Skip to content

[Bug] Inconsistent Results After ONNX Runtime Optimization #23133

Open
@Thrsu

Description

@Thrsu

Describe the issue

I am encountering an issue where the output of the model after optimization using ONNX Runtime is inconsistent with the original model. Specifically, the optimization process leads to mismatched results for one of the outputs, v5_0, while others remain consistent.

  • Actual Behavior:
AssertionError: 
Not equal to tolerance rtol=0.001, atol=0.001

Mismatched elements: 18 / 918 (1.96%)
Max absolute difference: 867669248
Max relative difference: inf
 x: array([[-867669248,      32714, -867669248,      32714, -867669248,
             32714,          0,          0,          0,          0,
                 0,          0,          0,          0,          0,...
 y: array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0],...

  • Expected Behavior:
    The optimized model should produce identical results for all outputs when compared to the original model, within the specified tolerance.

To reproduce

  1. Download the model
  2. run the following script:
import onnx
import onnxruntime as ort
import numpy as np
from onnxruntime.transformers import optimizer

model_path = "inconsis1.onnx"
optimized_model_path = f"./opt.onnx"
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
this_provider_list = ort.get_available_providers()

original_session = ort.InferenceSession(model_path, sess_options, providers=this_provider_list)
input_data = {"v2_0": np.random.rand(1, 1).astype(np.int32), "v9_0": np.random.rand(1, 6, 51, 1).astype(np.int32)}
output_names = [output.name for output in original_session.get_outputs()]
original_result = original_session.run(output_names, input_data)

optimized_model = optimizer.optimize_model(model_path, opt_level=99, use_gpu=True)
optimized_model.save_model_to_file(optimized_model_path)
optimized_session = ort.InferenceSession(optimized_model_path, providers=this_provider_list)
optimized_model = onnx.load(optimized_model_path)
optimized_result = optimized_session.run(output_names, input_data)

for r1, r2 in zip(original_result, optimized_result):
    np.testing.assert_allclose(r1, r2, atol=1e-3, rtol=1e-3)

Urgency

No response

Platform

Linux

OS Version

Ubuntu 20.04

ONNX Runtime Installation

Built from Source

ONNX Runtime Version or Commit ID

5c1b7cc

ONNX Runtime API

Python

Architecture

X64

Execution Provider

CUDA

Execution Provider Library Version

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    model:transformerissues related to a transformer model: BERT, GPT2, Hugging Face, Longformer, T5, etc.staleissues that have not been addressed in a while; categorized by a bot

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions