-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathConcurrent.h
469 lines (394 loc) · 14.6 KB
/
Concurrent.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//===--- Concurrent.h - Concurrent Data Structures backport -----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This is a snapshot of the `ConcurrentMap` and `ConcurrentReadableArray`
// structures from the Swift runtime, adapted to be independent of runtime
// dependencies on the C++ runtime and LLVM support libraries to make it
// suitable for use in back-deployment compatibility libraries.
#ifndef SWIFT_OVERRIDE_CONCURRENTUTILS_H
#define SWIFT_OVERRIDE_CONCURRENTUTILS_H
#include <iterator>
#include <algorithm>
#include <atomic>
#include <cassert>
#include <functional>
#include <pthread.h>
#include <stdint.h>
#include "swift/Basic/Defer.h"
#include "swift/Runtime/Atomic.h"
namespace swift {
namespace overrides {
/// A utility function for ordering two pointers, which is useful
/// for implementing compareWithKey.
template <class T>
static inline int comparePointers(const T *left, const T *right) {
return (left == right ? 0 : std::less<const T *>()(left, right) ? -1 : 1);
}
template <class EntryTy, bool ProvideDestructor>
class ConcurrentMapBase;
/// The partial specialization of ConcurrentMapBase whose destructor is
/// trivial. The other implementation inherits from this, so this is a
/// base for all ConcurrentMaps.
template <class EntryTy>
class ConcurrentMapBase<EntryTy, false> {
protected:
struct Node {
std::atomic<Node*> Left;
std::atomic<Node*> Right;
EntryTy Payload;
template <class... Args>
Node(Args &&... args)
: Left(nullptr), Right(nullptr), Payload(std::forward<Args>(args)...) {}
Node(const Node &) = delete;
Node &operator=(const Node &) = delete;
#ifndef NDEBUG
void dump() const {
auto L = Left.load(std::memory_order_acquire);
auto R = Right.load(std::memory_order_acquire);
printf("\"%p\" [ label = \" {<f0> %08lx | {<f1> | <f2>}}\" "
"style=\"rounded\" shape=\"record\"];\n",
this, (long) Payload.getKeyValueForDump());
if (L) {
L->dump();
printf("\"%p\":f1 -> \"%p\":f0;\n", this, L);
}
if (R) {
R->dump();
printf("\"%p\":f2 -> \"%p\":f0;\n", this, R);
}
}
#endif
};
std::atomic<Node*> Root;
constexpr ConcurrentMapBase() : Root(nullptr) {}
// Implicitly trivial destructor.
~ConcurrentMapBase() = default;
void destroyNode(Node *node) {
assert(node && "destroying null node");
// Destroy the node's payload.
node->~Node();
// Deallocate the node.
free(node);
}
};
/// The partial specialization of ConcurrentMapBase which provides a
/// non-trivial destructor.
template <class EntryTy>
class ConcurrentMapBase<EntryTy, true>
: protected ConcurrentMapBase<EntryTy, false> {
protected:
using super = ConcurrentMapBase<EntryTy, false>;
using Node = typename super::Node;
constexpr ConcurrentMapBase() {}
~ConcurrentMapBase() {
destroyTree(this->Root);
}
private:
void destroyTree(const std::atomic<Node*> &edge) {
// This can be a relaxed load because destruction is not allowed to race
// with other operations.
auto node = edge.load(std::memory_order_relaxed);
if (!node) return;
// Destroy the node's children.
destroyTree(node->Left);
destroyTree(node->Right);
// Destroy the node itself.
this->destroyNode(node);
}
};
/// A concurrent map that is implemented using a binary tree. It supports
/// concurrent insertions but does not support removals or rebalancing of
/// the tree.
///
/// The entry type must provide the following operations:
///
/// /// For debugging purposes only. Summarize this key as an integer value.
/// intptr_t getKeyIntValueForDump() const;
///
/// /// A ternary comparison. KeyTy is the type of the key provided
/// /// to find or getOrInsert.
/// int compareWithKey(KeyTy key) const;
///
/// /// Return the amount of extra trailing space required by an entry,
/// /// where KeyTy is the type of the first argument to getOrInsert and
/// /// ArgTys is the type of the remaining arguments.
/// static size_t getExtraAllocationSize(KeyTy key, ArgTys...)
///
/// /// Return the amount of extra trailing space that was requested for
/// /// this entry. This method is only used to compute the size of the
/// /// object during node deallocation; it does not need to return a
/// /// correct value so long as the allocator's Deallocate implementation
/// /// ignores this argument.
