-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathsystem.c
369 lines (319 loc) · 12.6 KB
/
system.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*
* rv32emu is freely redistributable under the MIT License. See the file
* "LICENSE" for information on usage and redistribution of this file.
*/
#include <assert.h>
#include "system.h"
#if !RV32_HAS(ELF_LOADER)
void emu_update_uart_interrupts(riscv_t *rv)
{
vm_attr_t *attr = PRIV(rv);
u8250_update_interrupts(attr->uart);
if (attr->uart->pending_intrs)
attr->plic->active |= IRQ_UART_BIT;
else
attr->plic->active &= ~IRQ_UART_BIT;
plic_update_interrupts(attr->plic);
}
void emu_update_vblk_interrupts(riscv_t *rv)
{
vm_attr_t *attr = PRIV(rv);
if (attr->vblk->interrupt_status)
attr->plic->active |= IRQ_VBLK_BIT;
else
attr->plic->active &= ~IRQ_VBLK_BIT;
plic_update_interrupts(attr->plic);
}
#endif
static bool ppn_is_valid(riscv_t *rv, uint32_t ppn)
{
vm_attr_t *attr = PRIV(rv);
const uint32_t nr_pg_max = attr->mem_size / RV_PG_SIZE;
return ppn < nr_pg_max;
}
#define PAGE_TABLE(ppn) \
ppn_is_valid(rv, ppn) \
? (uint32_t *) (attr->mem->mem_base + (ppn << (RV_PG_SHIFT))) \
: NULL
/* Walk through page tables and get the corresponding PTE by virtual address if
* exists
* @rv: RISC-V emulator
* @vaddr: virtual address
* @level: the level of which the PTE is located
* @return: NULL if a not found or fault else the corresponding PTE
*/
pte_t *mmu_walk(riscv_t *rv, const uint32_t vaddr, uint32_t *level)
{
vm_attr_t *attr = PRIV(rv);
uint32_t ppn = rv->csr_satp & MASK(22);
/* root page table */
uint32_t *page_table = PAGE_TABLE(ppn);
if (!page_table)
return NULL;
for (int i = 1; i >= 0; i--) {
*level = 2 - i;
uint32_t vpn =
(vaddr >> RV_PG_SHIFT >> (i * (RV_PG_SHIFT - 2))) & MASK(10);
pte_t *pte = page_table + vpn;
uint8_t XWRV_bit = (*pte & MASK(4));
switch (XWRV_bit) {
case NEXT_PG_TBL: /* next level of the page table */
ppn = (*pte >> (RV_PG_SHIFT - 2));
page_table = PAGE_TABLE(ppn);
if (!page_table)
return NULL;
break;
case RO_PAGE:
case RW_PAGE:
case EO_PAGE:
case RX_PAGE:
case RWX_PAGE:
ppn = (*pte >> (RV_PG_SHIFT - 2));
if (*level == 1 &&
unlikely(ppn & MASK(10))) /* misaligned superpage */
return NULL;
return pte; /* leaf PTE */
case RESRV_PAGE1:
case RESRV_PAGE2:
default:
return NULL;
}
}
return NULL;
}
/* Verify the PTE and generate corresponding faults if needed
* @op: the operation
* @rv: RISC-V emulator
* @pte: to be verified pte
* @vaddr: the corresponding virtual address to cause fault
* @return: false if a any fault is generated which caused by violating the
* access permission else true
*/
/* FIXME: handle access fault, addr out of range check */
#define MMU_FAULT_CHECK(op, rv, pte, vaddr, access_bits) \
mmu_##op##_fault_check(rv, pte, vaddr, access_bits)
#define MMU_FAULT_CHECK_IMPL(op, pgfault) \
bool mmu_##op##_fault_check(riscv_t *rv, pte_t *pte, uint32_t vaddr, \
uint32_t access_bits) \
{ \
uint32_t scause; \
uint32_t stval = vaddr; \
switch (access_bits) { \
case PTE_R: \
scause = PAGEFAULT_LOAD; \
break; \
case PTE_W: \
scause = PAGEFAULT_STORE; \
break; \
case PTE_X: \
scause = PAGEFAULT_INSN; \
break; \
default: \
__UNREACHABLE; \
break; \
} \
if (pte && (!(*pte & PTE_V))) { \
SET_CAUSE_AND_TVAL_THEN_TRAP(rv, scause, stval); \
return false; \
} \
if (!(pte && (*pte & access_bits))) { \
SET_CAUSE_AND_TVAL_THEN_TRAP(rv, scause, stval); \
return false; \
} \
/* \
* (1) When MXR=0, only loads from pages marked readable (R=1) will \
* succeed. \
* \
* (2) When MXR=1, loads from pages marked either readable or \
* executable (R=1 or X=1) will succeed. \
*/ \
if (pte && ((!(SSTATUS_MXR & rv->csr_sstatus) && !(*pte & PTE_R) && \
(access_bits == PTE_R)) || \
((SSTATUS_MXR & rv->csr_sstatus) && \
!((*pte & PTE_R) | (*pte & PTE_X)) && \
(access_bits == PTE_R)))) { \
SET_CAUSE_AND_TVAL_THEN_TRAP(rv, scause, stval); \
return false; \
} \
/* \
* When SUM=0, S-mode memory accesses to pages that are accessible by \
* U-mode will fault. \
*/ \
if (pte && rv->priv_mode == RV_PRIV_S_MODE && \
!(SSTATUS_SUM & rv->csr_sstatus) && (*pte & PTE_U)) { \
SET_CAUSE_AND_TVAL_THEN_TRAP(rv, scause, stval); \
return false; \
} \
/* PTE not found, map it in handler */ \
if (!pte) { \
SET_CAUSE_AND_TVAL_THEN_TRAP(rv, scause, stval); \
return false; \
} \
/* valid PTE */ \
return true; \
}
MMU_FAULT_CHECK_IMPL(ifetch, pagefault_insn)
MMU_FAULT_CHECK_IMPL(read, pagefault_load)
MMU_FAULT_CHECK_IMPL(write, pagefault_store)
/* The IO handler that operates when the Memory Management Unit (MMU)
* is enabled during system emulation is responsible for managing
* input/output operations. These callbacks are designed to implement
* the riscv_io_t interface, ensuring compatibility and consistency to
* the structure required by the interface. As a result, the riscv_io_t
* interface can be reused.
