-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathMatrix exponentiation.cpp
98 lines (81 loc) Β· 1.57 KB
/
Matrix exponentiation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 1000000000
vector<ll> b,c;
ll k;
vector<vector<ll>> multiply(vector<vector<ll>> a,vector<vector<ll>> b)
{
vector<vector<ll>> ans(k,vector<ll>(k));
for(ll i=0;i<k;i++)
for(ll j=0;j<k;j++)
for(ll x=0;x<k;x++)
ans[i][j]=(ans[i][j]+ (a[i][x]*b[x][j])%mod)%mod;
return ans;
}
vector<vector<ll>> power(vector<vector<ll>> t,ll n)
{
if(n==1)
return t;
if(n&1)
{
return multiply(t, power(t,n-1));
}
else
{
vector<vector<ll> > ans = power(t,n/2);
return multiply(ans,ans);
}
}
ll solve(ll n)
{
if(n==0)
return 0;
if(n<=k)
return b[n-1];
// Use matrix exponentiation
vector<vector<ll>> t(k,vector<ll>(k));
for(ll i=0;i<k;i++)
for(ll j=0;j<k;j++)
{
if(i<(k-1))
{
if(j==(i+1))
{
t[i][j] = 1;
}
else
t[i][j] = 0;
continue;
}
t[i][j]=c[k-j-1];
}
t=power(t,n-1);
ll ans=0;
for(ll i=0;i<k;i++)
ans=(ans+(t[0][i]*b[i])%mod)%mod;
return ans;
}
main()
{
ll t,n,i,num;
cin>>t;
while(t--)
{
cin>>k;
for(i=0;i<k;i++)
{
cin>>num;
b.push_back(num);
}
for(i=0;i<k;i++)
{
cin>>num;
c.push_back(num);
}
cin>>n;
cout<<solve(n)<<"\n";
b.clear();
c.clear();
}
}