math/GoFTest.h"
#include "Math/Functor.h"
#include "TRandom3.h"
#include "Math/DistFunc.h"
// need to use Functor1D
double landau(double x) {
return ROOT::Math::landau_pdf(x);
}
void goftest() {
// ------------------------------------------------------------------------
// Case 1: Create logNormal random sample
UInt_t nEvents1 = 1000;
//ROOT::Math::Random<ROOT::Math::GSLRngMT> r;
TF1 * f1 = new TF1("logNormal","ROOT::Math::lognormal_pdf(x,[0],[1])",0,500);
// set the lognormal parameters (m and s)
f1->SetParameters(4.0,1.0);
f1->SetNpx(1000);
Double_t* sample1 = new Double_t[nEvents1];
TH1D* h1smp = new TH1D("h1smp", "LogNormal distribution histogram", 100, 0, 500);
h1smp->SetStats(kFALSE);
for (UInt_t i = 0; i < nEvents1; ++i) {
//Double_t data = f1->GetRandom();
Double_t data = gRandom->Gaus(4,1);
data = TMath::Exp(data);
sample1[i] = data;
h1smp->Fill(data);
}
// normalize correctly the histogram using the entries inside
h1smp->Scale( ROOT::Math::lognormal_cdf(500.,4.,1) / nEvents1, "width");
TCanvas* c = new TCanvas("c","1-Sample and 2-Samples GoF Tests");
c->Divide(1, 2);
TPad * pad = (TPad *)c->cd(1);
h1smp->Draw();
h1smp->SetLineColor(kBlue);
pad->SetLogy();
f1->SetNpx(100); // use same points as histo for drawing
f1->SetLineColor(kRed);
f1->Draw("SAME");
// -----------------------------------------
// Create GoFTest object
ROOT::Math::GoFTest* goftest_1 = new ROOT::Math::GoFTest(nEvents1, sample1, ROOT::Math::GoFTest::kLogNormal);
//----------------------------------------------------
// Possible calls for the Anderson - DarlingTest test
// a) Returning the Anderson-Darling standardized test statistic
Double_t A2_1 = goftest_1-> AndersonDarlingTest("t");
Double_t A2_2 = (*goftest_1)(ROOT::Math::GoFTest::kAD, "t");
assert(A2_1 == A2_2);
// b) Returning the p-value for the Anderson-Darling test statistic
Double_t pvalueAD_1 = goftest_1-> AndersonDarlingTest(); // p-value is the default choice
Double_t pvalueAD_2 = (*goftest_1)(); // p-value and Anderson - Darling Test are the default choices
assert(pvalueAD_1 == pvalueAD_2);
// Rebuild the test using the default 1-sample constructor
delete goftest_1;
goftest_1 = new ROOT::Math::GoFTest(nEvents1, sample1 ); // User must then input a distribution type option
goftest_1->SetDistribution(ROOT::Math::GoFTest::kLogNormal);
//--------------------------------------------------
// Possible calls for the Kolmogorov - Smirnov test
// a) Returning the Kolmogorov-Smirnov standardized test statistic
Double_t Dn_1 = goftest_1-> KolmogorovSmirnovTest("t");
Double_t Dn_2 = (*goftest_1)(ROOT::Math::GoFTest::kKS, "t");
assert(Dn_1 == Dn_2);
// b) Returning the p-value for the Kolmogorov-Smirnov test statistic
Double_t pvalueKS_1 = goftest_1-> KolmogorovSmirnovTest();
Double_t pvalueKS_2 = (*goftest_1)(ROOT::Math::GoFTest::kKS);
assert(pvalueKS_1 == pvalueKS_2);
// Valid but incorrect calls for the 2-samples methods of the 1-samples constructed goftest_1
#ifdef TEST_ERROR_MESSAGE
Double_t A2 = (*goftest_1)(ROOT::Math::GoFTest::kAD2s, "t"); // Issues error message
Double_t pvalueKS = (*goftest_1)(ROOT::Math::GoFTest::kKS2s); // Issues error message
assert(A2 == pvalueKS);
#endif
TPaveText* pt1 = new TPaveText(0.58, 0.6, 0.88, 0.80, "brNDC");
Char_t str1[50];
sprintf(str1, "p-value for A-D 1-smp test: %f", pvalueAD_1);
pt1->AddText(str1);
pt1->SetFillColor(18);
pt1->SetTextFont(20);
pt1->SetTextColor(4);
Char_t str2[50];
sprintf(str2, "p-value for K-S 1-smp test: %f", pvalueKS_1);
pt1->AddText(str2);
pt1->Draw();
// ------------------------------------------------------------------------
// Case 2: Create Gaussian random samples
UInt_t nEvents2 = 2000;
Double_t* sample2 = new Double_t[nEvents2];
TH1D* h2smps_1 = new TH1D("h2smps_1", "Gaussian distribution histograms", 100, 0, 500);
h2smps_1->SetStats(kFALSE);
TH1D* h2smps_2 = new TH1D("h2smps_2", "Gaussian distribution histograms", 100, 0, 500);
h2smps_2->SetStats(kFALSE);
