Skip to content

Releases: modelscope/ms-swift

Patch release v3.10.3

30 Nov 06:35

Choose a tag to compare

Patch release v3.10.2

23 Nov 09:58

Choose a tag to compare

Patch release v3.10.1

16 Nov 16:50

Choose a tag to compare

v3.10.0

11 Nov 12:14

Choose a tag to compare

中文版

新特性

  1. Megatron-SWIFT
    a. Mcore-Bridge发布。支持直接加载和存储 safetensors 格式的模型权重;支持LoRA增量权重双向转换;支持多机转换。文档参考:https://swift.readthedocs.io/zh-cn/latest/Megatron-SWIFT/Mcore-Bridge.html 。训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/megatron/mcore_bridge
    b. megatron-core 版本升级至0.14.0。
    c. 多模态模型训练新增 vit_lraligner_lr 参数支持。
    d. 新增存储优化参数:async_save, save_retain_interval等。
    e. 支持batched mrope,加速Qwen3-VL、Qwen2.5-VL等模型的训练速度。
  2. RL
    a. GRPO LoRA 训练权重同步速度优化,具体参考:https://swift.readthedocs.io/zh-cn/latest/Instruction/GRPO/GetStarted/GRPO.html#id3
    b. GRPO 训练显存优化以降低峰值显存占用。
    c. RLVR 新算法支持:RLOO,文档参考:https://swift.readthedocs.io/zh-cn/latest/Instruction/GRPO/AdvancedResearch/RLOO.htmlREINFORCE++ Baseline,文档参考:https://swift.readthedocs.io/zh-cn/latest/Instruction/GRPO/AdvancedResearch/REINFORCEPP.html
    d. GKD 支持使用 vLLM 加速策略模型rollout,并新增参数teacher_deepspeed额外控制教师模型分片策略。文档参考:https://swift.readthedocs.io/zh-cn/latest/Instruction/GKD.html
    e. GSPO 支持使用liger_kernel减少显存使用。
  3. 训练
    a. PT/SFT/采样/数据蒸馏中支持了RAY,具体参考文档:https://swift.readthedocs.io/zh-cn/latest/Instruction/Ray.html
    b. Qwen3-VL、Qwen3-Omni支持混合模态数据训练;Qwen3-VL支持ulysses序列并行。训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/models/qwen3_vl
    c. 支持 yaml 方式配置训练参数,脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/yaml
    d. 新增 FSDP2 训练启动案例,脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/train/multi-gpu/fsdp2_lora
    e. 新增自定义多模态模型注册最佳实践:https://swift.readthedocs.io/zh-cn/latest/BestPractices/MLLM-Registration.html
    f. embedding 训练中的 InfoNCE 损失与 Qwen3-Embedding 论文描述对齐。具体参考文档:https://swift.readthedocs.io/zh-cn/latest/BestPractices/Embedding.html
    g. 新增多标签分类训练案例,脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/train/seq_cls/multi_label
    h. agent_template 支持 seed-oss。感谢@hpsun1109的贡献。
  4. 全链路
    a. swift export支持 GPTQ-v2 量化,脚本参考:https://github.com/modelscope/ms-swift/blob/main/examples/export/quantize/gptq_v2.sh 。感谢@zzc0430的贡献。
    b. swift deploy vllm推理后端支持 DP 部署,使用--vllm_data_parallel_size参数。感谢@YushunXiang 的贡献。
    c. swift deploy 新增 health/ping endpoints。
    d. vLLM 部署新增参数 vllm_mm_processor_cache_gb/vllm_engine_kwargs

新模型

  1. 纯文本模型:
    a. Qwen/Qwen3Guard-Gen-0.6B系列
    b. MiniMax/MiniMax-M2
  2. 多模态模型:
    a. Qwen/Qwen3-VL-2B-Instruct系列
    b. deepseek-ai/DeepSeek-OCR,训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/models/deepseek_ocr
    c. PaddlePaddle/PaddleOCR-VL
    d. ZhipuAI/Glyph
    e. PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Thinking系列
    f. lmms-lab/LLaVA-OneVision-1.5-4B-Instruct系列

