forked from TheAlgorithms/C
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsol1.c
138 lines (125 loc) · 2.87 KB
/
sol1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/**
* \file
* \brief [Problem 23](https://projecteuler.net/problem=23) solution
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#ifdef _OPENMP
#include <omp.h>
#endif
/**
* Returns:
* -1 if N is deficient
* 1 if N is abundant
* 0 if N is perfect
*/
char get_perfect_number(unsigned long N)
{
unsigned long sum = 1;
char ret = 0;
for (unsigned long i = 2; i * i <= N; i++)
{
if (N % i == 0)
{
sum += i;
unsigned long tmp = N / i;
if (tmp != i)
{
sum += tmp;
}
}
}
ret = sum == N ? 0 : (sum > N ? 1 : -1);
// #ifdef DEBUG
// printf("%5lu: %5lu : %d\n", N, sum, ret);
// #endif
return ret;
}
/**
* Is the given number an abundant number (1) or not (0)
*/
unsigned long is_abundant(unsigned long N)
{
return get_perfect_number(N) == 1 ? 1 : 0;
}
/**
* Find the next abundant number after N and not including N
*/
unsigned long get_next_abundant(unsigned long N)
{
unsigned long i;
for (i = N + 1; !is_abundant(i); i++)
{
;
}
return i;
}
/**
* check if a given number can be represented as a sum
* of two abundant numbers.
* \returns 1 - if yes
* \returns 0 - if not
*/
char is_sum_of_abundant(unsigned long N)
{
/* optimized logic:
* i + j = N where both i and j should be abundant
* hence we can simply check for j = N - i as we loop through i
*/
for (unsigned long i = get_next_abundant(1); i <= (N >> 1);
i = get_next_abundant(i))
{
if (is_abundant(N - i))
{
#ifdef DEBUG
printf("\t%4lu + %4lu = %4lu\n", i, N - i, N);
#endif
return 1;
}
}
return 0;
}
/** Main function */
int main(int argc, char **argv)
{
unsigned long MAX_N = 28123; /* upper limit of numbers to check */
unsigned long sum = 0;
if (argc == 2)
{
MAX_N = strtoul(argv[1], NULL, 10);
}
#ifdef _OPENMP
printf("Using OpenMP parallleization with %d threads\n",
omp_get_max_threads());
#else
printf("Not using parallleization!\n");
#endif
double total_duration = 0.f;
long i;
#ifdef _OPENMP
#pragma omp parallel for reduction(+ : sum) schedule(runtime)
#endif
for (i = 1; i <= MAX_N; i++)
{
clock_t start_time = clock();
if (!is_sum_of_abundant(i))
{
sum += i;
}
clock_t end_time = clock();
total_duration += (double)(end_time - start_time) / CLOCKS_PER_SEC;
printf("... %5lu: %8lu\r", i, sum);
if (i % 100 == 0)
{
fflush(stdout);
}
}
printf("Time taken: %.4g s\n", total_duration);
printf(
"Sum of numbers that cannot be represented as sum of two abundant "
"numbers : %lu\n",
sum);
return 0;
}