*
* The IO handlers include:
* - mmu_ifetch
* - mmu_read_w
* - mmu_read_s
* - mmu_read_b
* - mmu_write_w
* - mmu_write_s
* - mmu_write_b
*/
extern bool need_retranslate;
static uint32_t mmu_ifetch(riscv_t *rv, const uint32_t vaddr)
{
/*
* Do not call rv->io.mem_translate() because the basic block might be
* retranslated and the corresponding PTE is NULL, get_ppn_and_offset()
* cannot work on a NULL PTE.
*/
if (!rv->csr_satp)
return memory_ifetch(vaddr);
uint32_t level;
pte_t *pte = mmu_walk(rv, vaddr, &level);
bool ok = MMU_FAULT_CHECK(ifetch, rv, pte, vaddr, PTE_X);
if (unlikely(!ok)) {
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
CHECK_PENDING_SIGNAL(rv, need_handle_signal);
if (need_handle_signal)
return 0;
#endif
pte = mmu_walk(rv, vaddr, &level);
}
if (need_retranslate)
return 0;
get_ppn_and_offset();
return memory_ifetch(ppn | offset);
}
static uint32_t mmu_read_w(riscv_t *rv, const uint32_t vaddr)
{
uint32_t addr = rv->io.mem_translate(rv, vaddr, R);
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
if (need_handle_signal)
return 0;
#endif
if (addr == vaddr || addr < PRIV(rv)->mem->mem_size)
return memory_read_w(addr);
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
MMIO_READ();
#endif
__UNREACHABLE;
}
static uint16_t mmu_read_s(riscv_t *rv, const uint32_t vaddr)
{
uint32_t addr = rv->io.mem_translate(rv, vaddr, R);
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
if (need_handle_signal)
return 0;
#endif
return memory_read_s(addr);
}
static uint8_t mmu_read_b(riscv_t *rv, const uint32_t vaddr)
{
uint32_t addr = rv->io.mem_translate(rv, vaddr, R);
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
if (need_handle_signal)
return 0;
#endif
if (addr == vaddr || addr < PRIV(rv)->mem->mem_size)
return memory_read_b(addr);
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
MMIO_READ();
#endif
__UNREACHABLE;
}
static void mmu_write_w(riscv_t *rv, const uint32_t vaddr, const uint32_t val)
{
uint32_t addr = rv->io.mem_translate(rv, vaddr, W);
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
if (need_handle_signal)
return;
#endif
if (addr == vaddr || addr < PRIV(rv)->mem->mem_size) {
memory_write_w(addr, (uint8_t *) &val);
return;
}
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
MMIO_WRITE();
#endif
}
static void mmu_write_s(riscv_t *rv, const uint32_t vaddr, const uint16_t val)
{
uint32_t addr = rv->io.mem_translate(rv, vaddr, W);
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
if (need_handle_signal)
return;
#endif
if (addr == vaddr)
return memory_write_s(addr, (uint8_t *) &val);
memory_write_s(addr, (uint8_t *) &val);
}
static void mmu_write_b(riscv_t *rv, const uint32_t vaddr, const uint8_t val)
{
uint32_t addr = rv->io.mem_translate(rv, vaddr, W);
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
if (need_handle_signal)
return;
#endif
if (addr == vaddr || addr < PRIV(rv)->mem->mem_size) {
memory_write_b(addr, (uint8_t *) &val);
return;
}
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
MMIO_WRITE();
#endif
}
/*
* TODO: dTLB can be introduced here to
* cache the gVA to gPA tranlation.
*/
uint32_t mmu_translate(riscv_t *rv, uint32_t vaddr, bool rw)
{
if (!rv->csr_satp)
return vaddr;
uint32_t level;
pte_t *pte = mmu_walk(rv, vaddr, &level);
bool ok = rw ? MMU_FAULT_CHECK(read, rv, pte, vaddr, PTE_R)
: MMU_FAULT_CHECK(write, rv, pte, vaddr, PTE_W);
if (unlikely(!ok)) {
#if RV32_HAS(SYSTEM) && !RV32_HAS(ELF_LOADER)
CHECK_PENDING_SIGNAL(rv, need_handle_signal);
if (need_handle_signal)
return 0;
#endif
pte = mmu_walk(rv, vaddr, &level);
}
get_ppn_and_offset();
return ppn | offset;
}
riscv_io_t mmu_io = {
/* memory read interface */
.mem_ifetch = mmu_ifetch,
.mem_read_w = mmu_read_w,
.mem_read_s = mmu_read_s,
.mem_read_b = mmu_read_b,
/* memory write interface */
.mem_write_w = mmu_write_w,
.mem_write_s = mmu_write_s,
.mem_write_b = mmu_write_b,
/* VA2PA handler */
.mem_translate = mmu_translate,
/* system services or essential routines */
.on_ecall = ecall_handler,
.on_ebreak = ebreak_handler,
.on_memcpy = memcpy_handler,
.on_memset = memset_handler,
.on_trap = trap_handler,
};