-
Notifications
You must be signed in to change notification settings - Fork 264
/
Copy pathtest_arch.cpp
217 lines (187 loc) · 8.36 KB
/
test_arch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include <numeric>
#include <type_traits>
#include "test_sum.hpp"
#include "test_utils.hpp"
#ifndef XSIMD_DEFAULT_ARCH
static_assert(xsimd::default_arch::supported(), "default arch must be supported");
static_assert(std::is_same<xsimd::default_arch, xsimd::best_arch>::value, "default arch is the best available");
static_assert(xsimd::supported_architectures::contains<xsimd::default_arch>(), "default arch is supported");
static_assert(xsimd::all_architectures::contains<xsimd::default_arch>(), "default arch is a valid arch");
#endif
#if !XSIMD_WITH_SVE
static_assert((std::is_same<xsimd::default_arch, xsimd::neon64>::value || !xsimd::neon64::supported()), "on arm, without sve, the best we can do is neon64");
#endif
struct check_supported
{
template <class Arch>
void operator()(Arch) const
{
static_assert(Arch::supported(), "not supported?");
}
};
struct check_cpu_has_intruction_set
{
template <class Arch>
void operator()(Arch arch) const
{
static_assert(std::is_same<decltype(xsimd::available_architectures().has(arch)), bool>::value,
"cannot test instruction set availability on CPU");
}
};
struct check_available
{
template <class Arch>
void operator()(Arch) const
{
CHECK_UNARY(Arch::available());
}
};
template <class T>
static bool try_load()
{
static_assert(std::is_same<xsimd::batch<T>, decltype(xsimd::load_aligned(std::declval<T*>()))>::value,
"loading the expected type");
static_assert(std::is_same<xsimd::batch<T>, decltype(xsimd::load_unaligned(std::declval<T*>()))>::value,
"loading the expected type");
return true;
}
template <class... Tys>
void try_loads()
{
(void)std::initializer_list<bool> { try_load<Tys>()... };
}
TEST_CASE("[multi arch support]")
{
SUBCASE("xsimd::supported_architectures")
{
xsimd::supported_architectures::for_each(check_supported {});
}
SUBCASE("xsimd::available_architectures::has")
{
xsimd::all_architectures::for_each(check_cpu_has_intruction_set {});
}
SUBCASE("xsimd::default_arch::name")
{
constexpr char const* name = xsimd::default_arch::name();
(void)name;
}
SUBCASE("xsimd::default_arch::available")
{
CHECK_UNARY(xsimd::default_arch::available());
}
SUBCASE("xsimd::arch_list<...>::alignment()")
{
static_assert(xsimd::arch_list<xsimd::generic>::alignment() == 0,
"generic");
static_assert(xsimd::arch_list<xsimd::sse2>::alignment()
== xsimd::sse2::alignment(),
"one architecture");
static_assert(xsimd::arch_list<xsimd::avx512f, xsimd::sse2>::alignment()
== xsimd::avx512f::alignment(),
"two architectures");
}
SUBCASE("xsimd::dispatch(...)")
