Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Upgrade transformers to 4.48.0 for llama2 #24302

Open
wants to merge 29 commits into
base: main
Choose a base branch
from

Conversation

selenayang888
Copy link

@selenayang888 selenayang888 commented Apr 3, 2025

Description

Upgrade Transformers to 4.48.0 for llama2, this version deprecated the old format of past_key_value, the current format is DynamicCache. So, we need to add patches to dynamo exporter in llama2.

Thanks to @xadupre who made the changes to add the patches to dynamo exporter, and implements patches to transformers 4.48.0 which don't export and convert dynamic_axes into dynamic shapes.

@@ -7,6 +7,7 @@

import numpy as np
import torch
import transformers

Check notice

Code scanning / CodeQL

Module is imported with 'import' and 'import from' Note

Module 'transformers' is imported with both 'import' and 'import from'.
Module 'onnxruntime.test.python.transformers' is imported with both 'import' and 'import from'.

Copilot Autofix

AI 10 days ago

To fix the problem, we should remove the from transformers import AutoConfig, AutoTokenizer statement and access these components through the transformers module directly. This approach maintains a single import style and avoids potential namespace conflicts.

  • Remove the from transformers import AutoConfig, AutoTokenizer statement.
  • Update the code to access AutoConfig and AutoTokenizer through the transformers module.
Suggested changeset 1
onnxruntime/python/tools/transformers/models/llama/llama_inputs.py

Autofix patch

Autofix patch
Run the following command in your local git repository to apply this patch
cat << 'EOF' | git apply
diff --git a/onnxruntime/python/tools/transformers/models/llama/llama_inputs.py b/onnxruntime/python/tools/transformers/models/llama/llama_inputs.py
--- a/onnxruntime/python/tools/transformers/models/llama/llama_inputs.py
+++ b/onnxruntime/python/tools/transformers/models/llama/llama_inputs.py
@@ -10,3 +10,2 @@
 import transformers
-from transformers import AutoConfig, AutoTokenizer
 
@@ -32,3 +31,3 @@
 def get_sample_inputs(
-    config: AutoConfig,
+    config: transformers.AutoConfig,
     device: torch.device,
@@ -67,3 +66,3 @@
 def get_sample_with_past_kv_inputs(
-    config: AutoConfig,
+    config: transformers.AutoConfig,
     device: torch.device,
EOF
@@ -10,3 +10,2 @@
import transformers
from transformers import AutoConfig, AutoTokenizer

@@ -32,3 +31,3 @@
def get_sample_inputs(
config: AutoConfig,
config: transformers.AutoConfig,
device: torch.device,
@@ -67,3 +66,3 @@
def get_sample_with_past_kv_inputs(
config: AutoConfig,
config: transformers.AutoConfig,
device: torch.device,
Copilot is powered by AI and may make mistakes. Always verify output.
import torch
import transformers

Check notice

Code scanning / CodeQL

Module is imported with 'import' and 'import from' Note

Module 'transformers' is imported with both 'import' and 'import from'.
Module 'onnxruntime.test.python.transformers' is imported with both 'import' and 'import from'.

Copilot Autofix

AI 10 days ago

To fix the problem, we should remove the from transformers import AutoConfig statement and use transformers.AutoConfig instead. This will ensure that the module is only imported once, reducing confusion and potential for errors.

  • Remove the from transformers import AutoConfig statement.
  • Replace all instances of AutoConfig with transformers.AutoConfig.
Suggested changeset 1
onnxruntime/python/tools/transformers/models/llama/llama_parity.py

Autofix patch

Autofix patch
Run the following command in your local git repository to apply this patch
cat << 'EOF' | git apply
diff --git a/onnxruntime/python/tools/transformers/models/llama/llama_parity.py b/onnxruntime/python/tools/transformers/models/llama/llama_parity.py
--- a/onnxruntime/python/tools/transformers/models/llama/llama_parity.py
+++ b/onnxruntime/python/tools/transformers/models/llama/llama_parity.py
@@ -28,3 +28,2 @@
 from models.torch_export_patches.cache_helper import make_dynamic_cache
-from transformers import AutoConfig
 