/// size_t getExtraAllocationSize() const;
///
/// If ProvideDestructor is false, the destructor will be trivial. This
/// can be appropriate when the object is declared at global scope.
template <class EntryTy, bool ProvideDestructor = true>
class ConcurrentMap
: private ConcurrentMapBase<EntryTy, ProvideDestructor> {
using super = ConcurrentMapBase<EntryTy, ProvideDestructor>;
using Node = typename super::Node;
/// Inherited from base class:
/// std::atomic<Node*> Root;
using super::Root;
/// This member stores the address of the last node that was found by the
/// search procedure. We cache the last search to accelerate code that
/// searches the same value in a loop.
std::atomic<Node*> LastSearch;
public:
constexpr ConcurrentMap() : LastSearch(nullptr) {}
ConcurrentMap(const ConcurrentMap &) = delete;
ConcurrentMap &operator=(const ConcurrentMap &) = delete;
// ConcurrentMap<T, false> must have a trivial destructor.
~ConcurrentMap() = default;
public:
#ifndef NDEBUG
void dump() const {
auto R = Root.load(std::memory_order_acquire);
printf("digraph g {\n"
"graph [ rankdir = \"TB\"];\n"
"node [ fontsize = \"16\" ];\n"
"edge [ ];\n");
if (R) {
R->dump();
}
printf("\n}\n");
}
#endif
/// Search for a value by key \p Key.
/// \returns a pointer to the value or null if the value is not in the map.
template <class KeyTy>
EntryTy *find(const KeyTy &key) {
// Check if we are looking for the same key that we looked for in the last
// time we called this function.
if (Node *last = LastSearch.load(std::memory_order_acquire)) {
if (last->Payload.compareWithKey(key) == 0)
return &last->Payload;
}
// Search the tree, starting from the root.
Node *node = Root.load(std::memory_order_acquire);
while (node) {
int comparisonResult = node->Payload.compareWithKey(key);
if (comparisonResult == 0) {
LastSearch.store(node, std::memory_order_release);
return &node->Payload;
} else if (comparisonResult < 0) {
node = node->Left.load(std::memory_order_acquire);
} else {
node = node->Right.load(std::memory_order_acquire);
}
}
return nullptr;
}
/// Get or create an entry in the map.
///
/// \returns the entry in the map and whether a new node was added (true)
/// or already existed (false)
template <class KeyTy, class... ArgTys>
std::pair<EntryTy*, bool> getOrInsert(KeyTy key, ArgTys &&... args) {
// Check if we are looking for the same key that we looked for the
// last time we called this function.
if (Node *last = LastSearch.load(std::memory_order_acquire)) {
if (last && last->Payload.compareWithKey(key) == 0)
return { &last->Payload, false };
}
// The node we allocated.
Node *newNode = nullptr;
// Start from the root.
auto edge = &Root;
while (true) {
// Load the edge.
Node *node = edge->load(std::memory_order_acquire);
// If there's a node there, it's either a match or we're going to
// one of its children.
if (node) {
searchFromNode:
// Compare our key against the node's key.
int comparisonResult = node->Payload.compareWithKey(key);
// If it's equal, we can use this node.
if (comparisonResult == 0) {
// Destroy the node we allocated before if we're carrying one around.
if (newNode) this->destroyNode(newNode);
// Cache and report that we found an existing node.
LastSearch.store(node, std::memory_order_release);
return { &node->Payload, false };
}
// Otherwise, select the appropriate child edge and descend.
edge = (comparisonResult < 0 ? &node->Left : &node->Right);
continue;
}
// Create a new node.
if (!newNode) {
size_t allocSize =
sizeof(Node) + EntryTy::getExtraAllocationSize(key, args...);
void *memory;
if (posix_memalign(&memory, alignof(Node), allocSize))
abort();
newNode = ::new (memory) Node(key, std::forward<ArgTys>(args)...);
}
// Try to set the edge to the new node.
if (std::atomic_compare_exchange_strong_explicit(edge, &node, newNode,
std::memory_order_acq_rel,
std::memory_order_acquire)) {
// If that succeeded, cache and report that we created a new node.
LastSearch.store(newNode, std::memory_order_release);
return { &newNode->Payload, true };
}
// Otherwise, we lost the race because some other thread initialized
// the edge before us. node will be set to the current value;
// repeat the search from there.
assert(node && "spurious failure from compare_exchange_strong?");
goto searchFromNode;
}
}
};
/// A minimal implementation of a growable array with no runtime dependencies.
