-
Notifications
You must be signed in to change notification settings - Fork 264
/
Copy pathtest_batch_manip.cpp
265 lines (221 loc) · 7.56 KB
/
test_batch_manip.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
namespace xsimd
{
template <typename T, std::size_t N>
struct init_swizzle_base
{
using swizzle_vector_type = std::array<T, N>;
swizzle_vector_type lhs_in, exped_reverse, exped_fill, exped_dup, exped_ror, exped_rol;
template <int... Indices>
std::vector<swizzle_vector_type> create_swizzle_vectors()
{
std::vector<swizzle_vector_type> vects;
/* Generate input data */
for (std::size_t i = 0; i < N; ++i)
{
lhs_in[i] = static_cast<T>(2 * i + 1);
}
vects.push_back(std::move(lhs_in));
/* Expected reversed data */
for (std::size_t i = 0; i < N; ++i)
{
exped_reverse[i] = lhs_in[N - 1 - i];
exped_fill[i] = lhs_in[N - 1];
exped_dup[i] = lhs_in[2 * (i / 2)];
exped_ror[i] = lhs_in[(i - 1) % N];
exped_rol[i] = lhs_in[(i + 1) % N];
}
vects.push_back(std::move(exped_reverse));
vects.push_back(std::move(exped_fill));
vects.push_back(std::move(exped_dup));
vects.push_back(std::move(exped_ror));
vects.push_back(std::move(exped_rol));
return vects;
}
};
}
template <class T>
struct Reversor
{
static constexpr T get(T i, T n)
{
return n - 1 - i;
}
};
template <class T>
struct Last
{
static constexpr T get(T, T n)
{
return n - 1;
}
};
template <class T>
struct Dup
{
static constexpr T get(T i, T)
{
return 2 * (i / 2);
}
};
template <class T>
struct as_index
{
using type = xsimd::as_unsigned_integer_t<T>;
};
template <class T>
struct as_index<std::complex<T>> : as_index<T>
{
};
template <class B>
struct insert_test
{
using batch_type = B;
using value_type = typename B::value_type;
static constexpr size_t size = B::size;
void insert_first()
{
value_type fill_value = 0;
value_type sentinel_value = 1;
batch_type v(fill_value);
batch_type w = insert(v, sentinel_value, ::xsimd::index<0>());
std::array<value_type, batch_type::size> data;
w.store_unaligned(data.data());
CHECK_SCALAR_EQ(data.front(), sentinel_value);
for (size_t i = 1; i < batch_type::size; ++i)
CHECK_SCALAR_EQ(data[i], fill_value);
}
void insert_last()
{
value_type fill_value = 0;
value_type sentinel_value = 1;
batch_type v(fill_value);
batch_type w = insert(v, sentinel_value, ::xsimd::index<batch_type::size - 1>());
std::array<value_type, batch_type::size> data;
w.store_unaligned(data.data());
for (size_t i = 0; i < batch_type::size - 1; ++i)
CHECK_SCALAR_EQ(data[i], fill_value);
CHECK_SCALAR_EQ(data.back(), sentinel_value);
}
};
TEST_CASE_TEMPLATE("[insert_test]", B, BATCH_TYPES)
{
insert_test<B> Test;
SUBCASE("insert_first")
{
Test.insert_first();
}
SUBCASE("insert_last")
{
Test.insert_last();
}
}
template <class B>
struct swizzle_test
{
using batch_type = B;
using value_type = typename B::value_type;
using arch_type = typename B::arch_type;
static constexpr size_t size = B::size;
void rotate_right()
{
xsimd::init_swizzle_base<value_type, size> swizzle_base;
auto swizzle_vecs = swizzle_base.create_swizzle_vectors();
auto v_lhs = swizzle_vecs[0];
auto v_exped = swizzle_vecs[4];
B b_lhs = B::load_unaligned(v_lhs.data());
B b_exped = B::load_unaligned(v_exped.data());
B b_res = xsimd::rotate_right<1>(b_lhs);
CHECK_BATCH_EQ(b_res, b_exped);
}
void rotate_left()
{
xsimd::init_swizzle_base<value_type, size> swizzle_base;
auto swizzle_vecs = swizzle_base.create_swizzle_vectors();
auto v_lhs = swizzle_vecs[0];
auto v_exped = swizzle_vecs[5];
B b_lhs = B::load_unaligned(v_lhs.data());
B b_exped = B::load_unaligned(v_exped.data());
B b_res = xsimd::rotate_left<1>(b_lhs);
CHECK_BATCH_EQ(b_res, b_exped);
}
void swizzle_reverse()
{
xsimd::init_swizzle_base<value_type, size> swizzle_base;
auto swizzle_vecs = swizzle_base.create_swizzle_vectors();
auto v_lhs = swizzle_vecs[0];
auto v_exped = swizzle_vecs[1];
B b_lhs = B::load_unaligned(v_lhs.data());
B b_exped = B::load_unaligned(v_exped.data());
using index_type = typename as_index<value_type>::type;
auto index_batch = xsimd::make_batch_constant<index_type, Reversor<index_type>, arch_type>();
B b_res = xsimd::swizzle(b_lhs, index_batch);
CHECK_BATCH_EQ(b_res, b_exped);
B b_dyres = xsimd::swizzle(b_lhs, (xsimd::batch<index_type, arch_type>)index_batch);
CHECK_BATCH_EQ(b_dyres, b_exped);
}
void swizzle_fill()
{
xsimd::init_swizzle_base<value_type, size> swizzle_base;
auto swizzle_vecs = swizzle_base.create_swizzle_vectors();
auto v_lhs = swizzle_vecs[0];
auto v_exped = swizzle_vecs[2];
B b_lhs = B::load_unaligned(v_lhs.data());
B b_exped = B::load_unaligned(v_exped.data());
using index_type = typename as_index<value_type>::type;
auto index_batch = xsimd::make_batch_constant<index_type, Last<index_type>, arch_type>();
B b_res = xsimd::swizzle(b_lhs, index_batch);
CHECK_BATCH_EQ(b_res, b_exped);
B b_dyres = xsimd::swizzle(b_lhs, (xsimd::batch<index_type, arch_type>)index_batch);
CHECK_BATCH_EQ(b_dyres, b_exped);
}
void swizzle_dup()
{
xsimd::init_swizzle_base<value_type, size> swizzle_base;
auto swizzle_vecs = swizzle_base.create_swizzle_vectors();
auto v_lhs = swizzle_vecs[0];
auto v_exped = swizzle_vecs[3];
B b_lhs = B::load_unaligned(v_lhs.data());
B b_exped = B::load_unaligned(v_exped.data());
using index_type = typename as_index<value_type>::type;
auto index_batch = xsimd::make_batch_constant<index_type, Dup<index_type>, arch_type>();
B b_res = xsimd::swizzle(b_lhs, index_batch);
CHECK_BATCH_EQ(b_res, b_exped);
B b_dyres = xsimd::swizzle(b_lhs, (xsimd::batch<index_type, arch_type>)index_batch);
CHECK_BATCH_EQ(b_dyres, b_exped);
}
};
TEST_CASE_TEMPLATE("[swizzle]", B, BATCH_SWIZZLE_TYPES)
{
swizzle_test<B> Test;
SUBCASE("reverse")
{
Test.swizzle_reverse();
}
SUBCASE("rotate")
{
Test.rotate_left();
Test.rotate_right();
}
SUBCASE("fill")
{
Test.swizzle_fill();
}
SUBCASE("dup")
{
Test.swizzle_dup();
}
}
#endif