@@ -35,3 +34,3 @@
 
-def get_sequence_lengths(args: argparse.Namespace, config: AutoConfig):
+def get_sequence_lengths(args: argparse.Namespace, config: transformers.AutoConfig):
     past_sequence_length, curr_sequence_length = (8, 1) if args.use_past_kv else (0, 8)
@@ -41,3 +40,3 @@
 
-def get_inputs(args: argparse.Namespace, config: AutoConfig):
+def get_inputs(args: argparse.Namespace, config: transformers.AutoConfig):
     # Dummy values for parity
@@ -104,3 +103,3 @@
     pytorch_model: None | torch.nn.Module = None,
-    config: None | AutoConfig = None,
+    config: None | transformers.AutoConfig = None,
 ):
EOF
@@ -28,3 +28,2 @@
from models.torch_export_patches.cache_helper import make_dynamic_cache
from transformers import AutoConfig

@@ -35,3 +34,3 @@

def get_sequence_lengths(args: argparse.Namespace, config: AutoConfig):
def get_sequence_lengths(args: argparse.Namespace, config: transformers.AutoConfig):
past_sequence_length, curr_sequence_length = (8, 1) if args.use_past_kv else (0, 8)
@@ -41,3 +40,3 @@

def get_inputs(args: argparse.Namespace, config: AutoConfig):
def get_inputs(args: argparse.Namespace, config: transformers.AutoConfig):
# Dummy values for parity
@@ -104,3 +103,3 @@
pytorch_model: None | torch.nn.Module = None,
config: None | AutoConfig = None,
config: None | transformers.AutoConfig = None,
):
Copilot is powered by AI and may make mistakes. Always verify output.
Comment on lines +10 to +19
def _catch_produce_guards_and_solve_constraints(
previous_function: Callable,
fake_mode: "FakeTensorMode",
gm: "torch.fx.GraphModule",
dynamic_shapes: dict[str, Any] | tuple[Any] | list[Any] | None,
equalities_inputs: "EqualityConstraint", # noqa: F821
original_signature: inspect.Signature,
_is_torch_jit_trace: bool = False,
verbose: int = 0,
):

Check notice

Code scanning / CodeQL

Explicit returns mixed with implicit (fall through) returns Note

Mixing implicit and explicit returns may indicate an error as implicit returns always return None.

Copilot Autofix

AI 10 days ago

To fix the problem, we need to add explicit return statements at the end of the functions _catch_produce_guards_and_solve_constraints and patch__check_input_constraints_for_graph. This will ensure that the functions always return a value explicitly, making the code easier to read and understand.

  • For _catch_produce_guards_and_solve_constraints, we will add return None at the end of the function.
  • For patch__check_input_constraints_for_graph, we will also add return None at the end of the function.
Suggested changeset 1
onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py

Autofix patch

Autofix patch
Run the following command in your local git repository to apply this patch
cat << 'EOF' | git apply
diff --git a/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py b/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
--- a/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
+++ b/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
@@ -43,3 +43,3 @@
             )
-
+        return None
 
@@ -66,3 +66,3 @@
             )
-
+        return None
 
EOF
@@ -43,3 +43,3 @@
)

return None

@@ -66,3 +66,3 @@
)

return None

Copilot is powered by AI and may make mistakes. Always verify output.
Comment on lines +46 to +52
def patch__check_input_constraints_for_graph(
previous_function: Callable,
input_placeholders: list[torch.fx.Node],
flat_args_with_path,
range_constraints,
verbose: int = 0,
) -> None:

Check notice

Code scanning / CodeQL

Explicit returns mixed with implicit (fall through) returns Note

Mixing implicit and explicit returns may indicate an error as implicit returns always return None.

Copilot Autofix

AI 10 days ago

To fix the problem, we need to add an explicit return statement at the end of the function patch__check_input_constraints_for_graph. This ensures that the function consistently returns None when no exception is raised, making the code easier to read and understand.

  • Add an explicit return None statement at the end of the function patch__check_input_constraints_for_graph.
  • This change should be made in the file onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py.
Suggested changeset 1
onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py

Autofix patch

Autofix patch
Run the following command in your local git repository to apply this patch
cat << 'EOF' | git apply
diff --git a/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py b/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
--- a/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
+++ b/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
@@ -66,3 +66,3 @@
             )
-
+        return None
 
EOF
@@ -66,3 +66,3 @@
)

return None

Copilot is powered by AI and may make mistakes. Always verify output.
Comment on lines +304 to +306
# if config.print_specializations:
# self.log.warning(
# "Specializing %s to %s", self.var_to_sources[a][0].name(), tgt

Check notice

Code scanning / CodeQL

Commented-out code Note

This comment appears to contain commented-out code.

