-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathbb84.cpp
310 lines (273 loc) · 11.5 KB
/
bb84.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// BB84 quantum key establishment
// Source: ./examples/bb84.cpp
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "qpp/qpp.hpp"
using basis_T = short; // basis type
using state_T = short; // state index type
// (basis, state) pair collection type ; 0 -> Z basis, 1 -> X basis
using bases_states_T = std::vector<std::pair<basis_T, state_T>>;
using key_T = std::vector<short>; // key type (bit string)
// display Alice's and Bob's bases choices and states
void display(const bases_states_T& Alice_bases_states,
const bases_states_T& Bob_bases_states);
// key sifting, removes the locations where the bases do not coincide
void sift(bases_states_T& Alice_bases_states, bases_states_T& Bob_bases_states);
// Alice and Bob sample a subset (of size k) of their qubits and estimate how
// much Eve eavesdropped; returns the number of positions where they disagree
qpp::realT sample(bases_states_T& Alice_bases_states,
bases_states_T& Bob_bases_states, qpp::idx k);
// compute the final key; technically, here is where we do error correction and
// privacy amplification; however, here we simply discard the bits that differ
key_T final(const key_T& Alice_raw_key, const key_T& Bob_raw_key);
// helper, retrieves the key from a collection of (basis, state) pairs
key_T get_key(const bases_states_T& bases_states);
int main() {
using namespace qpp;
idx n = 100; // no. of qubits Alice sends to Bob
idx k = 20; // no. of qubits Alice and Bob check for eavesdropping
realT p = 0.5; // probability of Eve intercepting (and altering) the qubits
// when we should abort due to eavesdropping; lower in reality
realT abort_rate = 0.2;
std::cout << ">> BB84, sending n = " << n
<< " qubits from Alice to Bob, k = " << k
<< " qubits are used for sampling (eavesdrop detection)\n";
std::cout << ">> With probability p = " << p
<< ", Eve intercepts the qubits and randomly measures them in the"
" Z or X basis, then sends them to Bob\n";
std::cout << ">> Excludes error correction and privacy amplification\n";
// Alice's basis and state pairs (basis, state); 0 -> Z basis, 1 -> X
// basis
bases_states_T Alice_bases_states(n);
for (auto& elem : Alice_bases_states) {
// chose a random basis, 0 -> Z basis, 1 -> X basis
basis_T basis = bernoulli() ? 0 : 1;
// chose a random state, |0> or |1> in the basis 'basis'
state_T state = bernoulli() ? 0 : 1;
elem = std::make_pair(basis, state);
}
// Bob's basis and state pairs (basis, state); 0 -> Z basis, 1 -> X
// basis
bases_states_T Bob_bases_states(n);
for (auto& elem : Bob_bases_states) {
// chose a random basis, 0 -> Z basis, 1 -> X basis
basis_T basis = bernoulli() ? 0 : 1;
elem.first = basis;
}
// Alice "prepares" the qubits and "sends" them to Bob one by one
// Eve is in the middle and intercepts/resends the qubits with
// probability p Bob measures the received qubits one by one
for (idx i = 0; i < n; ++i) {
auto basis_A = Alice_bases_states[i].first;
auto state_A = Alice_bases_states[i].second;
ket psi = (state_A == 0) ? 0_ket : 1_ket;
if (basis_A != 0) { // if X basis
psi = gt.H * psi;
}
// Eve intercepts the qubit and randomly measures it in the Z or X
// basis, then sends it to Bob
if (bernoulli(p)) {
// chose a random basis, 0 -> Z basis, 1 -> X basis
basis_T basis_E = bernoulli();
cmat U_E = (basis_E == 0) ? gt.Z : gt.H;
auto measure_E = measure(psi, U_E);
auto m_E = std::get<RES>(measure_E); // measurement result
psi = std::get<ST>(measure_E)[m_E]; // update the state accordingly
}
// Bob measures the qubit Eve re-sent
auto basis_B = Bob_bases_states[i].first;
// Bob's measurement eigenvectors
cmat U_B = (basis_B == 0) ? gt.Z : gt.H;
auto measure_B = measure(psi, U_B);
auto m_B = std::get<RES>(measure_B); // measurement result
Bob_bases_states[i].second = static_cast<state_T>(m_B);
}
// display the results before bases sifting
std::cout << ">> Before sifting\n";
display(Alice_bases_states, Bob_bases_states);
// sift on same bases
sift(Alice_bases_states, Bob_bases_states);
auto sifted_key_size = Alice_bases_states.size();
// display the results after bases sifting
std::cout << ">> After sifting\n";
display(Alice_bases_states, Bob_bases_states);
// check eavesdropping (sampling)
auto eves_rate = sample(Alice_bases_states, Bob_bases_states, k);
auto raw_key_size = Alice_bases_states.size();
std::cout << ">> Sampling k = " << k << " qubits...\n";
std::cout << ">> Detected eavesdropping rate: " << eves_rate << '\n';
// if rate is too high we should abort here
if (eves_rate > abort_rate) {
std::cout
<< ">> Detected eavesdropping rate is too high, aborting...\n";
return EXIT_FAILURE;
}
// display the results after basis sifting and eavesdropping detection
std::cout << ">> After sifting and eavesdrop detection (raw keys)\n";
display(Alice_bases_states, Bob_bases_states);
std::cout << ">> Established keys\n";
// display the raw final_key on Alice's side
auto raw_key_A = get_key(Alice_bases_states);
std::cout
<< "Alice's raw key: "
<< disp(raw_key_A,
IOManipContainerOpts{}.set_sep(" ").set_left("").set_right(""))
<< '\n';
// display the raw final_key on Bob's side
auto raw_key_B = get_key(Bob_bases_states);
std::cout
<< "Bob's raw key: "
<< disp(raw_key_B,
IOManipContainerOpts{}.set_sep(" ").set_left("").set_right(""))
<< '\n';
// display the final final_key and the corresponding rate
auto final_key = final(raw_key_A, raw_key_B);
auto final_key_rate =
static_cast<realT>(final_key.size()) / static_cast<realT>(n);
std::cout
<< "Final key: "
<< disp(final_key,
IOManipContainerOpts{}.set_sep(" ").set_left("").set_right(""))
<< '\n';
std::cout << ">> Bits/keys sizes: " << n << '/' << sifted_key_size << '/'
<< raw_key_size << '/' << final_key.size() << '\n';
std::cout << ">> Final key rate: " << final_key_rate << '\n';
}
// display Alice's and Bob's bases choices and states
void display(const bases_states_T& Alice_bases_states,
const bases_states_T& Bob_bases_states) {
using namespace qpp;
auto n = static_cast<idx>(Alice_bases_states.size());
std::cout << "Alice's states: ";
for (idx i = 0; i < n; ++i) {
std::string state;
if (Alice_bases_states[i].first == 0) { // Z basis
state = std::to_string(Alice_bases_states[i].second);
} else { // X basis
state = Alice_bases_states[i].second == 0 ? "+" : "-";
}
std::cout << state << ' ';
}
std::cout << '\n';
std::cout << "Alice's bases: ";
for (idx i = 0; i < n; ++i) {
std::cout << (Alice_bases_states[i].first == 0 ? 'Z' : 'X') << ' ';
}
std::cout << '\n';
std::cout << "Bob's bases: ";
for (idx i = 0; i < n; ++i) {
std::cout << (Bob_bases_states[i].first == 0 ? 'Z' : 'X') << ' ';
}
std::cout << '\n';
std::cout << "Bob's states: ";
for (idx i = 0; i < n; ++i) {
std::string state;
