Skip to content

Incorrect results with JVM shuffle: Spark SQL - SPARK-32038: NormalizeFloatingNumbers should work on distinct aggregate #1824

Open
@andygrove

Description

@andygrove

Describe the bug

The following test (can be copied into CometExpressionSuite) fails.

The bug appears to be related to the handling of NaN values.

  test("SPARK-32038: NormalizeFloatingNumbers should work on distinct aggregate") {
    withTempView("view") {
      val nan1 = java.lang.Float.intBitsToFloat(0x7f800001)
      val nan2 = java.lang.Float.intBitsToFloat(0x7fffffff)

      Seq(
        ("mithunr", Float.NaN),
        ("mithunr", nan1),
        ("mithunr", nan2),
        ("abellina", 1.0f),
        ("abellina", 2.0f)).toDF("uid", "score").createOrReplaceTempView("view")

      // the query uses RangePartitioning, which is not supported in native shuffle
      withSQLConf(CometConf.COMET_SHUFFLE_MODE.key -> "jvm") {
        val df = spark.sql("select uid, count(distinct score) from view group by 1 order by 1 asc")
        checkSparkAnswer(df)
      }
    }
  }

All of the values for mithunr are NaN, so the distinct count should be 1 not 3.

!== Correct Answer - 2 ==                          == Spark Answer - 2 ==
 struct<uid:string,count(DISTINCT score):bigint>   struct<uid:string,count(DISTINCT score):bigint>
 [abellina,2]                                      [abellina,2]
![mithunr,1]                                       [mithunr,3]

Spark plan:

+- == Initial Plan ==
   Sort [uid#7 ASC NULLS FIRST], true, 0
   +- Exchange rangepartitioning(uid#7 ASC NULLS FIRST, 10), ENSURE_REQUIREMENTS, [plan_id=31]
      +- HashAggregate(keys=[uid#7], functions=[count(distinct score#15)], output=[uid#7, count(DISTINCT score)#12L])
         +- Exchange hashpartitioning(uid#7, 10), ENSURE_REQUIREMENTS, [plan_id=28]
            +- HashAggregate(keys=[uid#7], functions=[partial_count(distinct score#15)], output=[uid#7, count#18L])
               +- HashAggregate(keys=[uid#7, score#15], functions=[], output=[uid#7, score#15])
                  +- Exchange hashpartitioning(uid#7, score#15, 10), ENSURE_REQUIREMENTS, [plan_id=24]
                     +- HashAggregate(keys=[uid#7, knownfloatingpointnormalized(normalizenanandzero(score#8)) AS score#15], functions=[], output=[uid#7, score#15])
                        +- LocalTableScan [uid#7, score#8]

Comet plan:

+- == Initial Plan ==
   CometSort [uid#7, count(DISTINCT score)#12L], [uid#7 ASC NULLS FIRST]
   +- CometColumnarExchange rangepartitioning(uid#7 ASC NULLS FIRST, 10), ENSURE_REQUIREMENTS, CometColumnarShuffle, [plan_id=188]
      +- HashAggregate(keys=[uid#7], functions=[count(distinct score#32)], output=[uid#7, count(DISTINCT score)#12L])
         +- CometColumnarExchange hashpartitioning(uid#7, 10), ENSURE_REQUIREMENTS, CometColumnarShuffle, [plan_id=186]
            +- HashAggregate(keys=[uid#7], functions=[partial_count(distinct score#32)], output=[uid#7, count#35L])
               +- CometHashAggregate [uid#7, score#32], [uid#7, score#32]
                  +- CometColumnarExchange hashpartitioning(uid#7, score#32, 10), ENSURE_REQUIREMENTS, CometColumnarShuffle, [plan_id=163]
                     +- HashAggregate(keys=[uid#7, knownfloatingpointnormalized(normalizenanandzero(score#8)) AS score#32], functions=[], output=[uid#7, score#32])
                        +- LocalTableScan [uid#7, score#8]

Steps to reproduce

No response

Expected behavior

No response

Additional context

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions