-
Notifications
You must be signed in to change notification settings - Fork 265
/
Copy pathtest_error_gamma.cpp
170 lines (159 loc) · 5.72 KB
/
test_error_gamma.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
template <class B>
struct error_gamma_test
{
using batch_type = B;
using value_type = typename B::value_type;
static constexpr size_t size = B::size;
using vector_type = std::vector<value_type>;
size_t nb_input;
vector_type input;
vector_type gamma_input;
vector_type gamma_neg_input;
vector_type expected;
vector_type res;
error_gamma_test()
{
nb_input = size * 10000;
input.resize(nb_input);
gamma_input.resize(nb_input);
gamma_neg_input.resize(nb_input);
for (size_t i = 0; i < nb_input; ++i)
{
input[i] = value_type(-1.5) + i * value_type(3) / nb_input;
gamma_input[i] = value_type(0.5) + i * value_type(3) / nb_input;
gamma_neg_input[i] = value_type(-3.99) + i * value_type(0.9) / nb_input;
}
expected.resize(nb_input);
res.resize(nb_input);
}
void test_error_functions()
{
// erf
{
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ return std::erf(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
out = erf(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("erf");
CHECK_EQ(diff, 0);
}
// erfc
{
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ return std::erfc(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
out = erfc(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("erfc");
CHECK_EQ(diff, 0);
}
}
void test_gamma_functions()
{
// tgamma
{
std::transform(gamma_input.cbegin(), gamma_input.cend(), expected.begin(),
[](const value_type& v)
{ return std::tgamma(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, gamma_input, i);
out = tgamma(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("tgamma");
CHECK_EQ(diff, 0);
}
// tgamma (negative input)
{
std::transform(gamma_neg_input.cbegin(), gamma_neg_input.cend(), expected.begin(),
[](const value_type& v)
{ return std::tgamma(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, gamma_neg_input, i);
out = tgamma(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("tgamma (negative input)");
CHECK_EQ(diff, 0);
}
// lgamma
{
std::transform(gamma_input.cbegin(), gamma_input.cend(), expected.begin(),
[](const value_type& v)
{ return std::lgamma(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, gamma_input, i);
out = lgamma(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("lgamma");
CHECK_EQ(diff, 0);
}
#if !(XSIMD_WITH_AVX && !XSIMD_WITH_AVX2)
// tgamma (negative input)
{
std::transform(gamma_neg_input.cbegin(), gamma_neg_input.cend(), expected.begin(),
[](const value_type& v)
{ return std::lgamma(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, gamma_neg_input, i);
out = lgamma(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("lgamma (negative input)");
CHECK_EQ(diff, 0);
}
#endif
}
};
TEST_CASE_TEMPLATE("[error gamma]", B, BATCH_FLOAT_TYPES)
{
error_gamma_test<B> Test;
SUBCASE("error")
{
Test.test_error_functions();
}
SUBCASE("gamma")
{
Test.test_gamma_functions();
}
}
#endif