# Clone the repository
git clone <repository-url>
cd LitBench
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
Set up your HuggingFace token:
export HF_TOKEN="your_huggingface_token"
Set up Reddit API credentials (required for dataset creation):
export REDDIT_CLIENT_ID="your_reddit_client_id"
export REDDIT_CLIENT_SECRET="your_reddit_client_secret"
A guide to creating credentials can be found here
Optional: Configure Weights & Biases:
export WANDB_API_KEY="your_wandb_api_key"
export WANDB_PROJECT="reward_model_training"
Rehydrate the test dataset from Reddit:
python scripts/rehydrate.py
This takes 1-2 hours due to Reddit rate limits.
Make training scripts executable:
chmod +x training/train_BTRM.sh
chmod +x training/train_GenRM.sh
Train Bradley-Terry Reward Model:
./training/train_BTRM.sh
Or train Generative Reward Model:
./training/train_GenRM.sh
Edit training/train_BTRM.sh
or training/train_GenRM.sh
to modify:
- Base model (default:
meta-llama/Llama-3.2-1B
) - Batch size (default: 128 effective batch size)
- Output directory
- Training parameters