English Version

New Features

  1. Megatron-SWIFT
    a. Mcore-Bridge Release. Supports direct loading and saving of model weights in safetensors format; supports bidirectional conversion of LoRA incremental weights; supports multi-node conversion. Documentation: https://swift.readthedocs.io/en/latest/Megatron-SWIFT/Mcore-Bridge.html. Training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/megatron/mcore_bridge
    b. Upgraded megatron-core version to 0.14.0.
    c. Added vit_lr and aligner_lr parameter support for multimodal model training.
    d. Added storage optimization parameters: async_save, save_retain_interval, etc.
    e. Support for batched mrope to accelerate training speed of Qwen3-VL, Qwen2.5-VL, and other models.
  2. RL
    a. GRPO LoRA training weight synchronization speed optimization. Details: https://swift.readthedocs.io/en/latest/Instruction/GRPO/GetStarted/GRPO.html#memory-optimization-solutions-in-colocate-mode
    b. GRPO training memory optimization to reduce peak memory consumption.
    c. New RLVR algorithm support: RLOO, documentation: https://swift.readthedocs.io/en/latest/Instruction/GRPO/AdvancedResearch/RLOO.html. REINFORCE++ Baseline, documentation: https://swift.readthedocs.io/en/latest/Instruction/GRPO/AdvancedResearch/REINFORCEPP.html
    d. GKD supports using vLLM to accelerate policy model rollout, with new parameter teacher_deepspeed for additional control of teacher model sharding strategy. Documentation: https://swift.readthedocs.io/en/latest/Instruction/GKD.html
    e. GSPO supports using liger_kernel to reduce memory usage.
  3. Training
    a. RAY support added for PT/SFT/Sampling/Data Distillation, documentation: https://swift.readthedocs.io/en/latest/Instruction/Ray.html
    b. Qwen3-VL and Qwen3-Omni support mixed modality data training; Qwen3-VL supports Ulysses sequence parallelism. Training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/models/qwen3_vl
    c. Support for YAML-based training parameter configuration, scripts: https://github.com/modelscope/ms-swift/tree/main/examples/yaml
    d. Added FSDP2 training launch example, scripts: https://github.com/modelscope/ms-swift/tree/main/examples/train/multi-gpu/fsdp2_lora
    e. Added best practice for custom multimodal model registration: https://swift.readthedocs.io/en/latest/BestPractices/MLLM-Registration.html
    f. InfoNCE loss in embedding training aligned with Qwen3-Embedding paper description. Documentation: https://swift.readthedocs.io/en/latest/BestPractices/Embedding.html
    g. Added multi-label classification training example, scripts: https://github.com/modelscope/ms-swift/tree/main/examples/train/seq_cls/multi_label
    h. agent_template supports seed-oss. Thanks to @hpsun1109 for the contribution.
  4. Full Pipeline
    a. swift export supports GPTQ-v2 quantization, scripts: https://github.com/modelscope/ms-swift/blob/main/examples/export/quantize/gptq_v2.sh. Thanks to @zzc0430 for the contribution.
    b. swift deploy vLLM inference backend supports DP deployment, using --vllm_data_parallel_size parameter. Thanks to @YushunXiang for the contribution.
    c. swift deploy added health/ping endpoints.
    d. vLLM deployment added parameters vllm_mm_processor_cache_gb/vllm_engine_kwargs.

New Models

  1. Text-only models:
    a. Qwen/Qwen3Guard-Gen-0.6B series
    b. MiniMax/MiniMax-M2
  2. Multimodal models:
    a. Qwen/Qwen3-VL-2B-Instruct series
    b. deepseek-ai/DeepSeek-OCR, training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/models/deepseek_ocr
    c. PaddlePaddle/PaddleOCR-VL
    d. ZhipuAI/Glyph
    e. PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Thinking series
    f. lmms-lab/LLaVA-OneVision-1.5-4B-Instruct series

