-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1096 lines (534 loc) · 29.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head><script src="/livereload.js?mindelay=10&v=2&port=1313&path=livereload" data-no-instant defer></script>
<title>Posts</title>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
<link rel="stylesheet" href="/application.b75fd7db826474d1a95fad8a5aec65f60f4e668ee19f6012e8a4af47b191edd3.css" integrity="sha256-t1/X24JkdNGpX62KWuxl9g9OZo7hn2AS6KSvR7GR7dM=" />
<link rel="icon" type="image/png" href="/images/site/icon_hu65d76dfee5a8e0802e55f59432358110_6732567_42x0_resize_box_3.png" />
<meta property="og:url" content="http://localhost:1313/posts/">
<meta property="og:site_name" content="Stefano Giannini">
<meta property="og:title" content="Posts">
<meta property="og:locale" content="en">
<meta property="og:type" content="website">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="Posts">
<script>
theme = localStorage.getItem('darkmode:color-scheme') || 'system';
if (theme == 'system') {
if (window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches) {
theme = 'dark';
} else {
theme = 'light';
}
}
document.documentElement.setAttribute('data-theme', theme);
</script>
</head>
<body class="type-posts kind-section" data-bs-spy="scroll" data-bs-target="#TableOfContents" data-bs-offset="80">
<div class="container-fluid bg-secondary wrapper">
<nav class="navbar navbar-expand-xl top-navbar shadow " id="top-navbar">
<div class="container">
<button class="navbar-toggler navbar-light" id="sidebar-toggler" type="button">
<i data-feather="sidebar"></i>
</button>
<a class="navbar-brand" href="/">
<img src="/images/site/icon_hu65d76dfee5a8e0802e55f59432358110_6732567_42x0_resize_box_3.png" id="logo" alt="Logo">
Stefano Giannini</a>
<button
class="navbar-toggler navbar-light"
id="navbar-toggler"
type="button"
data-bs-toggle="collapse"
data-bs-target="#top-nav-items"
aria-label="menu"
>
<i data-feather="menu"></i>
</button>
<div class="collapse navbar-collapse dynamic-navbar" id="top-nav-items">
<ul class="nav navbar-nav ms-auto">
<li class="nav-item">
<a class="nav-link" href="/#home">Home</a>
</li>
<li class="nav-item">
<a class="nav-link" href="/#about">About</a>
</li>
<li class="nav-item">
<a class="nav-link" href="/#skills">Skills</a>
</li>
<li class="nav-item">
<a class="nav-link" href="/#experiences">Experiences</a>
</li>
<li class="nav-item">
<a class="nav-link" href="/#education">Education</a>
</li>
<div id="top-navbar-divider"></div>
<li class="nav-item">
<a class="nav-link" id="blog-link" href="/posts">Posts</a>
</li>
<li class="nav-item">
<a class="nav-link" id="note-link" href="/notes">Notes</a>
</li>
</ul>
</div>
</div>
<img src="/images/site/icon_hu65d76dfee5a8e0802e55f59432358110_6732567_42x0_resize_box_3.png" class="d-none" id="main-logo" alt="Logo">
<img src="/images/site/icon_hu65d76dfee5a8e0802e55f59432358110_6732567_42x0_resize_box_3.png" class="d-none" id="inverted-logo" alt="Inverted Logo">
</nav>
<section class="sidebar-section" id="sidebar-section">
<div class="sidebar-holder">
<div class="sidebar" id="sidebar">
<form class="mx-auto" method="get" action="/search">
<input type="text" name="keyword" value="" placeholder="Search" data-search="" id="search-box" />
</form>
<div class="sidebar-tree">
<ul class="tree" id="tree">
<li id="list-heading"><a href="/posts" data-filter="all">Posts</a></li>
<div class="subtree">
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/finance/"> Finance</a>
<ul class="">
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/finance/monte_carlo/"> Monte Carlo</a>
<ul class="">
<li><a class=" list-link" href="/posts/finance/monte_carlo/black-scholes/" title="Option Pricing">Option Pricing</a></li>
</ul>
</li>
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/finance/stock_prediction/"> Stock Prediction</a>
<ul class="">
<li><a class=" list-link" href="/posts/finance/stock_prediction/gru/" title="GRU">GRU</a></li>
<li><a class=" list-link" href="/posts/finance/stock_prediction/arima/" title="ARIMA">ARIMA</a></li>
<li><a class=" list-link" href="/posts/finance/stock_prediction/sarima/" title="SARIMA">SARIMA</a></li>
<li><a class=" list-link" href="/posts/finance/stock_prediction/sarimax/" title="SARIMAX">SARIMAX</a></li>
</ul>
</li>
</ul>
</li>
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/machine-learning/"> Machine Learning</a>
<ul class="">
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/machine-learning/deep-learning/"> Deep Learning</a>
<ul class="">
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/machine-learning/deep-learning/computer-vision/"> Computer Vision</a>
<ul class="">
<li><a class=" list-link" href="/posts/machine-learning/deep-learning/computer-vision/florence/" title="Florence-2 LVM">Florence-2 LVM</a></li>
</ul>
</li>
