Skip to content

Commit dee77a4

Browse files
committed
readded logos to experiences
1 parent fbf13a8 commit dee77a4

21 files changed

+2308
-8
lines changed

data/en/sections/experiences.yaml

+4-4
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ experiences:
1616
name: Sky Ray Capital
1717
url:
1818
location: Portugal (Remote)
19-
logo:
19+
logo: images/sections/experiences/skyray.png
2020
overview: Analysis of the latest financial data for portfolio and strategies optimization
2121
positions:
2222
- designation: Senior Data Scientist
@@ -31,7 +31,7 @@ experiences:
3131
name: Stellantis
3232
url: "https://www.stellantis.com"
3333
location: Orbassano, Italy
34-
logo: /images/sections/experience/stellantis_logo.png
34+
logo: /images/sections/experiences/stellantis_logo.png
3535
# Can optionally show a different logo for dark theme
3636
# darkLogo: /images/sections/experiences/company1.jpg
3737
# company overview
@@ -60,7 +60,7 @@ experiences:
6060
name: Smairt Hero
6161
url: "#"
6262
location: Turin, Italy
63-
logo: /images/sections/experience/smairthero.png
63+
logo: /images/sections/experiences/smairthero.png
6464
# Can optionally show a different logo for dark theme
6565
# darkLogo: /images/sections/experiences/company2.jpg
6666
overview: Startup building healthcare wearable device for emergency detections
@@ -78,7 +78,7 @@ experiences:
7878
name: Soave Asset Management
7979
url: "#"
8080
location: Lugano, Switzerland
81-
logo: images/sections/experience/Soave_logo.jpg
81+
logo: images/sections/experiences/Soave_logo.jpg
8282
# Can optionally show a different logo for dark theme
8383
# darkLogo: /images/sections/experiences/company3.jpg
8484
overview: Blockchain and Data Analyst responsible for the technical analysis of crypto to choose in a investment portfolio.
Loading
21.6 KB
Loading
Loading
Loading

public/index.html

+20
Original file line numberDiff line numberDiff line change
@@ -927,6 +927,11 @@ <h1 class="text-center">
927927

928928

929929

930+
<div class="logo-holder">
931+
<img class="company-logo light-logo" src="/images/sections/experiences/skyray.png" alt="" />
932+
933+
</div>
934+
930935

931936

932937

@@ -990,6 +995,11 @@ <h6 class="text-heading">Responsibilities:</h6>
990995

991996

992997

998+
<div class="logo-holder">
999+
<img class="company-logo light-logo" src="/images/sections/experiences/stellantis_logo.png" alt="" />
1000+
1001+
</div>
1002+
9931003

9941004

9951005

@@ -1081,6 +1091,11 @@ <h6 class="text-heading">Responsibilities:</h6>
10811091

10821092

10831093

1094+
<div class="logo-holder">
1095+
<img class="company-logo light-logo" src="/images/sections/experiences/smairthero.png" alt="" />
1096+
1097+
</div>
1098+
10841099

10851100

10861101

@@ -1146,6 +1161,11 @@ <h6 class="text-heading">Responsibilities:</h6>
11461161

11471162

11481163

1164+
<div class="logo-holder">
1165+
<img class="company-logo light-logo" src="/images/sections/experiences/Soave_logo.jpg" alt="" />
1166+
1167+
</div>
1168+
11491169

11501170

11511171

public/posts/physics/index.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -631,7 +631,7 @@ <h5 class="card-title">Percolation</h5>
631631
<div class="card-body">
632632
<a href="/posts/physics/lunar_lander/links/" class="post-card-link">
633633
<h5 class="card-title"></h5>
634-
<p class="card-text post-summary"> https://aayala4.github.io/Lunar-Lander-Python/ https://github.com/arda-guler/miniLanding3D/tree/master </p>
634+
<p class="card-text post-summary"> https://aayala4.github.io/Lunar-Lander-Python/ https://github.com/arda-guler/miniLanding3D/tree/master https://medium.com/@elliottwobler/lunar-simulation-in-unreal-engine-5-c24f6ee59d07 </p>
635635
</a>
636636