template<class Element>
class MiniVector {
Element *first;
size_t size, capacity;
public:
MiniVector() : first(nullptr), size(0), capacity(0) {
static_assert(std::is_trivial<Element>::value,
"only implemented for trivial types");
}
~MiniVector() { free(first); }
MiniVector(const MiniVector &) = delete;
Element *begin() { return first; }
Element *end() { return first + size; }
void push_back(const Element &e) {
if (size >= capacity) {
capacity = capacity ? capacity*2 : 8;
first = (Element*)realloc(first, capacity * sizeof(Element));
if (!first)
abort();
}
first[size++] = e;
}
void clear_and_shrink_to_fit() {
free(first);
first = nullptr;
size = 0;
capacity = 0;
}
};
/// An append-only array that can be read without taking locks. Writes
/// are still locked and serialized, but only with respect to other
/// writes.
template <class ElemTy> struct ConcurrentReadableArray {
private:
/// The struct used for the array's storage. The `Elem` member is
/// considered to be the first element of a variable-length array,
/// whose size is determined by the allocation. The `Capacity` member
/// from `ConcurrentReadableArray` indicates how large it can be.
struct Storage {
std::atomic<size_t> Count;
typename std::aligned_storage<sizeof(ElemTy), alignof(ElemTy)>::type Elem;
static Storage *allocate(size_t capacity) {
auto size = sizeof(Storage) + (capacity - 1) * sizeof(Storage().Elem);
auto *ptr = reinterpret_cast<Storage *>(malloc(size));
if (!ptr) abort();
ptr->Count.store(0, std::memory_order_relaxed);
return ptr;
}
void deallocate() {
for (size_t i = 0; i < Count; ++i) {
data()[i].~ElemTy();
}
free(this);
}
ElemTy *data() {
return reinterpret_cast<ElemTy *>(&Elem);
}
};
size_t Capacity;
std::atomic<size_t> ReaderCount;
std::atomic<Storage *> Elements;
pthread_mutex_t WriterMutex;
MiniVector<Storage *> FreeList;
void incrementReaders() {
ReaderCount.fetch_add(1, std::memory_order_acquire);
}
void decrementReaders() {
ReaderCount.fetch_sub(1, std::memory_order_release);
}
void deallocateFreeList() {
for (Storage *storage : FreeList)
storage->deallocate();
FreeList.clear_and_shrink_to_fit();
}
public:
struct Snapshot {
ConcurrentReadableArray *Array;
const ElemTy *Start;
size_t Count;
Snapshot(ConcurrentReadableArray *array, const ElemTy *start, size_t count)
: Array(array), Start(start), Count(count) {}
Snapshot(const Snapshot &other)
: Array(other.Array), Start(other.Start), Count(other.Count) {
Array->incrementReaders();
}
~Snapshot() {
Array->decrementReaders();
}
const ElemTy *begin() { return Start; }
const ElemTy *end() { return Start + Count; }
size_t count() { return Count; }
};
// This type cannot be safely copied, moved, or deleted.
ConcurrentReadableArray(const ConcurrentReadableArray &) = delete;
ConcurrentReadableArray(ConcurrentReadableArray &&) = delete;
ConcurrentReadableArray &operator=(const ConcurrentReadableArray &) = delete;
ConcurrentReadableArray()
: Capacity(0), ReaderCount(0), Elements(nullptr) {
pthread_mutex_init(&WriterMutex, nullptr);
}
~ConcurrentReadableArray() {
assert(ReaderCount.load(std::memory_order_acquire) == 0 &&
"deallocating ConcurrentReadableArray with outstanding snapshots");
deallocateFreeList();
pthread_mutex_destroy(&WriterMutex);
}
void push_back(const ElemTy &elem) {
pthread_mutex_lock(&WriterMutex);
SWIFT_DEFER { pthread_mutex_unlock(&WriterMutex); };
auto *storage = Elements.load(std::memory_order_relaxed);
auto count = storage ? storage->Count.load(std::memory_order_relaxed) : 0;
if (count >= Capacity) {
auto newCapacity = std::max((size_t)16, count * 2);
auto *newStorage = Storage::allocate(newCapacity);
if (storage) {
std::copy_n(storage->data(), count, newStorage->data());
newStorage->Count.store(count, std::memory_order_relaxed);
FreeList.push_back(storage);
}
storage = newStorage;
Capacity = newCapacity;
Elements.store(storage, std::memory_order_release);
}
new(&storage->data()[count]) ElemTy(elem);
storage->Count.store(count + 1, std::memory_order_release);
if (ReaderCount.load(std::memory_order_acquire) == 0)
deallocateFreeList();
}
Snapshot snapshot() {
incrementReaders();
auto *storage = Elements.load(SWIFT_MEMORY_ORDER_CONSUME);
if (storage == nullptr) {
return Snapshot(this, nullptr, 0);
}
auto count = storage->Count.load(std::memory_order_acquire);
const auto *ptr = storage->data();
return Snapshot(this, ptr, count);
}
};
}} // end namespace swift::overrides
#endif // SWIFT_RUNTIME_CONCURRENTUTILS_H