TRandom3 r;
for (UInt_t i = 0; i < nEvents1; ++i) {
Double_t data = r.Gaus(300, 50);
sample1[i] = data;
h2smps_1->Fill(data);
}
h2smps_1->Scale(1. / nEvents1, "width");
c->cd(2);
h2smps_1->Draw();
h2smps_1->SetLineColor(kBlue);
for (UInt_t i = 0; i < nEvents2; ++i) {
Double_t data = r.Gaus(300, 50);
sample2[i] = data;
h2smps_2->Fill(data);
}
h2smps_2->Scale(1. / nEvents2, "width");
h2smps_2->Draw("SAME");
h2smps_2->SetLineColor(kRed);
// -----------------------------------------
// Create GoFTest object
ROOT::Math::GoFTest* goftest_2 = new ROOT::Math::GoFTest(nEvents1, sample1, nEvents2, sample2);
//----------------------------------------------------
// Possible calls for the Anderson - DarlingTest test
// a) Returning the Anderson-Darling standardized test statistic
A2_1 = goftest_2->AndersonDarling2SamplesTest("t");
A2_2 = (*goftest_2)(ROOT::Math::GoFTest::kAD2s, "t");
assert(A2_1 == A2_2);
// b) Returning the p-value for the Anderson-Darling test statistic
pvalueAD_1 = goftest_2-> AndersonDarling2SamplesTest(); // p-value is the default choice
pvalueAD_2 = (*goftest_2)(ROOT::Math::GoFTest::kAD2s); // p-value is the default choices
assert(pvalueAD_1 == pvalueAD_2);
//--------------------------------------------------
// Possible calls for the Kolmogorov - Smirnov test
// a) Returning the Kolmogorov-Smirnov standardized test statistic
Dn_1 = goftest_2-> KolmogorovSmirnov2SamplesTest("t");
Dn_2 = (*goftest_2)(ROOT::Math::GoFTest::kKS2s, "t");
assert(Dn_1 == Dn_2);
// b) Returning the p-value for the Kolmogorov-Smirnov test statistic
pvalueKS_1 = goftest_2-> KolmogorovSmirnov2SamplesTest();
pvalueKS_2 = (*goftest_2)(ROOT::Math::GoFTest::kKS2s);
assert(pvalueKS_1 == pvalueKS_2);
#ifdef TEST_ERROR_MESSAGE
/* Valid but incorrect calls for the 1-sample methods of the 2-samples constructed goftest_2 */
A2 = (*goftest_2)(ROOT::Math::GoFTest::kAD, "t"); // Issues error message
pvalueKS = (*goftest_2)(ROOT::Math::GoFTest::kKS); // Issues error message
assert(A2 == pvalueKS);
#endif
TPaveText* pt2 = new TPaveText(0.13, 0.6, 0.43, 0.8, "brNDC");
sprintf(str1, "p-value for A-D 2-smps test: %f", pvalueAD_1);
pt2->AddText(str1);
pt2->SetFillColor(18);
pt2->SetTextFont(20);
pt2->SetTextColor(4);
sprintf(str2, "p-value for K-S 2-smps test: %f", pvalueKS_1);
pt2-> AddText(str2);
pt2-> Draw();
// ------------------------------------------------------------------------
// Case 3: Create Landau random sample
UInt_t nEvents3 = 1000;
Double_t* sample3 = new Double_t[nEvents3];
for (UInt_t i = 0; i < nEvents3; ++i) {
Double_t data = r.Landau();
sample3[i] = data;
}
// ------------------------------------------
// Create GoFTest objects
//
// Possible constructors for the user input distribution
// a) User input PDF
ROOT::Math::Functor1D f(&landau);
double minimum = 3*TMath::MinElement(nEvents3, sample3);
double maximum = 3*TMath::MaxElement(nEvents3, sample3);
ROOT::Math::GoFTest* goftest_3a = new ROOT::Math::GoFTest(nEvents3, sample3, f, ROOT::Math::GoFTest::kPDF, minimum,maximum); // need to specify am interval
// b) User input CDF
ROOT::Math::Functor1D fI(&TMath::LandauI);
ROOT::Math::GoFTest* goftest_3b = new ROOT::Math::GoFTest(nEvents3, sample3, fI, ROOT::Math::GoFTest::kCDF,minimum,maximum);
// Returning the p-value for the Anderson-Darling test statistic
pvalueAD_1 = goftest_3a-> AndersonDarlingTest(); // p-value is the default choice
pvalueAD_2 = (*goftest_3b)(); // p-value and Anderson - Darling Test are the default choices
// Checking consistency between both tests
std::cout << " \n\nTEST with LANDAU distribution:\t";
if (TMath::Abs(pvalueAD_1 - pvalueAD_2) > 1.E-1 * pvalueAD_2) {
std::cout << "FAILED " << std::endl;
Error("goftest","Error in comparing testing using Landau and Landau CDF");
std::cerr << " pvalues are " << pvalueAD_1 << " " << pvalueAD_2 << std::endl;
}
else
std::cout << "OK ( pvalues = " << pvalueAD_2 << " )" << std::endl;
}