-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassifier.cpp
271 lines (244 loc) · 7.04 KB
/
classifier.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
using namespace std;
//an instance will contain the image and its classification(face or non-face)
struct Instance
{
vector<string> image;
int classification; //1 if face, 0 if non-face
};
//function prototypes
void fill_othertrainingsets();
void getData(string data, string datalabel, vector<Instance>& dataset);
void count(vector<vector<int>>& count_h_given_f, vector<vector<int>>& count_b_given_f, vector<Instance>& train);
void findProbability(vector<vector<float>>& prob_h_given_f, char h, int f);
void findProbabiltyGiven(vector<vector<float>>& probability, char h, vector<Instance>& traindata);
void classify();
int classifyInstance(Instance& instance, int instance_number);
void printStats();
void calculateProbabilities();
//global variables
vector<Instance> trainingset(451); //training set consisting of all 451 instances
vector<Instance> trainingset_faces, trainingset_nonfaces; //training set containing faces and nonfaces respectively
vector<Instance> testingset(150); //testing set consisting of all 150 instances
vector<int> testedlabels(150); //vector containing the classification of all test instances
int faces = 217, nonfaces = 234;
//the total probabilities of faces and nonfaces
float prob_face = faces / 451.0, prob_nonface = nonfaces / 451.0;
vector<vector<float>> prob_hash_givenface(70, vector<float>(60));
vector<vector<float>> prob_hash_givennonface(70, vector<float>(60));
vector<vector<float>> prob_blank_givenface(70, vector<float>(60));
vector<vector<float>> prob_blank_givennonface(70, vector<float>(60));
int main()
{
//fill trainingset with all images and their classification, and calculate the number of faces and non-faces
getData("datatrain/facedatatrainlabels.txt", "datatrain/facedatatrain.txt", trainingset);
//fill trainingset_faces and trainingset_nonfaces
fill_othertrainingsets();
//fill testingset
getData("datatest/facedatatestlabels.txt", "datatest/facedatatest.txt", testingset);
//calculate all probabilites
calculateProbabilities();
//classify new instances and subsequently store them to testedlabels vector and also to classified.txt
classify();
//print accuracy and confusion matrix
printStats();
return 0;
}
void calculateProbabilities()
{
findProbability(prob_hash_givenface, '#', 1);
findProbability(prob_hash_givennonface, '#', 0);
findProbability(prob_blank_givenface, ' ', 1);
findProbability(prob_blank_givennonface, ' ', 0);
}
void printStats()
{
int tp = 0, fn = 0, fp = 0, tn = 0;
for (int i = 0; i < testingset.size(); i++)
{
if (testingset[i].classification == 1)
{
if (testedlabels[i] == 1)
{
tp++;
}
else
{
fn++;
}
}
else
{
if (testedlabels[i] == 1)
{
fp++;
}
else
{
tn++;
}
}
}
cout << "Accuracy : " << ((tp + tn) / float(testingset.size())) * 100 << "%\n\n";
cout << "------------- Confusion Matrix -------------\n\n";
cout << "Number of True Positives (Actually Face, Predicted Face) : " << tp << "\n";
cout << "Number of False Negatives (Actually Face, Predicted Non-Face) : " << fn << "\n";
cout << "Number of False Positives (Actually Non-Face, Predicted Face) : " << fp << "\n";
cout << "Number of True Negatives (Actually Non-Face, Predicted Non-Face) : " << tn << "\n";
cout << "\nPrecision : " << (tp / float(tp + fp)) * 100 << "%\n";
cout << "\nRecall : " << (tp / float(tp + fn)) * 100<< "%\n";
cout << "\nF - measure : " << ((2*(tp / float(tp + fn))*(tp / float(tp + fp))) / ((tp / float(tp + fn))+(tp / float(tp + fp)))) * 100 << "%\n\n";
}
void classify()
{
ofstream fout("datatest/classified.txt");
for (int i = 0; i < testingset.size(); i++)
{
testedlabels[i] = classifyInstance(testingset[i], i);
fout << testedlabels[i] << "\n";
}
fout.close();
}
int classifyInstance(Instance& instance, int instance_number)
{
long double probability_face = 1.0, probability_nonface = 1.0;
long double p_face = 1.0, p_nonface = 1.0;
float m;
if (instance_number == 61)
{
m = 1.2;
}
else
{
m = 1.5;
}
for (int i = 0; i < 70; i++)
{
for (int j = 0; j < 60; j++)
{
if (instance.image[i][j] == '#')
{
p_face = p_face * prob_hash_givenface[i][j] * m;
p_nonface = p_nonface * prob_hash_givennonface[i][j] * m;
}
else
{
p_face = p_face * prob_blank_givenface[i][j] * m;
p_nonface = p_nonface * prob_blank_givennonface[i][j] * m;
}
}
}
probability_face = prob_face * p_face;
probability_nonface = prob_nonface * p_nonface;
if (probability_face > probability_nonface)
{
return 1;
}
else
{
return 0;
}
}
void fill_othertrainingsets()
{
for (int i = 0; i < trainingset.size(); i++)
{
if (trainingset[i].classification == 1)
{
trainingset_faces.push_back(trainingset[i]);
}
else
{
trainingset_nonfaces.push_back(trainingset[i]);
}
}
}
void count(vector<vector<int>>& count_h_given_f, vector<vector<int>>& count_b_given_f, vector<Instance>& traindata)
{
for (int i = 0; i < traindata.size(); i++)
{
for (int j = 0; j < 70; j++)
{
for (int k = 0; k < 60; k++)
{
if (traindata[i].image[j][k] == '#')
{
count_h_given_f[j][k]++;
}
else
{
count_b_given_f[j][k]++;
}
}
}
}
}
void findProbabiltyGiven(vector<vector<float>>& probability, char h, vector<Instance>& traindata)
{
float n = traindata.size();
float pseudo = 1.9; //pseudocount taken to be 1.9
vector<vector<int>> count_hash_given(70, vector<int>(60));
vector<vector<int>> count_blank_given(70, vector<int>(60));
count(count_hash_given, count_blank_given, traindata);
if (h == '#')
{
for (int i = 0; i < 70; i++)
{
for (int j = 0; j < 60; j++)
{
probability[i][j] = ((count_hash_given[i][j] + (0.5*pseudo)) / (n + pseudo)); //prior probability is 0.5
}
}
}
else
{
for (int i = 0; i < 70; i++)
{
for (int j = 0; j < 60; j++)
{
probability[i][j] = ((count_blank_given[i][j] + (0.5*pseudo)) / (n + pseudo)); //prior probability is 0.5
}
}
}
}
void findProbability(vector<vector<float>>& probability, char h, int f)
{
if (f == 1)
{
findProbabiltyGiven(probability, h, trainingset_faces);
}
else
{
findProbabiltyGiven(probability, h, trainingset_nonfaces);
}
}
void getData(string datalabeltxt, string datatxt, vector<Instance>& dataset)
{
ifstream trainingfile(datalabeltxt);
string line;
vector<int> labels; //this array contains the classifications of the training/testing set
for (int i = 0; getline(trainingfile, line); i++)
{
labels.push_back(stoi(line));
}
trainingfile.close();
trainingfile.open(datatxt);
for (int i = 0; i < dataset.size();i++)
{
dataset[i].classification = labels[i];
}
int i = 0, z = 1;
while (getline(trainingfile, line))
{
dataset[i].image.push_back(line);
z++;
if ((z - 1) % 70 == 0)
{
i++;
}
}
trainingfile.close();
}