{
float data[17] = { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f, 16.f, 17.f };
float ref = std::accumulate(std::begin(data), std::end(data), 0.f);
// platform specific
{
auto dispatched = xsimd::dispatch(sum {});
float res = dispatched(data, 17);
CHECK_EQ(ref, res);
}
// only highest available
{
auto dispatched = xsimd::dispatch<xsimd::arch_list<xsimd::best_arch>>(sum {});
float res = dispatched(data, 17);
CHECK_EQ(ref, res);
}
#if XSIMD_WITH_AVX && XSIMD_WITH_SSE2
static_assert(xsimd::supported_architectures::contains<xsimd::avx>() && xsimd::supported_architectures::contains<xsimd::sse2>(), "consistent supported architectures");
{
auto dispatched = xsimd::dispatch<xsimd::arch_list<xsimd::avx, xsimd::sse2>>(sum {});
float res = dispatched(data, 17);
CHECK_EQ(ref, res);
}
#endif
}
SUBCASE("xsimd::make_sized_batch_t")
{
using batch4f = xsimd::make_sized_batch_t<float, 4>;
using batch2d = xsimd::make_sized_batch_t<double, 2>;
using batch4c = xsimd::make_sized_batch_t<std::complex<float>, 4>;
using batch2z = xsimd::make_sized_batch_t<std::complex<double>, 2>;
using batch4i32 = xsimd::make_sized_batch_t<int32_t, 4>;
using batch4u32 = xsimd::make_sized_batch_t<uint32_t, 4>;
using batch8f = xsimd::make_sized_batch_t<float, 8>;
using batch4d = xsimd::make_sized_batch_t<double, 4>;
using batch8c = xsimd::make_sized_batch_t<std::complex<float>, 8>;
using batch4z = xsimd::make_sized_batch_t<std::complex<double>, 4>;
using batch8i32 = xsimd::make_sized_batch_t<int32_t, 8>;
using batch8u32 = xsimd::make_sized_batch_t<uint32_t, 8>;
#if XSIMD_WITH_SSE2 || XSIMD_WITH_NEON || XSIMD_WITH_NEON64 || XSIMD_WITH_SVE || (XSIMD_WITH_RVV && XSIMD_RVV_BITS == 128)
CHECK_EQ(4, size_t(batch4f::size));
CHECK_EQ(4, size_t(batch4c::size));
CHECK_EQ(4, size_t(batch4i32::size));
CHECK_EQ(4, size_t(batch4u32::size));
CHECK_UNARY(bool(std::is_same<float, batch4f::value_type>::value));
CHECK_UNARY(bool(std::is_same<std::complex<float>, batch4c::value_type>::value));
CHECK_UNARY(bool(std::is_same<int32_t, batch4i32::value_type>::value));
CHECK_UNARY(bool(std::is_same<uint32_t, batch4u32::value_type>::value));
#if XSIMD_WITH_SSE2 || XSIMD_WITH_NEON64 || XSIMD_WITH_SVE || XSIMD_WITH_RVV
CHECK_EQ(2, size_t(batch2d::size));
CHECK_EQ(2, size_t(batch2z::size));
CHECK_UNARY(bool(std::is_same<double, batch2d::value_type>::value));
CHECK_UNARY(bool(std::is_same<std::complex<double>, batch2z::value_type>::value));
#else
CHECK_UNARY(bool(std::is_same<void, batch2d>::value));
#endif
#endif
#if !XSIMD_WITH_AVX && !XSIMD_WITH_FMA3 && !(XSIMD_WITH_SVE && XSIMD_SVE_BITS == 256) && !(XSIMD_WITH_RVV && XSIMD_RVV_BITS == 256)
CHECK_UNARY(bool(std::is_same<void, batch8f>::value));
CHECK_UNARY(bool(std::is_same<void, batch4d>::value));
CHECK_UNARY(bool(std::is_same<void, batch8c>::value));
CHECK_UNARY(bool(std::is_same<void, batch4z>::value));
CHECK_UNARY(bool(std::is_same<void, batch8i32>::value));
CHECK_UNARY(bool(std::is_same<void, batch8u32>::value));
#else
CHECK_EQ(8, size_t(batch8f::size));
CHECK_EQ(8, size_t(batch8i32::size));
CHECK_EQ(8, size_t(batch8u32::size));
CHECK_EQ(4, size_t(batch4d::size));
CHECK_EQ(8, size_t(batch8c::size));
CHECK_EQ(4, size_t(batch4z::size));
CHECK_UNARY(bool(std::is_same<float, batch8f::value_type>::value));
CHECK_UNARY(bool(std::is_same<double, batch4d::value_type>::value));
CHECK_UNARY(bool(std::is_same<int32_t, batch8i32::value_type>::value));
CHECK_UNARY(bool(std::is_same<uint32_t, batch8u32::value_type>::value));
CHECK_UNARY(bool(std::is_same<std::complex<float>, batch8c::value_type>::value));
CHECK_UNARY(bool(std::is_same<std::complex<double>, batch4z::value_type>::value));
#endif
}
SUBCASE("xsimd::load_(un)aligned(...) return type")
{
// make sure load_aligned / load_unaligned work for the default arch and
// return the appropriate type.
using type_list = xsimd::mpl::type_list<short, int, long, float, std::complex<float>
#if XSIMD_WITH_NEON64 || !XSIMD_WITH_NEON
,
double, std::complex<double>
#endif
>;
try_loads<type_list>();
}
}
#endif