-
Notifications
You must be signed in to change notification settings - Fork 264
/
Copy pathtest_complex_power.cpp
265 lines (242 loc) · 8.54 KB
/
test_complex_power.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
template <class B>
struct complex_power_test
{
using batch_type = B;
using real_batch_type = typename B::real_batch;
using value_type = typename B::value_type;
using real_value_type = typename value_type::value_type;
static constexpr size_t size = B::size;
using vector_type = std::vector<value_type>;
using real_vector_type = std::vector<real_value_type>;
size_t nb_input;
real_vector_type lhs_p;
vector_type lhs_nn;
vector_type lhs_pn;
vector_type lhs_np;
vector_type lhs_pp;
vector_type rhs;
vector_type expected;
vector_type res;
complex_power_test()
{
nb_input = 10000 * size;
lhs_p.resize(nb_input);
lhs_nn.resize(nb_input);
lhs_pn.resize(nb_input);
lhs_np.resize(nb_input);
lhs_pp.resize(nb_input);
rhs.resize(nb_input);
for (size_t i = 0; i < nb_input; ++i)
{
real_value_type real = (real_value_type(i) / 4 + real_value_type(1.2) * std::sqrt(real_value_type(i + 0.25))) / 100;
real_value_type imag = (real_value_type(i) / 7 + real_value_type(1.7) * std::sqrt(real_value_type(i + 0.37))) / 100;
lhs_p[i] = real;
lhs_nn[i] = value_type(-real, -imag);
lhs_pn[i] = value_type(real, -imag);
lhs_np[i] = value_type(-real, imag);
lhs_pp[i] = value_type(real, imag);
rhs[i] = value_type(real_value_type(10.2) / (i + 2) + real_value_type(0.25),
real_value_type(9.1) / (i + 3) + real_value_type(0.45));
}
expected.resize(nb_input);
res.resize(nb_input);
}
void test_abs()
{
real_vector_type real_expected(nb_input), real_res(nb_input);
std::transform(lhs_np.cbegin(), lhs_np.cend(), real_expected.begin(),
[](const value_type& v)
{ using std::abs; return abs(v); });
batch_type in;
real_batch_type out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_np, i);
out = abs(in);
detail::store_batch(out, real_res, i);
}
size_t diff = detail::get_nb_diff(real_res, real_expected);
CHECK_EQ(diff, 0);
}
void test_arg()
{
real_vector_type real_expected(nb_input), real_res(nb_input);
std::transform(lhs_np.cbegin(), lhs_np.cend(), real_expected.begin(),
[](const value_type& v)
{ using std::arg; return arg(v); });
batch_type in;
real_batch_type out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_np, i);
out = arg(in);
detail::store_batch(out, real_res, i);
}
size_t diff = detail::get_nb_diff(real_res, real_expected);
CHECK_EQ(diff, 0);
}
void test_pow()
{
std::transform(lhs_np.cbegin(), lhs_np.cend(), rhs.cbegin(), expected.begin(),
[](const value_type& l, const value_type& r)
{ using std::pow; return pow(l, r); });
batch_type lhs_in, rhs_in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(lhs_in, lhs_np, i);
detail::load_batch(rhs_in, rhs, i);
out = pow(lhs_in, rhs_in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff_near(res, expected, std::numeric_limits<real_value_type>::epsilon());
CHECK_EQ(diff, 0);
}
void test_pow_real_complex()
{
std::transform(lhs_p.cbegin(), lhs_p.cend(), lhs_pp.cbegin(), expected.begin(),
[](const real_value_type& l, const value_type& r)
{ using std::pow; return pow(l, r); });
batch_type rhs_in, out;
real_batch_type lhs_in;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(lhs_in, lhs_p, i);
detail::load_batch(rhs_in, lhs_pp, i);
out = pow(lhs_in, rhs_in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff_near(res, expected, std::numeric_limits<real_value_type>::epsilon());
CHECK_EQ(diff, 0);
}
void test_pow_complex_real()
{
std::transform(lhs_pp.cbegin(), lhs_pp.cend(), lhs_p.cbegin(), expected.begin(),
[](const value_type& l, const real_value_type& r)
{ using std::pow; return pow(l, r); });
batch_type rhs_in, out;
real_batch_type lhs_in;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(lhs_in, lhs_p, i);
detail::load_batch(rhs_in, lhs_pp, i);
out = pow(lhs_in, rhs_in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff_near(res, expected, std::numeric_limits<real_value_type>::epsilon());
CHECK_EQ(diff, 0);
}
void test_sqrt_nn()
{
std::transform(lhs_nn.cbegin(), lhs_nn.cend(), expected.begin(),
[](const value_type& v)
{ using std::sqrt; return sqrt(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_nn, i);
out = sqrt(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_sqrt_pn()
{
std::transform(lhs_pn.cbegin(), lhs_pn.cend(), expected.begin(),
[](const value_type& v)
{ using std::sqrt; return sqrt(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_pn, i);
out = sqrt(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_sqrt_np()
{
std::transform(lhs_np.cbegin(), lhs_np.cend(), expected.begin(),
[](const value_type& v)
{ using std::sqrt; return sqrt(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_np, i);
out = sqrt(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_sqrt_pp()
{
std::transform(lhs_pp.cbegin(), lhs_pp.cend(), expected.begin(),
[](const value_type& v)
{ using std::sqrt; return sqrt(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_pp, i);
out = sqrt(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
};
TEST_CASE_TEMPLATE("[complex power]", B, BATCH_COMPLEX_TYPES)
{
complex_power_test<B> Test;
SUBCASE("abs")
{
Test.test_abs();
}
SUBCASE("arg")
{
Test.test_arg();
}
SUBCASE("pow")
{
Test.test_pow();
}
SUBCASE("pow real complex")
{
Test.test_pow_real_complex();
}
SUBCASE("pow complex real")
{
Test.test_pow_complex_real();
}
SUBCASE("sqrt_nn")
{
Test.test_sqrt_nn();
}
SUBCASE("sqrt_pn")
{
Test.test_sqrt_pn();
}
SUBCASE("sqrt_np")
{
Test.test_sqrt_np();
}
SUBCASE("sqrt_pp")
{
Test.test_sqrt_pp();
}
}
#endif