Skip to content

Latest commit

 

History

History

Hamiltonian cycle problem using backtracking

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Hamiltonian Path in an undirected graph is a path that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that there is an edge (in the graph) from the last vertex to the first vertex of the Hamiltonian Path. Determine whether a given graph contains Hamiltonian Cycle or not. If it contains, then prints the path. Following are the input and output of the required function. Input: A 2D array graph[V][V] where V is the number of vertices in graph and graph[V][V] is adjacency matrix representation of the graph. A value graph[i][j] is 1 if there is a direct edge from i to j, otherwise graph[i][j] is 0. Output: An array path[V] that should contain the Hamiltonian Path. path[i] should represent the ith vertex in the Hamiltonian Path. The code should also return false if there is no Hamiltonian Cycle in the graph. For example, a Hamiltonian Cycle in the following graph is {0, 1, 2, 4, 3, 0}.