What's Changed

Read more

Patch release v3.9.3

04 Nov 13:46

Choose a tag to compare

Patch release v3.9.2

26 Oct 09:30

Choose a tag to compare

Patch release v3.9.1

19 Oct 16:50

Choose a tag to compare

v3.9.0

13 Oct 17:50

Choose a tag to compare

中文版

新特性

  1. Megatron-SWIFT
    a. 支持更多模型架构:Qwen3-VL, Qwen3-Omni, Qwen3-Next, Kimi-VL, InternVL3.5-HF等。完整的模型支持情况,参考支持的模型文档:https://swift.readthedocs.io/en/latest/Instruction/Supported-models-and-datasets.html
    b. 支持KTO训练,包括全参数/LoRA/MoE/多模态/Packing等训练技术等支持。感谢招商银行技术团队@kevssim 的贡献。训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/megatron/rlhf/kto
    c. 支持RM训练,包括全参数/LoRA/MoE/多模态/Packing等训练技术等支持。训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/megatron/rlhf/rm
    d. 支持序列分类模型架构,包括三种任务:regression、single_label_classification、multi_label_classification。训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/megatron/seq_cls
    e. 支持VPP并行技术,减少PP并行的计算空泡,提高GPU利用率,但会略微提高通信量。支持异构PP并行 pipeline_model_parallel_layout,自定义流水线并行(PP/VPP)布局。
    f. DPO等RLHF技术中的ref_model不初始化 main_grad 降低显存占用。
  2. 训练
    a. 序列并行优化,ulysses 和 ring-attention 支持混合使用,实现更长的序列处理能力。支持纯文本和多模态模型的SFT/DPO/GRPO训练。训练脚本参考:https://github.com/modelscope/ms-swift/blob/main/examples/train/sequence_parallel/sequence_parallel.sh
    b. 纯文本及多模态模型Embedding/Reranker/序列分类任务训练支持使用 padding_free 以节约显存资源并加速训练。
    c. Embedding和Reranker训练数据集格式重构,具体参考文档:https://swift.readthedocs.io/en/latest/BestPractices/Embedding.html, https://swift.readthedocs.io/en/latest/BestPractices/Reranker.html
    d. Agent template支持更多模型:deepseek_v3_1, qwen3_coder。(感谢@gakkiri ,@ray075hl 的贡献)
    e. load_from_cache_file 默认值从True改成False,避免因缓存原因导致的未知问题。
  3. RLHF
    a. GRPO支持CHORD算法,在GRPO训练中混合SFT训练,参考文档:https://swift.readthedocs.io/en/latest/Instruction/GRPO/AdvancedResearch/CHORD.html
    b. KTO支持padding free和packing以节约显存资源并加速训练。
    c. GRPO训练 padding_free重构,更好支持多模态模型。
    d. GRPO vLLM 支持PYTORCH_CUDA_ALLOC_CONF="expandable_segments:True"环境变量,减小显存碎片。
  4. 推理
    a. 支持Reranker任务的推理/部署 (pt/vllm),以及序列分类任务的推理部署(pt/vllm)。脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/deploy/reranker, https://github.com/modelscope/ms-swift/tree/main/examples/deploy/seq_cls

新模型

  1. 纯文本模型
    a. Qwen/Qwen3-Next-80B-A3B-Instruct系列,训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/models/qwen3_next
    b. ZhipuAI/GLM-4.6
    c. inclusionAI/Ling-mini-2.0; inclusionAI/Ring-mini-2.0系列
    d. iic/Tongyi-DeepResearch-30B-A3B
    e. ByteDance-Seed/Seed-OSS-36B-Instruct系列(感谢@hpsun1109 的贡献)
    f. deepseek-ai/DeepSeek-V3.1-Terminus
    g. PaddlePaddle/ERNIE-4.5-21B-A3B-Thinking
    h. google/embeddinggemma-300m(embedding模型)
  2. 多模态模型
    a. Qwen/Qwen3-VL-30B-A3B-Instruct系列,训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/models/qwen3_vl
    b. Qwen/Qwen3-Omni-30B-A3B-Instruct系列,训练脚本参考:https://github.com/modelscope/ms-swift/tree/main/examples/models/qwen3_omni
    c. Kwai-Keye/Keye-VL-1_5-8B(感谢@hellopahe 的贡献)
    d. OpenGVLab/InternVL3_5-1B-HF系列
    e. BytedanceDouyinContent/SAIL-VL2-2B系列
    f. stepfun-ai/Step-Audio-2-mini(感谢@CJack812 的贡献)

English Version

New Features

  1. Megatron-SWIFT
    a. More model architecture support: Qwen3-VL, Qwen3-Omni, Qwen3-Next, Kimi-VL, InternVL3.5-HF, etc. For a complete list of supported models, please refer to the Supported Models documentation: https://swift.readthedocs.io/en/latest/Instruction/Supported-models-and-datasets.html
    b. KTO training support, including full-parameter, LoRA, MoE, multimodal, and Packing training techniques. Special thanks to @kevssim from China Merchants Bank’s technical team for their contribution. Training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/megatron/rlhf/kto
    c. Reward Model training support, including full-parameter, LoRA, MoE, multimodal, and Packing training techniques. Training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/megatron/rlhf/rm
    d. Sequence classification model architecture support, covering three task types: regression, single_label_classification, and multi_label_classification. Training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/megatron/seq_cls
    e. Support for VPP (Virtual Pipeline Parallelism): reduces pipeline bubbles in PP (Pipeline Parallelism), improving GPU utilization at the cost of slightly increased communication overhead. Supports heterogeneous PP via pipeline_model_parallel_layout for custom PP/VPP pipeline layouts.
    f. In RLHF techniques such as DPO, the ref_model no longer initializes main_grad, reducing GPU memory consumption.
  2. Training
    a. Sequence parallelism optimization: Ulysses and Ring Attention can now be used together, enabling processing of even longer sequences. Supports SFT/DPO/GRPO training for both text-only and multimodal models. Training script: https://github.com/modelscope/ms-swift/blob/main/examples/train/sequence_parallel/sequence_parallel.sh
    b. Padding-free training is now supported for embedding, reranker, and sequence classification tasks on both text-only and multimodal models, saving GPU memory and accelerating training.
    c. Restructured dataset formats for embedding and reranker training. For details, refer to the documentation: https://swift.readthedocs.io/en/latest/BestPractices/Embedding.html, https://swift.readthedocs.io/en/latest/BestPractices/Reranker.html
    d. Agent templates support more models: deepseek_v3_1, qwen3_coder. (Thanks to contributions from @gakkiri and @ray075hl)
    e. Default value of load_from_cache_file changed from True to False to avoid unexpected issues caused by caching.
  3. RLHF
    a. GRPO now supports the CHORD algorithm, enabling mixed SFT training during GRPO. Documentation: https://swift.readthedocs.io/en/latest/Instruction/GRPO/AdvancedResearch/CHORD.html
    b. KTO supports padding-free and packing, reducing memory usage and accelerating training.
    c. Padding-free implementation in GRPO has been refactored for better multimodal model support.
    d. GRPO with vLLM now supports the environment variable PYTORCH_CUDA_ALLOC_CONF="expandable_segments:True" to reduce GPU memory fragmentation.
  4. Inference
    a. Inference and deployment support for Reranker tasks (PyTorch/vLLM) and sequence classification tasks (PyTorch/vLLM). Example scripts: https://github.com/modelscope/ms-swift/tree/main/examples/deploy/reranker, https://github.com/modelscope/ms-swift/tree/main/examples/deploy/seq_cls

New Models

New Models

  1. Text-only Models
    a. Qwen/Qwen3-Next-80B-A3B-Instruct series. Training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/models/qwen3_next
    b. ZhipuAI/GLM-4.6
    c. inclusionAI/Ling-mini-2.0; inclusionAI/Ring-mini-2.0 series
    d. iic/Tongyi-DeepResearch-30B-A3B
    e. ByteDance-Seed/Seed-OSS-36B-Instruct series (Thanks to @hpsun1109 for the contribution)
    f. deepseek-ai/DeepSeek-V3.1-Terminus
    g. PaddlePaddle/ERNIE-4.5-21B-A3B-Thinking
    h. google/embeddinggemma-300m (embedding model)
  2. Multimodal Models
    a. Qwen/Qwen3-VL-30B-A3B-Instruct series. Training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/models/qwen3_vl
    b. Qwen/Qwen3-Omni-30B-A3B-Instruct series. Training scripts: https://github.com/modelscope/ms-swift/tree/main/examples/models/qwen3_omni
    c. Kwai-Keye/Keye-VL-1_5-8B (Thanks to @hellopahe for the contribution)
    d. OpenGVLab/InternVL3_5-1B-HF series
    e. BytedanceDouyinContent/SAIL-VL2-2B series
    f. stepfun-ai/Step-Audio-2-mini (Thanks to @CJack812 for the contribution)

What's Changed

Read more

Patch release v3.8.3

01 Oct 14:01

Choose a tag to compare

Patch release v3.8.2

23 Sep 15:18

Choose a tag to compare