-
Notifications
You must be signed in to change notification settings - Fork 621
/
Copy pathevaluation_cls.py
164 lines (138 loc) · 5.83 KB
/
evaluation_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import sys
sys.path.append('~/caffe-master-0116/python')
import numpy as np
import caffe
import cv2
import datetime
gpu_mode = True
gpu_id = 0
data_root = '~/Database/ILSVRC2012'
val_file = 'ILSVRC2012_val.txt'
save_log = 'log{}.txt'.format(datetime.datetime.now().strftime('%Y%m%d%H%M%S'))
model_weights = 'resnet-v2/resnet101_v2.caffemodel'
model_deploy = 'resnet-v2/deploy_resnet101_v2.prototxt'
prob_layer = 'prob'
class_num = 1000
base_size = 256 # short size
crop_size = 224
# mean_value = np.array([128.0, 128.0, 128.0]) # BGR
mean_value = np.array([102.9801, 115.9465, 122.7717]) # BGR
# std = np.array([128.0, 128.0, 128.0]) # BGR
std = np.array([1.0, 1.0, 1.0]) # BGR
crop_num = 1 # 1 and others for center(single)-crop, 12 for mirror(12)-crop, 144 for multi(144)-crop
batch_size = 1
top_k = (1, 5)
if gpu_mode:
caffe.set_mode_gpu()
caffe.set_device(gpu_id)
else:
caffe.set_mode_cpu()
net = caffe.Net(model_deploy, model_weights, caffe.TEST)
def eval_batch():
eval_images = []
ground_truth = []
f = open(val_file, 'r')
for i in f:
eval_images.append(i.strip().split(' ')[0])
ground_truth.append(int(i.strip().split(' ')[1]))
f.close()
skip_num = 0
eval_len = len(eval_images)
accuracy = np.zeros(len(top_k))
# eval_len = 100
start_time = datetime.datetime.now()
for i in xrange(eval_len - skip_num):
_img = cv2.imread(data_root + eval_images[i + skip_num])
_img = cv2.resize(_img, (int(_img.shape[1] * base_size / min(_img.shape[:2])),
int(_img.shape[0] * base_size / min(_img.shape[:2])))
)
_img = image_preprocess(_img)
score_vec = np.zeros(class_num, dtype=np.float32)
crops = []
if crop_num == 1:
crops.append(center_crop(_img))
elif crop_num == 12:
crops.extend(mirror_crop(_img))
elif crop_num == 144:
crops.extend(multi_crop(_img))
else:
crops.append(center_crop(_img))
iter_num = int(len(crops) / batch_size)
for j in xrange(iter_num):
score_vec += caffe_process(np.asarray(crops, dtype=np.float32)[j*batch_size:(j+1)*batch_size])
score_index = (-score_vec / len(crops)).argsort()
print 'Testing image: ' + str(i + 1) + '/' + str(eval_len - skip_num) + ' ' + str(score_index[0]) + '/' + str(
ground_truth[i + skip_num]),
for j in xrange(len(top_k)):
if ground_truth[i + skip_num] in score_index[:top_k[j]]:
accuracy[j] += 1
tmp_acc = float(accuracy[j]) / float(i + 1)
if top_k[j] == 1:
print '\ttop_' + str(top_k[j]) + ':' + str(tmp_acc),
else:
print 'top_' + str(top_k[j]) + ':' + str(tmp_acc)
end_time = datetime.datetime.now()
w = open(save_log, 'w')
s1 = 'Evaluation process ends at: {}. \nTime cost is: {}. '.format(str(end_time), str(end_time - start_time))
s2 = '\nThe model is: {}. \nThe val file is: {}. \n{} images has been tested, crop_num is: {}, base_size is: {}, ' \
'crop_size is: {}.'.format(model_weights, val_file, str(eval_len), str(crop_num), str(base_size), str(crop_size))
s3 = '\nThe mean value is: ({}, {}, {}).'.format(str(mean_value[0]), str(mean_value[1]), str(mean_value[2]))
s4 = ''
for i in xrange(len(top_k)):
_acc = float(accuracy[i]) / float(eval_len)
s4 += '\nAccuracy of top_{} is: {}; correct num is {}.'.format(str(top_k[i]), str(_acc), str(int(accuracy[i])))
print s1, s2, s3, s4
w.write(s1 + s2 + s3 + s4)
w.close()
def image_preprocess(img):
b, g, r = cv2.split(img)
return cv2.merge([(b-mean_value[0])/std[0], (g-mean_value[1])/std[1], (r-mean_value[2])/std[2]])
def center_crop(img): # single crop
short_edge = min(img.shape[:2])
if short_edge < crop_size:
return
yy = int((img.shape[0] - crop_size) / 2)
xx = int((img.shape[1] - crop_size) / 2)
return img[yy: yy + crop_size, xx: xx + crop_size]
def over_sample(img): # 12 crops of image
short_edge = min(img.shape[:2])
if short_edge < crop_size:
return
yy = int((img.shape[0] - crop_size) / 2)
xx = int((img.shape[1] - crop_size) / 2)
sample_list = [img[:crop_size, :crop_size], img[-crop_size:, -crop_size:], img[:crop_size, -crop_size:],
img[-crop_size:, :crop_size], img[yy: yy + crop_size, xx: xx + crop_size],
cv2.resize(img, (crop_size, crop_size))]
return sample_list
def mirror_crop(img): # 12*len(size_list) crops
crop_list = []
img_resize = cv2.resize(img, (base_size, base_size))
mirror = img_resize[:, ::-1]
crop_list.extend(over_sample(img_resize))
crop_list.extend(over_sample(mirror))
return crop_list
def multi_crop(img): # 144(12*12) crops
crop_list = []
size_list = [256, 288, 320, 352] # crop_size: 224
# size_list = [270, 300, 330, 360] # crop_size: 235
# size_list = [320, 352, 384, 416] # crop_size: 299
# size_list = [352, 384, 416, 448] # crop_size: 320
short_edge = min(img.shape[:2])
for i in size_list:
img_resize = cv2.resize(img, (img.shape[1] * i / short_edge, img.shape[0] * i / short_edge))
yy = int((img_resize.shape[0] - i) / 2)
xx = int((img_resize.shape[1] - i) / 2)
for j in xrange(3):
left_center_right = img_resize[yy * j: yy * j + i, xx * j: xx * j + i]
mirror = left_center_right[:, ::-1]
crop_list.extend(over_sample(left_center_right))
crop_list.extend(over_sample(mirror))
return crop_list
def caffe_process(_input):
_input = _input.transpose(0, 3, 1, 2)
net.blobs['data'].reshape(*_input.shape)
net.blobs['data'].data[...] = _input
net.forward()
return np.sum(net.blobs[prob_layer].data, axis=0)
if __name__ == '__main__':
eval_batch()