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/machine-learning/deep-learning/nlp/"> NLP</a>
<ul class="">
<li><a class=" list-link" href="/posts/machine-learning/deep-learning/nlp/gemma2+rag/" title="Gemma-2 + RAG">Gemma-2 + RAG</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/physics/"> Physics</a>
<ul class="">
<li><a class=" list-link" href="/posts/physics/percolation/" title="Percolation">Percolation</a></li>
<li>
<i data-feather="plus-circle"></i><a class=" list-link" href="/posts/physics/quantum_computing/"> Quantum Computing</a>
<ul class="">
<li><a class=" list-link" href="/posts/physics/quantum_computing/introduction/" title="Introduction">Introduction</a></li>
<li><a class=" list-link" href="/posts/physics/quantum_computing/teleportation/" title="Teleportation">Teleportation</a></li>
</ul>
</li>
</ul>
</li>
</div>
</ul>
</div>
</div>
</div>
</section>
<section class="content-section" id="content-section">
<div class="content container-fluid" id="content">
<div class="container-fluid post-card-holder" id="post-card-holder">
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/machine-learning/deep-learning/nlp/gemma2+rag/" class="post-card-link">
<img class="card-img-top" src='/posts/machine-learning/deep-learning/nlp/gemma2+rag/mermaid-diagram-hd.png' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/machine-learning/deep-learning/nlp/gemma2+rag/" class="post-card-link">
<h5 class="card-title">Gemma-2 + RAG + LlamaIndex + VectorDB</h5>
<p class="card-text post-summary">Open in:
1. Introduction Retrieval-Augmented Generation (RAG) is an advanced AI technique that enhances large language models (LLMs) with the ability to access and utilize external knowledge. This guide will walk you through a practical implementation of RAG using Python and various libraries, explaining each component in detail.
2. Setup and Import %pip install transformers accelerate bitsandbytes flash-attn faiss-cpu llama-index -Uq %pip install llama-index-embeddings-huggingface -q %pip install llama-index-llms-huggingface -q %pip install llama-index-embeddings-instructor llama-index-vector-stores-faiss -q import contextlib import os import torch device = torch.</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/deep-learning/" class="btn btn-sm btn-info">Deep Learning</a></li>
<li class="rounded"><a href="/tags/nlp/" class="btn btn-sm btn-info">NLP</a></li>
<li class="rounded"><a href="/tags/machine-learning/" class="btn btn-sm btn-info">Machine Learning</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Sunday, July 14, 2024
| 14 minutes </span>
<a
href="/posts/machine-learning/deep-learning/nlp/gemma2+rag/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/finance/stock_prediction/sarimax/" class="post-card-link">
<img class="card-img-top" src='/posts/finance/stock_prediction/sarimax/sarimax_example_files/sarimax_example_6_0.png' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/finance/stock_prediction/sarimax/" class="post-card-link">
<h5 class="card-title">SARIMAX Model Analysis of Apple Stock with Exogenous Variables</h5>
<p class="card-text post-summary">In the previous articles we saw the limitations of the ARIMA and SARIMA. Therefore, in this article we are going to implement a SARIMAX model the can include exogenous variables
Introduction to Exogenous Variables in Time Series Models Exogenous variables, also known as external regressors, are independent variables that are not part of the main time series but can influence it. In the context of stock price prediction, exogenous variables might include:</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/finance/" class="btn btn-sm btn-info">Finance</a></li>
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
<li class="rounded"><a href="/tags/forecasting/" class="btn btn-sm btn-info">Forecasting</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Saturday, July 6, 2024
| 7 minutes </span>
<a
href="/posts/finance/stock_prediction/sarimax/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/finance/stock_prediction/sarima/" class="post-card-link">
<img class="card-img-top" src='/posts/finance/stock_prediction/sarima/images/sarima_example_9_1.png' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/finance/stock_prediction/sarima/" class="post-card-link">
<h5 class="card-title">Time Series Analysis and SARIMA Model for Stock Price Prediction</h5>
<p class="card-text post-summary">Introduction The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is an extension of the ARIMA model (discussed in the previous article) that incorporates seasonality. This makes it particularly useful for analyzing financial time series data, which often exhibits both trend and seasonal patterns. In this article, we’ll apply the SARIMA model to Apple (AAPL) stock data, perform signal decomposition, and provide a detailed mathematical explanation of the model.
