
Feature | Description |
---|---|
Parametric Fitting | Fit distributions on empirical data X. |
Non-Parametric Fitting | Fit distributions on empirical data X using non-parametric approaches (quantile, percentiles). |
Discrete Fitting | Fit distributions on empirical data X using binomial distribution. |
Predict | Compute probabilities for response variables y. |
Synthetic Data | Generate synthetic data. |
Plots | Varoius plotting functionalities. |
- Example Notebooks: Examples
- Blog Posts: Medium
- Documentation: Website
- Bug Reports and Feature Requests: GitHub Issues
-
For the parametric approach, The distfit library can determine the best fit across 89 theoretical distributions. To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein, Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale, and arg parameters are returned, such as mean and standard deviation for normal distribution.
-
For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method. Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method, the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled.
-
In case the dataset contains discrete values, the distift library contains the option for discrete fitting. The best fit is then derived using the binomial distribution.
pip install distfit
pip install git+https://github.com/erdogant/distfit
import distfit
print(distfit.__version__)
# Import library
from distfit import distfit
# [distfit] >INFO> fit
# [distfit] >INFO> transform
# [distfit] >INFO> [norm ] [0.00 sec] [RSS: 0.00108326] [loc=-0.048 scale=1.997]
# [distfit] >INFO> [expon ] [0.00 sec] [RSS: 0.404237] [loc=-6.897 scale=6.849]
# [distfit] >INFO> [pareto ] [0.00 sec] [RSS: 0.404237] [loc=-536870918.897 scale=536870912.000]
# [distfit] >INFO> [dweibull ] [0.06 sec] [RSS: 0.0115552] [loc=-0.031 scale=1.722]
# [distfit] >INFO> [t ] [0.59 sec] [RSS: 0.00108349] [loc=-0.048 scale=1.997]
# [distfit] >INFO> [genextreme] [0.17 sec] [RSS: 0.00300806] [loc=-0.806 scale=1.979]
# [distfit] >INFO> [gamma ] [0.05 sec] [RSS: 0.00108459] [loc=-1862.903 scale=0.002]
# [distfit] >INFO> [lognorm ] [0.32 sec] [RSS: 0.00121597] [loc=-110.597 scale=110.530]
# [distfit] >INFO> [beta ] [0.10 sec] [RSS: 0.00105629] [loc=-16.364 scale=32.869]
# [distfit] >INFO> [uniform ] [0.00 sec] [RSS: 0.287339] [loc=-6.897 scale=14.437]
# [distfit] >INFO> [loggamma ] [0.12 sec] [RSS: 0.00109042] [loc=-370.746 scale=55.722]
# [distfit] >INFO> Compute confidence intervals [parametric]
# [distfit] >INFO> Compute significance for 9 samples.
# [distfit] >INFO> Multiple test correction method applied: [fdr_bh].
# [distfit] >INFO> Create PDF plot for the parametric method.
# [distfit] >INFO> Mark 5 significant regions
# [distfit] >INFO> Estimated distribution: beta [loc:-16.364265, scale:32.868811]
After we have a fitted model, we can make some predictions using the theoretical distributions. After making some predictions, we can plot again but now the predictions are automatically included.
The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html
The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html
from scipy.stats import binom
# Generate random numbers
# Set parameters for the test-case
n = 8
p = 0.5
# Generate 10000 samples of the distribution of (n, p)
X = binom(n, p).rvs(10000)
print(X)
# [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5
# 4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7
# 5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...]
# Import distfit
from distfit import distfit
# Initialize for discrete distribution fitting
dfit = distfit(method='discrete')
# Run distfit to and determine whether we can find the parameters from the data.
dfit.fit_transform(X)
# [distfit] >fit..
# [distfit] >transform..
# [distfit] >Fit using binomial distribution..
# [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11]
# [distfit] >Compute confidence interval [discrete]
Setting up and maintaining bnlearn has been possible thanks to users and contributors. Thanks to: