-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrandcrack.py
273 lines (220 loc) · 8.94 KB
/
randcrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class RandCrack:
def __init__(self):
self.counter = 0
self.mt = []
self.state = False
def submit(self, num):
if self.state:
raise ValueError("Already got enough bits")
bits = self._to_bitarray(num)
assert (all([x == 0 or x == 1 for x in bits]))
self.counter += 1
self.mt.append(self._harden_inverse(bits))
if self.counter == 624:
self._regen()
self.state = True
def _predict_32(self):
if not self.state:
raise ValueError("Didn't recieve enough bits to predict")
if self.counter >= 624:
self._regen()
self.counter += 1
return self._harden(self.mt[self.counter - 1])
def predict_getrandbits(self, k):
if not self.state:
raise ValueError("Didn't recieve enough bits to predict")
if k == 0:
return 0
words = (k - 1) // 32 + 1
res = []
for i in range(words):
r = self._predict_32()
if k < 32:
r = [0] * (32 - k) + r[:k]
res = r + res
k -= 32
return self._to_int(res)
def predict_randbelow(self, n):
k = n.bit_length()
r = self.predict_getrandbits(k)
while r >= n:
r = self.predict_getrandbits(k)
return r
def predict_randrange(self, start, stop=None, step=1, _int=int):
# Adopted messy code from random.py module
# In fact only changed _randbelow() method calls to predict_randbelow()
istart = _int(start)
if istart != start:
raise ValueError("non-integer arg 1 for randrange()")
if stop is None:
if istart > 0:
return self.predict_randbelow(istart)
raise ValueError("empty range for randrange()")
# stop argument supplied.
istop = _int(stop)
if istop != stop:
raise ValueError("non-integer stop for randrange()")
width = istop - istart
if step == 1 and width > 0:
return istart + self.predict_randbelow(width)
if step == 1:
raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))
# Non-unit step argument supplied.
istep = _int(step)
if istep != step:
raise ValueError("non-integer step for randrange()")
if istep > 0:
n = (width + istep - 1) // istep
elif istep < 0:
n = (width + istep + 1) // istep
else:
raise ValueError("zero step for randrange()")
if n <= 0:
raise ValueError("empty range for randrange()")
return istart + istep * self.predict_randbelow(n)
def predict_randint(self, a, b):
return self.predict_randrange(a, b + 1)
def predict_choice(self, seq):
try:
i = self.predict_randbelow(len(seq))
except ValueError:
raise IndexError('Cannot choose from an empty sequence')
return seq[i]
def predict_random(self):
a = self._to_int(self._predict_32()) >> 5
b = self._to_int(self._predict_32()) >> 6
return ((a*67108864.0)+b)/9007199254740992.0
def _to_bitarray(self, num):
k = [int(x) for x in bin(num)[2:]]
return [0] * (32 - len(k)) + k
def _to_int(self, bits):
return int("".join(str(i) for i in bits), 2)
def _or_nums(self, a, b):
if len(a) < 32:
a = [0] * (32 - len(a)) + a
if len(b) < 32:
b = [0] * (32 - len(b)) + b
return [x[0] | x[1] for x in zip(a, b)]
def _xor_nums(self, a, b):
if len(a) < 32:
a = [0] * (32 - len(a)) + a
if len(b) < 32:
b = [0] * (32 - len(b)) + b
return [x[0] ^ x[1] for x in zip(a, b)]
def _and_nums(self, a, b):
if len(a) < 32:
a = [0] * (32 - len(a)) + a
if len(b) < 32:
b = [0] * (32 - len(b)) + b
return [x[0] & x[1] for x in zip(a, b)]
def _decode_harden_midop(self, enc, and_arr, shift):
NEW = 0
XOR = 1
OK = 2
work = []
for i in range(32):
work.append((NEW, enc[i]))
changed = True
while changed:
changed = False
for i in range(32):
status = work[i][0]
data = work[i][1]
if i >= 32 - shift and status == NEW:
work[i] = (OK, data)
changed = True
elif i < 32 - shift and status == NEW:
if and_arr[i] == 0:
work[i] = (OK, data)
changed = True
else:
work[i] = (XOR, data)
changed = True
elif status == XOR:
i_other = i + shift
if work[i_other][0] == OK:
work[i] = (OK, data ^ work[i_other][1])
changed = True
return [x[1] for x in work]
def _harden(self, bits):
bits = self._xor_nums(bits, bits[:-11])
bits = self._xor_nums(bits, self._and_nums(bits[7:] + [0] * 7, self._to_bitarray(0x9d2c5680)))
bits = self._xor_nums(bits, self._and_nums(bits[15:] + [0] * 15, self._to_bitarray(0xefc60000)))
bits = self._xor_nums(bits, bits[:-18])
return bits
def _harden_inverse(self, bits):
# inverse for: bits = _xor_nums(bits, bits[:-11])
bits = self._xor_nums(bits, bits[:-18])
# inverse for: bits = _xor_nums(bits, _and_nums(bits[15:] + [0] * 15 , _to_bitarray(0xefc60000)))
bits = self._decode_harden_midop(bits, self._to_bitarray(0xefc60000), 15)
# inverse for: bits = _xor_nums(bits, _and_nums(bits[7:] + [0] * 7 , _to_bitarray(0x9d2c5680)))
bits = self._decode_harden_midop(bits, self._to_bitarray(0x9d2c5680), 7)
# inverse for: bits = _xor_nums(bits, bits[:-11])
bits = self._xor_nums(bits, [0] * 11 + bits[:11] + [0] * 10)
bits = self._xor_nums(bits, bits[11:21])
return bits
def _regen(self):
# C code translated from python sources
N = 624
M = 397
MATRIX_A = 0x9908b0df
LOWER_MASK = 0x7fffffff
UPPER_MASK = 0x80000000
mag01 = [self._to_bitarray(0), self._to_bitarray(MATRIX_A)]
l_bits = self._to_bitarray(LOWER_MASK)
u_bits = self._to_bitarray(UPPER_MASK)
for kk in range(0, N - M):
y = self._or_nums(self._and_nums(self.mt[kk], u_bits), self._and_nums(self.mt[kk + 1], l_bits))
self.mt[kk] = self._xor_nums(self._xor_nums(self.mt[kk + M], y[:-1]), mag01[y[-1] & 1])
for kk in range(N - M, N - 1):
y = self._or_nums(self._and_nums(self.mt[kk], u_bits), self._and_nums(self.mt[kk + 1], l_bits))
self.mt[kk] = self._xor_nums(self._xor_nums(self.mt[kk + (M - N)], y[:-1]), mag01[y[-1] & 1])
y = self._or_nums(self._and_nums(self.mt[N - 1], u_bits), self._and_nums(self.mt[0], l_bits))
self.mt[N - 1] = self._xor_nums(self._xor_nums(self.mt[M - 1], y[:-1]), mag01[y[-1] & 1])
self.counter = 0
def untwist(self):
w, n, m = 32, 624, 397
a = 0x9908B0DF
# I like bitshifting more than these custom functions...
MT = [self._to_int(x) for x in self.mt]
for i in range(n-1, -1, -1):
result = 0
tmp = MT[i]
tmp ^= MT[(i + m) % n]
if tmp & (1 << w-1):
tmp ^= a
result = (tmp << 1) & (1 << w-1)
tmp = MT[(i - 1 + n) % n]
tmp ^= MT[(i + m-1) % n]
if tmp & (1 << w-1):
tmp ^= a
result |= 1
result |= (tmp << 1) & ((1 << w-1) - 1)
MT[i] = result
self.mt = [self._to_bitarray(x) for x in MT]
def offset(self, n):
if n >= 0:
[self._predict_32() for _ in range(n)]
else:
[self.untwist() for _ in range(-n // 624 + 1)]
[self._predict_32() for _ in range(624 - (-n % 624))]
if __name__ == "__main__":
import random
import time
print("Testing random module cracker...")
cracker = RandCrack()
random.seed(time.time())
unknown = [random.getrandbits(32) for _ in range(1000)]
for i in range(624):
cracker.submit(random.randint(0, 4294967294))
# Future values after syncing
percentage = sum([random.getrandbits(32) == cracker.predict_getrandbits(32) for x in range(1000)]) / 10
print(f"Guessing next 32000 random bits success rate: {percentage}%")
assert percentage == 100
# Previous values
cracker.offset(-1000) # From guessing future
cracker.offset(-624) # From submitting
cracker.offset(-1000) # Back to start of unknown
percentage = sum([unknown[i] == cracker.predict_getrandbits(32) for i in range(1000)]) / 10
print(f"Guessing previous 32000 random bits success rate: {percentage}%")
assert percentage == 100