1. Data Preparation and Exploration First, let’s obtain the Apple stock data and prepare it for analysis:</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/finance/" class="btn btn-sm btn-info">Finance</a></li>
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
<li class="rounded"><a href="/tags/forecasting/" class="btn btn-sm btn-info">Forecasting</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Thursday, July 4, 2024
| 6 minutes </span>
<a
href="/posts/finance/stock_prediction/sarima/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/physics/quantum_computing/teleportation/" class="post-card-link">
<img class="card-img-top" src='/posts/physics/quantum_computing/teleportation/images/blog_teleportation.png' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/physics/quantum_computing/teleportation/" class="post-card-link">
<h5 class="card-title">Quantum Computing - Fundamentals - Teleportation</h5>
<p class="card-text post-summary">Introduction Quantum teleportation is a fundamental protocol in quantum information science that enables the transfer of quantum information from one location to another. Despite its name, it doesn’t involve the transportation of matter, but rather the transmission of the quantum state of a particle.
The Concept In quantum teleportation, we have three main parties:
Alice: The sender who wants to transmit a quantum state. Bob: The receiver who will receive the quantum state.</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/science/" class="btn btn-sm btn-info">Science</a></li>
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
<li class="rounded"><a href="/tags/quantum/" class="btn btn-sm btn-info">Quantum</a></li>
<li class="rounded"><a href="/tags/physics/" class="btn btn-sm btn-info">Physics</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Wednesday, July 3, 2024
| 7 minutes </span>
<a
href="/posts/physics/quantum_computing/teleportation/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/physics/quantum_computing/introduction/" class="post-card-link">
<img class="card-img-top" src='/posts/physics/quantum_computing/introduction/images/bell_state_sphere.png' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/physics/quantum_computing/introduction/" class="post-card-link">
<h5 class="card-title">Quantum Computing - Fundamentals (Part 1)</h5>
<p class="card-text post-summary">Introduction to Quantum Computing Quantum computing represents a transformative leap in computational technology. Unlike classical computers, which use bits as the smallest unit of data, quantum computers employ quantum bits, or qubits. These qubits take advantage of the principles of quantum mechanics, allowing for exponentially greater processing power in certain types of computations.
Core Concepts:
Superposition: Unlike classical bits that can be either 0 or 1, qubits can exist in a state that is a superposition of both.</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/science/" class="btn btn-sm btn-info">Science</a></li>
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
<li class="rounded"><a href="/tags/quantum/" class="btn btn-sm btn-info">Quantum</a></li>
<li class="rounded"><a href="/tags/physics/" class="btn btn-sm btn-info">Physics</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Sunday, June 30, 2024
| 7 minutes </span>
<a
href="/posts/physics/quantum_computing/introduction/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/finance/stock_prediction/arima/" class="post-card-link">
<img class="card-img-top" src='/posts/finance/stock_prediction/arima/images/test_forecast.png' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/finance/stock_prediction/arima/" class="post-card-link">
<h5 class="card-title">Time Series Analysis and ARIMA Models for Stock Price Prediction</h5>
<p class="card-text post-summary">1. Introduction Time series analysis is a fundamental technique in quantitative finance, particularly for understanding and predicting stock price movements. Among the various time series models, ARIMA (Autoregressive Integrated Moving Average) models have gained popularity due to their flexibility and effectiveness in capturing complex patterns in financial data.
This article will explore the application of time series analysis and ARIMA models to stock price prediction. We’ll cover the theoretical foundations, practical implementation in Python, and critical considerations for using these models in real-world financial scenarios.</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/finance/" class="btn btn-sm btn-info">Finance</a></li>
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
<li class="rounded"><a href="/tags/forecasting/" class="btn btn-sm btn-info">Forecasting</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Friday, June 28, 2024
| 9 minutes </span>
<a
href="/posts/finance/stock_prediction/arima/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/machine-learning/deep-learning/computer-vision/florence/" class="post-card-link">
<img class="card-img-top" src='/posts/machine-learning/deep-learning/computer-vision/florence/images/florence-2-lvm-computer-vision-exploration_28_3.png' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/machine-learning/deep-learning/computer-vision/florence/" class="post-card-link">
<h5 class="card-title">Florence-2 - Vision Foundation Model - Examples</h5>
<p class="card-text post-summary">Install dependencies Type the following command to install possible needed dependencies (especially if the inference is performed on the CPU)
%pip install einops flash_attn In Kaggle, transformers and torch are already installed. Otherwise you also need to install them on your local PC.
Import Libraries from transformers import AutoProcessor, AutoModelForCausalLM from PIL import Image import requests import copy import torch %matplotlib inline Import the model We can choose Florence-2-large or Florence-2-large-ft (fine-tuned).</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/deep-learning/" class="btn btn-sm btn-info">Deep Learning</a></li>
<li class="rounded"><a href="/tags/computer-vision/" class="btn btn-sm btn-info">Computer Vision</a></li>
<li class="rounded"><a href="/tags/machine-learning/" class="btn btn-sm btn-info">Machine Learning</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Tuesday, June 25, 2024
| 5 minutes </span>
<a
href="/posts/machine-learning/deep-learning/computer-vision/florence/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/finance/monte_carlo/black-scholes/" class="post-card-link">
<img class="card-img-top" src='/posts/finance/monte_carlo/black-scholes/Option-Pricing-Models-1.jpg' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/finance/monte_carlo/black-scholes/" class="post-card-link">
<h5 class="card-title">Monte Carlo Simulation for Option Pricing</h5>
<p class="card-text post-summary">1. Introduction In the dynamic world of finance, options play a crucial role in risk management, speculation, and portfolio optimization. An option is a contract that gives the holder the right, but not the obligation, to buy (call option) or sell (put option) an underlying asset at a predetermined price (strike price) within a specific time frame. The challenge lies in accurately pricing these financial instruments, given the uncertainties in market movements.</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/finance/" class="btn btn-sm btn-info">Finance</a></li>
<li class="rounded"><a href="/tags/options/" class="btn btn-sm btn-info">Options</a></li>
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Sunday, June 23, 2024
| 6 minutes </span>
<a
href="/posts/finance/monte_carlo/black-scholes/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/finance/stock_prediction/gru/" class="post-card-link">
<img class="card-img-top" src='/posts/finance/stock_prediction/gru/images/stock-market-prediction-using-data-mining-techniques.jpg' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/finance/stock_prediction/gru/" class="post-card-link">
<h5 class="card-title">MSFT Stock Prediction using LSTM or GRU</h5>
<p class="card-text post-summary">Introduction In this article, we will explore time series data extracted from the stock market, focusing on prominent technology companies such as Apple, Amazon, Google, and Microsoft. Our objective is to equip data analysts and scientists with the essential skills to effectively manipulate and interpret stock market data.
To achieve this, we will utilize the yfinance library to fetch stock information and leverage visualization tools such as Seaborn and Matplotlib to illustrate various facets of the data.</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/finance/" class="btn btn-sm btn-info">Finance</a></li>
<li class="rounded"><a href="/tags/deep-learning/" class="btn btn-sm btn-info">Deep Learning</a></li>
<li class="rounded"><a href="/tags/forecasting/" class="btn btn-sm btn-info">Forecasting</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Sunday, June 16, 2024
| 6 minutes </span>
<a
href="/posts/finance/stock_prediction/gru/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/physics/percolation/" class="post-card-link">
<img class="card-img-top" src='/posts/physics/percolation/images/lattice_illustration.png' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/physics/percolation/" class="post-card-link">
<h5 class="card-title">Percolation</h5>
<p class="card-text post-summary">Introduction Percolation theory is a fundamental concept in statistical physics and mathematics that describes the behavior of connected clusters in a random graph. It is a model for understanding how a network behaves when nodes or links are added, leading to a phase transition from a state of disconnected clusters to a state where a large, connected cluster spans the system. This transition occurs at a critical threshold, known as the percolation threshold.</p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
<li class="rounded"><a href="/tags/science/" class="btn btn-sm btn-info">Science</a></li>
<li class="rounded"><a href="/tags/physics/" class="btn btn-sm btn-info">Physics</a></li>
<li class="rounded"><a href="/tags/statistics/" class="btn btn-sm btn-info">Statistics</a></li>
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Saturday, June 8, 2024
| 5 minutes </span>
<a
href="/posts/physics/percolation/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
<div class="post-card">
<div class="card">
<div class="card-head">
<a href="/posts/physics/lunar_lander/links/" class="post-card-link">
<img class="card-img-top" src='/images/default-hero.jpg' alt="Hero Image">
</a>
</div>
<div class="card-body">
<a href="/posts/physics/lunar_lander/links/" class="post-card-link">
<h5 class="card-title"></h5>
<p class="card-text post-summary"> https://aayala4.github.io/Lunar-Lander-Python/ https://github.com/arda-guler/miniLanding3D/tree/master https://medium.com/@elliottwobler/lunar-simulation-in-unreal-engine-5-c24f6ee59d07 </p>
</a>
<div class="tags">
<ul style="padding-left: 0;">
</ul>
</div>
</div>
<div class="card-footer">
<span class="float-start">
Monday, January 1, 1
| 1 minute </span>
<a
href="/posts/physics/lunar_lander/links/"
class="float-end btn btn-outline-info btn-sm">Read</a>
</div>
</div>
</div>
</div>
<div class="paginator">
</div>
</div>
</section>
</div>