if (Bob_bases_states[i].first == 0) { // Z basis
state = std::to_string(Bob_bases_states[i].second);
} else { // X basis
state = Bob_bases_states[i].second == 0 ? "+" : "-";
}
std::cout << state << ' ';
}
std::cout << '\n';
}
// key sifting, removes the locations where the bases do not coincide
void sift(bases_states_T& Alice_bases_states,
bases_states_T& Bob_bases_states) {
using namespace qpp;
auto n = static_cast<idx>(Alice_bases_states.size());
bases_states_T result_A, result_B;
for (idx i = 0; i < n; ++i) {
if (Alice_bases_states[i].first != Bob_bases_states[i].first) {
continue;
}
result_A.emplace_back(Alice_bases_states[i]);
result_B.emplace_back(Bob_bases_states[i]);
}
Alice_bases_states = result_A;
Bob_bases_states = result_B;
}
// Alice and Bob sample a subset (of size k) of their qubits and estimate how
// much Eve eavesdropped; returns the number of positions where they disagree
qpp::realT sample(bases_states_T& Alice_bases_states,
bases_states_T& Bob_bases_states, qpp::idx k) {
using namespace qpp;
auto n = static_cast<idx>(Alice_bases_states.size());
if (k > n) {
std::cout << ">> Not enough check qubits (k too large), aborting...\n";
exit(EXIT_FAILURE);
}
std::vector<idx> pos(n);
std::iota(pos.begin(), pos.end(), 0);
auto& gen =
#ifdef NO_THREAD_LOCAL_
RandomDevices::get_instance().get_prng();
#else
RandomDevices::get_thread_local_instance().get_prng();
#endif
// first k elements label the qubits we want to check
std::shuffle(pos.begin(), pos.end(), gen);
// sort (first k of them) for std::binary_search() later
std::sort(pos.begin(), std::next(pos.begin(), k));
bases_states_T result_A, result_B;
idx cnt = 0; // how many bits differ
for (idx i = 0; i < n; ++i) {
// is current position part of the ones Alice and Bob need to check?
if (std::binary_search(pos.begin(), std::next(pos.begin(), k), i)) {
auto basis_AB = Alice_bases_states[i].first;
auto state_A = Alice_bases_states[i].second;
auto state_B = Bob_bases_states[i].second;
ket psi_A = (state_A == 0) ? 0_ket : 1_ket;
ket psi_B = (state_B == 0) ? 0_ket : 1_ket;
cmat U = gt.Z; // measurement basis
if (basis_AB != 0) // if X basis
{
U = gt.H;
psi_A = gt.H * psi_A;
psi_B = gt.H * psi_B;
}
auto measure_A = measure(psi_A, U);
auto m_A = std::get<RES>(measure_A); // Alice's measurement result
auto measure_B = measure(psi_B, U);
auto m_B = std::get<RES>(measure_B); // Bob's measurement result
if (m_A != m_B) {
++cnt;
}
} else {
result_A.emplace_back(Alice_bases_states[i]);
result_B.emplace_back(Bob_bases_states[i]);
}
}
Alice_bases_states = result_A;
Bob_bases_states = result_B;
return static_cast<realT>(cnt) / static_cast<realT>(k);
}
// compute the final key; technically, here is where we do error correction and
// privacy amplification; however, here we simply discard the bits that differ
key_T final(const key_T& Alice_raw_key, const key_T& Bob_raw_key) {
using namespace qpp;
auto n = static_cast<idx>(Alice_raw_key.size());
key_T result;
for (idx i = 0; i < n; ++i) {
if (Alice_raw_key[i] != Bob_raw_key[i]) {
continue;
}
result.emplace_back(Alice_raw_key[i]);
}
return result;
}
// helper, retrieves the key from a collection of (basis, state) pairs
key_T get_key(const bases_states_T& bases_states) {
using namespace qpp;
auto n = static_cast<idx>(bases_states.size());
key_T result(n);
for (idx i = 0; i < n; ++i) {
result[i] = bases_states[i].second;
}
return result;
}