-
Notifications
You must be signed in to change notification settings - Fork 265
/
Copy pathtest_bitwise_cast.cpp
222 lines (202 loc) · 6.85 KB
/
test_bitwise_cast.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
#if !XSIMD_WITH_NEON || XSIMD_WITH_NEON64
template <class CP>
struct bitwise_cast_test
{
static constexpr size_t N = CP::size;
using int32_batch = xsimd::batch<int32_t>;
using int64_batch = xsimd::batch<int64_t>;
using float_batch = xsimd::batch<float>;
using double_batch = xsimd::batch<double>;
using int32_vector = std::vector<int32_t, xsimd::default_allocator<int32_t>>;
using int64_vector = std::vector<int64_t, xsimd::default_allocator<int64_t>>;
using float_vector = std::vector<float, xsimd::default_allocator<float>>;
using double_vector = std::vector<double, xsimd::default_allocator<double>>;
int32_vector ftoi32_res;
int32_vector dtoi32_res;
int64_vector ftoi64_res;
int64_vector dtoi64_res;
float_vector i32tof_res;
float_vector i64tof_res;
float_vector dtof_res;
double_vector i32tod_res;
double_vector i64tod_res;
double_vector ftod_res;
bitwise_cast_test()
: ftoi32_res(2 * N)
, dtoi32_res(2 * N)
, ftoi64_res(N)
, dtoi64_res(N)
, i32tof_res(2 * N)
, i64tof_res(2 * N)
, dtof_res(2 * N)
, i32tod_res(N)
, i64tod_res(N)
, ftod_res(N)
{
{
int32_batch input = i32_input();
bitcast b;
b.i32[0] = input.get(0);
b.i32[1] = input.get(1);
std::fill(i32tof_res.begin(), i32tof_res.end(), b.f[0]);
std::fill(i32tod_res.begin(), i32tod_res.end(), b.d);
}
{
int64_batch input = i64_input();
bitcast b;
b.i64 = input.get(0);
std::fill(i64tod_res.begin(), i64tod_res.end(), b.d);
for (size_t i = 0; i < N; ++i)
{
i64tof_res[2 * i] = b.f[0];
i64tof_res[2 * i + 1] = b.f[1];
}
}
{
float_batch input = f_input();
bitcast b;
b.f[0] = input.get(0);
b.f[1] = input.get(1);
std::fill(ftoi32_res.begin(), ftoi32_res.end(), b.i32[0]);
std::fill(ftoi64_res.begin(), ftoi64_res.end(), b.i64);
std::fill(ftod_res.begin(), ftod_res.end(), b.d);
}
{
double_batch input = d_input();
bitcast b;
b.d = input.get(0);
// std::fill(dtoi32_res.begin(), dtoi32_res.end(), b.i32[0]);
std::fill(dtoi64_res.begin(), dtoi64_res.end(), b.i64);
for (size_t i = 0; i < N; ++i)
{
dtoi32_res[2 * i] = b.i32[0];
dtoi32_res[2 * i + 1] = b.i32[1];
dtof_res[2 * i] = b.f[0];
dtof_res[2 * i + 1] = b.f[1];
}
}
}
void test_to_int32()
{
int32_vector i32vres(int32_batch::size);
{
int32_batch i32bres = xsimd::bitwise_cast<int32_t>(f_input());
i32bres.store_aligned(i32vres.data());
INFO("to_int32(float)");
CHECK_VECTOR_EQ(i32vres, ftoi32_res);
}
{
int32_batch i32bres = xsimd::bitwise_cast<int32_t>(d_input());
i32bres.store_aligned(i32vres.data());
INFO("to_int32(double)");
CHECK_VECTOR_EQ(i32vres, dtoi32_res);
}
}
void test_to_int64()
{
int64_vector i64vres(int64_batch::size);
{
int64_batch i64bres = xsimd::bitwise_cast<int64_t>(f_input());
i64bres.store_aligned(i64vres.data());
INFO("to_int64(float)");
CHECK_VECTOR_EQ(i64vres, ftoi64_res);
}
{
int64_batch i64bres = xsimd::bitwise_cast<int64_t>(d_input());
i64bres.store_aligned(i64vres.data());
INFO("to_int64(double)");
CHECK_VECTOR_EQ(i64vres, dtoi64_res);
}
}
void test_to_float()
{
float_vector fvres(float_batch::size);
{
float_batch fbres = xsimd::bitwise_cast<float>(i32_input());
fbres.store_aligned(fvres.data());
INFO("to_float(int32_t)");
CHECK_VECTOR_EQ(fvres, i32tof_res);
}
{
float_batch fbres = xsimd::bitwise_cast<float>(i64_input());
fbres.store_aligned(fvres.data());
INFO("to_float(int64_t)");
CHECK_VECTOR_EQ(fvres, i64tof_res);
}
{
float_batch fbres = xsimd::bitwise_cast<float>(d_input());
fbres.store_aligned(fvres.data());
INFO("to_float(double)");
CHECK_VECTOR_EQ(fvres, dtof_res);
}
}
void test_to_double()
{
double_vector dvres(double_batch::size);
{
double_batch dbres = xsimd::bitwise_cast<double>(i32_input());
dbres.store_aligned(dvres.data());
INFO("to_double(int32_t)");
CHECK_VECTOR_EQ(dvres, i32tod_res);
}
{
double_batch dbres = xsimd::bitwise_cast<double>(i64_input());
dbres.store_aligned(dvres.data());
INFO("to_double(int64_t)");
CHECK_VECTOR_EQ(dvres, i64tod_res);
}
{
double_batch dbres = xsimd::bitwise_cast<double>(f_input());
dbres.store_aligned(dvres.data());
INFO("to_double(float)");
CHECK_VECTOR_EQ(dvres, ftod_res);
}
}
private:
int32_batch i32_input() const
{
return int32_batch(2);
}
int64_batch i64_input() const
{
return int64_batch(2);
}
float_batch f_input() const
{
return float_batch(3.);
}
double_batch d_input() const
{
return double_batch(2.5e17);
}
union bitcast
{
float f[2];
int32_t i32[2];
int64_t i64;
double d;
};
};
TEST_CASE_TEMPLATE("[bitwise cast]", B, CONVERSION_TYPES)
{
bitwise_cast_test<B> Test;
SUBCASE("to_int32") { Test.test_to_int32(); }
SUBCASE("to_int64") { Test.test_to_int64(); }
SUBCASE("to_float") { Test.test_to_float(); }
SUBCASE("to_double") { Test.test_to_double(); }
}
#endif
#endif