637637
<div class="tags">

public/posts/physics/index.xml

+1-1
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ Superposition: Unlike classical bits that can be either 0 or 1, qubits can exist
4343
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
4444

4545
<guid>http://localhost:1313/posts/physics/lunar_lander/links/</guid>
46-
<description> https://aayala4.github.io/Lunar-Lander-Python/ https://github.com/arda-guler/miniLanding3D/tree/master </description>
46+
<description> https://aayala4.github.io/Lunar-Lander-Python/ https://github.com/arda-guler/miniLanding3D/tree/master https://medium.com/@elliottwobler/lunar-simulation-in-unreal-engine-5-c24f6ee59d07 </description>
4747
</item>
4848

4949

public/posts/renewables/world-energy/analysis.ipynb

+1,317
Large diffs are not rendered by default.
Loading
Loading
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,164 @@
1+
import streamlit as st
2+
import pandas as pd
3+
import matplotlib.pyplot as plt
4+
import seaborn as sns
5+
import geopandas as gpd
6+
import plotly.express as px
7+
8+
energy_columns = ['renewables_electricity', 'coal_electricity', 'gas_electricity', 'oil_electricity', 'nuclear_electricity', 'wind_electricity', 'solar_electricity', "hydro_electricity"]
9+
# Load and prepare data
10+
@st.cache_data
11+
def load_data():
12+
url = "https://raw.githubusercontent.com/owid/energy-data/master/owid-energy-data.csv"
13+
df = pd.read_csv(url)
14+
df['year'] = pd.to_datetime(df['year'], format='%Y')
15+
df.rename(columns={
16+
"renewables_electricity": "Renewables",
17+
"hydro_electricity": "Hydro",
18+
"solar_electricity": "Solar",
19+
"wind_electricity": "Wind",
20+
"coal_electricity": 'Coal',
21+
'gas_electricity': "Gas",
22+
'oil_electricity': "Oil",
23+
'nuclear_electricity' : "Nuclear"
24+
}, inplace=True)
25+
26+
df = df[~df.country.isin([
27+
"G20 (Ember)",
28+
"OECD (Ember)",
29+
"Asia (Ember)",
30+
"G7 (Ember)",
31+
"OECD (EI)",
32+
"Asia Pacific (EI)",
33+
"High-income countries",
34+
"Europe (Ember)",
35+
"Non-OECD (EI)",
36+
"Asia",
37+
"North America (Ember)",
38+
"Upper-middle-income countries",
39+
"Europe (EI)",
40+
"Oceania (Ember)",
41+
"ASEAN (Ember)",
42+
"Lower-middle-income countries",
43+
"European Union (27)",
44+
"North America (EI)"
45+
])]
46+
47+
return df.sort_values('year')
48+
49+
50+
@st.cache_data
51+
def load_world_data(map_data):
52+
world = gpd.read_file("ne_110m_admin_0_countries/ne_110m_admin_0_countries.dbf")
53+
# data processing
54+
world.rename(columns={"ADMIN": "country"}, inplace=True)
55+
# replace country name to fit the other dataset
56+
world.country = world.country.replace(
57+
["United States of America", "Democratic Republic of the Congo", "Republic of the Congo", "United Republic of Tanzania", "The Bahamas", "Czechia", "eSwatini", "Republic of Serbia"],
58+
["United States", "Democratic Republic of Congo", "Congo", "Tanzania", "Bahamas", "Czechoslovakia", "Eswatini", "Serbia"]
59+
)
60+
61+
# world.SOV_A3 = world.SOV_A3.replace(["US1", "CH1", "FR1", "KA1", "GB1", "NZ1", "AU1"], ["USA", "CHN", "FRA", "KAZ", "GBR", "NZL", "AUS"])
62+
# latest_year = recent_data['year'].max() - pd.Timedelta(days=365*2)
63+
# latest_data = recent_data[recent_data['year'] == latest_year]
64+
world = world.merge(map_data, on=['country'])
65+
return world
66+
67+
68+
@st.cache_data
69+
def get_map_plot(energy_type_map, year_map):
70+
match energy_type_map:
71+
case "Solar":
72+
color_scale = "Oranges"
73+
case "Wind":
74+
color_scale = "Greens"
75+
case "Hydro":
76+
color_scale = "Blues"
77+
case _ :
78+
color_scale = "Viridis"
79+
80+
fig = px.choropleth(world, locations='ADM0_A3', color=energy_type_map,
81+
hover_name='country', projection='natural earth2', color_continuous_scale=color_scale,
82+
title=f'{energy_type_map.replace("_", " ").title()} Production in {year_map}')
83+
84+
return fig
85+
df = load_data()
86+
87+
88+
# Streamlit app
89+
st.title('Global Energy Production Analysis')
90+
# st.write(df.columns)
91+
# st.write([col.split("_")[0].capitalize() for col in energy_columns])
92+
# Sidebar for user input
93+
st.sidebar.header('Filter Data')
94+
start_year = st.sidebar.slider('Start Year', 1900, 2023, 1980)
95+
end_year = st.sidebar.slider('End Year', 1900, 2022, 2023)
96+
97+
# Filter data based on selected years
98+
filtered_df = df[(df['year'].dt.year >= start_year) & (df['year'].dt.year <= end_year)]
99+
100+
# Global trend plot
101+
st.header('Global Energy Production Trends')
102+
energy_types = st.multiselect(
103+
'Select Energy Types',
104+
[col.split("_")[0].capitalize() for col in energy_columns],
105+
default=["Solar", "Wind", "Hydro"]
106+
)
107+
108+
global_trend = filtered_df.groupby('year')[energy_types].mean()
109+
110+
fig = px.line(global_trend.reset_index(), x='year', y=energy_types,
111+
title='Global Energy Production Trends')
112+
fig.update_yaxes(title="Electricity Production (TWh)")
113+
st.plotly_chart(fig)
114+
115+
# Map of energy production
116+
st.header('Energy Production Map')
117+
energy_type_map = st.selectbox('Select Energy Type for Map', energy_types)
118+
year_map = st.slider('Select Year for Map', start_year, end_year, end_year-10)
119+
120+
121+
map_data = filtered_df[filtered_df['year'].dt.year == year_map]
122+
world = load_world_data(map_data)
123+
124+
fig = get_map_plot(energy_type_map, year_map)
125+
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
126+
st.plotly_chart(fig)
127+
128+
# Top countries comparison
129+
st.header('Top Countries Comparison')
130+
n_countries = st.slider('Number of top countries to compare', 1, 20, 15)
131+
top_countries = filtered_df.groupby('country')[energy_types[0]].mean().nlargest(n_countries).index.tolist()
132+
133+
st.write(top_countries)
134+
135+
top_countries_data = filtered_df[filtered_df['country'].isin(top_countries)]
136+
137+
fig = px.line(top_countries_data, x='year', y=energy_types[0], color='country',
138+
title=f'Top {n_countries} Countries in {energy_types[0].replace("_", " ").title()} Production')
139+
st.plotly_chart(fig)
140+
141+
# Energy mix comparison
142+
st.header('Energy Mix Comparison')
143+
selected_country = st.selectbox('Select a Country', df['country'].unique(), index=None)
144+
if selected_country == None:
145+
selected_country = "Italy"
146+
147+
country_data = filtered_df[filtered_df['country'] == selected_country]
148+
# st.write(country_data)
149+
150+
151+
energy_mix = country_data[energy_types]
152+
energy_mix['year'] = country_data.year
153+
154+
fig = px.area(energy_mix.dropna(), x='year', y=energy_types,
155+
title=f'Energy Mix for {selected_country}')
156+
fig.update_yaxes(title="Electricity Production (TWh)")
157+
st.plotly_chart(fig)
158+
# st.write(energy_mix)
159+
160+
161+
st.write("""
162+
This Streamlit app provides an interactive analysis of global energy production trends.
163+
You can use the sidebar and various selectors to customize the visualizations and explore different aspects of energy production data.
164+
""")
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
5.1.1
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
UTF-8
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519943295]]

0 commit comments

Comments
 (0)