Copilot Autofix

AI 10 days ago

To fix the problem, we should remove the commented-out code entirely. This will clean up the code and eliminate any potential confusion for future developers. If the logging functionality is still required, it should be properly implemented with a configuration check.

  • Remove the commented-out code on lines 304-308.
  • Ensure that the removal does not affect the existing functionality of the code.
Suggested changeset 1
onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py

Autofix patch

Autofix patch
Run the following command in your local git repository to apply this patch
cat << 'EOF' | git apply
diff --git a/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py b/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
--- a/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
+++ b/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_torch.py
@@ -303,7 +303,7 @@
 
-            # if config.print_specializations:
-            #    self.log.warning(
-            #         "Specializing %s to %s", self.var_to_sources[a][0].name(), tgt
-            #     )
-            #     self.log.debug("SPECIALIZATION", stack_info=True)
+
+
+
+
+
         assert msg != "range_refined_to_singleton", (
EOF
@@ -303,7 +303,7 @@

# if config.print_specializations:
# self.log.warning(
# "Specializing %s to %s", self.var_to_sources[a][0].name(), tgt
# )
# self.log.debug("SPECIALIZATION", stack_info=True)





assert msg != "range_refined_to_singleton", (
Copilot is powered by AI and may make mistakes. Always verify output.
Comment on lines +281 to +288
# if input_ids.shape[1] == 0:
# inputs_embeds = inputs_embeds[:, -cache_position.shape[0] :]
# else:
# if cache_position[-1] >= input_ids.shape[1]:
# input_ids = input_ids[:, -cache_position.shape[0] :]
# else:
# if input_ids.shape[1] != cache_position.shape[0]:
# input_ids = input_ids[:, cache_position]

Check notice

Code scanning / CodeQL

Commented-out code Note

This comment appears to contain commented-out code.

Copilot Autofix

AI 10 days ago

To fix the problem, we should remove the commented-out code entirely. This will make the code cleaner and less confusing for future developers. The functionality of the code will remain unchanged as the commented-out code is not executed.

Suggested changeset 1
onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_transformers.py

Autofix patch

Autofix patch
Run the following command in your local git repository to apply this patch
cat << 'EOF' | git apply
diff --git a/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_transformers.py b/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_transformers.py
--- a/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_transformers.py
+++ b/onnxruntime/python/tools/transformers/models/torch_export_patches/patches/patch_transformers.py
@@ -279,11 +279,3 @@
         else:
-            # This is the code we need to implemented with torch.cond.
-            # if input_ids.shape[1] == 0:
-            #     inputs_embeds = inputs_embeds[:, -cache_position.shape[0] :]
-            # else:
-            #     if cache_position[-1] >= input_ids.shape[1]:
-            #         input_ids = input_ids[:, -cache_position.shape[0] :]
-            #     else:
-            #         if input_ids.shape[1] != cache_position.shape[0]:
-            #             input_ids = input_ids[:, cache_position]
+            
             def branch_1(inputs_embeds, cache_position):
EOF
@@ -279,11 +279,3 @@
else:
# This is the code we need to implemented with torch.cond.
# if input_ids.shape[1] == 0:
# inputs_embeds = inputs_embeds[:, -cache_position.shape[0] :]
# else:
# if cache_position[-1] >= input_ids.shape[1]:
# input_ids = input_ids[:, -cache_position.shape[0] :]
# else:
# if input_ids.shape[1] != cache_position.shape[0]:
# input_ids = input_ids[:, cache_position]

def branch_1(inputs_embeds, cache_position):
Copilot is powered by AI and may make mistakes. Always verify output.
@selenayang888
Copy link
Author

@microsoft-github-policy-service agree company="Microsoft"

@selenayang888 selenayang888 changed the title [WIP] transformers upgrade llama2 Upgrade transformers to 4.48.0 for llama2 Apr 12, 2025
@selenayang888 selenayang888 marked this pull request as ready for review April 12, 2025 00:37
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants